Vol. XCVI.—No. 12 Established 1845. NEW YORK, MARCH 23, 1907. 10 CENTS A COPY \$3.00 A YEAR. ### SCIENTIFIC AMERICAN ESTABLISHED 1845 MUNN & CO. - Editors and Proprietors ### Published Weekly at No. 361 Broadway, New York TERMS TO SUBSCRIBERS One copy, one year, for the United States. Canada, or Mexico.......\$3.00 •ne copy, one year, to any foreign country, postage prepaid, \$0 16s. 5d. 4.00 THE SCIENTIFIC AMERICAN PUBLICATIONS MUNN & CO., 361 Broadway, New York. #### NEW YORK, SATURDAY, MARCH 23, 1907. The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles short, and the facts authentic, the contributions will receive special attention. Accepted articles will be paid for at regular space rates. #### ARCHITECTURAL IMPROVEMENT OF NEW YORK CITY. The strict regard for utility which characterizes the average American has been perhaps the most potent influence in a national industrial growth which is absolutely without parallel in the history of the world. But while utility makes for a rapid increase in wealth and material power, and the development of certain of the more robust elements of national character, these elements are obtained at the cost of certain other qualities, abstract and concrete, which many of us are beginning to realize the nation can ill afford to lose. Just now we have in mind the evil effects which a too slavish obedience to the promptings of utility have had upon the appearance of the great cities, in which the more important interests of the nation are centered, and in which so large a proportion of its people must ever dwell. Thus, whatever may be said, and a great deal may be said, in favor of the rectangular system of laying out the streets of a city, on the ground of its simplicity, its economy of space, and the readiness with which it lends itself to street nomenclature and numbering, it is coming to be understood that judged from the aesthetic and architectural point of view, and even from that of convenience, it has most serious drawbacks. Why is it that the average American tourist is filled with such immediate pleasure as he looks upon the winding streets and the general unstudied grace of an ancient European city? Something broader and deeper than a mere sense of novelty enters into his appreciation; and, as a matter of fact, his pleasure is founded in his unconscious recognition of certain fundamental laws of harmony and beauty, to which the stiff uniformity of the blocks and squares of the average American city does violence. It is a curious fact that the ground plan of most of the great cities of this country was determined in the office of the real estate speculator and drawn with a lead pencil and a common office ruler. Certain it is that when the enterprising vendor of city lots pinned his rude sketch upon his office walls, he little dreamed that, before many decades had passed, the wildest flights of his prospectus would have been surpassed, and those crudely-drawn squares covered by the towering business buildings or the symptuous homes of a prosperous city, and its streets filled with the rush and roar of busy commercial life. For many years past there has been a growing conviction that the time has come for taking hold of the question of the architectural and aesthetic appearance of New York city, to say nothing of the convenience of its thoroughfares to the requirements of traffic, and devising some comprehensive scheme which will improve its present appearance and make provision for its inevitable future growth. Toward the close of the year 1903 the Board of Aldermen of this city created the New York City Improvement Commission which, after an exhaustive study of the problem, presented two reports, one in 1904, and a final report in January of the present year. The Commission realized that a comprehensive plan for the city's development must necessarily anticipate the future growth of the city for many years to come, and that it must be so designed that all of its parts should be consistent and form a homogeneous whole. This co-ordination was necessary in order that any future improvements might be carried out with a definite purpose and along definite lines, and not, as has been too often the case. without reference to any general plan for the city's betterment. The framing of such a system of improvement involved not only the laying out of parks, streets and highways, the location of city buildings, the improvement of water fronts, etc., but also questions of more or less detail relating to pavements, sidewalks, appropriate house numbers, gas and electric fixtures, the manner of indicating the streets, the location of statues and monuments commemorative of historical events, the question of tree planting, and many other matters, all of essential importance if New York is to take its place as one of the great metropolitan cities of the world, not merely as regards its size and numbers, but also in respect of its aesthetic and architectural beauty and dignity. In studying the final report, with its ambitious and really stupendous system of boulevards, parkways, and monumental structures, one must be careful to bear in mind that the enormous expenditure of time and money involved in its execution is intended to be spread out over a long series of years. To adopt the Napoleonic method, would be to throw this city, in spite of its vast resources, into immediate bankruptcy. No such course is contemplated by the committee; and the elaboration of these plans on such a mammoth scale and with such completeness, is done so that the plan may be settled at least in its broad outlines, definitely and for all time, and an end made of the haphazard methods of the past. The salient feature of the general plan, as it affects the city as a whole, is to afford adequate and suitable avenues of connection between the different parts of each borough, as well as between the different boroughs themselves and the outlying distances. Furthermore, while each borough is provided with a park system of its own, each system is connected with the other by suitable parkways so as to make them parts of one harmonious whole and by making each supplement the other, to add largely to the beauty and advantages of all. It is largely in view of the double purpose of uniting the separate park systems and at the same time preserving their individuality in each borough, that the Commission has planned for numerous and extended parkways and comparatively small parks rather than extensive individual park areas; and the wisdom of this policy cannot be disputed. The report is accompanied by a large number of maps illustrative of the designed improvements, and while limitations of space prevent any detailed reference to these, mention should be made of the special merit attaching to the plan for connecting and treating the terminals of the new East River bridges, and notably of the plans for a great circular plaza 800 feet in diameter at the point where the Brooklyn and Manhattan bridges converge on the Brooklyn side. It is sincerely to be hoped that after due discussion of the really admirable plans here presented, the report will be adopted, and the future convenience and beautification of New York city thus definitely assured. #### ---THE DEMAND FOR TECHNICALLY QUALIFIED YOUNG MEN. In view of the general impression that the professions are greatly overcrowded, it is surprising to learn that some of the leading railroads of the country are finding much difficulty in securing properly qualified young men to fill subordinate positions on the engineering staff. One road in particular has recently gone so far as to make the fact known in the public press, and to invite communication from young men who have passed through technical schools, and possess the necessary qualifications to enable them to commence work as rodmen and chainmen, or do the simpler instrumental work connected with the construction and maintenance of railroads. It was further stated that the remuneration would be sufficient to enable these men to maintain themselves at once in decency and comfort, and that for those who showed aptitude and application there was a reasonable expectation of early promotion. Further evidence of the excellent opening afforded by the present industrial activity is found in the fact that, in one of the leading technical colleges of the country, every member of the graduating class of 1906 had secured an appointment some months before the close of the college year. The demand for technically-qualified men in railroad work has unquestionably been stimulated by the recognition of the fact that the increase in the capacity and weight of the motive power and rolling stock, and the demand for more intelligent supervision due to the introduction of electric traction on steam roads, is rendering it desirable that not only the engineering department, but also those which have to do with the maintenance and operation of the road should be run by men with sufficient technical knowledge, with sufficient training in natural science, to enable them to exercise a more intelligent oversight of their departments than is possible in the case of men whose theoretical knowledge is bounded by the limits of a common school education. In this connection it is gratifying to note that there is in successful operation in this State a railway training school under the supervision of practical railroad men, in which the students are put through a course designed to prepare them specifically for employment in the various departments under which the complicated operation of our railroads is carried on. Without casting any disparagement upon the many able men who, from humble positions on our railroads, have risen to stations of great trust and responsibility. we believe that the complicated problems involved in the operation of a great modern railroad
system have rendered it not only desirable but imperative that the heads of those departments which have to do with the mechanical and constructive elements of a railroad should be graduates of technical schools or members of the engineering profession. To make such a provision a general one would, after all, be merely to apply broadly a principle which, for many decades, has been followed upon the Pennsylvania Railroad system, whose late distinguished head, President Cassatt, was a civil engineer who had risen by steady gradations from rodman to president. #### THE "JENA" DISASTER AND STABLE GUNPOWDERS. In all probability the recent terrible disaster to the French battleship "Jena" will be found to have been due to the explosion of her after magazines as the result of spontaneous combustion of the powder. If this be so, the accident is of the same character as that which, at the close of the recent war, tore out the side of the Japanese battleship "Mikasa" at a time when, like the "Jena," she was at one of the government dockyards. In spite of the really remarkable progress which has been made in the development of modern powders, the best of them are liable, under certain conditions, to a decomposition which, if it proceeds to a certain point and be accompanied by certain conditions of temperature, may result in the explosion of the magazine and the loss of the ship or arsenal, as the case may be. Our modern smokeless powders, when in storage, are the occasion of a degree of anxiety and watchfulness which was never felt in the days of the brown or black powders. Although it is true that the stability of smokeless powder made on the latest formulas shows a great improvement over the earlier powders, it still remains for someone to produce a slow-burning powder which, without any sacrifice of ballistic power, shall possess the desirable quality of being absolutely stable under any conditions of climate and for any period of storage. ### COHESIVE FIREPROOF TILE CONSTRUCTION. The elimination of the fire hazard in modern buildings is based upon the principle that all supporting iron or steel girders, columns, and beams must be protected from fire by some material which is a poor conductor of heat and not easily disintegrated or injured by high temperatures. Burned clay materials, such as flat, hollow, porous, and semi-porous terra-cotta blocks, and certain grades of burned bricks, are commonly employed for this purpose. Owing to the relative lightness of these materials and their high fireresisting qualities, most steel frameworks of our large buildings are incased in hollow or flat terra-cotta tiles laid in cement mortar. Many of these clay tiles and blocks are burned in the making to 2,000-2,500 deg., so that in any fire they will not crumble or crack at a temperature below that to which they were originally subjected. No great stress is imposed upon the hollow porous blocks used for fireproofing beams, girders, and columns, and their crushing strength is not very great. Their function is performed in protecting the steel work from an excessive interior temperature, while the metal carries the loads of the different floors. The use of hard, flat terra-cotta tiles for certain construction purposes, both to carry the load and to resist any interior fire, has in the last year or two assumed an important development. Modern methods of burning and making the terra-cotta tiles have greatly improved their strength and durability, and the better grades of them have been used in a number of buildings in New York city and elsewhere which fully illustrate the new method of cohesive fireproof tile construction. In the new custom house in New York city the large dome surmounting the great interior rotunda is constructed entirely of fireproof flat tiles, and the total absence of any metal for supporting this huge elliptical dome shows the great cohesive power of hard, flat tiles when properly laid up in cement mortar. The dome is 80 by 135 feet in size, and supports on its summit a huge skylight of glass and metal whose total weight is 140 tons. The tiles used for this purpose are 12 inches in length, 6 inches in width, and about 1 inch in thickness. They are laid on edge, and form a perfect The masonry walls of this rotunda are built of brick up to the lower part of the dome. A massive flat ring of steel is fitted on the top of this masonry and imbedded in it, and from this the dome springs. The foundations of the dome are of solid, flat tiles cemented together on their edges, but after a few courses an outer and inner shell is formed. Nine layers of 1-inch flat tiles form the lower courses, but as the curvature of the dome is reached one course after another is omitted until near the middle there are only three layers of tiles for each shell, leaving an open space between them. A central mid-rib composed of tiles laid flat runs around the dome to strengthen it, and similar ribs of tiles laid fiat radiate from the apex of the dome to the foundations. These ribs are joined to the central midrib by cement, and all are inclosed by the two shells of the tiles laid on edge. The cohesive strength of tile construction is thus amply demonstrated. Engineers representing a number of structural steel manufacturers intimated before the work was undertaken that it was impossible to build the dome in this way without metal reinforcements of some kind; but the dome has been finished for some months and the heavy skylight placed in position. The lightness of the tiles makes the dome nearly half the weight of another of similar size constructed of metal, while the fireproof quality of the material insures the dome from interior destruction by fire. The tiles having been burned in the making do not warp or shrink after being placed in position, and elaborate decorations can be made directly to them without danger from cracking or warping, A similar dome of less size and ambition has been built on the new Madison Square Presbyterian Church, which recently has been completed. The same size flat tiles are used there, and the dome is built and surmounted by a small tower. The crushing strength of the tiles is upward of 2,000 pounds to the square inch, and their cohesive strength is dependent chiefly upon the quality of the Portland cement used in building the dome. The major axis of this new dome is only 52 feet, but its shape and artistic appearance from either the inside or outside make it remarkable quite as much as the decorations placed on it by the architect. The dome springs direct from the walls of brick, and it thus completes a remarkable building independent of any iron or steel work. Within the past few years a number of other similar domes of this same general character have been completed. In the new library building of the University of New York there is one with a major axis of 70 feet, and over the rotunda of the University of Virginia the Guastavino dome of flat fireproof tiles laid edgewise has a diameter of 69 feet. The Hall of Sciences, in Brooklyn, has a dome of flat tiles without any metal supporting work of 60 feet in diameter, and the new Minnesota State Capitol one of similar dimensions. The dome over the Bank of Montreal building is 72 feet in diameter, and is the largest, next to the new one over the rotunda of the New York custom house, yet finished by this new method of cohesive construction. The construction of such fireproof, non-metal-supported domes represents a special branch of masonry designing which has slowly reached perfection in this country. It is based upon the principles of the early Roman architects who used heavy bricks and stones for their work, but with superior tiles and cement mortar to work with, the modern designers have secured strength and rigidity with materials much lighter and absolutely fireproof in character. The high degree of skill and mathematical designing required to construct domes, arches, and stairways of tiles by the cohesive system is probably even better illustrated in the two pairs of stairs built in the new custom house facing Bowling Green in New York. These stairs spring from the basement of the building and terminate at the roof. No metal whatever is employed for supporting them. On the contrary, heavy balustrades of metal, and equally heavy marble treads, only add to the dead load carried by the tiles. Rather larger tiles are used for the stairs than for the dome construction, but they are all light and apparently frail for this work. From the basement to the main floor a circular wall of brick masonry is built, and the tiles are attached at one end to this wall: but each semi-circular flight depends for its strength and rigidity upon the cohesive strength of the tiles and the scientific strength of a curve when the load is so distributed that the pressure to the arch is continuous. Above the main floor each flight springs to the floor above without any support other than that derived from the top and bottom. The stairs are formed by a number of thicknesses of flat tiles at the base which gradually diminish toward the middle of the arch, and then thicken again toward the top. The construction of spiral and semi-circular stairways with hard flat tiles requires independent and careful study of each individual case. No definite rule or principles can be laid down to apply to all cases, but each problem has to be worked out by itself. The combination of the spring of the arch with the continuous curve under each platform to adjust the adjoining flight are questions of mechanical skill. Such stairways of hard, fireproof clay tiles are constructed to carry loads which will suffice for any kind of public buildings, and those recently constructed in the custom house (or rather in the course of construction at this writing) are designed to carry heavy marble treads and ornamental iron and bronze work besides the weight of those who will constantly use them for ascending and
descending. The fireproof quality of such stairs is of particular force in view of the modern effort being made to eliminate everything possible from public buildings which will crumble or disintegrate when attacked by a hot interior fire. The difficulty of protecting an iron stairway by terra-cotta casing as commonly practised in protecting beams and girders is quite apparent. If left unprotected a sharp interior fire will cause a collapse of the stairs and greatly increase the damage to the building. A tile stairway on the contrary would not be affected by a fire unless the temperature reached 2,000 and more degrees, and a collapse would not follow. The use of the cohesive tile construction for floors and ceilings is well illustrated in two other notable buildings recently built in New York. The domic ceiling of the new Tiffany building is constructed of hard, flat tiles laid on edge and sprung from rotunda columns and terminating in a large skylight. In these domic ceilings the curve is less than in the domes, and the effect is of a slightly arched ceiling of great beauty. The decorations are sometimes laid directly on the tiles and in other cases ornamental faced tiles are cemented to the hard supporting tlles for interior effect. In the new Gorham building all of the different floors and ceilings are made of hard tiles. A series of arches spring from the steel columns and terminate in points in the ceiling. The compression on the tiles is uniform, so that the load is carried without any undue stress upon any part. The tiles are laid on edge, with several courses forming the arch, breaking joints at each course, and cemented together with the best Portland cement mortar. The decorations are either made directly on these fireproof tiles or ornamental tiles cemented to them. No metal work is employed to support the domic ceilings other than the series of steel columns from which the arches spring. No steel reinforcements or tension rods whatever are employed in the construction. The remarkable lightness of the floors and ceilings built in this way is one of the chief virtues ascribed to the new method of fireproof building. The carrying capacity of a floor built of cohesive tile masonry is certainly sufficient to warrant their construction in some of the finest public and commercial buildings of the country. As an interesting development of the fireproof question cohesive tile construction is without a peer, and its adaptation to new work and fields is a matter that should be of inestimable value to the building trades. In cases where lightness of structure is an important consideration hard flat tiles may prove far more desirable than iron skeleton work, and also where it is desirable to use fireproof clay materials owing to the difficulty of covering the iron work with terra cotta. ## INTERNATIONAL MARITIME EXPOSITION COMMEMORATING ANNIVERSARY OF STEAM NAVIGATION IN BORDEAUX, FRANCE. BY CHARLES A. SIDMAN. That great interest is being manifested in the International Maritime Exposition which is to be held in Bordeaux in May is evidenced by the great progress that has been made in the construction of the several buildings, and the fact that the contractors promise to have them all ready some time before the opening on May 1. This exposition is designed to commemorate the centennial anniversary of the successful application of steam to navigation by Robert Fulton. The motive for the celebration of this great event may be found in the fact that in 1803—four years before his success on the Hudson with the "Clermont"—Fulton made his initial trials in steam navigation in France. Fulton's experiments appear to have been at first with a submarine boat, which he christened the "Nautilus," and in which he was submerged for five consecutive hours on one occasion in 1801. This demonstration appears to have been at Brest, in the presence of the French Admiral Villaret, and it is recorded that by the use of torpedoes Fulton managed to blow up a boat in the harbor. He made a second submarine boat, and gave a demonstration on the river Seine at Paris, on which a commission appointed by Napoleon reported favorably. Nothing, however, came of the submarine boat, and it was subsequently, in 1803, that Fulton treated the Parisians to the spectacle of a small boat propelled by steam on the river Seine with two bateaux tied astern. A chronicler of that time describes it as "un bateau mu par des roues comme un chariot" (a boat moved by wheels like a chariot). The exposition, as officially stated, is to be international in character, and to illustrate the history of navigation. The world's marvelous progress in the art of shipbuilding and the science of navigation is to be shown by a collection of models of every kind of water craft, ancient and modern. All that pertains to ocean geography and all industrial and artistic products having relation to maritime affairs are to find a prominent place. There is to be a congress of naval architects, with lectures on science, art, industry, commerce, and political and social economy. There will be boat races on the river Garonne, in which the management hopes that crews from the several nations will compete. The grand palace and the main buildings, covering an area of about ten acres, are all so connected by arcades that they form practically one great building. The grand palace is to be devoted to the illustration of maritime history, ocean geography, ancient and modern painting, sculpture, architecture, and horticulture. Materials for the construction of boats and ships, diving and life-saving apparatus, fishing appliances, ship's provisions, sea food, and motor machines (land and water) will have considerable space devoted to their exposition. In the place allotted to the navy there is to be a special exhibit of submarine boats, guns, torpedoes, ship's armor and equipment. Aeronautics, electrical apparatus, signals, wireless telegraphy, telephones, pumps, refrigerating apparatus, heating and ventilating appliances, port and harbor works, sea and river sports, art bronzes, lace tissues, linen and tapestry, glassware, china, cutlery, and musical instruments are also to have spaces devoted This exposition should afford excellent opportunities for American manufacturers to show the superiority of their products and extend their trade. Manufacturers of motor boats, light motors and dynamos, canoes, lifeboats, diving and life-saving appliances, fishing apparatus, optical and nautical instruments, or those who make anything that relates to navigation or ships, will find a good chance here to advertise their goods and increase their business. An appropriation of \$15,000 was made at the recent session of Congress to enable the government of the United States to be properly represented at the exposition. There will be a pavilion erected especially for the American exhibitors. The Secretary of the Navy has ordered several of our finest warships to attend, and the members of the American Committee of Honor comprise men well versed in these matters. It is especially fitting therefore that France in taking the initiative shows once more her thankfulness to the artisans of progress, and her sincere friendship for the United States, in commemorating the century anniversary of Robert Fulton's victory, for it was in France that a great many of his experiments were made. ### BURCHELL'S ZEBRA. One of the larger South African mammals now verging on extinction, if, indeed, it has not already ceased to exist, is the typical race of Burchell's zebra, the bontequagga of the Boers, and the Equus burchelli typicus of zoologists, writes Mr. Lydekker in Knowledge. This race apparently inhabited the plains to the north of the Vaal River, now forming British Bechuanaland. It is characterized by the complete absence of barring on the legs and of stripes on the lower part of the hindquarters; while between the dark brown body-stripes were faint "shadow-stripes" on the still paler ground-color. The original specimen in the British Museum brought home by the great African traveler, Dr. Burchell, was, unfortunately, destroyed at a time when but little attention was paid to the priceless value of "types," and there is now no example of this race of the species in the national collection. According, however, to a paper published by Mr. R. I. Pocock in the Annals and Magazine of Natural History for 1897, there is, however, one specimen in the museum at Tring, and a second in the Bristol Museum, both of which come very close to the typical form, although neither is exactly similar, and each differs slightly from the other. In these circumstances it is interesting to learn that a specimen exists in the American Museum of Natural History. ### THE CURRENT SUPPLEMENT. The current Supplement, No. 1629, opens with an excellent article by the English correspondent of the Scientific American. This is one of the most important undertakings in connection with the development of transportation facilities in the African continent, and second in magnitude and character to the Cape to Cairo Railroad only. Many illustrations accompany the article. Poulsen's system of radiotelegraphy by continuous electrical oscillations is described. John B. C. Kershaw writes on the development of the electrochemical and electro-metallurgical industries in 1906. A very excellent discussion of the recent accident on the electrified portion of the New York Central Railroad is published, and helpful diagrams are printed, which give one a very clear idea of the cause of the catastrophe. The limits of thermal efficiency in internal-combustion engines are discussed. Dr. D. T. Mac-Dougal presents a thoughtful article on the hybridization of the oaks. Dr. Charles Mercier contributes a very curious paper on the fear of open and closed spaces. The Jiji Shimpo states that, according to the government's present plans, the efficiency of the Japanese navy in 1915 will
be double what it was before the Russo-Japanese war. ### AN ALCOHOL-ACETYLENE MIXTURE FOR INTERNAL-COMBUSTION ENGINES. The photographs which we reproduce show an experimental testing plant for making all kinds of tests with a gasoline engine. The plant is that of Joseph Tracy, the well-known automobile driver. Mr. Tracy is also consulting engineer for several automobile companies, and in this capacity it is often necessary for him to make tests of various sorts. As can be seen in the larger photograph, this testing plant is of the simplest possible type. It consists of a single-cylinder, 31/2-horse-power de Dion motor, M, direct connected to a dynamo, D, to the other end of the shaft of which is connected a centrifugal water-circulating pump, H. The water pump forces the cooling water through the water jacket of the motor and also through the radiator, W. An electric fan is used to create a draft of air upon this radiator, if necessary, in making tests, while the temperature of the water when it enters the radiator at the bottom, and when it leaves it at the top, is shown upon two thermometers, T and T'. Attached to the outer field magnet casing of the dynamo is a circular ring having an arm, O, from the end of which is suspended a scale pan, L. The magnetic reaction of the armature upon the field magnets is counterbalanced by weights put in the scale pan, and thus the foot-pounds of energy per minute developed by the engine can be directly obtained at any moment provided the revolutions per minute are known. These are obtained from a suitable tachometer. This device does away with the inconveniences of the Prony brake, and also makes it possible to calculate the horse-power in two ways, one electrical, and the other mechanical. If the efficiency of the dynamo is known, by reading the volt and ammeters A A', the electrical horse-power developed by the dynamo can quickly be figured. The taking of indicator diagrams of a gas engine is found to be very valuable, and there are a number of different manographs on the market for this purpose. The one employed in the present instance is known as the Schultze manograph, and is shown at 8 in the two photographs. The diagram is traced by a beam of light reflected upon a ground glass by a mirror, which oscillates at the same time on both a vertical and horizontal axis. This diagram is shown in the larger photograph. A small Nernst lamp supplies the light to the manograph, and as this type of lamp requires alternating current, the latter is generated by means of a magneto, m', driven by the small direct-current dynamo, m, and connected in circuit with the lamp, N, through a rheostat, F'. The movement of the mirror upon its vertical axis (which traces the horizontal line) is obtained from the 2-to-1 camshaft by means of the bevel-gear-driven rods, R R'. These rods make the same number of revolutions per minute as does the crankshaft, and they cause the mirror to oscillate by means of a suitable cam. The oscillation of the mirror upon its horizontal axis is obtained by means of the impulses of the gases upon a diaphragm in the box, d. The hot gases pass directly from the combustion chamber up through a small tube, which is fitted with a water jacket, E, for the purpose of cooling them somewhat. The impulses given the diaphragm cause the mirror to reflect the beam of light in a vertical direction, thus indicating the pressure obtained in the cylinder at any given part of the stroke. This instrument makes it possible to see indicated the variations in pressure from any cause whatever, and it is a most valuable appurtenance for the proper testing of any type of internal-combustion complete description it will be found in the current SUP-PLEMENT. The apparatus shown in the upper photograph was constructed for the purpose of experimenting with a new system, whereby a mixture of acetylene gas and alcohol vapor is produced and used in the engine. By the addition of a certain proportion of acetylene to the alcohol vapor, a quicker burning, more explosive mixture results. This would tend to make it possible to obtain from a given size of gasoline engine the same horse-power when operating with alcohol as when gasoline is used, without the greatly increased consumption (nearly double Testing Apparatus for Barker-White System, Showing Jacket Around Exhaust Pipe, Large Carbide Chamber, and Mano-graph With Engine Connections. Diagram Showing Arrangement of Acetylene Gas-Producing Apparatus Used With an Alcohol Carbureter. Indicator Cards of Motor. Experimental Testing Plant for Internal Combustion Engines. AA', Voltmeter and ammeter. C, Alcohol carbureter. D, Dynamo mounted on ball bearings and direct connected to engine. FF', Rheostats for dynamo and magneto. G, Acetylene generator. H, Water circulating pump. I, Mercury vacuum gage. K. Cutout and rheostat for small electric motor, m. K', Switch. L. Scale pan. M, 31/2 h. p. de Dion gasoline motor. m, m', Small electric motor driving magneto to produce alternating enrrent for Nernstlamp. N, Nernst lamp of Schultze manograph. O, Lever arm attached to dynamo, D. Q, Switch and resistance for Nernst lamp. S, Ground glass screen of manograph. TT', Thermometers for testing water. U, Spark coil. W, Radiator. Y, Fuel tank. Z, Ignition battery. by volume) that ordinarily occurs when this is attempted. The apparatus illustrated was constructed in order to demonstrate for the inventors, Messrs. Frederick W. Barker and Thomas L. White, the feasibility of their patented process of gas generation, and to obtain interesting data as to the economy, if any, of the system. Quantitative experiments to find out the consumption per horse-power hour of alcohol, water, and carbide have not as yet been made; nor has the mixture of gases that enters the cylinder been analyzed; but the investigations carried on thus far have shown that as much as 20 per cent of the alcohol can be replaced by water with good effect. Probably not more than 50 or 60 per cent of the water in the alcohol acts on the carbide, which is detrimental, as the remainder, on account of its high latent heat of vaporization, deducts a considerable number of heat units from the mixture. The water that attacks the carbide, on the other hand, by generating acetylene increases the number of heat units quite materially. As this gas will develop twice as much power per unit of volume as will ordinary illuminating gas, one can readily see that this must be the case. The mixture of alcohol vapor and acetylene obtained in the engine cylinder should contain some 35 per cent more heat units than the alcohol and water vapor would otherwise have, this increase being based on the supposition than only half of the water in the alcohol acts on the carbide. The inventors believe, however, that the chief use of the acetylene is its action as a detonator. Being very explosive, it sets off the charge of alcohol vapor throughout almost instantaneously, and by thus hastening the combustion, causes the production of a higher mean effective pressure. The arrangement of the apparatus, as well as its construction, can be seen from the photographs and diagram. The carbureter, C, is of the ordinary type; it is used in conjunction with an acetylene generator, G. The air intake pipe, e, of the carbureter starts from the inside of a hot-air jacket, \emph{J} , which is built around the exhaust pipe, c. The suction pipe in the carbureter is connected with the top of the generator at one side, and contains a small auxiliary air valve, V. with which the richness of the gas can be varied. The inlet pipe to the motor comes up through the center of the generator and has in it a diaphragm, D, of wire gauze, for the purpose of checking any flame in case of a back-fire. This pipe also has a small auxiliary air valve, D', that can be used in experimenting if necessary. The generator is fitted with a plug that will readily blow out in case of any back pressure from the motor, M. The following description with reference to the diagram will perhaps make the apparatus more clear to the reader. The air inlet pipe, B, starts from a hotair jacket, A, placed around the exhaust pipe of the engine. The gas pipe, C, leads from the carbureter into the large mixing chamber, D, in which a layer of 4-inch carbide an inch thick is spread on a wire gauze screen. The mixture of water and alcohol vapor passes down through the carbide and up and out through the central pipe. D. leading to the engine and in which a wire gauze screen is placed to prevent back-firing. Should a back-fire occur, the pressure would > blow out the plug in the side of the generator. The lime from the carbide collects in a chamber at the bottom of the generator. A pool of alcohol about two inches in depth absorbs all the particles of waste material. > Fresh carbide can be inserted through the hole in the top cover without stopping the motor. In starting, a little of the alcohol is poured on the carbide, whereupon sufficient gas is generated to enable the motor to be started without much difficulty. The cards taken from the $3\frac{1}{2}$ -horse-power de Dion engine by means of a Schultze manograph showed a high initial pressure (about 240 pounds) and very good expansion. > After making the preliminary tests described, the inventors expect to construct a larger apparatus and to test the same in a practical manner upon an automobile. > The life of the mercury arc lamp in some cases amounts to 3,000 hours and more. The conducting material of the anode is either mercury alone, graphite and iron, or ### LATEST DESIGNS OF THE MOTOR IN WARFARE. BY W. G. FITZ-GERALD. There is little doubt that armored motor-cars will play a prominent part in the next great war, not only for purposes of transport, but also as engines of offense. Practically every military nation to-day has its own type of war-car, all of them heavily armored, and some with revolving turrets carrying quick-firing
