A WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. Vol. LXXIII.—No. 25. ESTABLISHED 1845. NEW YORK, DECEMBER 21, 1895 [\$3.00 A YEAR. WEEKLY. THE "ALICE" FURNACE, BIRMINGHAM, ALABAMA.-[See page 391.] # Scientific American. ESTABLISHED 1845. MUNN & CO.. Editors and Proprietors. PUBLISHED WEEKLY AT No. 361 BROADWAY, NEW YORK. O. D. MUNN. #### TERMS FOR THE SCIENTIFIC AMERICAN. | One copy, one year, for the U. S., Canada or Mexico | 0 | |---|----| | One copy, six months, for the U.S., Canada or Mexico | 50 | | One copy, one year, to any foreign country belonging to Postal Union. 4 | ŪΦ | | Remit by postal or express money order, or by bank draft or check. | | | MUNN & CO., 361 Broadway, corner of Franklin Street, New York. | | The Scientific American Supplement The Scientific American Supplement is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, \$5.00 a year, for the U. S., 'Canada or Mexico, \$6.00 a year to foreign countries belonging to the Postal Union by all newsdealers throughout the country See prospectus, last page. Combined Rates.—The SCIENTIFIC will be sent for one year, to one address in U. S., Ca ada or Mexico, on receipt of seven dollars. To foreign countries within Postal Union eight dollars and fifty cents a year. #### Building Edition of Scientific American. Hallding Edition of Scientific American. The Building Edition of The Scientific American is a large and splendid illustrated periodical, issued monthly, containing floor p ans and perspective views pertaining to modern architecture. Each number is illustrated with beautiful plates, showing desirable dwellings, public buildings and architectural work in great variety. To builders and all who contemplate building this work is invaluable. Has the largest circulation of any architectural publication in the world. Single copies 25 cents. By mail, to any part of the United States, Canada or Mexico, \$2.5a year. To foreign Postal Union countries, \$3.00 a year. Combined rate for Building Edition, Scientific American, and Supplement, \$9.00 a year. To foreign Postal Union countries, \$4.5a a year. Combined rate for Building Edition, Scientific American and Supplement, \$9.00 a year. To foreign Postal Union countries, \$4.5a a year. Expant Relition of the Scientific American. Export Edition of the Scientific American. Export Edition of the Scientific American. with which is incorporated "LA AMERICA CIENT IFICA E INDUSTRIAL," or Spanish edition of the Scientific American published monthly, uniform in size and expography with the SCIENTIFIC AMERICAN. Every number containabout 50 pages, profusely illustrated it is the finest scientific, industrial export paper published. It circulates throughout Cuba, the West Indies, Mexico, Central and South America, Spain and Spanish possessions—wherever the Spanish languageis spoken. The SCIENTIFIC AMERICAN EXPORT EDITION has a large guaranteed circulation in all commercial places throughout the world. \$3.00 a year, post paid to any part of the world. Single copies 25 cents. IF Manufacturers and others who desire to secure foreign trade, may have large and handsomely displayed announcements published in this edition at a very moderate cost. MUNN & CO., Publishers, 361 Broadway, New York. The safest way to remit is by postal order, express money order, traff or bank check. Make all remittances payable to order of MUNN & CO. Readers are specially requested to notify the publishers in case of any failure, delay, or irregularity in receipt of papers. #### NEW YORK. SATURDAY, DECEMBER 21, 1895. Contents. (Illustrated articles are marked with an asterisk.) | Agricultural building, Atlanta* 393 | Moon, eclipse of, September 3* | |---|----------------------------------| | Archæological discoveries 387 | Navigation, ocean steam | | Argon, the discovery of 391 | Notes and queries | | Asafœtida | Panama Canal, progress of | | Atlanta Exposition, the* 393 | Pasteur Institute farm | | Bicycle brake, Stewart's* 388 | Patents granted, weekly record. | | Bicycle notes | Philosophy the rewards of | | Boat, Najork's foot-motor* 388 | Philosophy, the rewards of | | | Pneumatic tire, metallic tread | | Books and publications, new 396 | for, Growney's* | | Debts, private and public 386 | Police telephone, Chicago | | Dentistry in Japan 390 | Potatoes, experiments with | | Diseases, incubation of 388 | Propeller shafts, breaking of | | Electric power in New York 391 | Railway, pole* | | Electric railway street sprinkler 394 | Rubber stamps, air cushion* | | Emerald, analysis of 386 | Savannah, the first occan | | Fender, car, new 389 | steamér* 8 | | Fine Arts building, Atlanta* 393 | Sawyer, Sylvanus | | Forest, a submerged 391
Furnace. the "Alice," Birming- | Sewing machine motor | | Furnace, the "Alice," Birming- | Silver from silver bromide | | ham, Ala.* 385 | Skin. artificial | | Gold, a substitute for 388 | Spectrum, invisible | | Hair worms | Steam navigation, early history | | Insect stings remedy 390 | of* | | Incubator, electric* 389 | Stellar systems, dimensions of 3 | | Inventions, recently patented 396 | Sulphur mining in Louisiana | | Iron founding, Alabama* 385 | Traction engine, Ingleton's* | | Ketonic acid | Vehicle brake, Davis'* | | Lead pencils, manufacture of 387 | Warsteamer, the first* | | Mars, no water vapor in 390 | Wasps, suicidal. | | Milk, electrolysis of | Wool for underclothing | | Marine, Ciccott Cij Bib Ci | " OOL TOL MERCE CHOLDING | | | | ## TABLE OF CONTENTS OF ## SCIENTIFIC AMERICAN SUPPLEMENT No. 1042. For the Week Ending December 21, 1895. Price 10 cents. For sale by all newsdealers. - II. BOTANY AND HORTICULTURE.—Commercial Fibers.—By D. MORRIS.—Lecture I (continued).—This lecture treats of ramie. MORRIS.—Lecture I (continued).—This lecture treats of ramie, other nettle fibers, sunn hemp and sida fiber, jute and hibiscus fibers.—3 illustrations. METALLURGY.—Notes on Gold Milling in California.—By ED. B. Preston.—Mill details.—This article treats of mill details and is fully illustrated.—25 illustrations.... VI. MISCELLANEOUS.—Collisions Between Steamers and Whales. —This article gives an account of various collisions between whales and ocean steamers.—I illustration. VII. TECHNOLOGY.—The Commercial Manufacture of Liquid Air and Oxygen.—3 illustrations. 16:50 Manufacture of Photographic Plates—An illustrated article, giving details of the cutting of the glass for the plates, the cleaning of the glass, the preparation of the emulsion, the coating, drying, and packing of the plates.—2 illustrations. 16651 VIII. VETERINARY SCIENCE.—In vestigation of Bovine Tuberculosis, with Special Reference to its Existence in Iowa.—An interesting and important paper, giving the method of applying the test and giving the result of experiments, how the affection is extended, what are the symptoms of the disease, the relation of meat and milk supply to public health, etc. The production and trade of a country necessitate an elaborate system of debts and credits which increase proportionately to the magnitude of its commercial operations. According to the Official Bulletin, the minimum private and public debt of the United States for the year 1890 was \$20,227,170,546. Of this sum, \$6,200,000, 000 represents the debt of quasi public corporations, under which head are included railroad companies, street railways, telegraph, public water, electric and gas companies, etc., 9144 per cent of this, or \$5,669, 431,114, being the debt of the railroad companies alone. The debts of individuals and private corporations reach a total of \$12,000,000,000, divided as follows: | Real estate mortgages | \$6,019,679,985 | |--|------------------| | Crop liens in the South | 300,000,000 | | Crop liens outside of the South | 350,000,000 | | National banks, loans, etc | 1,904,167,351 | | Other banks, loans and overdrafts | 1,172,918,415 | | National, State and local taxes | 1,040,473,013 | | Other net private debt (estimated) | 1;212,761,236 | | Total private debt | \$12,000,000,000 | | Total for public corporations (as above) | | | Total | \$18,200,000,000 | The public debt, less sinking fund, in which debt is included that of the United States, States, counties, inunicipalities and school districts, is \$2,027,170.546, which, added to the private debt, makes a total of all kinds for the country of over twenty billions. It is significant that over 58 per cent of the combined debt on farms and homes occupied by owners was incurred for the purpose of the purchase of real estate. The large profits which were realized by the earlier purchasers or original owners of inside and outside property in and around the rapidly growing cities of the States encouraged an abnormal amount of speculation in this direction during the few years preceding the late crisis. In the middle, and particularly in the Western States, this form of speculation, if it was not directly contributory to the crisis, certainly served to render it very acute when it came. The crop liens of the South are a legacy of the civil war. At its close the farmers possessed their land and a few mules and tools, but no money. The merchants furnished supplies in consideration of crop liens and mortgages on farm stock. The system thus begun has continued to the present day. The loans from banks are obtained on the understanding that they are for capital. The tax debt and the public debt are incurred "for the maintenance of justice, the promotion of public works and for education." From the above categorical view of the various kinds of debt that go to make up the total for the country, it is seen that fully nine-tenths were
incurred in the acquisition of capital and property. Less than one tenth represents "debt necessitated by misfortune." Next in importance to the question of the amount of debt of the country is the question of the rate of interest upon which the various loans were granted. The average rate of interest on railroad debts is 4.50 per cent; on street railways, telegraphs, etc., 5.89 per cent; on real estate mortgages, 6.60 per cent; bank loans and over-drafts, 6.60 per cent; crop liens outside the South, 10 per cent; crop liens in the South, 40 per cent; making an average rate on private debts of 6.67 per cent. The rate on the United States public debt is 4.08 per cent; and on States, counties, and municipalities, 5:29 per cent. The average rate of interest on the total indebtedness of the country is 6.44 per cent. Referring to the ruinous rate of interest paid on crop liens in the South, the report states that "extensive inquiries, answered by merchants and cotton buyers, who hold crop liens, point to the conclusion that the average rate on these liens must be as high as 40 per cent, rarely going as low as 25 per cent, and often going as high as 75 per cent and more"! The relatively low rate of 4.08 on the debt of the United States is partly explained by the fact of its exemption from taxation. Referring to the average rate of interest of 6.60 per cent on real estate mortgages, it should be noted that, in the case of farms occupied by owners, this rises as high as 7 07 per cent and 7:36 per cent on acre The percentage of debt to wealth is for: | Railway companies | 67·48 p | er cent. | |---|---------|----------| | Street railways and telephone companies | 66.60 | ** | | Incumbered farms occupied by owners | 35.55 | 44 | | Incumbered homes occupied by owners | 39.77 | ** | | Taxed real estate and untaxed mines | 16.71 | 66 | | The whole United States | 91.10 | 66 | The total wealth of the United States corresponding to the total debt of over \$20,000,000,000 is about **\$**65,000,000,000. The total per capita debt, including both public and private debt. is \$323, or \$1,594 per family of 4.93 persons, as per the census of 1890. In connection with the above classification of the various forms of indebtedness, public and private, it is satisfactory to learn that there was a total increase PRIVATE AND PUBLIC DEBT IN THE UNITED STATES. of wealth, during the ten years from 1880 to 1890, of \$21,395,091,197; the increase for the year 1889 to 1890 being nearly three billions of dollars. #### NEW YORK THE BIRTHPLACE OF OCEAN STEAM NAVIGATION. Doubtless the majority of the readers of the Scien-TIFIC AMERICAN have a more or less distinct impression that New York was in some degree associated with the development of the first steamboat; but it will, no doubt, be a pleasant surprise to learn that this city has a threefold claim to be called the cradle of the steamship. The first practical river steamer, the first vessel propelled by steam to make a deep sea voyage, the first transatlantic steamship, and the first steam warship. all owed their existence to the inventive genius of New York designers and the practical skill of New York craftsmen. In drawing attention to this interesting coincidence, we would not detract from the fame and credit due to the earlier inventors of the sixteenth and eighteenth centuries. Blasco de Garay and Denis Papin were undoubtedly the pioneer investigators of the possibilities of steamship propulsion, and, to a certain extent, they proved its possibility; but the mechanical forms in which they embodied their ideas were crude and possessed no practical commercial value. While the theory of steam navigation was old, centuries old, it required some master mechanic to embody this idea in practical, mechanical shape, and this was what Robert Fulton, associated with R. Livingston, accomplished, when, on August 7, 1807, he saw his first steamer, the Clermont, cast off her moorings at the New York docks and start on her maiden trip to Albany. To Colonel John Stevens, and, indirectly, to a monopoly of navigation on the Hudson, granted to the owners of the Clermont, New York owes the distinction of having built the first deep sea steamer; and the credit of building the first steamer to make a transatlantic passage is shared by New York conjointly with Savannah, Ga. The Savannah having been built at New York and engined at the Southern seaport. Of scarcely less historic interest than the Clermont is the battle ship Fulton the First, which was named after the designer, and testifies yet further to his inventive genius. Like the other pioneer ships in their respective classes, the Fulton was built in New York ship yards, and thus clearly establishes this city's claim to be called the cradle of the modern steam battle ship. A cut of the original plans for this vessel will be found in the Scientific American Supplement for April 21, 1894. The dimensions of this vessel prove that Fulton had the courage of his convictions, for her displacement was greater than that of the average threedecker of that period, and considerably over that of the Victory, which carried Admiral Nelson at the battle of Trafalgar. The Fulton the First showed a trial speed of over 6 miles an hour, which was far above the average, day in and day out, speed of the fleetest sailing frigates of those times. In many details she anticipated the modern war ship; as, for instance, in the provision that she should be "furnished with four submarine guns, to discharge a hundred pound ball into an enemy, ten or twelve feet below her water line." The cross section shows that her engines and boilers were placed low down in the hold, and that the portion above the water line was protected by side armor of 5 feet of oak, an amount which was certainly impenetrable by the ordnance of that date. It is unquestionable that, with her greater maneuvering power, her 100 pounder guns, and the superior protection afforded to the gunners, she would have proved more than a match for the best ship of the line of that date. The close of the war of 1812 prevented her from testing her strength against the English ships; but tradition has it that the appearance of this 2475 ton monster, gliding swiftly down the bay, with no visible means of propulsion, struck terror into the "indomitable heart" of the British tar! ## Analysis of Emerald. The author has operated on the emerald of Limoges (Chanteloube, Haute Vienna). He gives the fol- | 1 | . 11. | |-----------------------------------|-----------------| | Loss at a red heat 1'4 | 46 1·4 1 | | Silica 66°0 | 06 65.80 | | Alumina 16* | 1 16.40 | | Glucose (? should be glucina) 14: | 33 14.21 | | Ferric oxide 15 | 5 0.0 | | Mn ₃ O ₄ | _ | | Magnesia 0: | 5 0.61 | | Lime 0° | 17 0 14 | | Phosphoric acid 0 | 11 0.09 | | Alkalies — | | | Titanic acid trac | es traces | | | | | 100-1 | 11 99.67 | —P. Lebeau. #### Cycle Notes. All cyclometers should be provided with some means of correction. It is nothing unusual to find them from three to five per cent out, owing, very likely, to the varying diameter of the wheel, depending on whether the tire is fully inflated or not. A new cyclometer is on the market which registers not only 10,000 miles, but has also a special dial for indicating ing by its girth, an equal or greater length remains the miles made on a single trip. Another dial marks the fraction of a mile. November 22 the doors of the Agricultural Hall, London, were thrown open for the nineteenth cycle exhibition, in the name of the Stanley Club. An eager crowd of visitors was immediately admitted to mark the improvements, alterations, and innovations that were proposed for cycles and their accessories for next season's mounts. The Simpson lever chain was one of the first of the exhibits to receive long and careful attention. The auto-cars, the bi-tricycles and the motor cycles next received a due share of rapt attention, public interest after these exhibits had been visited becoming more general and spreading itself out impartially over the various mechanical devices thought out by the different firms and brought together under one roof by the enterprise and perseverance of the Stanley show promoters. There are, comparatively, but few three-wheelers on and finished as they are, receive but scant notice. There is no doubt about the matter that the bicycle is the machine for both men and women. One of the many interesting features introduced was the display of many forms of dress considered suitable for cycling. The extensive photographic collection in the gallery attracted attention. It is becoming more and more popular for the snap shot photographic apparatus to be numbered among the ordinary necessaries of the cycling tourist's outfit, and the enlargements exhibited as the result of snap shot photography certainly suggest that the art is one that is to be come of far more widespread interest than it is, even at the present stage of photographing enthusiasm. One of the great attractions of the Stanley has proved to be a machine shown by the makers of the Gladiator, boasting a 21% inch tread. The relay ride from Washington to New York City was ended Monday morning, December 2, in New York, at 4:48 o'clock, when Lieutenant Libby and Private Pilkin delivered to Lieutenant Donovan, on Governor's Island, the message from General Miles, who started it from Washington, Sunday, at 7 o'clock The roads were execrable, the riders say, and it was often almost impossible to remain in the seat. Each rider carried ten rounds of ammunition and the regulation army pistol. The uniform consisted of a blouse, campaign hat, gauntlet, gloves and bloomers. making severe tests of the bicycle in the hopes of having it generally adopted in the army. It would have been difficult to have selected a harder ride than was taken by these men, and the wheels, in each instance, stood up remarkably well. ##
Manufacture of Lead Pencils. The Monde Economique, quoting from a work recently issued by Ernest Faber on the manufacture of along the margins of woodland streams and logs, lead pencils, published on the occasion of the business of Johann Faber, of Nuremberg, being turned into a limited company, says that there are twenty-six manufactories of lead pencils in Bavaria, twenty-three of has been taken from a pupa of Xiphidium ensiferum, which are at Nuremberg. These employ 9.000 or 10,000 Scudder, whose perfect body measures but half an workmen, and turn out 4,400,000 lead pencils every inch in length. The life history of this orthopteron is week. In the above number of workmen are not in- of exceptional interest, the ova being deposited from cluded turners, boxmakers, etc. The factory of Johann Faber alone turns out 1,280,000 pencils per week. The nip-shaped galls produced by a small fly belonging protective customs duties of the United States prohibit to the Cecidomyidæ on certain species of willow (Salix the importation of cheap pencils, and this country cordata, etc.)" itself turns out almost as many pencils as all the I have now but to mention Caloptenus spretus, Bavarian factories put together. The best cedar wood | Thomas, the Rocky Mountain locust, which is inof the States (Cedrus virginiana) will soon be exhaust- fested with G. aquaticus, Linn., and G. varius, Leidy, ed, but at present, having the monopoly of internal production, a considerable amount is exported to India. Mexico, Japan, and Australia, at extraordinarily low prices. The duties in Italy (100 lire per 100 kilogrammes), in France (180 to 300 francs per 100 kilogrammes), and in Russia (35 copecks per pound) are also hindrances to importation. In France, it is stated plague becomes of importance. that schools and government offices, and even railway companies, are forbidden to buy German pencils. In the United States excellent lead pencils are now being made of paper, which is wound spirally upon the lead. ## The Blacksmith. In our description of this celebrated painting, in our last week's issue, we regret to note that the address of Mr. F. E. Galbraith, the owner of the painting, was stand it is to remain for some time. ## Hair Worms and Their Hosts. BY HARRY MOORE At Betchworth, Surrey, just where the road crosses the River Mole, I picked up a specimen of Pteroticnus madidus, Fab., from which, upon being placed in the cyanide bottle, a Gordius aquaticus, L., endeavored to escape. About three inches of it extrude, and, judginside, yet the abdomen of the beetle is but nine milli- Nearly every observer of the slightest experience has some acquaintance with hair worms, even if it is only a hazy recollection of the horse hair legend of his schooldays. Numerous notes are scattered through the early volumes of Science Gossip and a further one upon the variety of the hosts Gordius infests may not be unacceptable. The family Nematoidæ, to which the Gordiaceæ belong, contains many species of more than ordinary interest, first on account of their curious cycle of development, and then their value in the economy of nature, for not only are they in a measure beneficial in checking over-production in certain insects, but more or less dangerous when introduced into the human system. Their life history may be briefly described as follows: The eggs are laid in long strings; upon hatching, the young larva bores through the membrane, and for a short period lives a free aquatic life. It then becomes parasitic upon various exhibition, and even these few, beautifully constructed | fly larvæ, etc.; these hosts in their turn are devoured by other creatures, and the worms become incepted in their intestines, where they remain some months finally making their way into the intestinal cavity and escaping per ano in due course. It is rather singular, however, that, whereas hair worms are most commonly found infesting beetles in England, they prefer the orthoptera (grasshoppers and allied insects) in America. In both countries spiders have been noted as hosts, in America the human being, and an instance has come under my own notice where there was strong presumptive evidence the worm had been voided by a sparrow. Various writers cite fishes and frogs, and several mention caterpillars, but the parasites observed in lepidopterous larvæ probably belonged to the allied genus Mermis. In America, Mermis acuminata, Leidy, has been observed in the larvæ of the codlin moth (Carpocapsa pomonella, L.) and a similar parasite has been seen in larvæ by several of our London workers. In enumerating the hosts of Gordius aquaticus, the common European hair worm, several difficulties arise, for whereas, as I have already mentioned, carnivorous beetles are chiefly infested this side of the Atlantic, the observers do not always seem to have determined their species. Several references of this sort will be found in Science Gossip (vol. i, page 198, vol. xii, page 71, vol. xv, page 281, etc.) If any of our present readers can furnish something more definite, we shall be able to get along with our list. I have come across no mention of coleoptera being infested The race was suggested by General Miles, who is in America, in any note to which I have access; but the following are some of the authenticated instances among the orthoptera: > G. aquaticus has been found in the cricket (Gryllus neglectus) and in Acheta abbreviatus, Serville-the short winged field cricket found in woods beneath logs and stones; Gordius robustus, Leidy, infests Stenopelmata fasciata, Thomas, one of the stone or camel crickets usually found beneath stones and and in damp woods (Blatchley), and Orchelimum gracile, a grasshopper confined to low moist meadows; A. Gordius (species?), eight and a half inches long, several up to one hundred and seventy "in the tur- > although repeated dissections by various American observers (Riley, Whitman, etc.) have shown that not more than a small percentage of the locusts are infested, yet when we consider the loss incurred annually in the United States from locusts alone is estimated at £8,000,000, anything which tends to mitigate the The question, How are we to account for the presence of these aquatic parasites inside terrestrial insects? upon consideration, is not of easy solution. Of course they are introduced with their food while in a minute immature state, but whether as ova or larvæ I that are more or less subjected to floods; but I don't thinks they swallow them as larvæ. I am inclined to zide.—E. Burker. believe there are several points in the life history of these parasites yet to be cleared up; perhaps some of our microscopists can elucidate them.—Science Gossip. #### Archæological Discoveries. Another ancient Greek hymn set to music, recalling the discovery made in the latter part of 1893 (vol. iii, page 866, of Current History, published by Garretson Cox & Company, Buffalo, N. Y.), has been brought to light by the French excavations at Delphi. It is inscribed on two large slabs of stone, which have been unearthed in the building described by Pausanias as the "Treasury of the Athenians." The find of 1893 included fourteen fragments of various sizes, four of which were distinguished from the others by a difference in the notation of the music. These four were introduced to the public last year as the "Hymn to Apollo" (vol. iv, page 251). The latter find includes another large fragment, to which the remaining ten of the first discovery can be adjusted, thus giving us a second hymn. The decipherment and transcription of the words and music have, as before, been intrusted to MM. Henri Weil and Theodore Reinach. The purport of both the hymns is substantially the same. After an invocation of the Muses, the poet gives various legends of Apollo's life and works, ending with the slaughter of the Gauls at Delphi in 279 B. C.; and then implores the god's protection for Delphi and Athens and the government at Rome. The date is, therefore, after 146 B. C., when the Romans took possession of Greece. Apart from the music, the hymns are not particularly interesting. The duration of the musical notes is indicated by the syllables that were sung with them. Thus, for example, where three notes are attached to a word of one long syllable followed by two short syllables, they answer roughly to a crochet followed by two quavers. The pitch of the notes is indicated by various letters of the alphabet. In the first hymn the letters were those that the Greeks prescribed for use with voices; but in this second hymn they are those that were prescribed for use with instruments. As the Delphians would not likely have written down the accompaniment and omitted the song itself, it is supposed that the instruments and voices were here in unison. A discovery of importance for the history of early Christian literature is credited to Dr. Karl Schmidt, of Cairo, Egypt. In the library of the cloister of Ackmim -the same library in which the Gospel and the Apocalypse of Peter and Apocalypse of Elijah were found -Dr. Schmidt recently came across an old Coptic manuscript containing a record of conversations between Christ and his disciples. Both the beginning and the conclusion have been lost through mutilation of the manuscript. The chief subject of conversation is the resurrection of Christ, which is reported in detail and in such a manner as to combine the narratives of the four gospels. The object of the writing is to warn the reader against unbelief, especially gnosticism. There is a long discussion of the resurrection of the body. The work shows itself to be an apocryphal missive of the apostles to the congregations, and reveals the congregational orthodoxy in the early church. Like the Apocalypse of Peter, it shows also that the church was not always able to resist the temptation of following the gnostic trend of thought. Its date, approximately, is 160 A.D. ## The Pasteur Institute's Farm. The New York
