Let the index of the Champernowne-continued-fraction terms be [0; 1, 2, 3, ...]. Here is a list of {index, number of digits in term} where the number of digits in the term exceeds 3:

        {4, 6}

        {18, 166}

        {40, 2504}

        {101, 140}

        {162, 33102}

        {246, 109}

        {357, 2468}

        {459, 136}

        {526, 411100}

        {638, 90}

        {820, 2423}

        {1051, 63}

        {1221, 33056}

        {1362, 95}

        {1515, 2458}

        {1627, 120}

        {1708, 4911098} -> W

        {1850, 69}

        {2074, 2411}

        {2175, 4}

        {2309, 52}

        {2364, 4}

        {2528, 33005}

        {2798, 12}

        {3071, 2374}

        {3090, 4}

        {3160, 4}

        {3339, 38}

        {3569, 411044}

        {3653, 5}

        {3726, 84}

        {3916, 2419}

        {4141, 57}

        {4311, 33051}

        {4464, 97}

        {4615, 2457}

        {4745, 115}

        {4838, 57111096} -> X

        {5002, 49}

        {5268, 2391}

        {5545, 31}

        {5810, 32985}

        {6229, 4}

        {6417, 2354}

        {6729, 18}

        {6871, 4}

        {6992, 410979}

        {7718, 2308}

        {8065, 4}

        {8469, 32939}

        {8777, 4}

        {9207, 2345}

        {9827, 4911032} -> Y

        {10034, 56}

        {10279, 4}

        {10292, 2393}

        {10559, 29}

        {10822, 32996}

        {11439, 2359}

        {11771, 26}

        {11781, 4}

        {12015, 411036}

        {12202, 72}

        {12345, 4}

        {12414, 2405}

        {12659, 45}

        {12869, 33041}

        {13054, 75}

        {13251, 2438}

        {13417, 101}

        {13522, ?*} -> Z

 

The blue entries above represent the incremental size-records, suggesting two sequences: Position of the incrementally largest term in continued fraction for Champernowne (= index+1) and the incrementally largest numbers themselves, of which only 3 terms are shown in Sloane.

* On 4 September 2008, Mark Sofroniou determined this to be 651111094.


2 May 2000 (updated 30 March 2010) © Rarebit Dreams