machine guns with bullet-proof shields, and capable of a speed ranging from thirty-five to forty miles an hour. On each of the Franco-German frontiers, where the greatest military forces in the world are massed, there are regular batteries of war-cars, and all of them tiate very severe gradients. They are, in fact, miniature traveling fortresses entirely proof against rifle fire, and capable of high speed. Thus their great destructive force, combined with their mobility, bids fair to introduce an entirely new element into the warfare of the future; and it is believed in many of the war offices of the world that these are merely forerunners of veritable land "Dreadnoughts," capable of destroying entire cities that lie in their track. The French car is much faster though less heavily armed than the latest German type. Another interesting point about the well-known C. G. V. motor mitrailleuse is that it carries a kind of telescopic twenty specially trained men. Another highly interesting British war-car is that provided by the London, Brighton and South Coast Railroad, whose servants form the crew and are also members of the First Sussex Artillery Volunteers. This is a kind of armored freight-car for coast defense, and it carries no less a weapon than a 40-pounder gun, mounted on a turntable in such a way that it can be fired in any direction. Lord Charles Beresford himself inspected and fired the weapon, and described the car as quite a formidable fortress on wheels. During the recent September maneuvers, the German Emperor expressed himself delighted with the powerful cars of his engi- The Simms Armored Car Provided with an Apron of Steel and Ram Fore and Aft. The Ivel First Aid Motor, an Armored Car for the Transport of Wounded Soldiers. take part in the elaborate periodical maneuvers, which tend more and more to reproduce the actual conditions of real warfare. In fact, so valuable has the motor car been found by military authorities, that a special Automobile Section of the British Volunteers has been formed out of a number of rich men, each owning a car which he agrees to hold in readiness for the use of the military, should occasion arise. France, the home of the motor from the beginning, can count in time of war on at least 10,000 cars, in addition to many hundreds of motor wagons and trucks for heavy transport work and the haulage of guns. The motor-mitrailleuse, as the war-car of France is called, vies with similar vehicles already adopted in the German, Italian, Austrian, Russian, and British armies. While all other motor vehicles in time of war will rely, like the light cruisers of our navies, on their high speed for escape, these powerful war-cars grimly remain behind and fight. Some of them carry revolving turrets mounting guns of quite large caliber. The engines are often of the 45-horse-power Mercedes type, and the cars are so geared that they can travel over incredibly rough ground and nego- bridge, enabling it to cross comparatively deep ditches in its path, and even smaller streams. Possibly the most popular British type is the war-car invented by Mr. Frederick R. Simms and built by Messrs. Vickers, Sons & Maxim. This consists of a car surrounded with a crinoline of bullet-proof armor, flattened at the sides and having a ram fore and aft. The car is about 30 feet long, weighs over six tons, and is propelled by a 20-horse-power, four-cylinder petrol engine. Its speed is up to fifteen miles an hour, and its armament two of the well-known "pompoms," which did such deadly service in the Boer war, and two automatic quick-firers. This car is intended for coast defense. It carries fuel for a run of no less than 500 miles, and above 10,000 rounds of ammunition. As an invading enemy will naturally not venture near a powerfully-armed fortress, it would certainly seem desirable to take the fortress to the enemy. The car supports a maximum load of 12 tons, and its Daimler engine is fitted with the Simms-Bosch magneto-electric ignition and timing gear. It is capable of climbing a gradient of 1 in 71/2. It carries searchlights, rope ladders, and a crew of neers, and watched with great interest their cross-country runs, which included very steep, grassy slopes which it looked madness to attempt. Some of the cars were fitted with "walking" wheels—that is to say, instead of a continuous tire, there were a series of circular disks or pads, which gave the entire machine an astonishingly powerful grip on the wildest and most rugged country which could possibly be traversed. The maneuvers with these new German war-cars were of a highly realistic kind—as is always the case when the Emperor himself is present. There were dozens of weird-looking wheeled fortresses which pursued one another up hill and down dale, maneuvering for advantageous positions like powerful cruisers in a fair seaway. They circled round one another in intricate convolutions, changing speeds and belching forth what appeared to be terrific hails of lead. Unfortunately, there were several serious accidents, though these could hardly be ascribed to defects in the mechanisms of any of the cars. It is noteworthy, when considering these armored war-cars, to bear in mind that the earlier types were merely tentative efforts; and as their practical value is demonstrated, they tend A New Type of War Automobile Which Can be Used Against Airships. like battleships to grow larger, faster, and with more powerful armaments. It seems likely that in the near future the once-dreaded war chariots of antiquity will be revived on a colossal scale. But their weapons of offense will be not merely a few sickles attached to the wheels, but rather a battery of modern guns of terrific power, securely intrenched behind impregnable walls of nickel steel, the entire fearsome fortress being capable of propulsion at the speed of an express train across all but the wildest and most rugged country. The Germans are already beginning to construct the most ambitious of war-cars as to size and armament, and their evolutions in the field are now largely directed by the war-balloons of the Engineers. Ehrhardt, of Düsseldorf, has recently exhibited an interesting war automobile at the International Automobile Show held at Berlin. The war automobile is driven by a 50 to 60-horse-power, four-cylinder gasoline motor, corresponding in the main with the usual Ehrhardt-Decauville construction. The 5-cm. (1.9-inch) quick-firing gun is free to rotate around a support bolted to the frame of the car, on which it is located; it is displaced extremely quickly and readily both in a vertical and horizontal direction, so that it can be directed against military balloons and airships. The gun is entirely surrounded by an armored casing of nickel steel plate 3.5 mm. (0.137 in.) in thickness, which protects the car driver and crew. All devices for operating and guiding the car as well as for serving and training the gun are arranged inside the armor. For blocking the car there have been provided, inside the armor casing, four substantial spindles which at a moment's notice are lowered from inside in order to be screwed fast, thus unloading the springs and obtaining a rigid support for the guns. The ammunition stored inside the armature is sufficient for 100 rounds. The weight of the vehicle, inclusive of a staff of five men, is 7,040 pounds. On smooth roads the automobile attains a speed of 29 miles per hour. Forest paths of a gradient of up to 20 per cent are readily traversed. ## HOW COMPRESSED AIR RAISED A SUNKEN SHIP. THE REMARKABLE SALVING OF THE STEAMSHIP "BAVARIAN," To turn a 12,000-ton steamship into a huge steel bubble by pumping her full of compressed air is a recent engineering feat. The steamship "Bavarian," of the Allan Line, ran on Wye Rock, thirty-eight miles below Quebec, on the night of November 3, 1905, a few minutes before high tide. Almost every method known to wreckers for salving the vessel was tried and found wanting and over \$150,000 was spent in these efforts. Examination had shown that the "Bavarian's" bottom amidships was in a very ragged condition. The holes were so large that it would be hopeless to try to pump the water out. Preparations were accordingly made to treat the holds as caissons, compressed air being used to force the water out through the opening in the bottom. Work was begun by the North American Wrecking Company on September 7, 1906, and the vessel was floated on November 16, 1906. Everything in regard to the operations was calculated with mathematical accuracy. The calculations for the buoyancy required, and at the points chosen, were most fortunate. It was necessary to timber solidly between decks above the several compartments that were to be used as caissons. The hatches were closed by plating. Air locks were placed on the compartments which were to be treated as caissons. Every opening in the deck, scuppers, etc., was closed. When the air was applied the water rapidly receded and workmen were able to stop the rents in the bottom with temporary plating. In some of the holds even, the leaks were not closed, and the vessel was floated without a bottom. Pressure-men, that remarkable class of men who make it their business to work in compressed air, and who are commonly known as "sand hogs," were brought from the Quebec Bridge, the caisson work of which had shortly been completed, or from New York, the superintendent of the work having for many years been engaged in compressedair work about New York. A wooden tank of about 200 tons capacity was built directly between the engines, and the weight of the engines (180 tons) was carried by this tank. On the day of flotation about 25 tons of water were left in the tank. As the vessel rose and the engines settled to their old level, blocking was put between the tank and the deck over it, and this water pumped out, the surplus lift of the tank being transferred to the vessel. The heavy tides of the St. Lawrence,
although the center of the vessel was flooded, lifted the end of the vessel, and the craft rose and fell with high tide, so that the engines rose and fell on some occasions 14 inches. Air bags and tested barrels were used in the after bunkers. The boilers were blown out, and air was applied to the forward bunkers, they, too, being treated as caissons. Several of the holds where the bottom was not so badly destroyed that it was necessary to treat them as caissons were pumped out, 8 and 10-inch centrifugal pumps being used for this purpose. Owing to bad weather the tugs which had been lying alongside on November 16, the date set for flotation, had dropped down the river to a more sheltered position. As the tide rose the air compressors were set to work and the full power of the plant used in forcing air into the holds of the ships. Suddenly there was a movement in the great vessel as she lifted herself from the rock and a cheer went up from those on board. Five minutes later the "Bavarian" floated clear of Wye Rock in 60 feet of water, and was hauled to her anchors, which had been set off her port bow and quarter. After the first few minutes all apprehension that the vessel might turn turtle or that the air pressure would not hold the water back was dispelled. The "Bavarian" floated on an almost even keel and was shortly after towed by tugs to Quebec The wrecking operations were under charge of William Wallace Wotherspoon, C.E., superintendent, who had entire charge of the wrecking operations inside the bulwarks of the vessel, and Mr. R. O. King, C.E., who was controlling engineer. Capt. W. Leslie, of Kingston, had charge of all nautical work. ### CONTROLLING TORPEDOES BY WIRELESS TELEGRAPHY. A torpedo-launching apparatus, which is operated by electric waves, has recently been tried in France, on the Mediterranean coast. It consists of two cylinders ### CONTROLLING TORPEDOES BY WIRELESS TELEGRAPHY. placed one above the other, the upper one acting as a float which holds the mast wire, while the lower cylinder contains the torpedo and the launching device. The method of carrying out the maneuvers of the apparatus from a distance by the electric waves has been devised by M. Devaux, who gives the following account of the method. Up to the present the Hertz waves have been utilized generally for operating an electro-magnet. whose armature makes the well-known signals as in the Morse instrument, and this is the method used in wireless telegraphy. However, the movement of the armature can evidently be used to set free the force of another instrument, thus acting as a relay. Up to the present, the devices in use allowed of using one electromagnet for operating two movements only, corresponding to the up or down position of the armature. To carry out a series of maneuvers which have no connection with each other, it is necessary to have as many electro-magnets as there are operations. This, though complicated, would be possible in the case of wire transmission, but it is not practicable for electric waves, seeing that as yet we are unable to separate the waves so as to have them act on different coherers located at the same point. We proposed the problem of setting in movement from a distance by electric waves, of a series of forces, acting in an order always variable and keeping independent of each other, and we devised a new method for the operating apparatus. This apparatus is used with each of the coherers, and can also be used with a wire-transmission system. In the latter case they need only one wire, using the earth The present system consists, first, of a distributing device passing over all the contact points from which start the different operating circuits, and second, a commutating switch which sends the current at the right moment when the distributor has reached the proper circuit. To carry this out, an electro-magnet E (Fig. 1) can attract an armature, A, which is held back by the spring, R, and is pivoted at O. This armature is prolonged at each end by the arms, B and B'. The arm, A, provided with a pawl, works upon the ratchet wheel, C, which is mounted on the shaft, O', of the distributor. The wheel thus advances one tooth at each attraction of the electro-magnet. At the other end, the arm B' strikes each time against the end of the lever, L, which is pivoted at O'' and which works the contacts, aa'. Mounted on the shaft, O', of the distributor is an arm, D (Fig. 2), whose end works upon a set of contacts 1, 2, 3, etc., and sends current from O' into twelve circuits. Each movement of the electro-magnet thus moves the arm around one contact. The electro-magnet is operated by aerial waves, using a coherer, or again by a line wire. In Fig. 3 is seen the second part of the device for shifting the circuits. The arm, L', lies in another plane from the arm B B', and on the forward end it carries a small rack and pinion device which is not seen in Fig. 1. The rack, sliding over the wheel, d. engages with it when the lever, L, is out of its normal position. In coming back, the rack draws the wheel with it, but as the latter carries a flywheel on the shaft, this gives it a certain inertia and retards the fall of the lever. During the series of attractions of the armature, the contact at a a' is thus kept open, and it is only when the armature is stopped and therefore when the distributor arm has come to the proper point, that the contact is closed. The apparatus works as follows: When at rest, the arm, D, remains upon contact No. 12, which is a dead point. The lever closes the circuit at aa'. We now wish to close circuit No. 7 without interfering with the others. It suffices to send 7 currents or 7 sets of waves with the rhythm 1 = t. The electro-magnet will work 7 times at this frequency and will make the ratchet wheel, C, advance by 7 teeth, whereupon the arm, D, comes upon point No. 7. But now the contact at a a' has remained open on account of the inertia, as we have seen, of wheel d, and it is only closed when the arm, D, comes to rest. We thus close circuit No. 7 without operating the others. Again, we may wish to close several circuits at the same time. To do this, the distributor must be free to move without breaking the circuit which has been closed. It suffices that circuits 1, 2, 3...12 be closed by locked relays, and the latter serve to operate the work circuits. These relays are closed and remain so when the current passes, and their opening depends upon a device connected with one of the contact blocks. In Fig. 4 is shown the apparatus for operation at a distance. It is connected in the place of the usual Morse receiver for aerial telegraphy. We have applied these apparatus to operating torpedoes at sea, and thus need the following maneuvers: 1. Forward run. 2. Back run. 3. Stop of propeller motor. 4. Rudder to right. 5. Rudder to left. 6. Stop of the steering motor. 7. Lighting of the signals at the front. 8. Lighting at rear. 9. Launching of the torpedo. The apparatus uses 12 points, thus having 3 points free. The speed allowed for making a complete round of the distributor is 2 seconds. The nine working circuits closed upon seven locked relays which worked the propeller and steering motors, signal lamps, and launching apparatus. Inside the torpedo is placed a set of Fulmen storage batteries which give a four hours' run. The torpedo is formed of two cylinders of sheet iron with conical ends, connected one above the other. It weighs 6.8 tons. The top cylinder, 30 feet long and 2 feet diameter, serves as a float, and it carries two small masts to which are fixed a receiving wire and a set of signal lamps. The lower cylinder, which is 35 feet long and 3 feet diameter, contains a torpedo launching tube and a Whitehead torpedo, besides the battery, motors, etc. The land post has a mast wire 50 feet long, in fine strands. A distance from 400 to 5,000 feet was covered in the trial. The latter took place in the port of Antibes on the Mediterranean. These tests have proved satisfactory as regards the different maneuvers of the torpedo-launching apparatus from the post on shore. ### A Dry Shampoo. People who are susceptible to colds, and who fear to wet their hair during the winter months, will find a dry shampoo with orris, in connection with brushing and massage, very effective. Ten cents' worth of powdered orris is amply sufficient for two shampoos. When ready to retire, and after carefully brushing the hair, apply the orris, rubbing it in well with the finger tips, then put on a cap or tie the head up in a towel and allow it to remain over night. The orris will absorb the oil and dirt from the hair and scalp during the night, and can be brushed out in the morning. Orris is not only an effective shampoo, but a very agreeable one; imparting a distinct yet dainty evanescent odor to the hair. By its use the head and hair can be kept in a perfectly cleanly condition. Frequent airing, brushings, and massagings will add to the beneficial results. ### Correspondence. #### The Transmission of Life from Star to Star. To the Editor of the Scientific American: Under the above title in the SCIENTIFIC AMERICAN of March 2 you gave a synopsis of Prof. Svante Arrhenius's theory that "the germs of life are conveyed through interstellar space from one heavenly body to another." His theory seems plausible and his arguments quite convincing, and his concluding thought, that "all organisms in the universe are related, and the process of evolution is everywhere the same," is splendid. But if his theory is true, it does not solve the problem of life—it simply pushes it farther from us into time and space. If life came to our planet, to our solar system, from other worlds, that does not explain its origin. To me it seems beyond conception that life did not at some time and in some place have a beginning. When it began it must have been by spontaneous generation or by special creation. The professor shows quite conclusively by
quoting high authorities that all the theories for spontaneous generation have been discredited. So does this not leave the special creationist still "on top" in the controversy? C. W. Bennett. Coldwater, Mich., March 2, 1907. ### The Korn Photographic Facsimile Telegraph. To the Editor of the Scientific American: The description of Korn's telephotographic apparatus in the Scientific American of February 16, 1907, mentions a truly marvelous property of selenium, which appears to indicate that this old favorite is determined not to be outdone by radium or any other upstart. The writer states that selenium "is not only sensitive to varying intensities of light in its electric conductivity, but is also affected thereby in its resistance." Hence the necessity of employing a second selenium cell with the same sensibility "in the opposite direction." In the new apparatus, furthermore, the needle galvanometer is replaced "by one of the chord type," but the function of the galvanometer is not given, nor does it appear in the diagram. Again, in the receiving apparatus the beam of a Nernst lamp is focused on a Geissler tube which is in the electric circuit, "and the variations of the current are thus retranslated into variations of light." This statement agrees with the diagram, which represents the Geissler tube as being energized directly by the feeble current from the distant sending station! In the older form of receiver, as described in the Scientific American of November 25, 1905, p. 417, there were a Tesla inductor and tube, and the galvanometer, traversed by the varying line current, "according to its position switches more or less resistance into the Tesla circuit." According to a description and diagram in La Science au XXme Siècle, January, 1907, the variation of resistance is effected by varying the length of two spark gaps, each of which extends from a fixed electrode to one end of a rod carried by the galvanometer needle. The current through the tube and spark gaps is furnished by a Tesla apparatus and no Nernst or other lamp sends its beams through the tube. The property of selenium which the second cell is designed to compensate is referred to as *inertia*, or retention of light—that is, slowness of recovery. The action of this second cell is not explained nor is it shown in the diagram, which is probably of the older apparatus, but reference is made to a paper read before the Académie des Sciences on December 3, 1906. LAWRENCE B. FLETCHER. Marlborough, N. Y., February 19, 1907. ### The Two-Cycle Motor. To the Editor of the Scientific American: Referring to the article in the Motor Boat number of the Scientific American by Commodore Willets, I wish to state that it is not yet a settled fact that the four-cycle engine is the ideal for marine propulsion. This matter is far from being settled. It is the honopinion of the writer (who has been with the development of marine engines for fifteen years) that the two-cycle type of internal combustion motor will in time enjoy the most general adoption for boat propulsion, because of the favorable features it presents for this purpose. The four-cycle engine has had the attention of engineers to a great extent, while the two-cycle has excited little interest: this is because of business reasons. A firm dislikes to bring out something new if it can copy or follow something that has been tried. However, the fact that something else has not had a fair trial is no evidence that it is of less value. There is a large number of reputable shops now giving their attention to the two-cycle, not only for heavy marine work, but also for stationary operation, such as electric drive, and these firms should receive some encouragement from government engineers, as well as from the public, when they can show results. No engineer will doubt that the principle of a two- cycle engine is far superior to that of a four-cycle, because of its ability to operate at variable speeds and at very slow speeds. It also inherits the ability to reverse instantly without the addition of complex mechanism; the construction of a two-cycle engine is extremely simple as compared with that of the four-cycle, and best of all it has the great advantage of an impulse at every revolution per cylinder, which produces a more even torque and approaches the turbine principle in reducing vibration. The fact of the increased number of explosions per cylinder permits of a smaller cylinder and stroke per horse-power. One of the disadvantages of the four-cycle lies in the overheating of the exhaust valve, a fault which is entirely overcome in the two-cycle. There is no question but that in time the two-cycle engine will become the standard motor for vessels; and with careful designing, together with improvements such as means for scavenging the cylinder with air at each stroke and using producer gas as fuel, it needs only the attention of the builders to bring it to the front. A READER. The Bite of the Gila Monster. Oshkosh, Wis., February 28, 1907. ### _____ To the Editor of the Scientific American: Having read your article about Gila monsters in the Scientific American of January 26. I desire to state that I know one of the cases mentioned to be true. I have had some experience with Gila monsters, and can state that no matter what scientists may claim, the Gila monster is a good thing to shun. Indians and Mexicans have a horror of them, and fear them more than a rattlesnake. Old settlers here know of many cases of Gila monster poisoning, in which the effect was death. I believe that the bite of the Gila monster is dangerous because of the creature's habit of eating lizards, bugs, and rodents, and then lying on sand so hot that it blisters the hands and feet. The heat causes the food to putrefy in the stomach, evidenced by the fact that the teeth are often covered with a fermented, putrefied froth from the food. A bite has the same effect as the cut of a dissecting knife used on a cadaver; in other words, the inoculation of a deadly I spoke of the sluggishness of the Gila monster to all appearances as it lies in the sand after a feast. This is true within certain limitations. Most people do not know the Gila monster, and have never seen him in action. When frightened or angry, he can move quite rapidly, and he develops some traits not generally known. That short, thick, stubby tail of his is apparently merely a heavy tail to drag around to make him more sluggish. The thick tail is used in jumping, just as a kangaroo uses his tail for the same purpose. The Gila monster bites like a bulldog, and has the tenacity of a snapping turtle. Small wonder then that his bite is so dangerous. To cite an instance of his jumping powers, I may mention that I once saw some men teasing a Gila monster brought to Tucson. A string was tied around his neck, and a crowd naturally gathered out of curiosity. The Gila monster was crawling around on the ground, trying to get away, but was pulled back by the string. This was carried on till the creature became furious. The crowd around the Gila monster knew nothing of his power to spring. Suddenly he sprang up and bit a man among the crowd on the hand, leaping fully two feet from the ground. The monster was crawling at the time, and the string was slack so that it was not jerked up in the air. I may here record still another instance. This of a man whose chief object seems to have been a bravado display of fearlessness. He was holding one of the monsters in his hand by the back of its neck so it could not hite him. He dropped his hand to the side of his leg. The Gila monster shut his teeth down on his heavy duck overalls, taking a double piece out where the cloth folded, as quick as a pair of scissors could have cut the fabric, and as cleanly. The Mexicans and Indians after killing a Gila monster always hang it up by the neck on a bush so that it cannot possibly touch its feet, and leave it till it is flyblown or smells before they will trust to its being dead. The creatures apparently are hard to kill or else feign death. Henry M. Tucson, Ariz. ### A Quick Method of Repairing a Broken Shaft. To the Editor of the Scientific American: The writer recently, almost by accident, hit on a method of repairing a broken shaft, so cheap, so quick, and so surprisingly strong, that he thinks it may be of service to your readers. The use of the method would often obviate a long and expensive delay and loss of work, for the shaft gives nearly as good service as before it was broken. The Scientific American is so universally read, that no better medium to put it before the mechanical public could be found, and hence it is offered to you in the hope you may find it of sufficient interest to print. To be brief, the writer has under his charge a hydraulic dredge, used on the Mississippi River im- provements in the vicinity of Keckuk, Iowa. This dredge is driven by a compound high-pressure engine, 14 and 24 by 15-inch stroke, running 220 revolutions per minute and developing about 250 horse-power. The steel shaft of this engine, 6 inches in diameter, broke about 10 inches from one of the cranks. The cranks are quartering, and the shaft is a highly finished one that takes a long time to build even under the best of circumstances. It was, as you can see, a difficult task to weld this shaft so as to repair it, as the stub-end was so close to the crank that to heat it sufficiently was likely to warp the latter out of shape and spoil the whole shaft. The attempt was made, however, and the shaft promptly broke again at the same place, although a whole week and a large expense had attended the effort to put the shaft in working condition. It looked as if the crew of sixteen men would have to be given indefinite furloughs, and the dredge laid up for at least six weeks while a new shaft was being built. The broken shaft was taken out, and was lying on the shop floor for measurement for the purpose of ordering a new
one, when a casual traveling man happened to come along with some sort of engineering merchandise to sell, and heard the history of the shaft. He remarked that he had once mended a similar break in a cold-storage engine shaft, where it was of the utmost importance to keep the machinery at work. This shaft was, like ours, broken too close to the crank to permit of welding, owing to the springing out of shape that would take place if heated. He said that, more in the hope of doing some good than with any expectation that it would last, he simply squared the two broken ends and screwed them together with a stud that went half into each piece of shaft. He said that they started the engine, and, to the surprise of every one, the shaft seemed as good as before breaking. They got a new shaft, but they did not take time to put it in, waiting to see the mended shaft give some sign of breaking. It ran the season out, and was still apparently fully up to its work, when they finally put in the new shaft; not because the old one showed any weakness, but "just to avoid trouble." This tale was no sooner concluded, than my broken shaft was put into the lathe, and work begun on it to make a similar repair. Squaring the ends shortened the shaft some six inches, but this could be remedied by moving in the outboard pillow block. A chunk of soft and tough steel, that had once done duty as a wristpin for a large engine, was selected from the scrap pile. This was cut off 10 inches long and turned to 4 inches in diameter; it was then threaded the whole length with a screw of four threads to the inch; each piece of shaft was then bored and threaded to fit this screw, and then finished the stud was screwed into one piece of shaft, and the other piece screwed home. To make the job a little more solid, the stud was dipped into salt and water to make a rust joint of it, and keep it from coming unscrewed by any chance. It took an afternoon and part of the night to complete this job, and the next morning the shaft was replaced in the engine and put to work. It has never shown the least indication of weakness so far, and is still, after eighteen months, apparently as good as ever. The new shaft, ordered as a hurry job, was received in two months, but is still kept in reserve. The joint between the two pieces of shaft was fortunately an inch or so inside of the pillow block, and is now undistinguishable from the rest of the shaft. The work of the engine, of course, always tends to screw the pieces tighter together; but it seems a little surprising that the threads do not strip off and let the two pieces separate. Probably the friction between the outer parts of the shaft takes up most of the torsional strain. The 4-inch stub would not last a minute by itself. It suggests the idea that a shaft may be lengthened almost indefinitely, and do good service without any couplings, by simply screwing the ends together. This would in many cases be a great convenience. The experience on this engine at least goes to show that it is a method of uniting pieces of shafting far stronger than is generally supposed. It would be of interest to have tests made with pieces of shafting made for the purpose, to see what proportion of the original strength of a shaft this method of uniting them gives. I would give the name of the ingenious man who suggested this repair, if unfortunately he had not gone the way of other drummers and been forgotten. I send with this a scale drawing to show plainly just what the joint looks like, together with the break in the shaft, and hope that some one may find the idea as valuable as it was to the writer. There is no reason why the shaft need to have been shortened, as a short piece of shafting with a stud on each end might just as well have been used, and would probably have been just as strong. Meics, U. S. C. E. Keokuk, Iowa, December 17, 1906. The French Minister of War has ordered a census to be taken of industrial vehicles capable of being mobilized for military transport. The wagons will be divided into three categories, according to the load carried. Public service vehicles will also be included. ### AN INTERESTING GERMAN FLYING MACHINE. BY DR. ALFRED GRADENWITZ. The flying machine illustrated herewith is arousing much interest at the present moment in German engineering circles; it has been developed by Privy Coun- cilor J. Hofmann, of Berlin, during more than twelve years' strenuous work, in spite of early lack of success and encouragement. Hofmann began his experiments as early as 1895 with a trial similar to Lilienthal's fatal flying experiment, gliding with an aeroplane from the roof of a small factory building. In connection with a more extensive experiment, the flying machine was placed on a cart pushed by workmen, while two men on the cart held the device in position. As, however, one of these men, contrary to instructions, left the cart, the machine was caught up and broken by a sudden gale of wind. In consequence of this failure Hofmann lost the support which he needed for the work, and was himself obliged to install a small workshop in a dwelling room in which several flying machine models, on a scale of about 1 to 10, were constructed. All these had identical steam boilers and engines, but different propellers, wings, and legs. In spite of the successful flying experiments carried out with these miniature airships, the public remained skeptical in regard to Hofmann's work, it being thought unlikely that similar success would attend experiments on a large scale. Santos Dumont Fig. 3 —Side Elevation of the Extended Left Wing of the Machine. Fig. 4.- Plan View of the Left Wing. it was who proved that the success of flying tests is independent of the size of the airship. A committee of supporters having finally been formed, the inventor commenced the construction of a large-sized machine. In place of wings rigidly fixed to the body, Hofmann uses movable wings, which, like those of insects, are folded up against the body when the latter is at rest, and are stretched out to the right and left during the flight. In the case of a large-sized machine, however, it becomes necessary to subdivide the wings like those of birds and bats, as represented in Figs. 3, 4, and 5 of the illustrations herewith. Fig. 3 is an elevation of the left-hand wing extended, and Figs. 5 and 6 are plan views; e is the body of the machine flying in the direction of the arrow; to both sides of this framework the girders of the wings are applied. The vertical rods f carry at the rear the outriggers g, which in turn are connected together at the back. To the upper ribs a, b, c, d, or to the lower ribs a_1 , b_1 , c_1 , d_1 , or to both of them, or finally to special rods i, there may be fitted horizontal sails secured to the rods g, both at the front edge i and at the lateral edge, while the back edge and other lateral edge are usually left unattached. During the flight of the machine the air will throw the sails from underneath against the framework members k and g, while after the landing the framework girders are folded immediately by a single motion of the piston m. In the machine constructed by Hofmann the part a b, Fig. 1.—The Flying Machine as It Would Appear in Full Flight. corresponding to an upper arm, is 10.9 feet, the lower arm b c, 11.9 feet, and the hand c d, 12.9 feet in length. As the body itself is 5 feet in breadth, the total width of the flying machine is 76.5 feet, while the length in the direction of flying from the front edge of the propeller to the rear edge of the rudder is 26.5 feet. The machine, when traveling on land with folded wings, is 33 feet in length and over 13 feet in breadth. Another feature of the machine is the fact that the wings, when stretched out, can be moved both in a forward and a backward direction, thus replacing the rudder or correcting any mistake in the adjustment of the center of gravity. Much time and money were expended on trials intended to ascertain the most convenient shape of propeller screws. The design of the propeller at present adopted will be seen from Figs. 1 and 2, which were made from photographs of Hofmann's full-sized machine. It is, however, intended to reconstruct this machine, adapting it to combustion motors, and then a patented type of propeller will be made use of. These improved propeller screws are, like the above, mounted on arms connected with the shaft, while free to rotate in bearings in which they are turned around during operation by means of a handle. The forward and backward motion of the machine is thus controlled by this handle, dispensing with the use of any change gearing, as in the case of ship screws with adjustable blades. The flying machine at present constructed, as seen from Figs. 1 and 2, comprises a quadruple screw propeller arranged in front with its shaft, behind which the steam engine is located. The axles of the four wheels are fitted to the ends of lengthy springs placed in guiding tubes, which are free to rotate around the center of the machine. Between the upper frame of the machine and the front and rear bogies corresponding to fore and rear legs there are two reinforced steam cylinders with projecting piston rods; this patented arrangement enables the body of the machine with the aeronaut, wings, and all to be raised about four and a half feet. While the body of an animal is provided with a backbone, breastbone, and ribs, inside of which the more sensitive organs are hidden, this winged flyer has a protective framework of steel tubes and rods inside of which the motive parts are arranged. The steam boiler and superheater are of zigzag form; the steam raised in the lower part of the water-tube boiler rises into the steam chamber, placed immediately in front of the aeronaut, where the water is separated out and returns to the boiler, through return pipes; the moist steam is conveyed to the superheater located on the top, running toward
