Chapter 1

The Chinese Rings

In this chapter, we will discuss the mathematical theory of the CR which goes
back to the booklet by Gros of 1872 [119]. This mathematical model may serve
as a prototype for the approach to analyze other puzzles in later chapters. In
Section 1.1 we develop the theory based on binary coding leading to a remarkable
sequence to be discussed in Section 1.2. Some applications will be presented in
Section 1.3.

1.1 Theory of the Chinese Rings

Recall the initial appearance of the puzzle with all rings on the bar (cf. Figure 1.1).

Figure 1.1: Chinese rings

In the introduction we assumed that all configurations of the system of rings
can be reached from this initial state using just two kinds of individual ring moves,
which we will now specify as:

e the rightmost ring can always be moved (move type 0),

e the ring after the first ring on the bar (from the right) can be moved (move
type 1);
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we have chosen the handle to be on the left for mathematical reasons, the rightmost
ring having the least “place value”. From a practical point of view, a move of type 0
consists of two steps, or movements in the sense of Wallis (cf. Section 0.6.1): to
move the rightmost ring off the bar, one has to pull the bar back and then the
ring through the loop; for every other ring, the bar has to be pulled back through
its right-hand neighbor and itself (two movements), then the moving ring goes
through the loop and finally the bar forward through the neigboring ring, all in all
four movements. Since all the movements of the bar are “forced” by the material,
we will only count moves of rings, i.e. movements through the loop.

The original task was to get all rings off the bar, and we have to show that
our assumption was correct. The questions arising are

e Is there a solution? (If the answer is “yes”, then there is also a shortest solution
with respect to the number of moves needed.)

e Is there only one (shortest) solution?
e Is there an efficient solution, i.e. an algorithm realizing the shortest solution?

The same types of questions will be asked for other puzzles in later chapters.

For every ring there are two conditions, namely to be off or on the bar,
represented by 0 and 1, respectively. We define B :=[2]g = {0,1}.

Then every state of the CR with n € Ny rings can be represented by an
$=8p...51 € B", where s, = 0 (1) means that ring r € [n] (numbered from right
to left) is off (on) the bar. (We include the case n = 0 for technical reasons; s € B°
is the empty string then by convention.) According to the rules, a bit sx.1 can be
switched, if either k£ = 0 (move type 0) or s =1 and VI e[k—-1]: s, =0 (move
type 1). That is to say, with b e B,

e any state x...yb can be transformed into z...y(1 -b) (move type 0),
e any state x...ybl0...0 into x...y(1-0)10...0 (move type 1).

For n € Ny the task translates to finding a (shortest) path from 1™ to 0" in the
graph R™ whose vertex set is B" and whose edges are formed by pairs of states
differing by the legal switch of one bit. (Here and in the sequel the string b...b
of length k € Ng U {co} will be written as b*; similarly, for strings s and ¢, st will
denote the concatenated string.) Since this graph is undirected, we may as well
start in o™ := 0", a vertex of degree 1, if n € N. Its only neighbor is 0" 1. If n > 1,
the next move is either to go back to 0", which in view of a shortest path to 1™ is
certainly not a good idea, or to the only other neighbor 0"7211. Continuing this
way we will never return to a vertex already visited, because their degrees (at most
2) have been used up already. Therefore, we finally arrive on this path graph at the
only other vertex of degree 1, namely w( := 10", (In addition, we define w(®
as the empty string for definiteness as before.) This does, however, not guarantee
that we passed the goal state 1™ on our way! A graph with vertices of degree 2
except for exactly two pendant vertices consists of a path and a certain number
of cycles (cf. Exercise 1.1). So what we have to show is that R™ is connected.
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Theorem 1.1. The graph R™ is connected for every n € Ng. More precisely, R" is
the path on 2™ vertices from o™ to w(™.

Proof. The proof is by induction on n. The case n = 0 is trivial. For n € Ny we
know by induction assumption that R" is the path from o™ to w(™). Attaching 0
at the left of each of its vertices we get a path from o™ to 0w in R™" which
passes through all states that start with 0. Similarly, attaching 1 to the vertices
of the same path but taken in reverse order, gives a path on 2" vertices in R**"
between 1w and w™*™. Since these two paths are linked in R'™" by precisely
one edge, namely the edge between 0w (™ and 1w, the argument is complete. O

Remark 1.2. Readers with a horror vacui are advised to base induction on n = 1.