Therapeutic Review says that a farm of about 200 acres of land, in the vicinity of Tuxedo Park, New York, one hour's ride from the city, has been purchased for use as an experimental station for the New York Pasteur Institute. The farm, which is already provided with ten cows and the antitoxin horses and mules of the institute, will receive in addition many donkeys, goats, sheep, dogs, rabbits, guinea pigs, etc., for which especial barns are now being built, and also a laboratory for the preparation of the antitoxic serums, vaccine virus and other biological products. Research will be conducted there upon infectious diseases of animals as well as of man. The extensive character of the work done at the institute rendered indispensable the establishment of this experimental station. ## Synthetic Formation of a New Ketonic Acid. The compound in question has been obtained by the action of camphoric anhydride upon benzine in presence of aluminum chloride. Its composition is C₁₅H₂₀O₂. It forms white crystals of a nacreous luster which melt at 135-137° and boil at 320° at a pressure think there is room for discussion. It will be noticed all of 760 mm. They are almost insoluble in water, sparthe insects mentioned are associated with damp places ingly insoluble in ligroine, but readily soluble in acetic acid, alcohol, ether, benzine, chloroform, and carbon think that sufficient reason for believing they have all disulphide. The author has formed and examined its fed upon the various aquatic fly larvæ in which the ammonium, barium, silver, copper, cobalt, nickel, omitted. The picture can now be seen at No. 19 West hair worm larvæ are said to pass their first period of zinc, and lead salts. He has also obtained its ethylic Twenty-fourth Street, New York, where we under-larval life, though in the case of grasshoppers Packard and methylic ethers, its anhydride, amide, and hydra- #### A METALLIC TREAD PNEUMATIC TIRE. A tire having a metallic tread secured to the tubular inflated rim, obviating the liability to puncturing the tire or other injury when the wheel passes over sharp objects in the road, is represented in the accompanying illustration, and has been patented by Frank M. Growney, of No. 986 Washington Avenue, New York City. The tubular rim is secured in the usual manner to the felly, and the metallic tread, consisting preferably of a continuous strip of mild steel, is attached to the outer part of the rim by rivets, as shown in Fig. 1, the outer sides of the tread being engaged by the sides of bands fastened in place by clamping strips. The GROWNEY'S PNEUMATIC TIRE. bands extend around the sides of the rim, and are connected by the usual lacing with the inner ends of the ployes had to be paid, and as not a pound of sulphur rim, the lacing also attaching the inner ends of the rim to each other. Fig. 2 is a side sectional view of it went, one after another, into bankruptcy, until the the improvement. The rim, as will be seen, is pro- property fell, a short time ago, into the hands of the tected by the side bands, as well as by the continuous metallic strip forming the tread. #### NAJORK'S FOOT MOTOR BOAT. Just now, when so many are devoting their time and attention to the various means of transportation, trying to discover the quickest way of moving us mortals from one place to another over both the land and the sea; when steam, electricity, petroleum, benzine, etc., have entered the lists against the muscles of the horse, and even of human beings, we are sure that our readers will be interested in the motor shown in the accompanying engravings, for which we are indebted to the Illustrirte Zeitung. This boat is propelled by a screw driven by foot power, and is operated by three people, the one nearest the stern also steering. The wheel visible behind the last operator transmits motion to the shaft and through the latter to the propeller. By various arrangements of the three cranks dead centers can be avoided. For every 60 movements of the treadles the screw revolves 500 times. In this way even unskilled operators can travel about five miles an hour. A great advantage of this boat is that it can also be propelled by oars or sails, and the simple apparatus can be applied to any boat that is sufficiently broad. As the three operators sit quite high, a counter weight of lead created quite a sensation in boating circles. ## The Chicago Police Telephone System. Chicago has a complete telephone and signal system, consisting of 887 public and 370 private boxes. operating on 81 circuits, connected with the 37 precinct stations of this department, in which they are located. The system includes public sentry boxes placed at street intersections, equipped with a signal box to transmit the number of the station; a telephone for patrolmen to report and receive orders over; a chemical register at the station which records the calls, and the necessary switches for operating the telephone and testing for electrical disturbances. #### Silver from Silver Bromide. Silver is usually recovered from silver bromide wastes, incident to photographic processes, by mixing them with nine tenths their weight of calcined sodium carbonate, and fusing in a crucible, whereby carbon dioxide and oxygen are given off. Metallic silver gathers at the bottom of the crucible, and a double salt of sodium carbonate and sodium bromide floats on top as a clear liquid. On cooling the crucible down to a red heat the silver solidifies, and the flux, still in a liquid state, may then be easily poured off. The silver thus obtained is of a fine white color. The flux usually has an intense yellow color and still contains about 10 per cent of silver. The latter may be obtained (Pharm. Centralh., xxxvi, p. 632) by mixing the flux with plenty of water and stirring occasionally to facilitate solution of the flux. The unchanged silver bromide is allowed to settle, washed by decantation, and preserved for a subsequent operation. #### Sulphur Mining in Louisiana. The Mineral Collector says: The Standard Oil Company has finally solved the great problem, on which hundreds of thousands of dollars have been spent in vain, of getting at the immense mass of sulphur which lies some hundreds of feet below the surface in Calcasieu Parish, Louisiana. For thirty-five years company after company has experimented with this deposit of sulphur, which is probably the largest in the country. and is valued at from \$30,000,000 to \$100,000,000. There was no doubt about the sulphur being there, but unfortunately between it and the surface lay an immense quicksand, which could not be removed, excavated or bored through. There was no way of man reaching the sulphur and getting it up. A small town, Sulphur City, has grown up in the neighborhood of the mines, at which lived the operatives engaged in trying to solve their problem. As the expenses of these emwas obtained, the several companies organized to mine great Standard Oil Company. Long before the discovery of petroleum in Pennsylvania a party of hunters stumbled on a petroleum spring in Calcasieu. The Louisiana Petroleum Company was organized to mine for it, and while mining discovered that side by side with the oil was one of the most valuable deposits of nearly pure sulphur in the world. The sulphur was 400 feet below the surface and extended below 800 feet further. There was no doubt or question about this, but, unfortunately, sulphur, melting it, and the liquid sulphur water is then pumped up. A little exposure to the air, so as to evaporate the water, leaves almost pure sulphur. The experiment has been a success beyond expectations. #### AN IMPROVED BICYCLE BRAKE. The illustration represents a very simple and inexpensive brake, which by a slight modification may be adapted for use as a foot brake, and which is designed not to cut or wear the material of which the tire is made. The improvement has been patented by William L. Stewart, of Wilmerding, Pa., and the illustra- STEWART'S BICYCLE BRAKE. tion represents the device separately and as applied on a wheel. The brake frame is of metal, and carries two flanged rollers on which is tightly stretched a rubber band, the brake being attached to a stem which extends up the steering head. When the brake stem or rod is forced downward in the usual way, the band bears with corresponding pressure on the wheel tire. The inventor has also provided a construction by which one of the rollers carrying the band is adjustable, and may be moved outwardly, if desired, to increase the tension on the band. #### Incubation of Diseases. According to investigations made by the Clinical Society, London, the period of incubation for diphtneria > does not, as a rule, exceed four days, and is more often two, though it may also extend to five, six or seven; the infection may take place any time in the course of the disease, and mild cases may spread it. In the case of typhoid fever, this may vary within wide limits, twelve to fourteen days, but not infrequently less, and, as the disease is usually introduced into the system by food and drink, it is not carried from one person to another, but several may get it from the same source, contaminated water and milk being the usual causes. Epidemic influenza, or "grippe," has for its incubation period a few hours to three or four days. generally striking suddenly and without warning and a patient may carry infection thoughout the whole course of the disease. Mumps have an incubation period of from one to two weeks and the chances of infection diminish daily. being counted from the date of the eruption, which decides the disease German measles have a long incubation period, and the infectivity diminishes in a day or two after the disappearance of the rash. ## A Substitute for Gold. A French journal describes a new and promising substitute for gold. It is produced by alloying ninetyfour parts of copper with six of antimony, the copper being first melted and the antimony
afterward added; to this a quantity of magnesium carbonate is added to increase its specific gravity. The alloy is capable of being drawn out, wrought, and soldered just as gold is, and is said to take and retain as fine a polish as NAJORK'S FOOT MOTOR BOAT. should be placed in the keel. The Najork boat has just above the sulphur was a quicksand 160 feet thick. In the case of measles, the period is usually short, One effort after the other to reach the sulphur failed. The drill struck an underground well, then a gas well. After several deaths the American Sulphur Company gave up the enterprise. Then a Belgian engineer undertook the work and endeavored to neutralize the quicksand by freezing it solid and boring it through, and erected valuable refrigerating machinery for that purpose, but the quicks and would not stay frozen and that system of mining had to be abandoned. > Within the last few weeks the Standard Oil Company has got control of the property. It set about mining in a fashion the very opposite to that of the Belgian engineer. Instead of using freezing as the means of getting at the sulphur, it is trying heat. Superheated water is forced through ten inch pipe on the gold. Its cost is a shilling a pound. #### AN ELECTRIC INCUBATOR. A successful manufacturer of incubators, Mr. George H. Stahl, of Quincy, Illinois, has recently placed on the market an incubator which is heated and regulated by electricity. In this incubator, which is shown in the accompanying illustration, it is said that the temperature can be adjusted to be held for weeks within a fraction of a degree of the desired cay before they wear out. point. The incubator casing has the usual double walls inclosing a filling of mineral wool, and the heat is supplied from the water tank at the top, the heating | joining, so as to make a secure junction. The bed is and setting up of a circulation in the water being effected through a small connected reservoir at one permit the smaller end to come up flush with the whole gamut of invisible rays, which only reveal themside. In the old style incubators the heating of the water was effected by a lamp, there being a lamp regulator controlling the flame, and a valve regulator acted upon by the heat of the water before entering the tank, while both regulators were actuated by an improved thermostat. In the electric incubator, or "Electric Hen," as it is called, the water is heated by a resistance box, the current through which can be regulated with extreme nicety. The same manufacturer is now also building an incubator with a combination heater in which oil, gas or electricity may be used. #### A New Car Fender. The invention of Mr. Wm. B. Altick, of Lancaster, Pa., is so arranged that the instant the front padded bar strikes a person, an inside gum roller connected with the safety netting drops automatically on the track, thus rendering it impossible for the object struck to pass under the fender. If a person when struck should fail to fall into the netting, and fall in front, the additional pressure of the moving car against the body would cause the front cushioned bar to drop also, and would push the body along the track until the car was stopped. The person might be bruised under the wheels would be obviated. #### A POLE RAILWAY. We give a picture, from Black and White, of a picnic party celebrating the opening of a pole railway in the province of Nova Scotia. It is a novel line, thirteen miles in length, and is the third of its kind in the province. For the most part it is utilized in bringing the deposits of silica found in the lakes down the mountains to shipping ports. The way is of spruce poles. The engine has sufficient power to draw four empty cars up the heavy grade of the railway. By taxing the motor to its utmost, and by a liberal use of sand on the rails, eighty excursionists were taken up the incline on the occasion represented. The pole railway is probably the most economical form of steam roadway that has been produced. It is of American origin and has been in vogue in different parts of the country for the past quarter of a century. It is especially adapted for use in forest regions, where lumbering is the principal industry. A first class, substantial road built of poles will cost | curvature of the poles. anywhere from seventy-five to two hundred and fifty dollars per mile, according to local circumstances. The expense, of course, is greater when the road has to be carried across ravines, as indicated in our engraving. The poles employed for rails should not be less than nine inches in diameter at the smaller end, and should consist as far as possible of the heart, or they will de- In the best roads, a bed is hollowed out in the butt end of the pole to receive the small end of the one admade about nine inches in length and deep enough to STAHL'S EXCELSIOR ELECTRIC INCUBATOR. except when the surface is very uneven, dirt thrown on each side and trampled down to form a solid bed. After they are in place, they are slightly trimmed down with an adz. When a crook of any kind occurs in the poles, it is of course turned down in laying the track. No cross ties are necessary, as the locomotives and cars are so constructed that they exert no lateral pressure. After a few trains have passed over the road there is no fear of the poles becoming displaced. Curves are made up of a succession of short poles, care being taken that the joints come opposite to each other. The switching is readily accomplished in the ordinary way. Where heavy grades are encountered, it is the practice in some localities to place the locomotive in the middle of the train, and at the particularly steep grades to cut away half the train, push up the other half, uncouple, and return for the remaining cars. In this manner, trains of six loaded cars have been taken over grades of 700 feet to the mile with the use of only one locomotive. The wheels of the cars and locomotives have very broad treads deeply grooved, so as to fit the #### The Invisible Spectrum. It is known to all students of science that the band of colored light produced by a prism, through which sunlight is passing, appears to stop with dark red rays one way and with deep violet rays in the opposite direction. Much interest has been awakened by attempted study of this color band thought of as going below the visible red end and above the ultra violet. In a recent lecture before the Royal Institution, Dr. William Huggins spoke of these points and the methods of study of them now in use, as follows: "Beyond the violet end of the spectrum there is a selves by their effect in promoting chemical action. Similarly, beyond the other end of the visible scale—the deep red—there is a gamut of invisible or dark rays, which are only perceived by their heating effects. Some idea of the importance of the 'ultra red' may be gathered from the fact that it has been traced to a distance nearly ten times as long as the whole range of the visible or light-giving region of the spectrum. To learn the character of these mysterious dark rays then, it is clearly necessary for science to fit itself with some new sort of eyes that can see what ordinary eyes cannot-namely, heat rays and chemical rays. The photographic plate has answered admirably as an eye for the chemical rays, and brought out some wonderful facts. But with the invisible heat rays the problem was more difficult. Something in the nature of an extremely delicate thermometer is here required, which will pick out all the fine absorption lines as colder spots in the spectrum. The beautiful instrument known as the bolometer has recently been used by Professor Langley in feeling for these absorption lines, which, being regions from which the rays are stopped out, are, of course, colder than the remainder of the spectrum. The bolometer, like all the finest applications of science, or otherwise injured, but the danger of being crushed larger. The poles are simply laid on top of the ground, is an extremely simple thing. It is a strip of fine wire, through which a feeble current of electricity is always flowing. This wire is slowly passed along the invisible gamut of the spectrum, and as soon as it comes to one of the absorption lines the spot is shown by a minute fall of temperature in the wire. This has an instantaneous effect on the flow of the electrical current. More current will pass through a cool wire than a warmer one, and the alteration is promptly shown by a delicate mirror galvanometer. which flashes its mimic signals onto a slowly revolving photographic ribbon. In this way Professor Langley has been able to pick out and locate hundreds of dark absorption lines in the great invisible spectrum which lies beyond the red. Not only is the absorption of rays by the solar atmosphere shown by this method, but the absorption lines of the earth's atmosphere are equally apparent. Dr. Huggins anticipates that the meteorologist will soon be applying the system to weather forecasts." > NEARLY all the glass eyes used in the world are made in Thuringia, Germany. OPENING OF A POLE RAILWAY IN NOVA SCOTIA. #### The Rewards of Philosophy. Herbert Spencer's first important work, "Social Statics," was published in 1850, when he was just thirty. The great work of his life-the "System of Synthetic Philosophy "-was taken up in earnest ten The sacrifices involved in the preparation and production of the gigantic work thus heralded to the world were little short of heroic. Those who know Mr. Spencer by his books alone may have thought of him merely as devoting himself to philosophy out of the abundance of his material wealth and comfort. The truth is far otherwise. No man ever lived a more ascetic life or denied himself more for the sake of the task he had undertaken for humanity. In his evidence given before the Commission on Copyright he tells us in plain words, though in the most severely impersonal and abstract manner, the story of his
hard and noble fight during the unrecognized days of his early manhood. Not a fight for bread, not a fight for fame, remember, but a fight for truth. For his first book, "Social Statics," in 1850, he could not find a publisher willing to take any risk; so he was obliged to print it at his own cost and sell it on commission. The edition consisted of only seven hundred and fifty copies; and it took no less than fourteen years to sell. Such are the rewards of serious thought in our generation! Five years later he printed the original form of the "Principles of Psychology." Again no publisher would undertake the risk, and he published on commission. Once more 750 copies were printed and the sale was very slow. "I gave away a considerable number," says Mr. Spencer pathetically, "and the remainder sold in twelve and a half years." During all that time, we may conclude from the sequel, he not only made nothing out of those two important and valuable books, but was actually kept out of pocket for his capital sunk in them. 'Before the initial volume, 'First Principles,' was finished," he observes, "I found myself still losing. During the issue of the second volume, the 'Principles of Biology,' I was still losing. In the middle of the third volume I was losing so much that I found I was frittering away all I possessed. I went back upon my accounts, and discovered that in the course of fifteen years I had lost nearly £1,200-adding interest, more than £1,200. As I was evidently going on ruining myself, I issued to the subscribers a notice of cessa- He had been living, meanwhile, in "the most economical way possible;" in spite of which he found he had trenched to that large extent on his very small capital. Spartan fare had not sufficed to make his experiment successful. Nevertheless, he continued to publish, as he himself bravely phrases it, "I may say by accident." Twice before in the course of those fifteen weary years he had been able to persevere, in spite of losses, by bequests of money. On this third occasion, just as he was on the very point of discontinuing the production of his great work, property which he inherited came to him in the nick of time to prevent such a catastrophe. Any other man in the world would have invested his money and fought shy in future of the siren of philosophy. Not so Mr. Spen-To him life is thought. He went courageously on with his forlorn hope in publishing, and it is some consolation to know that he was repaid in the end, though late and ill, for his single-minded devotion. In twenty-four years after he had begun to publish he had retrieved his position, and was abreast of his losses. Think of that, you men of business. Twenty-four years of hard mental work for no pay at all, and at the end of it to find yourself just where you started! Since that time, it is true, Mr. Spencer's works have brought him in, by degrees, a satisfactory revenue; but consider the pluck and determination of the man who could fight so long, in spite of poverty, against such terrible experiences.—Review of Reviews. ## No Water Vapor in Mars. As the result of observations made at the observatory on Mount Hamilton, W. W. Campbell came to the conclusion last year that no aqueous vapor is contained in the atmosphere of Mars. This, says Knowledge, is quite a different opinion from that to which Janssen was led by his observations, published in 1867, which have been recently republished in the Comptes Rendus. In 1862, Janssen discovered the spectroscopic bands caused by aqueous vapor in our earth's atmosphere, these having been previously observed by Brewster in 1833. From the 12th to the 15th of May, connect with one another, and the cushion is mounted 1867, after having first of all made himself familiar with the bands due to aqueous vapor, he made observations on the summit of Etna. On the 13th the cold was excessive, and the quantity of vapor in the earth's atmosphere was very small-not enough to make visible the lines in the solar spectrum called group C, and still less group D. When Mars was examined, groups C and D, although feeble, were distinctly visible. It was in consequence of this observation, confirmed later at Palermo and Marseilles, that Janssen announced the presence of the vapor of water in quinine mixture would give much quicker and greater the atmosphere of Mars. #### AN AUTOMATIC VEHICLE BRAKE, The brake shown in the illustration applied to the running gear of a wagon is automatically removed from the wheels when the vehicle is moving foward, the brake being applied when the vehicle is backed or is standing at rest. The improvement has been patented by Henry N. Davis, of Dow City, Iowa. The shaft carrying the brake shoes is journaled in bearings on the rear hounds, shown in transverse section in the small figure, and centrally on the shaft is a gear wheel meshing with a pinion journaled in bearings on the under face of the hounds, the latter shaft having a handle for use when desired, and having also a central arched portion connected by a spring with the rear axle. The tension of the spring normally turns the DAVIS' VEHICLE BRAKE shaft to cause the pinion to act on the gear on the brake shaft to apply the brakes, which are taken off when the vehicle is started by the counteracting tension of a chain carried forward over suitable guideways to attachment to a clevis pivotally connected with the doubletree, the bracket or clevis being secured to a block sliding in the tongue of the vehicle or on the forward end of the reach. When the horses draw forward, causing a limited forward movement of the chain, the pinion and gear are rotated to remove the brake shoes from the wheels. #### Suicidal Wasps. M. Henry, a Frenchman, being curious to see the effect of benzine on a wasp, put some of it under a glass in which a wasp was imprisoned. The wasp immediately showed signs of great annoyance and anger, darting at a piece of paper which had introduced the benzine into his cell. By and by he seems to have given up the unequal contest in despair, for he lay down on his back, and bending up his abdomen, planted his sting thrice into his body, and then died. M. Henry allowed his scientific interest to overcome his humanity so far as to repeat the experiment with three wasps, only to find that the other two did likewise. He is, therefore, of opinion that wasps, under desperate circumstances, commit suicide. ## "AIR CUSHION" RUBBER PRINTING STAMPS. The very low cost of rubber stamps, and their great convenience, have made them, of late years, almost as common about a business office as pens, ink and paper. The illustrations herewith represent an improvement lately introduced whereby the rubber stamp is made more valuable by being better adapted to print plainly on uneven surfaces. It is a patented device of the R. H. Smith Manufacturing Company, of Springfield, Mass., rubber type founders and stamp manufacturers, and consists of the interposition of an air cushion, as shown in the illustration, the cushion being just elastic enough to insure, with ordinary usage, a good impression on any surface, either uneven or yielding. The cushions will not lose shape or resiliency, as they are formed by minute cells which do not on handsomely nickeled metal plates. There are no pores to fill up with ink and dirt, or compartments to ## Remedy for Insect Stings. It is well known that liquid ammonia relieves the effects of the stings of bees. A correspondent informs us that a much more effectual antidote is the mixture known as ammoniated tincture of quinine. On several occasions, when stung by bees, he found that the relief than ammonia alone. #### Dentistry in Japan. In a recent letter from Japan to the New York Herald, Colonel Cockerill has this to say about the profession of dentistry in Japan: A practicing dentist in New York City writes me to inquire whether it be true that the Japanese government is about to establish a school of practical dentistry, and is in need of American talent in the professorships. Not at all. Japan is full of dentistry, and the native dentists are flourishing. There is a dental department connected with the medical branch of the Tokyo Imperial University. There are fifty-six practicing dentists in Tokyo, and each office has from four to twelve students. These young men assist at all operations. One works the drill, another handles the syringe, another passes up the gold foil, and the division of labor is quite scientific. Many of the Japanese dentists are graduates of first-class American colleges. They are quite skillful. The Japanese are quite fond of having their front teeth filled with gold. They frequently have holes bored in good teeth in order to have them plugged and polished. They think that the exhibit of gold fillings in front teeth suggests advanced civilization. San Francisco turns out about one hundred young Japanese dentists a year (?) There is a factory in Tokyo which turns out all manner of dental instruments and dental goods, including engines and porcelain teeth. There are four American dentists in Japan, but their business has been much shorn by the rapidly multiplying native artists. #### Asafetida. This is a bad-smelling substance, oozing as a milky, opaque, fetid juice from the root of Ferula fetida. From the root stock, which in full-grown plants is sometimes six inches in diameter and more than a foot long, somewhat resembling a beet, grow numerous spreading triparted leaves of a leathery appearance and light green color. Out of their midst rises a stem of a luxuriant, herbaceous nature, sometimes as high as ten feet, carrying at the top a numerously branched compound umbel of yellow flowers, which betrays the natural order of the plant-Umbelliferae. Although the odor is so offensive to us, we are told that the people of Bokhara use the small plant as a green vegetable as we do lettuce, and relish it. The root stock. which always protrudes several inches out of the