the fire as far as the lower boiler, and finally through the fireplace to the throttle valve near the driver's position and thence to the propelling mechanism. The driver's position, in addition to the devices usual in connection with locomotives, contains all apparatus for controlling the auxiliary machinery, thus allowing the flying machine to be lifted or lowered and the wings to be extended or folded up by means of a single manipulation in each case. It further contains the handwheel for steering the front wheels, the machine being used on land as an automobile, and two levers for the two horizontal flight rudders arranged behind the engine on either side of a stationary vertical keel. The flight Fig. 5.-Plan View of the Extended Wing. Fig. 6.—Auxiliary Motor for Actuating the Wings and Legs. rudders as well as the sails of the wings have not yet been placed in position. If the boiler be heated with charcoal, a superheat corresponding to the temperature of melting lead is obtained with a maximum pressure of 15 atmospheres. Now, as the boiler of a 30-horse-power engine contains 13 gallons only of water, while the copper tubes (0.2) inch in outside diameter and 0.17 inch in inside diameter) represent an aggregate length of 7,260 feet, it will be readily understood that the control of the fire is not an easy matter. The fluctuations in the consumption of steam, depending on the working of the auxiliary machinery, and the operation of the copper tube superheater, exclude any possibility of a single operator tending the boiler and engine, and steering the machine through the air. Now, as internal-combustion motors are at present constructed so light in weight. Mr. Hofmann, as above mentioned, intends substituting such a motor for his present engine. After making this substitution, the construction will be as shown in Fig. 6. The motor a, while the propeller c is running at no load, fills Fig. 2.—The Incomplete Hofmann Flying Machine During Construction. AN INTERESTING GERMAN FLYING MACHINE. the reservoir, f, with compressed air until the latter is continually discharged through the safety valve f_1 . The flying machine, whose supporting surfaces and rudder are arranged in the direction of the propeller axis, is then slowly lifted through 41/2 feet by allowing air to enter through k_2 into the cylinder or cylinders g. The propeller, is next adjusted for forward running, while compressed air is introduced through k_1 into the cylinders m, thus unfolding the wings suddenly. As the whole wing surface remains parallel to the ground, the flyer is drawn by the propeller at a speed of 10 to 12 yards a second. At this very moment the direction of the air in the lifting cylinder q is reversed by turning the cock k_2 , thus causing the legs of the airship to be pulled up- ward, and allowing the machine to fall freely 41/2 feet. It actually falls some distance while being launched forward, and even if this distance be only half a yard, an increase in speed of about 3 yards will be derived therefrom, thus giving an initial flight speed of 13 to 15 yards per second. If the center of gravity of the whole machine be so placed in regard to the wings that the former, while transmitting its load to the wings, is rotated, e.g., to a certain extent lifted in front and lowered backward, the flight is bound to continue, the rudder being actuated in the case of a permanent operation. In landing, the speed of the propeller is reduced while adjusting the wings to a steeper inclination by lifting the two back rudders; then the whole airship slowly drops upon its rear legs, and in a half-flying and half-rolling motion falls on its fore legs. By reversing k_1 , the compressed air in the cylinder m is immediately controlled in such a way as to draw the wings abruptly to the body, thus ending the flight. As regards the performance of this kite flyer in bad In the making of the silk hat, that indispensable accessory of fashionable masculine attire, comparatively little use is made of the marvels of modern ma- Covering Hat Bodies with Silk Plush. Cutting Out Plush Hat Covers. weather and winds, a special point has been made of imitating the behavior of birds. It should be remembered that all birds in their tails possess approximately horizontal surfaces, by means of which all horizontal and vertical motions as required in flying can be obtained. If now the bird unexpectedly is taken sideways by a sudden gale, it is struck behind its center of gravity by a far greater number of air particles than in front of the center of gravity. It thus quite automatically turns toward the wind, thereby eliminating any danger. For this reason the inventor has provided his machine with rear rudders and an intermediary stationary vertical keel, in the place of the front rudder used by Santos Dumont, which on the above theory would be rather dangerous. is stretched on frames brushed with a solution of shellac in alcohol containing a little ammonia, and dried in the open air or in well-ventilated rooms, according to the season and the weather. The foundation, or body, thus constructed is varnished. It is as hard as wood, very light and absolutely water-tight. If it is thrown on the floor it will rebound without becoming deformed. In order to make the foundation exactly fit the wooden block, which is smaller in the middle than at the ends, the first strip of muslin is cut bias. The innermost layer of the top of the hat consists of satin or watered silk. To this the prepared muslin is applied in one or more layers. The foundation of the brim is made of two or three layers of stouter muslin coated with shellac, which are pressed together and smoothed by a machine which consists essentially of Shaping and Curling the Brim. Coating Muslin with Shellac for Foundation. Making Brims. Shaping Hats After Covering. two cast-iron rollers mounted on a heavy iron frame and heated by gas. This machine is rolled several times over the still flat brim foundation to which it gives the required stiffness. The brim is then clamped between a wooden plank and a zinc plate, in each of which is a hole slightly larger than the inside of the finished hat, and the inner edge of the brim which projects beyond the plank and zinc plate is bent at right angles by the application of a hot iron of peculiar shape and trimmed with knives to remove the irregularities produced by this operation. The short tube thus formed inside of the brim foundation is fitted to the foundation of the crown and the two are fastened together by the application of a hot iron, the hatmaker's most important tool. Then the entire body receives another coat of varnish and, after drying, it is ready to be covered with silk plush. The covering is in two pieces, a circle and a rhomboid. The illustration shows a girl tracing the outlines with chalk on the back of the plush and another girl cutting out the pieces. A skillful needlewoman then sews the pieces together. This is a very delicate operation, for the seams must not show in the finished hat. The plush is stretched tightly and the nap is brushed over the seams. In the operation of covering the hat, cashmere is glued on the lower side of the brim and silk plush on the upper side. Then the wooden block already used, which is composed of five sections, is wrapped with cotton wadding and forced into the hat body in order to stretch it as much as possible. The plush cover is next forced over the body and smoothed and made to adhere by the application of a wire brush, a damp sponge, and a hot iron. Then comes the most difficult and delicate task of all, the joining of the side to the brim by an invisible seam. The entire surface is again dampened and ironed and the hat is placed on a lathe and polished with a strip of velvet, which cleans the plush perfectly and gives it a brilliant gloss. The inequalities in the crown caused by the fiveparted form on which it was forced are removed by placing it and turning it on a gallows - shaped heated iron tool, an operation which requires great strength as well as skill and taste. The crown is now covered with paper to protect the surface and the flat brim is molded to the desired form and slightly curled. The edge of the brim is then sharpened with knife and plane, covered with silk braid and finally shaped to suit the particular style desired or the taste of the wearer, if it has been made to order. The final operation, performed by girls, is the insertion of the leather sweat band and the silk lining. The silk hat of the twentieth century can defy the elements. It is less ornate than its ancient prototype of soft felt garnished with plumes, but it is far lighter and more durable. The man who buys a 1907 model will get something bigger and better in the shape of a car than he ever dreamed of a few years back, but the item of depreciation appears to remain stationary despite the vast improvement that has been brought about. And in this connection depreciation must be considered in two senses—actual and financial. The former is the reduction in value that the car has actually suffered through wear and tear on its mechanism, accidental injuries, and the like, and the latter is the slump in its market value that has come about merely through the fact that it has been used and regardless of how little it may really have lost. That it has been run an entire season or only a month appears to make little difference. The blight of being second-hand is upon it. And even though it may actually fulfill every representation of the owner anxious to part with it regarding the short distance it has been run and its perfect condition, it is extremely difficult to realize more than 60 per cent of its original selling price. This does not represent an extreme in either direction. In occasional instances more may be realized, but in the majority it is less and the item of depreciation is correspondingly heavier. The car that sold for \$2,000
when new will seldom bring much more than half that price when a year old, and at the end of its second year this will practically be halved again, despite the fact that as a well-built piece of machinery it may have several years of efficient life before it.—Motor World. ### A New Use for Concrete. Repairing breaks in the hull of a sunken steamer with concrete is a new departure, but one likely to prove frequently useful. The scheme was successfully tried upon the steamer "George W. Elder," which was sunk in the Columbia River over two years ago, and remained under water many months. The boat struck on a jagged rock, which stove several holes in her iron hull; the principal one, about 80 feet from the bow, measured about 35 feet in each direction. Through this enormous gap the rock projected into the hold for nearly 11 feet. A bulkhead was built by divers forward of the break, and another aft, and two more aft of the engine room. Heavy canvas was then placed over the rock which projected up into the ship, and concrete was placed over the canvas until a heavy covering had been obtained. This was supported against the outside water pressure by a concrete beam athwart the hold, measuring 18 x 48 inches and 38 feet long. The concrete was mixed and placed under water by divers, the cement being sent down a chute in sacks and the stone in a box. Other smaller breaks having been similarly treated, the water was pumped out of the hold, and the vessel floated and towed forty miles to a drydock. One of the problems connected with concluding the operations involved the relation between the capacity of the pumps, which were discharging the water from the hold, and the flow through leaks developing around the huge cement cone, and at other points in the hull which had been severely strained by the action of the current during the sixteen months of submersion. By the terms of the contract under which the salvage opera- The Finishing Touches. Final Shaping of the Brim. tions were undertaken the successful wreckers received \$30,000, as against nothing in case of failure. The original owners had sold the wreck for \$10.400, and, as the cost of repairs was about \$20,000, the outlay of the buyer amounted to about \$60,000. After the ship was ready again for service an offer of \$160,000 was made for her.-Iron Age. THE STORY OF A SILK HAT. ### An Interesting Use of the Telephone. Two novel uses of the telephone are given in the American Telephone Journal. During the past summer public entertainments have been given in Riverview Park, Chicago, which is one of the largest of its kind in the United States. One of the novel features of these entertainments was the placing of telephone receivers attached to horns in several of the trees in different parts of the park. During the entertainment, music produced on a piano, a cornet, or songs was re produced by these telephones, much to the mystification of the audience. This effect was made possible by means of the powerful transmitter devised by the International Telephone Manufacturing Company, of Chicago, known as the "Transmitophone." The soloist who gave the selection was located out of sight and was able to keep in time with the accompaniment of the orchestra by means of a special receiving circuit. The other interesting use of the telephone was in reporting the Michigan-Ohio State football game. Two bare wires were stretched across the field, and a small trolley arranged to run on them. To this trolley was attached a portable telephone set, which was used by the reporter, who followed the progress of the ball along the field. This circuit was connected with the Ann Arbor (Mich.) exchange, and through it to the University of Michigan. In this way the progress of the game was followed at Ann Arbor almost as closely as it was on the field where it was played. #### Preparation of Pure Helium. A new method for the preparation of helium in a pure state is the subject of a paper presented to the Académie des Sciences by Messrs. Jacquerod and Perrot. In a preceding note, the authors called attention to the great facility with which helium is diffused through a quartz bulb which is brought to a high temperature. Their researches upon the expansion of gases showed on the other hand that silica is quite impermeable to other gases, with the exception' of hydrogen, and perhaps carbon monoxide, up to the temperature of 1,952 deg. F. These observations led them to a method of purifying helium which may present a certain interest, owing to the difficulty found in the chemical or other processes used up to the present A quartz bulb, which ends in a capillary tube of the same substance, is placed inside a cylindrical platinum tube of somewhat larger diameter, stopped by a metal plate which allows the capillary tube to pass. Sealing wax is used to make a tight joint. Side tubes allow of making a vacuum in the annular space between the platinum and the quartz, as well as inside the quartz bulb, and gas can be also introduced. The apparatus is heated to about 2,010 deg. F. in an electric furnace having platinum resistance coils, with the exception of the sealing wax joint, which is cooled by a jacket having a cold water circulation. The quartz bulb can be put also in connection with a mercury gas tank by means of a stop cock. A vacuum is first made in an almost complete manner in the two envelopes by using the mercury pump, then ordinary unrefined helium coming from the calcination of cleveite is introduced into the platinum tube at somewhat higher than atmospheric pressure, so as to hasten the diffusion. By adding to this impure helium from five to ten per cent of oxygen we can fix under the form of water vapor or carbonic acid, the hydrogen or carbon monoxide which may be present there. After a few minutes the pressure gage connected to the quartz bulb shows that the gas is commencing to diffuse. The pressure rises in a very regular way and after two or three hours a portion of pure helium can be introduced into the gas-holder. In these conditions the output of gas, with the quartz bulb containing 42 cubic centimeters is somewhat slow. It corresponds with about 1 cubic centimeter of pure helium per hour. On the contrary, the method, when once the apparatus is mounted, is easy to operate and the purification seems to be perfect. In fact, spectroscopic examination of the gas shows none but the characteristic rays of helium, which are very brilliant, and the nitrogen bands, although easy to see, are quite absent. Only the red ray (H) of hydrogen can be perceived, but it is very faint. It comes very likely from traces of hydrogen retained by the electrodes of aluminium of the Plücker tube, and it is known in fact how difficult it is to have the spectrum of this gas completely absent in a spectroscopic vacuum tube. Thus it is seen that the diffusion of helium through quartz at a high heat gives a good method of obtaining the gas in a pure state. ### The Assay of Silver Bullion. At the Institution of Mining and Metallurgy a paper was read recently by Mr. E. A. Smith on "The Assay of Silver Bullion by Volhard's Ammonium Thiocyanate Method." It has recently been the practice to modify slightly the method of finishing the assay by adding sufficient ammonium thiocyanate to the check assay to intensify the red color of the ferric thiocyanate, and to use this color as a standard of comparison. Experiments described by the author proved that, by finishing the assay in this way, a limit of accuracy of less than 0.1 per 1,000 of silver can be obtained by Volhard's method. Working in the ordinary way the limit of accuracy is 0.2 to 0.3 per 1,000. The consumption of pig iron in Germany during 1906 amounted to 12,396,088 tons, against 10,739,871, an increase of 1,656,217 tons, or 151/2 per cent. This makes a consumption per head of the population of 444.4 pounds, against 391.6 pounds in 1905 and 356.4 pounds in 1900—the previous boom year, #### AUTOGENOUS WELDING WITH THE OXY-ACETYLENE HIGH-PRESSURE BLOWPIPE. BY THE ENGLISH CORRESPONDENT OF THE SCIENTIFIC AMERICAN. Some interesting experiments have recently been carried out at Birmingham to demonstrate the possibilities and efficiency of welding by means of the oxyacetylene blowpipe. With this system a temperature of over 7,000 deg. F. was obtained, which is a heat far A Typical Example of Welding by the Oxy-Acetylene Blowpipe. The Tubes Were Welded at the Points Marked by Crosses. exceeding that procurable with the oxy-hydrogen flame, with which a maximum temperature ranging from 3,600 to 4,500 deg. F. only is possible. Furthermore, whereas a cubic foot of hydrogen will only develop about 12,000 British thermal units, a similar quantity of acetylene will develop nearly five times as much-57,000 British thermal units. For certain classes of welding, where especially intense heat is requisite, the oxy-acetylene blowpipe is eminently suitable, and during the past two or three years this system has come very extensively into vogue. At first considerable difficulty was experienced in the devising of a blowpipe for utilizing this gaseous mixture, together with the problem of storing the acetylene with complete immunity from premature explosion. These two obstacles, however, have now been successfully surmounted. The perfection of the process for storing the acetylene in a dissolved state has removed any liability of danger, provided ordinary care is displayed, while a highly efficient burner has been devised. At first it was considered that the acetylene could be employed with burners similar to those utilized for oxygen and hydrogen, but it was found that owing to the premature dissociation of the acetylene, whereby carbon was freely liberated in the form of graphite, the burners rapidly became choked, and then the hydrogen only in conjunction with the oxygen assisted the burning, the result being that the same effect was produced as if only pure oxygen and hydrogen
were used, with the additional disadvantage of the burners becoming clogged. A new process whereby these drawbacks are entirely and successfully eliminated has been perfected by the Acetylene Illuminating Company, of Lambeth, London, the notable feature of which is that the burner is so designed that the acetylene only dissociates in The High-Pressure Oxy-Acetylene Flame in Operation, Showing the Two Cylinders Containing the Respective Gases. The actual burning. With this burner both the oxygen and the acetylene gases are utilized under pressure. instead of only the former being supplied to the burner under pressure. Demonstration has proved that by supplying both the gases under pressure a much higher factor of efficiency is obtained, while at the same time this arrangement enables the design of the burner to be considerably simplified. Furthermore, equal gas pressure dispenses with continual adjustments of the burner, as is the case where two varying pressures are being supplied to one flame, so that disarrangement of the burner is not a constant liability. It is also much easier to maintain the adjustment of the flame with both gases supplied at an equal pressure, and once the regulation has been obtained at the correct point, it can be left. With a high-pressure oxy-acetylene blowpipe also, it is possible to obtain a more complete combination of the two gases, which is impossible in an appliance where the supply is maintained under varying pressures, and this attainment conduces to the higher efficiency. This feature too is of great importance, since there is a decreased consumption of acetylene to accomplish a fixed amount of work, rendering this system more economical in operation, and this economy more than compensates for the difference in cost between the dissolved and the crude acetylene supplied direct from the generator. In order to insure the complete combustion of acetylene, a theoretical proportion of 2.5 parts of oxygen to 1 part of acetylene is required, but practical experience has shown that the requisite quantity of oxygen is much less, varying from 1.6 to 1.8. This factor, however, is completely influenced by the standard of purity in relation to the oxygen. This divergence between theoretical and practical requirements is attributable to the fact that by the high-pressure system the extra oxygen necessary to complete combustion is drawn from the surrounding air. The high temperature of the flame from the oxyacetylene blowpipe as compared with that of the oxyhydrogen flame is Jue to the fact, that whereas in the latter the temperature is limited to the dissociation temperature of steam, in the former the temperature is limited only by the dissociation temperature of carbon monoxide, which is considerably higher than that of steam. Acetylene is an endothermic gas consisting of carbon and hydrogen, and with a highpressure blowpipe it is split up into its two component parts at the base of the flame. The carbon only participates in the burning, since it will combine with the oxygen at a higher temperature than the hydrogen. so that the latter is left free, and constitutes a protective zone to the small cone at the nozzle of the blowpipe, where the carbon is burning, and which is the point of maximum temperature—approximately 6,300 deg. F. The perfection of a system of dissolved acetylene has contributed in no small degree to the utility and safety of the oxy-acetylene blowpipe. The cylinder is filled with some porous substance, such as asbestos or charcoal cement of a fixed porosity, and is then thoroughly saturated with a fixed quantity of acetone. The latter is a liquid hydrocarbon, and has the peculiar property of absorbing twenty-five times its own volume of acetylene at atmospheric pressure and 59 deg. F., and will continue doing so for every atmosphere of pressure that is applied to the gas. The general arrangement in regard to the cylinders is to so regulate them that they contain ten times their own volume of acetylene for every atmosphere of pressure, so that at that pressure they contain one hundred times their own volume of acetylene. Any possibility of the gas exploding within the cylinder is completely removed. This process is particularly adapted for welding split tubing, flaws in tanks or boiler plates, boiler tubes, bicycle frames, and similar work. The accompanying illustrations show two typical welding operations that were carried out by this process. With the high-pressure system the operation is considerably simplified, since the operator, once he has obtained the desired regulation of the flame, can concentrate his sole attention to the work in hand, and does not continually have to adjust the supply, as is the case with varying pressures. As regards the time occupied in welding various thicknesses of plates, and the consumption of gas for the purpose, the following information is supplied by the French Bureau Veritas: | Thickness of Plates. | Approximate Quantity of Acety- lene Consumed per Hour. | ity of Acety- Consumed Time p | lene Consumed Time p | e per | |----------------------|--|-------------------------------|----------------------|-------| | Millimeters. | Cubic Feet. | Minutes. | Seconds. | | | 1 1 | 0.3 | 2 | :. | | | ž | | 2 | 45 | | | 2 | 1.2 | 3 | 12 | | | 4 | 2 3 | 6 | 45 | | | 5 | 3.6 | 8 | 30 | | | 6 | 5.3 | 10 | 1 | | | 9 | 13.0 | 15 | 1 | | | 10 | 161 | l 16 | 45 | | | 12 | 26.2 | 20 | | | | 15 | 43 8 | 26 | 45 | | | 20 | 84.0 | 33 | 30 | | | 30 | 252.0 | 60 | / | | | - 1 | 2.00 |] 30 | •• 1 | | It is essential, however, that the acetylene should be quite pure, as certain impurities incidental to acetylene, unless removed, are detrimental to the weld, and tend to render the joints either imperfect or brittle. Owing to its general superiority to the ordinary oxyhydrogen blowpipe flame, it is extensively supplanting the latter process, while at the same time it possesses certain advantages over electric welding, inasmuch as no elaborate preparations or heavy initial expenditure in regard to plant are entailed. #### The Age of Animals. Some of the compound earth worms that have been produced at the Marburg Zoological Institute by grafting together parts of different worms have lived from 8 to 10 years after the operation. It is fair to infer that uncombined earth worms may reach the same age, a fact that was unsuspected and would have been deemed improbable. This discovery suggests a comparison with the ages of other invertebrates for which, however, few reliable data are available. Among the generally short-lived articulate animals lobsters and fresh-water crabs are said to live 20 years, queen bees 5 years, and queen ants from 10 to 15 years. Most mollusks, too, appear to be short-lived, but the freshwater mussel is said to live 12 or 14 years (the pearlbearing species more than 50 years, according to some writers), the sea snail, Natica, 30 years, and the Tridacna, or "yellow clam," 100 years. But the life of most invertebrates of all classes appears to be limited to one or a very few years. Hence it is the more surprising to find several well-authenticated examples of longevity among the lowly, plant-like sea anemones, of which one species has been known to live in aquariums 67 years and others from 10 to 50 years. It is impossible, in the present state of science, to explain These Tubes Were Welded in Place by Means of the Oxy-Acetylene Blowpipe, With Which a Flame Having a Temperature of 7,000 Deg. F. Was Obtained. these remarkable exceptions to the law which governs nearly-related animals living under similar conditions. The same difficulty confronts us in the vertebrates. The great age of elephants (150 to 200 years) finds a plausible explanation in their great size and the unfavorable conditions for procreation, but there is no known explanation for the ages attained by some birds (the raven 100, the eagle 104, the vulture 118, the falcon 164, and the parrot a far greater number of years). The longevity of the giant tortoises, which are said to live 300 years, may also be explained by their bulk and their small expenditure of energy, but it is difficult to see why such small vertebrates as pike and carp should live as long as elephants, or toads as long as horses (40 years).—Adapted from the German of Prof. E. Korschelt in Die Umschau. The year 1907 will see more railway mileage constructed in Ontario and Quebec than in any year since the original lines were built between Montreal and Toronto. The Canadian Pacific Railway intends constructing almost an entirely new line from Montreal to Toronto. The Mackenzie and Mann Syndicate has also important projects in eastern Ontario and in the vicinity of Montreal which will enable it to secure the shortest route between Ottawa and Montreal. The Canadian Pacific will complete the Toronto and Sudbury branch and the Guelph and Goderich Railway. The Grand Trunk Railway will be particularly active in the western section of Ontario between Toronto and Windsor, but the chief work will be rather in the western provinces in building the Grand Trunk Pacific Railway. The Delaware and Hudson will complete its line along the south shore of the St. Lawrence to Quebec. #### THE AERO CLUB DINNER. The first dinner of the Aero Club of America was held at the St. Regis Hotel on the evening of March 14. One of the principal events of the evening was the reading of a letter from the Wright Brothers, in which they gave their ideas on the subject of the large prize for an aeroplane flight to be offered in the near future by the club. The Wrights thought that this prize should be not too difficult of attainment, in order that it should spur on inventors to try and win it. They also stated that they hoped to make some more flights this year, and that if they did, although the flights might not be in public, they would "effectually remove all question that the flying art
originated in America." Another interesting feature of the evening was a description given by E. B. Bronson of a dirigible balloon made of three parallel cigar-shaped gas bags in 1863 by Dr. Solomon Andrews, of Perth Amboy, N. J. This machine, propelled at high speed by some mysterious power, is said to have flown successfully in September of that year. Announcement was made of the entries for the Bennett International Balloon Race, as follows: France, 3 balloons; Great Britain, 3; Germany, 3; Spain, 3; Italy, 2; and America, 3. The race this year, on October 19, promises to be very interesting. ### STEAM TRAP WITH WATER METER ATTACHMENT. A steam trap has recently been invented which not only operates in a very efficient manner to discharge the water of condensation from a steam pipe or system, but serves, as well, to measure the quantity of water discharged. The trap comprises a cylindrical tank and a narrow rectangular casing connected thereto. In the tank is a float, which is shown in dotted lines in the engraving. The float rod is secured to a rock-shaft that projects from the casing through a stuffing box. The outer end of the rock-shaft carries an arm provided with a counterweight at its upper end and having, at its lower end, a toothed segment. Meshing with the latter is a segment gear wheel, mounted to rotate freely on the shank of a valve head. The valve, which is of the three-way type, governs both the inlet and the discharge pipes of the trap. A square stem projecting from the valve-head shank carries a short arm, to the outer end of which a spiral spring is secured. The opposite end of the spring is fastened to a pin carried by the segment gear wheel. In operation, as the water of condensation accumulates in the tank, the float rises and, by means of the toothed segment, revolves the gear wheel and with it the pin to which the spiral spring is secured. The valve, however, remains at rest, being held by the spiral spring. When a predetermined level of water is reached, the spring is carried by the revolution of the gear wheel past the center or axis of the valvehead, and it then quickly retracts, turning the valve to close the inlet and open the discharge pipe. As the water pours out of the tank the float falls, and the gear wheel is turned in the opposite direction, STEAM TRAP WITH WATER METER ATTACHMENT. carrying the spring past the axis again, but in the opposite direction, and returning the valve quickly to its first position. A counting mechanism is secured to the casing, in position to be struck by the segment arm just before each discharge. As the same measure of water flows out each time, the counter serves as a meter, showing the total quantity of water that has passed through the trap. A patent on this trap has been secured by Mr. Alfred L. Riggs, of Ebensburg, Pa. ### A New British Heavy Gun. The British Admiralty is engaged in the production of a new type of heavy gun to constitute the main aggressive armament of the first-class battleships that are shortly to be laid down in accordance with the ### Scientific American ### Bennett International Aeronautic Cup Race. The second annual contest will start from St. Louis on October 19th. This contest is open to all kinds of flying machines as well as to free and dirigible balloons, but the contestants must be entered by a club belonging to the International Aeronautic Federation. Each country can have three representatives. The winner is the balloon or flying machine that covers the longest distance. (Trophy) #### The "Daily Mail" Prize for an Aeroplane Flight from London to Manchester, England, 161½ Miles. This contest is now open to members of any recognized Aero Club. It is for heavier-than-air machines, preferably aeroplanes. Contestants must start from a point within 5 miles of the "Mail's" London office and land within 5 miles of the Manchester office. More complete rules have not been formulated as yet, but it is probable that the contestants will be allowed to stop and replenish fuel. Santos Dumont has offered a gold medal to the winner, J. N. Griffiths a challenge cup. and the Adams Mfg. Co., \$10,000 provided the entire machine is made in England. "The Autocar" will give \$2.500 more to the winner if a British-built engine is used. "The Car" offered \$25 a mile for every mile covered, with a minimum of 25 miles. \$50,000 ### The "Matin" Prize for a Flight by Any Type of Aerial Craft from Paris to London, 217½ Miles. \$20,000 of this prize was given by the Paris "Matin," the balance being made up by three patriotic Frenchmen. This prize will be given to the owner of any airship or flying machine, that, propelled by its own power through the air, reaches London within 24 hours from the time it left Paris, the only condition being that the machine be of French construction throughout. The date set for the start of this race is July 14th, 1908, and the second Sundays in August, September and October following if the prize is not won on that day. Stops for replenishment of fuel will be allowed. The point of arrival will be determined by the dropping of a sandbag within a circle 150 feet in diameter. \$50,000 #### "Société des Bains de Mer d'Ostend" Prize for a Flight by Any Type of Flying Machine from Paris to Ostend, 186 Miles. This contest is open to all, the only condition being that the distance must be covered within 24 hours. Sunday, August 11th, and the Sundays following are the dates set. The Ruinart Père & Fils Prize for the First Aeroplane to fly across the English Channel from Cape Gris-Nez to Dover. ### The Henri Deutsch de la Meurthe Prizes and Trophy for Three Flights Around a 124.2-Mile Circuit. This trophy is valued at \$2.000. \$4,000 cash will be given annually to the winner each year.) The contest is open to members of clubs recognized by the International Aeronautic Federation, and the trophy is to be contested for between March 1st and October 31st. It can be won from the holder only by making the circuit at $\frac{1}{10}$ higher speed than he made. The third holder of the cup can retain it permanently. \$2,000 (Trophy) \$12,000 #### The Brooklands Automobile Racing Club Prize for a 3-Mile Flight Above the Track. This prize is open to all. It will be given to the first heavier-than-air machine that makes a circ it of the new Weybridge track at a speed of 10 miles an hour or over and at a height of 40 or 50 feet from the ground. This course is open to experimenters for practice. \$12,500 \$10,000 \$2,500 \$5,000 \$1,500 (Trophy) \$100,000 \$200 The Deutsch-Archdeacon Prize for an Aeroplane Flight of 1 Kilometer (0.621 mile) in a closed circuit. 547 Y. START The Archdeacon Cup for a Flight of 220 Meters (721¾ Feet). This cup was won by Santos Dumont on November 12th last. Itmust be won two years in succession in order to be retained. The "Daily Mail" Model Aeroplane Competition. This competition will be held from the 6th to the 13th of April in the Royal Agricultural Hall, London. The models must not weigh over 50 lbs. complete, and they must fly 50 feet in a straight line with an elevation above ground at the start of 5 feet. Full particulars can be had from the Secretary of the Aero Club, 166 Piccadilly, London, W. lst Prize, \$550; 2d, \$375; 3d, \$125. \$600 (Trophy) \$1,050 "The Car" Prize (Annual) for the Longest Flight Made in England With an Airship or Flying Machine. The Barnum & Bailey Prize for an Aeroplane That Will Fly and Carry) \$10,000 The "Daily Graphic" Prize for a Flight of One Mile. 3 MILES FINISH The Pepin Prize for a Heavier-than-Air Machine. Conditions not yet announced. The Lahm Cup. Offered by the Aero Club of America to members of any aero club in the world for longest distance above 400 miles covered by balloons or any kind of flying machine in the United States. The Aero Club of America Prize for an Aeroplane Flight. Conditions and prize to be announced later. The Frank Hedges Butler Challenge Cup. For the longest distance covered by aeroplanes or balloons starting from London on some date not yet set. Sir David Solomon's Cup for a Heavier-than-Air Machine. Lord Howard de Walden Prize for a Heavier-than-Air Machine. INTERNATIONAL AERONAUTICAL PRIZES OFFERED UP TO DATE. \$315,475 naval shipbuilding programme that has recently been revised. In this class of warship it is probable that the 12-inch weapon will be abandoned in favor of the new and heavier gun that has been projected. The recent gunnery trials with the "Dreadnought" have confirmed the prevailing theories that it is impossible to render this class of warship more powerful by the addition of further 12-inch guns, since the battery as it at present stands represents the maximum number of guns that can be brought to bear in action with any distinct advantage. Consequently, it is realized that to increase the offensive power of the vessel, a new type of gun of greater caliber is essential. It is stated that the new weapon will be 13.5 inches, of 45 calibers. A weapon of this caliber is already in use upon the "Royal Sovereign," but its design does not coincide with the modern gunnery practice as applied to weapons of this class, since its penetrating power and velocity are less than the present 12-inch weapon, though the weight of the shell is 1,250 pounds as compared with the 850-pound shell fired from the modern 12-inch weapon. The new 13.5-inch weapon will be 50.625 feet in length, and will weigh approximately 85 tons. The main fighting armament will probably number the same as carried on the "Dreadnought," namely, eight, and so disposed that six can fire ahead or astern, and the whole eight brought to bear upon either broadside. ### FILTER FOR COFFEE POTS. Pictured in the accompanying engraving is a filter of very simple and inexpensive design, which is adapted for use in coffee pots to retain the coffee grounds. The filter proper consists of a bag of thin material, such as muslin, which is so mounted that it can readily be