Remark 1.3. Combining the move types we get the more formal definition of the
graphs R™ by

V(R™) = B", B(R") = {{s000™), 510D} | r e [n], s € B},

where for each edge r is the moving ring. Note that the distribution s of rings r+1
to n is arbitrary.

Here is an alternative proof for Theorem 1.1. The path P™ c R"™ leading
from a(™ to w(™ must contain the edge e := {0w™ 1) 1w D} because this is
the only legal way to move ring n onto the bar. This means that P™ contains,
in obvious notation, 0P"!, e, and 1P""!, the latter traversed in inverse sense.
Hence, |P"| > 2|P"7}|, such that, with |P°| = 1, we get |P"| > 2" and consequently
P™ = R™. In other words, R" is obtained by taking two copies of R"™!, reflecting
the second, and joining them by an edge. As an example, R® is the path graph
depicted in Figure 1.2. The reflection is indicated with the dashed line and the
digits that were added to the graphs R? are in bold face.

® 4 4 o—@ @ @ ®
000 001 o011 010 : 110 111 101 100

Figure 1.2: The graph R3
From this it is obvious that the edge sets of the Chinese rings graphs can
also be defined recursively.
Remark 1.4. The edge sets of R" are given by
E(R%) =g,

VneNg: E(R™") = {{ir,is} | i€ B, {r,s} e B(R")} u {{0w™, 10(™}}.
(1.1)
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The reader is invited (Exercise 1.2) to deduce the recurrence
Bo=0,VneN: B, +8,.1=2"-1 (1.2)

for the number £, of moves needed to take off n € N rings from the bar, i.e.
to get from 1" to 0" in R". Obviously, 8 = 02,12,105,1015,10105,101015,... in
binary representation, such that 3, = [%(2" - 1)] (A000975 in [296]; the sequence
of differences B, — Bn-1, n € N, is the Jacobsthal sequence [296, A001045]). The
classical CR with n =9 rings can therefore be solved in a minimum of 341 moves.
In order to find out whether we have to move ring 1 or ring 2 first when we begin
with all rings on the bar, we make the following observation.

Proposition 1.5. The function B" 3 s~ (X'_; 5,) mod 2 € B defines a vertez col-
oring of R"; the type of the move associated with an edge defines an edge coloring.

The proof is left as an exercise (Exercise 1.3).

Let us break to look back at early theories about the number of moves for a
solution of the CR.

Since the first and then every second move on the path graph R" is of type 0,
ring 1 moves 2"7! times on it. This makes up for 2" Wallis movements (cf. p. 41).
The other 2”71 — 1 moves produce 2" — 4 movements. For n = 9, this leads to
1532 movements; to this one has to add the movement of the bar right to the left
end to arrive at Wallis’s value in Section 0.6.1.

Another counting was used by Cardano, where a simultaneous move up or
down of rings 1 and 2 is allowed for n > 2. Lucas called this the accelerated Chinese
rings (ACR) in [209, p. 183-186]. The diameter of the corresponding graph reduces
to 3-272 -1, and the standard task can then be solved in 3, = 2"~ - (n even)
moves; see Exercise 1.4.

It might be true that the Latin in Cardano’s passage [50, p. 492f] is difficult
to understand; possibly, as Gros [119] assumes, because written by a second hand.
But it is clear from the beginning that he is dealing with ACR for n = 7. Therefore,
the (only) numbers 31, 64, 95, and 190 occurring in the text are neither misprinted
nor mathematical errors, as Gros and others claim, but are, respectively, 36, 57,
3-2%—-1, and twice the latter number. So Cardano gave the lengths of the solutions
to get from 10% to 17, from 17 to 07, for the whole path and for the “circulus”.

