
a weekiy joutral of practical information, art, ScIENCE, MECHaNiCS, CHEMISTRY, and manufactures.

Srinutitic ghmerican.

ES'TABLISHED 184\%

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
\qquad
TERME FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico...
One copy, six moanths, for the U.'s., Canada or Mexico.

The Scientific American Supplement

Building Edition.

 Ti. Readers rese speially requested to oniff the
NEW YORK, SATURDAY, NOVEMBER 4. 1893.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
No. 931.
For the Week Ending November 4, 1893. Price 10 cents. For sale by all newsdealers

 toube same. . 1 athinustrict por
OHEMITRY.-Chemistry Aat the British Association. Mesume
of treproceedins of Section B.-Interesting notes on the work
of British chemists.
IV. CIVLL ENGINEERING.-The Austro-Hungarian Maneuvers

VII. HGOEIENE.-American Life and Physical Deterioration.-TMe
future of the American race and probabilities of its deteriora-

 and tygiene of musicians.

X. MYCOLOGY.-A Poisonous. Fingus. -one of the most poisonous

closing of the world's columbian exposition When our readers shall have received this paper the Chicago exhibition will be no more. After months of debate, after suggestions as to the city where it should be held, after criticisms and congratulations innumerable following the decision as to site, Chicago may justly claim to have honored herself and the United States by her achievements. In a time unprecedentedly limited when compared to the work to be done, the buildings were erected and the Fair was opened at the appointed date. From the sea of mud, as the ground was described in its early winter and spring days, the lovely Jackson Park, with its beautiful landscape and floral features and its Venice-like lagoons, blossomed into being. The great buildings rose in their places, the fountains and statuary were installed, and th White City appropriately graced its surroundings.
In many ways the Fair was an innovation. Th combination of landscape and waterscape was new The great area occupied necessitated adequare means of transportation within the grounds. The buildings, too, were so large as to make it hard to see them satis factorily. Accordingly the waters of the lake were atinized, and the water transportation within the grounds became one of the features. Bringing old and new together, gondolas from Venice competed with electric launches in this service.
The Fair grounds and buildings were not merely a receptacle for exhibits. By the efforts of the best architects and artists of our nation the buildings and statuary became the best exhibit. Unsurpassed by man when their size is considered, the great buildings have received numerous encomiums from all critics from the art standpoint. The statuary on them and distributed through the grounds was another feature of great attractiveness. Thus having provided a true world's pleasure ground, Chicago drew upon the trea sures of the globe for its adornment with exhibits. But, in the opinion of many, the work of Chicago (the grounds and buildings) surpassed their contents (the exhibits). This marked a recent innovation, for the artistic side has usually been esteemed as of secondary importance in the buildings and grounds of World's Fairs. Paris, in 1889, set an example which Chicago, in 1893, followed to its proper conclusion.
The system of concession : as carried out upon the Midway Plaisance, introduced the spectacular element, but of a character of real value.
Never before had the differ ent nations of the world had so impressive a showing-no such practical lessons in anthropology have ever been given. The attendance at the Fair has been one of its wonders. A thousand miles from the seaboard, its situation seemed to militate against it. But thirtyseven railroads, with over seventy-six thousand miles of track, center in Chicago. Without a change of cars, almost any inhabitant of the continent could reach the Fair on some of these lines.
At World's Fairs it has become the custom to have days devoted to or in honor of special occasions, States, cities, or countries. These are signalized usual ly by a greater attendance than usual. At Chicago we find a record of 128,965 paid admissions on opening day, 283,273 on the Fourth of July, 160,382 on New York day and 243,951 on Illinois day. These records appear small if contrasted with the October attendance, when the daily visitors varied from 128,196 on October 2 to the magnificent and unprecedented number of 716,881 on October 9, Chicago day. As the Fair was reaching its close, the city of New York felt that it should congratulate its sister, and on October 21 Manhattan day was celebrated. The mayor of New York and other representative dignitaries visited Chicago and participated in the ceremonies of the occasion. The attendance was 298,928 .
These attendances may be contrasted with Paris and Philadelphia. The greatest day's attendance at the Philadelphia Exposition of 1876 was 217,526 ; at the Paris Exposition of 1889 , it was 397,150 . Thus Chicago on her own day almost doubled the Paris and almost trebled the Philadelphia figures.

The total attendance of some twenty-one millions is, however, inferior to that of the Paris Fair of 1889, where $28,149,353$ visitors were recorded, although the Chicago Fair occupied six times the area of ground and had five times the area roofed compared with this Exposition. The visitors increased in number as month after month passed by. In May 1,050,037 are recorded. This was at the time a great disappointment. But when Jane showed 2,675.113, expectations began to be brighter, and the succeeding months showed $2,760,263$ for July, 3.515,493 for August, $4,659,871$ for September, and about seven millions for October. Thus the entire attendance for the opening month was almost the same as that of two days in October-Chicago and Manhattan
days. If Chicago were a little further south and if its Fair had another month of life, the attendance would probably reach thirty millions.
And now it passes into history as one of the world's wonders, as one of man's greatest achievements, some thing that the present generation can hardly hope to see equaled.

COALING CRUISERS AT SEA

During the war of the rebellion we kept a large fleet of vessels on blockading duty. They were often obliged to keep the sea for long periods of time, especially off the Carolina coasts, and the question of methods of upplying them with provisions and coal was one which engaged the earnest thought of the Navy Department and naval officers in general
Provision transports were sent from Northern ports, and though usually successful in delivering their freight to the blockading fleet, yet occasionally they net with disaster and frequently with delay. The principal difficulty was in transferring the coal, the motions of the two ships, even in a small sea, rendering the operation difficult and dangerous.
A solution of the problem of coaling ships at sea has been sought ever since, and many devices have been brought forth by inventors both in and outside of the navy. The solution is particularly valuable to the United States in view of the fact that we haveno coaling stations. In case of foreign naval operations we would be obliged to send colliers, and our cruiser would probably have to take the coal from them while t sea or outside of the marine league.
Recently the Navy Departmentordered two of the North Atlantic fleet to be equipped and rigged to try the experiment of coaling at sea after a new plan. The ships detailed for this 万urpose were the flagship Sar Francisco, whichrepresented the cruiser, and th United States steamer Kearsarge, which played th part of collier.
The plain is for the cruiser to tow the collier with a hort a nawser as practicable, the length depending or

coaling vessels at sea
the state of the sea. The smoother the sea the shorter the tow line. In order that there shall be as little jump to the ships as possible, the cruiser steams ahead very slowly, barely having steerage way.
A jackstay is rigged between the two ships, the higher end being on the collier and the coal in bags, suspended from trolley wheels which hang or the jackstay, runs by force of gravity from the colli, to the cruiser. The jackstay consists of a steel wise rope about three-quarters of one inch in diameter. It must be kept properly taut and yet must get no undue strain either from towing or from the plunging of the ships. This is accomplished by using a counterpoise. The experiment was tried on the 18th of October, off Sandy Hook.
The ships were rigged as follows: On the after part of the cruiser was erected a small derrick or shears about ten feet high, composed of two short spars lashed together at the heads and firmly secured at the heels, on the deck. A cross prece was lashed near the top of the shears and from this cross piece was hung a number of fakes of rope cable to act as a buffer for the bags of coal. Over the cross piece ran the jackstay, une forward end being firmly fastened to the deck near the mizzen mast.
On the forward part of the collier were erected two upright poles to act as guides for the counterpoise. The upper ends of these poles were lashed to the foretopsail yard, the heels being firmly secured to a shoe on the forecastle deck.
The poles were parallel and about four and a half feet apart. A cross piece was lashed near the heads, and from a bridle from this cross piece was suspended a large iron sheave or gin block. Between the poles was arranged a cubical box with guide irons surrounding the poles. The box was also fitted with an automatic lever, spring and eccentric clutches to prevent the box dropping to the deck in case of accidental parting of the jackstay. The contrivance was similar to that used on elevators in buildings. The box weighted with sand formed the counterpoise.
The steel wire rope jackstay was made fast to the counterpoise box, then passed up and over the gin block at the head of the poles, and thence to the
cruiser over the cross piece on the shears, and the end secure on the deck, as before mentioned. Sufficient strain was put on the jackstay to hoist the counterpoise box about half way up the poles. As the ships roll and pitch, the counterpoise box slides up and down between the poles, keeping a constant and even stress on the jackstay.
Both the shears on the cruiser and the poles on the collier were firmly held in place by rope guys and stays. The coal, in sacks is hoisted by a special tackle on board the collier up to the top of the poles, where it is hooked to a small trolley wheel, which is placed on the ijackstay. When released, the weight of the coal causes the trolley wheel to run down the inclined jackstay to the cruiser. Just before it arrives at the shears, a tripping device throws the trolley off the jackstay, and the sack of coal falls to the deck, its forward motion being checked by the buffer made of hawser loops.
The distance between the ships, or rather the distance from the shears on the cruiser to the upright poles on the collier, was about two hundred and thirtyfive feet. The height of the gin block above the cross bar of the shears was about thirty-two feet. The inclination of the jackstay to the horizontal was about seven degrees and fifty minutes. The total weight of the counterpoise box and its load of sand was about sixteen hundred pounds. The weight of the bags of coal was nearly two hundred pounds. The time of travelfrom pole head to shear head was about fourteen seconds. The full time of hoisting and sending over ten bags was about twenty-one minutes. This gives a rate of delivery of about two and two-thirds tons per hour.

All parts of the apparatus worked well, but as the sea was calm, it was impossible to tell what would be the result in even a moderate sea. In a rough sea the distance between the ships would have to be increased, and there must be a corresponding increase in the height of the gin block in order that the proper inclination shall be given to the jackstay.

Although there is doubt about the apparatus working properly in a seaway, yet the most important defect is the slowness of delivering coal. On a properly and specially equipped collier, this no doubt would ive bettered by the use of steam winch in hoisting the coal, instead of hoisting by hand, as was done in the experiment. There would also be used two jackstays, one on each side, running from either bow of the collier to the quarters of the cruiser.
Whether this device, with such improvements as may from time to time be suggested by experiments, is the one to be adopted for coaling at sea or not, remains to be decided by our brainy readers.
Any one who will devise a method of rapidly and safely coaling our cruisers at sea will add to the navy's efficiency and, no doubt, will receive an abundant re ward in dollars from the government. Brainard.

Approaching Completion of the Manchester Ship

 Canal.The deputy chairman of the company recently informed the Manchester Corporation that there was every probability of a waterway being opened for ships to the docks and wharves of the city on the first of January, and he quoted a letter written by the dredging master promising a minimum depth of 23 feet of water throughout the canal by that date. As an earnest of the fulfillment of this, we hear, says the Engineer, that a steamer reached Runcorn by the canal last week, which proves that the work of construction in the estuary is finished. This, from an engineering point of view, was the most harzardous and difficult portion. We congratulate the engineers on bringing it to a successful termination. On board the steamer were several of the directors of the Peninsular and Oriental Steamship Company, but with what object they paid the visit has not transpired. Manchester goods form a considerable portion of the tonnage carried through the Suez Canal, and at a public meeting in Manchester eight years ago, Monsieur De Lesseps told his audience that in his opinion the Suez Canal ended in Manchester. No doubt a direct trade will be done between Manchester and Bombay, and it is probable that the Peninsular and Oriental line will be early in the field. It is not six years since the first sod was cut at Eastham. The amount of work accomplished since then is astonishing; and when we consider the opposition that has been encountered from such powerful bodies as the Mersey Dock and Harbor Board and the railway companies as well as the elements, it is surprising to find the canal is so nearly finished. The weather has favored the contractors of late, as it did at the commencement of the work.

The depth to which the sun's rays penetrate water has been recently determined by the aid of photography. It has been found that a depth of 553 feet the darkness was to all intents and purposes the same
as that on a clear but moonless night. Sensitized plates exposed at this depth for a considerable length of time gave no evidence of ligh

Russian Exhibits.-Russia's projected government house was never completed, but her pavilion in the Manufactures building is so spacious that it serves the purpose in considerable measure.
One corner of this pavilion, which fronts upon the main avenue of the building, is in the form of a Russian church with green roof, bulb shaped tower, colored windows and religious piciures. At each side of the broad entrance to the pavilion. and in its center, stands a massive rhodonite vase. They are so tall as to be suitable ornaments in this largest of buildings, and are as beautiful in form as they are rich in color.
When, at last, one turns away from these, it is to notice on the right a curious and beautiful piece of
furniture, a bookcase and cabinet combined, decorated with burnt work by Madame Semetchine, of St. Petersburg. The doors and panels are ornamented with portraits of Tolstoi and scenes from his life. The portraits represent him at different ages; the other pictures show him plowing in a field, writing in a plain room, and engaged in other avocations. The
delicacy and finish of this burnt work is not excelled delicacy and finish of this burnt work is not excelled
by that produced by a brush. One cannot but admire a woman bright enough to give us Americans an epitome of the life of her one countryman whose name is somewhat familiar even among the masses of our people, and in a form to attract universal attention.
Close at hand are the bronzes shown by the St . Petersburg firm of Stange. They are made from models left by the great sculptor Eugenius Lanceray, a Russian of French extraction, who died in 1885, only what an amateur can get in the studios and galleries of Paris; but wandering in the Caucasus and the Crimea, and along the steppes inhabited by the Bashkirs and Kirghizes, he studied national ife until he could represent it in enduring form.
Horsemen and horses are his subjects, and the figures are small-about the size of Barye's. They are
all full of action; none is more spirited than that of Sviastoslaw. His head is bare, he sits his horse as if forgetful of it, and with sword in hand is arranging his troops; his expression is so animated that one almost sees the men falling into position before that commanding presence.
Among the most striking groups is that called "Af_ ter the Battle;" his last and largest group, composed of graceful, dashing horses, is named "An Arab Fantasie." Many of these bronzes have been sold ; the remaining ones are to be brought to New York when the Fair closes.
Near by there are many other little bronzes by other sculptors, whose names I could not learn. They are charming pictures of peasant life, but none are so fine as Lanceray's. The Russians show wonderful aptitude for this miniature work. Further evidence is given in which is full of interest. It contains quaint little figures, six or eight inches high, in the various occupations and positions which peasant every-day life affords; they are dressed in costumes barbaric in color and clumsy in form, but every pose is perfectly natural. The little people are made of bread by a lady in St. Petersburg. The notice under them is one of the numerous examples of curious English which one sees Here it is : "I beg to considerer for my artic
those that have my initiales on the backside."
Close to the Lanceray bronzes is a largecase containing very heavy fabrics, rich in texture and color, made in Moscow from silk cocoons grown in Southern Kussia. The silk is wound on an Atwood machine made in Stonington, Ct.
For specimens of painstaking, patient work, nothing in the department equals the three "imperial appanages." They would be called cabinets in our language. They are made of highly finished light wood, have cilt decoration and marble tops, but their chief beauty is in the doors, which make the entire front of the upper part of the cabinet. These doors are mosaics of bits of marble almost microscopic in size and so perfectly matched that only the closest scrutiny shows how they are made. Italian mosaics which I have seen are coarse in comparison. One pair of doors rep resents a scene which might have been taken from an Amazon forest, as very likely it was. There is a mass of tropical plants, with birds and monkeys among them; the effect of a soft, hazy atmosphere is perfect;
the touches of brilliant color in a bird's wing or a stray
leaf add to the delightful picture. The base of this cabinet, as well as the ornamentation below the door, are also of mosaic, and upon the whole 14,558 days' work was spent. The mosaics of the other two "ap-
panages" are very rich in color, but have a less elaborate design; they are simply birds of beautiful plumage upon a background of lapis-lazuli from the stone works at Petershof
Close at hand are bowls cut from jades of a light shade, wonderful for size and finish. A very rich labradorite table and pedestals must be most tempting to people who can surround themselves with objects of enduring beauty. They are less showy than the superb malachite and gold tables which stand near them.
A significant gift shown among the work of the silversmiths is a magnificent dish in silver and gold given by the Cossacks of the Urals to the Czarewich. The perfection of workmanship which is attainable in the handling of these metals is shown in a gold salver with a silver napkin lying upon it, so exact an imitation of linen that one can hardly believe it to be an imitation.
The exhibit of the Imperial State Paper Manufactory is worth careful examination. It is the outgrowth of the use of paper money in the empire, begun about a century ago. The first bank notes were made in a little mill near St. Petersburg; but in 1818 the institution which has since grown to great proportions was founded. Its product is now taken both by the government and private concerns. In 1860 new buildings were finished and equipped with English machinery for the manufacture of paper, and with Gerchinery for the manufacture of paper, and with Grer-
man printing presses, the buildings and plant costing two and a half million dollars.
The Minister of Finance appoints the director, who is at the head of the business, and the number of officials under him is regulated by law. The proceeds of the business, after expenses are paid, are divided equally between the government treasury and the employes. The manufactory also furnishes for their employes and their families 373 dwellings, a dining hall for 350, an elementary school, a chapel, a hospital with 30 beds, and physicians and attendants. - The great establishment is on Fontanka Quay in St. Petersburg.
The pavilion in which its exhibit is placed is of Circassian nutwood, ornamented with panels of polished platane. This, as well as all the frames and showcases, were designed and made in the cabinet making department of the manufactory. The paper is made entirely of hemp and rags, hemp being the chief constituent of that used for bank notes. Specimens of the products shown are water-marked, hand-made, and machine-made in sheets, and the continuous web made by machine. The bank note paper has a silk net in the middle of the sheet, which is put into the pulp, and twenty-five looms are in use weaving this