removed, cleaned, and replaced in the coffee pot. The filter bag is supported in the coffee pot on a stand consisting of a tubular body, to which three wire legs are soldered. The filter bag fits within the tube, but at the top it is folded outward over the upper edge of the tube. A cover piece, also of muslin, is laid over the top of the bag, and its edge as well as that of the bag is clamped against the tube by means of a FILTER FOR COFFEE POTS snugly-fitting band. In use, ground coffee is placed in the bag, and the latter, with the stand, is then lowered into the coffee pot. Boiling water is now poured into the pot, or it is filled with cold water and then brought to a boil, and the water will percolate through the bag, extracting the strength from the coffee. In cleaning the bag it is only necessary to withdraw the band to release the edges of the bag and cover. The cover is an important feature, in that it admits of the passage of steam through the top of the bag, but prevents the coffee grounds from getting into the pot, as, for example, by the coffee boiling up over the top of the bag. The inventor of this improved filter is Mr. Clarence Monroe, of Loveland, ### RECENTLY PATENTED INVENTIONS. Electrical Devices. COMBINED SOUNDER AND RESONATOR. -S. F. Cox, Sallisaw, Ind. Ter. This invention relates to telegraphic apparatus, the more particular object being to produce a combinational instrument adapted to do the work of a relay, a sounder, and a resonator. Further it relates to details of construction, the purpose of which is to improve the general efficiency of the same in the matter of producing a clear tone and of rendering certain parts readily acces- TROLLEY HARP.—C. HIBBARD and W. HIB-BARD, Sandy Hill, N. Y. In this case the invention refers to trolley-harps, the more particular purpose being to provide means for mounting the trolley-wheel upon the harp and for removing it therefrom, and also for maintaining the wheel mountings firmly in position while the wheel is in place. ELECTRICAL SIGNAL CONTROL.—M. ABT, New York, N. Y. In the present patent the invention has reference to electric signal controls, and more particularly to a system for use in connection with elevators for the purpose of enabling passengers to hail cars and for apprising passengers of the approach of the said ELECTRIC MOTOR .- D. MENDELSON, Brooklyn, N. Y. The invention is in the nature of a motor of the vibratory type designed, chiefly, to be used in small installations for advertising purposes, but applicable also to other uses; and it consists in the construction and arrangement of the motor parts with special reference to securing a large effective power in a relatively #### Of Interest to Farmers. CONVERTIBLE FORK AND RAKE .-- C. C TYLER, Anneta, N. C. Mr. Tyler's improvement relates to a tool adapted to serve as a fork or rake and to be readily converted from one form to the other, and has for its object to provide a tool so constructed as to enable straight prongs to be used and adapted to hold straw or hay when used as a fork as readily as if the prongs were curved, and thereby dispense with disadvantages arising from the use of curved prongs on a tool of this character when used as a rake. STALK-PULLER.—C. R. SMITH, Fentress Texas. One purpose of the invention is to provide a machine by means of which a pull may be exerted on stalks for extracting them and their roots and to improve upon the pullingmachines for which Letters Patent were formerly granted to Mr. Smith, to the extent that the machine is made lighter, and wherein the grippers constitute links of endless chains having guided movement in independent casings, the opposing chains being in close and automatically-adjusted relations to each other throughout the length of their inner leads. CORN-HARVESTER .- J. HETTRICH, Grand Island, Neb. The machine is guided by a grain-wheel on the tongue so that three rows of corn are engaged by the front thereof, dividing boards straightening the leaning stalks. Teeth receive the stalks between them, distance between the teeth allowing the stalk to pass, but not the ear, the latter being snapped off and ores, especially ores of copper and iron. This carried upward by the teeth which deliver onto the carrier. The carrier elevates the ears and any particular apparatus for carrying out his drops them onto husking-rollers. Husk is torn from the corn by the rollers and dropped upon the husk-conveyor which delivers it to the rear of the machine, means then provide for dropping the corn into the wagon. ### Of General Interest. MUSIC-SHEET .-- J. B. WALKER, New York, N. Y., and A. R. Bond, Plainfield, N. J. A music-sheet used on piano players consists of a length of paper provided with perforations variously arranged according to the notes to be sounded and which is adapted to be moved over a series of pneumatic ducts in a so-called "tracker-board," to progressively uncover, by means of the perforations, certain of said ducts thereby preumatically selecting the notes which are to be struck by the mechanism. As heretofore made such sheets expand and contract with hygroscopic changes and do not properly "track" with the tracker board. The present invention provides a sheet which will properly track regardless of atmospheric changes. ERASER.-G. W. PARK, Denver, Col. One of the principal objects of the improvement is to provide an eraser combined with or forming part of the tubular member ordinarily employed with fountain-pens for protecting the pen or writing-point thereof. The device may be conveniently associated with a fountain-pen and carried in the pocket with the latter to be available for use. ROLL-PAPER HOLDER AND CUTTER.-J. F. FINAN, Cumberland, Md. The improvement pertains to that form of a roll-paper holder having a stand with a vertical spindle on which the roll of paper is held, and it is designed to apply to this form of roll-paper holder a feature heretofore employed in horizontal roll-paper holders for facilitating the seizure of the edge of the paper between the thumb and forefinger preparatory to pulling it out and tearing off the sheet. ROPE-GRAB FOR OIL OR OTHER DRILLED WELLS .-- L. STEPHENS, Macksburg, Ohio. The invention is an improvement in blocks of different heights at opposite sides casing of sausage, etc. Injury to the casings or vice adapted for throwing a ball, projectile, or devices employed for fishing out or recovering ropes lost in oil wells. It is more particularly an improvement in that class of grabs consisting of opposing jaws, which are provided in teriorly with teeth and movably connected in such manner that they will close upon a rope and hold it firmly gripped so that it may be drawn out of the well. SHAFT-PACKING .- F. T. NOLAN, Crystal River, Fla. The object of the invention is to provide a packing for rotatable shafts which is air and water tight and in which there is the minimum amount of friction. The improved packing may be used in connection with rotatable shafts which are already provided with packing-glands. GRADER.-J. BAGLEY, Tacoma, Wash. The invention is especially useful in connection with devices intended for operation in hard ground, such as shale. The object is to provide a grader which presents a plurality of blade edges. A further object is to provide removable teeth for a device peculiarly adapted for use in hard or stony ground. SPRINKLER.—C. C. RHODES, Honolulu, Ter Hawaii, and H. G. Rhodes, San Francisco In this instance the invention refers to sprinkling apparatus, and more particularly to that adapted for use in watering lawns and the like. It has for its principal object the provision of a movable sprinkler in which the direction of rotation is automatically reversed and in which the range of this movement may be varied. LABEL SPREADER.-G. N. BYL and J. KOEHLER, Jersey City, N. J. One purpose of the invention is to provide an economic device for spreading labels on a surface coated with an adhesive material, which device can be adjusted to receive labels of varying width and length, and wherein the labels will be held in separate groups or packages, and wherein also the feed of the labels will be automatic and reliable. SHAFT-PACKING.—C. H. Cook, Louisville, Ky. This invention refers to improvements in packings particularly designed for automobile piston-shafts, an object being to provide a packing that will permit the slight vibratory motion incident to piston-shafts, but will effectually prevent leakage along the shaft of gas or other motive agent employed. COMPOSITION OF MATTER.—E. VOLLER, Jersey City, and M. F. THALBERG, Hoboken, N. J. The composition is adapted for any purpose for which a hard waterproof and fireproof material is desired; but it is particularly adaptable for use as a lining for ceilings, walls, and the like. While the material is being formed any suitable coloring matter may be introduced to produce the color or tint desired for the resulting product. SIGN-PAINTING PROCESS .- T. MUNNECKE, New York, N. Y. The invention has reference to a process for painting signs or fixing characters upon a surface. The improvement is especially applicable in placing signs or letters upon glass, as in show-windows or glass doors, the object being to facilitate the object. METHOD OF TREATING ORES.-W. KEMP, Tucson, Arizona Ter. Mr. Kemp's invention relates to an improved method for smelting inventor does not limit himself to the use of process. Certain particular forms of apparatus are especially suited for this purpose. While feeding fuel to the ore continuously he also prevents premature combustion from taking place in the fuel supplied. HAWSE-PIPE. — C. PETRIE, St. Johns, Newfoundland. The principal objects of the invention are to provide means whereby a cable will be absolutely protected from coming into contact with any sharp edges and to provide rollers for reducing friction and assisting in the above-named objects with means whereby if the spindles are broken or
displaced they will still remain in position and perform their services in a similar manner to that in which they operate normally. ### Hardware. LOCK .- T. S. MORTON, Quincy, Ill. The improved lock comprises a casing, a sliding latch, and a gravity member made approximately T shape and pivoted in the middle of its head and below the pivotal connection of the same with the latch, its pendent portion extending below the pivot and below the plane of the lateral arm. COMBINED TURNING-TOOL AND CALI-PERS.-R. S. WHIPPLE and J. A. OLESSAK, Philadelphia, Pa. The object of the invention is the provision of novel details of construction for a wood-turning tool and for a caliper attachment thereon that are adapted for cooperative use, affording a gage as well as a turning-tool, whereby a piece of material may be rapidly turned to a desired diameter at one operation. ### Household Utilities. WINDOW-JACK .- J. S. HAWLEY, New York, N. Y. The jack is designed for prying up windows which become stuck by reason of the swelling of the sash or other causes. The invention consists of a lever with a reduced end adapted to work in a recess in the lower frame of the window-sash and carrying fulcrumthereof, adapted to be brought alternately in COFFEE AND TEA FLASK .- J. GARRIGAN, New York, N. Y.—The aim in this invention is to provide a heating device with means for removably holding it in position; also to provide the flask with a center draft-tube down which air is drawn to cause the lamp-flame to spread over the bottom of the flask, thus causing quick heating of the liquid. The term flask is designed to also cover dinner-pails or other vessels. DISH-DRAINER.—J. P. TIBBITS, New York, N. Y. This device is used for holding plates, saucers, and other dishes in such position as to allow the same to drain thoroughly and makes an excellent dish-warmer. The invention also relates to a type of rack in which dishes are as far as practicable supported edge upward, yet rest easily in position without any pressure except that due to their own weight, and suspended clear of the bottom of the driptray in such manner that the entire edge of each dish is free. #### Machines and Mechanical Devices. ATTACHMENT FOR GRINDING CENTERS. C. L. Petrikin, Muncy, Pa. The grinder especially designed to be applied to lathes. One embodiment of the invention consists of a frame substantially U-shaped supported in lates to mechanisms for inclined railways, such horizontal diagonal position from the tail-stock spindle when applied to the lathe, a form of clamp being employed adapting the frame to be readily attached and detached. Journaled in the frame extremities is a shaft frictionally driven from the lathe face-plate and itself acting to frictionally drive a second shaft, journaled parallel thereto in the frame, the second shaft carrying a grinding-wheel at its inner extremity and slidingly mounted in its bearings, whereby the wheel may be reciprocated over the lathe-center as both revolve in opposite directions. REWINDING MECHANISM FOR SELF-PLAYING PIANOS.—H. MEYER, New York, N. Y. The object of this invention is to provide a mechanism arranged to allow the use of a single note-sheet containing a number of pieces of music, only one of which is played upon the introduction of a coin, the note-sheet being automatically rewound at the end of the last piece of music to start playing the first piece of music upon the introduction of another coin. It is a division of the application for Letters Patent of the United States, formerly filed by Mr. Meyer. NAIL AND RIVET MACHINE.-J. BUCKLEY, Waterbury, Conn. The chief objects of the inventor are to provide a multiplex machine which can be used for simultaneously making in which portions can be readily thrown out of gear by a simple manipulation of the parts, so as to provide for making any smaller num- provided with deep dips in the several courses ber of articles. In this way the machine can be used for making a single rivet at a time or for simultaneously making a nail and a rivet or a plurality of either. BAND-CUTTER FOR THRESHING MA-CHINES.—M. G. Albertson, Oakes, N. D. One object of the invention is to provide automatically-acting friction-brakes which operate upon shafts to prevent them from turning during the time the knives are in normal operation, said brakes being so applied that should rapidity of the feed of the bundles tend to choke the machine the brakes will permit the knifecarrying shafts to revolve and their knives to roll over the bundles, thus obviating throwing off the drive-belt and preventing possible break age of knives. MACHINE FOR CLEANING AND SEPARAT-COTTON FROM ITS IMPURITIES .-J. S. LYLE, McLoud, Oklahoma Ter. A special object in this instance is to provide a machine which will act upon cracked and unopened bolls, and so work upon machine-picked material, as well as hand-picked, thereby reducing the cost of gathering the cotton and increasing the yield by utilizing immature and unopened bolls. Such bolls are opened without cutting or tearing the same, thereby saving the staple and avoiding the difficulty of cleaning out mashed or finely-broken pieces of hulls. MOLDING-MACHINE. — H. BANNON, wood, Indiana. This machine is especially adapted for molding chimney-blocks having smoke and ventilating passages. It is capable of general use. A hand-press steel provides great strength without clumsiness, and can be operated by an attendant to mold articles of complicated shape and leave them so as to be readily removed from the mold and set aside for drying. The invention also provides an efficient and easily-operable core-manipulating device, a simple means for opening the mold, a novel press-head, and a pallet. VIOLIN-PIANO.-F. H. WATSON, Huntingdon, Tenn. In this patent the object of the invention is to provide a violin-piano which is simple and durable in construction and arranged to insure the proper sounding of the treble and bass strings and to allow of conveniently placing the resinous band in posi- INTESTINE-CLEANER .- W. F. DUNCKER, Wrightsville, Pa. Mr. Duncker's invention consists in an improvement in machines for cleaning intestines of hogs, beef, and sheep for tearing thereof by the revolution of scrapers is avoided in the operation. The feed-rollers and scrapers are kept clean and water is supplied to wash the casings as they are passing through the machine. #### Prime Movers and Their Accessories. MOTOR.—S. J. Evans, Bluefield, W. Va. In this case the invention has reference to motors, and has for its object the provision of a motor which is simple, cheap, and efficient in opera-tion, and one in which the water of condensation is drained off without the use of cocks. Air may be employed as a motive fluid instead of steam, if desired. LUBRICATOR .- C. G. GLASRUD, Sheyenne, N. D. This force-feed lubricator is adapted to be applied to connecting-rods and other moving parts of engines or other machinery. It insures certain and reliable action, at the same time provides means by which the feed may be regulated with great exactness. The driving part is simple and certain in action, and provides for complete regulation of its movement. #### Railways and Their Accessories. BRAKE MECHANISM FOR INCLINED RAILWAYS .- S. E. JACKMAN, New York, N. Y. The object of this invention, which reas shown and described in Letters Patent of the United States, formerly granted to Mr. Jackman, is to provide a mechanism, arranged to allow the controlling of a car on the downtrack or homestretch independent of the occupants and with a view to check the speed of the car and bring it finally to a stop at the station. RAILWAY .- S. E. JACKMAN, New York, N. Y. The invention relates to switch-back or inclined gravity railways-such as are used in pleasure-resorts, exhibitions, and the like. The object is to provide a railway arranged to afford exciting and interesting rides over a continuous track. Very little time is consumed in passengers entering and leaving the cars. Mr. Jackman has secured two more patents in railways. In one, the invention refers to switch-back or inclined gravity-railways, and is for use in pleasure resorts, exhibition-grounds, etc. The arrangement provides for cars continually traveling over a continuous track, with little loss of time in handling passengers, and hence many cars can be run simultaneously on the track, spaced suitable distances apart, and a revenue can be derived from the running in a comparatively short time. Mr. Jackman's next invention of a railway relates to switch-back or gravity railways, such as used in pleasure-resorts, exhibia plurality of rivets, nails, and the like, and tion-grounds, and the like places. The object is to provide a railway having a continuous track for cars to travel on, the track being to render the ride exceedingly interesting and exciting to the passengers. COMBINED TRAIN SIGNAL AND INDI-CATING APPARATUS.—W. A. HARRIS and B. A. HARRIS, Greenville, S. C. The apparatus is especially designed for use on passengertrains and adapted through the aid of an independent train-pipe to communicate an audible and a visual signal to the engineer, the visual corresponding to the audible and remaining in position to indicate the latter signal which has been given until the indicating devices have been released by the engineman. The Messrs. Harris have invented another combined train signal and indicating apparatus designed for use on freight trains, the present invention relating to means whereby the engineer may signal back to the conductor or other train man in the caboose the signals which have been received by the engineer or any other signal desired, the objects being to establish signaling communication by which signals may be reliably sent back and forth between the caboose and engine-cab. CAR-REPLACER.-W. A. HUTSON, Orlando, Fla. The replacer is of the class which consists of a portable device, commonly called a "frog" or "shoe," which is adapted to be
placed over or beside a track rail and has a grooved and sloping guideway in which a truckwheel of a railroad-car may run and be at the same time guided into due normal position upon the rail. It includes two frogs or shoes, which are used together, but differ in construction, the same coacting in such a way as to replace a car-truck in a novel and expeditious manner. ### Pertaining to Recreation. GUN-SIGHT .- D. W. KING, JR., San Francisco, Cal. The purpose here is to provide a sight in which are means whereby to enable a marksman to use any one of the four notches vith either side of the diaphragm at any desired elevation, providing for eight combinations, and giving him a rear sight to suit the eyes and to conform to the size and shape of the front sight used and also to render the sight adaptable to various conditions of weather, light, or background. GAME DEVICE .- H. D. DARLINGTON, Norwood, Ohio. One purpose of the inventor is to provide a device which embodies a game-board provided with numerically-designated countingspaces having electrical connection with a signaling device and a co-operating expelling deother object onto a table from a point remote | whitewash brush. It is admirably suited for therefrom, the object thrown having a contact portion to complete the electric circuits em- #### Pertaining to Vehicles. HORSE-DETACHER.-H. G. SIMPSON, Elkhorn, W. Va. This is an attachment for the front axles of carriages and wagons for releasing poles and shafts in case of danger from a horse or team running away. More particularly it is an improvement in detachers which include sliding bolts adapted to secure pole or shaft irons, and a vertical oscillating lever with which such sliding bolts are connected by links or rods. CARRIAGE-TOP ATTACHMENT. — W. WILLITTS, Eckford, Mich. This inventor's improvement is in that class of buggy or carriage top attachments which are removable from the carriage or buggy seat. The object is to provide an attachment which may be more easily and quickly applied and detached than heretofore and which will be held securely when so applied. It is applicable for many forms of vehicles. CHECK ATTACHMENT TO VEHICLES. S. L. DUCKETT, Goldfield, Colorado. Of the purposes in this instance one is to provide an attachment adapted for use in checking horses should they attempt to run away while being driven or when left standing and to provide a device for such purposes which will be simple and which can be brought into action while the driver still holds the reins. CRANK-HANGER .- F. M. OSBORNE, Anaconda. Mont. This invention is an improvement in crank-hangers for bicycles. In carry ing out the invention the sprocket wheel pulls between the bearings, and the cranks can be conveniently removed when desired without disturbing all of the parts of the hanger. The construction forms a very simple crank-hanger from which dust will be excluded and in which the cranks can be readily removed by simply turning off a nut and pulling the shaft-sections of the cranks apart. Note.—Copies of any of these patents will be furnished by Munn & Co. for ten cents each Please state the name of the patentee, title of the invention, and date of this paper. HINTS TO CORRESPONDENTS. HINTS TO CORRESPONDENTS. Names and Address must accompany all letters or no attention will be paid thereto. This is for our information and not for publication. References to former articles or answers should give date of paper and page or number of question. Inquiries not answered in reasonable time should be repeated; correspondents will bear in mind that some answers require not a little research, and though we endeavor to reply to all either by letter or in this department, each must take his turn. his turn. Buyers wishing to purchase any article not advertised in our columns will be furnished with addresses of houses manufacturing or carrying addresses of houses manufacturing or carrying the same. Special Written Information on matters of personal rather than general interest cannot be expected without remuneration. Scientific American Supplements referred to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of price. Minerals sent for examination should be distinctly marked or labeled. (10440) Mr. C. D. W. asks: Is John Tyndall dead? If so, when did he die? John Tyndall died December 4, 1893. (10441) S. K. S. says: Is the nebular hypothesis of Laplace still the accepted scientific theory of the cosmeogury of our castle? If not, what theory, if any, has supplemented it? A. It cannot be said that the nebular hypothesis of Laplace is held in its entirety by astronomers at the present time. The phenomena which cannot be accounted for by their conditions are too numerous. Darwin's tidal evolution hypothesis has by many been adopted as an addition or supplement to the nebular hypothesis. The large number of spiral nebulæ seem to demand a modification of the hypothesis. You will find a very recent exposition of the whole question in Moulton's "Astronomy," pp. 440-448. We can send the book for \$1.25. It is the latest text book of (10442) W. B. K. asks for the government formula for whitewash. The following coating for rough brick walls is used by the United States government for painting lighthouses, and it effectually prevents moisture from striking through: Take of fresh Rosendale cement, 3 parts, and of clean, fine sand, 1 part; mix with fresh water thoroughly. This gives a gray or granite color, dark or light, according to the color of the cement. If brick color is desired, add enough Venetian red to the mixture to produce the color. If a very light color is desired, lime may be used with the cement and sand. Care must be taken to have all the ingredients well mixed together. In applying the wash, the wall must be wet with clean fresh water; then follow immediately with the cement wash. This prevents the bricks from absorbing the water from the wash too rapidly, and gives time for the cement to thick as can be applied conveniently with a edges around a glass cylinder, which has prev- 1 ounce; paraffine, 18 ounces; kerosene, 4 armor with the sizes and thicknesses of each. brickwork, fences, etc., but it cannot be used to advantage over paint or whitewash. (10443) A. A. H. asks how to make javelle water. A. Javelle water proper is pre pared by passing gaseous chlorine-derived from the action of hot sulphuric acid on a mixture of common salt and oxide of manganese into a 10 per cent aqueous solution of carbonate of potash until the latter will absorb no more. It may also be made by adding a solution of carbonate of potash to a solution of chlorinated lime (bleaching powder) as long as a precipi tate continues to form, the liquid being afterward decanted or filtered. Ordinarily, however, the liquid called javelle water is chlorinated soda, and not potassa. (10444) J. K. B. asks how to make gravel and tar walks. A. Take 2 parts very dry lime rubbish and 1 part coal ashes, also very dry, and both sifted fine. In a dry place, on a dry day, mix them, and leave a hole in the middle of the heap as bricklayers do when making mortar. Into this pour boiling hot coal tar, mix, and when as stiff as mortar put in 3 inches thick where the walk is to be: the ground should be dry and beaten smooth; sprinkle over it coarse sand. When cold, pass a light roller over it; in a few days the walk will be solid and waterproof. (10445) B. L. W. asks how to make Pharaoh's serpents. A. These are little cones of sulphocyanide of mercury which, when lighted, give forth a long, serpent-like, yellowish brown body. Prepare nitrate of mercury by dissolving mercury dioxide in strong nitric acid as long as it is taken up. Prepare also sulphocyanide of ammonium by mixing 1 volume sulphide of carbon, 4 strong solution of ammonia, and 4 alcohol. This mixture is to be frequently shaken. In the course of about two hours, the bisulphide will have been dissolved, forming a deep red solution. Boil this until the red color disappears and the solution becomes of a light yellow color. This is to be evaporated at about 80 deg. F., until it crystallizes. Add little by little the sulphocyanide to the mercury solution. The sulphocyanide of mercury will precipitate; the supernatant liquid may be poured off, and the mass made into cones of about ½ inch in height. The powder of the sulphocyanide is very irritating to the air passages, and the vapor from the burning cones should be avoided as much as possible. To ignite them set them on a plate or the like and light them at the apex of the cone. (10446) H. N. M. asks how to prepare skins for fur. A. Mix bran and soft water sufficient to cover the skins. Immerse the latter and keep them covered for twenty-four hours; then remove, wash clean, and carefully scrape off all flesh. To 1 gallon of water (hot) add 1 pound of alum and ¼ pound of salt When dissolved and cool enough to admit entrance of the hand, immerse the skins for twenty-four hours, dry in the shade, and rub. Stir the liquor again, immerse the skins for twenty-four hours, dry, and rub as before; immerse for twenty-four hours in oatmeal and warm water, partially dry in the shade, and finally rub until entirely dry. This leaves the skin like white leather, and fit for immediate (10447) A. C. N. asks how to lay sheet lead. A. In laying sheet lead for a flat roof, the joints between the sheets are made either by rolls, overlaps or soldering. In joining by rolls, a long strip of wood two inches square, flat at the base and rounding above, is placed at each seam; the edge of one sheet is folded round the rod and beaten down close, and then the corresponding edge of the next sheet is folded over the other. In over-lapping, the adjacent edges of the two sheets are turned up side by side, folded over each other and closely beaten down. Soldering is not adopted when the other plans can be carried (10448) H. J. N. asks how putz pomade is made.
A. 1. In 100 pounds common vellow vaseline, melted, stir 20 pounds of fine colcothar. 2. Same as above, only using lard instead of vaseline. 3. Twenty pounds of Am. mineral oil and 5 pounds of lard are melted and 25 pounds of fine colcothar are stirred in. 4. The following is given as the formula for genuine putz pomade: Oxalic acid, 1 part; oxide of iron, 25 parts; rottenstone, 20 parts; palm oil, 60 parts; vaseline, 4 parts. The oxide ho Vonation rad Both it and the rottenstone must be absolutely free from grit. Oxalic acid is poisonous. (10449) M. B. W. asks how to make lextrine paste. A. In hot water dissolve a sufficient quantity of dextrine to bring it to the consistency of honey. This forms a strong adhesive paste that will keep a long time unchanged, if the water is not allowed to evaporate. Sheets of paper may be prepared for extempore labels coating one side with the paste and allowing it to dry; when to be used, by slightly wetting the gummed side, it will adhere to glass. This paste is very useful in the office or laboratory. (10450) H. P. W. asks how to join rubber. A. Rubber is easily joined and made as strong as an original fabric, by softening before a fire, laying the edges carefully together, without dust, dirt, or moisture between. set. The wash must be well stirred during the application. The mixture is to be made as beginning. Tubing can be united by joining the iously been rolled with paper. After the glass is withdrawn the paper is easily removed. Sift flour or powdered soapstone through the tube to prevent the sides from adhering from accidental contact. (10451) C. N. asks for a formula for ground glass. A. Sandarac, 90 grains; mastic, 20 grains; ether, 2 ounces; benzole, 1/2 to ounce. The proportion of the benzole added determines the nature of the matt ob- (10452) A. M. C. asks: I have a system of wires which I use for receiving wireless messages. They are horizontal, and run nearly parallel to the elevated structure of the Long Island Railroad, which is equipped with the third-rail system. I have noticed that unless the weather is damp, whenever a steam engine passes on the structure, I get sparks about 1/4 inch long from the wires. There are four wires, each 180 feet long. They run at an angle of about 15 deg. to the tracks, and are about 40 feet off ground. Between the wires and parallel to the tracks is a two-phase 2200volt alternating line, about the same height as the wires. The least distance from the wires to tracks is about 125 feet. No smoke or steam from engine reaches the wires. The sparks are very heavy, and apparently of an oscillatory nature, not the ordinary static sparks obtained from high wires. At no other times except during thunderstorms can I get sparks from the wires which amount to anything. A. There would seem to be no doubt that the sparks from the receiving wires of the wireless station are due to the induction of the great mass of metal in the steam engine, passing through a field in which heavy currents are already flowing, that of the alternating current. We have not met with just this case before, but it would seem that this cause would be sufficient to account for the effect produced. (10453) K. S. B. writes: In regard to the recent wreck of the electric train on the New York Central, I see by your paper that the spikes holding the outer rail were sheared, showing a much greater stress on the outer rail at a given speed than for a steam locomotive of the same weight. As for the reasons for this: Besides the concentration and the low height of the load, would not the gyroscopic effect of the rotating parts of the motors play an important part? As the wheels (drivers) are comparatively small, the speed of rotation is large. Then to change the direction of the axis of revolution of these heavy, rapidly-revolving parts would take a considerable force, which was probably not taken into account by the engineers, elevated the outer rail to counteract the inertia of the train only. This so-called "gyroscopic action" enters as a large factor in other problems of a similar nature, and it seems to me that it would in this particular case also. It also seems to me that this action of the motors would have to be taken into account on heavy motors at high speeds. I presume that lighter parts, also lower speeds in general, is what has kept electric trains from experiencing this difficulty heretofore. A. Your suggestion of a gyroscopic action in the rapidly rotating wheels of an electric train is doubtless correct. Just how great a force is produced we have not calculated. It would variable, and would increase very rapidly with the increase of speed. (10454) E. S. D. writes: Will you kindly answer me through your Notes and Queries what would be the normal height of he barometer at an elevation of 5548 feet above the level of the sea? A. Normal barometer at an altitude of 5,548 feet will be about 24½ inches. (10455) J. B. W. asks how to color brass a deep blue. A. A cold method of coloring brass a deep blue is as follows: 100 grammes of carbonate of copper and 750 grammes of ammonia are introduced in a decanter, well corked, and shaken until dissolution is ef-There are then added 150 cubic centifected. neters of distilled water. The mixture is shaken once more, shortly after which it is ready for use. The liquid should be kept in cool place, in firmly closed bottles or in glass vessels, with a large opening, the edges of which have been subjected to emery friction and covered by plates of greased glass. When the liquid has lost its strength it can be ecuperated by the addition of a little ammonia. The articles to be colored should be perfectly clean; especial care should be taken to clear them of all trace of grease. They are then suspended by a brass wire in the liquid, in which they are entirely immersed, and a to-and-fro movement is communicated to them. After the expiration of two or three minutes, they are taken from the bath, washed in clean vater, and dried in sawdust. It is necessary that the operation be conducted with as little exposure to the air as possible. Handsome shades are only obtained in the case of brass and tombac-that is to say, copper and zinc alloys. The bath cannot be utilized for coloring bronze (copper-tin), argentine, and other metallic alloys. (10456) A. D. M. asks for a dressing for linoleum. A: A weak solution of beeswax in spirits of turpentine has been recommended for brightening the appearance of linoleum. Here are some other formulas: 1. Palm oil, navy, showing the disposition of guns and ounces. Melt the paraffine and oil, remove from the fire and incorporate the kerosene. Polish.—2. Yellow wax, 1 ounce; carnauba wax, 2 ounces; oil turpentine, 10 ounces; benzine, 10 ounces. Melt the waxes carefully, add the oil and benzine, and stir until cold. 3. Yellow wax, 5 ounces; oil turpentine, 11 ounces; amber varnish, 5 ounces. Melt the wax, add the oil, and then the varnish. Apply with a rag. (10457) J. W. H. asks for a tool for straightening wire. A. Such a tool is shown in the accompanying cut. It consists of a casting about 10 inches in length, having on each end a bearing which may be supported in suitable boxes. The pulley is a part of the casting, and is 3 inches in diameter and 2 inches wide. Four steel pins are inserted 1 inch apart and a little to one side of a central longitudinal line. A hole a little larger than the wire to be straightened is drilled axially through the bearing. The wire passes through the tool over and under the steel pins. It is well lubricated and is pulled through as the tool revolves rapidly. (10458) C. N. asks how to do annealing. A. For a small quantity, heat the steel a cherry red in a charcoal fire, then bury it in sawdust, in an iron box, covering the sawdust with ashes. Let it stay until cold. For a larger quantity, and when it is required to be very soft, pack the steel with cast iron (lathe or planer) chips in an iron box as follows: Having at least half or three-quarters of an inch in depth of chips in the bottom of the box put in a layer of steel, then more chips to fill spaces between the steel and also the half or three-quarters of an inch space between the sides of the box and steel, then more steel: and lastly, at least one inch in depth of chips, well rammed down on top of the steel. Heat the whole to and keep at a red heat for from two to four hours. Do not disturb the box until cold. (10459) B. W. F. asks how to clean paint. A. To clean paint, provide a plate with some of the best whiting to be had; have eady some clean warm water and a piece of flannel, which dip into the water and squeeze nearly dry: then take as much whiting as will adhere to it, and apply it to the painted surface, when a little rubbing will instantly remove any dirt or grease. After which, wash the part well with clean water, rubbing it dry with a soft chamois. Paint thus cleaned looks as well as when first laid on, without any injury to the most delicate colors. It is far better than using soap, and does not require more than half the time and labor. (10460) C. D. asks how to make grape syrup. A. 1. Half pint brandy, 1 ounce tincture of lemon, 1 gallon simple syrup, tincture red sanders, 1 quart. 2. Brandy, spirits of lemon, ¼ ounce; tincture of red sanders, 2 ounces; simple syrup, 1 gallon. 3. A grape syrup, not an artificial syrup, or one for fountain use, but a syrup from the fruit, for domestic or table use, etc. Take 20 pounds ripe freshly picked and selected tame grapes, put them into a stone jar, and pour over them 6 quarts of boiling soft water; when sufficiently cool to allow it, well squeeze them thoroughly with the hand, after which allow them to stand 3 days on the furnace with a cloth thrown over the jar, then squeeze out the juice and add 10 pounds of crushed sugar; let it remain a week longer in the jar; then take off the scum, strain and bottle, leaving a vent until done fermenting, when strain igain
and bottle tight, and lay the bottles on the side in a cool place. (10461) B. J. asks how to waterproof canvas. A. A solution containing equal parts by weight of gelatine and chrome alum. is not advisable to mix more of the solution at once than is sufficient to give the canvas one coat, as, if the mixture once sets, it cannot be reliquefied like a plain solution of gelatine, and hence, if the quantity of canvas to be waterproofed is but small, it would, perhaps, be preferable to coat with plain gelatine solution until quite impervious to cold water, and then to thoroughly soak for, say, twenty-four hours in a strong solution of chrome alum. ### NEW BOOKS, ETC. THE NAVAL POCKET-BOOK. Founded by Sir W. Laird Clowes. Edited by Goeffrey S. Laird Clowes. London: W. Thacker & Co., 1906. Pocket size; pp. 965. Price, \$3. The present edition of this well-known, compact, and very convenient little work is fully up to the high quality of its predecessors. It opens with a calendar in which the leading events of naval history on each particular date are recorded; and this is followed by a comparative summary of the fighting fleets of the world arranged under a new system of notation. Then in tabular form is given the statement of the various world's navies, tables and descriptions of the naval guns and small arms, a list of drydocks, giving dimensions and capacities, and at the close of the book are diagrams of the leading types of ship of cach READ THIS COLUMN CAREFULLY.—You will find inquiries for certain classes of articles numbered in consecutive order. If you manufacture these goods write us at once and we will send you the name and address of the party desiring the information. In every case it is necessary to give the number of the inquiry. MUNN & CO. Inquiry No. 8575.—Wanted, manufacturers of wedging machines. Inquiry No. 8576.—Wanted, the present address of the Unique Manufacturing Company. Inquiry No. 8577. - Wanted, manufacturers of Juditer wire cable. Jubiter wire cable. Inquiry No. \$578.—Wanted, manufacturers of small hand shapers for metal. Inquiry No. \$579.—Wanted, lamps for taking pictures at night, where there is no light. Inquiry No. \$580.—Wanted, names and addresses of large dealers in excelsior. Inquiry No. 8581.—Wanted, manufacturers of blasting mats. Inquiry No. 8582.—Wanted, the present address of the British-American Pitch Company, Inquiry No. 8583.—Wanted, manufacturers of machinery for making burlap sacks. Inquiry No. 8584.—Wanted, makers of machines for manufacturing leaden ammunition for shooting purposes, also of machines worked to utilize the waste or refuse of cork from which cork planks for bathing purposes are made. Inquiry No. 8585.—Wanted, makers of ice machines of about 500 pounds capacity per day. Inquiry No. 8586.—Wanted, makers of popcorn and peanut wagons, having plate-glass front and ruber tires. Inquiry No. 8587.—Wanted, manufacturers of drying apparatus, for drying flax straw, having capacity of handling 20 tons of damp material in ten hours. Inquiry No. 8588.—Wanted, the addresses of manufacturers of the or aluminum threaded stoppers of 1½ inches diameter, to be soldered on the cans. Inquiry No. 8589.—Wanted, the name and address of the manufacturer having recently placed paper milk bottles on the market. Inquiry No. S.5499.—Wanted Name and address of makers of machines for applying Crown bottle stoppers to bottles; machines different to the so-called Baltimore type. ### INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending | | for, Van Deventer & Swank | 846,446 | |--|---|--------------------| | March 12, 1907. AND EACH BEARING THAT DATE | Chimney cowl, W. R. A. Ball. Chuck, J. Hodson Chuck mechanism, A. Tindel Churn, D. L. Stewart Cigar cutter, J. E. Ellis Cigar cutter and nail clipper, combined, G. Havell Cigar lighter, J. H. Moore Cigarette box making and packing machine, F. Giroud | 847,251
846,878 | | [See note at end of list about copies of these patents.] | Churn, D. L. Stewart Cigar cutter, J. E. Ellis | 846,872
846,650 | | | G. Havell | 846,743 | | Abrading material, E. F. Landis 847,190
Acid receptacle, G. P. Adamson 846,541 | Cigarette box making and packing machine, F. Giroud | 246,659 | | Acids, production of organic sulfonic, M. Jljinsky | Circuit breaker, R. E. Hellmund | 846,469 | | Jijinsky Aeroplane or craft for aerial navigation, A. & H. Dufaux | Circuit controlling device, thermostatic, L. H. Britton | 847.044 | | Air cooling and humidifying apparatus, J. Kelly | Willand and breaking device, r. D. | 947 900 | | the im manuse appearating for cooling Mois- | Circular distributer, R. G. Frasef.
