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4 Acute and Isosceles Triangles

An acute triangle is one with each interior angle less than 90 de-
grees. What is the smallest number of nonoverlapping acute triangles
into which a square can be divided?

I asked myself that question some twenty years ago, and [ solved it
by showing how to cut a square into eight acute triangles as is indicated
in Figure 98, top. Reporting this in a column, reprinted as Chapter 3
of my New Mathematical Diversions from Scientific American (Simon
and Schuster, 1966), I said: “For days I was convinced that nine was
the answer; then suddenly I saw how to reduce it to eight.”

Since then I have received many letters from readers who were unable
to find a solution with nine acute triangles but who pointed out that
solutions are possible for ten or any higher number. The middle illus-
tration in Figure 98 shows how it is done with ten. Note that obtuse
triangle ABC is cut into seven acute triangles by a pentagon of five acute
triangles. If ABC is now divided into an acute and an obtuse triangle by
BD, as is indicated in Figure 98, bottom, we can use the same pentagonal
method for cutting the obtuse triangle BCD into seven acute triangles,
thereby producing eleven acute triangles for the entire square. A
repetition of the procedure will produce 12, 13, 14, . . . acute triangles.

Apparently the hardest dissection to find is the one with nine
acute triangles. Nevertheless, it can be done.
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Figure 98
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There are many comparable problems about cutting figures into
nonoverlapping triangles, of which I shall mention only two. It is easy
to divide a square into any even number of triangles of equal area, but
can a square be cut into an odd number of such triangles! The surpris-
ing answer is no. As far as [ know, this was first proved by Paul Monsky
in American Mathematical Monthly (Vol. 77, No. 2, pages 161-164;
February 1970).

Another curious theorem is that any triangle can be cut into n
isosceles triangles provided n is greater than 3. A proof by Gali Salvatore
appeared in Crux Mathematicorum (Vol. 3, No. 5, pages 134-135; May
1977). Another proof, by N. ]. Lord, is in The Mathematical Gazette
(Vol. 66, pages 136-137; June 1982).

The case of the equilateral triangle is of particular interest. It is
easy to cut it into four isosceles triangles (all equilateral) or into three
isosceles triangles. (Some triangles cannot be cut into three or two
isosceles triangles, which is why the theorem requires that n be 4 or
more.) Can you cut an equilateral triangle into five isosceles triangles?
I shall show how it can be done with none of the five triangles equi-
lateral, with just one equilateral, and with just two equilateral. It is
not possible for more than two of the isosceles triangles to be

equilateral.
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4 Acute and Isosceles Triangles

Figure 102 shows how to cut a square into nine acute triangles. The
solution is unique. If triangulation is taken in the topological sense, so
that a vertex is not allowed to be on the side of a triangle, then there is
no solution with nine triangles, although there is a solution for eight
triangles, for 10 and for all higher numbers. This curious result has
been proved in an unpublished paper by Charles Cassidy and Graham
Lord of Laval University in Quebec.

Figure 103 shows four ways to cut an equilateral triangle into five

Figure 102
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isosceles triangles. The first pattern has no equilateral triangle among
the five, the second and third patterns both have one equilateral tri-
angle and the fourth pattern has two equilateral triangles. The four
patterns, devised by Robert S. Johnson, appear in Crux
Mathematicorum (Vol. 4, No. 2, page 53; February 1978). A proof
by Harry L. Nelson that there cannot be more than two equilateral
triangles is in the same volume of the journal (No. 4, pages 102-
104; April 1978).

The first three patterns of Figure 103 are not unique. Many readers
sent alternate solutions. The largest number, 13, came from Roberto

Teodoro Garrido, a civil engineer in Buenos Aires.

Figure 103