The printing done in the establishment is illustrated in the form of these bank notes, postage and other stamps, bonds, drafts, etc. By means of a machine invented in 1891 by Mr. Orloff, an engineer in the works, colored figure printing from cliches in relievo is done. "This system of figured printing renders it possible to obtain various patterns and designs in many colors, gradually passing from one tint to another, colors, gradually passing from one tint to another,
from one stereotype and at one impression." (Statefrom one stereotype and at one impression." (State-
ment made in pamphlet about the works, found in the exhibit.) The establishment makes all its own type and in the last two years has replaced much of the old by ype made from original designs.
The display of copper and iron electrotypes includes a wide range of subjects; among them are Alexander the Great, a bass-relief from a marble in the Imperial Hermitage; Copernicus, a bass-relief in wax by Krynsky; shields, helmets, swords, and daggers of ancient and sometimes unknown origin, but elaborate in design ; heads of Michel Angelo, Catherine II, M. Jacobi, the inventor of the electrotype process, and many others. The bust of J. N. Niepce and that of the Empress Marie Feodorovna are iron electrotypes without seams. The different photo-mechanical processes, heliogravure, photo-zincography, photo-relief, photo-lithography, and collotype are all illustrated by most interesting examples. The helio-engravings, nine in number, from originals by Chemesoff, Soutman, Vyscher and five other artists, executed by a special process discovered in the manufactory, are in the most prominent place on one of the sides of the pavilion. They are remarkable for their clearness and beauty. In no section of the Fair did I see so much to indicate that large sales were being made as in the fur room of the Russian pavilion. The assortment was extensive : mink, sable, seal, and the less costly skins were all displayed to fine advantage, and women in stylish toilets found them fascinating when the mercury hovered among the nineties. They had the same air of business as had the lady who was inquiring the prices of the engravings in the Art Gallery and selecting certain ones because "they furnish more than large pictures."
(To be continued.)

AN IMPROVED SCREW CUTTING LATHE

This lathe permits the operator to easily and quickly bring the cutting tool back to the exact position on the beginning of the cut, so that a perfect and uniform thread is quickly wade and no time is lost in finding the beginning of the cut, as is the case with screw-cutting lathes of the ordinary construction. The improvement has been patented by Mr. James H. Paterson, Box 436, Ingersoll, Ontario, Canada. The lathe has the usual bed supporting. on one end the head stock with spindle engaging the work, held
ting any desired number of threads to the inch on the work, the number not necessarily being a multiple o the number of threads per inch of the feed shaft. This auxiliary shaft is thrown into and out of connection with the carriage by means of a bevel gear and pinion connection actuated by the handle, B. Con necting the auxiliary shaft with the feed shaft is an adjustable gear and clutch mechanism, and the ar rangement is such that no backing belt or other means are necessary to catch the thread on the work, whethe the thread to be cut is or is not a multiple of the num ber of threads per inch on the feed shaft.

Vanillin from cloves.
Professor Jorissen and E. Hairs, noting the similarity in composition between vanillin and eugenol, have examined cloves and the essential oil obtained from them to ascertain whether vanillin was one of their constituents. An ethereal tincture of cloves was prepared and treated with solution of sodium acid sulphite. This solution, being sepa rated, was then treated with a min eral acid and the sulphurous acid thus liberated removed, after which the mixture was agitated with ether. This, on being separated and evaporated, left a residue which gave off a strong odor of vanilla. A similar, crystalline residue was obtained on subjecting oil of cloves to the same treatment The crystals were soluble in water
at its other end in the mandrel of the tail stock, especially when warm, also in alcohol and ether the cutting tool being mounted in the usual tool holder, transversely adjustable on the carriage sliding in bearings on the bed. Through the front of the carriage passes the feed shaft, journaled in bearings at the ends of the bed, and this shaft is engaged by a half nut sliding in bearings on the inside of the carriage by moving the handle, A, to a vertical position, the carriage being disengaged from the feed shaft when this handle is in a horizontal position. When the half nut is out of engagement with the feed shaft the carriage may be moved backward or forward by turning the handle, C , on a transverse shaft carrying a pinion meshing with a gear wheel on a short shaft turning in bearings in the carriage. The latter shaft has a gear wheel meshing with a rack on the bed, and is also adapted to be connected with a longitudinal auxiliary shaft journaled below the feed shaft. and forming the principal part of an intermediate mechanism for controlling the speed of the feed shaft, to permit of cut-

THE WOBLD'S COLUMBIAN EXPOSITION-EXHIBIT OF THE WESTON \& WELL MANOFACTURINO COMPANY, OF PHILADELPHIA PA.

AN AUXILIARY CUT-OFF FOR ENGINES.
This is an improvement capable of attachment to any engine, whereby the engine may be stopped in a moment from any point in the building. It has been patented by Mr. John H. Tennyson, of No. 54 Charl on Street, New York City. The small figure repre sents a longitudinal section through the governo driving gear, illustrating a shifting form of gear, and the gear, practically in two sections, in its shifted posiion. A beveled gear at the lower end of the governo stem constitutes one section, and another beveled gear on a hub sliding on a guide rod in a casing forms the other section, there being on the hub a clutch sleeve with trunnions passing through blocks sliding in the arms of a fork, whose shank, at its lower end, is adapted to engage with a bolt. When the stem of the fork is in engagement with the bolt the governo gears will be in mesh, which is their normal position A spiral spring tends to draw the shank of the fork out of engagement with the bolt, and, to accelerate the movement of the fork when released from the bolt, a weight is also attached to the front portion of the shank near its lower end. At the rear of the rovernor casing is a standard in which is journaled a rock shaft with a rigidly attached curved trip arm from which are suspended weights capable of drawing the arm downward and rocking th shaft. The arm has at one side a friction rolle adapted to contact with the governor crank, carrying the shifting rod connected with the governor sleeve to draw downward the governor pawls. The governo crank also carries the usual rocking bar, to the oppo site ends of which the ordinary cut-off rods are pivot ally connected. The cut-off valve has stops, and when

TENNYSON'S AUXILIARY CUT-OFF.

the cut-off rods are shifted by the trip mechanism one of the stops will engage with a crab to prevent the pick from touching the valve fingers, insuring a positive and permanent cut-off. To make the forward movement of the trip arm as rapid as possible, such movement is aided by one or more springs. A lock arm extending downward from the rock shaft has at its lower end a friction roller resting on a lock bar secured to the upper end of one member of the fork connected with the shifting governor gear, normally holding th rock shaft in such position as to prevent the trip arm from engaging with the governor crank. The bolt which engages the shank of the fork is connected by chains or cables with any desired part of the building and by withdrawing the bolt the two sections of the driving governor gear are separated, thus silencing the governor. At the same instant the lock bar is with drawn from under the lock arm and the weights and springs draw downward the trip arm, engaging the governor crank and causing the governor balls to be closed, the crank also shifting the rocking bar of the cut-off rods to cause the valves to cut off. The device may be applied to any cut-off engine or any ball governor.

Curious Origin of a Fire.
The other day a heavy delivery wagon backed up in front of an Eighth Avenue furniture store. The smoothness and slant of the asphalt gave greater mo mentum than was expected, and the hind wheel struck the curb with a crash. The contact of ston and iron drew out sparks. Some of these flew into a wisp of packing hay that soon gave forth smoke and flame. A bucket of water subdued the blaze, but, as a fireman remarked, it was an interesting object lesson on one of the mysterious wavs in which serious fires sometimes star ${ }^{+}$

a kneading or mixing machine

This machine is adapted for kneading or mixing paste of any description, especially such as is used in making macaroni. The machine was a warded a medal at the Columbian Exposition, and each machine makes between 3,500 and 4,000 pounds a day. The improvement has been patented by Mr. Auguste Witz, No. 138 James Street, New York City. Mixing rolls, which may be of the usual construction, are journaled in hangers forming part of a suitable frame, and the mixing pan is connected with a central shaft journaled in upper and lower cross beams of the frame. The lower cross beam is adjustable as to height by means of an adjusting shaft, whose lower end is threaded, the upper end having a hand wheel. Around the pan at the bottom are teeth adapted to engage a gear on the lower end of a vertical shaft, to be driven according to any of the usual methods of applying power. The shovels in the bottom of the pan, which constitute the principal feature of the invention, are of sheet metal, bent upon itself to a substantially Ushape in cross section, the upper member considerably overhanging the lower member. The shovels are placed on opposite sides of the central shaft, their contracted portions facing in opposite directions, and one shovel is located near the center of the pan while the other is near its periphery. The shovels are held stationary within the pan by a shank secured to the hangers, and the reduced end of the shovel near the periphery of the pan may be brought practically in engagement therewith, while the pointed end of the opposite shovel is located a predetermined distance from the center of the pan. As the pan is revolved, the outer shovel curves the outer edge of the paste upward and toward the center of the pan, the inner shovel also curving the inner edge of the paste over on the mass, which is thus presented to the rolls in

WITZ'S KNEADING OR MIXING MACHINE.
such manner that all the particles will be thoroughly and effectively operated upon. A diagonally placed central shovel returns to the mass any fragments which may be thrown into the middle of the pan.

A CHEAP AND NOVEL ROAD BED.

An invention designed to facilitate the construction of improved roads and highways is shown in the accompanying illustration, and has been patented by Mr. John Platten, of Fort Howard, Wis. The roadbed is made with a crib formed of transverse parallel planking, on top of which are secured parallel longitudinal stringers, a filling of loose earth, gravel or broken stone being compacted between the planking and the stringers to form the road proper and completely conceal the crib, the latter protecting the road material from lateral displacement. A greater or less

platten's underground timber road.
number of stringers may be used, as desired, and the timbers and planks may be treated, if preferred, with any cheap preservative from decay. The impact of travel on such a road is designed to thoroughly pack the ballast material about the crib frame and render the road solid and durable.

AN IMPROVED STEAM ENGINE VALVE CHEST.
This valve chest is adapted for convenient application upon the valve seat of a slide valve steam engine, to convert it into one on which multiple rocker valves

and their actuating gear can be used. The improvement has been patented by Mr. William H. Myers, of No. 103 Freeman Street, Brooklyn, N. Y., and has been for some time in practical and highly satisfactory use. Fig. 1 shows the application of the improvement, with the rocker valve actuating gear, Fig. 2 being a sectional side view of the valve chest and valves. Extending along one face of the cylinder is the elongated valve seat, with the usual live steam and exhaust ports in its face, the ports being duplicated, so that there will be a pair near each end of the cylinder. The valve chest is adapted to fit upon the valve seat and conform at its outer edge with the margin of the latter, the face of the chest having contact with the seat being made true and steam tight, and the chest being secured upon the cylinder by studs or bolts. There are two transverse steam passages near each end of the chest, the outer one of each conforming with the live steam port and the inner onewith the adjacent exhaust port, a rectangular central cavity and a smaller cavity near each end rendering the valve chest light and yet sufficiently strong. Near each of the four corners of the chest are transverse cylindrical steam chambers for the reception and proper action of the rocking valves, the pair of chambers at the top receiv ing live steam alternately from the ive steam duct in the wall of the chest, and the steam passage at each end of the chest extending to one of the lower transverse chambers, which are designed to relieve the cylinder of exhaust steam by the proper action of the valve. The lower transverse chambers are intersected by branches from the exhaust steam passages, and arock
ing movement of the valve permits the escape of steam into the exhaust duct. The rocking valves are set as shown in Fig. 2, one live steam port in an upper chamber being open when the one at the other end of the cylinder is closed, and in the lower chambers the valve directly beneath the opened valve is closed, while that beneath the closed valve is open. The rocker valves are actuated by a gear of well known construction, comprising a rotatably supported crank disk rocked a proper degree by an eccentric rod, from an eccentric disk on the main shaft. Downwardly extending rods enter dash pots (not shown) and crank arms connect each live steam valve with a governor, completing the rocker valve gear.

```
To Soften and Whiten the Hands.
```


Ess. of bitter almonds.........
Apply at night, and afterward dust the hands with Indian chestnut flour, and cover with gloves.-Med. Press.