We are now also able! to interpret the two tables in the book by Zhu Xiang
Zhuren mentioned in the introduction. We refer to Figure 0.24 whose contents
have to be read from top to bottom and from right to left. The passage is enti-
tled “Untangling Linked Rings Method” (# i 31 7%). In the top row the rings are
numbered above the puzzle (which has its handle on the right) as in Figure 1.1;
instructions are given how to operate it and how to use the tables, the second
of which “many times”. The insert in the center row says “When possible, move
the first two rings at the same time in one move.”; that is, Cardano’s counting is

Lonly with the generous aid by Wei Zhang and Peter Rasmussen
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employed. Table I in the same row consists of 11 columns and 6 rows. The first
case (top right) does not count, but has the overlaid inscription “This table takes
the 9th ring off”. And that is what it does! It starts (below the latter inscription)
with “1 off, 3 off, 1 on, 2 and 1 off” and reaches the end of the first column with
“4 off”. (The Chinese characters for “on” (up) and “off” (down) are £ (shang) and
T (xia), respectively; the number symbols can easily be taken from the very top
of the figure.) Then the second column starts with “2 and 1 on”. Below the bottom
left case, we find the inscription “The 9th ring is now off”. In our notation this
table solves the task 1° - 0107, and the number of moves needed can be calculated
from the dimensions of Table I as 11 x 6 — 1 = 65 and read from the line above the
table. But for the last move, this is the solution for the 7-ring puzzle in 57 =64
moves! The task is therefore reduced to solving 107 — 0%, i.e. to traverse the whole
path graph R®, which should take 3-2°% -1 = 191 further moves. This is done with
the aid of Table II in the bottom row of Figure 0.24. A first run leads to ring
8 being taken off, i.e. to state 0210°, after 16 x 6 = 96 moves. (The entry in the
penultimate case of the table wants to indicate the state before ring 8 is taken off;
given that ring 9 was taken off by Table I, “rings 8 and 9 are on” is an obvious mis-
print for “rings 7 and 8 are on”.) Instead of making use of the reflective structure
of the state graph and going back Table II switching “on” and “off”, the author
now employs an iterative method, using the table once again from the beginning,
but stopping in the middle, when ring 7 can be taken off. This is mathematically
correct, because the first half of the CR graph is the same if a leading Os is deleted.
The kth application of Table II therefore solves the task 0¥10%% — 0¥1207%, i.c.
0%% > 107"%, in 3-2%7% — 1 moves and then puts ring 9 — k down. So the 6th run
ends already halfway through the rightmost column. This is indicated by the two
lines on the margin saying that “rings 2 and 3 are on” and then “ring 3 is now off.”
Finally, the last two moves are in cases 4 and 5 of the right-hand column. The
move numbers to get rings 3 to 8 off are again given above Table II. Adding up
these values together with the two last moves gives the correct sum 191 indicated
above.

Coming back to the standard style of counting individual ring moves, we
have:

Proposition 1.6. The CR with n € N rings have a unique minimal solution of length
[%(2" - 1)] It can be realized by alternating moves of types 0 and 1, starting with
type 0 if n is odd and type 1 otherwise.

Remark 1.7. If one finds the CR abandoned in state s € B", there is an easy way
to decide about the best first move to get to a(™ (the next moves being obvious on
a path graph). As neighboring states differ by one bit only, the sum of bits of s
will be odd if the last move on the path from o™ to s is made by ring 1 and even
otherwise. So the parity of the sum of bits of s will tell you which move to make
first on the reverse path.
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Every connected graph has a canonical metric, the graph distance d(s,t)
between two vertices s and t being given by the length of a shortest s,t-path. A
direct application is the existence of perfect codes for R", see Exercise 1.5. The
proof of Theorem 1.1 shows that the diameter diam(R") of R" is d(a(™,w(™) =
2" —1 and that there is a unique shortest path between any two states of the CR.
Their distance is given by d(s,t) = |d(s) - d(t)|, where d(s) := d(s,a(™) can be
determined by a finite automaton (cf. Figure 1.3). It consists of two states A and
B. The input of a bit a in A results in printing ¢ and moving to state B if a = 1;
the input of b in B leads to printing of 1 — b and moving to A if b=1.

A B

Figure 1.3: Automaton for the Gros code

Proposition 1.8. If we enter the components s, of s = s,...51 € B", neN, from
left to right, starting in state A of the automaton, the resulting output, read from
left to right and interpreted as a binary number, gives the value of d(s).