ground, is freed from small rootlets and leaves in the month of June, selecting the plants that have not yet borne flowers, and a slice of it is cut off. The wound is then covered loosely with twigs and leaves, to exclude the sunlight, which retards the process; and it is left this way for a few weeks, at which time a thick reddish or brownish gummy substance is found on the exposed part. This exudation, a hardened suppuration of a vegetable wound, is removed, put into leather bags and taken to Herat, the commercial center of Afghanistan. It is stated, on good authority, that hardly any asafetida leaves that city in a pure state, a red clay being used as an adulterant, which the pharmacists of Europe and America have to filter out when making the tincture. From Herat the asafetida goes to India, and is thence brought by the Parsee and British traders into the markets of the The rose of Kashmir grows in the same ground with the Ferula fetida; they drink the same dew, feed on the same soil, and the same golden sun ripens their fruits. But while the one fills the air with fragrance and enchants the eye, the other, like an evil spirit, destroys our rapture, and calls a chilly halt to our enchantment. Thus the good and the bad live close together, not only among the plants, but also among men; and this close proximity of contrasts directs the differing thoughts of the thinker.—Merck's Report. ## A Word to Mail Subscribers. At the end of every year a great many subscriptions to the various Scientific American publications ex- The bills for 1896 for the SCIENTIFIC AMERICAN, the SCIENTIFIC AMERICAN SUPPLEMENT, and the ARCHI-TECT'S AND BUILDER'S EDITION of the SCIENTIFIC AMERICAN are now being mailed to those whose subscriptions come to an end with the year. Responding promptly to the invitation to renew saves removing the name from our subscription books, and secures without interruption the reception of the paper by the ## PRICES This includes postage, which we pay. Remit by postal or express money order or check to order of Munn & Company, 361 Broadway, New York. #### THE IRON INDUSTRIES OF BIRMINGHAM, ALA. In a recent issue we published an article on the Iron Industry of Birmingham, Ala., in which brief mention iron furnaces of that district were applied. In continuation of the subject, we note the advancement in manufactures made at that place in the last few It is now about twenty years since the then little village of Birmingham became known as the possesso of great wealth in iron and coal. The mineral and metallic deposits were found to lie in such profusion within her district, and in such close proximity, that but little expense need be incurred in their transportation to the furnace for reduction. At some remote period there was evidently an upheaval of the earth where now stands the city of Birmingham, with a fracturing of the various strata of the earth's crust. This upheaval and the subsequent deposit of soil formed the beautiful valley with the elevated ridges on either side running in a northeast and southwest direction. By this grand process of nature the formerly deeply buried strata of bituminous coal and red iron ore were rendered accessible. For years the ridge upon the south side of this valley has been known as "Red Mountain," without any thought of great value being attached to it. At the close of the war, in 1865, every gift of nature was examined and utilized, and enterprising men, seeing evidences of such wealth cropping out of the earth, took advantage of the opportunity, and, by experiments, ascertained the richness of the ore. Further development showed the mine to be practically inexhaustible and accompanied with overlying beds of coal. In our illustrations we show the works in which this ore is made into fine merchantable pig iron. The iron of the Birmingham district is unexcelled for site side of the lake from the railroad and the station the manufacture of puddled bariron and for purposes of Monohon, and very few people ever see the phewhere it is essential that its working qualities in | nomenon unless they take the time and pains necessary the finished castings should be characterized by that peculiar softness in turning, boring, filing and drilling that is so pleasing to the artisan and satisfactory in the final product. The demands of those who work in iron are varied; that which is most satisfactory to certain manufacturers will not do for a different class. Soft iron is useful for many purposes, but there are many important and extensive fields in which the soft iron of the South has found no place; notably in the use of iron for the manufacture of Bessemer steel and malleable iron. 'Peculiar qualities are required in these two very important fields of iron consumption, and it has been questioned if the Birmingham iron could come into use for these The only use of pig iron prior to the invention of Bessemer, aside from that of making castings, was for the manufacture of wrought iron, for which purpose the softer grades of pig iron were specially adapted, also for other purposes in which the presence of such disturbing elements as sulphur, silicon, and phosphorus did not prove injurious. The process discovered by Bessemer of converting pig iron directly into steel was found to depend for success upon the almost entire absence of these disturbing elements; the value of an iron, for the Bessemer process, is carefully determined by chemists. The presence of 0.1 per cent of phosphorus, or 2 per cent of silicon, unfits it for line. making Bessemer steel, although it would still be serviceable for puddling into wrought iron and converting into blistered steel. Until recently the irons made from the red ores of Birmingham contained phosphorus and silicon in quantity sufficient to prevent their use in the Bessener process, as analysis showed the presence of 0.8 per cent of phosphorus. The subject of elimination; of phosphorus from iron had been the study of chemists until 1878, when it was found that phosphorus would unite with line and float as a slag consisting of lieved that the earth suddenly sank down at this point the proportion of one part of bark to four parts of the phosphate of lime. By virtue of this important discovery it has been possible to convert millions of tons and Thomas. The Birmingham irons, however, were unfitted for this purpose, as the amount of phosphorus was so great as to necessitate such an amount of lime to take up the phosphorus as to be destructive to the acid lining of the converter, and the amount of silicon was too great to admit of treatment in either a basic Bessemer converter or an open hearth furnace. It has, therefore, been found that the Southern irons produced in the old way were unfitted for Bessemer or open hearth processes. What has proved a failure, however, with chemistry as the teacher has been learned—so we are credibly correct management of the heats and of the burdening of the ore over the coke. The "Alice" furnace of the Tennessee Coal and Iron spheric air. Company, in Birmingham, an interior view of which we show on our front page, has, by careful management, been successful in producing pig iron from the was made of the uses to which the products of the ores of the Birmingham district, showing a percentage of considerably less than 0.1 per cent of phosphorus and 0.5 per cent of silicon. Tests of the iron have so far satisfied the chemists of such well-known steel producers as the Carnegies, Jones & Laughlin, Park Brothers, and others that already—as we are informed -thousands of tons of this pig iron have been ordered by them from Birmingham furnaces The importance of these results will be appreciated when the cheapness with which Southern iron can be produced is considered. Our illustrations show the casting flow of the "Alice" furnace, and a perspective and sectional view of one of the moulds. It will be seen that the pigs are cast in iron moulds instead of sand moulds as usual. One of the main objects in this method is to prevent the crusting of the exterior surface of the pig with extra silica, which would deteriorate the iron in subsequent melting. #### A Submerged Forest, Many years ago, even so far back that the traditions of the oldest Siwash extend not thereto, there was some vast upheaval of Mother Earth on the shores of Lake Samamish that sent a portion of the Newcastle hills sliding down into the lake, with its tall evergreen forest intact, and there it is to this day. About this time of the year the waters of the lake are at their lowest, and then the tops of the tallest of these big submerged trees are out of the water, but never more than ten or twelve inches. Unfortunately for the curiosity seeker and traveling public generally the submerged forest is on the oppoto reach it. Sam Coombs, the pioneer, is very enthusiastic concerning its beauties and mystery. He talks Chinook fluently, but with all his quizzing of the red-skinned inhabitants he has never learned anything that will throw any light on the history of the forest under water. The waters of the lake are very deep, and the bluffs back of the beach very precipitous, so that the only explanation of the freak is that either by an earthquake or some other means a great slide has been started in early times, and it went down as a mass until it found lodgment at the bottom of the lake. At this time one can see down into the glassy, mirror-like depths of the lake for thirty feet or more. Near the banks the forest trees are interlaced at various angles and in confusion, but further out in the deep water they stand straight, erect, and limbless and barkless, 100 feet tall. They are not petrified in the sense of being turned to stone, but they are preserved and appear to have stood there for ages. They are three feet through, some of them, and so firm in texture as to be scarcely affected by a knife bla e. The great slide extended for some distance, and it would now be a
dangerous piece of work for a steamer to attempt passage over the tops of those tall trees. Even now the water along shore is very deep, and a ten foot pole would sink perpendicularly out of sight ten feet from the shore All over this country are found strata of blue clay, which in the winter season are very treacherous, and given the least bit of opportunity will slide away, carrying everything above with them. This is the theory of the submerged forest of Lake Samamish. It probably was growing above one of these blue earth strata. and heavy rains, or probably an earthquake, set it moving. The quantity of earth carried down was so great that the positions of the trees on the portion carried away were little affected. It is hardly to be beand became a portion of the beautiful lake. Few such places exist. There is a place in the famous of iron into steel, this being known as the "basic" Tumwater Canon, near Leavenworth, which is in some ish mass results. After straining it off from the maprocess, a process in which the converter is lived with respects similar. At some early time a portion of the cerated bark, the extract is put into a copper vessel of magnesite bricks, with quantities of free lime, oxygen great mountain side came rushing down and buried such a shape and size as is suitable and convenient, being provided by the introduction of scrap iron or itself at the bottom of the canon. Now there is a conthen heated to 35° Reaumur, and the wool in a comground limonite (brown ore). This process is used in siderable lake, and in the center stand tall, limbless pletely loose condition, so that the extract may reach the "open hearth" system, perfected by Gilchrist trees, different in species from those growing along the > At Green Lake, near Georgetown, Col.—a lake which is 10,000 feet above sea level-is a submerged forest of pine trees, some hundred feet tall, but not so numerous as in Lake Samamish. This same theory explains their presence as given above.—Seattle Times. ## The Discovery of Argon. Lord Rayleigh and Prof. Wm. Ramsay called at the United States Embassy, in London, recently, when Mr. James R. Roosevelt, first secretary, handed to them a check for \$10,000, which had been granted by the Smithsonian Institution, at Washington, as the first informed—by the union of chemistry with skillful and Hodgkins prize, for their memorandum on "Argon. a new constituency of the atmosphere," embodying a most important discovery in connection with atmo- #### Correspondence. #### Sylvanus Sawyer. To the Editor of the SCIENTIFIC AMERICAN: My attention has been called to an article in a recent number of the SCIENTIFIC AMERICAN concerning the late Sylvanus Sawyer. No mention is made of his connection with his brothers Joseph and Addison. While I would not detract from his prominence as an inventor, no account can properly be given of him that does not include them, one or both of whom were always associated with him in business in the old 'gun" days, and were also inventors in those lines. Addison invented a combination shell used in the late war, a combination fuse, and other ordnance articles, upon which he obtained patents. He also invented the "Sawyer canister," which was adopted by the government, and for which he was awarded \$25,000. Concerning the rattan business, Addison's invention, the "tubular spurred cutter" for utilizing rattan pith, patented by him in 1854, revolutionized the rattan industry of the world. They were three remarkable men, sprung from a race of ingenious mechanics. Granting the honor due his brothers will not lower the rank of Sylvanus Sawyer among the inventors of Allow me to make a correction. Sylvanus Sawver died at his home in Fitchburg, Mass., not "Templeton," where he had long been identified; also that he was the son of John and Lucy (Balcom) Sawyer, instead of "Malcom J." MARY E. SAWYER. Boston, Mass., November 25, 1895. #### Electric Power in New York City. The Electrical Engineer says that on January 1, 1395, the Edison Electric Illuminating Company had connected 7.615 horse power of electric motors, but at the end of October it had no less than 11,263 horse power, an increase of 3,648 horse power in the short period of ten months. The horse power capacity thus connected includes, it would seem, a great many of the fan motors, but not all, as it is becoming a common practice for people to plug the small motors into lamp sockets without fuss or notice, and, of course, these do not appear on the returns. The company has 251,487 incandescent lamps connected and 3,280 arcs. This would figure out in the neighborhood of 25,000 horse power, so that one-third of the company's total connected capacity is now represented by motors. This is a notable showing for power uses of current. We estimated that whereas in the census year, 1890, the motors averaged about 1 horse power each, they might now reach 5 horse power. Mr. Lieb informs us that the motors average between 5 and 10 horse power, and that one of the motors in regular service on the mains has a rated capacity of 40 horse power. It is evident that the stationary motor industry must be increasing at a rapid rate, for these figures, large as they are, take no account of other stations than the Edison, and do not include isolated plants, many of which are heavily loaded with motor duty in running pumps, elevators, ventilators, etc. ## The Preparation of Wool for Underclothing. The method of preparation consists in soaking the pure, unsulphured, undyed wool in the extract described below. Bark, taken from the stem and roots of the Daphne mezereum, a tree growing in the northern regions of Europe, after being dried in the air for rather less than a year, is cut up finely and placed in 40 per cent of spirits of wine and 60 per cent of water, for six days, in mixture. In this time, the spirits of wine draws out of the bark resin, oil, daphnine, wax, etc., and a brownand act on all the fibers, is placed therein, and kept for three hours at this temperature, whereby it is impregnated with the alcoholized extract. After this time, the wool is taken out of the vessel and dried on wide meshed hurdles; it can then be spun and woven. The patentee claims that, during wear, the wool prepared by this method remains generally odorless and possesses an unsurpassable suppleness and softness, as well as a peculiar absorptive activity on the humors and perspiration of the body, which are therefore drawn to the outside of the texture, causing the body to keep dry; that the wool loses its natural harshness and the prepared material does not irritate the body, and that the single fibers become exceedingly elastic, porous, more capable of absorption and shrink no more, so that the properties beneficial to the human body are never lost, even by washing, clean ing and thorough airing of the stuff. #### THE EARLY HISTORY OF OCEAN STEAM NAVIGATION. Although the paddle wheel antedates the Christian era, the earliest recorded attempt to utilize steam to turn the paddle wheel was made by Blasco de Garay, in 1543. Denis Papin experimented on the Fulda at Cassel in 1707, and various other experiments were tried by Jonathan Hulls, the Count d'Auxiron and the Marquis de Jouffroy, but these experiments were of little importance when compared with those of the Americans, William Henry, of Chester County, Pa., James Rumsey, John Fitch and Robert Fulton. After studying the subject of steam navigation abroad, Fulton returned to the United States in 1806, and with Chancellor R. Livingston had a boat named the Clermont built at New York by Charles Brown. The hull was of wood and was 133 feet long, the breadth of beam was 18 feet, and depth of the feet wide and 66 feet long, was provided for it. On packet between New York and Liverpool, but was hold was 7 feet, and the vessel was of 160 tons burden. one side of the hull was a copper boiler, 22 feet purchased before being finished by William Scarbor-The engines were built in England by Boulton & long, 8 feet deep and 12 feet wide. On the other Watt; the diameter of the cylinder was 24 inches, and the piston had a 4 foot stroke. The boiler, meter and 5 feet stroke. The paddle wheel was 16 which was made of copper, was 20 feet long, 8 feet wide and 7 feet high, and was only adapted for of 6 inches from the sides of the channel. It dipped 4 low pressures. The engine drove paddle wheels situated amidships; these wheels were 15 feet in diameter, and there were 8 buckets to each wheel, 4 feet long, and the dip was 2 feet. The Clermont may be regarded as the world's first THE WAR STEAMER FULTON THE FIRST. gust 7, 1807, from New York to Albany. Her speed Copeland. The engine cost \$40,199 and the boiler \$93,nearly averaged 5 miles per hour. The next year the 396. Great difficulty was experienced by the commis-Clermont was enlarged, and the name of the vessel was changed to the North River. The first sea voyage ever made by a steam vessel igation of that river. The Phoenix was taken by sea carry thirty long 32 pounders and two Columbiad 100- owners were George Rowland (father of Mr. Thomas around to the Delaware River. This was the first sea voyage of a steamer, and after this time the evolution of the steamboat was rapid. The first war steamer was built at New York by Robert Fulton. During the war of 1812, when our navy was making a glorious record at sea, the subject of the defense of cities and harbors was agitated, and Fulton was called upon to design a steamship of war, which was called the Demologos, or Fulton the First. The hull, which was of wood, was constructed by Adam and Noah Brown in the Eastern District of Brooklyn. She was launched on October 29, 1814. As launched she was considerably modified from the original plans. She was 156 feet long, 20 feet deep and 56 feet broad. Instead of a small well for the paddle wheel, a long channel, 13 THE SAVANNAH. side was the engine, with one cylinder, 48 inches in diafeet indiameter
and 14 feet wide, giving a clearance feet. Her tonnage was computed at 2,475 tons—a very large vessel for that period. Her hull was designed by Samuel Humphreys, of New York, and cost \$144,- A SHIPPING ADVERTISEMENT OF 1822. successful steamboat. The first trip was made on Au- 949. The boilers and engines were designed by C. W. sioners in getting men to work on her. It was war times. Many of the New York shipbuilders were gone up the lakes. Material was very difficult to supply; was made by the Phonix, a side wheel steamer with guns were transported by land from Philadelphia, engines designed by Colonel John Stevens, built-in over the "miry roads of New Jersey," as the commis-1807. The steamer could not ply on the Hudson, as sioners described them. Twenty heavy cannon were Fulton and Livingston held the monopoly of the nav- thus brought to New York. As completed she was to THE STEAM BRIG NEW YORK. pounders. In June, 1815, her engine was in a condition to be tried and on July 1 she went down New York Bay to the Narrows on her first trial trip, and on July 4 of the same year she made a 53 mile passage out on the ocean and back in 8 hours and 20 minutes. The war terminating, she was moored on the flats abreast of the navy yard in Brooklyn, where she was used as a receiving ship. On June 4, 1829, she blew up, killing and wounding a number of people. To America belongs the glory of building the pioneer transatlantic steamship. This was the steamer Savannah, which was built at Corlaers Hook on the East River, New York City. She was launched August 22, 1818. She was built by Francis Tickett for Daniel Dodd. Her engines were made in America. She was intended to be used as a sailing ough & Company, of Savannah, Ga., and fitted with machinery. It is a curious fact that the paddles were so constructed as to be folded up and placed on deck in stormy weather: the wheel was inclosed in canvas supported by an iron frame. She could carry only seventy-five tons of coal and twenty-five cords of wood. Commanded by Captain Moses Rogers and navigated by Stephen Rogers, both natives of New London, Conn., the Savannah sailed from Savannah, Georgia, on the 25th day of May, 1819, bound for St. Petersburg, via Liverpool. She reached the latter port on January 25, having used steam eighteen days out of twenty-six, and thus demonstrated the feasibility of transatlantic steam navigation. The machinery was afterward taken out of the Savannah THE ROYAL WILLIAM. and she was turned into a sailing packet. For some time she ran between New York and Savannah and was finally wrecked on the Long Island coast. For interesting details of the first transatlantic trip from the log book see the SCIENTIFIC AMERICAN SUPPLE-MENT. No. 636. The second ocean steam vessel was the steam brig New York, built at the foot of Newcastle Street, Norfolk, Va., in 1821, by William F. Hunter, ship joiner. She was of 281 tons burden and 50 horse power. Her > B. Rowland, through whose courtesy we are indebted for the advertisement from the Norfolk Beacon of October 28, 1822, which we reproduce), Charles N. S. Rowland, John Allmand, Captain Richard Churchward, and William F. Hunter. The motion of the machinery was steadied by a large flywheel. The trip from Norfolk to New York was made in fifty hours. The engraving of the steam brig New York was made from a photograph taken from the original oil painting, which is the property of the Old Dominion Steamship Company, and is now deposited in Sailors' Snug Harbor, at Staten Island. The sailmakers' boy who helped rig the New York is still living in Norfolk, at the age of ninety-five, and states that the rough cut in the old advertisement was made by local artists direct from the ship. Next to the Savannah and the New York comes the Royal William, which it is said was the first sea-going steamer that ever crossed the ocean, propelled all the way by steam. It was built in 1830-1831 at Quebec, Canada, and was of 1,645 tons burden and was intended as a packet ship between Quebec and Halifax. In 1833 she was sent to London. She arrived after a prosperous trip of twenty-five days; she was afterward sold to the Spanish government. The following were her dimensions: Length of deck, 169 feet; length of keel, 159 feet; extreme breadth, 47 feet; depth of hold, 19 feet; rake of post, 2 feet; rake of stern, 13 feet; draught of water, 14 feet. For detailed account of this vessel see Supplement, No. 801. #### THE ATLANTA EX-POSITION. In our issue of November 30 we presented an interior view of the Fine Arts building at the Exposition grounds. We show herewith a portion of the exterior, the view being taken from a THE ATLANTA EXPOSITION—THE FINE ARTS BUILDING. point to best bring out the details of ornamentation. The edifice, designed as a permanent structure, stands upon the highest part of the grounds between the Government and New York State buildings, and has a frontage of 245 feet, including the two side wings, one of which shows in our view as projecting beyond the main building. The depth of main structure is 100 feet and the height of the center fagade is 50 feet. The building is classical in design, with a portico roof supported by a single row of Corinthian columns. A highly ornamented frieze enriches an otherwise plain but beautifully proportioned front, and the broad steps are flanked on either side by lifesized figures of lions in bronze. We also show in another view the Agricultural building, as seen from the bank across the Clara Meer. This structure is 304 feet long, 150 feet wide, and is 110 feet high. The contributions from the various States of the South, of the soil products of farm and plantation, is of exceeding interest. All of the THE ATLANTA EXPOSITION—THE AGRICULTURAL BUILDING. various grades of cotton are shown, exhibiting their merits for color, fineness, and length of staple. Sugar and molasses in all forms, from the raw cane to the finished sweets. Fruits and grains are shown in great varieties. Specimens of plums and that wonderful Southern grape, the Scuppernong, are especially tempting. It is worthy to note, also, that the exhibit of wines from the Southern grapes denotes a near-by source for this great market that may cause trepidation in the distant Californias. The arrangement of the exhibits displays artistic as well as convenient location for the visitor. To the Northern man or woman this building and its interior presents great attraction. #### THE ELECTRIC RAILWAY STREET SPRINKLER. Mr. L. W. Campbell is the inventor and patentee of a new design in railway street sprinklers. panying illustration shows its appearance when in use. It is a combined track and street sprinkler, and the first effort within our knowledge to combine the two ideas. It is so constructed that it will, at the pleasure of the motorman, sprinkle a single or double track alone, omitting the sides, or it will sprinkle one or both sides, including the track, if desired. It will sprinkle a street of any reasonable width, say a street so narrow as to barely allow the car to pass, to a street one hundred feet wide, without any change in the structure of the machine. The Car says the Rapid Transit Street Sprinkler Company, of Waco, Tex., are the #### Why Propeller Shafts Break. It is getting to be pretty well understood that the frequent breaking of propeller shafts is not due to the defective material of the shafts themselves so much owing to the working and straining of the hull of the ship in a seaway. The Railway Engineering and Mechanic states that careful measurements taken on a steamer in heavy weather showed that the propeller shaft was at times sprung out of line 11/4 inches in a length of 112 feet. Measurements on deck showed the same amount of deflection. The ship was stiffened, and the shafting gave no further trouble. ## INGLETON'S IMPROVED TRACTION ENGINE. Many unsuccessful attempts have been made to design a practical automatic track for use on traction engines, whereby the latter could be made to serve all the requirements of the farmer, but, apart from their being generally too cumbersome, it has frequently been found difficult to turn the engine around or make a curve within a reasonable space. The illustration represents an improved track-laying device, which has been patented by Edward Ingleton. of the Ingleton Steam Plow Company, of Pottstown, Pa., for use on traction engines. The illustration track is pivoted to the main axle of the engine, and is so fitted that it can rise or fall without altering its length. It is connected by a rod or pitman to a crank keyed on each end of the steerage roller, so that the vertical movements of the track are governed automatically by the steering of the engine and the lateral movement of the front end of the latter. The moment the engine is steered from its straight course the cranks on the steering roller come off the dead center, and allow the back end of the track to rise in the same proportion as the front, or steering axle, has turned. This brings the center of the weight back under the main axle, and the engine can swivel around in as short a space, and without strain- ing the track, as if the track were not there. appliance is designed to greatly increase the usefulness of the traction engine, from which it can be detached in a few minutes, as desired. The steering and adjusting of the track is done by Ingleton's steam steerage, not shown in the engraving. When not required in use, the cranks on the steering roller are reversed and the track is then held clear of the road. The importance of being able to use a steam engine in all the laborious work of the farm, and thereby reduce the number of horses and men required in cultimany months when in idleness, cannot be overesti- mated. If the thousands of horse power available in traction engines that are now idle could be successfully harnessed, it would prove a most powerful auxiliary to the farmer, as such engine, fitted with
