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David Griffeath

All numbers below are non-negative, decimal integers n, with length (number of digits) ` = `(n), and
decimal representation n = n`...n1 (n` 6= 0). Write Σn for the sum of the digits of n, Πn for the product of
its digits.

Recall that n is a (numerical) palindrome if it is invariant under reversal of digits: n = n`...n1 = n1...n`.
To avoid trivialities, we require `(n) > 1. A palindrome s is square if s = r2 for some integer root r > 1.
The online site [1] provides a wealth of information on square palindromes (SPs), including a complete list
of all instances from 3 to 32 digits. Keith [2] introduced a partition of the collection of all SPs into four
infinite families, E, B, T, and A, with prescribed designs, and one additional sporadic class S, which may
or may not be infinite, of seemingly irregular examples. It turns out that all but the sporadic SPs must
have odd length. Some familiarity with these two sources is assumed here.

Our goal is to investigate SPs with two additional “square properties,” and to show there are only 18
non-sporadic examples of any size with these properties, only 3 known sporadic examples with less than
55 digits, and no known additional ones. We will also explain why any more examples beyond these 21 are
likely to be extremely rare. So, let us call a non-trivial palindrome s ultra square if

• s is a square,

• Σs is a square, and

• Πs is a square > 0.

Note that if some digit sk = 0, then Πs is the trivial square 0. In pursuit of a more rarified collection, we
limit ultra square palindromes (USPs) to those with all digits positive.

To begin our investigation of USPs we prove a result that is fundamental to most of the arguments that
follow, and which is assumed in [1] and [2].

Proposition. Let r be a palindrome, and assume there are no carries in the computation of its square
s = r2. (We call such an r carry-free.) Then the following properties hold for r and s:

• `(s) = 2`(r)− 1,

• s is a palindrome,

• s`(r) = Σr2k, and

• Σs = (Σr)2.

In particular, if r consists entirely of 1s and 0s, then s`(r) =Σr = the number of 1s in r.
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Proof. Let ` denote the length of r. Since there are no carries in the computation of s = r2, it has
2`− 1 digits, and the following are immediate consequences of that computation: for 1 ≤ k ≤ `,

sk = r1rk + r2rk−1 + . . . rkr1, s2`−k = r`r`−k+1 + r`−1r`−k+2 + . . . + r`−k+1r`.

Here the first sum represents the total of all contributions to the kth decimal place of s for positions k
from rightmost to center, while the second sum computes values at positions from leftmost to center. By
the palindrome property for r: rk = r`−k+1 (1 ≤ k ≤ `), corresponding terms in the two sums are equal, and
hence s is a palindrome. Of course the two sums are mirror images for the central term s`, and

s` = r1r` + . . . r`r1 = r21 + . . . + r2` .

If r has only 1s and 0s, then r2k = rk for all k, hence s` = Σr. The carry-free assumption asserts that none
of the sk exceed 9, so each digit is determined independently.

A geometric representation of the convolutions for sk and s`−k in the previous paragraph is particularly
helpful to establish the final bullet of our Proposition. Start with a discrete Cartesian grid of the `2

points [1, `] × [1, `]. Imagine labeling point (i, j) in this “times table” with the value rirj . Then the first
convolution above is obtained by summing labels along the diagonal {(i, j) : i + j = k}, the second along
the diagonal {(i, j) : i + j = 2` + 1 − k}. Since Σs is the sum over all labels on any diagonal of the grid,
i.e., the entire grid, it follows that

Σs = (Σr)2.

�

We will now explore Keith’s five classes of SPs in search of USPs. All members of three of the four non-
sporadic infinite families, E, B, and T, are generated by carry-free root palindromes, so our Proposition
applies and Σs is square. Members of the fourth infinite family A are generated by more mysterious,
asymmetric roots with central digit 9, but again it turns out that Σs is always square. Thus, for any non-
sporadic SP the sum condition holds. As already mentioned, all non-sporadic s have odd length 2` − 1,
where ` = `(r), so we can write

Πs = (s1 · . . . · s`−1)2 · s`.

Therefore, the product will be square if and only if the central digit s` is square. But s` ≥ r21 + r2`−1 ≥ 2
when our Proposition applies. Thus, a non-sporadic SP is a USP if and only if it has all positive digits
and central digit 4 or 9.