Proof. We prove by induction on n that input of s starting in A gives d(s) and
input of s starting in B gives 2" — 1 — d(s). This is obviously true for n = 1. Let
neNand s e B, If s = 05, 5 € B, then starting in A leads to d(3) = d(s),
because d(s) < 2"; starting in B gives 2" +2" -~ 1 -d(5) = 21" -1 -d(s). If 5 = 15,
then starting in A leads to 2" +2" —1-d(3) = d(s), because d(s) = 2" +d (5, w™);
starting in B gives d(5) = 21" -1 -d(s). i

Remark 1.9. It follows immediately from Proposition 1.5 that the best first move
from state s to state t is of type d(s) mod 2, if d(s) < d(t) and of type 1-(d(s) mod
2) otherwise. The rest of the shortest path is then again obtained by alternating
the types of moves.

The bijection from B™ to [2"] provided by the automaton above is a coding
of the states of the CR by the distance from the state (™. This code goes back
to Louis Gros, who in 1872 published a theory of the baguenaudier, as the CR are
called in French [119]. Its inverse is called Gray code, after F. Gray, who got a
patent [116] for it in 1953. In fact, if d,. are the bits of d € Ny, we may put

VreN: s.=(d, +dy—1) mod2. (1.3)
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Then d(s) = d, as can be seen by applying the automaton or either Gros’s formula
dr_1 = dp + (1 -2d;)s, (cf. [119, p. 13]). The corresponding automaton for the
Gray code is shown in Figure 1.4. Here moves between the two states of the
automaton are performed according to the one-sided arrows. For an application,
see Exercise 1.6.

A B

Figure 1.4: Automaton for the Gray code

Because of the construction in the proof of Theorem 1.1, the Gray code is also
called reflected binary code (cf. Figure 1.2). Its main advantage is that neighboring
code numbers differ by exactly one bit. More on Gray codes can be found in [180,
Section 7.2.1.1]. For instance, it can also be produced in an iterative way with the
aid of the Gros sequence; see Section 1.2 below.

A state s € B” being uniquely determined by its distance d(s) from (™ and
with all values from 0 to 2" — 1 occurring, it is obvious that the average distance
to a(™ (or to w(™ for that matter) in R™ is 27" Agn_; = (2" - 1)/2. This is not
too surprising given that R" is isomorphic to the path graph on 2™ vertices Pon.

The eccentricity ¢(v) of a vertex v in a path graph is always the maximum
of its distances to the two end vertices. Therefore, in R**", n € Ny, we have

VieB,seB": 2" <e(is) =2""" —1-d(s) <2" -1,

and every value in that range appears precisely once for each i. Hence, the total
eccentricity of R'*" is (cf. [296, A010036])

2n+171
E(R"™™) =2 Y k=(2""'-1)2""-(2"-1)2"=2"(3-2" - 1),
k=2m

such that the average eccentricity on R*™™ turns out to be (cf. [154, Proposi-
tion 4.1])
1
5(3“"):5(32"—1), (1.4)
i.e. asymptotically (for n — oo) 3/4 of the diameter.

To find the average distance on R™, we can start off from the notion
of the Wiener index W(G) of a connected graph G, namely the total sum
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W(Q) = Z d(s,t) of distances between any two vertices of G. The average
{s:t3e(VS7)
distance on G is then?

- 2W(G)
d(G) = .

V(&)
Knowing the Wiener indices of path graphs from Exercise 1.7, we get

d(R") = %(2“ -2, (1.5)

or approximately 1/3 of the diameter.

Finally, it would be interesting to know whether it is likely to arrive at
a solution for the CR by chance, that is if the player makes moves at random
choosing move types 0 or 1 with equal likelihood 1/2 (except in states a(™) and
w(™). Based on the method of Markov chains (cf. [203] and infra, Section 4.1),
H. L. Wiesenberger has found [338, p. 66{] that the expected number of moves to
reach state t from s on such a random walk in R" is

d(t)? -d(s), if d(t) >d(s);
de(s,t) =4 O, if d(t) =d(s);
(2" -=1-d(t))* = (2" -1-d(s)), ifd(t)<d(s).
In particular, d.(0™,1") = 82, but d.(1",0") = (2" = 1)? - B,,-1 for n € N. So it
was a good idea of Hung Ming to give the jiulianhuan to his wife with all rings
on the bar, because she would need 260951 moves to get them all off, in contrast
to 116281 moves the other way round, if she wanted to solve it without thinking.
These huge numbers demonstrate the advantage of a good mathematical model!

1.2 The Gros Sequence

CR yields an interesting integer sequence—the Gros sequence. It will become clear
later that this is just the tip of an iceberg because many additional interesting
integer sequences will appear in due course.