a proper track, according to the design of the inventor, should be made to plow; then, by means of a suitable machine, to seed and harrow, run the self-binder at harvest, and, lastly, do the thrashing. #### Progress of the Panama Canal. It was announced recently that the French company in charge of the work on the Panama Canal is now collecting 2,000 more men from Jamaica and other West Indian islands to add to the 1,800 now at work, and that it is intended eventually to increase the force to 6,000 men. The New York Evening Post declared trustworthy that the money to finish the work on the a crank. In the new system the flywheel and crank are THE ELECTRIC RAILWAY STREET SPRINKLER. as to the excessive strains to which they are subjected, | present plan has all been furnished, and that nothing | ployed to most advantage when the flywheel is can prevent the opening of the canal at the appointed time, except accidents and obstacles not now anticipated. The managers even expect that the work will be completed in six years. This is quite in line with the report made by Sir Henry Tyler, the late president of the Grand Trunk Railway, who has been visiting Panama. He says that it is proposed to construct two large dams, one across the Upper Chagres River and one on the Lower Chagres River. Two lakes will thus be formed, the upper one supplying water to the higher portion of the canal, while the lower one will be mainly used to furnish water for the navigation of the lower part. Ten locks will be built, enabling the canal to reach a height of 170 feet above the sea level. Sir Henry holds that there is no insuperable difficulty in the completion of the canal in six years, at a cost of \$100,000,000 by utilizing the work already done for a distance of sixteen miles from Colon and four miles from Panama. On the other hand, Mr. Colquboun, the correspondent of the London Times, who has recently inspected the route, estimates that, even sup- INGLETON'S IMPROVED TRACTION ENGINE. tire undertaking. He declares that the Chagres River and the Culebra cut of the present Panama Canal plans are insurmountable obstacles.—The Outlook. PATENTED artificial skin is now produced in Germany. It is made by removing the outer and inner mucous membranes of the intestines of animals and partly digesting them in a pepsin solution. The fibers are then treated with tannin and gallic acid, the result being a tissue which can be applied to wounds vation, with the attendant cost of feeding through like a natural skin, and is entirely absorbed in the process of healing. #### An Improved Motor for Sewing Machines. Sewing machines adapted for useful general work are invariably driven by a treadle to which either one or both of the feet may be applied. The ordinary treadle answers well for the stitching of exceptionally stout materials and for the purposes of various machines driven with the foot by men such as turners or printers, but for average sewing machine work it has the drawback of requiring more effort than is necessary. This extra fatigue is a serious consideration in the case of females employed all day long at the machine, but an ingenious modification of the ordinary treadle has now been introduced by which the labor of the worker will be greatly economized without any sacrifice of efficiency. As is well known, the ordinary treadle is horizontal when at rest and has to be forcibly depressthat it had received information which it considered ed by the foot in order to turn a flywheel by means of retained, but the horizontal treadle is replaced by a vertical one which is hinged to the under side of the table on which the machine rests, and hangs down almost to the floor, where it ends in a horizontal platform for the foot. The worker's foot is not moved up and down to drive the machine by pressing the treadle, but produces the same effect with less labor by a gentle swinging of the foot backward and forward. The muscles chiefly employed are the flexors and extensors of the knee joint, and the weight of the foot and leg is, of course, supported by the platform on which the foot rests. An important advantage is that the continual movement of the thigh, inevitable under the present system, is so diminished as to be hardly perceptible. The "Hygienic Motor" is the appropriate name of the new invention; its principle is sound and the details are extremely simple. The ordinary treadle is em- comparatively heavy and the operative stands at the machine; but for seamstresses who sit all day long at the machine the to-and-fro movement of the foot is less exhausting than the alternate upward and downward movement which has hitherto been required. The new system can be readily adapted to any of the existing kinds of sewing machine. ## The Absolute Dimensions of Stellar Systems. In a recent number of the Astronomische Nachrichten (No. 3314) Dr. T. J. J. See has a very important paper on the "theory of the determination, by means of a single spectroscopic observation, of the absolute dimensions, masses and parallaxes of stellar systems whose orbits are known from micrometrical measurement; with a rigorous method for testing the universality of the law of gravitation." The ordinary determination of the orbit of a double star furnishes us no idea as to its distance from us, and hence no measure of the absolute dimensions or masses of the system. The measures of the parallax upon which we shows the appliance both in and out of operation. The posing one-third of the work to have been concluded, depend for our estimates of distance are extremely dif- ficult and the results are in most cases unsatisfactory. The measures are taken from neighboring faint stars, which are assumed to be so much more distant that their annual displacement will be imperceptible. This assumption is not always safe and the resulting parallaxes can only be regarded as relative. Dr. See shows how, by a very simple and elegant method, we may determine the absolute dimensions of the orbits of bright rapidly revolving binary stars, by single spectroscopic measures of the motions in the line of sight of the component stars. From the dimensions and other known data of the orbits, the actual masses of the stars and their distances from us can be easily calculated. But the most impor- The it will cost more than \$200,000,000 to complete the en- tant result of this method is the means it furnishes of testing the question whether the Newtonian law of gravitation applies to stellar systems as well as to the solar system. Dr. See shows how we may calculate the motion in the line of sight in all parts of the binary orbit. These calculations are based upon the law of gravitation and a single spectroscopic measure. If such measures be continued upon a number of pairs, while the stars complete their revolutions and the computed and observed motions in the line of sight agree throughout, within reasonable limits of error, it will constitute a strong proof of the universality of the Newtonian law.—H. C. W., Popular Astronomy. #### THE ECLIPSE OF THE MOON, SEPTEMBER 3, 1895. BY WILLIAM R. BROOKS, M.A., F.R.A.S. The accompanying photographs of the lunar eclipse of September 3, 1895, were taken at this observatory with the equatorial telescope of ten inches aperture with photographic corrector. The pictures are direct enlargements in the telescope, the diameter of the image of the moon in the principal focus of the telescope being one inch. Fig. 1 shows the moon before totality, and Fig. 2 as it is passing out of the shadow after totality. The night was very clear, and all the phenomena connected with the eclipse were the most beautiful ever witnessed by the writer. Smith Observatory, Geneva, N. Y., Nov. 20, 1895. ## THE TOTAL LUNAR ECLIPSE: ITS ASTRONOMICAL Celestial phenomena have ever excited in the un lettered mind a wondering interest; an interest which in the early ages was seasoned with a large admixture of superstitious dread. Eclipses of the sun and moon, more often than not, were interpreted as prophetic of approaching disaster and brought much unrest to the minds of men. Science has changed all that; and these periodic phenomena are now eagerly anticipated, and closely observed, for the astronomical data which they afford. Formerly the chief use to which the total lunar eclipse was put by the astronomer was the determination of longitude. mosphere is much longer than when they fall normally to the earth, as they do during the day time. After being reflected from the moon they again pass through the earth's atmosphere before they strike the spectroscope. In this way the earth's spectroscopic lines are obtained of greater distinctness than is possible in ordinary observations. The total eclipse has been used to determine the amount of heat thrown out by the moon. During eclipse, for obvious reasons, the moon cannot give off reflected heat. Any heat that we then receive must be heat that has been absorbed from the sun, and is now being radiated. The observations show that as the light fails so does the heat; which proves that lunar heat is reflected, not radiated. Many historical dates have been accurately fixed by means of calculations based upon the lunar eclipse. 'The first olympiad, the beginning of the Christian era, and the death of Augustus are some of the events whose dates have been settled by the occurrence of lunar eclipses." The value of the lunar eclipse is discussed in fuller detail in the November issue of Popular Astronomy by Caroline E. Furness, of Vassar College Observatory. The paper closes with an interesting description of the methods of observation adopted by the students of this college during the eclipse of September last. #### The Electrolysis of Milk. the author, after referring to some of the tests adopted | place upon metallic plates immersed in the milk in dark ridge was built up about equidistant all along the electrode, and became more definite till the band widened out
on either side, and concentrated at a point immediately opposite the cathode. Very peculiar movements could be made to take place in this band by making and breaking the circuit rapidly. Photographs showing these changes are given by the author. A drop of litmus used to stain the milk showed that an acid and an alkali were formed at the anode and cathode respectively, evidently accounting for the deposition of caseine at the former. The action would appear to be similar to that which takes place when milk is exposed to air for some days; lactic acid is formed, which throws down the caseine. By electrolysis, however, the action can be started and stopped as desired, so that any portion or all of the caseine can be removed from the milk. Next a small vessel was divided into three compartments by means of two porous partitions, and the effects recently described by M. Andréoli were tried. About 10 cub. cm. of milk were poured into the center division, while the anode and cathode compartments contained a solution of sodium chloride. On the passage of the current a deposit was formed in the center compartment on the side of the partition separating it from the anode. When all three compartments contained milk, the deposit occurred on the sides of both partitions furthest from the anode. Under these circumstances it seems that an action takes place in the In a somewhat lengthy paper by Mr. C. E. S. Phillips, milk in the center compartment. No deposit took The moment of total eclipse is the same for every for ascertaining the purity of milk, proceeds to de-either case. Some experiments upon the preservation AFTER TOTALITY. ECLIPSE OF THE MOON, SEPTEMBER 3, 1895.—PHOTOGRAPHED BY WILLIAM R. BROOKS. and the observation of this time of totality enables us to calculate the difference of longitude between any two points of observation. Such computations however lack exactness, owing to the fact that it is difficult to determine the precise moment of totality. The vary ing density of the earth's atmosphere causes a varying intensity in the sun's rays that pass through it. There is consequently no sharp, clearly defined edge to the umbra or shadow, and it is difficult to tell exactly when the edge of the moon has passed into it. The most important observation is that of the oc cultation of the stars, or their passage behind the moon. At ordinary times the brilliancy of the moon is such that only the brightest stars can be seen as they approach it. During eclipse, and owing to the fact that the moon has no atmosphere, stars of very faint the lifting power of the gas bubbles clinging to it. By power can be observed up to the moment at which they pass behind the planet. In determining the place of the moon by this method the occultation of certain stars is observed simultaneously at different observatories, widely separated. This siderial occultation, which, for the reasons above given, is very exact, is used for calculations of longitude, and to establish the diameter of the moon, its distance from the earth, and its right ascension and declination. A total eclipse affords a special opportunity of making a spectroscopic examination of the earth's atmosphere. The sun's rays, during eclipse, pass through the atmospheric envelope obliquely on their way to the moon. Their course at this time through the at-I spread uniformly out toward the opposite electrode, a the plant. station on that half of the globe which faces the moon; | scribe experiments undertaken to discover whether | of milk by means of this electrical withdrawal of a porelectrolysis would offer a more expeditious and reliable method than those in use. On electrolyzing a sample of milk between platinum electrodes, the anode became coated with a white, spongy-looking material which increased until so thick upon the plate that it ultimately became disengaged and floated to the sur- trolysis of milk, as the lactic acid formed attacks most face of the milk; it was observed on making experi-other metals. Aluminum can, however, be used in ments in this way that the white deposit consisted certain cases for the positive electrode, but it is eventuprincipally of a mixture of caseine and fat, that the ally dissolved, and consequently of little use for quanmilk gave off a characteristic odor during the elec- titative work.—The Electrician. rolysis, and it was found to be slightly alk aline after the operation. > The liberated caseine floating upon the milk seemed to show that, owing to alkalinity of the solution, it had become insoluble; it was, however, evidently due to continuing the electrolysis further it was possible to extract practically all the solids from the milk used (30 cub. cm.), leaving a transparent solution behind; at the same time no appreciable deposit of any kind took place at the negative electrode. Tests made with litmus paper during electrolysis showed that the action was extremely local; it was, however, noticed that the froth on the negative electrode produced by a too rapid electrolysis was strongly alkaline > The formation of caseine on the positive electrode was then studied in a miniature cell under the microscope. On making the circuit, bubbles of gas appeared upon each electrode, more of course at the negative one, but at the anode a yellowish deposit grew and tion of its caseine were made, but with no success so far. Mr. Swinburne mentions, however, that milk can be sterilized electrolytically. In conclusion, the author states that platinum is the most suitable material to use for electrodes in the elec- ## Field Experiments with Potatoes made by the New Jersey Agricultural College are. briefly, as follows: The results of recent field experiments with Irish and sweet potatoes are at least suggestive. Manure increases the scab and soil rot. Lime increases the scab, but diminishes the soil rot and tends to make sweet potatoes round. Kainit diminishes the scab, but increases the soil rot. Sulphate of copper diminishes both scab and soil rot. Corrosive sublimate diminishes greatly the scab and soil rot. Sulphur is, all things considered, the best remedy for the scab and soil rot that the experiments suggest. For the Irish potatoes, it is suggested that the flowers of sulphur, costing two or three cents a pound, be used with the freshly cut seed in the hopper of the planting machine. For sweet potatoes the sulphur wight be mixed with five times its bulk of fine earth, and a spoonful of the mixture placed in the hill just before setting out #### RECENTLY PATENTED INVENTIONS. Railway Appliances. CAR FENDER. - Theodore Cocheu, Brooklyn, N. Y. The platform of this fender, covered with wire netting, is pivotally held in brackets under the forward end of the car, the fender extending forward horizontally at a slight distance above the track. At the front end of the fender, and extending somewhat beyond it, is a guard rail, with rearwardly extending side rods, which are adapted to be pushed inward by an object coming in contact with the guard rall, and a catch is thus released by which the fender is dropped down upon the track, the lower side of the fender having shoes adapted to ride upon the rails. The fender may also be dropped to its lowermost position by the motorman or gripman pressing upon a foot lever. CAR COUPLING.—James D. McDonald, Port Morien, Canada. This is a coupling adapted to couple with another one like itself or with the old fashioned link and pin coupling, holding the link in a manner to guide it accurately into an opposing coupling, and the link being automatically fastened. Spring buffers are arranged to take up part of the shock and prevent a link from being badly bent, and the device automatically sounds a gong or alarm when a coupling is made or the cars are uncoupled. CATTLE GUARD. - Harvey M. Jack, Palestine, Texas. This improvement comprises sections of metallic frames and plates secured between the rails and along each side of the track, to guard a gap in the fence and keep cattle off the track, the plates having pricking points designed to prick the legs of the stock at or above the top of the hoof. Adjacent to the points or prongs are inclined surfaces on which the feet of stock will slide to bring the prongs in contact with their legs. #### Electrical. MEASURING INSTRUMENT. — Herschel C. Parker, Brooklyn, N. Y. To accurately indicate the volts and amperes of an electric current this inventor provides a coil of wire pivotally mounted between the poles of a permanent magnet, and adapted to move an index moving over a scale graduated to indicate either volts or amperes, or both. The coil is adapted to be placed in circuit with a resistance, to ascertain the voltage of a current, and to ascertain the amperage it is included in a shunt or branch circuit from the main circuit, the resistance being then cut out of circuit with the coil. TIME ALARM ATTACHMENT.—Max Wolff, New York City. Combined with the alarm post of a clock or similar mechanism, according to this improve ment, is an electrical circuit including a generator and an alarm, and having flexible terminals connected with the post and normally out of contact with each other. The terminals are twisted by the turning of the alarm post, the terminals being thus crossed and brought into contact with each other to close the circuit. ## Mechanical. FRICTION GEAR.—Charles and Harry Burgon, Malin Bridge, England. This is an improve ment for transmitting motion-from a line of shafting to flexible or jointed shafts by which shearing or clipping machines are driven. A peripheral friction gear is employed, the driven pinion being on a counter shaft parallel to the main shaft, the driving pulley and pinion being also parallel to the main shaft, and of sufficient breadth to permit lateral deviation of the driving pulley. The first member of the flexibly jointed transmission shaft is coupled to the pinion shaft by a universal toothed coupling which allows one shaft to assume any angle
relative to the other through a range of 180°. ## Miscellaneous. TIRE INFLATOR.—Donald McKenzie. London, Canada. This is a device for automatically inflat ing the pneumatic tires of bicycles and velocipedes, and comprises an air pump of novel character arranged upon the inner part of the wheel rim, and having a pivoted arm with suitable tread projecting outwardly from the tread of the tire, to come in contact with the ground at each revolution of the wheel, and thus automatically keep the tire fully inflated, a safety valve preventing too high VEHICLE STARTING MECHANISM.-Auguste M. G. de la Rochefontenilles, Paris, France. According to this improvement clutch boxes loosely mounted to turn on the rear axle and embracing the wheel hubs with spring-actuated clutch dogs are flexibly connected with one arm of an elbow lever whose other arm is connected with the draught mechanism, the arrangement relieving the horses of the sudden strain necessary to put the vehicle in motion, and the starting mechanism ceasing to act when the wheels have acquired the velocity they would have with the draught applied directly to the axles ELEVATOR AND DUMPING DEVICE.-Ferris J. Nowlin, Guilford, Ind. To elevate a loaded vehicle and dump the contents into a car or as required. this inventor has devised a portable device readily operated by horse power, the vehicle being returned by gravity to receive another load. The improvement comprises a sill frame and an upright frame with inclines, in combination with a two-part sectional hinged traveling frame operated by link bars and rope and pulley con nections. The whole apparatus may be loaded on wagons for transportation or compactly stored. SAFETY CATCH FOR ELEVATORS.—John S. Chase, Lansing, Kansas. To securely hold the cage of freight or passenger elevators in case of accident to the hoisting device this inventor provides a simple arrangement of a cam adapted to engage with its cam surface thrown in contact with the gaide post to lock the cage so that it could not descend. BOOK BOARDING APPARATUS. - John Ring, Washington, D. C. This invention provides a simple mechanism for book binders' use by which to accurately bind and stop the boards and books in proper relation in piling. It comprises a base frame with front and rear guideways, a carrier in the front guideway having an adjustable end stop, there being underlying supports adjustable on the front guideway and having extensible sections, while side stops movable in the rear guideway have adjustable stop portions, with other novel features. It is designed that with this improvement an inexpe rienced person shall do more and better work than a skilled workman in the old way, the machine automatically gaging the books and boards as the piling proceeds. PROTECTING METALLIC SURFACES.-Marion D. Fleming, Butte, Montana. For the protec tion more especially of pipes from corrosion by mineral waters or air contaminated with corrosive impurities, according to this invention, the metal is freed from grease, and two coats applied of a composition containing powdered silica, powdered litharge, powdered asbestos, powdered plumbago, liquid shellac and alcohol in proportions specified. EYEGLASSES OR SPECTACLES.—Albert E. Butterfield, Portland, Oregon. By means of this improvement a full sized lens may be used in spectacles or eyeglasses for distant vision, while other lenses are so attached to the distance lenses that they may be brought over them, rendering the same glasses fitted for near work. When the glasses are to be used for distant vision the auxiliary glasses may be carried entirely out of the way, the adjustments being effected without the necessity of removing the glasses or spectacles from the nose of the wearer. WINDOW FASTENER.— Ewing Eaches and Robert M. Kerr, Kouisville, Ky. A rotatable bolt is, according to this improvement, mounted in the meeting rail of the lower sash, the bolt having a crank arm on its inner end and a handle on its outer end, and a slotted plate is secured over a recess in the meeting rail of the upper sash, the slot extending downward from the upper dge of the plate and having an upwardly curved lower end. The fastening is simple and inexpensive, may be quickly applied and does not detract from the appearance of the sashes. AXLE LUBRICATOR.—Jesse D. Lyon Higginsport, Ohio. This invention provides a simple and durable device for lubricating the axle from a reservoir held on the hub, the reservoir being formed at the end of the hub by the hub band and a cap. The oil is fed to the spindle by capillary attraction, aided by the motion of the bearing surfaces and by centrifugal action, due to the rotary motion of the boxing. BEDSTEAD IRON. — Edwin F. Tilley, New York City. For rigidly attaching tubular or other iron bedposts to the side rails this bedstead iron is made in two sections, one having a rib on its outer face and adapted to be secured to the side rail of the bedstead, while the other section has a groove receiving the rib of the first section and a second groove receiving the post the two sections being bolted together. COVER FOR COOKING VESSELS.—William C. Mapledorum, Fort William, Ontario, Canada. This cover has an angular pivoted handle, the lower or norizontal member of the handle engaging the cover when its other member is in an approximately vertical position. The improved cover is designed to remove the danger of burning or scalding when handling a heated pot or pan to pour out hot or boiling contents. NON-REFILLING BOTTLE. — John N. Adams and Wilton F. Jenkins, Richmond, Va. This bottle has automatic shifting valve or stopper devices which, when the bottle is held with its neck uppermost, will close off the outlet, and when the bottle is tilted will shift to allow the contents to freely flow out. The neck of the bottle has a contracted valve seat in which is held a gravity valve and keeper, together with a supplemental teeper consisting of a spring ring member and a central flexible portion. This valve device can be added to the bottle without materially increasing the cost of its manu- ## Designs. COAL SCUTTLE.—John W. Feeny and Roe Reilly, Elmira, N. Y. This scuttle has a flat black rising above the body of the scuttle, the projecting upper CUFF HOLDER.-Louis P. Kleiderer, Henderson, Ky. 'This device has a wavy shank portion at each end of which is a laterally projecting pin. CHUCK FOR HAT BLOCKS.—Ferdinand Herbin, Amesbury, Mass. This chuck has thickened side portions with beveled inner sides, there being openings in the depressed central part of the plate and opposite peripheral recesses in the thickened side portions. -Copies of any of the above patents furnished by Munn & Co., for 25 cents each. Please send name of the patentee, title of invention, and date of this paper. ## NEW BOOKS AND PUBLICATIONS. ENGINEERING CONTRACTS AND SPECIFI-CATIONS. Including a Brief Synopsis of the Law of Contracts and Illusof the Law of Contracts and Illustrative Examples of the General and Technical Clauses of Various Kinds of Engineering Specifications. By J. B. Johnson, C.E. New York: Engineering News Publishing Company. 1895. Pp. 417. 8vo. Price \$4. Since custom has laid on engineers and architects the duty of writing specifications and contracts, it is well for them to know something of the legal ground they are forced to traverse. The leading American engineering the guide posts for the cage, the cam being on a shaft schools have long needed a text book on the subject of turning on the cage, while a spring-pressed arm on the the law of contracts and engineering specifications. In shaft is connected with the hoisting cable. Should the the absence of any such text, this department of engineercable break or become slackthe cams would be instantly ing practice has received scant and meager treatment at the hands of these schools. This work has been written i primarily to serve the purpose of a text book. The author is professor of civil engineering at Washington University, St. Louis, Mo., and has imparted instruction on the subject of the book for many years. The value of this work, with its wealth of technical clauses and forms. will be apparent to all engineers and architects STENOTYPY, OR SHORTHAND BY THE TYPEWRITER. By the Rev. D. A. Quinn. Providence: The American Book Exchange. 1895. Pp. 55. 8vo. Price \$1.50. This work gives the details of a system the principles of which can be learned in a few hours, and words may be written with a speed equivalent to two and one-half times that of the ordinary typewriter. In this system a typewriter is used. It is based on phonetics, but instead of arbitrary letter or word signs, the letters of the Roman alphabet, with figures and stops, are utilized. By a judicious collocation of capitals and letters, as also figures and stops, a complete system of shorthand has been de THE CENTURY MAGAZINE. May, October. 1895. New York: The Century Gilt cloth. Pp. 960. Price \$3. Such a rich, beautiful, highly instructive and exceedingly interesting volume as six months' bound numbers of the Century Magazine make can hardly be realized by those who do not see it in this form, but simply read the separate numbers as they appear from month to month. The bound volumes are also worth a place on the drawing room table for a few weeks, before being placed on the library shelves, and all good libraries should have these volumes. The most important serial is Professor Sloane's Life of Bonaparte, begun in November, 1894, a work which has thus far given large promise of being the most complete and best balanced of all the accounts thus far put forth of the life and char cter of the great Corsican SPECIAL CONSULAR REPORTS. High. ways of commerce. The ocean lines. railways, canals and other trade routes of foreign countries. Washington: Issued from the Bureau of Statistics, Department of State. 1895. Pp. 763. 8vo, maps. #### RECEIVED. PHYSICAL, INTELLECTUAL, AND MORAL ADVANTAGES OF CHASTITY.