Cleaner and polisher, W. J. M. Hames.
Clock, E. R. Connell
Clock, electrically actuated, R. W. Smed- | 846,741
846,665 | | tening, and purifying, D. Buhlmann. 847,232 Alloy and its manufacture, steel, J. Churchward | Clock, E. R. Connell | 846,781 | | Alloy and its manufacture, steel, J. Church ward | Deig | 846,518 | | Amalgamator and concentrator, J. A. Jean 847,077 Amusement device, G. Kramer 846,925 Amusement device, E. N. Chamberlain 847,240 Amusement device, H. F. Crickler 847,242 Anchor device, adjustable, W. L. Greeley 846,956 Anvil, L. F. Clar 846,519 Anvil, L. F. Clar 846,518 Apparel hanger and support, W. H. Shaw 846,956 Automatic lubricator, A. Pribil 846,507 Automobile, M. H. Sullivan 847,128 Automobile frame, Nicholson & Rude 846,599 | Cloth cutting machine, C. L. Bryan | 846,777 | | Amusement device, H. F. Chekler | Clothes pin, S. Pasqualin. Cluster socket. J. H. Dale | 847,106
846,912 | | Anvil, L. F. Clar | Clutch, friction, Erickson & Nystrom
Clutch mechanism, J. & F. Doepker | 846,654
846,733 | | Automatic lubricator, A. Pribil | Coal, coking, S. B. Sheldon | 846,958 | | Automobile frame, Nicholson & Rude 846,599 Automobile horn, I. E. Stump | of the kinds of coke, utilizing close burning, G. de Velna Coat, S. Lewis Cock for flush tanks, ball, J. McKaig Coffee holder, W. Maechler Coffee or tea pot handle, P. J. Godfrey. Coffee pot, G. F. W. Holman Coir collector McRetty & Holmas | 847,134 | | Axle lubricating mechanism, H. W. Sanford 847,263 Bailing machine, W. P. Marsh | Coat, S. Lewis Cock for flush tanks, ball, J. McKaig | 846,598 | | Bait and weed guard, artificial, G. W. Up-
ton | Coffee or tea pot handle, P. J. Godfrey | 847,175
846 473 | | Bait and weed guard, artincial, G. W. Up- ton | Coin collector, McBerty & Holmes | 846,500
847,001 | | Barrel leveling machine, J. S. oram.846,601, 846,602
Bath sp. ays and the like, connection for, H. | Coking oven, L. J. Hirt. Collapsible box, D. F. Friedheim Collar and hame, combined horse, J. Martin Collar, horse, H. A. Fonteine. | 846,788
847,090 | | L. Bruen | Colleg horse H A Fontaine | 847,248
846,450 | | | Concrete bridge, G. Glascock | 847,284
846,659 | | Bearing, antifriction lateral motion center, J. C. Barber | Column, wooden, H. Brown Commutator, J. R. Grindrod Concrete bridge, G. Glascock Condenser, jet, E. Koerting Contact for third rail systems, interrupted, | 847,010 | | Bearing, ball, L. Burg | Katzman & Vizethann Converter, I. Kitsee Cooking apparatus, steam, W. C. Salmon Cooking utensil, H. R. Barnard | 847,008 | | Bearing, roller, T. Cooper | Cooking utensil, H. R. Barnard | 847,225
847 177 | | J. C. Barber | Copper, extracting, O. Frolich | 846,657
846,891 | | Bed pan and douche, combined, N. Egan. 846,834
Beehive, C. Spierling | Cork puller, G. Sparano | 847,124
847,162 | | Belt and buckle, Hynard & Meehan 846,476 | Coupling, E. H. Gold | 846,994
846,452 | | Bed pan and douche, combined, N. Egan. 846,834 Beehive, C. Spierling. 846,517 Beet root, etc., treatment of, C. Steffen. 847,126 Belt and buckle, Hynard & Meehan. 846,476 Belt stretcher, Eshelman & Thoenen. 846,786 Belt, waist, W. R. Mulock. 846,934 Belting, J. L. Bixby, Jr. 847,228 Bicycle package carrier, W. H. Reed. 846,696 Binder, N. F. Mogland. 846,860 | Cop tube, E. H. Guerin. Copper, extracting, O. Frolich. Copper refining furnace, R. Baggaley. Cork puller, G. Sparano. Cotton cleaner and distributer, J. Clem, Jr. Coupling, E. H. Gold. Cracker box, J. H. Byrne. Crane, traveling, A. E. Evans. Cultivator, H. M. Toepfer. Cultivator, A. Nolf Cultivator, L. Parenti. | 846,837
846,876 | | Bicycle package carrier, W. H. Reed 846,695
Binder, N. F. Mogland 846,860 | Cultivator, A. Noir Cultivator, L. Parenti Cultivator, adjustable, W. Wolf Cupola furnace, B. D. McCormick | 847,101
847,258 | | Binder, loose leaf, J. B. Barlow 847,039 | Cupola furnace, B. D. McCormick | 847,097 | | Bisulphite Hiquor, apparatus for making, J. C. Murray | Curling irons, hair waving attachment for, A. Weiler Current demands, system for the supply of, | 846,813 | | Blue printing machine, S. B. Whinery 847,034 | F. W. Springer | 040.100 | | ratus, continuous, C. F. Pease 846,941 Bluing effervescent laundry, Z. S. Varnall. 846,887 | C. W. H. Blood | 846,72 | | Boat launching mears, life, R. Zolling 846,770 Boat plug, G. W. Renton
847,112 | Damper actuating device for ranges, etc., I Brooke Damper, chimney, A. E. Albertson Decorating kiln, continuous, J. Gamble Die head. W. A. Kerr. Dirt carrier, I. H. Monago | 846,821 | | Boat, stone, F. C. Rawson | Decorating kiln, continuous, J. Gamble
Die head. W. A. Kerr. | 846,559
847,186 | | Boller, E. S. Clark | | | | Boiler draft regulator, steam, A. J. Snow. 847,209 Boiler furnace, H. Emerson | Disinfectants to water closets, apparatus for applying, A. D. Easton | 846,831 | | Boiler tube cleaner, J. F. Land | Dish washing machine, R. H. Sunkle Disinflectants to water closets, apparatus for applying, A. D. Easton Display outft, Newman & Bothwell Display rack, J. E. Taylor Displaying form, wearing apparel, Edwards | 846,690
847,214 | | Boring machine, C. Somers | Displaying form, wearing apparel, Edwards & Dunbar Door check, J. L. Ridgway | 846,833
847 119 | | Bottle or fer and the like, J. Hurlimann 847,075
Bottle stopper, A. B. Hamilton 846,467 | Door check, M. L. Harris | 847,286
847,020 | | Book rest and the like, A. Englefeld. 847,052 Boot puller, H. M. Paul. 846,694 Boring machine, C. Somers 846,870 Bottle, drop regulating, A. Wilkin. 847,218 Bottle or jer and the like, J. Hurlimann 847,075 Bottle stopper, A. B. Hamilton 846,467 Bottle stopper, A. W. Cordes 846,909 Bottle stopper, G. Kirkegaard 847,006 Bottle washing machine attachment, W. J. Cunningham Cunningham 846,983 Bottles, non-refillable, device for rendering, V. Clark 846,550 | & Dunbar. Door check, J. L. Ridgway Door check, M. L. Harris Dough raiser, F. McDonald. Dough shaping machine, H. F. W. Haeg. Drainage trap, antisiphon, D. Whiteford. Drawer pull, F. X. Ammann Drawing board attachment, G. E. Evans. Drying machine, E. B. Ayres. Drilli brace, T. Kuhn Drilling machine, F. M. Stambaugh. | 846,790
846,537 | | Bottle washing machine attachment, W. J. Cunningham | Drawer pull, F. X. Ammann | 846,441
846,987 | | Bottles, non-reliliable, device for rendering, V. Clark | Drying machine, E. B. Ayres | 847,038
847,013 | | V. Clark 846,550 Braiding machine, J. E. Kirberg 847,005 Brake, H. J. Dohrer 846,457 Brake, V. Lamb 846,457 Brake beam, J. B. Barnes 846,819 Brake beam, E. D. Bronner 847,156 Brake shoe, J. J. Newbaker 846,755 Brake shoe, composite, D. O. Ward 846,707 Brick machine, T. Sederwall 847,120 Brick machine, T. Sederwall 847,120 Brickmaking plant H. H. Walsh 846,536 | Drilling machine, F. M. Stambaugh
Drink mixer, C. G. Miller
Drum, heating, F. J. Kobusch
Dumping and cistributing apparatus, A. | 846,931 | | Brake beam, J. B. Barnes | Dumping and cistributing apparatus, A. | 846 504 | | Brake shoe, J. J. Newbaker | Moore Dust collecting system, W. E. Allington Dye, ortho-oxy-monoazo. W. Schumacher | 846,973
846,511 | | Brick machine, T. Sederwall | Dyeing apparatus, P. Fontaine. Dyeing apparatus, H. Pattyn. | 846,462 | | Brek Matthing plant H. H. Walsh | Egg beater, E. R. Godward Egg beater, A. J. Thompson Egg beater, S. Danner. Egg beater, S. Danner. Egg beater, whisk, etc., E. R. Godward Electric circuits, shunt for, M. J. Wohl Electric circuits, thermal cut-out for, G. E. | 846,662
846,763 | | Brush, fountain diacking, W. G. Hoffman 847,252, Brush, fountain marking, J. B. Fischer 846,558 | Egg beater, S. Danner | 846,829
846,661 | | Brush, polishing, J. A. Kreag | Electric circuits, spunt for, M. J. Wohl
Electric circuits, thermal cut-out for, G. E. | 846,969 | | Brush, toilet, A. A. Wensinger 848,636 Brush, tooth, W. O. Bloom 846,900 Bucket, dumping, L. A. Lehmann 846,800 Buckle, H. J. Gatsman 846,991 Buckle, W. H. Griffin 847,064 Buckle, L. Sanders 847,118 Buggy top detaching means, C. G. Cook 846,782 | Painter Electric controller, F. Volk Electric furnace, L. W. Stevens | 846,533 | | | Electric furnace R von Ischausky | 847.00 | | Buckle, H. J. Gaisman 846,991 Buckle, W. H. Griffin 847.064 | Electric heater, A. H. Bremer et al | 846.544 | | Scient | ific | |--|--------------------| | Building block mold, Alexander & Fred- | | | eriekten | 847 220 | | ericksen Building material, forming, J. Oltmanns | 847,220
847,202 | | Bulkhead door hatch or other harrier W | 011,202 | | Bulkhead door, hatch, or other barrier, W. B. Cowles | 847,165 | | Bullet, J. H. Berlow | 847,149 | | Buov, torpedo, and similar device, W. E. | 011,110 | |) Hill | 846,567 | | Buttermilk substitute, preparing a, A. | , | | Sauer | 846,697 | | Sauer Button machine, H. J. Skipp | 846,806 | | Button enan Iverson & Finerud | 847,253
846,848 | | Cabinet, J. Herzog Cabinet, picture, E. E. Viets. Can heading machine, N. Troyer. Can opener, Horton & Molesworth. | 846,848 | | Cabinet, picture, E. E. Viets | 846,531 | | Can heading machine, N. Troyer | 846,966 | | Can opener, Horton & Molesworth | 846,921 | | Candle holder, H. Tartsch846,705,
Cane, F. L. Hall | 846,706 | | Cane, F. L. Hall | 847,066 | | Car coupling, A. Berg | 846,898 | | Car coupling, A. Berg Car door, R. Mcbley Car door automatic closing device, railway, | 846,594 | | Car door automatic closing device, railway, | | | C. Lennert | 846,675 | | Car door, nush, R. Mobiey | 846,595 | | Car door, grain, B. Daugnerty | 840,913 | | Car, dump, T. R. McKnight | 846,501 | | Can fonder, N. P. Duncan | 040,409 | | Car fender, J. H. Dixon | 041,241 | | Car door automatic closing device, railway, C. Lehnert Car door, flush, R. Mobley Car door, grain, B. Daugherty Car, dump, T. R. McKnight Car fender, N. P. Duncan Car fender, J. H. Dixon Car fender, Street, W. D. Leftwich Car fender, street, C. B. Mead Car, hand, J. H. Taylor Car, passenger, W. Voss Car, railway, L. J. Harris846,846, Car, railway, Treight, W. R. Mulock, reissue Car replacing frog, L. Pluard. Car side bearing, H. D. Laughlin846,577, Car side bearing, H. M. Perry346,608 to Car signal device, street, H. H. Miller | 947 001 | | Car hand I H Taylor | 847 020 | | Car naggangar W Vogg | 847 125 | | Car railway I. I Harris 846.846 | 846 847 | | Car railway freight W R Mulcek raissus | 12 615 | | Car replacing from L. Pluard | 847 259 | | Car side bearing, H. D. Laughlin846.577. | 846.578 | | Car side bearing, H. M. Perry846.608 to | 846,610 | | Car signal device, street, H. H. Miller | 847,289 | | Car signal device, street, H. H. Miller Car stake, F. W. Topliff Car stake and attaching means therefor, J. A. Toomey Car, tank, T. R. Brown Car wheel, T. L. Hawkins Carbureter, Mason & Sinclair Carbureter, G. H. Holgate | 846,877 | | Car stake and attaching means therefor, | ,,,,, | | J. A. Toomey | 846,963 | | Car, tank, T. R. Brown | 846,646 | | Car wheel, T. L. Hawkins | 847,069 | | Carbureter, Mason & Sinclair | 846,679 | | Carbureter, G. H. Holgate | 846,852 | | Carbureter, G. H. Holgate Carbureter, F. A. Bradbeer Cartige and manufacture thereof, F. I. | 846,903 | | Cartridge and manufacture thereof, F. I. | | | Du Pont | 846,612 | | Cash carrier, J. F. Hayes | 847,070 | | Du Pont Cash carrier, J. F. Hayes. Cash drawer, N. W. Williams Casket handle, reinforced, M. Bremer. | 846,710 | | Casket nandle, reinforced, M. Bremer | 846,545 | | Cement and apparatus therefor, burning, | 040 555 | | H. L. Doherty | 846,555 | | C A Metaham | 847,257 | | C. A. Matcham | 847,281 | | Cements, manufacture of waterproof and | 011,401 | | non-ovuding D Liobold | 847,015 | | Centrifugal machines flevible spindle for | 311,010 | | Centrifugal machines, flexible spindle for, I. P. B. Knudsen Chain, drive, W. M. Butler Chain, tink E. H. Mills | 847,009 | | Chain, drive, W. M. Butler | 847,235 | | Chain tink E H Mills | 846 803 | $\frac{257}{281}$ 015 Chain, drive, W. M. Butler. 847,235 Chain ink, E. H. Mills 846,803 Chair, G. E. Crump 846,910 Chalk trough, C. A. Hess. 846,910 Cheese cutters, cheese guard and support 60 for, Van Deventer & Swank 846,634 Chimney cowl, W. R. A. Ball 846,446 Chuck, J. Hodson 847,251 Chuck mechanism, A. Tindel 846,872 Churn, D. L. Stewart 846,872 Cigar cutter, J. E. Ellis 846,650 R. A. Ball 846,446 A. Tindel 846,875 A. Tindel 846,875 A. Tindel 846,875 A. Tindel 846,876 Dail 846,650 Dail clipper, combined, 846,684 Daing and packing machine, 846,684 Daing and packing machine, 846,684 Dail Clipper, Combined, 846,686 Dail Clipper, Combined, 846,743 Dail Clipper, Combined, 846,741 Dail Clipper, Combined, 846,781 Dail Clipper, Combined, 846,685 846,684 Co **Engine and Foot Lathes** MACHINE SHOP OUTFITS, TOOLS AND SUPPLIES. BEST MATERIALS. BEST WORKMANSHIP. CATALOGUE FREE SEBASTIAN LATHE CO., 120 Culvert St., Cincinnati, O. Foot and Power and Turret Lathes, Plan-ers, Shapers, and Drill Presses. SHEPARD LATHE CO., 133 W. 2d St. Cincinnati, O. ### Veeder Counters to register reciprocating movements or revolu-tions. Cut full size. Booklet Free VEEDER MFG. CO. 18 Sargeant St. Hartford, Conn. ### **MAJESCO** The new process for transferring any Photograph to any surface. Indestructible. Pillow Tops, etc. Can be washed. For sale by all dealers in Photo Supplies. Or sent to any address on receipt of 25 cents, Sample on Satin Free. Satin Free. CHEMICAL ART CO., 263 La Salle Street, - Chicago GUNSMITHS, TOOL GUNSMITHS, TOUL MAKERS, EXPERIMENTAL & REPAIR WORK, ETC. From 9-in. to 13-in. swing. Arranged for Steam or Foot Power, Velocipede or Stand-up Treadle. Send for Lathe Catalog. W.F. & JNO. BARNES CO. Established 1872. 1999 Ruby St., Rockford, Ll. ### ELEVEN-INCH SCREW CUTTING LATHE For foot or power as B. For foot or power as wanted. Has power cross feed and compound rest. A
strictly high grade, modern too. Ask us for printer matter. Descriptive circulars upon request. B. F. BARNES CO. Rockford, Ill. European Branch, 149 Queen Victoria St., London, E. C. ## Pipe Cutting and Threading Machine Fipe Cutting and inreading Mai For Either Hand or Power This machine is the regular hand machine supp with a power base, pinion, countershaft, etc., can be worked as an ordinary power machine or taken from its base for use as a hand machine. Length of pipe ½ in, to 15 in, handled easily in small nown. Illustrated catalogue— price list free on application. THE CURTIS & CURTIS CO. 6 Garden St., Bridgeport, Conn. ort, Conn. Branch Office, 60 Centre St., N. Y. ### Instructive Scientific Papers ON TIMELY TOPICS Price 10 Cents each by mail **ARTIFICIAL STONE.** By I., P. Ford. A paper of immense practical value to the architect and builder. Scientific American Supplement 1500. THE SHRINKAGE AND WARPING OF TIMBER. By Harold Busbridge. An excellent presentation of modern views; fully illustrated. Scientific American Supplement 1500. CONSTRUCTION OF AN INDICATING OR RECORDING TIN PLATE ANER OID BAROMETER. By N. Monroe Hopkins. Fully illustrated. SCIENTIFIC AMERICAN SUPPLEMENT 1500. DIRECT-VISION SPECTROSCOPES, By T. H. Blakesley, M.A. An admirably written, instructive and copiously illustrated article. SCIENTIFIC AMERICAN SUPPLE- article. Scientific American Supple-ment No. 1493. MENT NO. 1495. HOME MADE DYNAMOS. SCIENTIFIC AMERICAN SUPPLEMENTS 161 and 600 contain excellent articles with full drawings. PLATING DYNAMOS. SCIENTIFIC AMERICAN SUPPLEMENTS 720 and 793 describe their construction so clearly that any amateur can make them. DYNAMO AND MOTOR COMBINED. Fully described and illustrated in SCIENTIFIC AMERICAN SUPPLEMENTS 844 and 865. The machines can be run either as dynamos ELECTRICAL MOTORS. Their Con- struction at Home. Scientific American Supplements 759, 761, 767, 641. Price 10 Cents each, by mail Order through your newsdealer or from MUNN @ COMPANY 361 Broadway New York | | 2 | 2 59 | |----------------|--|--| | _ | Electric meters, device to disclose opening | | | g | Electric meters, device to disclose opening of the shunt circuits of, W. L. Saunders Electric motor controller, F. Schaefer Electric motor, variable speed, J. C. Lincoln Electric switch, H. Sawyer Electric switch, A. Koesche Electric switch, I. Kitsee Electric switch, G. W. Liden. Electric system, high tension direct current, J. S. Highfield Electrical apparatus, high pressure, E. J. Koch Electrical pressure, E. J. Koch Electrical pressure, E. J. Electrical pressure, E. J. Electrically heated body, E. Haagn Electromagnetic transmitting device, M. Johannet | 846,624
846,626
847,088 | | | Electric switch, H. Sawyer Electric switch, A. Koesche Electric switch, I. Kitsee | 846,625
846,673
847,007 | | K | Electric switch, G. W. Liden
Electric system, high tension direct current, | 847,087
846,566 | |). | Electrical apparatus, high pressure, E. J. Koch Electrical apparatus, high pressure, E. J. | 846,672 | | <u>.</u> | Electrical conductor, F. Flatt
Electrically heated body, E. Haagn
Electromagnetic transmitting device, M. Jo- | 847,065 | | , | Elevator. See Portable elevator. Elevator safety device, C. R. Pratt | 846,613 | |). | Elevator safety device, G. R. Layman
Engine ignition apparatus, explosion, H.
C. Rover | 847,083
847,296 | | n-
s.
). | Engine ignition system, explosion, R. Varley
Engine reversing mechanism, explosive, L.
M. J. C. Levayašseur | 846,811
846,487 | | e | | 846,809 | | 0 | Engine starting crank, explosion, A. Schluter Engines, feed governor for oil, F. G. Hobart Envelope, F. Klousnitzer. Envelope, C. Panek Envelope, L. B. Myers Envelope and letter sheet, combined, A. J. Farmer Eraser cleaner, blackboard, H. Weyer. Excavating wheeler, F. F. Furlough. Excavator, J. E. Kennedy. Explosion engine, S. A. Reeve. Fabric turting machine, J. J. Baird. Fabrics, machine for producing ornamental | 846,698
846,471
846,478 | | The same | Envelope, C. Panek Envelope, L. B. Myers | 846,504
847,095 | | United | Farmer Cleaner, blackboard, H. Meyer | 846,988
846,681 | | , | Excavating wheeler, F. F. Furiough. Excavator, J. E. Kennedy. Explosion engine, S. A. Reeve | 846,791
846,508 | | | surfaces on fleeced, C. H. French | 847,056 | | - | Fan hanger, M. E. McBeeFarm implement, motor driven, M. O. Sandberg | 847,096
847,026 | | | Fastener, A. F. Randall
Fastening device, M. L. Martinez
Fastening, separable, W. B. Murphy | 847,295
846,678
847,291
846,920 | | | Faucet, J. W. Horth | 846,920
846,780
846,985 | | | Feed gage, L. E. Tait | 846,630
846,798
847 141 | | | Fender, J. R. Plauk.
Fertilizer distributer, C. B. Rozar.