An analysis of the solution for the CR reveals the following: assuming that
there are infinitely many rings and starting with all of them off the bar, the
sequence of rings moved starts

g=1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,...

Note that we have paused at the moment when the first 5 rings are on the bar.
This sequence is, of course, already anticipated in Zhu Xiang Zhuren’s solution:
the ring numbers in the bottom line of his Table IT (cf. the bottom row in Fig-
ure 0.24) reading 4,5,4,6,4,5,4,7,4,5,4,6,4,5,4,8. P. Rasmussen came up with
a nice mnemonic:

2Some authors prefer to divide by |V (G)|(|V(G)| - 1) only; cf. [46, Equation (9.4)].
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one two one three one two one four one two one three one two one more .

To the best of our knowledge, the sequence g was studied for the first time
by Gros in his 1872 pamphlet [119], hence we named it the Gros sequence. It is
the sequence A001511 in [296] where it is referred to as the ruler function; cf. the
markings on an imperial ruler, just like the heights of the columns in Figure 0.9.
The Gros sequence obeys the following appealing recurrence.

Proposition 1.10. For any k € N,

], k odd;
gk = grj2+ 1, k even.

Proof. Recall from Proposition 1.5 that in the solution of the CR, the moves
alternate between type 0 and type 1. So every odd numbered move (or odd move
for short) is of type 0 which implies that g, = 1 when k is odd. Now consider even
moves (that is, moves of rings 2,3,2,4,...) and observe that they are identical to
the solution of the puzzle with rings 2,3,.... Since these moves appear in even
steps, the second assertion follows. O

Repeated application of the recursion in Proposition 1.10 implies:
Corollary 1.11. Let k €N and write k=2"(2s+1), r,s >0. Then gi. =7+ 1.

Corollary 1.11 can be rephrased by saying that gi is the number of times the
factor 2 appears in 2k. Already in 1808, A. M. Legendre posed the question, how
many factors 2 the number n! has [188, p. 8-10] (cf. [179, p. 51, Exercises 11/12]).
This amounts to summing the binary carry sequence g [296, A007814|, defined
in Exercise 1.8, where it is shown that g = gr — 1. He obtained the remarkable
formula

i =n-q(n), (1.6)

where ¢(n) denotes the number of 1s in the binary representation of n; see Exer-
cise 1.9 for the proof.

Gros makes use of Corollary 1.11 for his “practical rule” [119, p. 14f] for a
move in a state s with d(s) = k: the move which led to s from (™ is by ring
gk, which is the position (counted from 1) of the rightmost bit 1 in k. Therefore,
a move of this ring from s will lead to o(™. By symmetry, moving away from
o™ involves the ring with the position number of the rightmost 0 in the binary
representation of k. Compared to our recipe in Remark 1.7, this procedure has
the practical disadvantage that the state s is visible for the problem solver, but &
has to be calculated. For the general task to get from s to ¢, solved by Lucas [214,
p. 179], this is unavoidable though; c¢f. Remark 1.9.

Another use can be made of the binary representation to find out whether in
move k = Z k, - 2" ring r = gi goes up (1) onto the bar or down (0), still assuming

v=0
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an infinite supply of rings and starting with all of them off the bar. Let us denote
the resulting binary sequence by f € BY. Then VkeN: f, =1-k,,, because this
is the position (off or on the bar) of ring g; after move number k according to
(1.3). From Proposition 1.10 it is clear that fi can be obtained recursively by

VleNg: fops1=1-fmod2, forio= foir1.

Let us look at the sequence f from a different prospect. Have you ever won-
dered why it is so difficult to fold a package insert of some medicine back after it
had been unfolded? Try the inverse: take a lengthy strip of paper, fold it on the
shorter center line and keep on doing this, always in the same direction, as long as
it is physically feasible, the mth bending producing 2™ ! new folds. In the left pic-
ture of Figure 1.5 four foldings have been performed and colored according to their
appearance, such that altogether 15 edges occur on the paper strip. Now unfold
with approximately right angles at these fold edges. Despite the straightforward,
symmetric procedure, the paper strip, viewed from the edge, will look surprisingly
erratic as in the right-hand picture of Figure 1.5. Rotating at the center (red) fold,
then at the secondary (green) one, then at blue and finally violet, you can solve
the package insert problem.

