Let the index of the Champernowne-continued-fraction terms be [0; 1, 2, 3, ...]. Here is a list of {index, number of digits in term} where the number of digits in the term exceeds 3:
{4, 6}
{18, 166}
{40, 2504}
{101, 140}
{162, 33102}
{246, 109}
{357, 2468}
{459, 136}
{526, 411100}
{638, 90}
{820, 2423}
{1051, 63}
{1221, 33056}
{1362, 95}
{1515, 2458}
{1627, 120}
{1708, 4911098} -> W
{1850, 69}
{2074, 2411}
{2175, 4}
{2309, 52}
{2364, 4}
{2528, 33005}
{2798, 12}
{3071, 2374}
{3090, 4}
{3160, 4}
{3339, 38}
{3569, 411044}
{3653, 5}
{3726, 84}
{3916, 2419}
{4141, 57}
{4311, 33051}
{4464, 97}
{4615, 2457}
{4745, 115}
{4838, 57111096} -> X
{5002, 49}
{5268, 2391}
{5545, 31}
{5810, 32985}
{6229, 4}
{6417, 2354}
{6729, 18}
{6871, 4}
{6992, 410979}
{7718, 2308}
{8065, 4}
{8469, 32939}
{8777, 4}
{9207, 2345}
{9827, 4911032} -> Y
{10034, 56}
{10279, 4}
{10292, 2393}
{10559, 29}
{10822, 32996}
{11439, 2359}
{11771, 26}
{11781, 4}
{12015, 411036}
{12202, 72}
{12345, 4}
{12414, 2405}
{12659, 45}
{12869, 33041}
{13054, 75}
{13251, 2438}
{13417, 101}
{13522, ?*} -> Z
The blue entries above represent the incremental size-records, suggesting two sequences: Position of the incrementally largest term in continued fraction for Champernowne (= index+1) and the incrementally largest numbers themselves, of which only 3 terms are shown in Sloane.
* On 4 September 2008, Mark Sofroniou determined this to be 651111094.
2 May 2000 (updated 30 March 2010) © Rarebit Dreams