Fiber vessel J. J. Shea reissue. | 847,108
846,623
12,616 | | - | Farm implement, motor driven, M. O. Sandberg berg Fastener, A. F. Randall Fastening device, M. L. Martinez Fastening, separable, W. B. Murphy. Faucets, J. W. Horth Faucets, cut-off for J. W. Collins Feed bag, G. P. Drucck, Jr. Feed gage, L. E. Tait. Fence post, cement, S. Landes. Fence post, metal, O. A. Wilson Fender, J. R. Plauk Fertilizer distributer, C. B. Rozar Fiber vessel, J. J. Shea, reissue Filaments of metamorphosed cellulose, etc., apparatus for forming, M. Waddell File, bill, E. Plourde. File cellulose, S. W. Walter | 846,879
846,946 | | 2 | File cabinet, S. T. Walton | 846,881
846,582
846,748 | | | Filter, M. G. Melvin Filter, water, O. Watson Filtering apparatus M. N. Otto | 846,859
846,882
847 103 | | r | Fire alarm system, M. G. Nolen. | 846,502
846,729 | | | Fire apparatus, ft. W. Eisenbise Fire kindling, composition of matter for, Daley & Johnson | 846,554 | | - | Firearm, automatic, W. Mason. Firearm sight, G. S. Wilcox. | 846,591
846,637 | | | Fireproof shutter, P. O'Reilly | 846,603 | | | Fish holder, live, C. J. Remsburg | 846,864
846,556 | | | Fishing tool, C. E. Downs | 847,168
847,138 | | | Filaments of metamorphosed cellulose, etc., apparatus for forming, M. Waddell. File, bill, E. Plourde. File cabinet, S. T. Walton. Filter, H. Lieberich Filter, M. G. Melvin Filter, M. G. Melvin Filtering apparatus, M. N. Otto. Fire alarm system, J. G. Nolen. Fire alarm system, M. Connor. Fire alarm system, M. Connor. Fire apparatus, H. W. Eisenbise. Fire kindling, composition of matter for, Daley & Johnson Firearm, Kolb & Foehl Firearm, automatic, W. Mason Firearm sight, G. S. Wilcox Firearm sight, G. S. Wilcox Firearm sight, J. Windridge | 847,272
846,818 | | | Fluid check device, J. C. Phipps | 846,943
847,119 | | 4 | Floor set, A. Ayers Flue dust, recovering values from, R. Baggaley Fluid check device, J. C. Phipps Fluid operating machines, plunger cleaning means for, W. T. Sears Fluid preasure plunger, E. H. Mumford Fluid gate, A. E. Chapman. Folding stand, automatic, Collins & Browning freezing of water hydrants, means for the prevention of, J. Pye. Fruit clipper, T. H. Deshane Furnaces, drying air for blast, N. T. Bacon Gage, Glass & Mouther. Gage, C. A. Good Game apparatus, E. H. Richter Game apparatus, E. H. Richter Garment fastener, J. H. White Garment support, G. E. Crump Garment supporting, B. M. Grayson Gas burner, A. J. Meyers. Gas burner, A. J. Meyers. Gas burner, R. B. Benjamin Gas manufacture, apparatus for, F. Logan. Gas plant, producer, P. Eyermann Gas regulator and cut-off, automatic, Purtle & Royland Gases, apparatus for removing impurities | 846,685
847,160 | | s
r | Freezing of water hydrants, means for the prevention of, J. Pye. | 846,552
847,294 | | 7 | Fruit clipper, T. H. Deshane | 846,732
847,081
847,273 | | е | Gage, Glass & Muther | 846,660
847,176
846,509 | | n | Game apparatus, T. J. Falvey | 846,655
847,217
847,212 | | | Garment support, G. E. Crump | 846,911
846,562
846,930 | | | Gas burner, Springer & Maloney | 847,210
846,897
846,680 | | | Gas manufacture, apparatus for, F. Logan. Sas plant, producer, P. Eyermann Sas regulator and cut-off, automatic, Purtle | 846,489
847,054 | | | Gas regalator and cut-off, automatic, Purtle & Rovland Cut-off, automatic, Purtle & Rovland Cases, apparatus for removing impurities from furnace, R. Baggaley Gaser cutting machine, J. Parker & Gearing, A. Gerber Gearing, change, A. H. Ehle & Gearing, friction, L. Maurer & Glass drawing and blowing apparatus, H. G. Slingluff & Glass-making apparatus, wire, A. J. Baldwin & Glass or other fragile receptacles, protective covering for, Baron & Haffey & Glode, extraction of, Worsey & Hoal. & Gold, extraction of, Worsey & Hoal. & Golder & Governor, speed, J. C. Anderson & Grain and seed cleaner, separator, and | 346,947
346,815 | | • | Gear cutting machine, J. Parker | 846,505
846,465
847,048 | | | Gearing, friction, L. Maurer | 346,59 2
347,027 | | | Glass-making apparatus, wire, A. J. Bald-
win | 346,771 | | ŀ | tive covering for,
Baron & Haffey 8 Glove retaining device, E. O. De Vries 8 Gold, extraction of, Worsey & Hoal 8 | 346,719
346,914
346,768 | | ļ | Gold saving apparatus, J. H. Leggett 8 Governor, speed, J. C. Anderson 8 Grain and seed cleaner, separator, and | 846,483
846,814 | | | Governor, speed, J. C. Anderson | 346,999
346,570
346,632 | | | Grain-shocking machine, C. W. Anderson. 8 Gramophone mechanism, E. Wawrina 8 Grave filler, W. S. Pendleton 8 | 346,888
347.033
346,757 | | | Grinding machine, Muncaster & Fletcher 8 Grits and dust purifier, C. Jaquet 8 Gun, magazine, J. Lauber 8 | 346,496
346,670
346,576 | | | Gun rack, E. E. Lamb | 346,674
34 7, 139 | | | Hame, J. F. Hopfner | 346,745
346,687
346,822 | | | Harrow, J. F. Williams 8 Harrow, W. B. Essick 8 Harrow, A. D. Harris 8 | 347,036
347,051
347,068 | | | Harvester attachment, L. Franzmeier 8 Hat and coat rack, locking, J. E. Dundore. 8 Hat pin. G. N. Steere 8 | 346,918
346,460
346,518 | | | Hat retaining device, S. Rosenthal 8 Hay, grain, etc., covering for, P. Schoenle 8 Hay rake, J. Dain 8 | 346,953
346,627
346,456 | | | Hay raké, J. W. Hurd | 347.074
346,611
346,472 | | | Harness attachment, A. W. Burnett | 46,506 | | ш | Hemmers, folder attachment for, E. F. Gib-
bons | 346,742
346,944 | | H | A. Abzug 8 | 47,145
46,715 | | | Hoisting apparatus safety arrangement, W. Thornber | | | | Hook and eye, H. Atkinson | 47,271
46,590
46,819 | | | Hose coupling, J. Berk | 47,042
47,292
46,719 | | | Hoisting apparatus safety arrangement, W. Thoaber | 46,616 | | | Hot water regulator, G. Parge | 47,104
46,649
46,843 | | | , | ,040 | # SORE THROAT To prove the Efficiency of Hydrozone to Sore Throat Sufferers, I will send One 25 Cent Bottle Free to anyone mentioning this paper and sending 10 cents to pay postage and packing. Hydrozone is a harmless germicide, indorsed and successfully used by leading physicians. Not genuine without my signature on label. Ask for Booklet on Treatment of Diseases. Sold by Leading Drug- ### AUTOMOBILES BOUGHT, SOLD AND EXCHANGED The largest dealers and brokers in New and Second-hand Automobiles in the world. Send for complete bargain sheet No. 129. TIMES SQUARE AUTOMOBILE CO. 217 West 48th Street, New York City ### THE AUTO-SPARKER DUNN MACHINERY CO. ## tverything for the Automobile WRITE FOR NEW 1907 CATALOG LARGEST PARTS AND SUPPLY HOUSE IN AMERICA Neustadt Automobile and Supply Co. Practical, durable, economical and absolutely safe. A light, strong steel-tired Auto-buegy Suitable for city or country use. Spee from 4 to 20 miles at hour. Our 1907 Mode has an extra powerfu engine, patent ball bearing wheels; pice \$275. Also 10 h. p. \$400 extra. Write for descriptive literature? Atlanta, Ga ### \$40 MOTORCYCLE We have the largest line of New and used Motor Cycles, Parts and Supplies in the country, at the lowest prices. Every machine guaranteed. We are the largest and only exclusive Motorcycle House in the world. Send for our 1907 Catalog. Repairs a specialty, larry R. Geer Co., 851 McLaran Ave., St. Louis, Mo BABBITT METALS.—SIX IMPORTANT formulas. SCIENTIFIC AMERICAN SUPPLEMENT 1123. Price 10 cents. For sale by Munn & Co. and all newsdealers. Send for catalogue. ### Curtiss Airship Motors 7 H. P., 50 Pounds. All extras ready to install. Now used by every successful aeronaut. High-est Award at Lewis & Clark Exposi-tion. World's Record, Ormond Beach, Fla. Send for Catalog B, G. H. CURTISS MFG. CO., Hammondsport, N. Y. Pianola action, J. Ammon. Pianola, apparatus for transposing the keynote in performances of the, H. T. Nolthenius Picture frame attachment, W. H. Shepherd Picture wire fastening device, F. L. Boynton. ton paratus for the production of, C. P. Townsend ... 846,775 Pigments, apparatus for the production of, C. P. Townsend ... 847,632 Pigments, production of, C. P. Townsend ... 847,164 Pin totaliner, stick, R. Corn ... 847,164 Pin tongues, hinge joint for, G. H. Tilford ... 846,633 Pipe clamp, L. Krueger et al. 847,082 Pipe coupling, H. S. Stucy ... 846,704 Pipe coupling, automatic steam and air, J. 847,288 Pipe coupling, train, J. E. Forsyth.846,849, 846,841 Pitch for coating the interior of beer and ale packages, making, H. C. Dippel... 847,282 # THE EUREKA CLIP #### TO MAKE MONEY HOW Send today for our FREE book and descriptive matter telling all about the profits that can be made in the manufacture of concrete building blocks. With a FRANCIS BLOCK MACHINE any man of ordinary ability can make from \$\frac{1}{2}\$ to \$\frac{1}{2}\$ fo aday. No cupital or experience necessary. Building blocks made with the Francis Machine under the Berlin System are guaranteed damp proof, frost proof, fireproof, and will not crack or cumble. Contractors as d builders in your not crack or crumble. Contractors are doulders in your town need your entire output. Facts and figures showing why you can make more money with a Francis Machine sent FREE. Write today. FRANCIS MACHINERY COMPANY, 807 Chestnut Street, - - St. Louis, U. S. A. the Francis Machine under the Berlin System are ranteed damp proof, frost proof, file proof, and will crack or crumble. Contractors as d builders in your need your entire output. Facts and figures show why you can make more money with a Francis Phaper receptacle. F. H. Berold, Jr. 846,899 Paper hanger's support, J. L. Bonar. 846,574 P Four-cycle spark ignition Automobile design. Are designed and built for high speed and steady all day running. They are practically indestructible, every part is interchangeable. Don't fail to get our catalogue before purchasing. 2 1-2 to catalogue before purchasing. 2 1-2 to 40 H. P. Prompt delivery guaranteed. PENINSULAR MOTOR CO, 200 S. Front St., Grand Rapids, Mich. Typewriter Bargains All Standard Makes Most of these machines have been only ghtly used—are good as new. Shipped approval. Don't buy a typewriter before writing us. We will give you the best typewriter bargains that can be offered. McLaughlin Typewriter Exchange, 201 N. 9th St., St. Louis, Mo. ### DOO MARINE ENGINE Belle Isle Motor Co., Dept. 18, Detroit, Mich. SENSITIVE LABORATORY BALANCE SEINSHITVE LIABOURATORY DALIANCE. By N. Monroe Hopkins. This "built-up" laboratory balance will weigh up to one pound and will turn with a quarter of a postage stamp. The balance can be made by any amateur skilled in the use of tools, and it will work as well as a \$125 balance. The article is accompanied by detailed working drawings showing various stages of the work. This article is contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 1184, Price 10 cents For sale by MUNN & Co., 361 Broadway, New York City, or any bookseller or newsdealer. ### **Promptness** is one of the essentials of business success ### The Telephone makes prompt action easy Have You One? NEW YORK TELEPHONE CO. 15 Dey Street ₽8º USE GRINDSTONES ? If so we can supply you. All sizes mounted and unmounted always kept in stock. Remember, we make a The CLEVELAND STONE CO. 2d Floor, Wilshire. Cleveland, O. ### **NOW READY** ## **Industrial Alcohol** Its Manufacture and Uses A PRACTICAL TREATISE DR. MAX MAERCKER'S "INTRODUCTION TO DISTILLATION" AS REVISED BY DRS. DELBRÜCK AND LANGE COMPRISING Raw Materials, Malting, Mashing and Yeast Preparation, Fermentation, Distillation, Rectification and Purification of Alcohol, Alcoholometry, The Value and Significance of a Tax-Free Alcohol, Methods of Denaturing, Its Utilization for Light, Heat and Power Production, A Statistical Review, and The United States Law By JOHN K. BRACHVOGEL, M. E. 528 Pages 105 Engravings Price, \$4.00 HE value and significance of a tax-free alcohol have been so widely discussed in the press and periodical literature of the entire country, that it is unnecessary to emphasize the great importance of the subject, especially to our agricultural and industrial interests. For years we have been far behind the nations of Europe in this regard, and in consequence our literature has been sadly lacking in anthoritative works covering this phase of industrial activity. This book was designed with the especial purpose of filling this want, and it is the latest and most comprehensive work of its kind which has been published in this country. It is based upon the researches and writings of the most eminent of Germany's specialists in the sciences of fermentation and distillation. It covers the manufacture of alcohol from the raw materials to the final rectified and purified product. An introductory section deals with the importance of the new law and what it means to the farmer and the manufacturer. Additional sections cover the methods of denaturing, domestic utilization of alcohol for heating and lighting purposes. alcohol as a fuel for power production, and a statistical review. The full United States law is given in an Appendix. The 105 illustrations are of especial value and excellently supplement the text. 846,775 Few in number are those to whom this book would not prove of interest and value. The farmer, the manufacturer, the power-producer, the house-holder, will all find that denatured alcohol is of such importance to them, that its use and introduction will effect savings and economies which were hitherto impossible of accomplishment. Send for Descriptive Circular. MUNN & COMPANY, Publishers, 361 Broadway, New York ## JUST OFF THE PRESS! ### **MODERN AMERICAN LATHE PRACTICE** By OSCAR E. PERRIGO, M.E. A complete book of 400 pages on The Modern American Lathe. Its development from the earliest times up to the present day; its modern form as velopment from the earning to the present day; its modern form as constructed by up-to-date builders; its general and special classes of work; the quantity of its output, and its marvelous accuracy. Written by a man who knows not only how work ought to be done, but who also knows how to do it, and how to convey this knowledge to others. It is strictly up-to-date in lathe and boring
mill operations and who knows which represent the very latest practice in lathe and boring mill operations as well as the construction of and latest developments in the manufacture of these important classes of machine tools. A large amount of space is devoted to the turret lathe, its modifications and importance as a manufacturing tool. Multiple spindle and automatic chucking lathes are fully considered, as are also special high power lathes, for the use of high speed tool steel, and electrically driven lathes. In the treatment of the subject 315 illustrations and examples from the best practice have been made use of, as by illustration alone can many of the important details and methods be clearly presented. ### Modern Steam Engineering in Theory and Practice By GARDNER D. HISCOX, M.E. Price \$3.00 ### Punches, Dies and Tools for Manufacturing in Presses By JOSEPH V. WOODWORTH Price \$4.00 ### **Modern Plumbing Illustrated** By R. M. STARBUCK Price \$4.00 A comprehensive and up-to-date work illustrating and describing the Drainage and Ventilation of dwellings, apartments, and public buildings, etc. The very latest and most approved methods in all branches of sanitary installation argiven. Adopted by the United States Government in its sanitary work in Cuba, Porto Rico, and the Philippines, and by the principal boards of health of the United States and Canada. 300 pages, 55 full page illustrations. Price \$4.00 LF Any of these books sent prepaid on receipt of price. MUNN & CO., Publishers. | Planing machine, W. Holthaus | 846,474 | | |--|---|---| | Goodwin, Jr. Plate and pan lifter, A. L. Smith Plow, L. J. Gilman Plow, A. Pederson Plow, E. R. Lovell Plow, gang. G. Bishop. Pneumatic cleaner, W. W. Conover. Pneumatic dispatch carrier, C. H. Burton. Pneumatic dispatching tube system, C. H. Burton | 846,726
846,699
846,789 | ŀ | | Plow, A. Pederson
Plow, E. R. Lovell. | 847,025
847,196
846,643 | | | Plow, gang, G. Bishop
Pneumatic cleaner, W. W. Conover
Pneumatic dispatch carrier. C. H. Burton | 846,643
847,278
847,234 | I | | Pneumatic dispatching tube system, C. H. Burton Pocket knife, S. Saunderson | 0.47 000 | | | Pocket knife, S. Saunderson Pole tip, vehicle, E. W. Boswell. Polishing compound, E. W. McFarren Pool and billiard tables, dust protector for, L. J. Dirand Portable elevator, F. H. & F. H. Brown. Portraits and other tablets to walls, means for securing, F. T. Mallon Positive feed lubricator, J. H. Wesson | 847,233
847,206
846,902
847,098 | | | Pool and billiard tables, dust protector for,
L. J. Dirand | 847,246 | | | Portraits and other tablets to walls, means for securing, F. T. Mallon | 846,725
846,493 | | | Positive feed Indicator, J. H. Wesson
Post. See Fence post.
Post hole digger and pole setter, D. H. Rob-
inson | 846,967 | ı | | inson | 846,622
846,641 | | | Potato digger and assorter, J. P. Herbert et al | 847,071
846,688 | | | et al. Poultry inclosure, P. McEvoy. Powder distributer, W. J. Barber. Power transmitting mechanism for automobiles D. J. Wollisteek | 846,718 | | | Press, E. R. Derry | 846,754
847,167
847,161 | | | Pressure regulators, diaphragm clamp for,
T. B. Wylie
Printer's ink roller cabinet, H. P. & H.
Hami'ton | 846,769 | | | Printer's ink roller cabinet, H. P. & H. Hamilton Printing machine feeding mechanism, H. C. | 846,997 | | | | 846,992
847,237 | | | arate sheets of paper to, J. W. Hoag
Printing presses auxiliary printing attach- | 846,850 | ı | | Printing or engraving block, C. E. Carlson. Printing presses, apparatus for feeding separate sheets of paper to, J. W. Hoag Printing presses auxiliary printing attachment for cylinder, A. P. Brooks Printings, producing bronze, C. A. R. Ludewig | 846,645
846,585 | ľ | | Printings, producing bronze, C. A. R. Ludewig Propeller, A. L. & B. S. Ames. Pulley, E. Granberg Pump, C. A. Neyland Pump, force, C. Wolf. Pump multistage turbo, N. W. Akimoff. Pump perating mechanism, J. H. Kane. Pump packing, C. W. Swan. Pump, rotary vacuum, D. M. Moore. Pumping jack, J. M. Branam. Pumping motor, O. E. Lindfors. Punching machine, work feeding, J. A. Eden, Jr. Pyrometer, J. F. Hammond. Rail anchor, J. A. Murphy. Rail and chair, J. F. Walker. Rail fastener and tie, combined, F. M. Paxton. | 847,222
847,249
847,201 | ı | | Pump, C. A. Neyland Pump, force, C. Wolf Pump, multistage turbo, N. W. Akimoff | 847,201
846,640
846,971 | l | | Pump operating mechanism, J. H. Kane
Pump packing, C. W. Swan | 847,004
846,874 | Į | | Pumping jack, J. M. Branam | 846,933
847,229
846,750 | l | | Punching machine, work feeding, J. A. Eden, Jr | 846,832
846,998 | ŀ | | Rail anchor, J. A. Murphy | 846,753
846,535 | ı | | Rail fastener and tie, combined, F. M. Pax-
ton Rail joint, W. P. & S. G. Thomson | 847,024
846,524 | l | | Rail joint, J. S. A. Hunt | 847,073
847,130
847,227 | | | ton Rail joint, W. P. & S. G. Thomson. Rail joint, J. S. A. Hunt. Rail joint, Thatcher & Wedding. Rails to metallic ties, means for attaching, J. F. Bowman Rails to ties, means for attaching, W. C.
Smith Railway cross tie, E. E. B. McClintock. Railway indicators, circuit closing mechanism for, T. W. Small Railway rail joint, W. H. T. King. Railway rolling stock, seat and seat back for, A. E. Ostrander Railway switch, G. E. Madeley Railway switch, G. E. Madeley Railway switch, automatic, J. D. Burk-holder | 847,227 | | | Rails to ties, means for attaching, W. C. Smith | 846,516 | | | Railway indicators, circuit closing mechanism for, T. W. Small | 846,935
846,514 | | | Railway rail joint, W. H. T. King
Railway rolling stock, seat and seat back
for A E. Ostrander | 847,187
847,023 | ١ | | Railway switch, G. E. Madeley
Railway switch, automatic, J. D. Burk- | 847,089 | | | holder Railway tie, J. W. Dunnigan Railway tie, J. H. Price. Railway tie, metallic, E. C. Potter. Railway tie, metallic, J. Berger. Rake, C. F. Field. Ratchet tool holder, P. F. Gallagher Razor, safety, D. W. Gage. Reamer, cylindrical, B. M. W. Hanson. Recording system for salesmen's orders and | 846,906
846,785
847,110 | | | Railway tie, metallic, E. C. Potter Railway tie, metallic, J. Berger | 846,862
847,154
847,055
847,059 | | | Ratchet tool holder, P. F. Gallagher
Razor, safety, D. W. Gage | 847,059
846,842 | į | | Reamer, cylindrical, B. M. W. Hanson | | | | | 846,666 | į | | shipments, F. E. Getz | 847,062
847,178 | | | shipments, F. E. Getz | 847,062
847,178
847,293
846,873
847,197 | 1 | | shipments, F. E. Getz | 847,062
847,178
847,293 | | | shipments, F. E. Getz | 847,062
847,178
847,293
846,873
847,197
846,539 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd Rock drilling machines, water supplying attachment for, Hellman & Bayles Rocket apparatus, A. Maul Rolling annular articles mill for C. von | 847,062
847,178
847,293
846,873
846,873
846,539
846,802
847,286
847,198
846,942
846,942
846,761 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd Rock drilling machines, water supplying attachment for, Hellman & Bayles Rocket apparatus, A. Maul Rolling annular articles mill for C. von | 847,062
847,178
847,293
846,873
847,197
846,539
846,802
847,286
847,198
846,942
846,761
846,825
846,572 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd Rock drilling machines, water supplying attachment for, Hellman & Bayles Rocket apparatus, A. Maul Rolling annular articles mill for C. von | 847,062
847,178
847,293
846,873
847,197
846,592
847,286
847,198
846,942
846,761
846,825
846,572
847,114
846,826
847,114
846,826
846,826 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd Rock drilling machines, water supplying attachment for, Hellman & Bayles Rocket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill universal, V. Chartener Roofing construction, C. J. Kunzler Rope coupling, Roewe & Mathews Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Saddletree and tree nad nate J. E. L. | 847,062
847,178
847,293
846,873
847,197
846,539
846,802
847,198
846,761
846,825
846,761
846,825
846,761
846,826
846,761
846,826
846,761
846,826
846,761
847,114
846,826
846,761
847,114 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Retaining brake, D. W. Lloyd. Retaining brake, D. W. Lloyd. Rock drilling machines, water supplying attachment for, Hellman & Bayles. Rocket apparatus, A. Maul. Rolling annular articles, mill for, C. von Philp Rolling mill, hotbed, E. E. Slick. Rolling mill, universal, V. Chartener. Roofing construction, C. J. Kunzler Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Sad iron heater, H. W. Russell. Saddietree and tree pad plate, J. E. L. Crawford Safe, F. J. Super | 847,062
847,178
847,293
846,873
846,873
846,863
847,197
846,539
846,802
847,198
846,942
846,761
846,761
846,572
846,572
847,114
846,781
846,680
847,116 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Retaining brake, D. W. Lloyd. Retaining brake, D. W. Lloyd. Rock drilling machines, water supplying attachment for, Hellman & Bayles. Rocket apparatus, A. Maul. Rolling annular articles, mill for, C. von Philp Rolling mill, hotbed, E. E. Slick. Rolling mill, universal, V. Chartener. Roofing construction, C. J. Kunzler Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Sad iron heater, H. W. Russell. Saddietree and tree pad plate, J. E. L. Crawford Safe, F. J. Super | 847,062
847,178
847,293
846,873
847,197
846,539
847,286
847,198
846,942
846,761
846,825
846,761
846,580
846,606
847,116
846,580
846,606
847,116
846,782
846,762
846,762 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Retaining brake, D. W. Lloyd. Retaining brake, D. W. Lloyd. Rock drilling machines, water supplying attachment for, Hellman & Bayles. Rocket apparatus, A. Maul. Rolling annular articles, mill for, C. von Philp Rolling mill, hotbed, E. E. Slick. Rolling mill, universal, V. Chartener. Roofing construction, C. J. Kunzler Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Sad iron heater, H. W. Russell. Saddietree and tree pad plate, J. E. L. Crawford Safe, F. J. Super | 847,062
847,178
847,293
846,873
846,873
846,873
846,823
847,198
846,942
846,761
846,572
846,572
846,572
846,580
846,686
847,118
847,265
846,523
846,761
846,761
846,761
846,761
846,761
846,761
846,761
846,761
846,762
846,762 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refractory E. C. Strayer. Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Retaining brake, D. W. Lloyd. Reck drilling machines, water supplying attachment for, Hellman & Bayles Rocket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener. Roofing construction, C. J. Kunzler. Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Sand blast apparatus, F. M. Wise. 847,269, Saw, chain, A. M. Granbery | 847,062
847,178
847,293
846,873
847,197
846,539
847,198
846,942
846,761
846,942
846,761
846,753
846,762
847,114
846,606
847,116
846,731
846,762
847,173
846,762
847,173
847,663
847,663
847,663
846,663 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refractory E. C. Strayer. Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Retaining brake, D. W. Lloyd. Reck drilling machines, water supplying attachment for, Hellman & Bayles Rocket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener. Roofing construction, C. J. Kunzler. Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Sand blast apparatus, F. M. Wise. 847,269, Saw, chain, A. M. Granbery | 847,062
847,178
847,293
846,873
846,873
847,197
846,539
847,197
846,942
847,198
846,942
846,571
846,572
847,114
846,580
847,116
846,781
847,265
847,116
846,781
847,265
847,173
847,270
847,270
847,270
847,270
847,964
846,965
846,965 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refractory E. C. Strayer. Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Retaining brake, D. W. Lloyd. Reck drilling machines, water supplying attachment for, Hellman & Bayles Rocket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener. Roofing construction, C. J. Kunzler. Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super
Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Sand blast apparatus, F. M. Wise. 847,269, Saw, chain, A. M. Granbery | 847,062
847,178
847,293
846,873
846,873
847,197
846,539
846,862
847,198
846,942
846,761
846,825
846,761
846,825
846,761
846,731
847,116
846,731
847,265
847,173
847,270
847,173
847,273
847,174
846,663
846,664
846,663
846,664
846,664
846,784
846,784
846,784
847,173
847,275
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,784
846,78 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Recket alpharatus, A. Maul. Rolling annular articles, mill for, C. von Philp | 847,062
847,178
847,293
846,873
846,873
846,873
846,802
847,198
846,942
846,761
846,761
846,761
846,761
846,761
846,761
846,761
846,763
846,762
846,766
847,116
846,763
846,766
847,173
847,275
846,663
846,965
846,510
846,965
846,510
846,965
846,510
846,663
846,765
846,510
846,663
846,765
846,510
846,663
846,765
846,510
846,663
846,765
846,510
846,663
846,765
846,510
846,663 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Recket alpharatus, A. Maul. Rolling annular articles, mill for, C. von Philp | 847,062
847,178
847,293
846,873
846,873
846,873
846,802
847,198
846,942
846,719
846,942
846,714
846,713
846,813
846,716
846,731
847,116
846,731
847,265
846,7663
846,7663
846,7663
846,7663
846,7663
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Retaining brake, D. W. Lloyd. Recket apparatus, A. Maul Rocket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener. Rooping construction, C. J. Kunzler Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee. Sad iron heater, H. W. Russell. Saddietree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe, F. J. Super Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Saw guard and handle connection, crosscut, J. Tors Saw guard and handle connection, crosscut, J. Tors Saws appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scargold, N. S. Davis. Scargold, G. Bonenberger. Scale, spring, G. Walker. Screpen, M. S. Clark Screen, M. S. Clark Screen, M. S. Clark Seeding machine, end gate, E. F. Molck. Seeding machine, end gate, E. F. Molck. | 847,062
847,178
847,293
846,873
846,873
847,197
846,539
846,942
846,761
846,942
846,761
846,942
846,761
846,731
846,762
847,116
846,762
847,173
846,762
847,173
846,663
847,275
846,663
847,265
846,864
847,275
846,865
846,965
846,965
846,965
846,965
846,964
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,96 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Retaining brake, D. W. Lloyd. Recket apparatus, A. Maul Rocket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener. Rooping construction, C. J. Kunzler Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee. Sad iron heater, H. W. Russell. Saddietree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe, F. J. Super Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Saw guard and handle
connection, crosscut, J. Tors Saw guard and handle connection, crosscut, J. Tors Saws appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scargold, N. S. Davis. Scargold, G. Bonenberger. Scale, spring, G. Walker. Screpen, M. S. Clark Screen, M. S. Clark Screen, M. S. Clark Seeding machine, end gate, E. F. Molck. Seeding machine, end gate, E. F. Molck. | 847,062
847,178
847,293
846,873
846,873
846,873
846,802
847,198
846,942
846,719
846,942
846,714
846,713
846,813
846,716
846,731
847,116
846,731
847,265
846,7663
846,7663
846,7663
846,7663
846,7663
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965
846,510
846,965 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refractory E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Recket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener. Rooping construction, C. J. Kunzler Rope coupling, Roewe & Mathews. Rulle, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee. Sad iron heater, H. W. Russell. Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Samd blast apparatus, F. M. Wise. 847,269, Saw, chain, A. M. Granbery. Saw guard and handle connection, crosscut, J. Tors Saws appliance for crosscut, J. Tors. Sawsing machine, M. Rosenow. Scaffold, N. S. Davis. Scargold, N. S. Davis. Scraper coupling, J. Engebretsen. 846,652, Scraper coupling, J. Engebretsen. 846,652, Screen, See Window screen. Screen, M. S. Clark Screen, M. S. Clark Screen, M. S. Clark Screen, M. S. Clark Sceds, etc., cleaning and separating apparating machine, end gate, E. F. Molck. Seeding machine, W. Larson. Sewing | 847,062
847,178
847,178
846,873
846,873
846,873
846,802
847,198
846,942
846,761
846,762
846,761
846,763
846,763
846,763
846,763
846,766
847,116
846,731
847,270
846,663
847,173
847,270
846,663
847,173
847,270
846,663
846,7663
846,7663
846,7663
846,7663
846,7663
846,7663
846,767
846,810
846,910
846,910
846,910
846,910 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refractory E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Recket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener. Rooping construction, C. J. Kunzler Rope coupling, Roewe & Mathews. Rulle, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee. Sad iron heater, H. W. Russell. Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Samd blast apparatus, F. M. Wise. 847,269, Saw, chain, A. M. Granbery. Saw guard and handle connection, crosscut, J. Tors Saws appliance for crosscut, J. Tors. Sawsing machine, M. Rosenow. Scaffold, N. S. Davis. Scargold, N. S. Davis. Scraper coupling, J. Engebretsen. 846,652, Scraper coupling, J. Engebretsen. 846,652, Screen, See Window screen. Screen, M. S. Clark Screen, M. S. Clark Screen, M. S. Clark Screen, M. S. Clark Sceds, etc., cleaning and separating apparating machine, end gate, E. F. Molck. Seeding machine, W. Larson. Sewing | 847,062
847,178
847,293
846,873
847,197
846,539
846,873
847,198
846,942
846,761
846,942
846,761
846,539
846,606
847,116
846,530
846,606
847,116
846,530
846,606
847,173
846,762
847,270
846,663
847,265
846,840
847,275
846,840
847,275
846,840
847,275
846,840
847,275
846,840
847,275
846,840
847,275
846,840
847,275
846,840
847,275
846,840
847,275
846,840
847,275
846,840
847,275
846,840
847,275
847,275
847,270
846,875
847,275
847,270
846,875
847,275
847,270
847,270
846,575 | | | shipments, F. E. Getz. Reeling device, C. A. Hadland. Refractory material and producing it, C. L. Norton Refractory material and producing it, C. L. Refrigerator, E. C. Strayer. Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Reck drilling machines, water supplying attachment for, Hellman & Bayles. Rocket apparatus, A. Maul. Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick. Rolling mill hotbed, E. E. Slick. Rolling mill, universal, V. Chartener. Roofing construction, C. J. Kunzler. Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee. Sad iron heater, H. W. Russell. Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Ly removing wall, M. Froschmaier Jy removing wall, M. Froschmaier Saw guard and handle connection, crosscut, J. Tors Saws, appliance for crosscut, J. Tors. Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scraper coupling, J. Engebretsen. 846,652, Screen. See Window screen. Screen, M. S. Clark. Screen, M. S. Clark. Screen, M. S. Clark. Screen, J. H. Claiborne, Jr. Seal, bottle, C. G. Hawley. Seal for boxes, E. J. Brooks. Seeding machine, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seesing machine, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seeding machine, W. Larson. Sewing machine, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seeding machine, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seeds on concection, rolling window, C. L. Webster | 847,062