C L]

= /

= —

O

Figure 1.5: Folding and unfolding a paper strip

The arising polygon has been called a dragon curve (of order 4) because its
shape tends (for higher orders) to the silhouette of a sea dragon; it is one of the
favorites of fractal people (cf. [228, p. 66]) because of its interesting properties. For
instance, in the top left picture of Figure 1.6 four copies of the curve of order 4
from Figure 1.5 meet at right angles in the center point. In the subsequent pictures
the order grows up to 11, and at each step a scaling by the factor 1/ V/2 has been
performed such that the maximal squares inside which all gridpoints are covered
have equal side-length. Figure 1.6 can be viewed as a proof without words for the
space-filling property of dragon curves; cf. [276, p. 163f].

The folding is completely described by the sequence of orientations of the
turns at the fold edges, i.e. the corners of the curve, either right (0) or left (1).
For an (m + 1)-fold folding, m € Ny, this paper-folding sequence p € BY fulfills, if
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Figure 1.6: Space-filling property of the dragon curve

we start with a left bending,
VmeNg: @om =1, Y e[2™ -1]: pomyy=1—pam_,

because of the reflection at the center fold 2. This is similar to the behavior of
the Gros sequence as noticed by A. Sainte-Lagué [278, p. 40]. (The Gros sequence
is misprinted there.) More precisely, as observed in [77], ¢ represents the pattern
of ups and downs in the CR! Ring r € N is moved up for the first time in move
number 2"~ after a sequence of moves leading from o™ to w1 has been
performed. This is followed by a complete transformation from w1 to ("1,
i.e. the original subsequence in reflected order. So the sequence

f=1,1,0,1,1,0,0,1,1,1,0,0,1,0,0,...

is the paper-folding sequence ¢ (cf [296, A014577]), and our Chinese lady may
amuse herself with either the CR or the folding of paper strips.

The Gros sequence can be found all over mathematics, for instance in con-
nection with hamiltonian cycles on the edges of n-dimensional cubes; see Exer-
cise 1.10. If in Figure 0.3 we start on bottom at 0 and change bits going around
counter-clockwise according to the Gros sequence, i.e. 1,2,1,3,1,2,1, we obtain
the numbers from 0 to 7 in the order of the Gray code as in Figure 1.7.

Before we turn to some applications of the CR in Section 1.3, we show the
presence of the Gros sequence in the fascinating theory of square-free sequences.

The greedy square-free sequence

A sequence a = (an)neny of symbols a,, from an alphabet A is called non-repetitive
or square-free (over A) if it does not contain a subsequence of the form zz (a
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Figure 1.7: Gray’s arrangement of the trigrams

square), where x is a non-empty subsequence of consecutive symbols of a. Clearly,
1,2,3,4,... is a square-free sequence over the alphabet N. It is not very exciting
though and expensive in the sense that it uses large numbers at early stages. So
let us try to find a cheaper one by one of the most popular strategies in the theory
of algorithms, namely the greedy approach; cf. p. 33. Roughly speaking, given a
problem, a solution to the problem is built step by step, where in each step a
partial solution is selected that optimizes certain greediness criteria.

In our case, the most obvious greediness criterion is to select the next term of
the sequence as the smallest integer that does not produce a square. Let a = (ay, ) nen
be the sequence obtained by this procedure; i.e.,

VneN: a, =min{aeN]|ai,...,a,-1,a contains no square} .

The sequence a is square-free, because any square would already occur at some
finite stage of its construction. Clearly, a; = 1, as = 2, and ag = 1. Then a4 # 1
and a4 # 2, hence a4 = 3. Continuing such a reasoning it is easy to see that the
sequence a begins as follows:

1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,...

From here we can guess the following result, a formal proof of which is left for
Exercise 1.11:

Proposition 1.12. The sequences g and a are the same.

In particular, the Gros sequence is square-free ([144, Theorem 0]); it is even
strongly square-free; cf. Exercise 1.12. We will return to square-free sequences in
Chapter 2.
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1.3 Two Applications

In this section we demonstrate how the theory of the CR and the Gros sequence
can be helpful in the analysis of other problems.