THE WORLD'S COLUMBIAN EXPOSITION-EXHIBIT OF MORSE, WILLIAMS \& Co

Early Chemistry.
Long before chemistry became a science many of its processes and apparatus were in common use. Pro fessor H. Carrington Bolton has made a list of some of these, finding that the Egyptians were acquainted with the process of glass making at least as far back as 2500 B. C. ; that crucibles of the 15 th century B. C. are now in the Berlin Museum ; and that siphons also were used in the 15 th century B. C. Blowpipes and bellows were early employed. The earliest chemical laboratories now known were those of the Egyptian temples, in which the priests prepared the incense, oils, etc., used in the temple services. The Bible contains frequent chemical allusions. Cupellation is plainly described by Jeremiah, metallurgical operations by Job, Ezekiel, and others, and bellows by Jeremiah. Geber, the Arabian physician of the eighth century, wrote minutely of chemical processes. He described solution, filtration, crystallization, fusion, sublimation, distilla tion, cupellation, and various kinds of furnaces and apparatus. Perhaps the earliest drawings of strictly chemical apparatus are the figures of distilling apparatus in a Greek papyrus of the 11th century. An alchemist's laboratory of the 6 th or 7th century was uncovered in Egypt in 1885, and its contents included a bronze furnace, about fifty bronze vases with beaks, and some conical vessels resembling sand baths. The balance as an instrument of precision reached a high development under the Arabians as early as the 12th century, when very accurate specific gravity determi nations were described.-Ceylon Advt.

an Electric passenger Elevator at the

 EXPOSITION.An exhibit which won a medal for its superior mer its and in a notable degree was made to serve the pub lic convenience, while at the same time illustrating one of the most recent and valuable applications of electricity, is shown in accompanying illustration, and was made by Messrs. Morse, Williams \& Co., of Phila delphia. The exhibit was well planned and located to permit the inspection of parts to a sufficient degree to afford an understanding of the working of this very simple and efficient passenger elevator, in which is employed the improved Hindley worm gearing, which has been made a specialty by this firm for
years. The motor is attached to the worm shaft by means of a coupling, the shaft being provided with a powerful double shoe brake, which is released by the action of an electro-magnet and applied by a weight; so that in case the electric current should be accidentally cut off, the brake could be instantly applied to stop the machine. The brake alsoacts as a governor to check the descent of the car, should it attain too great a speed. The motor is of the low speed, multipolar type, with self-oiling bearings and carbon brushes, requiring a minimum of attention. The reversing switches and controlling apparatus are of simple and improved forms, their action causing the elevator to start easily and gently with and without a load. The makers claim that the average of current used, both in raising the load and lowering the empty car, is less than in any directelectric elevator in the market. The machines are designed to raise average loads at speeds as high as 250 feet a minute. Besides these electric elevators, the firm are also manufacturers and builders of hydraulic, steam, belt, and hand power passenger and freight elevators, as well as hoisting machinery, dumb waiters, automatic hatch doors, etc.
a great air compressor at the fair. Our illustration represents a plant employed by the World's Fair Commissioners to supply compressed air to exhibitors requiring air power. It is itself an exhibit by the Ingersoll-Sergeant Drill Company, of New York, and was continuously in operation throughout the Fair, furnishing compressed air to the Bald win Locomotive Works, the Westinghouse Air Brake Companies, and others who exhibited their locomotives, air brakes, and other machinery in full operation by means of compressed air. This compressor is the crowning work of many years' experience of the company in this line, and embodies a great many improved features, the excellence of which has been attested in their widely extended practice. The plant consists of a cross compound Corliss condensing engine, cylinders 18 and 34 inches, having a strose of 42 inches. The two air cylinders are each 1814 inch bore and 42 inch stroke, driven direct from the piston rods of the engine. The free air, before admission to the cylinder, is taken from the point most favorable as to dryness, freedom from dust, lowness of temperature, etc., and is admitted to the air cylinder through a tube which also acts as a piston guide rod. The air inlet valves are large wrought iron rings, which open and close by the momentum caused by the movement of the piston, giving a large area of inlet with but a small throw of the valve, and reducing clearance loss to a minimum.
The cooling is effected by a new form of water jacket, the construction of the air cylinders admitting a complete jacketing of the heads and discharge .valves, thus presenting a large cooling surface to the compressor at the end of each stroke where the air is hottest. By means of a new unloading device a uniform pressure is maintained in the receiver, and a uniform speed of the engine, by connections with a discharge valve on each end of the air cylinder, a weighted safety valve being connected with the receiver. When the air pressure gets above the desired point the valve lifts and the air is exhausted from behind the discharge valves, thus letting the compressed air at full receiver pressure into the cylinders at both ends and preventing the air cylinders from doing any work. The pistons in the cylin ders move in equilibrium as the air passes from one end of the cylinder to the other through the discharge valves, the governor keeping the speed uniform, and there being no surplus air blown off from the receiver. A slight re duction of pressure in the receiver releases the dis. charge valves, when the air rushes in, the governor
puts on more steam, and the work of compressing air goes on.
In the designing of these compressors and engines excellent taste has been shown, and all steam pipes are put below the floor, while the feet of the cylinders are covered, giving the whole plant a neat and uniform appearance. The ends of the cylinders, cylinder heads and steam chests, with all the turned parts about the valve motion and connecting rod, are beautifully polished.
This compressor has received the award from the World's Fair judges, and has been sold to a foreign gold mining company, to be exported as soon as the Exposition closes.

The Great Playa de oro Placer Fields.
It is altogether probable, says the Mining and Scientific Press, that the coming year will witness the consummation of a placer mining project in South America by American capitalists that fairly rivals the largest schemes ever projected by California hydraulic miners, and that in its ultimate fruition is expected to exceed in dimensions and results the largest single similar enterbrise undertaken anywhere in the world. The Playa do Oro placer fields in Ecuador are believed to be the richest and most extensive new properties yet discovered, and the work of develc pment has been undertaken by an investment and in a manner that indicates both the good faith of the owners and their thorough conviction of the value of the placers.
The Playa de Oro property is about 11 miles distant
from the town of Concepcion, as the river flows, and is on the Santiago River, a large and rapid stream flowing through the estate in a westerly direction to the Pacific. It is from 500 to 800 feet above sea level. The property forms a parallelogram, comprises 20,000 acres, and is joined by the Uimba estate on the north and the Cayapas River on the south. Gold-bearing beds cover the whole extent of the property, but only the gravel banks of a thickness of from 30 to 80 feet it is proposed to work. From the separate reports of the several engineers who have made personal survey and examination of the gravel beds, the following statements are taken : The gravel banks are exposed every where along the banks of the river; in the numerous cuts made by the natives in their efforts at mining, which is their only means of subsistence; along the gulches (quebradas); and everywhere that the soil, which averages about four feet in thickness, has been re moved. The auriferous gravel beds average about 50 feet in thickness and only in one place was the bed found but 15 feet thick, while in many places it is 80 feet. The gravel is auriferous throughout, the presence of a mall percentage of clay having prevented the bulk of the gold sinking to the bedrock, a soft formation, apparently of marine origin. The elevation of this bedrock above the outletting streams varies from 20 to 100 feet, insuring everywhere ample dump for tailings. As the gravel here contains no pipe clay, hard cement or large bowlders, it can be broken down and washed with a moderate head of water. No bedrock tunnels derricks or powder blasting will here be required
hydraulic appliances proposed to be put in. These figures stagger belief, but they seem to be justified. t is estimated that gold can be secured at an average of three cents per cubic yard. There will be no trouble about the disposal of the debris. There are on the ground, or purchased and about to be shipped, six miles of iron piping and four giants. One of these latter is 9 inch, which indicates pretty clearly that the company propose to wash out a great deal of gravel.

The Use of Copper Among the American

An article by R. L. Packard in the American Antiarian says that careful investigation seems to show hat at the time of the discovery of America copper was used by the North American Indians only as a precious metal and for ornamental purposes, and had not reached the stage of industrial use, as it had among the Aztecs in Mexico. There is, moreover, no evidence o show that the northern Indians had any knowledge of ore working orsmelting, and it is almost certain that all the copper they possessed was found in the metallic or native state. There is nothing to show that they were aware of the existence of copper ore as a source of metal. No remains of smelting places, or slag, or other indications of metallurgical operations have yet been found. The quantity of copper which the Indians possessed at the time of the discovery, although the metal was diffused over a very wide territory, was very small as compared with stone. This is shown by the relatively small proportion of copper implement in the principal collec tions, as at the Smith sonian Institution and others. The larger numbers are found in Wisconsin, and this is accounted for by the fact that Wisconsin is directly south of the Keweenaw district in Michigan, where the largest beds of native copper occur. In these beds the copper shows as such in the rock, and the ancient miners had only to follow down a promising outcrop showing metal for a few feet, and hammer away the rock from the copper to secure the latter. When they came upon a large mass they were compelled to abandon it after hammering off projecting pieces, because they had no tools for cutting it up and removing it. Several instances of this sort have been found. The ancient mines were not real mines, not being underground workings, but merely shallow pits or trenches, and sometimes excavations in the face of a cliff. At the time modern mining began they had become mere depressions in the ground. All these workings when examined contained stone hammers

A cut in the Medio Mundo bank, near the town of Playa de Oro, has been worked back some 300 yards from the river through gravel 45 feet thick, exposing the bedrock for that distance. It shows a good grade for sluices and dumps, its elevation being 50 feet above bedrock, and washed by natives in their crude way yielded $971 / 2$ cents gold. Other washings of single cubic yards yielded various amounts. But the most satisfactory test has been made within the past six weeks under direction of Engineer Lord. Eighteen cubic yards were measured, worked and washed through sluices in exactly the same manner as it is proposed to develop the placers. The yield was 38 cents per cubic yard.
Rains in Ecuador are constant, and the water supply is enormous. At the town of Playa de Oro the Santiago River (500 feet wide) averages 300,000 miners' inches of water of 2,160 cubic feet each in 24 hours, or 7,500 cubic feet per second. The water for the mines will be taken from a branch of the Santiago (Rio Francklyn) at a sufficient elevation to give a large head. The river at the point where the initial canal will be built is 330 feet above bedrock at the placers.
The extent of the gravel beds is prodigious. The property covers about 60 square miles, and it is roughly estimated that there are about $1,600,000,000$ cubic yards of gravel between bedrock and the grass roots. If there is an average gold value of 38 cents per cubic yard, the value of the deposit is $\$ 600,000,000$! It is thought that several million dollars per year can be
secured if the banks are worked at the capacity of the

THE WORLD'S COLUMBIAN EXPOSITION-THE INGERSOLL-SERGEANT DRILL CO.'S AIR COMPRESSOR. or mauls, a few wooden shovels, remains of wooden or lance heads and other articles of copper.

```
Wire Tramways.
```

This forms the subject of a study and investigation with which the Societe Industrielle de l'Est, in France, has charged two of its members, one of whom, Professor Thiery, lately forestalled the definite report by a lecture delivered at Nancy. He concluded by giving the cost of transport on eight wire lines, the mean of which, 57 centimes per ton per kilometer, or 17 cts. per ton per mile, happens to be exactly that of the wire tramway lately erected between Custines and Marbache for carrying ore to the Pont-a-Mousson blast furnaces.

In addition to the low cost of transportation, Professor Thiery enumerated the following economical advantages of wire tramways: They are independent of the land on which they are erected, and which may be hired instead of bought, and cultivated like adjoining portions; there is sufficient height for tipping to dump; they may be established on any land where roads or railways would be impossible, notwithstanding natural obstacles; they will work in any weather, not being interrupted by snowstorms or floods; the loading and unloading is effected in a verr simple and practical manner; they may be worked by untrained laborers ; and, lastly, the energy stored up in descending may be utilized for ascending, which is not the case with other means of communication.

EXHIBIT OF BRUSH ELECTRIC COMPANY. Near the southwestern corner in the Electricity
building, at the World's Columbian Exposition, is a small staff structure of Greek architecture, apparently built of the purest Italian marble. This structure is surrounded by generators, dynamos, motors and a variety of electrical apparatus displaying all the manufactures of the Brush Electric Company, of Cleveland, Ohio, while the structure itself serves as the office of this company. A general view of this exhibit and of the structure is seen in our first page illustration.
The lighting of this office is one of the prettiest pieces of interior illumination at the Exposition. The room is circular in form, with a diameter of eighteen feet, and with a semicircular domed ceiling. In the center is a column rising through the ceiling. The entire interior is richly colored, and the domed ceiling is so painted as to give it a cloud effect, with a deep blue sky background. An artistic cornice marks the joining of the wall with the ceiling, and the incandescent lamps that furnish the light for the room are concealed behind this cornice and out of the line of vision. There are altogether fifty-two lamps used for this purpose, connected to four circuits, so that the amount of light can be readily regulated, as is frequently required in theaters and other large halls This plan of lighting was devised by Mr. I. R. Prentiss, of the Brush Company, and as adapted to this room has twelve lamps on two circuits and fourteen on the other two. By this manner of illumination there is no need of large resistance coils when the amount of light is reduced, and there is a corresponding saving in the amount of power required when a lesser amount of light is used. The only reflector used is a piece of tin on the inside of the cornice. The rays of light, as shown in the illustration, are thrown on the domed ceiling, and from there diffused throughout the room, giving an exceedingly bright yet soft, mild light that i. zot in the least trying to the eyes.

The Brush Company is known the world over for its arc lighting apparatus, and all systems of arc lighting now used are outgrowths of the inventions of Mr . Brush. This is the pioneer company in arc lighting, and it is a remarkable fact that the first Brush dynamo, built in 1876, an illustration of which is given, does not differ, except in unimportant features, from the very last Brush dynamo shown in the lower left hand corner. The chief difference is that the early machine had a Gramme armature, while now a lami nated iron core armature is used and open coils. This latest dynamo is the largest arc dynamo ever constructed in this country, and probably in any other. It has a capacity of 120-125 full are or 2,000 candle power lights. It makes 525 revolutions a minute, and gives $9 \cdot 6$ amperes at 6,250 volts. It is a four-pole machine, and uses two sets of brushes. There are 24 bobbins, and the com.nutator has 3 rings of 8 segments each. The field magnets are of soft steel and the frame is of cast iron. The shaft is directly connected to a Willans engine, which is set upon the same base, and which works at a steam pressure of 160 pounds. This is believed to be the first direct-coupled arc machine ever built. Heretofore the largest sizes of arc dyna mos that have been built have been 65 lights, and several machines of this capacity are shown in this exhibit, as well as the smallest, which has a capacity of one full are light. Distinguishing features of the Brush dynamos are flexibility, simplicity, and ease of repair. The usual sizes of dynamos have 12 bobbins, making practically three machines in one.
Several dynamos are displayed in this exhibit other than those already mentioned, which are of particular interest, especially the first one that Mr. Brush constructed. Other dynamos are shown that have been run for twelve or fifteen years and have required no further repairs than new brushes and new packing for the bearings.
The display of arc machines comprises twelve sizes-all of the regular sizes manufactured by this company. In addition to this display, the Brush Company has a very handsome working exhibit in the electric plant in the Palace of Mechanic Arts, where there are 16 dynamos, each of $\overline{0} 5$ lights capacity, forming part of the plant used for lighting the Exposition grounds.
The same system of flexibility that is made such a feature in the Brush arc lighting apparatus is adapted to the alternating system of incandescent lighting, which is now an important feature of this company's business. In the lower right hand corner of our illustration is shown an alternating dynamo of 3,000 lights capacity, giving a current at 2,000 volts and coupled direct to a 250 horse power Brush motor. The armature in this dynamo is stationary. There are ten bobbins, and when coupled in series, give the full output. But this machine as exhibited has the bobbins connected in multiple arc. The incandescent lamps used to illuminate the interior of the office structure derive their current from this dynamo without the interven-
ng use of a transformer. The motor used to run this
alternator is a 250 horse power, 220 volt four pole direct current machine, which derives its energy from the Exposition circuits. This alternator hasiron segments and uses carbon brushes, and is so constructed as to have great ventilating capacity. Two other alternators are exhibited, one of 1,000 light capacity, the other of 720 lights, and there is also a display of transformers varying from five lights to 225 lights in capacity.
Still another feature of this exhibit, and which illustrates an important feature of the manufactures of the Brush Company, is direct current incandescent lighting apparatus. Four sizes of these machines are shown, the largest one being a 2,000 lighter. A special feature of this machine is that there is only one turn of wire on each bobbin, giving what has always been regarded as a perfect type of such a machine. The 1,000