847,178
847,293
846,873
846,873
846,873
847,197
846,539
846,942
846,716
846,716
846,716
846,716
846,716
846,716
846,716
846,716
847,116
846,723
846,762
847,116
846,762
847,117
847,270
847,173
847,270
846,663
846,663
846,663
846,762
847,173
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
846,784
847,276
846,784
847,276
846,915
847,290
846,915
847,202
846,915
847,262
847,262
847,262
847,262
846,915
847,262 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refractory material and producing it, C. L. Refrigerator, E. C. Strayer. Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Recket apparatus, A. Maul Rolling manular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener. Rooping construction, C. J. Kunzler. Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Sad iron heater, H. W. Russell Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Samb slast apparatus, F. M. Wise. 847,269, Saw, chain, A. M. Granbery Saw guard and handle connection, crosscut, J. Tors Saws, appliance for crosscut, J. Tors. Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scarglod, G. Bonenberger. Scale, spring, G. Walker. Scraper coupling, J. Engebretsen. 846,652, Screen, M. S. Clark. Screen, M. S. Clark Screen, M. S. Clark Screen, J. H. Claiborne, Jr. Seal, bottle, C. G. Hawley. Scaffold, Rosenswaser Scale adjuster, window, F. J. & A. A. Mansmann Shade and curtain bracket, C. F. Nicholson. Sewing machine, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seeding machine, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seeding machine, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seeding machine, or oling window, C. L. Webster Shade and curtain bracket, C. F. Nicholson. Safting and the like, machine for straight- |
847,062
847,178
847,293
846,873
847,197
846,539
846,873
847,198
846,942
846,761
846,942
846,761
846,536
846,762
847,116
846,762
847,117
846,762
847,173
846,762
847,276
846,762
847,276
846,84
847,276
846,84
846,762
847,276
846,963
846,964
847,276
846,963
846,762
847,276
846,963
846,762
847,276
846,963
846,964
847,276
846,963
846,762
846,963
846,762
846,963
846,762
846,963
846,762
846,963
846,762
846,963
846,762
846,963
846,762
846,963
846,964
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refractory material and producing it, C. L. Refrigerator, E. C. Strayer. Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Recket apparatus, A. Maul Rolling manular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener. Rooping construction, C. J. Kunzler. Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Sad iron heater, H. W. Russell Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Samb slast apparatus, F. M. Wise. 847,269, Saw, chain, A. M. Granbery Saw guard and handle connection, crosscut, J. Tors Saws, appliance for crosscut, J. Tors. Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scarglod, G. Bonenberger. Scale, spring, G. Walker. Scraper coupling, J. Engebretsen. 846,652, Screen, M. S. Clark. Screen, M. S. Clark Screen, M. S. Clark Screen, J. H. Claiborne, Jr. Seal, bottle, C. G. Hawley. Scaffold, Rosenswaser Scale adjuster, window, F. J. & A. A. Mansmann Shade and curtain bracket, C. F. Nicholson. Sewing machine, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seeding machine, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seeding machine, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seeding machine, or oling window, C. L. Webster Shade and curtain bracket, C. F. Nicholson. Safting and the like, machine for straight- | 847,062
847,178
847,293
846,873
846,873
846,873
846,802
847,198
846,942
846,761
846,825
846,761
846,825
846,761
846,728
847,116
846,731
847,262
847,113
847,263
846,763
846,663
846,663
846,663
846,663
846,663
846,663
846,784
847,275
846,595
846,784
847,275
846,965
846,784
847,275
846,965
846,784
847,275
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
846,965
847,200
846,965
847,100
846,965
847,100
846,965
847,100
846,965
846,965
847,100
846,965
847,100
846,965
847,100
846,965
847,100
846,965
847,100
846,965
846,965 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refractory material and producing it, C. L. Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Recket alpapratus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener. Rope coupling, Roewe & Mathews. Rulle, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Sad iron heater, H. W. Russell. Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Sam guard and handle connection, crosscut, J. Tors Saw guard and handle connection, crosscut, J. Tors Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scargold, N. S. Davis. Scargold, G. Bonenberger. Scale, spring, G. Walker. Scraper coupling, J. Engebretsen. 846,652, Screen. See Window screen. Screen, M. S. Clark Screen, J. H. Claiborne, Jr. Scal bottle, C. G. Hawley Scal for boxes, E. J. Brooks. Seeding machine, end gate, E. F. Molck Scell, bottle, C. G. Hawley Scal for boxes, E. J. Brooks. Seeding machine, end gate, E. F. Molck Scell pottle, C. G. Hawley Scal for boxes, E. J. Brooks. Seeding machine, end gate, E. F. Molck Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seesaw, P. Hoogerzell. Seeining machine, or Gate, E. F. Molck Seesay, P. Hoogerzell. Seining machine, or Green, Seesay, P. Hoogersell. Seend, S. L. A. Jones Shears, R. Seyic Shaft sliking apparatus, R. Baggaley. Shafting and the like, machine for straightening, W. J. Muncaster Shaping machine, Cochran & Warman. Shears, R. Seyic |
847,062
847,178
847,293
846,873
846,873
846,873
846,873
847,197
846,539
846,942
847,198
846,942
846,761
846,752
847,116
846,752
847,116
846,762
847,116
846,762
847,173
847,275
846,663
846,663
846,663
846,964
847,476
847,275
847,275
847,265
846,762
847,173
847,275
846,663
846,964
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,27 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Norton Refractory material and producing it, C. L. Refrigerator, E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Recket alpapratus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener. Rope coupling, Roewe & Mathews. Rulle, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Sad iron heater, H. W. Russell. Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanently removing wall, M. Froschmaier Sam guard and handle connection, crosscut, J. Tors Saw guard and handle connection, crosscut, J. Tors Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scargold, N. S. Davis. Scargold, G. Bonenberger. Scale, spring, G. Walker. Scraper coupling, J. Engebretsen. 846,652, Screen. See Window screen. Screen, M. S. Clark Screen, J. H. Claiborne, Jr. Scal bottle, C. G. Hawley Scal for boxes, E. J. Brooks. Seeding machine, end gate, E. F. Molck Scell, bottle, C. G. Hawley Scal for boxes, E. J. Brooks. Seeding machine, end gate, E. F. Molck Scell pottle, C. G. Hawley Scal for boxes, E. J. Brooks. Seeding machine, end gate, E. F. Molck Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seesaw, P. Hoogerzell. Seeining machine, or Gate, E. F. Molck Seesay, P. Hoogerzell. Seining machine, or Green, Seesay, P. Hoogersell. Seend, S. L. A. Jones Shears, R. Seyic Shaft sliking apparatus, R. Baggaley. Shafting and the like, machine for straightening, W. J. Muncaster Shaping machine, Cochran & Warman. Shears, R. Seyic | 847,062
847,178
847,293
846,873
846,873
846,873
846,873
846,982
846,761
846,942
846,761
846,862
847,116
846,781
847,116
846,781
847,116
846,782
847,117
847,270
846,663
846,663
846,762
847,173
847,270
846,965
846,510
846,965
846,762
847,173
847,275
846,964
846,965
846,763
846,963
846,964
847,173
847,275
846,963
846,964
847,173
847,275
846,963
846,963
846,963
846,744
847,276
847,100
846,816
847,100
846,816
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
846,917
846,917
846,917
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,91 | | | shipments, F. E. Getz. Reeling device, C. A. Hadland. Refractory material and producing it, C. L. Norton Refractory E. C. Strayer. Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Recket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick. Rolling mill, universal, V. Chartener. Roofing construction, C. J. Kunzler. Roofing construction, C. J. Kunzler. Rope coupling, Roewe & Mathews. Rulle, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Sad iron heater, H. W. Russell. Saddidetree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanent- Iy removing wall, M. Froschmaier Sand blast apparatus, F. M. Wise. 847,269, Saw, chain, A. M. Granbery. Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scaffold, G. Bonenberger. Scale, spring, G. Walker. Screen, M. S. Clark. Scr |
847,062
847,178
847,293
846,733
847,197
846,539
846,873
847,198
846,942
846,761
846,761
846,762
847,116
846,762
847,116
846,762
847,116
846,762
847,116
846,762
847,173
846,663
847,275
846,663
847,275
846,80
847,275
846,80
847,275
846,961
847,276
846,961
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
846,876
846,876
846,876
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877
846,877 | | | shipments, F. E. Getz. Reeling device, C. A. Hadland. Refractory material and producing it, C. L. Norton Refractory material and producing it, C. L. Refrigerator, E. C. Strayer. Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Recket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick. Rolling mill, universal, V. Chartener. Roofing construction, C. J. Kunzler. Roofing construction, C. J. Kunzler. Rope coupling, Roewe & Mathews. Rulle, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Sad iron heater, H. W. Russell Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanent- ly removing wall, M. Froschmaier Sam guard and handle connection, crosseut, J. Tors Saw guard and handle connection, crosseut, Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scaffold, G. Bonenberger. Scale, spring, G. Walker. Screen, See Window screen. Screen, M. S. Clark. Sceeding machine, end gate, E. F. Molck. Seeding machine, gade, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seesany, P. Hoogerzell Seeding machine, gade, adjustable, Rogers & Rosenwasser Shade adjuster, window, F. J. & A. A. Mansmann Shade and curtain bracket, C. F. Nicholson. m | 847,062
847,178
847,293
846,873
846,873
846,873
846,873
846,873
846,92
847,198
846,942
846,761
846,572
847,116
846,771
847,216
846,762
847,116
846,762
847,116
846,762
847,117
847,270
846,663
846,663
846,664
847,173
847,270
846,762
847,173
847,270
846,762
847,173
847,270
846,763
846,763
846,763
846,964
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
847,276
846,709
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876
846,876 | | | shipments, F. E. Getz. Reeling device, C. A. Hadland. Refractory material and producing it, C. L. Norton Refractory material and producing it, C. L. Refrigerator, E. C. Strayer. Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd. Recket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick. Rolling mill, universal, V. Chartener. Roofing construction, C. J. Kunzler. Roofing construction, C. J. Kunzler. Rope coupling, Roewe & Mathews. Rulle, adjustable, J. B. Le Vasseur. Running gear, Patterson & Magee Sad iron heater, H. W. Russell Saddletree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale. Saltpeter and similar eruptions, permanent- ly removing wall, M. Froschmaier Sam guard and handle connection, crosseut, J. Tors Saw guard and handle connection, crosseut, Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scaffold, G. Bonenberger. Scale, spring, G. Walker. Screen, See Window screen. Screen, M. S. Clark. Sceeding machine, end gate, E. F. Molck. Seeding machine, gade, end gate, E. F. Molck. Seeds, etc., cleaning and separating apparatus for, F. M. Dossor. Seesany, P. Hoogerzell Seeding machine, gade, adjustable, Rogers & Rosenwasser Shade adjuster, window, F. J. & A. A. Mansmann Shade and curtain bracket, C. F. Nicholson. m | 847,062
847,178
847,293
846,873
846,873
846,873
846,873
846,873
846,92
847,198
846,942
846,761
846,560
847,114
846,560
847,116
846,762
847,116
846,762
847,116
846,762
847,116
846,762
847,116
846,762
847,116
846,762
847,116
846,663
846,663
846,663
846,663
846,965
846,563
846,965
847,265
847,275
847,275
847,275
847,275
847,275
847,275
847,275
847,275
846,981
846,915
847,275
847,100
846,793
846,793
846,793
846,793
846,793
846,793
846,793
846,793
846,888
846,818
846,793
846,793
846,793
846,793
846,945
846,945
846,945
846,945
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,970
846,772
846,972
846,972
846,973
847,105 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Reefractory material and producing it, C. L. Norton Refractory E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd Retaining brake, D. W. Lloyd Recket alilling machines, water supplying attachment for, Hellman & Bayles. Rocket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener Roofing construction, C. J. Kunzler Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur Running gear, Patterson & Magee Sad iron heater, H. W. Russell Saddidetree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale Saltpeter and similar eruptions, permanent- ly removing wall, M. Froschmaier Sand blast apparatus, F. M. Wise. \$47,269, Saw, chain, A. M. Granbery. Saw guard and handle connection, crosscut, J. Tors Sawing machine, M. Rosenow. Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scaffold, G. Bonenberger. Scale, spring, G. Walker Scraper coupling, J. Engebretsen. \$46,652, Screen. See Window screen. Screen, M. S. Clark Sceding machine, Jr. Seeding machine, Jr. Seeding machine, W. Larson Seeding machine, W. Larson Seeding machine, Jr. Seeding machine, Goderna & Warman. Shade and curtain
bracket, C. F. Nicholson. Shade connection, rolling window, C. L. Webster Shaft sluking apparatus, R. Baggaley. Show case, H. H. She | 847,062
847,178
847,293
846,873
847,197
846,539
846,873
847,198
846,942
846,761
846,825
846,762
847,116
846,500
847,116
846,500
847,116
846,762
847,173
846,663
847,270
846,663
847,265
847,265
847,270
846,810
846,784
847,275
846,810
846,784
847,275
846,810
846,784
847,275
846,816
847,275
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,100
846,816
847,100
846,709
846,816
846,917
847,100
846,816
846,917
847,100
846,818
846,918
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
846,816
846,917
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,818
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,91 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Reefractory material and producing it, C. L. Norton Refractory E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd Retaining brake, D. W. Lloyd Recket alilling machines, water supplying attachment for, Hellman & Bayles. Rocket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener Roofing construction, C. J. Kunzler Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur Running gear, Patterson & Magee Sad iron heater, H. W. Russell Saddidetree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale Saltpeter and similar eruptions, permanent- ly removing wall, M. Froschmaier Sand blast apparatus, F. M. Wise. \$47,269, Saw, chain, A. M. Granbery. Saw guard and handle connection, crosscut, J. Tors Sawing machine, M. Rosenow. Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scaffold, G. Bonenberger. Scale, spring, G. Walker Scraper coupling, J. Engebretsen. \$46,652, Screen. See Window screen. Screen, M. S. Clark Sceding machine, Jr. Seeding machine, Jr. Seeding machine, W. Larson Seeding machine, W. Larson Seeding machine, Jr. Seeding machine, Goderna & Warman. Shade and curtain bracket, C. F. Nicholson. Shade connection, rolling window, C. L. Webster Shaft sluking apparatus, R. Baggaley. Show case, H. H. She | 847,062
847,178
847,293
846,873
847,197
846,539
846,873
847,198
846,942
846,761
846,825
846,762
847,116
846,500
847,116
846,500
847,116
846,762
847,173
846,663
847,270
846,663
847,265
847,265
847,270
846,810
846,784
847,275
846,810
846,784
847,275
846,810
846,784
847,275
846,816
847,275
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,100
846,816
847,100
846,709
846,816
846,917
847,100
846,816
846,917
847,100
846,818
846,918
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
846,816
846,917
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,818
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,91 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Reefractory material and producing it, C. L. Norton Refractory E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel. Retaining brake, D. W. Lloyd Retaining brake, D. W. Lloyd Recket alilling machines, water supplying attachment for, Hellman & Bayles. Rocket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick Rolling mill, universal, V. Chartener Roofing construction, C. J. Kunzler Rope coupling, Roewe & Mathews. Rule, adjustable, J. B. Le Vasseur Running gear, Patterson & Magee Sad iron heater, H. W. Russell Saddidetree and tree pad plate, J. E. L. Crawford Safe, F. J. Super Safe and vault protecting device, P. H. Thompson Safety lock, M. Speciale Saltpeter and similar eruptions, permanent- ly removing wall, M. Froschmaier Sand blast apparatus, F. M. Wise. \$47,269, Saw, chain, A. M. Granbery. Saw guard and handle connection, crosscut, J. Tors Sawing machine, M. Rosenow. Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, N. S. Davis. Scaffold, G. Bonenberger. Scale, spring, G. Walker Scraper coupling, J. Engebretsen. \$46,652, Screen. See Window screen. Screen, M. S. Clark Sceding machine, Jr. Seeding machine, Jr. Seeding machine, W. Larson Seeding machine, W. Larson Seeding machine, Jr. Seeding machine, Goderna & Warman. Shade and curtain bracket, C. F. Nicholson. Shade connection, rolling window, C. L. Webster Shaft sluking apparatus, R. Baggaley. Show case, H. H. She |
847,062
847,178
847,293
846,873
847,197
846,539
846,873
847,198
846,942
846,761
846,825
846,762
847,116
846,500
847,116
846,500
847,116
846,762
847,173
846,663
847,270
846,663
847,265
847,265
847,270
846,810
846,784
847,275
846,810
846,784
847,275
846,810
846,784
847,275
846,816
847,275
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,100
846,816
847,100
846,709
846,816
846,917
847,100
846,816
846,917
847,100
846,818
846,918
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
846,816
846,917
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,818
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,91 | | | shipments, F. E. Getz Reeling device, C. A. Hadland Refractory material and producing it, C. L. Refractory E. C. Strayer Relay, R. H. Manson Rendering tank, F. G. Wiselogel Retaining brake, D. W. Lloyd. Recket apparatus, A. Maul Rolling annular articles, mill for, C. von Philp Rolling mill hotbed, E. E. Slick. Rolling mill universal, V. Chartener Roofing construction, C. J. Kunzler Roofing construction, Consecut, J. Tors. Sawing machine, M. Rosenow. Saws, appliance for crosscut, J. Tors. Sawing machine, M. Rosenow. Scaffold, G. Bonenberger. Scale, spring, G. Walker. Scraper coupling, J. Engebretsen. 846,652, Screen, See Window screen. Screen, M. S. Clark. Scraper coupling, J. Engebretsen. 846,652, Screen, See Window screen. Screen, M. S. Clark. Scraper coupli | 847,062
847,178
847,293
846,873
847,197
846,539
846,873
847,198
846,942
846,761
846,825
846,762
847,116
846,500
847,116
846,500
847,116
846,762
847,173
846,663
847,270
846,663
847,265
847,265
847,270
846,810
846,784
847,275
846,810
846,784
847,275
846,810
846,784
847,275
846,816
847,275
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,270
846,816
847,100
846,816
847,100
846,709
846,816
846,917
847,100
846,816
846,917
847,100
846,818
846,918
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
847,100
846,816
846,917
846,816
846,917
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,817
846,818
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,918
846,91 | | ### Read This Letter From Missouri: "Five years ago I took out two policies of \$10,000 each in your company. At the time I made a memorandum on my list of life insurance: 'Due 1916, with *bossibly* an additional two thousand as a dividend.' "When notified a few days ago that a dividend on my two policies, of \$1,208.60, was due, and that it was mine for the asking, I was surprised and greatly pleased to discover that the prospects were so good for the two thousand dollar dividend being paid. I now regret that at the time I took out this insurance in your company, I had not made the amount double." This Policyholder thought that possibly \$2,000 would be paid as a dividend in 1916, but in 1906—when his policies had been in force only five years—he receives \$1,208.60, and, mark you, this is only one dividend. If the policyholder lives until the policy matures he will have received two other dividends, and if he should die at any time the policy will be paid in full. ## The Prudential INSURANCE CO. OF AMERICA Incorporated as a Stock Company by the State of New Jersey. Write for Specimen Five Year Dividend Endowment Policy like this at your age. JOHN F. DRYDEN, President. Dept. 121 NEWARK, N. J. ### Concrete Cement Reinforced Concrete Concrete Building Blocks SCIENTIFIC AMERICAN SUPPLEMENT 1543 contains an article on Concrete, by Brysson Cunningham. The article clearly describes the proper composition and mixture of concrete and gives the results of elaborate tests. SCIENTIFIC AMERICAN SUPPLEMENT 1372 contains an article by A. D. Elbers on tests and constitution of Portland cement. SCIENTIFIC AMERICAN SUPPLEMENT 1396 discusses the testing of cement. SCIENTIFIC AMERICAN SUPPLEMENT 1325 contains an article by Professor William K, Hatt giving an historical sketch of slag cement. SCIENTIFIC AMERICAN SUPPLEMENTS 1567, 1568, 1569, 1570, and 1571 contain an elaborate discussion by Lieut, Henry J. Jones of the various systems of reinforcing concrete, concrete construction, and their applications. These articles constitute a splendid text book on the subject of reinforced concrete. Nothing better has been published. SCIENTIFIC AMERICAN SUPPLEMENT 997 contains an article by Spencer Newberry in which practical notes on the proper preparation of concrete are given. SCIENTIFIC AMERICAN SUPPLEMENTS 1568 and 1569 present a helpful account of the making of concrete blocks by Spencer Newberry. SCIENTIFIC AMERICAN SUPPLEMENT 1534 gives a critical review of the engineering value of reinforced concrete. SCIENTIFIC AMERICAN SUPPLEMENTS 1547 and 1548 give a resumé in which the various systems of reinforced concrete con-struction are discussed and illustrated. SCIENTIFIC AMERICAN SUPPLEMENTS 564 and 1565 contain an article by Lewis A. Hicks, in which the merits and defects A. Hicks, in which the merits and of reinforced concrete are analyzed. SCIENTIFIC AMERICAN SUPPLEMENT 1551 contains the principles of reinforced concrete with some practical illustrations by Walter Loring Webb. SCIENTIFIC AMERICAN SUPPLEMENT 1573 contains an article by Louis H. Gibson on the principles of success in concrete block manufacture, illustrated. SCIENTIFIC AMERICAN SUPPLEMENT 1574 discusses steel for reinforced concrete. SCIENTIFIC AMERICAN SUPPLEMENTS CIENTIFIC AMERICAN SUPPLEMENTS 1575, 1576, and 1577 contain a paper by Philip L. Wormley, Jr., on cement mortar and concrete, their preparation and use for farm purposes. The paper exhaustively discusses the making of mortar and concrete, depositing of concrete, facing concrete, wood forms, concrete sidewalks, details of
construction of reinforced concrete posts, etc. slag cement. SCIENTIFIC AMERICAN SUPPLEMENTS 955 and 1042 give good accounts of cement testing and composition, by the well-known authority, Spencer B. Newberry. SCIENTIFIC AMERICAN SUPPLEMENTS 1510 and 1511 present a discussion by Clifford Richardson on the constitution of Portland cement from a physico-chemical standpoint. Portland cement from a physico-chemical standpoint. SCIENTIFIC AMERICAN SUPPLEMENT 1519 contains an essay by R. C. Carpenter on experiments with materials which retard the activity of Portland cement. SCIENTIFIC AMERICAN SUPPLEMENTS 1465 and 1466 publishes an exhaustive illustrated account of the Edison Portland cement works, describing the machinery used. SCIENTIFIC AMERICAN SUPPLEMENT 1491 gives some fallacies of tests ordinarily applied to Portland cement. SCIENTIFIC AMERICAN SUPPLEMENT 1561 presents an excellent review by Brysson Cunningham of mortars and cements. SCIENTIFIC AMERICAN SUPPLEMENT Cunningnam of mortars and cements. SCIENTIFIC AMERICAN SUPPLEMENT 1533 contains a resumé of the cement industry and gives some valuable formulæ. SCIENTIFIC AMERICAN SUPPLEMENT 1575 discusses the manufacture of hydraulic cement. L. L. Stone is the author. SCIENTIFIC AMERICAN SUPPLEMENTS 1583 and 1588 contain an able paper by 1587 and 1588 contain an able paper by Edwin C. Eckel on cement material and industry of the United States. SCIENTIFIC AMERICAN SUPPLEMENT 1586 contains a review of concrete mixing machinery by William L. Larkin. SCIENTIFIC AMERICAN SUPPLEMENT 1583 gives valuable suggestions on the selection of Portland cement for concrete blocks. SCIENTIFIC AMERICAN SUPPLEMENT 1581 splendidly discusses gates. A helpful paper. SCIENTIFIC AMERICAN SUPPLEMENT 1595 presents a thorough discussion of sand for mortar and concrete, by Sanford E. Thomson. Each number of the Supplement costs 10 cents. A set of papers containing all the articles above mentioned will be mailed for \$3,50 Order from your Newsdealer or from MUNN & CO., Publishers, 361 BROADWAY, NEW YORK CITY ### Classified Advertisements Advertising in this column is $50\,\mathrm{cents}$ a line. No less than four nor more than ten lines accepted. Count seven words to the line. All orders must be accompanied by a remittance. Further information sent on request. #### SALE AND EXCHANGE. POLARITY INDICATOR, 25 cents, works on any voltage, can be carried in pocket, unbreakable, satisfaction guaranteed. J. H. Gravell, 1905 Drexel Building, Philadelphia, Pa. ### BUSINESS OPPORTUNITIES. PEAT SWAMPS TURNED INTO COAL MINES.— Peat coal, coke, gas, litter. Peat bogs developed and plants erected. Dealer in peat machinery and peat pro-ducts. J. Bordollo, Kingsbridge, New York City. EVERY ONE INTERESTED IN THE MAIL ORDER Business need our booklet, "Mail Order Advertising." 32 pages of valuable information: rates plans, mediums, follow-upsystems, Also booklet. The Right Way To Get Into The Mail Order Business." Both mailed, 20c. Nome Free, Ross D. Breniser & Co., 449 Land Title Building, Philadelphia. INCORPORATE YOUR BUSINESS. Over sixteen hundred charters procured for my clients. Write for corporation laws, blanks free, to former Ass't Secretary of State, Philip N. Lawrence, Huron, South Dakota. ENTIRELY NEW IDEA IN BULL STAFFS.—All metal. Reduces danger in handling bulls one half. For sale very cheap. Inquirers give references. Address B. S., Box 773, New York. WILL PAY FOR INFORMATION where machine tools can be bought reasonable. If you are connected with a shop and know where any are for sale write me about it. R. A. Pinner, 122 Water Street, New York City. A FEW DOLLARS will start a prosperous mail order business. We furnish catalogues and everything neces-sary. By our easy method failure impossible. Write to-day. Milburn-Hicks Co., 718 Pon tiac Building, Chicago. PATENTS SOLD ON COMMISSION.—If you wish to buy or sell a patent write for particulars to E. L. Perkins, 72 Broad Street, Boston. Patent Sales Exclusively. FOR SALE.—Portable Compressed Air House Cleaning Wagons and Machinery sold to responsible parties to operate in cities of from five thousand inhabitants upwards. Each Portable Cleaning Plant has an earning capacity of from \$50.00 to \$70.00 per day, at a cost of about \$8.00 per day. Capital required from \$2.00.00 upwards. Stationary Residential Plants also from \$450.00 upwards. Over 100 companies operating our system. We are the pioneers in the business, and will prosecute all infringers. State references. Address General Compressed Air House Cleaning Co., 4453 Olive Street, St. Louis, Mo. I SELL PATENTS.—To buy or having one to sell, write Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y. ### HELP WANTED. OPPORTUNITIES for experienced technical men in all lines. Any location desired in the United States or foreign countries. Service confidential. Write us today. Hapgoods, 305 Broadway, New York. WILL MAKE A FIRST-CLASS BOOK-KEEPER of you in six weeks for \$3.00, or return money. I find positions, too—free! For further particulars, write, J. H. Goodwin, Room 546, 1215 Broadway, New York. ### PARTNERS WANTED. WANTED.—Financial assistance by an inventor to have working model of invention made. Patent allowed. Should parties wish interest in foreign patent, please so state. Amount not needed will be returned. For further particulars address Financial, Box 773, N. Y. FLYING MACHINE.—I have invented a flying machine that will readily arise from the ground, can be steered in any direction, and will alight in safety. My invention is comparatively very simple in construction. I am now holding United States Caveat on it, and I want responsible party with the necessary means to help build the machine for part ownership in patent. Address J. R., Box 86, San Francisco, Cal. ### WANTED-MISCELLANEOUS. Wanted. Platinum Scraps, we pay \$1.30 per dwt. for clean PLATINUM SCRAPS. Further decline probable. Send by Registered Mail for Safety. National Refinery, 239 Taylor Ave., Newport, Ky. ### PATENTS FOR SALE. PATENT FOR SALE OUTRIGHT OR FOR PART royalty and part cash. Hatchet and Plane Combined. Patented in United States, October, 1905, No. 800,646; in Canada, March, 1906, No. 98,137. For particulars, address D. M. Haney. Box 44, Sykesville. Penna. FOR SALE.—Quick adjusting pipe and nut wrench. Will sell patent outright or have made with right parties for royalty. For full information and particulars, address F. B. McGovern, Box 373, Oil City, Pa. IF YOU WANT TO BUY A MONEY-MAKING Patent, I have a Patented Fence Post for sale or take royalty. For further information and particulars, address R. R. Bueto, Slaughter, La. MORE WOMEN USE FACE POWDER than men who use a razor. Over ten million razors used, yet there is no Puff Box on the market with special feature of novelty or usefulness and millions of women waiting to buy one like ours. Just patented. Patent for sale. Correspondence solicited. For further information and particulars address "The New-Way Company," Louisville, Ky. PATENT GAME APPARATUS.—Most exciting board game out. Represents the struggle for supremacy in life Will sell outright or will lease on royalty. James E. Heron, Meeteetse, Wyoming. ### WATER FILTER. THE DUPLEX FILTER is positively hygienic, be cause it is self-cleaning. Leased by 257 mbysicians, 6 hospitals, thousands of private families. Rent. 2 cents per day. Duplex Filter Co., 1140 Broadway, New York. ### FACTORY AND MILL SUPPLIES. PUT IN WATER WORKS at your country home. A Caldwell Tank and Tower is the thing. Substantial, efficient, ornamental, inexpensive and frost proof. Dozens near you. A. E. Woodruff, of Mt. Carmel, Conn., says: "My outfit has been in use, eleven years without any expense." Write for Water Works Catalogue and Price List. W. E. Caldwell Co., Station D.D, Louisville, Ky. ### MACHINERY FOR SALE. REMOVED to larger quarters, we offer our large stock of new and second-hand machinery; also boilers engines, dynamos, motors, materials and supplies. Liberty Machinery Mart, 153 West Street, New York. ### ENGRAVING. GENERAL ENGRAVING ON STEEL AND COPPER PLATE.—Monograms, address dies, visiting cards and wedding invitations my specialty. Estimates furnished upon all classes of engraving. F. J. Maidhof, 9 W. 14th ### PHOTOGRAPHY. INTERESTED IN PHOTOGRAPHY? Then send 25c. for 3 mo. trial subscription to the leading American photographic magazine for a generation. The Photographic Times, Room S, 39 Union Square, N. V. City. ITACK OF THE STATE STA ### ELECTRICAL. . TEDDY BEAR SKULL, DEVIL, SCARF PINS.—Hand carved, best ivory. When illuminated produce marvellous effect. Vest Pocket and Flash Lights, Medical Batteries. E. J. Tardie, 221 Sixth Avenue New York City. ELECTRICIAN AND MECHANIC is now publishing a complete course in electrical engineering for beginners, students, engineers, etc. Three months' trial, 10c. S. A. Sampson Pub. Co., 6 Beacon St., Boston, Mass. #### EXPERIMENTAL ELECTRICS. STUDY ELECTRICITY ATHOME. Complete course, 30-pg. detail-book. 220-pg. text-book. 200 experiments, over 100 pieces of apparatus. Only \$5.00. Bulletin "A S" explains. Thomas M. St. John, \$48 Ninth Ave., N. Y. #### SOUVENIR POST CARDS. 25 BEAUTIFUL POST CARDS mailed to any address for 12c. A great variety of subjects. Sold by some stores at 2 for 5c. and others at 5c. each. Defiance Studio, 65 West Broadway, New York. Price list free. FREE. -12 Post Cards given with 6 mos subscription at 25c. to Largest, Oldest, 100-page Monthly on Stamps, Coins, Post Cards, Curios, Relics and Minerals. Ads pay 1c. a word. Sample Free. Phil. West, Superior, Neb. #### MOTION PICTURES. MOTION PICTURE MACHINES. Films, Slides and Supplies from the largest store of its kind in this city. Sole agent Power's Cameragraph the real fireproof ma-chine. Catalogs. Lewis M. Swaab, 336 Spruce St., Phila. ### SCHOOLS AND COLLEGES. GEO, H. WILSON, the World's Champion, has written a booklet, "Vaudeville, Stage Dancing and Entertain-ing." It is absolutely free