By Dr. M. L. Holbrook. New York: M. L. Holbrook & Co. Pp. 120. Price \$1. ## SCIENTIFIC AMERICAN #### BUILDING EDITION **DECEMBER**, 1895.-(No. 122.) TABLE OF CONTENTS. - Elegant plate in colors showing a residence in the Colonial style recently erected at East Orange, N. J., at a cost complete of \$11,000. Three perspective elevations and floor plans, also an interior view. An excellent design well treated. S. W. Whittemore, architect, East Orange, N. J. - 2. A Colonial house at Madison, N. J. Perspective elevation and floor plans. Cost complete \$5,500. Architects, Messrs. Child & De Goll, New York City. - A Colonial dwelling at Montclair, N. J. Two perspective elevations and floor plans. Architect, W. E. Bloodgood, New York City. A unique de- - Two perspective elevations and floor plans of a house recently erected at Brick Church, N. J., at a cost of \$2,700 complete. A pleasing design. Architect, Mr. F. R. Hassman, Orange, N. J. - 5. View of the new City Hall, Philadelphia, which has been erected at a cost of over \$20,000,000. The building is of white marble and covers four and a half acres. Is absolutely fireproof. The height of this building is 547 feet 31/3 inches, being, with two exceptions, the highest building on the earth. The exceptions being the Washington Monument and the Eiffel Tower. The next highest building on earth is the Cologne Cathedral, which is 510 feet. - View of the facade of the magnificent new Boston Public Library, Boston. Architects, Messrs. McKim, Mead & White, New York City. - Residence at Bensonhurst-by-the-Sea, L. I. Two per spective elevations and floor plans. Cost complete \$8.500. Architect, S. S. Covert, New York City. - 8. Perspective elevations and floor plans of a cottage at Oakwood, S. I., recently erected at a cost of \$2,800 complete. An attractive design. - 9. Miscellaneous Contents: Testing house pipes and drains.—A combination bathtub and washstand, illustrated.—The permanence of modern dwellings and public works.-An improved steam and hot water heater, illustrated.-Moving a large factory. -How to fix paper on drawing boards.-A quick water heater, illustrated.—Improved toilet room fixtures, illustrated.-A single track parlor door hanger, illustrated.—An improved furnace grate, illustrated.-Cements in mason work.-An improved furnace, illustrated.—A regenerative gas heater, illustrated.-Improved woodworking machinery, illustrated. The Scientific American Building Edition is issued monthly. \$2.50 a year. Single copies, 25 cents. Thirty two large quarto pages, forming a large and splendid MAGAZINE OF ARCHITECTURE. richly adorned with elegant plates and fine engravings, illustrating the most interesting examples of Modern Architectural Construc tion and allied subjects. The Fullness. Richness, Cheapness, and Convenience of this work have won for it the LARGEST CIRCULATION of any Architectural Publication in the world. Sold by all newsdealers. MUNN & CO., Publishers. 361 Broadway, New York. Business and Personal. The charge for Insertion under this head is (me Dollar a line for each insertion: about eight words to a line. Adver-tisements must be received at publication office as early as Thursday morning to appear in the following week's issue. Marine Iron Works. Chicago. Catalogue free. For pumping engines. J. S. Mundy, Newark, N. J. "C. S." metal polish. Indianapolis. Samples free. Presses & Dies. Ferracute Mach. Co., Bridgeton, N. J. Dynamo castings. The E. M. Wks., Ronceverte, W. Va. Handle & Spoke Mchy. Ober Lathe Co., Chagrin Falls, O. Screwmachines, milling machines, and drill pre-The Garvin Mach, Co., Laight and Canal Sts., New York, Emerson, Smith & Co., Ltd., Beaver Falls, Pa., will end Sawyer's Hand Book on Circulars and Band Saws free to any address. For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc., address J.S. & G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. The best book for electricians and beginners in electricity is "Experimental Science," by Geo. M. Hopkins. By mail. \$4; Munn & Co., publishers, 361 Broadway, N. Y. Wanted—A competent draughtsman who has had experience on small machine work. Address, stating experience and salary expected, A. R. S., box 773, New Send for new and complete catalogue of Scientific and other Books for sale by Munn & Co., 361 Broadway, New York. Free on application. HINTS TO CORRESPONDENTS. Names and Address must accompany all letters, or no attention will be paid thereto. This is for our information and not for publication. References to former articles or answers should give date of paper and page or number of question. Inquiries not answered in reasonable time should be repeated; correspondents will bear in mind that some answers require not a little research, and, though we endeavor to reply to all either by letter or in this department each must take his turn. Buyers wishing to purchase any article not advertised in our columns will be furnished with addresses of houses manufacturing or carrying the same. Special Written Information on matters of personal rather than general interest cannot be expected without remuneration. Scientific American Supplements referred to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of price. Minerals sent for examination should be distinctly Minerals sent for examination should be distinctly marked or labeled. (6677) W. H. B. says: What preparation is best for tanning cat and other small hides with the fur on, so that the skin will be soft and yet strong? A. Supposing the skins are dry, they should be softened throughout by soaking in pure water; soft water is best, but any ordinarily pure water may be used, and care must be taken that the skins are thus soaked only a sufficient time to soften them. Then clean off any bits of flesh that may remain on the flesh side, rinse all well, shake off the loose water, and gently stretch out and tack on a board, flesh side up. Then sprinkle with a mixture of powdered alum and salt, about two-thirds alum and one-third salt, enough to just cover every part. As the skin dries it takes up the mixture, but if any be left on the surface the second day, sprinkle on a little more water, otherwise put on more alum and salt, and sprinkle. Two to three days should be sufficient for such small skins, the idea being to give the skin all the alum and salt it will take up, while in a moist condition. This tawing process makes the hair firm, a gentle rubbing and beating softens the flesh side, and it is preserved from decay, although tawed skins are never calculated to stand much wetting. This process is well adapted for all small skins, although those which are heavier require more time, and the flesh sides are sometimes folded together, and the skins rolled up. When the skins are freshly taken off, no soaking is needed, but more care is then called for in thoroughly washing off and cleaning them, and the first application of salt and alum should be in the proportions of one-half each. It requires the judgment of a tanner to deal with skins in a dry state which may have become partly damaged before drying, and it re quires special knowledge also to tell whether a dry skin s so damaged. (6678) P. W. J. says: Can you give me some information regarding the nature of alloys? A. The following is from Hiorn's "Mixed Metals": "When two or more metals are caused permanently to unite, the resulting mixture is termed an alloy. When mercury is an essential constituent, the mixture is termed an amalgam. The general method of effecting combination is by the agency of heat, but with certain soft metals true love may be formed by subjecting the constituents to considerable pressure, even at the ordinary temperature. Alloys such as those briefly referred to were doubtless first discovered by the metallurgical treatment of mixed ores, from the simultaneous reduction of which alloys would be formed; or in some cases, as in ores of gold and silver, naturally formed alloys would be obtained by a simple melting process. The direct preparation of alloys by the simple melting together of the constituent metals has been enormously developed in modern times, and the attention which mixed metals are now receiving by chemists is far greater than in any period of history. Comparatively few of the metals possess properties such as render them suitable to be employed alone by the manufacturer; but most of them have important applications in the form of alloys. Even among the metals which can be used independenly, it is often found expedient to add portions of other metals, to improve or otherwise modify their physical properties. Thus gold is hardened, and made to resist wear and tear, as well as to lower its cost, by the addition of copper; silver is likewise hardened by alloying it with copper; and the bronze coinage is formed of an alloy of copper, zinc and tin for (6679) E. W. B. says: Can you tell me how to preserve bird skins? A. Make an incision from the breast bone to the vent; with a small piece of wood work the skin from the flesh. When the leg is reached, cut through the knee joint and clear the shank as far as possible, then wind a bit of cotton wool on which some arsenical soap has been put round the bone; do the same with the other leg. Now divide spine from root of tail, taking care not to cut too near the tail feathers, or they will come out. Next skin the wings as far as possible and cut off. The skin will now be entirely clear of the body. The skin must now be turned inside out and the neck and skin gently pulled in opposite directions till the eyeballs are fully exposed. The whole of the back of the head may be cut off and the eyes and brains taken out and their places filled with cotton wool. The whole skin should be rubbed well with arsenical soap or plain arsenic, and the neck returned to its natural position, when, after filling the body with a little dry grass or
wool, the job is done. It is very easy, and the skin of a bird is much tougher than one would suppose, though, of course, they vary, the night-jar being very thin, while humming birds are ifairly tough. All the apparatus required is a sharp knife and a pair of scissors, or, for large birds, a strong pair of nippers to divide the sones. For further information see works on taxidermy. (6680) P. W. P. says: Will you kindly give me directions for the amalgamation of zincs? A. This is accomplished in several ways. 1. By dipping the zinc in dilute sulphuric acid and then dipping the end of it into a small quantity of mercury, after rubbing the surface with a brush. 2. Dissolve 1 lb. of mercury in 5 lb. of nitromuriatic acid (nitric acid 1 part, muriatic acid 3 parts), heat the solution gently to hasten the action. When a complete solution of the mercury is effected, add 5 lb, more of nitromuriatic acid. The solution should be applied with a brush, as immersing the zinc in it is wasteful. 3. To the bichromate solution commonly used in batteries, add to every pint of solution 1 drachm of bisulphate of mercury or a similar amount of nitrate of mercury (mercury dissolved in nitric acid). By employing this method, the amalgamation of the zincs is main tained continuously after the first amalgamation, which must be accomplished by method 1 or 2. (6681) A. F. R. says: Can you give me directions for indexing? A. A writer says: Having had to index twenty nine thonsand words, I think I have a right to speak about it. In the first place I got hold of a somewhat stiffish paper (old ledger paper is excellent); then I cut it into slips of different size (one inch by two inches will be about right). I put down on each slip a word or sentence (depending on the kind of index), with page and other reference if such is necessary. When every word or sentence which I wanted in the index was noted down. I got hold of twenty-six cigar boxes, which I lettered from a to z. I now distributed those slips into the boxes. This done, I put the contents of each box in a separate paper bag, put the now empty boxes again before me, got hold of a and distributed all slips bearing words beginning with a between these boxes, thus aa, ab, ac, ad, etc., to the end of the chapter, This done. I got hold of aa and successively ab, ac, etc., and distributed those slips further. When arranged alphabetically, I pasted those slips belonging to a in proper order on brown wrapping paper. Having treated a in this way, I took hold of b, and so on to the end of the alphabet. It took me a fortnight (six hours a day) to get through with the distribution, and after that the copying took me several months. ## TO INVENTORS. An experience of nearly fifty years, and the preparation of more than one hundred thousand applications for detents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of Datents, either at home or abroad, are invited to write to this office for prices, which are low, in accordance with the times and our extensive facilities for conducting the business. Address MUNN & CO., office Scientific American, 361 Broadway, New York. ## INDEX OF INVENTIONS For which Letters Patent of the United States were Granted December 10, 1895, AND EACH BEARING THAT DATE. [See note at end of list about copies of these patents.] | Advertising cabinet, C. H. Tebbetts 551.0 | 09 | |--|--------------| | Aerating device, beer, M. H. Hart | 68 | | Aerating device, beer, M. H. Hart | | | G. Collins 551.2
Amalgamator. Bowes & Philbrick 551.1 | 01 | | Amalgamator. Bowes & Philbrick | 78 | | Anchor, Langley & Honess | 20 | | Duenckel | 84 | | As phalt, dehydrating crude, C. Richardson 551.2 | 9 i i | | Automatic brake and safety fender, J. & J. G. | | | Kurtz | 10 | | Axle, carriage, R. Mannesmann | 91 | | Back comb, W. S. Bechtold | 12 | | Balancing mechanism, J. Warrington 551,1 Baling press, Brown & Gehrt 561,3 Banjo, G. C. Dobson 550,9 | กัว | | Ranio († C. Dobson 550.9 | 5ĩ l | | Bank registering, W. G. Horton | 72 | | Bean picker, E. E. Miller 550,9 | 93 | | Bearing, ball, Thomas & Twyman 551,2 | 39 | | Bank, registering. W. G. Horton. 550.8
Bean picker. E. E. Miller 550.3
Bearing, ball, Thomas & Twyman 551.2
Bearing, track, F. H. Richards. 551.1
Beds, mattress holder for, E. Calkins. 551.2 | 90 | | Belt, driving. I. Jackson | 64 | | Bicycle canopy, O. M. Schmid | តា | | Bicycle saddle clip. E. Ward | 16 | | Bicycle saddle clip, E. Ward | | | son | 68 | | Bicycle support, M. E. Blood | 14 | | son 551.0 Bicycle support, M. E. Blood 551.5 Bicycle tube, pneumatic, H. N. Wayne 551.0 Bicycles, adjustable and removable bandle bar | 10 | | for, M. B. Ryan 551,1 | 73 | | Pit Soo Pridle bit | | | Blackboard, W. Antony 551,1 | 106 | | Boller. See Steam engine boller. | | | Boilers, combined high and low water alarm for, | | | G. Flesher | 59 | | Rond or connector A G Carlson 550 | n. | | Bond or connector, A. G. Carlson 550,8
Book holder, W. G. Brownell 551,1 | 79 | | Rook rest I. F. Brown | 56 | | Boot or shoe, H. Hottinger | 281 | | Boring and mortising machine for wood articles, | 141 | | W. Ritter | 550 | | Rottle internal hall valve F R H Thomas 5511 | 102 | | Bottle, Sterry & Murphy |)69 | | Bottle stopper, F. S. Perrin | 336 | | Bottle stopper, antirefilling, Fischer & Micheau. 551, | 273 | | Bottle washing machine. A. Rouse | 48 | | Bow for stringed instruments, P. Stark 551,0 | 108 | | Box. See Match box. Signal box.
Bracket. See Dental bracket. Door bracket. | | | Braiding machine. G. E. Freeman | 184 | | Braiding machine, G. E. Freeman | | | hvaka | | | Bridge, draw, M. G. Schinke | JU4 | | Bridle bit, A. Eastwood | 201 | | pronzing inquid for stenen printers, p. H. Snarp., 301, | J. (| | | ~ ~~~ | | | |----------------|--|----------------------------|------------------------------| | ι | Buffing or polishing appliance, H. A. Webster | 1,019
0,942 | Ladd
Lam | | ,
 - | Buffing or polishing appliance, H. A. Webster. 55; Buffing wheel, H. Carmichael. 55; Bung and tap, G. W. Jackson. 55; Burner. See Vapor burner. Burner, E. Galtier. 559 | 1,286 .
0.961 | Lam
Lam
Lam | | • | Burning fine fuel, apparatus for, W. M. Russell. 55
Button, Flagg & Carpemter. 55
Button dilling maching M. Charnia 55 | 0,961
1,098
0,957 | Lam | | | Cable reeling machine, O. P. Briggs. 55.
Calorimeter, R. C. Carpenter. 55 | 1,255
0,943 | Lam
Late | | | Car coupling, H. R. Dore. 55 | 1,249
0,952 | Lath
Laur
O | | | Car coupling, G. A. Lyncker. 50
Car coupling, W. P. Nye. 55
Car coupling, J. T. Price. 55 | 1,128
1,091
1,094 | Life-
Liga
Lock | | 9 | Burner. See Vapor burner. 56 Burner. E. Galtier. 55 Burning fine fuel, apparatus for, W. M. Russell. 55 Button flagg & Carpemter. 55 Button drilling machine, M. Chernic. 55 Cable reeling machine, O. P. Briggs. 55 Calorimeter. R. C. Carpenter. Car brake, railway, J. Glbbons. 55 Car coupling, A. Atkinson. 55 Car coupling, H. B. Dore. 55 Car coupling, G. A. Lyncker. 55 Car coupling, J. T. Price. 55 Car coupling, F. E. Ward. 55 Car coupling, C. E. Ward. 55 Car fender, P. Long 55 Car fender, P. Seafe. 55 Car fender, W. Purling. 55 Car fender, F. B. Seafe. 55 Car fender, S. B. Willis. 55 Car fender, S. Willis. 55 Car fender, W. Mollis. 55 Car fender, W. Wollis. 55 Car fender, W. Wollis. 55 Car fender, W. Wollis. 55 <t< td=""><td>1,015
1,077
1,217</td><td>S
Lock
Lock</td></t<> |
1,015
1,077
1,217 | S
Lock
Lock | | | Car fender, W. Purling. 55 Car fender, F. B. Scaife. 55 Car fender, Veders & Smith 55 | 1,231
1,197 | Loor
Loor
& | | | Car fender, S. B. Willis 55
Car heater drain mechanism, R. M. Dixon 55
Car seat waverible W. M. Novarese 55 | 1,328
1,182 | Loor
W
Lubi | | 9 | Car street, W. Robinson | 1,047 | Lubr
Magi
Mail | | ? | Case. See Ticket case. Vial case.