THE SPERRY ELECTRIC RAILWAY SYSTEM, PLAN AND SECTION.
lighter has two turns of wire and the smaller machine more. This 2,000 lighter has great efficiency and generates a very small degree of heat, because of this and other new features in its construction.
The demand for electric power has led to the introduction of power generators and to the making of motors adapted to various purposes to be used in connection with their generators. In the rear of the office structure, but not shown in the illustration, is displayed a generator of 130 horse power capacity. It is compound wound and gives a direct current at a potential of 1,000 volts. It is a type of generator that has come into extensive use for heavy work-the Calumet and Hecla Mining Company using five of them in its mine pumping plant. Several types of motors are shown, one of which, called the mining motor, is very compact and is steel-clad. It is a 220 volt machine and is of very slow speed, the one exhibited being 9 horse power and running at only 700 revolutions. Motors for crane and elevator service, as well as motors adapted to other uses, are also to be seen here.
The exhibition of switchboards is a very fine one. There is a large switchboard adapted to an alternating current plant of 30,000 lights capacity. This board is complete in all of its apparatus, and has just been sold to go to Manila, Philippine Islands, in a plant which the Brush Company is now equipping there. Arc and direct incandescent switchboards are also shown. The principle of flexibility which pervades the Brush apparatus is to be found in the switchboards,

truck and motor of sperry electric system.
as everywhere else. These boards are made in panels, each panel representing a dynamo. When another
machine is added to the plant, the end panel containmachine is added to the plant, the end panel containar instruments and other apparatus is moved along tween that and the panels already in position, so that no change of wires or other unnecessary work need be done to connect up. Another feature and one of much importance. especially on an are switchboard, is the placing of all live currents on the back of the board, so that the veriest tyro could handle this switchboard and not risk receiving a shock, unless he were careless enough to touch the terminals at the switch.
The space occupied by the entire Brush exhibit is surrounded by a string of arc lamps, and in the evening when these lamps, all of which are of 2.000 candle power, are lighted this exhibit is one of the most highly illuminated sections in the Exposition. The import-
lamps to the commercial world is briefly stated by a
modest sign board shown at the right of the office modest sign board shown at the right of the office
structure, which says, "All double arc lamps used by the Columbian Exposition are furnished by the Brush Company." Another sign board, equally modest, hints at another line of work which has received a great deal of thought and which owes a great deal to the fertite brain of Mr. Chas. F. Brush. This sign reads, "All storage batteries used in electric launches and in the Columbian Exposition are manufactured under Brush patents."
Nearly all the Brush apparatus in Machinery Hail and in their exhibit was sold early in the summer for delivery immediately on the closing of the Exposition which shows that this apparatus has lost none of its popularity.
The Brush Electric Company does not sell street railway apparatus, but it has allied with it, though independent so far as organization is concerned, two companies that have distinctive apparatus, each of its own peculiar type. In the foreground at the extreme left of the illustration of the general exhibit is seen the left of the illustra
exhibit made by

THE SPERRY ELECTRIC RAILWAY COMPANY.
The Sperry system represents a radical departure in electric railway work. This system consists of a single motor mounted flexibly upon a truck frame in the center of the truck. This flexible mounting consists of four rubber cushions between the motor supports and the frame of truck. The motor is thus relieved of all strain and jars and concussion of the axle incident to street railway traffic. By mounting the motor in the center of the truck, the weight on the axle is reduced to a minimum. There is only about two hundred pounds of weight over each axle. It will be acknowledged by all engineers, or axles acquainted with railway traffic, that if bot axles of the truck are connected with one source of power instead of two, a large increase in traction is thereby gained. This method will soon become indis-
pensable with electric street railway construction, because all of the traction that is possible must be secured. A coupling between each axle and the motor is required, and, from necessity, the coupling must be flexible under some conditions and rigid under others. Mr. Sperry has perfected a coupling that meets these requirements, and a number of them are exhibited. This coupling will allow the pinion shaft, on which is located the "driven," and the motor shaft, on which is located the "driver," to become thrown out of alignment to a considerable extent, while at the same time all of the torque delivered by the driver is transmitted to the driven. This is a very important feature of this equipment, and answers all the objections which have been made heretofore regarding a single motor equipment. In fact, this equipment will round the shortest curves with great ease and with less power required than with any other system.
To show its superior qualities as a hill climber, a grade was constructed on one of the tracks at the World's Fair, and a dynamometer test was held, at which the Sperry car pulled 4,700 pounds on the drawbar before the wheels slipped. A double motor equipment, weighing considerably more, and thereby having that much advantage, was tried, but this equipment only pulled 2,075 pounds before the slipping point was reached. The grade was $12 \cdot 4$ per cent, and the test was witnessed by all the judges of the Electrical Department.
The Sperry Company claim that they rate their motor very conservatively, and that it is built to stand any sudden excess of work which it may be called upon to perform, which in some emergencies amounts to two or three times the rated capacity of the motor.
Street railway traffic is the most severe traffic in the world on machinery. In the first place, the electrical machinery placed under a car is always in crude hands. No special electrical education is considered necessary for a motorman. A man may be a farmhand for forty-five years, and after a few days' run on the road with another motorman he is considered capable of handling and manipulating the electrical apparatus designed to propel a street car. Again, very little grading is done in laying a road, and the machinery must be so designed as to go uphill and down hill continuously. Practically no limit to the load is prescribed, and in most cases the roadbed is allowed to become sadly out of repair before any steps are taken to improve same. Taking these conditions together with the speed at which electric cars are being run, short curves and frequent railway crossings, it is no wonder that the strains incident to street railway traffic are more severe than on any other class of machinery.
The motor designed by the Sperry Company is made so as to stand all the possible strains that can be put upon it, and every feature of the equipment is designed and built with a clear understanding as to the uses to which it is to be put.
THE SHORT ELECTRIC RAILWAY COMPANY'S EXHIBIT.
The special feature of this display, as you will read-
power 500 volt six pole machine, designed especially for electric railway work. The comparative size of the armature of this generator is readily seen from the armature exhibited in the foreground. This shows the manner of its construction and also illustrates one of its striking features, which is a thrust bearing of the same type that is used on the large ocean steamships. This bearing is so constructed that the shaft runs in oil. It is provided with a device by which the position of the armature in relation to the poles can be regulated to the smallest fraction of an inch. The speed of this generator is 300 revolutions in a minute. Its framework is one immense casting 16 feet long.

The railway motor, which the Short Company believes will be the motor of the future, is one that is so constructed as to be practica'ly flexibly suspended in the truck, which relieves it of all strain and jars incident to the ordinary single and double reduction motors. Another very important point is gained by this flexible suspension, and that is, the doing away with the tremendous hammer blows upon the track. The wear and tear on the track by the ordinary motors in use is so great that it would seem that the Short Company are moving along in the right line. The abandonment of all gears is a special feature of the motor, and a very important one from a standpoint of repairs. The development of this motor is rapidly traced in the various stages, from the first one that was built in 1890 to the latest type. This latest type is a six-pole 20 H . P. motor. It is incased, protected from mud and dirt. The working parts are readily reached. This motor is suspended by spiral springs on the car truck. The armature is attached springs on the car truck. The armature is attached
direct to the axle. It has but two brushes and runs direct to the
The rest of the Short exhibit comprises rheostats, motor and generator parts and all other electric street railway supplies.
There are a number of single reduction and double reduction motors exhibited.

DISAPPEARING GUN JARRIAGE.

The question of coast defense has been agitated in this country for many years, without material results so far as fortifications are concerned. The government is partly supplied with heavy guns, with a prospect of more to come, but the mounting and placing of these guns seems, as yet, to be an unsettled matter The government has been experimenting at Sandy Hook with a 10 inch breech loading steel rifle which throws a pro jectile weighing 575 pounds with a velocity of about one mile in 2.6 seconds, the gun being mounted upon Captain Gordon's disappearing gun carriage. The pressure on carriage. The pressure on the breeck of this gun is
about $3,000,000$ pounds, and about $3,000,000$ pounds, and
the problem is to resist the recoil without producing undue strains or shock, and to store and use the power for raising the gun. In the Gordon carriage the gun is mounted on four heavy dou ble cranks journaled on the top of the frame, the arms of each crank being arranged opposite each other. The longer arms support the gun, while the short arms extend downward outside of the frame, and are pivoted to a counterweight frame which surrounds the main frame of the carriage. The counter weight balances the gun and top carriage, so that the only resistance to be overcome in the maneuvering of the gun is the friction on gun is the fion on the journals. When the gun is fired, the upper arms swing rearwardly and the lower arms swing up wardly, carrying up the counterbalance The carriage is brought to rest by pistons working in two hydraulic cylin ders provided with an air chamber. By means of this con struction, the a i pressure, which in the beginning of the movement of the gun is 80 pounds in the

Fig. 1.-CAPTAIN GORDON'S DISAPPEARING GUN CARRIAGE.
this character can scarcely be overestimated in the defense of low-lying coast. The guns are exposed only when ready to fire. While being loaded, and at all other times except while actually firing, they are protected by the parapet, and are thus proof against the enemy's fire, and hidden so as to elude discovery.

DUHAMEL DU MONCEAU.

On Sunday, the first of October, the city of Pithiviers solemnly inaugurated the statue of Duhamel du Monceau. On this occasion, an agricultural exhibition, with a special competition of dairy apparatus, was organized by the Society of Agriculture, and proved very interesting.
Henri Louis Duhamel du Monceau, who was born at Paris in 1700 and died in 1782, was one of the principal agriculturists of the eighteenth century. Inspector of the marine, he devoted his studies principally to forests. In his Physique des Arbres, he was the first to describe with accuracy the laws of the growth of plants, of the formation of wood and bark, of the double circulation of sap, etc. He discovered the Oidium, one of the most destructive parasites of the grapevine, and for a long time studied the disease of the saffron. It was in the train of these labors theat he entered the Academy of Sciences. He was also a member of the National Society of Agriculture. This learned author of numerous agricultural treatise passed the greater part of the year on his family estate near Pithiviers experimenting upon new agri cultural theories, studying fertilizers practically, and occupying himself with perseverance with the enriching of the flora of France through the importation and acclimation of exotic plants
He was an indefatigable worker, and imposed upon himself the task of laboring twelve hours a day-a rule that he observed during the whole course of his existence. His fortune, which was sufficient to assure him independence, permitted him to devote himself freely to his studies, and to make experiments, which were often very costly, in physics, chemistry, botany, were often very costly, in physics, ch
the culture of trees, and meteorology
the culture of trees, and meteorology.
He was a philanthropist, and, in his passage to the marine, not content with occupying himself with the improvement of the materiel and of the service, and with the construction of posts, lighthouses, etc., he greatly interested himself in the condition of the personnel, and published his "Instructions upon the Man ner of Preserving the Health of the Crews upon Vessels under Way," a work in which he gives the most practical advice as to the hygiene on board and the preservation of food, and points out one of the simplest of methods of aerating holds by means of a draught of air through the galley stove.
The following is an anecdote concerning him: One day a young naval officer asked him a few questions, to which the scientist answered "I do not know." "What is the use, then, of being an academician?" replied $t h e$ young man. Duhamel preserved silence, but, shortly afterward, the officer having become involved in an argumentation that proved his ignorance of the subject, Duhamel retorted: "You see now, sir, of what use it is to belong to the Academy; it is to speak only of what one knows."

The beautiful statue that

Fig. 2.-DISAPPEARING GUN CARRIAGE-GUN DEPRESSED. we reproduce herewith is due to the chisel of the sculptor Blanchard. The pedestal is by Mr. Ratouin, an archi tect attached to the School of Fine Arts. The savant is repre sented standing in the attitude of a professor giving a demonstration, and the monument does the greatest honor to the artists who con ceived and executed it.-L'lllustration.

The walls of Babylon are said by Herodotus to have been 350 ft . high and 100 ft. thick at the base

SWORDFISH EXPLOITS.

Several years ago we published an account of a couple of men out in a boat, fishing in the Lower New York Bay, who observed a commotion among a别 shoal of small fish, and, rowing to the spot, found from the bow, on the port side, and cowt three feet what they at first supposed, by its single fin above the water, to be a shark. They attacked the shark. They attacked the
monster with a view of monster with a view of
capture, and were astonished by the sudden piercing through of their boat bottom by the sword, $41 / 2$ feet long. of a large swordfish. They succeeded in noosing his tail, securing noosing his taill, securing and killing the fish, after
which he was towed ashore, and subsequently brought up to the city to a restaurant in Park Row, a few doors from the Scientific American office. The fish weighed 390 pounds and measured 19 feet 8 inches in extreme length. It was certainly one of the finest specimens we ever saw.
The Liverpool Mercury gave a report from Captain Harwood, of the brigantine Fortunate, from Rio tine Fortunate, from Rio
Grande, to the effect that Grande, to the effect that
the vessel, while at sea, was struck and shaken by a swordfish. After dis charging the cargo at Liv erpool the hull was examined and the sword of the fish found, broken off vessel. straight bone, sharp and flat, projecting horizontally from the nose, of which it is a prolongation.
The swordfish is found in considerable numbers off the island of Martha's Vineyard, coast of Massachusetts, at this season of the year. Its flesh is considered excellent food by many persons, and the annual catch is quite large. The ordinary length of the body of the fish at full growth is 14 feet, and its sword 6 feet, or 20 feet in all.

Swordfish have been unusually plentiful off this coast this summer. The fishermen hunt them with harpoons, spearing them from the decks of small sail vessels. In July last the fishing smack Mattie and Lena arrived at Stonington, Conn., after a four days' trip about Block Island, with sixteen large swordfish, averaging 300 pounds each, and an exciting story of a struggle for life between Henry Cheesebro, one of the crew, and a wounded and maddened swordfish.
Cheesebro had harpooned a big fish off Montauk Point, and, after waiting the usual length of time, got into a small boat to bring the apparently exhausted fish to the vessel. As soon as Cheesebro approached him and commenced hauling in the line the fish awoke from his torpor and started to battle for his life. He began operations by diving so as to spear Cheesebro's boat on coming to the surface. Missing his aim, the fish dived again for a second attack.
It was now too late for Cheesebro to retreat, and defenseless, in the frail cedar yawl, he awaited the on-

A SWORDFISH PIERCES A BOAT. even with the outside planking. The fish had driven $\left.\right|^{\text {the }}$ thin plank on the starboard side. Cheesebro had his sword completely through the four inch planking, retreated to the stern of the boat in time to avoid leaving eight inches of the blade projecting within the the violence of the fierce fish, and thus escaped in-

The swordfish is allied to the mackerel, which it re- His plight was seen from the schooner, and the vessembles in form, and is a swift swimmer. The sword sel headed for the scene of the conflict. By constant is a most formidable blade, consisting of a strong baling Cheesebro kept his frail and disabled craft afloat until succor arrived. A blow on the head
 and in the manufacture wax flower makers, druggists, cakes are first broken up into small pieces and put into a large circular tub or vat made of cedar. This tub is about five feet in height and about three feet in diameter. Across the bottom of the tub are two square hollow wooden pipes, one crossing the other at the cen-: ter, the tops of which are perforated with a number of holes. Placed into the end of one of these pipes is a perpendicular wooden pipe, which is connected at the top to a brass steam pipe.
About 1,500 pounds of the wax is placed in the tub and enough water poured on to it to swim it well. From forty-five to sixty pounds of steam is then turned on, which rushes down to the perforated pipes and is forced up through the holes and distributed through the wax, which, in about three hours, becomes thoy melted, the dirt and grit, if any, sinking to the bottom. It is then drawn from the tub and run through a sieve, where it falls down on to a revolving wooden wheel or roller, about $41 / 2$ feet in length and 18 inches in diameter. The bottom of this roller rests in a bed of water about 18 inches in depth and about 6 feet in length, the temperature of which is about 70°. As the melted wax leaves the sieve it strikes or falls on the top of the wooden wheel in small pieces or ribbons, sticking fast and becoming instantly chilled.
This roller makes about sixty-four revolutions per minute, the wax dropping ofil the instant it comes in contact with the water. The material is then taken out of the water bed, by means of wooden forks, and placed in boxes and carried out to the bleaching frames. These frames are made of wood, about 100 feet in length, 14 feet in width, and about 8 inches in depth, and raised 3 feet from the ground. About 1,000 pounds of wax is placed on each frame and left out day and night for the sun to bleach for four weeks. It is sprinkled with water four to five times daily, to keep the hot summer sun from melting it, as the temperature reaches as high as 120°. Once a day a sixty-four pronged wooden rake is drawn back and forth through the material, which turns it over, allowing the sun to act on every particle. The wax when first taken out to bleach is yellow. After four weeks' exposure in the sun it becomes a creamy white. It is then gathered up and taken back to the tubs and melted over again, going over the same operation and out again to the bleaching frames, to remain out two weeks longer, with the same
sprinkling and raking operation. This second bleaching turns the wax almost to a snow white, and it is ready to be formed into cakes for the market.
About 600 pounds is then melted up at a time in a tub and drawn off to be made into cakes as needed. These cakes are made by running melted wax from a horizontal movable copper cylinder into circular moulds. These moulds are of heavy tin, 4 inches in diameter and about one-quarter inch in depth, and are placed one after another on a long table, the sides of which are fitted up with tracks, over which the movable cylinder can be drawn back and forth. This cyinder is 10 inches in diameter, 5 feet in length, and double. The outer cylinder contains hot water, which surrounds the inner one, containing about fifteen pounds of melted wax. The hot water and wax are poured into the cylinders by means of capped tubes at each end. Projecting from the outside of cylinder and connecting with the inner cylinder are a number of small hollow tubes, through which, when the attendant turns the cylinder over, the wax runs out into the moulds. As soon as the moulds are filled the cylinder is drawn back again and pushed forward to the next set of moulds, the operation being repeated until the moulds are all filled. To keep the wax from cooling, the hot water is poured when cool, and fresh added after every ninety pounds of wax has been drawn off. The moulded wax becomes cool in about one hour, and it is packed into boxes and ready for market. The sketches were taken from the plant of Theodor Leonhard, Paterson, N. J.