As a warm-up in our USP search, let’s consider Keith’s family E of Even root SPs, such that r has the
form 2[0]2 where [0] is a block of 0 or more 0s of even length, or 2[0]x[0]2, where [0] is any block of 0 or
more 0s and x is 0 or 1. These roots are all carry-free, and so generate SPs, but there are only two positive
cases: 22, and 212. 222 = 484, with central digit 8, so this is not a USP. But 2122 = 44944 has central
digit 9, so this is our first find:

# 1 [12] 44944 212 25 2304

The format here is: USP entry index, SP entry index from [1], s, r,Σs,Πs. In fact, this is the smallest of
all USPs, and the 12th smallest SP (the four trivial one-digit squares included).
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Having examined root palindromes for SPs with outermost digits 2, we note that 1 is the only other
carry-free possibility. Of course 0 is not allowed as lead digit, whereas r` = r1 ≥ 3 forces s` ≥ 18. Moreover,
r must take the form 1[x′]y[x]1, where x′ is the reverse of x, for some some string x of length 0 or more
consisting of only 1s and 0s, and central digit y is 0, 1, or 2. Otherwise, it is easy to check that the s`
computation produces a carry. In particular, the only possible r containing a 2 are of the form 1[x′]2[x]1,
where said string x is either empty or consists of a single 1, or once more, Σr2k > 9. Thus, the only two
candidates for USP roots generate squares with central digit 6 and 8, and neither is a USP. To sum up,
the only USP with a carry-free palindrome root containing 2 as a digit is #1 above.

The remaining USPs generated by palindrome roots r must take the form 1[x]1, where x is a string
of length 0 or more with all digits 0 or 1. These roots comprise Keith’s Binary (B) root family and the
portion of his Ternary (T) root family not addressed in the previous paragraph. We will now develop a
systematic method to find all 16 USPs of this form. Recall that the central digit of s must be 4 or 9,
and that by the last property of our Proposition, this value agrees with the total number of 1s in r. Also
observe that for s to have all positive digits, the second and second-to-last digits of r must also be 1;
otherwise, e.g., s2 = r1 · r2 + r2 · r1 = 0.

Consider first the case Σr = 4. The smallest possible root is r = 1111, with s = 1234321. Next comes
r = 11011, s = 121242121. These are both USPs, so we add them to our collection:

# 2 [17] 1234321 1111 16 144

# 3 [24] 121242121 11011 16 64

However 1100112 has a 0 in places 4 and 8, as will the square of a root with any longer central string of
0s. So these two are the only non-sporadic USPs with central digit 4.

Turning now to the case Σr = 9, we describe an algorithm to determine all 14 USPs with roots r of
the form 11(x′)1(x)11, where each digit of string x is 0 or 1, exactly two digits are 1s, and s = r2 has all
digits positive. The idea is to develop the right half of r, right to left from digit 1 to digit `− 1, in terms
of a pruned binary tree. Begin with 1← 1, and then include directed edges 1← until a total of four 1s is
reached, and 0← as long as the square of the evolving root r1 . . . rk1rk . . . r1 has all digits positive. Fig.1
gives a representation of the resulting tree, rotated 90◦ counterclockwise.

The smallest USP generated by a root with all digits 1 or 0 and a total of nine 1s has right end 1111,
corresponding to the leftmost branch of the graph stopped after four 1s. There are three consecutive 0s
afterward, indicating that from one to three 0s can be inserted before the central 1 to generate three more
USP s. The leftmost branch terminates after three 0s because adjoining a fourth would create a 0 in the
eighth digit of s. As one more illustration of Figure 1, consider the longest branch in the tree, 11100100,
corresponding to r = 11100100100100111. This give rise to a 33-digit USP included only in the Plain Text
Squares table of [1], which extends the exhaustive list from 32 up to 43 digits. Adding one more 0 on both
sides of the central 1 introduces a 0 in r2, so this is the largest USP captured by the tree. For currently
the most extensive complete listing of SPs, up to 45 digits, see [3].

From the levels of our tree it is easy to read off the lengths of all USPs identified: one of length 17,
three of length 21, 5 of length 25, four of length 29, and one of length 33, for a total of 14. The results are
tabulated as follows:
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Figure 1: The right edge for 14 USPs with roots r of the form 11(x′)1(x)11,
and Σr = 9. Bullets with black and white centers denote 1s and 0s, resp.

Larger bullets show possible leftmost digits of x.

# 5 [92] 12345678987654321 111111111 81 14631321600

# 7 [148] 121244565696565442121 11011111011 81 29859840000

# 8 [153] 123234645696546432321 11101110111 81 96745881600

# 9 [155] 123434346696643434321 11110101111 81 139314069504

# 11 [246] 1212225444549454445222121 1101011101011 81 94371840000

# 12 [248] 1212423436449446343242121 1101101011011 81 110075314176

# 13 [253] 1232124642369632464212321 1110011100111 81 61917364224

# 14 [255] 1232324252649462524232321 1110101010111 81 171992678400

# 15 [257] 1234323224469644223234321 1111001001111 81 247669456896

# 16 [397] 12122232425262926252423222121 110101010101011 81 76441190400

# 17 [406] 12321224243244944234242212321 111001010100111 81 195689447424

# 18 [408] 12323222322444944422322232321 111010010010111 81 440301256704

# 19 [410] 12343212222246964222221234321 111100010001111 81 110075314176

# 20 [628] 123212222232242494242232222212321 11100100100100111 81 195689447424
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The final and most exotic infinite family, A, in Keith’s classification consists of asymmetric root SPs.
The roots for these obey no-carry to the right of center, but have one or more consecutive 9s from the
central digit leftward. The general format is

1(x′)0[9]9[0]1(x)1,

where [9] is a string of 9s of length 0 or more, [0] a corresponding string of 0s of the same length, and
(x) is a string of 0s or 1s of length at least 1, (x′) its reverse. In contrast to the other three infinite
families, however, not every string with this format is an SP. Additional and quite complex requirements
were identified in [2] and by David W. Wilson through correspondence described in reference [1]. For our
purposes, we only need to know that (x) contains at most two 1s, in order to preserve no carry right of
center in root r.