Cash register and indicator, F. H. Seymour | 1,051 | Mate
Matt | | 8 | | | Meas
Meas | | r
. ' | Check loops, machine for manufacturing, W. E. Villinger | 1,297
1,246 | Meta
t
Milli | | , | Villinger | 1,277 | Milli
T
Milli | | e | manu 55 Custe and underfire, combined ash, A. Stretton 55 Custerte machine, M. Kirshner 55 Cleaner. See Dish cleaner. Grain cleaner. 55 Cleat for electric wiring, J. R. Hemphill 55 Clock, electric, B. Franklin 55 Clothes drier, T. P. Snyder 55 Clothes line, J. R. Phelps 55 Clothes line J. R. Phelps 55 Clothes line pulley, J. J. Leuzinger 55 | 1,174
1,332 | Mini
Mini
Moto | | f | Cleat for electric wiring, J. R. Hemphill | 1,032
0,959
1,008 | Musi
Musi
Mute | | e
5 | Clothes line, J. R. Phelps. 55 Clothes line pulley, J. J. Leuzinger. 55 Clothes line support. J. R. Allen 55 | 1,045
1,214
1,105 | Nick
W | | 1 | Clothes line support, W. W. Case 55
Clutch, friction, W. A. Leonard 55
Coal dust faeding appliance F. De Camp 55 | 1,260
1,213 | Nipr
Nut
Nut | | l
e | Clothes line, J. R. Pbelps | 1,113 | Oar
Pack
Pan | | :-
n | Cock for steam engines, automatic drip, Wright & Hopley | 51,025 | Pap
Pap
Pap | | -
f | Coller Coulor, G. H. Mackay 55
Cowb. See Back comb. | 51,085 | Pape
Pape
Pape | | -
- | Collar, horse, G. H. Mackay | 51,300
51,282
51,033 | Pen. | | h | Commutator compound, antisparkie, J. R. Davis. 55
Compass, L. Sirieix | 1,263
51,295
51,299 | Pen | | е | ders 55
Copy and book holder, F. D. Kees 55 | 51.012
51,322 | Phot | | d
a | Corer, appie, O. Sayre | 51,099
51,108 | Pick
Pict | | a | Couch, folding, J. Boyd | 51,253
51,180 | Pipe
Pipe
Pipe | | ; | ling. | 51 177 | Plan
Plan
Plan
Plan | | a
h | Crank, winding, F. J. Bernard | 51,127
51,195
51,007 | Plan
Plov
Plov | | n
s | Cultivating and planting apparatus, E. E. Hart- | - 1 | Poci | | h
o | Curtain pole and shade bracket, J. A. Gilfillan | 51,207
51,080 | Pole
Pole
h | | x
n | Curtains and shades, combined support for, A. | 51,124 | Pres
Pres | | r-
3, | Cutter. See Milling cutter. Pipe cutter. Rotary cutter. Cycle transmitting mechanism, G. Beekman 55 | 60,938 | Prin
Prin
Prop
Pulv | | ,
,
;- | Cycle transmitting mechanism, G. Beekman 55 Dental bracket, T. G. Lewis 55 Derrick head, D. Cram 56 Desk top, adjustable, F. W. Hill 55 | 51,190
51,155
51,121 | Pun | | i- | Dish cleaner, Finlay & Wilson. 55 Dish cleaner basket, M. Stone 55 Display stand or cabinet. A. W. McGowan. 55 | 51,272
51,059
51,138 | Pun
Puzz
Quil
Rac | | n | Door bracket, sliding, E. Y. Moore. 55 Door, storm and screen, O. C. Mueller. 55 Draughting sheet, mounted, W. E. Sawtelle et. al. 55 | 51,132
50,995
51,003 | Rail
Rail
Rail | | f
() | Drier See Clothes drier | 50,964 | Rail
Rail
Rail | | е | Drums soot removing device for heating E | | Rail
Rail | | = | Fales Drying cylinder, J. Mandot. Drying cylinder, J. Mandot. St. Drying cylinder, J. Mandot. St. Drying cylinder, J. Mandot. St. Drying cylinder, J. E. Nash. Electric controller, S. H. Short. St. | 0,988
1,216
51,274 | Rak
Razo
Ree | | <u>-</u> | Egg separator, J. E. Nash | 0,998
1,054
51,170 | Refr
Refr
Reg | | e
N | Electric switch, J. E. Criggal. 55
Elevator controlling device, J. D. Ihlder. 55
End gate, wagon, A. R. Maguire. 55 | 51,203
51,034
50,987 | Regi
l:
Rive | | s
r | Engine. See Steam engine. Entrails, machine for cutting and cleaning, G. A. Lowry | 50,986 | Roa:
Roci | | s, | Explosives, apparatus for making, Converse & | | Roc.
Roc.
Rota | | - | Bernadou | 50.958
51,079 | Sado
Sash
Sash | | = | Fan. Cochran & Brant 55
Fastening device, W. R. Woodworth 55
Feedwater regulator J. J. Lawler 55 | 51,330
51,050
51,333 | Sast
Saw
Saw | | , | Fence machine, wire, C. W. Holm 55 Fence weaving device, W. F. Beals 15 Fence weaving machine, wire, C. L. & M. Ewing 15 Fence weaving machine, wire, C. L. & M. Ewing 15 Fence weaving machine, wire, C. L. & M. Ewing 15 Fence weaving machine wire, C. L. & M. Ewing 15 Fence weaving machine wire, C. L. & M. Ewing 15 Fence weaving device with the control of contro | 51,280
51,153
51,204 | Saw
Saw
Scoo | | | Fender. See Car fender. Fifth wheel, vehicle. T. A. Watson | 51.017 | Scre | | • | Filter plate, L. A. Enzinger Filter, water, A. H. Kohlmeyer | 50.955
51,324
50.939 | Seat | | ı | Fender. See 'ar fender. Fifth wheel, vehicle. T. A. Watson | 51.143
51,258
51 169 | Sew | |
19
18 | Fishing tool, Lambert & Guiler 55 Flag of banner, M. Ernst 55 Flexible joint D. W. Magga | 51,211
51,158
51 104 | Sew | | 18 | Food extract, milk, C. Morfit 5.
Fowl decapitator, H. J. Huddle 5.
Frame. See Ouliting frame | 51,134
51,283 | Sew
Sew
Sew | | 25
34 | Furnace. See Smelting furnace. Furnace, J. Moran | 51,133
51,057 | Sha
Sha
Sha | | 24
10 | Frame. See Quilting frame. Furnace. See Smelting furnace. Furnace, J. Moran | 51,240
51.269 | She | |)1
75 | Furniture base. A. C. Johnson 5.
Garbage, apparatus for removing, W. Goetz 5. | 50,977
50,963 | Shu | | 19
12
51 | Garbage cremating apparatus, C. A. Wentworth. 5
Gases at elevated temperatures, apparatus for
treating substances with, L. Mond | 51,342
51,221 | Sirt | | 72
93
99 | treating substances with, L. Mond | 51,023 | Sign
Ska
Slat | | 6
59
54 | hausen 56 Gate. See End gate. Railway crossing safety gate. Gare. A. Yates 5 | 51,245 | Sme
Soa
Solo | | 60
16 | Golf club W T Jannings 5 | 50.954
50,949
50,976 | Sole
Spri
Spri | | 58
44
18 | Grain cleaner, O. M. Sweet. 5
Grate, G. W. & H. S. Bennett. 5
Grate bar, Ludington & Percival. 5 | 51,238
51,252
51,353 | Star
Star
Ster | | 3 | Grinding machine, P. J. Westphal Guns, means for locking barrels to frames of breakdown. E. E. Bennett. | 51,243
51,251 | Ste | | 06 | Harness attachment, W. A. Brunemeier 5
Harvester, bean, W. Snure 5
Hatfastener, F. W. Grundmann 5 | 51,303
51,055
51,313 | Ster | | 59
30
41 | Hay rack, metal. G. A. & G. E. Nidy 5
Hinge, spring, M. S. Field 5
Hod. W. Mullen 5 | 51,225
51,030
50,996 | Stor | | 79
56
81 | Hold, W. Mullen 3 Holdback, thill, P. S. Van Wagner 5 Hook. See Coat hook. Ladder hook. Horse rake D. Maywell Sr 5 | 51,013 | Sto | | 71 | Horses, boot or other holder for, J. M. E. Morrill. 5 Horseshoeing apparatus, J. H. Jessen | 51.135
51,287 | Sto | | 39
02
69 | Wilhelm | 51,160
51,290
51,250 | Stre
Stre
Swi | | 36
73
48 | Insulated electric wire joint, R. S. Kelsch 5 | 51,154
51,166 | Swi | | 58
84 | Jar cover, A. Heinemann 5 | 51,120 | Swi
Syr
Syr
Tac | | 84
04 | Joint. See Flexible joint. Insulated electric wire joint. Pipe joint. | 550,960 | Tar
Tel | | 04
67
27 | Knitting machine loop extending mechanism, J. | 51,346 | Tel
Tel | | | | | | | tic | American. | | |---|--|---------------------------------| | . 551,019
. 550,942
. 551,286 | Ladder hook, extension, C. J. Burgedahl | Tele
Tele
Thi | | . 551,286 | Ladder book, extension, C. J. Burgedahl 551,073 Lamp, bicycle. J. H. Lehman 551,083 Lamp, electric arc, W. J. Davy 551,029 Lamp, electric arc, F. N. Pike
551,046 Lamp, electric arc, W. P. Wiemann 551,240 Lamp ectrode, arc. T. G. Portis 551,337 Lamps, automatic lighting device for bicycle or other, J. H. Lehman 551,082 Lamps, carbon holder for arc, H. J. Farley 550,356 Latch, N. Lattard 551,212 Lathe tool rest, K. Bauer 550,937 Launches, apparatus for operating vapor, F. W. Ofeldt 551,226 | Thi
Thi
Thi | | 551,098
550,957
551,261
551,255 | Lamps, automatic lighting device for bicycle or other, J. H. Lehman | Thi
Thi
Thi
Ticl | | 550,943
550,962
551,249 | Latch, N. Lattard 551,212
Lathe tool rest, K. Bauer 550,937
Launches, apparatus for operating vapor, F. W. | Tire | | . 551,128
. 551,091 | Ofeldt. 551,226
Life-saving apparatus, marine, Guest & Bates. 551,031
Ilgature receptacle, G. M. Stratton. 551,147 | Top | | . 551,094
. 551,015
. 551,077
. 551,217 | Launches, apparatus for operating vapor, F. W. Ofeldt | Tra
Tri
Tro
Tro | | . 551,231
. 551,197
. 551,241
. 551,328 | Loom shuttle box motion, T. Lynn | Tru | | . 551,182 | Looms, automatic rick counter for, H. W. Bosworth 551,345 Lubricating attachment, T. B. Nation 551,142 | 1 (111) | | . 551,047
. 550,984
. 551,228 | Mail collection system, C. F. Munson | Typ | | . 551,051
. 550,948
. 551,338 | Mattress or bed bottom, spring, Bundy & Pickett. 551,348
Measuring bust, garment, W. A. & A. L. Arfvid- | Vac | | | Meat cutter's cabinet, Hutchinson & Austin 551,316
Metal articles, manufacture of hollow, J. A. Pot- | Val
Val
Val
Val | | . 551,297
. 551,246
. 551,277 | Milling cutter, C. C. Tyler 551,063 Milling cutter and dies for making same, C. C. Tyler C. C. Tyler 651,063 | Va | | . 551,117
. 551,174
. 551,332 | Tyler 551,068 Milling cutters, machine for making, C. C. Tyler 551,066 Mining cutter wheel, coal, W. J. E. Carr 550,944 Minling machine, E. S. McKlulay 551,140 Motor. See Explosion motor. 551,140 | | | . 551,032
. 550,959
. 551.008 | Musical instrument, J. Brand | Ve | | . 551,008
. 551,045
. 551,214
. 551,105 | L. Mond | Wa
Wa | | . 551,260
. 551,213
. 551,074 | Nut lock, H. Isackson, combines, G. Laure | Wa
Wa
Wa | | . 551,113
551,189 | Packing, metallic, J. L. Hummer | Wa
Wa
Wa | | . 551,025
550,999
551,085 | Paper box covering machine, H. A. Inman 550,474 Paper box machines, cut-off for, G. W. Miles 551,133 Paperhanger's bench horse, C. J. Burgedahl 551,073 Paper British Folds F. Marren 51,000 | Wa | | . 551,300
. 551,282
. 551,033 | Pan. See Vacuum pan. Paper board scoring machine, H. A. Inman. 551,257 Paper box covering machine, H. A. Inman. 550,974 Paper box machines, cut-off for, G. W. Miles. 551,138 Paper box machines, cut-off for, G. W. Miles. 551,134 Paper fature, toilet, E. Morsan. 551,040 Paper registering machine, T. C. Dexter. 560,95 Pen, fountain, W. I. Staaf. 551,104 Pencil, lead, A. Kaiser. 551,288 Pendulums. device for adjusting the beat of clock, F. F. Richey. 50,234 Photomechanical printing processes, screen for, 501,234 | WE | | . 551,033
. 551,263
. 551,295
. 551,299 | Pendulums, device for adjusting the beat of clock, F. F. Richey | Wi
Wi
Wi
Wi | | . 551.012
. 551,322
. 551,099 | F. G. D. Deville | I Wi | | r
551,108
551,253 | Picture frame mouldings, machine forforming, J. Glbson. 551,206 Glbson. 551,206 Glbson. 551,206 Glbson. 551,207 Glbson. 551,208 551,20 | Wi | | . 551,180 | Pipe Joint, flexible, D. W. Magee. 551,196 Pipe wrench, G. L. Ives. 551,288 Planter, J. W. Sh. ore. 551,238 | Wi
Wi | | . 551,177 | Planter, hand, O. Simons | Wi
Wi
Wi
Wi | | . 551,127
. 551,195
. 551,007 | Plow, wheeled, H. Lindestrom 551,215
Pocket knife, self-opening, Shonnard & Davis 551,215
Pocket, safety J. P. McGuire 550,937 | Yo | | 551,207
n 551,080 | | | | 551,124 | 1918 551,085 Press. See Baling press. Hydraulic press. Printing press. Soap press. Press, F. J. Dudley | An | | . 550,938
551,190
551,155 | Printing press, R. Miehle. 550,987 Propeller attachment, boat, A. H. Loebs 550,987 Pulverizer and blower. W. M. Russell. 551,097 | Ba
Ba
Bio | | 551,155
. 551,121
. 551,272
. 551,059
551,138 | Pump rod, compensating, G. H. Beebe 551,176 Pump, spraying, A. S. & A. H. De Clercq 551,187 Puzzle, A. Hadlock 551,276 | Bio
Bio | | . 551,138
. 551,132
. 550,995 | Printing machine, H. A. W. Wood. 551,198 Printing press, R. Miehle. 550,998 Propeller attachment, boat, A. H. Loebs. 550,998 Pulverizer and blower, W. M. Russell. 551,097 Pump rod, compensating, G. H. Beebe. 551,197 Pump, spraying, A. S. & A. H. De Clercq. 551,157 Puzzle, A. Hadlock 551,297 Quilting frame, J. J. Click. 551,398 Rack, See Hay rack. Rail bond, electric, W. H. Wiggin. 551,021 Railway crossing safety gate, G. W. Phillippi. 551,021 Railway, electric, R. Lundell. | Bit
Blo | | 551,132
550,995
1. 551,003
550,964 | Railway, electrical conduit. J. D. Griffen 550.965 | Bo | | . 551,227 | Railway rail lock, R. J. Catchings 551,34
Railway switch, B. F. Loughmiller 551,28
Railway switch, Samuel & Angerer (r) 11,518
Railway switch, underground electric, A. Rosen- | Ca
Ch
Co | | . 551,271
. 550,988
. 551,216
551,274 | bolz 551,145 Rake. See Horse rake. Razor strop, H. F. Gray 551,331 Reel. See Wire reel. | Cy | | . 551.054 | Refrigerating apparatus, M. Audiffren | Dr
Dr
El | | . 551,170
. 551,203
. 551,034
. 550,987 | Regulator. See Feedwater regulator. Gas regulator. Rivets, etc into soles, machine for forming and driving T Gare. | Ev | | . 550,986
551,036 | Rivets, etc., into soles, machine for forming and driving, T. Gare | Fic | | . 551,306
. 550.958 | Roof or floor, C. M. Jennings 501,552
Rotary cutter, Johnson & Keniston 550,752
Saddle girth fastener, A. P. Harland 551,314
Sach cord guide & Proceed 551 | Gi
Gi
Gl | | 551,079
551,330
551,050 | Sash holder, G. S. Colburn |) ,,,, | | 551,333 | Sawbuck, A. Clymer 550,946 Saw, crosscut, R. E. Poindexter 551,00 Saw guard, L. C. Ringuette 551,00 Saw set, J. F. Strable 551,00 Saw set, J. F. Strable 550,05 | La
La
Mi | | 551,204
551,017
551,223
550,955 | Screen See Window screen | ' M∷ | | 550,939 | Screw slotting machine. Hakewessell & Henn. 551.118 Scrubbint, machine. R. Hoffheins. 550,97 Seal lock, Masten & Hughes. 550,98 Seat support, spring, H. Park. 551,28 Separator. See Egg separator. | Pe
Pi
Pu | | 551.143
551,258
551,162 | constructing, H. P. McDonald | , K | | . 551,211
551,158
551,194
551,134 | Sewing machine buttonhole attachment, E. J. Toof | Sca | | 551,283 | Sewing machine needle threader, C. W. Kutz 551,325
Sewing machine work guiding device, F. W. Mer- | St | | 551,133
551,057
551,240
551,269 | Shaping machine, involute curve, C. C. Tyler 551,03
Sharpener, shears, W. R. Moore 551,23
Sheathing and lath, combined wooden, O. R. Dahl 551,113 | ž Τe | | 551,270
550,977
550.963 | Dahl Shell for high explosives, J. G. Justin (r). 11,51 Shutter slat lock, window, W. Z. Brown. 550,94 Sickle bar, J. Smith 551,23 Sitting apparatus, E. R. Draver. 551,338, 551,338 Signal box, successive non-interfering, W. H. Kirnan. 551,12 Signaling apparatus, B. J. Noyes. 551,09 Signaling apparatus, B. J. Noyes. 551,09 Signal with partners S. Noyes. 551,09 Signal with partners B. S. | To | | 551,342
or
551,221 | Sirting apparatus, E. R. Draver | 3 " | | 1-
551,023 | Signaling apparatus, B. J. Noyes | A! | | 551,245
550,954
550,949 | State, H. E. Sheldon | Be
Bi
Bi | | 550,949
550,976
551,238
551,252
551,353 | | Bo | | 551,243 | Stamp, rubber hand, W. I. Barnard et al | Br
Ca
Ca
Cb
De | | 551,251
551,303
551,055 | Breuer | 1 Es
7 Gl | | 551,313
551,225
551,030
550,996 | Breuer 551,07 Stereotype plate holder, A. W. Marshall 551,07 Stone breakers, means for lubricating bearings of P. W. Gates. 551,30 Stone crusher, jaw, C. L. Carman 551,30 Stop motion mechanism for machines for prepar- | Ha
Kr
Ma | | 991,019 | Standard No. P. Canning | B Mi
Pa
Pla
Sir | | 551,039
1. 551,135
551,287
& | | 5 Sp
6 Ta
W | | 551,160
551,290
551,350
551,154 | | | | 551,166
r,
551,230 | Switch stand, F. F. Culver | 6 iss
6 25
0 of
Br | | 551,120
550,960
ic | Syringe, F. L. WOOGIOTG | 9 (4 ve: | | J.