and very interesting. Just address Wilson's Vaudeville School. 263 W. 42d St., N. Y. PATENT Laws and Office Practice.—Thoroughly practical course by mail for attorneys and inventors. Free specimen pages and information. Cor. School of Patent Law, Dept. A, 1853 Mintwood Place, Washington, D. C. #### FOR THE HAIR. OUR VACUUM CAP when used a few minutes each day draws the blood to the scalp, causing free and normal circulation, which stimulates the hair to a new healthy growth. Sent on trial under guarantee. Write for free particulars. The Modern Vacuum Cap Co., 617 Barclay Block, Denver. Col. #### GAS-LIGHTING APPLIANCES. THE "PNEU-WAY" of lighting gas! Lights Welsbachs without electricity from button on wall! Easily installed, ever lasting. Ask your gas company or write Pnematic Gas Lighting Company, 150 Nassau St., N. Y. #### MACHINERY. MACHINE TOOLS WANTED. — Milling Machine, Lathes, Screw Machines (large and small), Shaper, Punch Press, Drill Press, Boring Mill and general machine shop tools. R. A. Pinner, 122 Water Street, New York City. #### VACATIONS. 101 RANCH offers a delightful vacation on the largest ranch in the world; real ranch life, riding, roping, etc. Horses, saddles, private rooms and comfortable accommodations for ladies and gentlemen. For beautifully illustrated booklet address Miller Brothers, 101 Ranch Bliss, Okla. (If ordering booklet through curiosity, inclose 40 cents stamps.) ### DUPLICATORS. SAVE MONEY.—Send to Lineograph Co., 112 Fulton St., New York City, for Duplicators and Supplies. Being the actual makers, you will save 40 cents on the dollar. Circulars sent on application. | Sole, slipper, I. Greenberg | 847,063 | |--|-------------------------------| | Sole, slipper, I. Greenberg | | | ratus for, L. Brockt | 847,230 | | Speed and reversing mechanism, change, P. Renaux Speed regulator, R. E. Rucker. Spittoon, O. Cady. Sprayer, L. I. Lettes. Spring ring, E. W. Morehouse. Spring wheel, L. A. Noel. Spring wheel, A. S. F. Robinson. Spring wheel, L. A. Nelson. Square, L. V. Shepherd. Square, carpenter's, W. Morley. Squaegee and scrubber, combined, A. R. Gschwind | 846,620 | | Speed regulator, R. E. Rucker | 847.115 | | Spittoon, O. Cady | 847,115
846,454 | | Sprayer, L. I. Lutes | 846,491 | | Spring ring, E. W. Morehouse | 846,597 | | Spring wheel. L. A. Noel846,937, | 846,938 | | Spring wheel E A Nelson | 846,951 | | Square. L. V. Shepherd | 847,099
847,208 | | Square, carpenter's, W. Morley | 846,495 | | Squeegee and scrubber, combined, A. R. | | | Gschwind | 847,250 | | Stanchion cattle I Hacker | 847,144
846,664 | | Staple machine, R. Coates | 846,826 | | Steam from waste heat of slag, generating, | ì | | R. Baggaley | 846,817 | | Steam trap, C. E. Vance | 847,131 | | Stoker machanical N E Gaa 847 061 | 846,805
847,174 | | Stone dressing machine, W. H. Van Sickel. | 846,808 | | Stalk cutter, Yarbrough & Bradley. Stanchion, cattle, J. Hacker Staple machine, R. Coates Steam from waste heat of slag, generating, R. Baggaley Stereoscope, W. I. Sherwood Stoker, mechanical, N. E. Gee 847,061, Stone dressing machine, W. H. Van Sickel. Stove, J. M. Robertson Stove, cooking, O. Lee Stovepipe elbow, W. C. Embury Straightening and bending machine, Gardner & Biggert, Jr. | 846,621 | | Stove, cooking, O. Lee | 846,579 | | Stovepipe elbow, W. C. Embury | 847,049 | | Straightening and bending machine, Gardner & Biggert, Jr Straightening press, J. C. Cromwell Street indicating mechanism, T. W. Small. String lapering machine, J. P. Donovan Sugar juices, purifying and concentrating, J. A. Besson | 846 462 | | Straightening press I C Cromwell | 846,463
846,828 | | Street indicating mechanism, T. W. Small | 846,513 | | String tapering machine, J. P. Donovan | 846,458 | | Sugar juices, purifying and concentrating, | 040 540 | | J. A. Besson | 846,543 | | son | 846,642 | | Surveying instrument, P. Ferber | 846,989 | | Swing, F. J. Forget | 846,6561 | | Switch, W. R. Thompson | 846,764
846,863 | | Switch, J. C. Ray | 846,863
847,152 | | Table See Veterinary's operating table. | 041,152 | | Talking machine horn support, . Kraus | 846,926 | | Teaching arithmetic, apparatus for, A. | | | Leitch | 846,484 | | Telegraphic instrument and the like, A. | 846,464 | | Telegraphy. I. Kitsee | 847.188 | | Telegraphy, electric, I. Kitsee | 847,188
847,189 | | Telephone, S. A. Koltonski | 846,479 | | Telephone exchange apparatus, E. H. | 040 000 | | Telephone service enperatus S H Couch | 846,628
846,827 | | J. A. Besson Sulphids, reducing metallic, E. L. Anderson Surveying instrument, P. Ferber. Swing, 1°. J. Forget. Switch, W. R. Thompson. Switch, W. R. Thompson. Switch, J. C. Ray. Swivel, R. H. Beebe. Talking machine horn support, • Kraus. Table. See Veterinary's operating table. Talking machine horn support, • Kraus. Teaching arithmetic, apparatus for, A. Leitch Leitch Telegraphic instrument and the like, A. Gentili Telegraphy, I. Kitsee. Telepphone, S. A. Koltonski. Telephone exchange apparatus, E. H. Smythe Telephone service apparatus, S. H. Couch. Telephone service apparatus, F. W. Dunbar Telephone, J. Fisher. Thill guard, J. Wright. Ticket issuing machine, coin controlled, A. Wantzen Time-controlled mechanism, J. H. Hermance | 846.889 | | Telephone trunking system, F. W. Dunbar | 846,557 | | Telephony, H. J. Fisher | 846,557
847,283
847,302 | | Thill guard, J. Wright | 847,302 | | Wentzen Machine, coin controlled, A. | 846,766 | | Wantzen | 846,470 | | Tire, E. B. Cadwell | 846,453 | | Tire, cushioned, Z. A. Curtis | 846,455 | | Tire, pneumatic, A. F. Bryce | 847,231 | | Time-controlled mechanism, J. H. Hermance Tire, E. B. Cadwell Tire, cushioned, Z. A. Curtis. Tire, pneumatic, A. F. Bryce Tire winding machine, automobile, Bayne & Subers Toaster, J. M. Brock Tobacco cutter. N. Du Brul. Toll box, P. E. Oswald. Tongs, lifting, P. Neddo | 847 041 | | Toaster, J. M. Brock | 847,041 | | Tobacco cutter, N. Du Brul | 846,546
846,734 | | Toll box, P. E. Oswald | 846,604 | | Tongs, lifting, P. Neddo | 847,200
846,857 | | Tool pneumatic E R Rover | 847 049 | | Toy. E. W. Brimmer | 847,043
846,449 | | Toy, W. V. Gilbert | 846,560 | | Toy, detonating, Wilkinson & Dieterich | 846,884
846,569 | | Toll box, P. E. Oswald Tongs, lifting, P. Neddo. Tool, pneumatic, H. Leineweber. Tool, pneumatic, E. B. Boyer. Toy, E. W. Brimmer. Toy, W. V. Gilbert. Toy, detonating, Wilkinson & Dieterich. Tracting or marking tool, A. E. Jones. Track construction, J. W. Leahy. Traction wheel J. McNeal | 846,569 | | Track construction, J. W. Leany | 846,799 | | Tree felling machine, A. V. Snow Trepan, R. Velasco Trial frames, device for supporting, J. P. | 846,869
847,133 | |--|-------------------------------| | Trial frames, device for supporting, J. P. Weaver | 040,100 | | Weaver Trolley, T. Cope. Trolley stand, H. E. Eastman. Trousers hanger, R. J. Linklater. Truck, W. C. Burry Trunk, 'olding, F. L. A. Eichelberger. Tube bending machine, metallic, Monnet & | 847,163
847,170 | | Trousers hanger, R. J. Linklater
Truck, W. C. Burry | 846,676
846,451
847,171 | | Tunk, folding, F. L. A. Eichelberger
Tube bending machine, metallic, Monnet & | | | _ moyne | 847,094 | | Tubes and screens, forming perforated, M. E. Layne Tubing, E. T. Greenfield | 846,482
846,996 | | Tuning device, C. S. Weber. Turbine, H. C. Karlson. Turbine, N. Becker. | 847,216
846,855
846,896 | | Turbine, N. Becker | 846,896
846,571 | | Turbine, N. Becker. Turbine, elastic fluid, Z. H. Kevorkian Turbine engine, H. Lentz Turbine governing rechanism, J. Wilkinson Turbine shaft bearings, lubricating system for, A. H. Kruesi Turbine, steam, C. V. Kerr. Turbines, bucket for elastic fluid, E. H. Farouhar | 846,928
846,538 | | Turbine shaft bearings, lubricating system | 846,796 | | Turbine, steam, C. V. Kerr | 846,747
846,752 | | Turbines, bucket for elastic fluid, E. H. Farquhar | 846,739 | | Turbines, combined bushing and bearing for shafts of steam, C. V. Kerr | | | Turbines, means for supplying lubricant | 010,110 | | Krilesi Turbines, system of lubrication for, W. L. | 846,794 | | R. Emmet Twisting frame, F. A. Paige Twyer stocks, peep sight for, S. Hosking. | 847,050
846,605 | | Twyer stocks, peep sight for, S. Hosking | 846,475
846,671 | | Typewriter attachment, King & Milstead. Typewriter, music, L. C. & I. F. Badeau. Typewriting machine, B. A. Brooks | 846,443 | | Urinal, A. Johnson. | 847,183
846,644 | | Valve, automatic, F. R. Jacobsen | 847,182
847,268 | | Valve, check, E. W. Aller | 847,146 | | Urinal, A. Johnson. Valve, J. E. Brady. Valve, automatic, F. R. Jacobsen Valve, automatic hose, R. D. Wirt Valve, check, E. W. Aller. Valve controlling means, Parsons & Turnbull Valve controlling mechanism, C. W. Akers | 847,146
846,692
847,219 | | | 847,028 | | Springer Valve for
explosive engines, combined air and gas admission, H. Lentz Valve, steam actuated, E. A. Menking | 847,086 | | vaive, tank, C. wright | 847,092
846,712 | | Valves for explosive engines, means for controlling the, Cormack & Zumdahl | 846,730 | | Valves for explosive engines, means for controlling the, Cormack & Zumdahl Vehicle, antivibration device, F. Lamplough Vehicle boxes from rocking, device for keeping, C. Sallows Vehicle brace, R. Alton Vehicle cleaning device, B. H. Pugh Vehicle frame, J. H. Foster Vehicle storm front, Brock & Du Bois Vehicle ventilating system S. C. Carroll. | 846,797 | | ing, C. Sallows | 846,866
847,224 | | Vehicle cleaning device, B. H. Pugh
Vehicle feeder, F. Roeder | 846,614
847,204 | | Vehicle frame, J. H. Foster
Vehicle storm front, Brock & Du Bois | 846,787
846,820 | | Vehicle ventilating system, S. C. Carroll
Vehicle wheel, P. E. Dawson | 847.245 | | Vehicle ventilating system, S. C. Carroll Vehicle wheel, P. E. Dawson Vehicles, line holder for, J. B. Worden Vending machine, Foote & Johnston | 846,917 | | Ventilator. See Window ventilator. | 847,151 | | Ventilator, F. J. Kobusch
Veterinary's operating table, W. Housam
Vial case, automatic tilting, W. W. Cum- | 847,255
847,180 | | Violin player, automatic, J. Wauters | 846,553
846,883 | | Vitreous parts, apparatus for and method of uniting, F. M. F. Cazin | 846,823
847,045 | | Barnum | 847,040 | | Voting machine counting mechanism, C. G. Abbott Voting machine grouping mechanism, Dela- | 847,037 | | van & Camp Voting machines, paper feed actuating mechanism for, C. H. Pitney Wagon, E. W. Harmon Wagon bolster and standard, O. H. Bunt- | 847,047 | | mechanism for, C. H. Pitney | 847,109 | | Wagon, b. W. Harmon | 847,067 | | Wagon brake, automatic, E. F. Veatch | 847,159
847,132
846,568 | | Wagon, lumber, Loncks & Holcomb | 846,490 | | Waist, E. G. Tebbutt | 846,939
846,631 | | Wagon boister and standard, U. H. Buntrock Wagon brake, automatic, E. F. Veatch. Wagon, dumping, Horne & Yates. Wagon, lumber, Loncks & Holcomb. Wagon running gear, B. F. Padgett. Waist, E. G. Tebbutt. Waist shield, M. L. Cochran Washer, V. Boehm Watch zunard. A. Schneider. | 847,241
847,155 | | Water closet bend, B. Oakes | 847,155
847,207
846,600 | | Water purifying apparatus, J. C. W. Greth | 846,530
846,845 | | Washer, V. Boelilli Watch guard, A. Schneider. Water closet bend, B. Oakes. Water elevator, A. Vandenameele. Water purifying apparatus, J. C. W. Greth Water tube boiler, W. S. Elliott 846,737, Wearing surfaces, material for flexible, J. J. Voorbees | 846,738 | | Wearing surfaces, material for flexible, J. J. Voorhees Weed cutter, R. W. Steele. Weighing and computing device, butter, D. F. Curtin Weif gage, E. B. Howell. Welding, electric, L. S. Lachman Well boring tool, L. K. Robbins Wheel attachment, F. Unger. Whiffletree, W. T. Young. Winder, ball, F. A. Whitmore Windmill, C. & J. Viskochil. Window, B. J. Leslie. Window lock, A. Z. Stewart. | 846,534
847,125 | | D. F. Curtin | 847,244 | | Welding, electric, L. S. Lachman | 846,669
846,480
846,950 | | Wheel attachment, F. Unger | 846,950
846,529 | | Winder, ball, F. A. Whitmore | 846,714
846,968 | | Window, B. J. Leslie. | 846,532
846,858 | | Window, sash, P. Kupelweiser | 847,127
846,573
846,955 | | Window ventilator, M. H. Berry 846,721, | 846,955
846,722 | | Chute | 846,980 | | Windowl, B. J. Leslie. Window lock, A. Z. Stewart Window scash, P. Kupelweiser. Window screen, W. Seibt. Window ventilator, M. H. Berry 846,721, Windows, rain guard or hood for, A. P. Chute Wire cutter, G. E. Sulteen. Wire stretching and twisting apparatus, S. E. Bunton. | 846,629
847,158 | | E. Bunton | 847,226 | | Wrench, M. Forder | 846,740 | | DESIGNS. | ac : | | Badge or similar article, S. B. Robertson.
Locket or similar article, F. W. Arnold,
38 475 | 20 476 | | Pincushion fabric, W. B. Lawrence | 38,476
38,479
38,477 | | Pincushion fabric, W. B. Lawrence. Reflector, artificial light, K. Booth Talking machine horn, H. Sheble. Tea or coffee pot, J. Rogers. | 38,478
38,480 | | DESIGNS. | | | | |---|------------------|--|--| | Badge or similar article, S. B. Robertson
Locket or similar article, F. W. Arnold, | • | | | | Pincushion fabric, W. B. Lawrence. Reflector, artificial light, K. Booth Talking machine horn, H. Sheble. Tea or coffee pot, J. Rogers. | 38,477
38,478 | | | | | | | | | TRADE MARKS. | | | |---|--------------------|---| | Alcohol, denatured, U. S. Industrial Alcohol | 61,270 | | | Ale, S. Liebmann's Sons Brewing Co Antipyretic, stimulant, analgesic, and anodyne, C. Ammen | 61,265 | | | Antiseptic cleanser for artificial teeth, A. | 61,282
61,231 | | | W. Austin | 1 | | | Co. Beer, lager, Leidiger Brewing Co. Belting, hose, and machinery packing, etc. | 61,256 | | | Belting, hose, and machinery packing, etc.,
certain, B. F. Goodrich Co
Bitters, I. Monheimer | 61,245
61,260 | | | Blue, washing, Sawyer Crystal Blue Co
Boots, shoes and oxfords, leather, F. Val- | 61,328 | | | des & Co | $61,271 \ 61,302$ | | | Co. of Pennsylvania | $61,293 \\ 61,225$ | | | Cables, ropes, chains, and rods, metal grips | 61,329 | | | Candies, George Ziegler Co | 61,223
61,226 | | | Vanned corn, succotash, and beans, H. F. Webb Co. Canned fruits and vegetables, Clinton Can- | 61,224 | | | ning Co | 61,220 | | | 61 219 61 234 fo | $61,236 \\ 61,242$ | | | Chocolate, W. H. Baker | $61.259 \\ 61.216$ | į | | Digarettes, Maspero Freres | 61,303
61,312 | | | | 61,287 | | | Coats, cloaks, suits, and skirts, women's, New York Mackintosh Co Composition of matter, certain, Electrose | 61,263 | | | Manufacturing Co | 61.275 | | ## The ELGIN for All The name ELGIN embraces many grades of watch movements—all of superior time-keeping qualities. The grades differ in price according to the cost of construction—each grade being the best watch value for the money. The man who wants an accurate watch, at a popular price, should buy the G. M. WHEELER Grade ELGIN— "The Watch that's made for the Majority." 17 jewels; adjusted to temperature; micrometric regulator. This ELGIN Watch can be had in the desirable models and sizes suitable for men and boys. * ELGIN Watches of equal grade for ladies, at moderate prices. ELGIN NATIONAL WATCH CO., Eigin. III. ELECTRIC LAUNCH MOTOR. — THE ELECTRIC LAUNCH MOTOR. — THE design in this paper is for a motor of unusual simplicity of construction, which can easily be built by an amateur at smail cost. It is intended for a boat of about 24 feet over all and 4 feet 6 inches beam, drawing 18 inches, and is capable of propelling such craft at a speed of 7 miles per hour. Allustrated with 21 cuts. See SCIENTIFIC AMERICAN SUPPLEMENT, No. 1202. Price 10 cents by mail, from this office and from all newsdealers. The **Perfection** Power Block Machine Makes Hollow Concrete Building Blocks. Perfect form, uniform size and quality. Concrete accurately measured, mixed by power under pressure over 100 tons. Full Details, List of Machines in Operation, on Application. THE PERFECTION BLOCK MACHINE CO. 321 Kasota Bld., Minneapolis, Minn. ### ¿Concrete Blocks WE HAVE a very Beautiful Album containing over Sixty views of Houses, Churches, Factories, Plants, etc., taken from different parts of the country. These are printed on heavy enameled paper with original halftones, and these halftones are made from original photographs—not wash drawings—9x12 inches. If unsatisfactory, money promptly refunded. Price One Dollar. Write for Tlachine Catalogue—Free. Harmon S. Palmer Company 1450 Girard Street, Washington, D.C. ### SPARK COILS Scientific American Supplement 160 describes the making of a 1½-inch spark coil and condenser. Scientific American Supplement 1514 tells you how to make a coil for gasengine ignition. Scientific American Supplement 1522 explains fully the construction of a jump-spark coil and condenser for gas-engine ignition. Scientific American Supplement Scientific American Supplement 1124 describes the construction of a 6-inch spark coil. Scientific American Supplement 87 gives a full account of the making of alternating current coil giving a 5-inch 1082 Scientific American Supplement 1527 describes a 4-inch spark coil and condenser. Scientific American Supplement 1402 gives data for the construction of coils of a definite length of spark. The above-mentioned set of seven papers will be supplied for 70 cents. Any single copy will be mailed for 10 cts. MUNN @ COMPANY, Publishers 361 Broadway New York A New and Better Kind of Soap We all use Soap, and often many use the same cake of soap. This is wrong— uncleanly, and positively unsani- positively unsant-tary. Bender's Liquid Toilet Soap and Holder gives each user Pure, Fresh, Clean, Individual Soap at each using. What you use has never been used before—con- tagion and contamination of any kind are impossible. As you draw from the Holder only the quantity needed, there is absolutely no waste—rather, a 50 per cent, saving in your soap expense. ### BENDER'S LIQUID TOILET SOAP is made of only the putest ingredients, is most beneficial to the skin, and is delicately perfumed. Indispensable in cleanly homes, and a sanitary necessity in Hotels, Clubs, Public Buildings, Steamships, Parlor Cars, and all public lavatories. , and all public lavatories. Sprinkle-top Bottles, - 25c, Quart Bottles, - 75c. Bender Liquid Soap Holder, \$2.00 Write for illustrated circular. On sale at Drug Stores, epartment Stores, or direct from Bender Mfg.Co., 540 Land Title Bldg., Philadelphia, Pa. ### **=INVENTORS':** OPPORTUNITY JAMESTOWN EXPOSITION vill admit models, plans, inventions, etc to be displayed and operated and sold. A special
opportunity not previously granted at other expositions. For details, cost, arrangements, etc., BUREAU OF INVENTIONS JAMESTOWN EXPOSITION NORFOLK, VIRGINIA THE "LEADER." 12 H. P. Gasolene Auto-Marine Engine Built like a watch. Beautifully Finished. Accurately Constructed. Light, Strong, Reliable, and No'seless in operation. Suitable for Jaunches from 15 to 19 feet in length. Price complete, \$45 net, no discount. Thoroughly guaranteed. Perfect Speed Control. Complete descriptive Catalog upon application. Manufactured Manufactured Section 1. CLAUDE SINTZ, 📕 292 S. Front St., Grand Rapids, Mich. ### Graygood Hydraulic Shock Absorber For All Automobiles Sold under a 60-day money-back offer and guaranteed free of repairs for a year. Write for booklet to Graham & Goodman, Sole Mfrs., 55 W. 93d St., N. Y. THE Nulite Wapor Lamps For Home, Store and Street We also manufacture Table Lamps, Wall Lumps, Chandeliers, Street Lamps, Etc. 100 Candle Power seven hours ONE CENT. No Wicks. No Smoke. No Odor. Absolutely safe. THEY SELL AT SIGHT. Exclusive territory to good agents. catalogue and prices. Chicago Solar Light Co. Dept G, Chicago Fish Will Bite Like Hungry Wolves, all the Season if you use Magic Fish Lure. Most wonderful bait ever discovered for attracting all kinds of fish. If you like to pull out the finny beauties right and left, and catch a big string every time you go fishing, don't failto try this wonderful bait. Sent by mail prepaid to 25 cents. Perfect satisfaction or money refunded. Full particulars and Catalog Free Address J. F. GREGORY, Desk 9 3319 Oregon Ave., St. Louis, Mo Anyone sending a sketch and description may nickly ascertain our opinion free whether an our opinion free whether an our opinion is probably patentable. Communication of the confidential HANDBOK on Patents energies. Oldest agency for securing patents. Patents taken through Munn & Co. receive pectal notice, without charge, in the A handsomely illustrated weekly. Largest circulation of any scientific journal. Terms, \$3 a year; four months, \$1. Sold by all newsdealers. MUNN & CO. 361Broadway, New York Branch Office. 625 F St., Washington, D. C. ### PRINTS. 'Are You Opinionated?" for flour, Washburn A printed copy of the specification and drawing of any patent in the foregoing list, or any patent in print issued since 1863, will be furnished from this office for 10 cents, provided the name and number of the patent desired and the date be given. Address Munn & Co., 361 Broadway, New York. Canadian patents may now be obtained by the inventors for any of the inventions named in the foregoing list. For terms and further particulars address Munn & Co., 361 Broadway, New York. # The New Model G Persistent demand by motorists everywhere est cially among Cadillac enthusiasts, for a thoroughly high-grade, medium-powered, four-cylinder automobile, at a price somewhat lower than the large touring cars, has led to the pro-jection of our new Cadillac Model C. somewhat lower than the large touring cars, has led to the production of our new Cadillac Model G. Thus early in the season this racy new type has been universally accepted as a notable example of advanced automobile engineering. The motor, conservatively rated at 20 horse power, is finished in its vital parts to gauges that insure mechanical accuracy to the thousandth of an inch. It is equipped with our automatic ring type governor, which when set by the lever at the steering wheel for a certain speed will practically maintain that speed under all road conditions, up hill or down. A new type of muffler is used, giving a silent exhaust, at the same time almost entirely eliminating back pressure. Direct shaft drive; transmission of a selective type sliding gear, with gears of a new design that facilitates meshing without crashing and grinding. Direct drive on high speed with no gears in mesh. Wheel base, 100 inches; stylish body design. At every stage of designing and finishing, Model G has received all the care and thought that could possibly be given a car costing twice as much. Like the other Cadillac Models, it is the car for the critical motorist who wants to know why before he buys. Let your dealer show you by giving you a demonstration. buys. Let your dealer show you by giving you a demonstration. Model G- 20 h. p. Four-cylinder, Touring Car; \$2,000. Model H- 30 h. p. Four-cylinder, Touring Car; \$2,500. Model M- 10 h. p. Four passenger car; \$950. Model K- 10 h. p. Runabout; \$800. All prices F. O. B. Detroit; Lamps not included. Send for special Catalog of car in which you are interested, as above designated. CADILLAC MOTOR CAR CO., Detroit, Mich. LET US BE YOUR FACTORY WRITE FOR ESTIMATE ON ANY ARTICLE YOU WANT MANUFACTURED STAMPINGS, MODELS, EXPER. WORK WRITE FOR FREE BOOKLET THE CLOBE MACHINE & STAMPING CO. 970 Hamilton St., Cleveland, O. and Bottlers' Machinery. THE VILTER MFG. CO. 899 Clinton St., Milwaukee, Wis. MODELS & EXPERIMENTAL WORK, Inventions developed. Special Machinery E. V. BAILLARD, 24 Frankfort Street, New York. RUBBER. Expert Manufacturers Fine Jobbing Work PARKER, STEARNS & CO., 228-229 South Street, New York STUDENTS' and Draftsmen's Library Club. Send for Catalogue and information as to buying technical books on easy terms of payment. Wm. T. Comstock, 23 Warren St., New York ### MODELS CHICAGO MODEL WORKS ESTABLISHED 1867 B. WESTE FOR CATACOUR OF WORKS MR. INVENTOR Send us your models or drawings for our lowest pric We can develop, perfect or manufacture your invention MONARCH TOOL CO., 128 Opera Place, Cincinnati, O. ### **Experimental & Model Work** Specialties & Patents Bought and Sold DRYING MACHINES For all kinds of grandler ular materials. S. E. Worrell, Hawnibal, Mo. ### THE SCHWERDTLE STAMP CO. STEEL STAMPS, LETTERS & FIGURES. BRIDGEPORT CONN. ## VENTRILOQUISM Learned by any Man or Boy at home. Small cost. Send to-day 2-cent stamp for particulars and proof. O. A. Smith, Rom 267, 2040 Knoxville Ave., Peoria, Ill. Telegraphy Condition of Styles (Styles automatic teacher, 5 styles (20, pept. 52, 58) Cortlandt St., New York. MASON'S NEW PAT. WHIP HOISTS save expense and liability incident to Elevators. Adopted by principal storehouses in New York & Boston Manfd. by VOLNEY W. MASON & CO., Inc. Providence, R. I., U. S. A. We Have No Rent to add when making you Prices on Dies or Stamping. LARIMER MFG. CO., Eola, Ill. (near Chicago) ### SEALED PROPOSALS. SEALED PROPOSALS, PROPOSALS FOR CONSTRUCTION, Etc. Office of the Constructing Quartermaster, Fort Bliss. Texas, March 8th, 1907. Sealed proposals, in duplicate, for the sinking of a twelve-inch tubular Deep Well, installing a Deep Well Pump over same: For constructing a Deep Well Pump over same: For constructing a Deep Well Pump Shelter and Trestle: an 150,000 gailon Steel Tank on a 70 foot Trestle, and furnishing and installing two 40 H. P. Boilers, at this post, will be received here until 12 M. June 3rd, 1907, and then opened. Applicants for plans and specifications must enclose a signed receipt to insure the safe return of the same. Envelopes containing proposals should be endorsed "Proposals for Construction to be opened June 3rd, 1907." and addressed to the Constructing Quartermaster. We manufacture METAL SPECIALTIES of all kinds, to order, largest equipment; lowest price model for low estimate and best expert advice FREE THE EAGLE TOOL CO., Dept. A, Cincinnati, O. ### Magical Apparatus. Magical Apparatus. Grand Book Catalogue. Over 700 engravings Zc. Parlor Tricks Catalogue, free. ACO Meno 402 Sixth Ave., New York MARTINKA & CO., Mfrs., 493 Sixth Ave., New York NOVELTIES & PATENTED ARTICLES We teach it thoroughly in as many months as it formerly took years. Does away with tedious apprenticeship. Money earned while studying. Positions secured. Easy terms. Send for catalog. ST. LOUIS WATCHMAKING SCHOOL, St. Louis, Mo. Clectrocraft The only Practical Magazine devoted to electrical construction. Describes wring diagrams, modern and advanced and arrival arrival and arrival and arrival arrival and arrival arrival arrival and arrival arrival arrival arrival arrival and arrival dern systems and approved devices. Sample copy on request. ELECTROCRAFT, Detroit, Mich. ### To Book Buyers We have just issued a new 112-page catalogue of recently published Scientific and Mechanical Books, which we will mail free to any address on application. MUNN & COMPANY Publishers of Scientific American 361 Broadway, New York ### Rubber Pump Valves For Cold and Hot Water, Oils, Acids, High Pressure Mine Service and for every pumping requirement. * * * Mechanical Rubber Goods of every description of unsurpassed qualities, including BELTING, HOSE PACKINGS, Gaskets, Mats and Matting, Tubings, Springs, Interlocking Tiling, Emery Wheels and MOULDED and CUT SPECIALTIES for any mechanical and commercial device. NEW YORK BELTING & PACKING COMPANY, Ltd. 91 & 93 Chambers Street, New York State Power Needs. CHARTER GAS ENGINE CO., Box 148, STERLING, ILL. All varieties at lowest prices. Best Rallroad Track and Wagon or Stock Scales made. Also 1000 usern arrices, including Safes, Sewing Machines, Bicycles, Tools, etc. save Lists Free. Chicago Scale Co., Chicago, Ili. ## CRUDE ASBESTOS PREPARED R. H. MARTIN, ASBESTOS FIBRE OFFICE, ST. PAUL BUILDING 220 B'way, New York. ### THE DIAGRAPH (Trade Mark Registered) The Improved Stencil Cutting Machine Is a saving of 80 per cent in your Shipping Department worth considering? Just a word will bring our free illustrated booklet describing the Diagraph and our "No Error" System of shipping goods. American Diagraph Co. 10 N. Second Street, St. Louls, U. S. A. You Can Actually Save 50% Our Special Price List (just issued) of used electrical material shows you how you can actually save 50 per cent, on the cost of your electrical material. This material, used in illuminating the famous electrical material. This material, used in illuminating the famous manmoth St. Louis Collectum and Music Hall, to really and
con as new, and will answer every practical purpose in electrical construction work. We offer at greatly reduced prices: Motors, 15 cycle, 3 phase, 290 volt, 1 to 35 H. F.; incandescent Lamps, 6, 8 and 16 C. P.; Sockets; Insuisted Wire in extra long lengths for interior and exterior wiring, in large qu unities. Everything Guaranteed and your Money Refunded if you are not thoroughly satisfied. References: Merchants' Laclede National Bank or any commercial agency. Get our price list ST. LOUIS WRECKING & SUPPLY CO. ### Tools! Tools! Tools! and all you want to know about them. Our Tool Catalogue No. 22 is a cloth-bound book of 950 pages. If you want to "know it all" about Tools you should send for this book at once Sent post-paid on receipt of \$1.00 which will be refunded from your first purchase from us of \$10.00 or over. MONTGOMERY & CO. 105 Fulton Street, N. Y. City KING 4 Folding CANVAS BOATS Isghter, more durable than wood. Serviceable in salt water, Puncture-proof; non-sinkable; can't tip over. A revelation in boat construction. Can be carried by hand, or checked as bag-age. When not in use, fold up into a package. Send be, for Catalog, 100 Engravings. KING FOLDING BOAT CO., 683 West North Street, Kalamazoo, Mich. A MONEY MAKER Hollow Concrete Building Block Best. Fastest. Simplest, Cheapes Machine. Fully guaranteed. THE PETTYJOHN CO. 615 N. 6th Street, Terre Haute, Ind. the perfect toilet paper. In sheets and rolls. Wrapped n parchment, in sealed car tons. 25 sheets free. \$1.0 worth sent prepaid any where SCOTT PAPER CO, PHILA., PA. 504 GLENWOOD AVE., The W. H. Muttins Co., 118 Franklin St., Salem, O. Before installing a gas and gasoline engine for any purpose, it will pay you to obtain and examine carefully the I. H. C. gasoline engine catalogue. It tells and shows by means of many illustrations the excellent features of construction and operation which give I. H. C. engines their superiority. By reading this catalogue carefully you will place yourself in position to decide accurately what engine is best for you to buy. I. H. C. gas and gasoline engines are made right to furnish abundant bower with the least annoyance and at least cost. They are strong and simple, sturdy and dependable, powerful and durable. Send to-day for catalogue. I. H.C. engines are built in the following style and sizes: Vertical, 2 and 3-H. P. Horizontal ' ((Stationary and Portable) 4, 6, 8, 10, 12, 15 and 20-H. P. The International Harvester Company of America. Inc. 7 C Monroe Street, Chicago, III. 4-Cycle Engines Skillfully designed and well built. Single lever control, com-bining automatic carburettor with spark advance. Develops wide speed range and reliability under most trying conditions Sizes 3 to 60 h. p. Send for catalog. CHAS. J. JAGER CO. ### FREE -- 3000 REVOLUTIONS PER MINUTE To the first 100 correct answers as to What It Is, we offer one complete device. It is not Electric, not Hydro-carbon, no gears, no chains. How does it go? A Domestic necessity and specially adapted for Carpenters, Plumbers, Hardware Men, Blacksmiths, Tinemiths, Architectural Iron Workers, Wagon Makers, Awning Hangers, and all lines of trade. Good Agents Wanted-big money-state present occupation. RAPID TOOL WORKS Chicago 909 Stock Exchange Building ## No. 4 A **FOLDING** A grown-up pocket Kodak. Retains the features that make for simplicity and convenience, but takes large pictures. Superior Rapid Rectilinear lenses, Kodak Automatic Shutter, Automatic Focusing Lock, Rising and Sliding Front, Reversible Brilliant Finder, Two Tripod Sockets. Made of aluminum, covered with finest seal grain leather. Loads in Daylight with 4½ x 6½ Film Cartridges for 6 exposures. > Price, \$35.00. EASTMAN KODAK CO. Rochester, N. Y. Catalogue at the dealers or by mail. The Kodak City. It Will Tackle Any Screw NO MATTER HOW TOUGH THE PROPOSITION A practical screw-driver. Reversible, automatic, interchangeable. For driving and drawing screws. Two distinct and separate spirals each working independently. Each with three bits. Send for catalogue. GOODELL-PRATT COMPANY 15 to 21 South Clinton Street.