The two smallest asymmetric SPs are 1230127210321, with root 1109111, and 12120030703002121, with
root 110091011. Of course, neither is a USP since both contain a 0. Note, however, that in both cases
Σs = (Σ1r)2 = 25, where Σ1 denotes the number of digits equal to 1. The next smallest asymmetric SP
turns out to be the last in our accounting for all 18 non-sporadic USPs:

# 4 [90] 12341234943214321 111091111 49 2985984

Again Σs = (Σ1r)2, and this seems to be true for any asymmetric SP, but we will now show that #4 is
the only member of family A with all positive digits. The key is the following

Claim. Let z be a string of 1s and 0s of length at least 10, with first (rightmost) digit 1, and at most
three additional 1s. Then the first ten digits of z2 contain at least one 0.

Proof. The first k digits of z2 are determined by the first k digits of z, so we do a systematic check.
As already noted, a right edge of 01 in z produces the same in z2. Thus we need only check z beginning
with 11. Now if z begins with 0011, then there must be a 0 as the fourth digit of z2. We handle the strings
z starting with 111 and those starting with 1011 separately. In the former case, z = −−−−−−−111, if the
last possible additional 1 is in one of the four leftmost digits (7-10) or not present, then z2 has a 0 as the
sixth digit. Or if the fourth 1 is in place 4, 5, or 6, then 0 appears in place 8, 8, or 9 of z2, respectively.
Otherwise, for z= −−−−−−1011, if the fourth 1 is in one of the two leftmost digits (9-10) or not present,
then z2 has a 0 as the eighth digit. Or if the fourth one is in place 5, 6, 7, or 8, then 0 appears in place
10, 8, 6, or 6, respectively. �

Suppose now that r is the root for an asymmetric SP s of length at least 21. Then the first ten digits
satisfy the hypothesis of the Claim, so s contains a 0 digit and cannot be a USP. A dedicated web page
at [2] provides a separate listing of all asymmetric SPs with roots up to length 23. There are 43 with
roots having lengths up to 19, and careful inspection confirms that #4 above is the only one with all digits
positive, and so the unique USP in A.

It remains only to discuss the matter of sporadic USPs. Recall that these are formally defined as those
that do not belong to any of Keith’s four infinite families. They arise from seemingly arbitrary roots r
that, when squared, cause carries in various decimal places and somehow produce mirror symmetry as the
result. For instance, the smallest odd- and even- length sporadic SPs are 262 = 676 and 8362 = 698896,
respectively. For a list up to 55 digits, separated into odd and even cases, see [1]. Curiously, there are
roughly four times as many odd examples as even. We will now identify all the sporadic USPs, splitting
the search according to length parity.
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For SPs of odd length to be USPs, they must have all positive digits and central digit 1, 4, or 9. A quick
check of the 76 known odd sporadic SPs with at most 55 digits yields strings of length 7, 13, 15, 19, 21, 23,
and 27 with these properties. For only the two of lengths 19 and 21 do the digit sums turn out to be
squares. The latter is our only USP with a central 1.

For SPs of even length with all positive digits, their product is automatically square. However, there are
only 18 known even sporadic SPs up to 55 digits. Only four of these, with lengths 6, 12, and 36 (twice),
have all digits positive, and only one of the two length-36 strings has digits that sum to a square, making
it the largest USP in our collection and the only even one.

In summary, we can report that there are only three known sporadic USPs with at most 55 digits:

# 6 [113] 6158453974793548516 2481623254 100 3292047360000

# 10 [156] 184398883818388893481 13579355059 121 112717121716224

# 21 [741] 632914544142271449944172241445419236 795559265009384106 144 2796089100573081600

These bring the size of our complete USP collection to 21.

Are there more? From 3 to 55 digits, the number of known sporadic SPs fluctuates between 1 and 5,
except for several even digits with none, and a record of 6 for length 21. This is neither compelling evidence
for a largest SP, nor for ever more examples with longer lengths. It does seem reasonable to conjecture a
longest length for any square palindrome with all digits positive since the disordered nature of sporadic
roots, subject to complex effects of carried digits, should make it exceedingly unlikely for a very long square
to have no 0s. The additional requirements for USPs then make them even more unlikely. While we would
not be inclined to wager that there are only 21 USPs, it does seem most probable that if there are any more
at all, they are few and far between. Perhaps this account, and the prospect of higher speed computation
in the future, will motivate further exploration of very long square palindromes.
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