Mysterious Fires.

During a recent visit to a country hotel which was lighted by incandescent lamps, Professor John Trowbridge relates that a thunderstorm occurred, and he noticed that the lamps blinked at every discharge of lightning, although the interval which elapsed between the blinking and the peals of thunder showed that the storm was somewhat remote. The effect was doubtless due to induction, produced by the surging of the lightning discharges. On the occasion of a heavy discharge, the lamps were extinguished, altinugh no fuse was burned. This provided an opportunity for an attendant to discover that a jet of gas from a pinhole leakage in the gas fixtures had become ignited (doubtless by a minute electric spark) and the flame was impinging upon some adjacent wood work. The discovery averted what would have been, perhaps, a serious and mysterious conflagration. The moral of the story is, of course, to be found in the reflection that had the electric light wires not been carried along the gas fixtures, as they were in this case, the ignition would probably not have occurred. This practice is fraught with danger, for if there is a leakage of gas (and what gas fixtures do not leak?) at the joints of the pipes or through a sandhole or other flaw in the casting, then tiny electric sparks arising through resonance effects or from the passage to earth of an electric charge brought into the building by the wires may, if they happen to form in contiguity to the leak, readily ignite the éscaping gas without being discovered in time to prevent disaster. If people will cling to their gas when they lay down an electric lighting system, then it behooves the electrical engineer who superintends the work to see that the wiras and the pipes are never contiguous, for no lighting guard or protector yet invented can insure that minute sparks, due in some cases to resonance effects, may not arise.-The Electric Review.

Water Tank Painting.

What is the best method of preparing a new steel tank for painting?" and "How should the scale and rust be removed from a common iron tank ?" Mr. A. I. Horton, of the Michigan Central Railroad, said, at the recent meeting of the Car and Locomotive Painters' Association, that in preparing iron for tanks it should be rolled and rerolled in the boiler shop before being made up. After the tank is completed it should first be rubbed with sandstone and kerosene, and afterward washed with ant soap and water. Steam should then be turned inside and the tank heated until no moisture appears in the pores or under the scales, and until the lead or paint smokes. As soon as sufficiently cooled it should be puttied and painted. This process gives excellent satis process gives excellent satis
faction. Mr. Horton also said he had never been troubled with scale on steel tanks as on iron. Mr. F. W. Wright said that the rust could be re moved from both steel and iron tanks by rubbing with broken fragments of emery wheel, then with sandstone, and afterward washing with turpentine, when the tank would be ready for puttying and primiag.

A RAILROAD RAIL FOR STREET RAILWAYS

The illustration represents an improved form of rail for street railways, composed of track or running rails proper and supplementary rails bolted to the track rails, and having a laterally projecting top portion serving as a wheel guard and lateral brace for the track rails. The improvement has been patented by Mr . Michael J. Keenan, of Galveston, Tex. Fig. 1 is a cross-sectional view of the preferred form of construction, in which a flange rail is bolted to the inside of the track rail, the lower edge of such flange rail being

REENAN'S RAILROAD RAIL

seated on a shoulder formed on the inner side of the web of the main rail, while its flange portion rests on the usual block forming part of the pavement. In Fig. 2 is shown a modified form of the improvement, the lower portion of the flange rail being in this case formed with a base constituting a continuation of the flange of the main track rail, while at curves in the road the flange may have a guard extension, as shown in dotted lines. Fig. 3 shows another form of construction, in which the outer edge of the flange rail is supported on an angle iron running parallel with the track rail, and connected with the adjacent blocks of the pavement. Fig. 4 is a reduced side view of the improvement. The main track rail breaks joints with the flange rails, so that the flange of the car wheel travels on the flange rails when the tread of the wheel passes over the joint between two main track rails.

German otto of Roses.

The rose plantations established two years ago in the suburbs of Leipzig have been so successful that the suburbs of Leipzig have been so successful that
atmosphere being the chief conditions of a good yield. A factory has been built in the midst of the rose fields which will consume 50,000 kilos. of leaves daily, and is expected to produce as a minimum about 40 kilos. of essential oil, the estimated value of which, together with that of the rose water and pomade produced, will be from $£ 2,000$ to $£ 2,500$. Only the requisite quantity of flowers for immediate use will be gathered at any one time, and the roses will be but a few minutes in passing from the trees into the macerating receptacles. It is claimed that the oil produced in Saxony last year was better than the Turkish product, in delicacy, strength, and the lasting character of its perfume.Kew Bulletin.

DELCROIX'S TOPOGRAPHIC RULE

The campaign topographic rule that we propose to describe appears to us to be destined to render great services. This instrument, which was devised by Captain Delcroix, solves problems relative to a knowledge o the ground, in form and in position, to the study of nature itself, and to the construction and reading of maps. With it, it is possible to lay out a rapid itinerary or an expedite plan, or make a picturesque sketch by the aid of an elementary perspective picture. Six ordinary scales give the reduction of the lengths. A gradient scale permits of rapidly expressing the ordinary gradients. Employed advantage ously for the estimation of distances of firing and of lengths of such a nature as the vertical and horizontal stadimeter, the rule permits through a simple observis tion of measuring a vertical or horizontal angle, or both simultaneously. The topographic rule thus commends itself to travelers, engineers, all those who indulge in open air sports, lovers of sketching and mak ing interesting observations, explorers and members of societies of gun practice, gymnastics, military instruction, bicycling and nautical sports. It will be seen that its uses are numerous.
The apparatus is formed of two juxtaposed instruments, the topographic rule and the protractor compass (Fig. 1). It consists of a flat rule with beveled edges upon which are engraved two triple scales, giving scales multiples of one another. Upon the rear edge, which also is beveled, is engraved the scale of gradients for the equidistance of a quarter of a millimeter of the staff office map and of topographical maps in general, and that too for ordinary gradients of from a balf to ten hundredths. Into the front part of the rule is set a spherical level. Finally, upon the long axis are arranged a sighting screen and back sight.
A protractor compass with rectifiable limb, placed between two transparent glasses, is set, axis upon axis into the rule. It is graduated by preference into grades or centesimal degrees, in order to facilitate calculations. Upon the upper glass are traced two arrows alignment at right angles. Four small datum columns keep the axes at right angles and permit of the variable orientation of the limb. The compass needle may be rendered immovable in any position whatever in order to mark the angles. The compass is easily removed from its receptacle, so as to be employed alone. Upon the long axis of the rule, and in front, is arranged an ocular pinule provided with a hinge so that it can be turned down. The variable color of the eyes and the luminous point of the eye may lead to errors of observation. So in the center of the ocular there has been substituted for the human eyeball a copper one, slightly smaller and containing a visual aperture. The visual ray is thus well centered and the sighting assured. At a distance of 100 millimeters from the pinule and parallel with its plane is suspended in a frame a per pendicular translucent mirror of platinized glass, divided into millimeter squares, and upon which are marked two axes at right angles, and so ar ranged that the horizontal axis of the mirror and that of the pinule form a plane exactly paralle with the lower plane of the rule. The divisions are read to the right and left of the mirror. The ver tical frame, being provided with a hinge and rack, can be turned down and made to assume various inclinations. Fig. 2 shows the method of using the apparatus for an ordinary observation, and Fig. 3 for observation by reflection. A light screen of blackened brass serves to shut off the vertical luminous rays, and to protect the glass during carriage

With this apparatus it is possible to perform the following operations: Measure
Fig. 3.-OBSERVATION BY REFLECTION. withstood the severe weather of the recent winters horizontal angles and lay off distances; measure ver great heat is most satisfactorily. It is stated that tical angles andry; picturesque sketching; and reduc perature and a somewhat moist condition of the

EXHIBITS OF THOROUGHBRED STOCK AT THE
WORLD'S COLUMBIAN EXPOSITION.
The live stock exhibit at the World's Columbian Exposition was one of the most important and instructive features to attract farmers and others who cultivate the soil and are stock raisers interested in animals. It was noticeable that the attendance jumped nearly 25 per cent as soon as the live stock exhibit was opened, and many people expressed themselves as having waited for this event.
The Exposition management did everything in its power to encourage this exhibit and offered premiums aggregating $\$ 150,000$, and this amount was increased to the extent of $\$ 100,000$ more by live stock and other associations interested in the breeding of fine animals. Breeders all over the country took greater interest in this exhibit than in anything of the kind that has ever been held, and several men of large means scoured Europe for the finest animals that could be had. Animals thus purchased were brought to this country primarily to be exhibited at the Exposition, but also with the intent of keeping them here ; and as a result of this desire among breeders to excel in their exhibits the country benefits by a great many highbred animals. The very best of every recognized breed was to be found at this exhibition, and in every respect it was the largest and most successful display of live stock the world has seen. It was attended by leading breeders from this country, and the live stock associations of Germany, France, Great Britain and other countries appointedresponsible members as delegates to attend. The result of the exhibition will be the dawning of a new era in the breeding of fine cattle in this country.
The Expurition built 40 stables in the south part of the grounds in which to house the stock. These stables were 200 feet long and 42 feet wide and were provided with the latest improvements in the line of ventilation, drainage, stable equipment, etc. The stables were sufficient to accommodate three thousand animals in stalls varying from four feet six inches to ten feet in width, and with the driveways between the buildings covered an area of twentyseven acres. Animals were never cared for more tenderly. The horses were groomed and exercised and watched with the greatest of care, and the cattle were combed and brushed, their tails crimped and their horns carefully polished each day.

The exhibit opened August 21 and closed October 28, and prizes were offered in each ring or age. Ninety prizes were awarded each of the fourteen
breeds of cattle. One of our illustrations last week showed a prize winning cow of the Holstein-Friesians. She, born and bred in this country, is called Walled Lake Queen, and was entered by C. V. Seeley, New Farmington, Mich. She carried away $\$ 100$ worth of prizes, $\$ 50$ being the Columbian Exposition prize and the other $\$ 50$ the sweepstakes prize.
The prize Dutch belted bull shown in ourillustration last week was exhibited by H. B. Richards, Easton, Penn., who exhibited a herd of 35 or 40 animals of this breed. In fact, all the animals of this breed belonged to this exhibitor. This prize winner was Byron, who carried away $\$ 85$ in priz -, which included the first prize in its class and the live stock association prize. He was entered in the class of bulls three years old or over ; sweepstakes bull of any age, as well as with a herd. He is an American-raised animal.
Prince Attractive is the name of the prize winning Clydesdale stallion illustrated in our present number He is owned and was exhibited by Robert Holloway, Alexis, Ill. He was entered in the section of stallions two years old and under three, and he took $\$ 350$ in prizes- $\$ 150$ being the Columbian Exposition award and $\$ 200$ a special prize offered by the American Clydesdale Association, which made a special effort to encourage a fine exhibit of this breed of animals. He also took an extra prize offered by the Great Britain Clydesdale Association.

Some of the Comstock mines are so deep that no means have yet been devised to overcome the exces sive heat.

Diamonds from Coal Gas

THE WORLD'S COLUMBIAN EXPOSITION-THE PRIZE CLYDESDALE STALLION, PRINCE ATTRACTIVE.
M. Gustave Rousseau recently communicated to the Comptes Rendus a remarkable statement referring to his experiments upon the cyclical condensation of carbon. It appears that, in the course of some investigations into the nature of certain manganites, cobaltites, and ferrites, M. Rousseau obtained some metamorphoses which led him to the discovery of a new phenomenon in chemical physics-that is to say, the so-called cyclical transformations to which can be subjected a particular radical under different temperatures. Thus certain compounds of manganese and soda can be formed at a given temperature, changed into something different by raising the temperature, and finally reconverted into the original compound at a still higher heat. From these analogies, says the Journal of Gas Lighting, M. Rousseau thought that, if hydrocarbons were heated through the range of temperature between bright red and $3,000^{\circ} \mathrm{C}$., there might be produced in turn the various isomeric states of carbon, each of which presents its own degree of stability according to its place in the thermometric scale. It is known that the hydrocarbons form amorphous carbon by decomposition at red heat; while all varieties of carbon are transformed into graphite in the voltaic arc. M. Rousseau claims to have established the novel fact that carbon presents the cycle graph-ite-diamond-graphite in an interval of temperature comprised between $2,000^{\circ}$ and $3,000^{\circ}$ C. He worked with acetylene to solve this problem, because this carbon compound has a certain stability at high temperatures, and is endowed with a marvelous plasticity, besides polymerizing easily into a series of carburets more and more condensed. Acetylene was heated in an electric arc furnace producing both black diamonds and graphite. The experiment was of a difficult character, and much acetylene escaped treatment. M. Rousseau says that the hydrocarbons of coal gas can be made to furnish acety lene, under the action heat; and in one experiment of 40 minutes' duration, he was able to obtain 20 milligrammes of black diamond in this way: He caused a current of illuminating gas, saturated with the vapor of benzene, to pass into a hollow block of quicklime, where the voltaic are was maintained. Unfortunately, owing to the leakiness of the furnace, the gas burnt; and after two hours' heating, he could only find a small quantity of graphite mixed with some grains of carbonado. M. Rousseau proposes to continue these experi-

As a small quantity of fres shlorine is not objectionable in soap powder, dark colored materials, such as bone fat, fish oils, etc., may be used for making soap, with an addition of a small quantity of bleaching powder. To some soap powders 2 to 5 per cent of sodium silicate is added. A good washing powder should contain : 30-35 per cent of fatty acid; 30-35 per cent of sodium carbonate; and $30-40$ per cent of water. The inferior powders containing only $5-10$ per cent of fatty acid should not be used for the laundry; they are only serviceable for scrubbing purposes.
There is a soap powder in the market containing a soap prepared by treating linseed with caustic soda directly. This soap contains certain impurities derived from the seed, which lather freely, and thus when the powder is used, give the impression of more genuine soap being contained in the powder than is actually the case.