551,346 | Tack machi ne, R. Hathaway et al. 551.27 Tap screw plug, J. Lee. 551.35 Telgraph relay, A. D. MacDonald 551,19 Telephone circuit, J. S. Stone. 551,06 Telephone lines, harmonic selective signal for party, J. A. Lighthipe. 550,98 | 2 go
0 If
ins | | ,0 | | • | | Telephone receiver, A. C. Brown 551,347 Telephone transmitter, J. & H. M. Goodman 551,275 Thill coupling, Crosby & Keener 551,111 Thill coupling, Hunter & Logan 551,315 |
---| | Telephone transmitter, J. & H. M. Goodman 551,275 | | Thill coupling, Crosby & Keener | | Trill coupling, Crosby & Keener. 551,115 Trill coupling, Hunter & Logan 551,315 Trill coupling, G. J. Overshiner 551,082 Trill support, M. V. B. Howe 566,973 Trill support, J. Q. Lemmon 551,126 Trill support, vehicle, J. B. Miller 560,994 Ticket case, C. G. Edenholm 551,268 Tire for bicycle or other wheels spring Reals & | | Thill support. M. V. B. Howe | | Thill support, J. Q. Lemmon | | Thill support, vehicle, J. B. Miller. 550,994 Ticket case, C. G. Edenholm 551,268 | | Tire for bicycle or other wheels, spring, Beale & Jewell | | Tire prelimatic E. E. Murdock 551088 | | Tire wheel, J. S. Copeland | | Toy, detonating, J. S. Tobitt | | Tire for Dicycle of other wheels, spring, Beale | | Trimmer. See Cue trimmer. Trolley. D. Linny et al. 551 168 551 169 | | Trough. See Watering trough. | | Trousers, etc., fly fastener for, J. Waldner 551,103 | | Truss, umbilical. E. Stewart. 551.237 | | Tube. See Bicycle tube. | | ing R. C. Stiefel 551340 | | Turbine, wind, J. F. Janssen | | Typewriting machine W. C. Ackley 551,036 | | Typewriting machine, M. G. Merritt | | Vacuum pan, A. F. Gaiennie | | Valve, P. Towey | | Valve gear, G. W. Wright | | Valve instrument, W. Harris | | Vapor burner. H. Ruppel | | Vapor generating and applying apparatus, O. S. Photos | | Vehicle, S. M. Schindel | | Vehicle running gear, R. S. Crawford 551,202 | | Vessels, means for raising sunken, G. H. Chan- | | Tire wheel. J. S. Copeland Toluenesulfocblorids, making, P. Monnet. 551.171 Toluenesulfocblorids, making, P. Monnet. 551.171 Toy, detonating, J. S. Tobitt 551.185 Track cleaner, A. S. Hickley 551.287 Trimber. See Cue trimmer. 551,168, 551,169 Trough. See Watering trough. 551,168, 551,169 Truck for barrels, etc., H. A. Kobold. 551,167 Truss, umbilical, E. Stewart. 561,237 Trube. See Bicycle tube. 561,237 Tube. New Bicycle tube. 561,237 Tube. New Bicycle tube. 561,237 Typewriter cleaning attachment, H. L. Massey. 551,463 Typewriting machine, W. C. Ackley. 551,340 Typewriting machine, M. G. Merritt. 550,990 Vacuum pan, A. F. Gaiennie. 551,161 Talve, P. Towey. 551,341 Valve, A. Turnbull. 551,011 Valve gear, G. W. Wright. 551,024 Valve instrument, W. Harris. 550,367 Valve mechanism, steam engine, C. Schmid. 551,049 Vapor generating and applying apparatus, O. S. Rhodes. 551,232 Vebsicle, S. M. Schindel. 551,329 Velsicle spring gear, B. M. Glasgow. 551,329 Velsicle spring gear, B. M. Glasgow. 551,329 Veterinary obstetrical forceps, C. Barber. 551,022 Veterinary obstetrical forceps, C. Barber. 551,022 Veterinary obstetrical forceps, C. Barber. 551,022 | | Veterinary obstetrical forceps, C. Barber. 551,301
Vial case, B. T. Winchester 551,022
Voting machine, F. H. Gilbert 551,185
Wagon box, F. S. Ingoldsby. 551,319 | | Voting machine, F. H. Gilbert | | Wagon box, F. S. Ingoldsby | | Peterinary obstetrical forceps, C. Barber | | Wagon rear coupling, F. S. Ingoldsby 551.318 | | Wagon running gear, N. S. Ingoldsby | | Washer, H. A. Otto | | Water closet seat, H. W. Scattergood 551,100 Water elevators, air compressor for G. D. War- | | Water elevators, air compressor 10r, G. D. War- ren | | Water wheel, Parent & Grenier | | Weather strip, H. Ballheim | | Wheel. See Buffing wheel. Draughting wheel. | | wheel. | | Wheel rim and tire, T. B. Jeffery | | Window, Minges & Rein | | wheel rim and tire, T. B. Jeffery 551,035 Winding machine, thread, T. Hansen 550,936 Window, Minzes & Rein 551,219 Window, W. Wallace 551,229 Window Cleaning device, S. Goldner 551,185 Window screen, F. E. Ramsden 551,185 Wire colling machine, Meyer & Commons 550,921 | | Window screen. F. E. Ramsden | | Wire coiling machine, Meyer & Commons 550,991 | | wheel. 551,035 Wheel rim and tire, T. B. Jeffery. 551,035 Winding machine, thread, T. Hansen. 550,966 Window, Minges & Rein. 551,219 Window, W. Wallace. 551,229 Window cleaning device, S. Goldner. 551,186 Window screen, F. E. Ramsden. 551,035 Wire coiling machine, Meyer & Commons. 550,091 Wire, machine for forming loops in ends of, F. B. Manyille. 551,335 | | Wire, manufacture of galvanized, tinned, and | | coated, G. C. Reese | | Wire reel, W. R. McNutt | | Wrench. See Nut wrench. Pipe wrench. | | Wrench, Gay & Heard | | Wrench, J. E. Reese. 551.232
Yoke attach ment, neck, Durkee & King. 551,183 | | LONG GEORGIA GEOR, DECK, DUI ACC & MILE 591,109 | | | | | | TRADE MARKS. | | Anticontia U W Feber 95 455 | | Anticontic II W Feber 95 455 | | Anticontic II W Feber 95 455 | | Anticontic II W Feber 95 455 | | Antiseptic, H. W. Faber | | Wrench, J. E. Reese | |--| | TRADE MARKS. | | Antiseptic, H. W. Faber | | J. R. Fay. 27,444 Bags, grain, G. M. & F. P. Mann 27,426 Baking powder, Cameo Baking Powder Company 27,452 Bicycles, Kenwood Bicycle Manufacturing Company 27,470 | | Bicycles and bicycle parts, American Buttonhole. Overseaming and Sewing Machine Company 27 472 | | pany 27,471 Bitters, M. Blumer 27,436 Bloomers, S. Oppenheim & Company 7,416 | | Boots and shoes, Bloomingdale Brothers. 27,422 Boots and shoes, Hinkle, Barbour & Company 27,422 Boots and shoes, Hinkle, Barbour & Company 27,423 Bouillor, tablets of concentrated, R. Bertrand 27,438 Bread and biscutts, G. F. Brunyes 27,447 | | Canned goods, Hamburgh Canning Company | | Bicycles and tricycles, Black Manufacturing Company of the pany | | Drinks, powder for hygienic, R. Bertrand | | ceptades and apparatus for same, Cre-Ozone ceptades and apparatus for same, Cre-Ozone flour, wheat, Blanton Milling Company | | Gin, J. P. Baiter | | Company. 27,424 Losecticides, E. S. Brewster. 27,459 Insecticides, C. R. Ober. 27,459 Lace goods, I. Modry & Company. 27,417 | | Laces, boot and shoe, Firm of W. Paton27,420, 27,421
Mineral and carbonated waters, Taft & Greenleaf, 27,434
Mineral water, C. W. Steele | | Peptone of beef, I lebig's Extract of Meat Company 27,445 Parfumery Winkelmann & Brown Drig Company 27,462 | | Pickles, W. L. Hickok & Company | | Company | | Snuff, H. Coyne. 27,427
Soap, Christopher Lipps Company. 27,450, 27,451
Steel bars, T. C. Burrows. 21,473 | | Scales, weighing or measuring. Buffalo Scale Company 27,464 Scarfs, Ballin & Bernheimer 27,425 Snuff, H. Coyne. 27,427 Soap, Christopher Lipps Company 27,460 Steel bars, T. C. Burrows 27,473 Stiffening material, T. Hanna 27,482 Stoves and ranges, Eclipse Stove Company 27,487 Tetrajodphenolphtbalein, an antiseptic substance, Chemische Fabrik Rhenania 27,454 Tobacco, cigars, and cigarettes, smoking and chewing, L. Miller & Sons 27,429 Tobacco, smoking, F. W. Feigner & Son Company 27,429 Toys,
mechanical, F. D. Pagliuchi & Company 27,465 Wringers, American Wringer Company 27,465 27,465 27,466 | | Tobacco, cigars, and cigarettes, smoking and chewing, L. Miller & Sons. 27.429 Tobacco, smoking, F. W. Felgner & Son Company. 27.428 | | Toys, mechanical, F. D. Pagliuchi & Company 27,463
Wringers, American Wringer Company 27,465, 27,466 | ## DESIGNS. | DEDITATIO, | | |---|--------| | Abdominal supporters, pad for, J. H. Kellogg | | | Badge, campaign, D. Roth | 24,953 | | Bedstead corner post. Z. T. Jones | 24,973 | | Bicycle saddle, W. I. Bunker | 24,964 | | Bottle, J. L. Dawes | 24,956 | | Bottle, I. Mamaux | 24,957 | | Bracket, D. C. Bowen | 24,967 | | Bracket, display, T. C. Blue | 24,968 | | Carpet, H. Horan | 24,978 | | Carpet, W. L. Jacobs | 24,980 | | Check hook, W. L. Roe | 24,970 | | Desk and seat, school, E. H. Stafford | 24,975 | | Escutcheon, G. E. Tyson | 24.971 | | Glass dish, H. T. Broden | 24,961 | | Glass holder, drinking, J. H. Gault | 24,962 | | Hair holder, A. Berlin | 24,963 | | Knife cleaner, A. Watkin | 24,969 | | Magnet frame, field, Jackson & Conradson | | | Musical instrument casing, P. Ehrlich | | | Paper weight, E. P. Frederick | 24,955 | | Plate, C. J. Ahrenfeldt | 24,958 | | Sinks, etc., corner support for, L. Nichols | 24,972 | | Spoons, etc., handle for, A. F. Jackson | 24,954 | | Table, L. Von Grave | 24,974 | | Wine room fixture, E. Ringold | 24,976 | | A printed convert the specification and drawi | ng of | A printed copy of the specification and drawing of any patent in the foregoing list, or any patent in print issued since 1833, will be furnished from this office for 25 cents. In ordering please state the name and number of the patent desired, and remit to Munn & Co., 361 Broadway New York. Canadian patents may now be obtained by the inentors for any of the inventions named in the forebing list, provided they are simple, at a cost of \$40 each, complicated the cost will be a little more. For full structions address Munn & Co., 361 Froadway, New ork. Other foreign patents may also be obtained. #### **Advertisements.** #### ORDINARY RATES. Inside Page, each insertion - - 75 cents a line Back Page, each insertion - - - \$1.00 a line For some classes of Advertisements, Special and Higher rates are required. The above are required. The above are congres per agate line—about eight words per line. This notice shows the width of the me, and is set in agate type. Sharravines may head advertisements at the same rate per agate line, by measurement, as the letter press. Advertisements must be received at Publication Office as early as Thursday morning to appear in the rollowing week's issue. AMERICAN PATENTS. - AN INTER esting and valuable table showing the number of paients granted for the various subjects upon which petitions have been filed from the beginning down to December 31, 1894. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 1002. Price 10 cents. To be had at this office and from all newsdealers. # POWER & FOOT SHAPERS, PLANERS, DRILLS, LATHE S. MACHINE SHOP OUTFITS, TOOLS AND SUPPLIES. CATALLOGUE FREE SEBASTIAN LATHE CO. 120 CULVERT ST. CINCINNATI. O. ## LATHES AND MILLING MACHINES Foot or Power, for Bicycle, Model, Tool and Experimental work. Easy running. Finely finished. Send for catalogue. W. H. MANSFIELD, 71 Court St., New Haven, Conn. The Curtis Steam Pressure Regulator ~ A steam saving appliance of established value. May be used wherever necessary to control or reduce steam pressure. Its employment means a greatsaving in operating expenses. Send for circular S. A. D'ESTE & SEELEY CO., 29=33 Haverhill St., Boston. ## Starrett's Universal Surface Gauge The L. S. Starrell Co., Manufacturer of Fine Tools, P.O. Box 13, ATHOL, MASS. Four assortments for each holder, holding up to and including 14 sizes. Send for fully illustrated catalogue. WELLS BROS. & CO., P. O. Box B, Greenfield, Mass ICE-BOATS-THEIR CONSTRUCTION and Management. With working drawings, details, and directions in full. Four engravings, showing mode of construction. Views of the two fastest ice-sailing boats used on the Hudson river in winter. By H. A. Horsfall, M.E. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, 1. The same number also contains the rules and regulations for the formation of ice-boat clubs, the sailing and management of ice-boats. Price 10 cents. # AIR COMPRESSORS for Machine Shops Pohlé Air Lift Pump. The Ingersoll-Sergeant Drill Co. Havemeyer Building, 26 Cortlandt St., New York Send for Catalogue. CONSULTATION INVENTORS. AND ADVICE TO Experimental work of every description. Automatic machinery designed and built. 13° Send for circular. MALTBY MFG. CO., Brooklyn, N. Y. # Scientific Rook Gatalogue RECENTLY PUBLISHED. Our New Catalogue containing over 100 pages, including works on more than fifty different subjects. Will be mailed free to any address on application. MUNN & CO., Publishers SCIENTIFIC AMERICAN, 361 Broadway, New York. pennsylvania, for the purpose of conducting a CON-DENSATION TEST, our Covering gave 20% better results than - John's Asbestos Sponge. 20% better results than - Magnesia Sectional Covering. 27% better results than - Carey's So-called Asbestos. 50% better results than - Manville Wool Felt Covering. We offer it at prices to suit the times. Agents Wanted. New York Fire Proof Covering Co., 121 Liberty St., N. Y. PREVENTS disease, waste, pilfering of soap, clogging of waste pipes, stain of marble, uncleanly soap dish. AFFORDS each user fresh, dry pure soap. The Only Clean, Sanitary, and Safe way to use soap. Agents Wanted. Agents Wanted. Sanitary Soap Vase Co., ## MECHANICAL DRAWING (28) TAUGHT BY MAIL Students make rapid progress in learning to dra Circular free. State subject you wish to stud The International Correspondence Schools, SCRANTON, PA. VANDUZEN STEAM PUMP THE BEST IN THE WORLD. Pumps Any Kind of Liquid. Always in Order, never Clogs nor freezes. Every Pump Guaranteed. 10 SIZES. 200 to 12000 Gallons per Hour. Cost \$7 to \$75 each. Address THE E. W. VANDUZEN CO., 102 to 108 E. Second St., Cincinnati, 0. VELOCITY OF ICE BOATS. A COLlection of interesting letters to the editor of the SCIENTIFIC AMERICAN on the question of the speed of ice boats, demonstrating how and why it is that these craft sail faster than the wind which propels them. Illustrated with 10 explanatory diagrams. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 214. Price 10 cents. To be had at this office and from all newsdealers. # WOODEN TANKS For Railroads, Mills and Manufactories. Builders of Steel Towers and Tanks. La. Red Cypress Wood Tanks a specialty. W. E. CALDWELL, CO.. 217 E. Main Street, Louisville, Ky. THE M. & B. TELEPHONE. Absolutely Non-infringing. Absolutely Guaranteed. Absolutely the Best Exchange SWITCH BOARDS. Illustrated Catalogue on application Free. .. ** Agents Wanted. . . THE U.S. TELEPHONE CONSTRUCTION CO. 131-133 S. Fourth St., PHILADELPHIA. # HELLO, CENTRAL! Do you use telephones? If so, we can give you just what you want. Our specialty is Blake Transmitters. There is a "best" in everything, and ours are the best. We supply complete telephones or all or any of the parts to construct a telephone. Write for illustrated catalogue. a telephone. Write for illustrated catalogue. PHENIX INTERIOR TELEPHONE CO., 131 Liberty St., New York. ## BUY TELEPHONES That are good—not 'cheap things.' The difference in cost is little. We guarantee our apparatus and guarantee our customers against loss by patent suits. Our guarantee and instruments are 10 TH (3001). WESTERN TELEPHONE CONSTRUCTION CO., 440 Monadnock Block, CHICAGO Largest Manufacturers of Telephones in the United States THE MODERN ICE YACHT.— BY Geo. W. Polk. A new and valuable paper, containing full, practical directions and specifications for the construction of the fastest and best kinds of Ice Yachts of the latest, most approved forms. Illustrated with engravings drawn to scale. showing the form, position, and arrangement of all the parts. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 624. Price 10 cents. To be had at this office and of all newsdealers. ## **Experimental & Model Work** E. V. BAILLARD, 106 Liberty Street, N. WELL DRILLING MACHINERY MANUFACTURED BY WILLIAMS BROTHERS. THACA, N.Y. MOUNTED OR ON SILLS. FOR DEEP OR SHALLOW WELLS. WITH STEAM OR HORSE POWER SEND FOR CATALOGUE ARTESIAN WELLS -BY PROF. E. ANTESIAN WELLS.—DIT FROTE BY G. Smith. A paper on artesian wells as a source of water supply. Essential geological conditions of artesian wells. Some chemical features of artesian well supply. Contained in SCIENTIFIC AMERICAN SUPPIEMENT. No. 943. Price locents. To be had at this office and from all newsdenlers. MONITOR VAPOR ENGINE AND POWER COMPANY, VAPOR ENGINE AND 8 ERIE STREET, CRAND RAPIDS, MICHIGAN. Aqueduct Bidg., ROCHESTER, N. Y. GASOLINE LAUNCH ENGINES AND LAUNCHES ## The Typewriter EXCHANGE, 12 Barclay St., New York. 156 Adams St., Chicago. 38 Court Sq., Boston. We will save you from 10 to 50 per cent. on Typewriters of all makes. Send for Catalogue. . . . ## Only Portable Electric Propeller. USE ON YOUR OWN BOAT. special boat needed. Usable in shallo waters, being movable in severy direction. Shifted to another boat in few minutes. No fire, no naphtha, no danger. Thoroughly safe to user. No engineering, simply "press the button" idea. See SCI. AM., Sept. 21, 1895. Call, See, and Test it. FRANK S. ALLEN, 136 Liberty St., New York THE ORNAMENTAL IRON INDUS-THE ORNAMENTAL IRON INDUS-try.—Description of the method of manufacturing wrought iron into ornamental and artistic forms, With 9 illustrations. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 1020. Price 10 cents. To be had at this office and from all newsdealers. BOSTON ELECTRIC RAILWAY SUBway.—Description of a new subway system under certain streets of Boston, by means of which the electric cars will be diverted from the surface of the streets on some of the heaviest lines of
travel. With 8 illustrations. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 1017. Price 10 cents. To be had at this office and from all newsdealers. ## "Climax" Stereotyper Moulding Press combined, for making perfect Celluloid Ste-re-ntypes to be used in place of metal stereotypes. Also for making Rub-her Stamms. Should be in use in every printing office. See SCI. AM., Dec. 30, 1833. Send for circular to THE J. F. W. DORMAN CO. 217 E. German St., Baltimore, Md. Manufacturers of Rubber Stamps, Vulcanizers, Stereo-type Machinery and Supplies. If you want the best CHUCKS, buy Westcott's Little Giant Double Grip Drill Chucks, Little Giant Drill Chucks Combination Lathe Chucks, Plain Universal Lathe Chucks, Independent Lathe Chucks, Made by Westcott Chuck Co., Oneida, N. Y., U. S. A. Ask for catalogue in English, French, Spanish or German. FIRST PRIZE AT COLUMBIAN EXPOSITION, 1898. Celebrated Combination Chairs. Pleases everybody, old or young, sick or well. A pleasanl, life-long remembrance of a holiday gift. Prices satisfactory, Catalogue free. Mention this paper. STEVENS CHAIR CO., No. 5 Sixth Street, Pittsburg, Pa. AUTOMOBILE CARRIAGES: THE PAIS-BOTCHILL UARRIAGES: THE PAIS-BOTCHILL UARRIAGE ACOUNT Of the performance of the vehicles that obtained the prizes in the competition instituted by the Petit Journal. With 9 illustrations. Contained in Scientific American Supplement, No. 1023. Price 10 cents. To be had at this office and from all newsdealers. GAS and GASOLINE ENGINES. Using Natural Gas, ('oal Gas, Producer Gas, and Gasoline di-rect from the tank, 1 to 40 H. P., actual. The Springfield (In & Engine C 21 W. Washington S Springfield, O. GRAND RAPIDS, MICH., U.S. A. Manufacturers of the Sintz Stationary and Marine Gas and Gasoline Engines. Especially adapted for Boats and Electric Lighting. Runs with manufactured or natural gas—Boats and launches. Prices within the reach of all. Escand for Catalogue. Mention this paper. "WOLVERINE" GAS AND GASOLINE ENGINES, STATIONARY The "Wolverine" is the only reversible Marine Gas Engine on the market. It is the lightest engine for its power. Requires no licensed engineer. Absolutely safe. Manufact'd by WOLVERINE MOTOR WORKS, 12 Iluron Street, CRAND RAPIDS, MICH. PIERCÉ ENGINE CO. 17 N. 17th St., Racine, Wis. # Valuable Holiday Gift! Experimental Science Seventeenth Edition. REVISED AND ENLARGED. 120 Pages and 110 Superb Cuts added. Just the thing for a holiday present for any man, woman, student, teacher, or anyone interested in science. In the new matter contained in the last edition will be found the Scientific Use of the Phonograph. the curious optical illusion known as the Anorthoscope, together with other new and interesting Optical Illusions, the Optical Projection of Opaque Objects. new experiments in Projecticn, Iridescent Glass, some points in Photography, including Hand Cameras, Cane Cameras, cto. Systems of Electrical Distribution, Electrical Ore Finder, Flectrical Rocker, Electric Chimes, How to Color Lantern Sides, Study of the Stars, and a great deal of other new matter which will prove of interest to scientific readers. 80 pages, 182 fine cuts, substantially and beautifully hound. Price in cloth, by mail. \$4. Half morocco, \$5. Send for illustrated circular. MUNN & CO., Publishers, Office of the SCIENTIFIC AMERICAN, 361 BROADWAY, NEW YORK. Founded by Mathew Carey, 1785. #### HENRY CAREY BAIRD & CO. INDUSTRIAL PUBLISHERS, BOOKSELLERS & IMPORTERS Our New and Revised Catalogue of Practical and Scientific Books, 90 pages, 8vo, and our other Catalogues and Circulars, the whole covering every branch of Science applied to the Arts, sent free and free of postage to any one in any part of the world who will furnish his address. 810 Walnut St., Philadelphia, Pa., U.S.A. ## MANAGING ENGINEER wanted for a concern in Berlin. which manufactures Electric and Hydraulic Elevators, who can prove that he is experienced in turning out large quantities of all parts of elevators, and who is able to simplify and cheapen the method of manufacture. Please send explicit offers, state earliest time of readiness to begin and salary expected under I. L. 7981, Rudolf Mosse, Hamburg ## WARRANTED OAK · DESKS. Send for Catalogues. AMERICAN DESK and SEATING CO. CHICAGO, U.S. A. # BRICK FOR ALL PURPOSES. BROOKLYN FIRE BRICK WORKS. 88 Van Dyke Street, BROOKLYN, N. Y. ## **STEREOPTICONS** Lantern Slides -WE ARE MAKERS Write for Catalogue M. McIntosh Battery & Optical Co. . . CHICAGO . . ## CONTRACTS WANTED. To manufacture Hardware Specialties, Pat'd Novelties and Sheet Metal Stamping. Lang Mfg. Co., Racine, Wis. ## TIME IS MONEY! Therefore you should have one of my Desk Clocks before you. A good time-keeper in an elegant gold plated case. Sample sent for £.00. H. D. PHELPS, ANSONIA, CONN. THE NEW BRISTOL COUNTER Registers an accurate account of work done on printing presses, grain tallies, weighing, measuring and other automatic machines. Counts up to 1,000,000 and repeats automatically. Simple, accurate, durable. Special counters to order. 13 Send for circular C. J. ROOT, Bristol. Conn., U. S. A. ## A Valuable Book FOR THE HOLIDAYS. 12,500 Receipts. 708 Pages. Price \$5. Bound in Sheep, \$6. Half-Morocco, \$6.50. This splendid work contains a careful compilation of the most useful Receipts and Replies given in the Notes and Queries of correspondents as published in the Sci-emilic American during the past fifty years; together with many valuable and important additions. Over Twelve Thousand selected Receipts are here collected; nearly every branch of the useful are being represented. It is by far the most comprehensive volume of the kind ever placed before the public. The work may be regarded as the product of the studies and practical experience of the ablest chemists and workers in all parts of the world; the information given being of the highest value, arranged and condensed in concise form convenient for ready use. Aimost every inquiry that can be thought of, relating to formulæ used in the various manufacturing indus-tries, will here be found answered. Instructions for working many different processes in the arts are given. Those who are engaged in any branch of industry probably will find in this book much that is of practical value in their respective callings. Those who are in search of independent business or employment, relating to the home manufacture of sample articles, will find in it hundreds of most excellent surgestions. Send for Descriptive Circular. MUNN & CO., Publishers, SCIENTIFIC AMERICAN OFFICE. 361 Broadway, New York. #### COMPANY, MOTOR DAIMLER **BUILDERS OF** Highest Grade Single and Twin Screw Launches. Safest, cleanest and speediest power boat built. No smoke or smokestack, no boiler, no electricity. No steam or naphtha under pressure. Run on one pint of gasoline per horse power per hour, and are under way in less than one minute. No licensed engineer or pilot. Also Stationary Motors. OFFICE AND WORKS, "STEINWAY," LONG ISLAND CITY, N. Y. #### **ELASTIC ROTARY-BLOW** RIVETING MACHINE For riveting together various articles of hard-ware, bicycle chains, agricultural implements, mechanics' tools, sewing machine attach-ments, and almost every class of work where riveting is required. Write for Descriptions and Prices. JOHN ADT & SON, New Haver, Conn. ONE DOLLAR Electrical Industries Pub. Co., A YEAR Sample copy 10c. 98 Jackson St., CHICAGO ## "BABY" SEWING MACHINE A Child can Operate it The "BABY" is a perfect little Sewing Machine, well made and warranted to do good serving. It uses regular needles, making a chain stitch. Sent complete, in wood box, upon recept of price, \$2.50\$. darges prepalar by us. A large illustration showing exact size of this latest wonder, with a sample of its sewing, sent with our catalogue of fastened by Clamp furnished with to the bown in cut. application. Fastened PECK & SNYDER, 130 Nassau St., New York. ## **Genuine Hard Porcelain** ELECTRICAL PURPOSES. Prices and Estimates on Special Work Given on Application. BRUNT & THOMPSON, Successors to HENRY BRUNT & SON, Manufacturers, East Liverpool, Ohio. # ALCO VAPOR LAUNCH Engine and Helm Controlled from Bow Latest improved and only 12 to 1 Motor now ready for the market. 18 to 40 ft. Launches. 2, 3, 5 and 7 horse power. 447-45 CHURCH STREET, EASTON, PA. ... SCIENTIFIC FOUNTAIN PEN ... PREMIER FOUNTAIN PEN Ready Feed. No lnk Drops. Guaranteed 14k. Gold Pen. If not equal to any \$2.50 pen, money refunded. Sample sent for \$1.25. Illustrated catalogue. PREMIER PEN CO, 536 Walnut St., Philadelphia, Pa. SAVE TWO PROFITS. Oil Heaters direct from Maker to User. Special Christmas Offer. This No. 15 Economy, formerly soid for \$14.00 will be shipped complete with roller base for \$9.85 freight paid. It is \$42 inches high, beautifully nickeled, weighs 50 lbs. Will heat a room 30 feet square in severe weather for I cent an hour. The No. 10, one size smaller, is 30 inches high, will heat a 20 foot room perfectly. Former price \$8.00, now \$4.50. Money refunded if not satisfactory. Just the thing for a Christmas Present. Agents wanted for our Dismond Knife, Shears and Skate Sharpeners. Catalogue free. Economy Mig. Co., 60 B'way, N.Y. THE SANDBLAST PROCESS.—BY J. J Holtzupfiel. A full description of this interesting process and of the apparatus employed; with a discussion of its capabilities and present and future applications. With 8 illustrations, Contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 1010. Price 10 cents. To be had at this office and from all newsdealers. ## PUZZLE PENKNIFE, 10c. el handle, Press the button and it opens. Worth 25c. as a knife and \$5.00 as a puzzle. A sample of our 1000 Bargains, mailed postpaid with Cat. for 10c, ROBT. H. INGRESOLL & BRO. 65 CORTLANDT ST. N. Y. CITY, Does Your Cash Balance? Are All Credit Sales Charged? These are two serious obstacles THE PECK CASH REGISTER and can be overcome by using THE PECK CASH REGISTER COMPANY, SYRACUSE, N. Y., U. S. A.