Topological variations

We may turn our viewpoint around and ask whether there are other puzzles whose
state graphs are isomorphic to R"™. In psychology literature they are called problem
isomorphs. It has been regarded as a deficiency that the classical realization of R®
in form of the CR as shown in Figure 1.1 physically allows us to move rings 1 and 2
simultaneously if they are both either on or off the bar. This is why we insisted on
individual ring moves and counted them accordingly (see, however, Exercise 1.4).
A variant which does not display this ambiguity was patented under the title
“Locking disc puzzle” (LD) by W. Keister (cf. [164]). Here the intertwined system
of rings of the CR is replaced by an arrangement of circular discs on a slide with
three of the 90° sectors of the circle cut out to allow for rotation about their center
(see Figure 1.8 for the 6-disc version). (To avoid a trivial solution, the first disc has
only two sectors cut out and the one opposite to the convex side just flattened.)
The bar of the CR corresponds to a frame in LD which is designed in a way to

Figure 1.8: The Locking disc puzzle

realize the same kind of individual moves (i.e. rotation of discs and moving the
slide back and forth) as for the CR. Thus the conditions “off” and “on” the bar of
the rings in CR is translated into an orientation of the convex side of a disc parallel
to the slide or perpendicular to it: as soon as all discs are positioned horizontally,
the slide can be pulled out of the frame. However, this puzzle is not equivalent
to the CR, because there are two horizontal orientations of the discs (a second
vertical orientation is debarred by the frame), such that the corresponding state
graph has more vertices than R® and therefore can not be isomorphic to it.

In a second attempt to improve the CR hardware, Keister came forward with
the “Pattern-matching puzzle” (PM) (cf. [165]), where in addition to a slide and a
frame there is a rack attached to the frame which holds 4 pattern bars. The latter
constitute a 4-bit code which is fixed at the beginning. Due to the mechanical
arrangement of PM only one of the 8 teeter bars on the slide can be moved at a
time and this move of bar b € [8] between two positions “up” (1) and “down” (0)
is possible only if the bars with smaller labels coincide with the given code (filled
up to the right by 0s; we adapted the labellings to our CR notations). Again the
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task starts with all teeter bars up, i.e. in state 1%, and the slide can be detached
from the frame only in state 0%. It turns out that one can reach each of the 23
states of the teeter bars from every other one in a unique path, such that the
correspnding state graph for each of the 16 codings of the pattern bars is a tree on
28 vertices. Therefore, the task to free the slide has different (lengths of) solutions
depending on the code, 0000 leading to the shortest one with just 8 moves. Only
in the special case 1000 of the pattern code the corresponding tree is actually a
path graph and the puzzle isomorphic to the CR with 8 rings, such that the task
needs fg = 101010102 = 170 moves.

A much more challenging variant of the CR is depicted in Figure 1.9, and
following E. R. Berlekamp, J. H. Conway and R. K. Guy [34, p. 858] we will call
it the Chinese string (CS). Here the system of n € N rings in the original puzzle
is arranged in a rigid, but otherwise topologically equivalent manner in a frame,
e.g., made of wood. The shuttle of the CR is replaced by a flexible rope (or string)
of sufficient length. At the beginning, the rope, initially separated from the frame,
is somehow entangled with it and the task for the player is to disentangle the rope
from the frame. (The dotted arc in Figure 1.9 does not belong to the puzzle and
will be explained later.)

g D

C—=F

Figure 1.9: Chinese string puzzle

4 3 2 1

Because of the flexibility of the rope it is clear that there are many more
possible states of the CS puzzle, but that any distribution s € B™ of the CR can
also be realized in CS by inserting the rope into the frame in the same geometric
fashion as the shuttle is moved into the rings in CR. For an example, see Figure 1.10
showing s = 11001.

Since there is no obvious notion of a move in CS, the complexity of a solution
has to be defined in a topological way. In [163], L. H. Kauffman suggests to add
an imaginary arc running from the tip of ring 1 to the base of the frame as in
Figure 1.9 and to count the number of crossings of this arc with the loop during
a solution; the minimal number of crossings taken over all solutions is called the
exchange number of s. Every solution to get from s to a{™ in CR can also be
performed on CS. Herein only the moves of ring 1 will cross the arc. Therefore the
exchange number is bounded from above by the number of moves of ring 1 in the
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Figure 1.10: State 11001 of CS

optimal solution in CR, which is

?] Kauffman’s Ring conjecture [163, p. 8]
says that this is also a lower bound for the exchange number of s. This conjecture
has been confirmed by J. H. Przytycki and A. S. Sikora in [266, Theorem 1.1] for
the special case s = w(™ (cf. Figure 1.9 for n = 5), where the exchange number is
2771 The general case seems to be open.