Improvement in Half-tone Blocks.

Dr. E. Albert has patented a new method of prepar ng half-tone blocks, which is stated to be a great improvement. The number of lines on a grain screen varies from 5 to 8 per mm.; more than 8 gives blocks difficult to print, less than 5 gives flat results. The proportion of the intervals between the lines to the breadth of the black lines is $1 \% 1$, and this is not the best for the high lights, and for the shadows $3 \cdot 1$ is better. Albert has arranged a micrometer screw on the objective, which is sensitive to $1-30 \mathrm{~mm}$. The action of this is to broaden or narrow the lines, and thus gain the effect required. -Talbot's Neuheit.

Schreib states (Chem. Zeit. and J. S. C. I.) that the washing powders or soap powders, which have latterly become important articles of commerce, always contain sodium carbonate, generally in the form of dried soda crystals. These powders may be prepared in either of the following ways:

1. Anhydrous sodium carbonate or soda ash is add ed to a "clear boiled" soap paste, and after thoroughly mixing, the somewhat stiff material is drawn off into cooling frames. The cold and hard soap thus obtained is then finely ground.
. Soda crystals and soap are melted together and then facture howa is only craps are to be had.
A suitable apparatus consists of a wroaght iron vessel with a strong agitator contained in an interior castiron vessel, which can be cooled by water circulated in the outer vessel. The liquid soap is cooled while the During is slowly added and completely dissolv not to overheat and thus soften the product.
The composition of soap powders varies considerably Only a small proportion of resin soap can be used, as such soap is sticky and cannot be powdered. Olein soap may be used with advantage, and the olein may be saponified with sodium carbonate instead of the more expensive caustic lyes. ments, with a furnace hermetically sealed, and constructed of refractory material not containing carbonates. He also intends to substitute for coal gas the highly condensed carburets derived from coal tar or petroleum residuum. Whatever may be the further outcome of these experiments, it is of interest to record that uiamonds have actually been made directly from coal gas by simple heating under ordinary atmospheric pressure.

Long Distance Telephony.
The American Telephone and Telegraph Company recently gave an exhibition of their long-distance telephone lines to a small party of guests who assembled at the Telephone building in Cortlandt Street.
Among those assembled to witness the exhibition were Dr. Von Helmholtz, Prof. Alexander Graham Bell, Dr. Hermann Knapp, Miss Knapp, Prof. Seth Low, Prof. Ogden N. Rood, Prof. Geo. E. Deschweinitz, and Mr. Edward J. Hall, Mr. Melville Egleston, and Mr. F. A. Pickernell, of the telephone company, besides some representatives of the press.
A number of receivers were arranged so as to give each of the party a connection to the line. Connection was made with Boston, Chicago, and Washington in turn, and conversations were held with the officers at those points. A cornet was also played which was heard through 500 miles of wire as distinctly as though it were in an adjoining room. The conversation with the headquarters of the telephone company at the World's Fair was held with perfect ease, speaking in World's Fair was held with
an ordinary tone of voice.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.

Car Coupling.-John F. Tiner, Sutherland Springs, Texas. This is an improvement in auerland springs, Texas. This is an improvement ings of the link and gravity pin type, and provides a device which may be set to couple two ap-
proaching cars provided with the improvement, and which may be manipulated for uncoupling by the usual lever or chain attachment. In a central recess of the drawhead is a slide block, and in a recess of the
block is a vibratable brake bar, while an incased springblock is a vibratable brake bar, while an incased springconnect:on with the brake bar.

Mechanical.

Tap Wrench.-Frederick C. Williams, ${ }^{57}$ Park Hill Avenue, Yonkers, N. Y. This is a strong and simple tool, in which the jaws may be quickly and
conveniently operated to receive the dies, and when the conveniently operated to receive the dies, and when the
jaws are fixed they will be firmly held in place, being clamped by a short turn of a lever. The jaws are held to
slide on the beveled surfaces of the walls of the body slide on the beveled surfaces of the walls of the body
within an opening therefor, and by means of a lock within an opening therefor, and by means of a lock
lever may be locked at any point in the opening. All wear is taken up at each adjustment, and there is an equal amount of strength in both handles.
Ratchet Drill Brace.-William P. Nolan, San Francisco, Cal. This an improvement on a
formerly patented invention of the same inventr, proformerly patented invention of the same inventro, pro-
viding an improved brace in which the speed of the tool shaft can be conveniently changed from a high rate of speed to a single motion corresponding to the move-
ment of the crank arm, or vice versa. The frame has a ment of the crank arm, or vice versa. The frame has a
cesing with an internal gear wheel, a crank arm turning casing with an internal gear wheel, a crank arm turning
within the frame, and a ratchet wheel adapted to be within the frame, and a ratchet wheel adapted to be
locked to the crank arm. A series of gear wheels on the locked to the crank arm. A series of gear wheels on the
ratchet wheel are in mesh with the internal gear wheel, ratchet wheel are in mest with the internal gear whee,
and a sliding tool shaft has a gear wheel with ratchet and a sliding tool shaft has a gear wheel with ratc
teeth adapted to engage the corresponding teeth on ratchet wheel.
Bed for Mortising Machines.-Alfred J. Saunders, Port Arthur, Canada. Upon a car-
riage fitted to slide upon the bed frame is secured a patriage fited to slide upon the bed frame is secured a pat-
tern formed with notches arranged according to the mortise to be formed in the stile, while a locking demortise to be formed in the stile, while a locking de-
vice held on the bed frame is adapted to lock the car-
riad thereto rice heelhereto. The construction is simple and durable,
riag the improvement is well adapted for cnorenient
and and the improvement is well ad
justment to various sized sties.
SA ring Machine.-Leslie P. Smith, Otego, N. Y. This improvement consists of a table sup ported at its front edge on swinging legs and at its rea
end on a swinging arm, the machine being designed to conveniently support a \log and move it to the saw to be cut. The log is fed against the saw by pushing the table
rearward, the table swinging on its front legs and on the rearward, the table swinging on its front legs and on the
extension, the cut-off end of the log sagging so that no extension, the cut-off end of the log sagging so
binding of the saw occurs during the operation.

Mining.

Ore Separator.-Alonzo C. Camp bell, Nashville, Tenn. A reciprocating pan, according to this improvement, is adapted to deliver concentrates from one end and tailings from the other, the apparatus
being also designed to serve for washing coal. It is being also designed to serve for washing coal. It is
adapted to work successfully on coarse and fine mateial of different densities, the mechanical movement operating the pan shaking it in such a way as to keep
the pulp well stirred up, while water is delivered in
nicely regulated material operated upon. The apparatus is also designed o economize space, while it entirely separates the metals from their ores with the utmost rapidity and the least possible expense.
Mineral Locator.-Robert T. Lacy, inte the earth and bring up samples of rock and mineral inte the earth and bring up samples of rock and minerala
from different levels, to determine the value of any location for mining purposes. Combined with a driving rod
and pointed bit is a tubular sheath of greater length and pointed bit is a tubular sheath of greater length
than the bit, and through the lower end of which than the bit, and through the lower end of which
the bit projects. There is an adjustable connection beween the rod and the sheath, and the lower end of th latter iway ve couverted into a receptacle to gather and
hold the material to be brought up from the differen levels.

Agricultural.

Wheat Stacker. - Nicholas Hous inger, Sylvia, Kansas. This is a strong and simple ma
chine by which the grain, when placed in suitable re chine by which the grain, when placed in suitable re
ceptacles, may be drawn up inclined planes an quickly and conveniently dumped, the receptacle being restored to the vehicle or support from which it was
taken. In combination with a vehicle having one pivoted side board are sliding receptacles adapted for a locking engagement, while a track section is pivotally connected with the vehicle supports, an inclined track being adapted to engage with the vehicle track sections,
and a tilting platform forming a portion of the track.

Miscellaneous.

Aerial Vessel.-Axel F. Bergqvist Fairfield, Iowa. This vessel comprises a balloon from which is suspended a basket, with propeller wheels at
the front ends of both the basket and the balloon, with the front ends of both the basket and the balloon, with from the basket. A rudder sail extends from the bal from the basket. A rudder sail extends from the bal loon is supplied with gas through pipes connecting with a reservoir in the basket, the driving shaft being operated

Fence Wire Stretcher.-John H. Gillis, Coesfield, Texas. This is a simple and inexpen sive device, quickly placedagainst a post and secured to
a wire, connecting with wires of dissimilar heights, fo stretching a wire to any necessary tension. It comprises a beam to one end of which is pivoted a clutch plate
having laterally extending serrated arms, a detachable
swinging frame on which is a windlass being carried by the beam. A cable carried by the windlass has a wire
engaging hook, and a guide pulley is pivoted on the side

Tent.-Benjamin F. Upton, St. Au gustine, Fla. This is a tent in which one or two ham-
mocks may be suspended and protected from mocks may be suspended and protected from the
weather on either side, or the tent may be practicalls thrown open to permit currents of air to pass over the of camping out, being foldable in small space when of camping out, being foldable in small space when
struck, and weighing but little when folded, while being amply strong to support and shelter at least two occu.
Hoof Pad.-Frank A. Ryan, Sherman, Tex. This is an adjustable rubber pad adapted to be
arranged within the shoe of a horse, and having metal braces passing through the pad for engagement betwee the foot and shoe. A strap from the braces passes from
the heel end over and around the foot of the anima the heel end over and around the foot of the animal. The pad is readily adjustable to a foot of any shape or
size, avoiding all contact of metal with any tender part size, avoiding all contact of metal with any tender par
of the foot, and the rubber when worn may be renewed of the foot, and the rubber when worn may be renewed
without replacing the metal or mechanical parts. The device may also be used to expand a contracted hoof in a natural and easy manner.
Cartridge Shell Extractor.-Rodolfo P. y Cubillos, Bogota, Colombia. This is a device having spring fingers, one of which has two cutting
edges at its lower end, while the other has a flattened extremity. The fingers operate conjointly to remove a
broken or lodged shell from a rifle, the device being introduced and forced down the grooves, with the finger compressed. by means of a ramrod, when the shell is cut
by one finger as the other passes behind the loosened by one finger as the other passes behind the loosened
parts.
Cane Loading Apparatus.-George W. Bennett, Bennettsville, La. This is an improvement
in devices for loading cane into cars, comprising a basket in devices for loading cane into cars, comprising a basket
with a number of connected chains and end cross bars, a hoisting frame or head having supports to carry the cros bars, with means to fill an ordinary cart the apparatily lifted and dumped into the cars so as to lie straight, as it would lie if packed in by hand.
Window Screenarmancis M. Jay, Guthrio, ©htaliomin Territory. This screen is secured to a hook being attached to the free end of the screen while there are hooks in the sash, a connecting S-shaped hook engaging the hook of the screen and the hook on
the sash. The arrangement is such that when the upper the sash. The arrangement is such that when the upper
sash islowered or the lower sash raised the screen auto sash is lowered or the lower sash raised the screen auto-
matically covers the opening which would otherwise be matically covers
left by the sash.
Window Shutter and Curtain.John O'Donnell, Mountain Lake Park, Md. A curtain made of open chain-like netting, strong enough to re-
sist an ordinary bullet, and also designed to prevent burglars from gaining easy access to a house, is provided by this inventor. The shutter and shade are also so
made that it may be easily fastened at any desired height, will run up automatically when released, will serve the purpose of an ordinary mosquito screen as well as a shade, and may be applied to any usual style of window in a building, car or other structure.
Fan Motor.-C. P. Elieson, New York city. This is an electrically operated fan comprising a
suitable base or sapport on which turns an electric suitable base or sapport on which turns an electric
motor, the armature of which carries the fan, propeling mechanism being also driven by the armature to revolve
the motor itself. By the slow revolution of the motor and the more rapid rotation of the fan, a better circulation and more even distribution of the air is effected
than can be obtained by the ordinary fan movemet
Veil Fastener.-William H. Harrison, Newark, N. J. This is a simple device, readily applied on the ends of a veil, to facilitate tying it in the desired position without danger of its becoming unfastened. It consists of two coupling members, each provided with
loop-forming veil end adjusters, one of the members loop-forming veil end adjusters, one of the members
having an eye with its front bar widened near the middle, to be engaged by a hook on the other member, the hook being formed of curved bars united by a connecting bar formed with an inward bend.
Mosquito Net Frame. - Harry H. umble, Norfolk, Va. According to this invention a top or canopy frame, extending over the head of the
bed, is attached to the head board, and an edge frame, preferably made of strong light wood, as bamboo or cane, is removably attached to the bed on a level with
the lower edge of the bed rails. The net is thrown over the lower edge of the bed rails. The net is thrown over
the top frame and bed, while its edges are secured to he top frame and bed, while its edges are secured
the edge frame. The application of the two frames to the bed is very simple, and the frames may be easily
Ironing Board.-John E. Tracy and Arthur N. Graham, Chicago, Ill. This is an improvement in that class of ironing boards adapted to be at-
tached to and receive partial support from a table. It is of very simple and inexpensive construction, and the board is adapted to automatically clamp one of its ends fast to the edge of the table when the prop support of the oard is swung into position to hold the board up in position for use.
Laundry Tongs. - Thomas Eagan, New Haven, Conn. This is a very cheap, simple, and the purpose of an ordinary clothes stick, and is adapted to be dipped into a boiler of hot water to pick out
articles, grasping a collar button, collar, or other small articles, grasping a collar button, collar, or other sm
thing, while also strong enough to lift large articles.
Inkstand and Attachments.- Wilard C. Eldridge, Chicago, Ill. This improvement comprises a unique and advantageous combination of parts
mbodying in compact arrangement many necessary adjuncts of a desk or writing table. Combined with the
supporting stand for ink wells are postage stamp
ener, card holder, pen rack, bill file, pen holders, a uni-
versal calendar, a pen wiper, and pincushions, etc versal calendar, a pen wiper, and pincushions, etc.
The entire device may be made of metal, suitably orna-

Envelope.-Malcolm Scougale, Fo Worth, Tex. Two overlapping end flaps, according to
this invention, are connected with each other by a band his invention, are connected with each other by a band, orming, with the front, an expansible pocket for the
accommodation of a large number of letters, documents, or other matter, a top flap and a bottom flap being adapted to fold one above the other, and both over the
end flaps, while a band holds the top and bottom flaps