THE IMPROVED PERFECTION CAKE TINS Loose bottoms. "Don't leak." The groove prevents that. Require no greasing. More than a million American housekeepers now use these celebrated tins keepers now use these celebrated tins exclusively. We send 2 Round Layer Tins by mail for 3c ts. Write for catalogue showing ten styles – Round, Square and Oblong, and learn all about "The Groove." Exclusive territory to agents. RICHARDSON MFG. CO., 7 Rende St., Bath, N. Y. # **MEN & WOMEN** ing my metaod will be turnished work by me, they EARN \$8 TO \$16 A WEEK, pe can A. GRIPP. German Artist, Tyro Chicago Correspondence School of Law, Reaper Block, CHICAGO, ILL. # Instruments, Drums, Uniforms, Equipments for Bands and Drum Corps, Lowest prices ever quoted. Fine Catalog, 400 Illustrations, mailed free; it gives Band Music & Instructions for Amateur Bands. LYON & HEALY, 33-35 Adams St., Ch.cago. MACICIANTERNS And STEREOPTICONS, all prices, Views illustrating every subject for PUBLIC EXHIBITIONS, etc., Of A profitable dustries for a man with a small capital. Also, MUSIC BOX Latest Metal CAP Tales unlimited. See | Hear it PSU WISH to sell? PSU WANT a BARGAIN? MAGIC LANTERNS WANTED AND FOR SALE OR EXCHANGE. Tyou care to SAVE MONEY on Lanterns and lides of our Own MAKE of where, send for catalogue to Lanterns for Home Amusement. 220 page Catalogue free. MCALLISTER, Mfg. Optician, 47 Nassau St., N. Y. HARBACH & CO. 809 Filbert Street Improved Acme Jacketed Kettles. # PLAIN OR PORCELAIN LINED. Special Goods in PLAIN or PORCELAINED TO ORDER. THE STUART & PETERSON CO. Broad & Tatham Sts., BURLINGTON. N. J. #### RED CEDAR TANKS, CYLINDERS and CAISSONS—of Pine or Cypress—any size. WILLIAMS MFG. CO... KALAMAZOO. MICH. 16 Murray Street, New York. 371 Vine Street, Philadelphia, Pa. 378 So. Market Street, Boston. 377 Monadnock, Chicago. #### PROPOSALS. PROPOSALS FOR ERECTION OF MEMORIAL Hall, West Point, N. Y.—Office of Post Quartermaster, West Point, N. Y.—Defice of Post Quartermaster, West Point, N. Y.—December 14, 1895.—Sealed proposals in triplicate will be received at this office until noon, Monday, January 13, 1896, for the construction of a Memorial Hall. Plans can be seen and forms and specifications obtained at this office or at the office of Messrs. McKim, Mead and White, Architects, 180 Fifth Avenue, New York City. The right is reserved to reject any and all proposals. J. B. BELLINGER, Captain and A. Q. M., U.S. Army. MACHINES. Corliss Engines. Brewers' and Bottlers' Machinery. The VILTER MEG. Co., 899 Clinton Street, Milwaukee, Wis. FOR SALE On royalty or outright on easy terms. Patent Envelope. See Sci. Am., Dec. 14, 1895. FORSYTH, FIELD & CO., Bloomington, Ind. WANTED.—A first class Man to take charge of a medal manufacturing business. Must be thoroughly acquainted with every detail. One knowing how to make dies preferred. Address R. M., Scientific American. BI-SULPHIDE for use in the arts, Killing Insects in Grain, Killing Burrowing An-OF CARBON in R. R. Manufactured by E. R. TAYLOR, Cleveland, Obio TYPE WHEELS. MODELS A EXPERIMENTAL WORK, SMALL SMORENT HOVELTES BETC. NEW YORK STENGL WORKS TOD NASSAU ST W.Y. TENDERS WANTED from manufacturers to per thousand my patent "Baby Food Regulator" in brass, nickel plated. First order will be for four thousand. Dimensions 1½ in. by ¾ in. Rample on application. A. A. DAVIDSON, Victoria, B. C., Canada. ARBORUNDUM (THE HARDEST ABRASIVE KNOWN, EMERY AND PIAMOND POWDER SUBSTITUTE, IN FLOUR, POWDER-CRISTAL-WHELSLAB A HONE FOR A BORUNDUM CO. MONONGAHELA CITY, PA. U.S.A. WANTED Wire specialties to manufacture in quantities. Send samples for prices on work or tools. L. R. Hitchcock, Watertown, Conn. ELECTRICITY PAPERS No. 1. How to Make a Dynamo. No. 2. How to Make a Telephone. No. 3. How to Make an Electro Motor. No. 4. How to Make a Storage Battery. Lynn, Mass. WE DRILL WELLS Anywhere, Any Depth, for Any Purpose, Core drilling, 25 years experience, Write, PALMER & DAVIS, BELDEN, OHIO. A VIERICAN AGENCY IN LONDON. An old established London House having extensive European connections would be glad to receive Additional Agencies. Highest references. Address R. M. M., 415 Froduce Exchange Building, New York. # DEAFNESS CURED! THE DEAFNESS CURED! THE Beafnesson Strietly Scientific principle. Satisfaction guaranteed. Circulars free. EAR VAPORATOR CO., 195 LaSalle St., Chicago. Hahn's Improved Watchman's Time Detector This Clock is adapted for 6 or 12 stations, and the keys are all different. The registering is done by numbers, ranging from 1 to 6 and 1 to 12, instead of as in the old style Time Detectors, which mark either by holes or an impression on the dial. For circulars, address A. NANZ & CU. 118 Chambers Street, New York. # <u>Scientific</u> ## PUBLICATIONS FOR 1896. The prices of the different publications in the United States, Canada, and Mexico are as follows: | RATES BY MAIL. | | |---|--| | The Scientific American (weekly), one year - \$3.00 | | | The Scientific American Supplement (weekly), one year, 5.00 | | | The Scientific American, Export Edition in which is incorporated the Spanish Edition (monthly), | | | one year, 3.00 | | | | | The Scientific American Architects and Builders Edition (monthly), one year. COMBINED RATES. The Scientific American and Supplement - \$7.00 The Scientific American and Architects and Builders Edition, - 5.00 The Scientific American, Supplement, and Archi- tects and Builders Edition, - - - - Proportionate Rates for Six Months. This includes postage, which we pay. Remit by postal rexpress money order, or draft to order of MUNN & CO., 361 Broadway, New York. #### Advertisements. ORDINARY RATES. Inside Page, each insertion. - 75 cents a line Back Page, each insertion. - \$1.00 a line For some classes of Advertisements, Special and Higher rates are required. The above are charges per agate line—about eight words per line. This notice shows the width of the line, and is set in agate type. Engravings may head acter itsements at the same rate per agate line, by measurement, as the letter press. Advertisements must be received at Publication Office as early as Thursday morning to appear in the following week's issue. ## Any Boy that will take the trouble to send for a CATALOGUE, No. 61, will know more about what we have made for them in #### WATCHES than they would learn by reading a page of advertisements. Our entire new line of Boys' Watches is elegant in designing and suits every taste. The "Rugby" Catalogue will tell the story. The Waterbury Watch Co. WATERBURY, CONN. HALF A CENTURY OF CYCLES.—AN HALF A CENTURY OF CYCLES.—AN interesting history of the cycle from its origin up to the present time. The first crank-driven bicycle. The modern wheel. Cycle building a science. Points of impresent. The pneumatic tire. A hand and foot cycle. With 9 illustrations. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 1012. Price 10 cents. To be had at this office and from all newsdealers. ALL ARITHMETICAL PROBLEMS solved rapidly and accurately by the Comptometer. Saves 60 per cent of time and entirely relieves mental and nervous strain. Adapted to all commercial and scientific computation, Why don't you get one? Write for pamphlet. FELT & TARRANT MFG. CO. FELT & TARRANT MFG. CO. 52-56 ILLINOIS ST, CHICAGO. # The American Bell Telephone Company, 125 Milk Street, Boston, Mass. This Company owns Letters-Patent No. 463,569, granted to Emile Berliner November 17, 1891, for a combined Telegraph and Telephone, covering all forms of Microphone Transmitters or contact Telephones. It requires a corps of scientific men to construct a bicycle that will meet the demands of the modern rider. We have the best men in the world in each department—steel experts, mechanical experts. superintendent master mechanic, etc.—the largest and most thoroughly modern bicycle plant in the world—buy the best of high-grade material, regardless of cost, and make every part under our own roof—hence we know we are right in warranting the Waverley to be the best bicycle built in the world, regardless of price. Do you want the best? Our catalogue is free by mail. INDIANA BICYCLE CO., Indianapolis, Ind., U. S. A. ## DO YOU WANT A LAUNCH? That you can run yourself. That is Clean and Safe. That requires neither Licensed Engineer nor THE ONLY NAPHTHA LAUNCH. GAS ENGINE AND POWER COMPANY, 185th St., Morris Heights, New York City. TURBINE Bicycles, Watches Gurs, Buggies Harness, Sewing Machines Organs, Pianos Safes, Toos Scales of all virieties and 1000 other articles Lists free. Chic Go Scale Co., Chicago Ill., Springfield, Other, U. S. A. #### THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD. ESTABLISHED 1845. Circulation Larger than all Papers of its Class Combined. Only \$3.00 a Year, including Postage to United States, Canada, and Mexico, \$4.00 a Year, including Postage to all countries in the Postal Union. This unrivaled weekly periodical now in its fifty-first year, continues to maintain its high reputation for excelence, and enjoys the largest circulation ever attained by any scientific publication. Every number contains sixteen large pages, beautifully printed, elegantly illustrated; it presents in popular style a descriptive record of the most novel, interesting and important advances in all the principal departments of Science and the Useful Arts embracing Biology, Geology, Mineralogy, Natural History, Geography, Archaelogy, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and valuable information pertaining to these and allied subjects is given, the whole profusely illustrated with engravings. Each issue contains a full list of inventors for the statements of the Postal Union. It abounds with fresh and interesting subjects for discussion, thought or experiment. It tends to improve the mind; on experiment. It abounds
with fresh and interesting subjects for discussion, thought or experiment. It abounds with fresh and interesting subjects for discussion, thought or experiment. It abounds with fresh and interesting subjects for discussion, thought or experiment. It abounds with fresh and interesting subjects for discussion, thought or experiment. It abounds with fresh and interesting subjects for discussion, thought or experiment. It abounds with fresh and interesting subjects for discussion, thought or experiment. It abounds with fresh and interesting subjects for discussion, thought or experiment. It abounds with fresh and interesting subjects for discussion, thought or experiment. It abounds with fresh and interesting subjects for discussion, thought or experiment. It abounds with fresh and interesting subjects for dis Each issue contains a full list of inventions for which patents have been granted by the United States each week, giving the name of the inventor. The Notes and Queries department, with its full answers to various questions in mechanics and general science, will alone repay the reader for a full year's subscription. The most important Engineering Works, Mechanisms and Manufactures, at home and abroad, are represented and described in The Scientific American. As an instructor for the young it is of peculiar advantage. Try it.—Subscribe for yourself—it will bring you valuable ideas; subscribe for your sons—it will make them manly and self-reliant; subscribe for your workmen—it will please and assist their labor; subscribe for your friends—it will be likely to give them a practical lift in life. One capy of THE SCIENTIFIC AMERICAN and one copy of THE SCIENTIFIC AMERICAN SUPPLEMENT (see prospectus below) will be sent for one year, postage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of seven dollars by the publishers. # SCIENTIFIC AMERICAN SUPPLEMENT. Published Weekly. \$5.00 a Year, including Postage. This is a distinct paper from The Scientific American, but it is uniform in size with it, every number containing 16 octavo pages. The Scientific American, but it is uniform in size with it, every number containing 16 octavo pages. The Scientific American Supplements and valuable contributions in Science, Mechanics, Architecture, and Engineering, from every part of the world. Every number contains several illustrations, consisting in part of important engineering works, in progress or completed, both at home and abroad. It presents the most of important engineering works, in progress or completed, both at home and abroad. It presents the most full to engineers in every department of science, and every number contains information useful to engineers in every department of industry, civil, mechanical, electrical, etc. Translations from Every Compared to the most recent papers by eminent writers in every department of industry, civil, mechanical, electrical, etc. mechanical, electrical, etc. Translations from French, German and other foreign journals, accompanied with illustrations of Grand Engineering Works; also of Naval and Mechanical constructions of magnitude, projected, progressing, and completed, at home and in all countries abroad. The most important papers read at Scientific Conventions, by the best and most profound thinkers, will be found in The SCIENTIFIC AMERICAN SUPPLEMENT. This paper, when preserved and bound, forms a most useful encyclopedia of information, and presents a com- ## THE SCIENTIFIC AMERICAN BUILDING EDITION. Published Monthly. \$2.50 a Year. Single Copies, 25 Cents. This is a Special Edition of THE SCIENTIFIC AMERICAN, issued monthly—on the first day of the month. Bach number contains thirty-two pages, forming, practically, a large and splendid Migrazine of Architecture, nichly adorned with Elegant Plates and with fine engravings; illustrating the most interesting examples of modern Architectural Construction and allied subjects. A special reature is the presentation in each number of a variety of the latest and best plans for private residences, caty and country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, together with Floor Plans, Costs, etc. No other building paper contains so many new architectural plans regularly presented as the SCIENTIFIC AMERICAN. Thousands of dwellings and other buildings have been erected on the various plans we have issued during the past few years. Architects, Builders, and Owners will find this work valuable in furnishing fresh and useful suggestions. All who contemplate building or improving homes, or erecting structures of any kind, have before them in this work an almost endless series of the latest and best examples from which to make selections, thus saving Many other subjects, including Sewerage, Piping, Lighting, Warming, Ventilating, Decorating, Laying Out of Grounds, etc., are illustrated. An extensive Compendium of Manufacturers' announcements is also given, in which the most reliable and approved building Materials, Goods, Machines, Tools, and Appliances are described and illustrated, with addresses of the makers, etc. Bound Volumes of the whole work, from beginning a 1886 to close of 1895, may now be obtained at this ffice, or from Booksellers and Newsdealers. Price, titched in paper, \$2.00 per volume of six months' numers. Two volumes per year. Forwarded to any address. Including all the separate diagrams and engravings of construction details, each volume presents not far from one thousand illustrations. The reading matter covers a large variety of useful and excellent subjects, interesting to every one. No architect, builder, contractor, engineer, or householder can afford to be without this splendid work. It is full of useful information, and its illustrations have a permanent value for suggestion and reference. It never grows old or useless. The safest way to remit is by Postal Order, Draft or Postal Note. Money carefully placed inside of envelopes, securely sealed and correctly addressed, seldom goes astray, but it is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to MUNN & CO., Publishers, 361 Broadway, NEW YORK. ENGINES, Boilers and Machine Tools. New "Machinery & Supplies." W. P. Davis, Rochester, N. Y. # The POCKET KODAK EASTMAN KODAK CO., ROCHESTER, N. Y. For warming rooms with ordinary gas aftitings The heat of the gas flame is increased 500 per cent. Economical, Efficient, Pure Radiant Heat, No Odor, No Flue, No Fittings. Prices: Black Steel, \$1.00; Brass or Nickeled, \$1.50. Inclose 17c. for postage. Manufactured by SUVIL HEATER CO., 28 Cortlandt Street, New York City. AGENTS WANTED EVERYWHERE. Send for Descriptive Circular ## PRIESTMAN SAFETY OIL ENGINE NEITHER Kerosene, NOT Gasoline STEAM Kerosene, NOT Gasoline NOR ENGINEER Economical, Simple, Safe, Automatic. For Electric Lighting, Pumping, Milling, etc. PRIESTMAN & COMPANY, Inc. Front and Tasker Streets, - - Philadelphia . . WE ARE BUILDING . . The Celebrated- # RNSBY-AKROYD The De La Vergne Refrigerating Machine Co. FOOT E. 138TH STREET, NEW YORK. ## CHARTER GAS ENGINE CO., P. O. Box 148, Storling, III. Gas Engine Ignition Our Specialty. LEE & COLLINS, 24-26 Market St., CHICAGO. Electrical Experts, Monadnock Bldg., Chicago. = If you want any | We have harmined Rope to some at the largest Drives in the country. H-CHANNON COMPANY, For Transmissia THE BICYCLE: ITS INFLUENCE IN Health and Disease.—By G. M. Hammond, M.D. A valuable and interesting paper in which the subject is exhaustively treated from the following standpoints: 1. The use of the cycle by persons in health. 2. The use of the cycle by persons diseased. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 1002. Price 10 cents, To be had at this office and from all newsdealers. Drawing Instruments **Engineers'** Supplies of German, Swiss, and American make. Drawing Boards, I Squares, Colors, Inks, Tracing Cloths and Papers, Thumb Tacks, Rules, Tapes, etc. Blue Process Papers, THE BEST IN THE WORLD. FROST & ADAMS, 39 CORNHILL, BOSTON, MASS. Catalogue Free. Manufactory Established 1761. LEAD PENCILS, COLORED PENCILS, SLATE PENCILS, WRITING SLATES, STEEL PENS, GOLD RUBBER GOODS, RULERS, 'OLORS AND ARTISTS' MATERIALS. 78 Reade Street, - - New York, N. Y. Manufactory Established 1761. PRINTING INKS. The Scientific American is printed with CHAS ENEU JOHNSON & CO.'S INK, Tenth and Lombard Sts., Philadelphia, and 47 Rose St., opp. Duane, New York