For psychological tests it might be interesting to compare the performance
of subjects who are first confronted with the CR and thereafter with the CS or
vice versa, because it seems to be very confusing that fixed and moving parts of
the puzzles are interchanged in the two versions.

Tower of Hanoi networks

We next briefly describe an application of the sequence g from physics.
S. Boettcher, B. Gongalves, and H. Guclu [39, 40] introduced two infinite graphs
named Tower of Hanoi networks. They introduced them to explore aspects of a
small-world behavior and demonstrated that they possess appealing properties.

The network/graph HN4 is defined on the vertex set Z. Connect each vertex
k to k+1 and k- 1, so that the two-way infinite path is constructed. Next write
keZ~{0}as k=2"(2s+1), r e Ng, s € Z, and connect k to 2"(2s + 3), and
2"(2s - 1). Finally add a loop at the vertex 0 so that the constructed graph HN4
is 4-regular. It is shown in Figure 1.11.

The graph HN3 is defined similarly, except that it is built on the basis of the
one-way infinite path to which only edges that form “forward jumps’ are added.
Instead of giving its formal definition we refer to Figure 1.12.

To see the connection between the networks HN3/HN4 and the sequence g,
consider the vertices of HN4 that belong to N. By the definition of the network, a
vertex k =27 (2s+ 1) has four neighbors, the largest of them being 2" (2s + 3). The
jump from k to 2"(2s+ 3) is

2"(2s+3)—2"(2s +1) = 2"+ = 29%
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Figure 1.11: Network HN4

Figure 1.12: Network HN3

the latter equality following from Corollary 1.11. A similar conclusion holds for

HNS3. Hence a historically better justified name for the HN3/HN4 networks would
be Chinese rings networks.

As already mentioned, the sequence g appears in many situations, too many
to be even listed here. The biggest surprise, however, is that the Gros sequence
solved the Tower of Hanoi before the latter was at all invented!

1.4 Exercises

1.1. Show that a graph with all vertices of degree 2 except for two pendant vertices
is the union of a path with some (maybe no) cycles.

1.2. Derive recurrence (1.2).

1.3. Prove Proposition 1.5.
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Consider the ACR for n > 2.

a) What is the corresponding state graph?

b) Calculate the value of its diameter.

¢) Determine the minimal number of moves En needed to solve the ACR task
1™ - 0™ (or vice versa).

A perfect code in a connected graph G = (V, E) is a subset C' of the vertex
set V with the property

YoeV 3jceC: d(v,c)<1.
The elements of C' are called codewords.

Show that R"™, n € Ny, contains precisely two perfect codes C, if n is
odd, and precisely one, if n is even. How large is |C|?

[79, Problem 417] Suppose there are altogether fourteen rings on the tiring
irons [Chinese rings| and we proceed to take them all off in the correct way
so as not to waste any moves. What will be the position of the rings after
the 9999th move has been made?

Determine the Wiener index of the path graph on k € N vertices Pg.

Let k = (bypbp-1...b1bg)2 be the binary representation of an integer k € N.
Define G, = ¢, where b; = 1 and b; = 0 for j € [¢]o. (That is, G is the index of
the right-most non-zero bit in the binary representation of k. For instance,
g1 =0 and Gog = 3.) Show that

Je+1=gk.
Show that for k € N, the function ¢ fulfills

q(k):{ glk-1)+1, Fkodd;

q(%), k even

and deduce Legendre’s formula (1.6) from this.

The n-cube is the graph with vertex set {biba...b, | b; € B}, two vertices
being adjacent if their labels differ in exactly one position. Show that the
n-cube contains a hamiltonian cycle for any n > 2.

Show that the Gros sequence and the greedy square-free sequence are the
same.

[144, p. 259] A sequence of symbols a = (a, )ney is called strongly square-free
if it does not contain a subsequence of the form zy (an abelian square), where
r and y are non-empty subsequences of consecutive symbols of a such that
the symbols from y form a permutation of the symbols from z. Show that
the Gros sequence is strongly square-free.