Frame for Blotters.-Adolph Ludwig, Brooklyn, N. Y. This is a frame between which several sheets of blotting material and a cover may be
conveniently clamped, the frame carring a locking de ice which is passed through the pad. In addition to binding the blotting sheets, the frame may be employed disclose a shifting calendar, or to receive and disclose or ornamentation or use around a desk other articles
Teeth Grinding Dental Appara-tus.-Daniel E. Morse, New York City. This invention
provides a method of and means for rapidly fitting and oining adjacent block sections of porcelain or other artificial teeth. The method consists in removing the cupied thereon, and then grinding the adjacent edges of the sections on parallel grinding faces. A frame is also provided having sliding carriers adapted to hold the adcent block sections.
Frame for Mail Bags, etc.-George . La Fever, Selkirk, N. Y. This is a frame applicable to any character of bag in which it is desirable to have the mouth held open or to hold the mouth readily closed. It is composed of rigid sections united by hinged conolded out in rectangular form, or folded one upon the ther to form practically a long flat bar. Two of the nembers have projecting flanges, which, when the frame opened, will be at diagonally opposite corners, en
abling the bag to be suspended in a ready and conve abling the bag
nient manner.
Printer's Chase.-Harry S. Foster, Albany, N. Y. In a chase of the usual kiiui, in which angular form may be arranged in one corner, or such chase, which has an outer square frame with an inner ircular ring on which is a graduated scale. The ring as a shoulder on its inner side on which rests and turns the shoulder of an inner circular chase, having faceted or flattened inner sides, for convenience of lock-
ing up matter therein. The inner chase also has gauge ing up matter therein. The inner chase also has gauge may be nicely adjusted to position and insure a perfect Bab
Baby Carriage Brake.-Milton W. Bohn and James H. Machen, Norfolk, Va. This is
simple and inexpensive device which will lock the vehi cle from movement except when it is being propelled by the attendant. The brake is held normally in engagement with the wheel, and there is a connection between a hand hold adjacent to the handle and the brake, whereby the attendant may, in propelling the vehicle, also hold and reta
Bed Bottom.-James W. M. Witt, Cedar Bluff, Ala. The corner stays, according to this mprovement, have hooks, with which are connected the stay rods and mattress support, while coiled springs depending from the sides of the bed support the mattres he other, so that one may yield without interfering with
he others.
Spring Bed.-William M. Myers, Hannibal, Mo. According to this improvement the springs
are so supported in connection with the headboard that the springs may be shipped and stored in connection therewith, and the same devices for holding the spring to the headboard may serve to give tension to the spring. The construction of the spring is such, also, that it may be adjusted in reasonable limits to suit beds of different

Clothes Pin.-John W. Cook, Har isburg, Oregon. A piece of wire is bent about midway of its length to form a spring clasp to hold the clothes, the wire being then twisted to form two oppositely dis-
posed eyes to which a drawing cord may be attached, nd the ends being curved and lapped to form an open supporting eye. It may be used with a pulling or drawing cord to stretch articles along a line, without leaving a fixed position, and the pin may be readily attached
to and detached from a line without interfering with

Eraser.-George Freund, Durango ol. On one end abrader, on opposite sides of the implement, and on the other end is an arrow-like scraper head having a mar
ginal groove in both edges forming an increased number of scraping edges.
Music Chart.-James H. Brady, Willlam A. Whitehead, and Samuel J. Shea, Frankfort, Ky This chart should be made of heavy cardboard or simi
lar material, about twenty-three inches long and six lar material, about twenty-three inches long and six
inches wide, and in use is to be placed edgewise upon the rear portion of the keyboard. It is divided into majo and minor sections, and arranged to indicate clearly to
an inexperienced person the keys of a piano, organ, or an inexperienced person the keys of a piano, organ, or
similar instrument to be struck to produce the several major and minor chords of the key to which the chart has been applied.
Making Uninflammable Fabrics. Carl Baswitz, Berlin, Germany. The preparation of
textile fabrics by means of ammoniacal oxide of sopper, textile fabrics by means of ammoniacal oxide of sopper,
according to an improved process, is the object of this invention. The fabrics are dipped in a solution of vegetable parchment in ammoniacal oxide of copper, the am-
monia is then evaporated and the fabrics treated with sulphate of ammonia and acetate of alumina to re-
move the copper and render the fabric uninflammable.

Uterine Dilator.-Arthur J. Beavis, Aspen, Col. This is a simple surgical instrument for urethra, with ease to the operator and safety to the patient.
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention and send name of
of this paper.

NEW BOORS AND PUBLICATIONS.

Sound Sense in Nuburban Architec ture: Containing Hints, Sugges TIONS, AND BITS OF Practical IN
FORMATION FOR the BuIlding of FORMATION FOR THE BUILDING OF
INEXPENSIVE COUNTRY HOUSES. By Frank T. Lent, architect, with ford, N. J.: Frank T. Lent. 1893.
Pp. 98 . Price $\$ 1$.

This very pretty work by a New Jersey architect contains very good suggestions for cottage residences, illus trated by drawings in many cases from buildings erecte in this vicinity. For those contemplating alterations in country buildings, there is no question that many excel lent hints can be found, as well as for those who have
in mind the possibly more critical operation of complete in mind th
building.
The Dynamo: its Theory, Design, and ManuFacture. By C. C. Haw
kins and F. Wallis. London : Whit taker \& Co. The right of translation
is reserved. 1893. Pp. xiv, 520. Price $\$ 3$.
It 18 far to assume that in the present days of progress of electrical engineering every new work will embody lications it is necessary to produce a new work on the dynamo is questionable, yet it is undoubted that the present work will fill a space, as being more popular and less expensive than such works as we have alluded to. It
is fully illustrated, contains a reasonable quantity of is fully illustrated, contains a reasonable quantity of
formulæ without being too mathematical for the everyday practical engineer, and is very fully illustrated in ex amples of recent practice.

SLIENTIFIC AMERICAN

BUILDING EDITION. OCTOBER, 1893.-(No. 96.)

TABLE OF CONTENTS.

Elegant plate in colors showing a residenceatBridgeport, Conn., erected for Mr. F. W. Smith. Floor
plans and two perspective elevations. An excel. lent design. Mr. W. S. Briggs, architect, Bridgeport, Conn.
Plate in colors showing Queen Anne cottage of Mr. George W. Childs, at Wayne, Pa., erected at a
ost of $\$ 6,700$ complete. Perspective view and cost of $\$ 6,700$ complete. Perspective view and
floor plans. An attractive design. Messrs. F. L. \& W. L. Price, architects, Philadelphia.
3. A dwelling erected at Holyoke, Mass. Perspective
view and floor plans. A model design. Cost view and floor plans. A model design. Cost
$\$ 6,900$ complete. Mr. B. P. Alderman, architect, Holyoke, Mass. A suburban cottage erected at New Haven, Conn., at a cost of $\$ 2,854$ complete. Floor plans, perspective view, etc. Messrs. Wilson \& Brown, arch
tects, New Haven, Conn. An excellent design.
Engraving and floor plans of an elegant residence erected for W. R. Mygatt, Esq., at Denver, Col.,
at a cost of $\$ 28,000$. Messrs. Lang \& Pugh, arat a cost of $\$ 28,000$.
chitects, Denver, Col.
6. The beautiful residence of Mr. Walter Dunning, at Denver, Col., erected at a cost of $\$ 26,000$. Floor
plans and perspective elevation. Messrs. Lang \& Pugh, architects, Denver, Col.
A cottage at Hartford, Conn. Floor plans and per-
spective elevation. A unique and convenient depective elevation. A unique and convenient design.
A residence at Carthage, Ill., erected at a total cost
of $\$ 4,500$. Perspective view and floor plans. of $\$ 4,500$. Perspective view and floor
G. W. Payne, architect, Carthage, Ill.
Gesidence of Mr. E. W. Smith, at Brazil, Ind., erected at a cost of $\$ 3,600$ complete. Plans and perspec-
tive. tive.
$\$ 5,000$ complete. Four elevations and foor plans $\$ 5,000$ complete. Four elevations and floor plans.
Messrs. Longstaff \& Hurd, architects, Bridgeport, Conn.
View of the building of the French government at
the World's Columbian Exposition. the World's Columbian Exposition.
e World's ColumThe New York State Workingman's Home at the
World's Fair. Perspective view and floor plans World's Fair. Perspective view and floor plans.
An Italiancountry house or villa. Plans and perAn Italianco
spective.
Miscellaneous Contents: Imitation walnut.-Anti-nonnin.-Protection of adjoining walls.-The
Draper recording thermometer illustrated Draper recording thermometer, illustrated.-Improved elevators-An
chine, illustrated.-House heating boilers, illus-trated.-Slow burning dwellings.-The Pasteur filter, illustrated.-The Willer Mfg. Co.'s exhibit at the World's Fair, illustrated.-Cedar and cypress tank, etc.-A patry-line quarrel.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid Magazine of ArchitecTLRE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation all newsdealers. MUNN \& CO., Publishers,
$\mathbf{3 6 1}$ Broadway, New York.

Business and Personal

 The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Adver-tisements must be received at publication office as early as
Thursaday morning to appearin the following week's sssue Order pattern letters \& figures from the largest varie-
ty. H. W. Knight \& Son, Seneca Falls, N.Y.. drawer 1115. StGw flexible shaft. Invented and manufactured by
Stow Mfg. Co., Binghamton, N. Y. See adv., page 222.
"U. S." metal polish. Indianapoiis. Samples free. The exhibit of $\mathbf{W m}$. Jessop \& Sons has received the ghest award at Chicago Exhibition.
The Improved Hydraultc Jacks, Punches, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York. Estimates furnished for moving, raising, or shoring dildings. W. K. Clynes, Jersey City, N. J. Estab. 1853. Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating For Sale-Patent household article. Cost to make
less than 10 cents, and will sell for \$1. J. F. Ervin, Fort Wayne, Ind.
Emerson, Smith \& Co., Ltd., Beaver Falls, Pa.., will
send Sawyer's Hand Book on Circulars and Band Saws send Sawyer's Hand
free to any address.
Split Pulleys at Low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting apearance as Whole Pulleys. Yocoo
Works, Drinker St., Philadelphia, Pa.
The "Olin" Gas and Gasoline Engines, from 1 to 10
horse power, for all power purposes. The Olin Gas Engine Co., 222 Chicago Street, Buffalo, N. Y. Perforated Metals of all kinds and for all purposes, general or special. Address, stating require
Harrington \& King Perforating Co., Chicago.
The best book for electricians and beginners in elec By mail. \$4; Munn \& Co., publishers, 361 Broadway, N. Y. If you want to buy anything, write to as and we will
purchase for you at lowest N. Y. City prices. No commission. Miller \& Burtnett, purchasing agents, 338 roadway, New York
Competent persons who desire agencies for a new
popular bcok, of ready sale, with handsome profit, may apply to Munn \& Co., Scientific American office, 361 Broadway, New York.
解 New York. Free on application.

hints to corresponden's.

 Mi inerals sent for examination should be distinctly
marked or labeled.
(5448) E. E. S. says: I send you herewith a piece cut from an ash tree, together with an in-
sect found on the same. The entire tree is covered with a similar incrustation and is apparently dying. Please
tell me throung Notes and Queries wht the insect is and tell me through Notes and Queries what the insect is and
the remedy, if any. A. Reply by Professor C. V. Riley.The section of ash limb sent is densely incrusted with the scales of the oyster shell bark louse, a well-known
pest of the apple tree, which also infests a a reat variety pest of the apple tree, which also infests a a great variety
of other trees and shrubs. The larger inseect referred to is an immature plant bug belonging to the family Pen
tatomide, carnivorous in habit, but having no connec tatomide, carnivorous in habit, but having no connec
tion whatever with the bark louse except that might occasionally feed upon it, though normally
foraging on larger insects, such as the larve of Lepidoptera. A more thorough infestation by this scale, which seems to have covered the limb to a
depth of several layers, is not often seen, and it can depth of several layers, is not often seen, and it can
easily be imagined that the injury resulting from the attacks of myriads of the insects would be very con siderable. This scale receives its common designation
from its general resemblance to an oyster shell from its general resemblance to an oyster shell, and
covers a soft-bodied, almost organless, insect which,
beneoth benealn this protective covern the other organse feet, eyes, mouth parts, antenne., etc., have disappeared, leaving it practically a segmented bag
with a sucking tube. This scale, in common with all others of its kind, is not always in this degraded, helpless condition, but in the larval stage is provided with six legs
and other appurtenances of insects, and runs rapidly about until it finds a suitable location, where it nixesi itsel of a waxy powder which, by constant acceretions form the waxy scale of the mature insect. In the meantime in the first moult, all the members of the body except the proboscis are shed and abandoned, and the insect here
after merely increases in size without other change. On reachng full growth the female becomes filled with eggs,
which ultimately give birth to the new generation. The history of the male scale is widely different from the above. Starting out in a similar way, it does not, how-
ever, attain the size of the scale of the female, and after the second moult it enters into the pupa state, and late emerges with delicate wings, resembling very much minute gnat, and then soars about in quest of its mate The history outlined above is practically the same for all the scale insects, the number of generations in a season
depending very largely on the latitude. In the warmer depending very largely on the latitude. In the warmer
sections of the country one generation follows another without a break, while in more northern States perhap
but a single generation is produced annually. In a case but a single generation is produced annually. In a case
of infestation so bad as that of the ash tree in question,
the chances are that it will have been so weakened that the chances are that it will have been so weakened that will in all probability be far better to cut down and burn the tree. The application of kerosene emulsion to the plant is the best remedy known, care being taken to wet thoroughly all the affected portions. If the application
is made during the growing season, a dilution of one part is made during the growing season, a dilution of one part
of the emulsion with 15 of water is desirable. It is often of the emulision with 15 of water is desirable. It is often
advantageous, however, to apply a much stronger solution during the dormant season, at which time a dilution of one part of emulsion in 5 parts of water will do no in
jury to ordinary deciduous trees, and will be much more effective against the scales. If a careful watch is kept o the trees in early spring, the period when the eggs hatch will be noted by the emergence of the young and thei spread to other parts of the tree. The application of the
insecticide at this time will be especiall effective on acinsecticide at this time will be especially effective on
count of the unprotected condition of the young lice.
(5449) E. F. F. asks: What is the locity of steam through a 1 inch pipe at 100 pounds pressure, and if a 4 inch pipe would be four times as much or more? A. The velocity of steam flowing into the air
through an orifice or from the end of a short tube is 898 through an orifice or from the end of a short tube is 898
feet per second at 100 pounds pressure varying but very feet per second at 100 pounds pressure, varying but very
little for differences of pressure; but the absolute quanlittle for differences of pressure; but the absolute quan-
tity in pounds varies very greatly, being 39 pounds of steam per minate ans pornas f , minute at 100 pounds pressure for each square inch
orifice. The increase in the size of the orifice orifice. The increase in the size of the orifice, gives only
an imperceptible increased velocity, due to proportionan imperceptibie increased velocity, due to proportion-
al decrease of friction on the edge of the orifice. It is the quantity that is increased by the larger orifice and in the ratio of its area.
(5450) G. P. N. says: Please give me the formulas for making sympathetic ink which require quire heat to bring out the writing. A. 1. Inks appearing trough reagents. Characters written with a very weak solution of chloride of gold will become dark brown upon pouring a solution of perchloride of tin over them. Or characters written with a solution of aalicic acid in water
will become black through a solution of sulphate of will become black through a aolution of sulphate of
iron, and brown through the alkalies. 2. Ink appearing by the application of heat. Write upon rose-colored paper with a solutionof chlu through heat 12 will di

on cooling.

(5451) S. F. says: 1. Will you please let me know what will remove fruit stains from linen?
A. Most fruits yield juices which, owing to the acid they contain, permanently injure the tone of the dye, in colored ing a stain, if the spot be rinsed in cold water in which a few drops of aqua ammonia have been placed before the
spot has dried. Wine or fruit stains on white materials may be removed by rinsing with cold water, applying localIy weak solution chloride of lime, and again rinsing in an abundance of water. Some fruit stains yield only to
oaping with the hand followed by fumigation with sulsoaping ith the hand, foltowed by fumigation with sul-
phurous acid, but the later process is inadmissible with certain colored stuff. If delicate colors are injured by soapy or alkaline matters, the stains must be treated with colorless vinegar of moderate strength. 2. Also medi-
cine stains in which iron end iodine were the principal incine stains in which iron and iodine were the principal in-
gredients. A. Try dilute hydroclloric acid, followed by mmonia. It is probable the iodine has rotted, the goods so hat any attempts to remove the stain will end in failure
(5452) R. H. C. writes: Will you kindly giveme a receipt or any suggestion how to remove fly
specks from wall paper? I havea room papered with expensive paper, badly stained this past summer with fly dirt, and would like to learn of some remedy to remove them. A. Bread crumb not too fresh will answer to
clean wall papers. Grease spots may be removed in some cases by using ether.
(5453) R. W. G. asks : What solution is sed in tempering tools for granite cutting? What for narble? A. A tool that is of the best temper for granite
also the best for marble. It should be hard and toug or any use. More care in the heating and drawing the cols, so as not to burn the steel is required then is gen rally given. A half pint of salt to one gallon of water is the best chilling bath. Dip endwise, and draw to the esired color for toughness.
(5454) V. L. W. asks: 1. Will you recive a shock by touching one wire or one pole on an al ernating dynamo of 2,000 volts or more, being perfectly
nsulated from the other wire or pole ? A. A comparatively slight shock may thus be received, owing to charge nd discharge of the body. 2. Will you get a shock from ne wire of an alternating dynamo of 2,000 volts or more Arough the insulation one inch thick, one wree groundes . Pod quality 3 Is there eny dynamo or on ordectrical machine that requires only one wire to convey the cur rent, no ground being used? A. A true current require circuit. In Tesla's high frequency experiments, the Inminous and incandescing effects of currents are produced without return circuits. See Tesla's
nents with Alternate Currents,", $\$ 1$ by mail.
(5455) F. T. writes: In your issue of September 9 , you give a list of metric equivalents, one of Is this right? Should it not bo 1 thers, The factor 3 . applies to the United States gallon of 231 cubic inches; the facto
inches.
(5456) F. M. W. writes: 1. I have a so ution for copper plating made according to the first re ceipt in SUPPLEMENT, No. 310, except that by mistake 1
added a large exceess of cyanide of potassium. Article added a large excess of cyanide of potassium. Articles yanide cause this? If not, what would? If so, can o anything to set things right or is my solution useless
A. Too much cyanide will tend to prevent precipitation To rectify it add more copper sulphate and dilute in proportion. 2. In replating articles should all the old plating be removed in all cases ? A. It is decidedly better to completely strip before replating. You also gain a
certain amount of silver thereby. 3 . How much prussic acid (dilute) does it take to preccpitite 21 drachms of
nitrate of silver 9 Would an exceess of water in the ni
trate eolution nse up more acia? A. This cannot be an
swered, as you do not tell how dilute your solution is One part by weight of pure prussic acid combines with ithe silver contained in six and three-tenths parts silver nitrate More water does not require more acid. 4. I have 1 Bunsen the surfas). Now if expose he zinc surface equal right ? Are the battery and solutions well balanced? A No such general rule can be given. Your battery surface may exceed the anode surface in the bath. Regulate by
different i immersion of the anode not $b y$ chanving bifferent immersion of the anode, not by changing the $t o$ strong a current,i. 2
ard of screw threads under $\begin{aligned} & \text { inch } \text { ? If so please give }\end{aligned}$ ard of screw threads under $\frac{2}{4}$ inch? If so, please give
table. A. There is no United States standard for screw threads under 14 inch. Manufacturers have adopted practice.
(5457) J. J. L. says: I read the Scientific American, but cannot quite catch on to one ques. ion-the cost of transmitting electric power. I ha water power turbine wheel. It will cost me ms,000 to
cun a canal from the dam two miles and put in a turbine run a canal from the dam two miles and put in a turbine
at the end of the canal. What will it cost to transmit at the end of the canal. What will it cost to transmit
that 70 horse power or 80 per cent, or say $36-35$ horse power--two miless and apply it to the machinery there wire and apply it at that distance from the water power? know there must be a dynamo at the starting point and there must be a motor where the power is applied What cost say of 30 horse power dynamo and motor, or any horse power, say $10,15,20$? Next, is it practical, say to carry a saw mill or ore mill or mine lift into a A. If your turbe water power two miles away to run it A. If your turbine has an actual output of 70 horse power, you should be able to realize 50 horse power at 2 miles 70 horse power dynamo at the location of power, required number of electric motors up to a total of 50 horse power at various points two miles distant, at total cost somewhat more than you quote for a canal
The 70 horse power dynamo will cost about $\$ 2,000$, and much more for the motors, including regulators. Th wiring will foot up another thousand dollars. Shafting and belting with a house must be also provided. The care of such a power plant is much greater than by the one man. If 30 horse power only is required, $\$ 5,000$ will one man. Ir 30 horse power only is required, $\$ 5,000$ wil $\$ 500,20$ horse power $\$ 800$. The transmission of power is perfectly practicable and is largely in use in mining and for mechanical purposes.
(5458) J. E. E. asks: 1. Is it possible to ight a kitchen fire with the current of one or two ordi-
nary cells? A. It is possible to kindle a fire by such agency? 2. Kindly describe method. A. Carry the wire to the grate and connect them by an incandescing fuse.
This may be made of a very short piece of thin iron wire This may be made of a very short piece of thin iron wire
stretched over some sulphur on a block or piece of kind ling wood and partly embedded in the sulphur. Whe will ignite the sulphur. This will ignite the wood an Lew fuse must be used for each lighting. 3. Describe fusion valve. A. A poppet valve may have its poppet held down by a strip of fusible alloy stretched across the sure drives the pow does it take to run the dynamo of Scientific American
(5459) M. F. writes: 1. We have an electric light system here which runs lights until abou midnight. Can I use the current supplying incandescen lamps, of 110 volts, to charge a storage cell to furnish current for a lamp for the balance of the night? A
Yes. For charging use a current of proper amperage using a resistance coil to determine its strength. The battery is made to be charged by a definite current, and on enough not to get too hot. 2. What size storage cell would be needed, and how many candle power would be practical for the lamp? A. The capacity of the cell answers this with one proviso. You cannot use less than
thirty cells in series to get good voltage. It is far better to use special resistance lamps for your battery se
(5460) T. L. C., G. L., and others ask elatine and soak half an hour in 16 ounces of water, put gelatine and soak haff an hour m water and dissolve the
the jar in large dish of warm water gelatine. When dissolved, pour into a shallow tray take the print by the corners and pass rapidly through the gelatine, taking great care to avoid air bubbles. Hang up with clips to dry; when dry, squeeze carefully on to the glass. The better the quality of glass, the finer the effect. G. L. also asks how to keep fish glue in a liquid
state. A. Use 16 parts by weight of nitric acid to each state. A. Use 16 parts by weight of nit
100 parts of glue and 250 parts of water.

TO INVENTORS.
An experience of forty-tour years, and the preparation
of more tran one handred thousand applications for on on-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un-
equaled facitities for procing patenteverywhere. AA
syopopsis of the patent laws of the United States and all
forerign countries may be hae on application, and persons

INDEX OF INVENTIONS For which Letters Patent of the

October 24, 1893,

and each bearing that date

Wiley \& Russell Mfg. Co., Greenfeld, Mass., U.S.A. SCIENTIFIC EXPERIMENTS. - DE-

PRESS, S3

F YOU HAVE ANY SMALL ARTICLES

GATES ROCK \& ORE BREAKER
 \qquad
 Make your- mechanical engineer or draughtsman;
 BIT
 bELTING of Various Styles, ELEVATORS, CONVEYORS, aid

 SELIEVENS PATENT

 ICE-HOUSE AND COLD ROOM. -BY

GAS ENGINES \& VENTILATING FANS

SINTZ GAS ENGINE CO

 WATER-TIGHT MASONRY DAM

HARRISON CONVEYOR!

Handing Grain, Coal, Sand, Clay, Tari Bark, Cinders, Ores, Seeds, \&C.

A FEW NEW AND IMPORTANT
 TECHNICAL BOOKS.

Model \& Experimental Work. seserect.

\int EARN

THE MANUFACTURE OF Liquors and Preserves.

OTTO" GAS AND GASOLINE
ENGINES. 13 to $100 \mathrm{~h} . \mathrm{p}$. Ca
used in cities o n country indepen
ent of gas work

Danger,
A Complete Treatise on the Electro Deposi-
tion, ot Metals. From the Geran of Dr. Geo Lang-
bein, with additions by William T. Brant. Illustrated ition, over 400 pages, 8 vo all of the above caluable books, will be sent free to anyone Our New and Revised catalogue of Prastical and
Scient ific Books, 88 pages. $8 v o$ as asell as our other cataScience applied to the Arts, sent free a audfree yot postage oto
any one in any part of the worlid who will furnish his ad-
dress HENR.Y CAREY BAIRD \& CO.

GARBUTT'S ${ }^{6}$ JRY PLATES

 "EELIULOD" FLLMS. Descriptive Price Eist mailed free. For saleby alli Manufactured by JOH HN CARBUUTT,Kestone Dry Plate and Film Works, Wayne Junc. Philadelphia.

INOTICF.

?

W. L. DOUGLAS \$3 SHOE $\stackrel{\text { For }}{\text { Gentionen. }}$ W. L. Douglas' name e and price is stamped on the bottom before they leave the factory to protect you against high prices. Dealers who make shoes of the same quality as W. L. Douslas $\$ 3$. 000 Shoo. If you wish to get the best thoses in quality for your noneny it will pay you to examine W. Free, when shoe full instructions how to order by mapily you. Send for catalogue wit W. L. DOUGLAS, Box 551, Brockton, Mass

 CIGAR CUTTERS.

STERLING SILVER.
 etc. Wor sale by leading Jewv
iters. If your jeweler has not got
it and will ont order it sent tous
and will fill order through some
nol

Enos Richardson \& Co
23 Maiden Lane Now Co

"OLD RELIABLE INGUBATOR"

Reliable Incubator \& Brooder Co., Quincy, III. WANTED - Either to buy or to push a Patent of
care of Chas. Lubreral utility. Ad Adress, , ly letter, 195 Pearl Street, Bew York.

the WATGH TRADE PARSONS, IDE \& CO., 302 Bradley Ave., PEORIA, ILL
 +
 Rubber Rolls and Wheels.

Yon order and Subscribe
FOR your
yon

 WHITE LEAD, NON - POISONOUS:

 904. Price 10 c .

STEEL TYPE FOR TYPEWRITERS

THE COPYING PAD.-HOW TO MAKE and how to use; with an engraving. Practical directions
how to treparethe gelatine pad, and alsothe aniline ink
by which the copies are made how to apply the written
and

Jumin

 FORGED $\begin{aligned} & \text { gock cap crews }\end{aligned}$
baRMES' WATER EMERY

 OOL GRINDER Has no pumps, piping required to supply it with water. Always ready for use. Simpiest in conefficient in operation. Send for CataloPrices.
W. F. \& JOHN BARNES CO. 1999 Ruby Street. Rockford, III.

Mill Machinery

 Lockport, N. Y.

Galloupe's
 General Engineering Index

volume. Postage paid, 83.00
FRANCIS E . GALIOUPE
 The McCONNELL Gerill Proof Fillters remove microbes
All Kinds of Disease Germs. The ice as it melts is filtered. The Mccomnell Filter Co.

Oil Well Supply Go

SIR RICHARD OWEN.-A SKETCH

KODAKS $\$ 6.00$ $\$ 100.00$

Eaitman Kodak Company,
 Rochester, N. Y

The Smith Premier Typewriter Perfect and Permanent Alignment.
Easiest Running, and Nearly Silent.
All type cleaned in Ten Seconds without Soining the Hands. The Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A
H. W. JOHNS M'F'GCO., \& 5 EGSTOS
ROOFING, LIQUID PAINTS, ASBESTOS MANUFACTURES, NON=CONDUCTING AND INSULATING MATERIALS,

87 MAIDEN LANE, NEW YORK.

INVENTORS AND MANUFACTURERS

[^0]
 125 MILK ST., BOSTON, MASS
This Company owns the Letters Patent No. 186,787, granted to Alexander Graham Bell, January 30, 1877, the scope of which
has been defined by the Supreme Court of the United States in the following terms "The patent itself is for the mechanical structure of an electric telephone to
be used to prod uce the electrical action be used to produce the electrical action
on which the first patent rests. The third claim is for the use in such instruments of a diaphragm, made of a plate of iron or steel, or other material capable of in ductive action; the fifth, of a permanent magnet constructed as described, with a coil upon the end or ends nearest the plate: the sixth, of a sounding box as described; the seventh, of a speaking or hearing tube as described for conveying the sounds: and the eighth, of a perma nent magnet and plate combined. The claim is not for these several things in and of themselves. but for an electric telephone in the construction of which these things or any of them are used.
This Company also owns Letters Patent No. 463,569, granted to Emile Berliner, November 17, 1891, for a Combined Telegraph and Telephone; and controls Letters Patent No. 474,231, granted to Thomas A. Edison, May 3, 1892, for a Speaking Telegraph, which cover fundamental inventions and embrace all forms of microphone transmitters and of carbon telephones.

Sanna Mrnew

The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year. Including Postage.
This widely circulated and spiendidy illustrated paper is published weekly. Every number contains sixteen pages of useful information and a large number of riginal engravinzs of new inventions and discoventing Engineering Works. Steam Machinery,
repren New Inventions, Novelties in Mechanics, Manufactures
Chemistry, Flectricity Telegraphy, Photography, Architeeture Aanishituns Dortionituro, Natural History, eetture Complete list of patents each week.
Trems of Subscription.-One copy of the SctenTHE AMERican will be sent for one yet- 52 numbers-
postage prepadd, to any subscriber in the United States, Canada, or Mexico, on receipt of three dollars by the publishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Masters. Write for particulars.
The safest way to remit is oy Postal Order, Draft, or
Express Money Order. Money carefully placed insid Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address sell letters and make all orders. drafts, etc., payable to
all
MUN
\$cientific Ammericat \$umprement This is a separate and distinct publication from '1'He
SCIENTIFIC AM ERICAN, but is uniform therewith in size. every number containing sixteen large pages full of en ravings, many of which are taken from foreign paper SCIENTI FIC AMYRICAN SUPPIEMENT is published week y, and includes a very wide range of contents. It prethe principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology, Astronomy Chemis-
tiy, Electricity, Light, Heat, Mechanical Fhgineering, tiy, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Fngineering, Mining, Ship Building, Marine Engineering, Photography, 'Technology, zanu
facturing Industries, Sanitary Engineering, Agriculture Horticulture, Domestic Cconomy, Biography, Medicine, obtainable in no other publication. and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT
Price for the SUPPLEMENT for the United States
Canada, and Mexico, $\$ 5.00$ a year; SCIENTIFIC AMEAICAN and one copy orit the SUPPLIE MENT, both mailed for one year to one address for $\$ 7.00$. express money order, or check Zuilding Cedition.
BuILDERS' EDITION is issued monthly. $\$ 2.50$ a yea Single copies. 25 cents. Thirty-two large quarto pages,
torming forming a large and splendid Maaazine of Architecture,
richly adorned with eeieqnint piates in coims, and with other fine engravings; illustrating the most interesting examples of modern architectural construction and allied subjects.
A special feature is tae presentation in each number dences, city and country including those of very mod erate cost as well as the more expensive. Drawings in
parspective and in color are riven, togethe with Plans. perspective and in color are ziven, together with Plans,
Descriptions, Locations, Estimated Cost, etc. The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of any Architectural publication in the world. Sold by all news-
dealers. $\$ 2.50$ a vear. Remit to dealers. $\$ 2.50$ a year. Remit to

MUNN © CO.. Publishers.

PRINTING INKS.
The SIENTIFIC AMERICAN is printed with CHAS
ENEU JOHNSON \& CO. $1 N \mathrm{INE}$ T Tenth and Lomoard

[^0]: ELECTRIC 米 MOTORS
 Gentraz minctrio company.

 まuatuibiciz

 Mixidiciduivisa

