

sunientifir Chmerican.

HBTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
NO. 361 BROADWAY, NEW YORK.
\qquad
TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico.
One copy, six months, for the U.S., Canada or Mexico
One copy, six months, for the U. S., Canada or Mexico................. 180
One copy, one year,to any foreign country belonging to Postal Union.
4
Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broad way, corner of Frauklin Street, New York.
The Scientific American Supplemen

Building Edition
THE ARCHITECTS AND BULLDERS EDITION OF THE SCIENTIFIC AMERI-

 Readers are gpoially requested to notify the

NEW YORK, SATURDAY, MARCH 25, 1893.

Contents.
Ulustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 899

For the week Ending March 25, 1893 .

ASTRONOMY-AAtitial IIItation of the Gemination of th II. PACTRRROLOGY-Sesparation of Micro-Organisms bo Cen-

the armodr institute, chicago.

The Armour Institute in Chicago has added two departments of study that ought to be very popular and productive of excellent results. They are the mechanical and electrical engineering departments. There is a dearth of well trained, practical mechanics who can work with their hands as well as with their brains. Colleges and technical schools all over the country are turning out mentally trained mechanics, but the number of schools is very few that offer a thorough practical manual training-schools suited to educate the great body of working mechanics. In the electrical line there has been more or less of a reason for the lack of well trained men in the fact that the demand has been so great, and the industry so new, that only unskilled men have been obtainable." But this excuse no longer holds good. To-day the demand is as great as ever for educated, well trained men who have a practical knowledge of electrical matters. One of the difficulties in connection with isolated electric lighting plants is that of securing engineers who have the practical knowledge to run the steam plant with skill and economy and at the same time know how to operate and keep in good condition the electrical equipment. Mentally educated men are a drug on the market, whit

the bell telephone patents.

We have received many letters from readers in various parts of the country asking if they are at liberty to make electrical telephones, now that Bell's original patent has expired. In answer we say no. Bell's
oríginal patent was granted for 17 years, dated March 7, 1876, and in the fifth clause he claims "The method of, and apparatus for, transmitting vocal and other sounds telegraphically, as herein described, by causing undulations, similar in form to the vibrations of the air accompanying the said vocal or other sound, substantially as set forth.'
This claim was held by the Supreme Court to cover any kind of telephonic apparatus in which an undulatory electrical current was used. This patent expired March 7, 1893
Bell's second patent, dated January 30, 1877, covers the construction of the well-known Bell instrument and the parts thereof. This patent runs for 17 years from its date and will expire January 30, 1894. Not until that date will the public be free to make use of Bell's invention.
Other important patents are held by the American Bell Telephone Company which have long terms to run ; these are explained in the company's advertisement on another page, to which we call the special attention of readers.

the world's conaress auxiliary

Modern civilization has brought into existence many great questions which are threatening in their tendencies because of a lack of understanding of their cause and remedy. These, like all great questions, require time for their solution. It is necessary to study and analyze them from all points of view and compare the results that have already been obtained, whether these results be good or indifferent, or failures.
A feature of the World's Columbian Exposition which attracts comparatively little attention, yet which has this particular work in view, is the holding of the several congresses under the auspices of the World's Congress Auxiliary.
Never before in the history of the world has there been such a well-planned and broadly conceived effort to call together eminent minds from all parts of the world, representing every progressive movement. Public attention is drawn each year more directly to the needs of the several movements-such as education, science, religion, reformation and the like; and a gathering at which the best thought of the age in each of these movements can be concentrated, the progress made to date be distinctly outlined, and the needs for better and more aggressive work in the future be discussed, cannot well fail to be productive of good results. The programme of each congress is so planned that single theories or one-sided views cannot well control the meetings, and ample time is assigned each congress for carrying on its work. The publications that will be issued by the Auxiliary, giving the results of each congress, will be valuable data from which to gather strength for concentrating greater energy in each line of effort.

the value of a patent.

Speaking of the value of patents, a business man interested in such things asserts that a patent does not patent in this country. All that the Patent Office does is to give you a paper with some writing on it, and i another man steals your idea, and goes to manufactur ing your invention, the Patent Office will not lift a finger to protect you or to stand by its own decision. The fact that you've got a patent is a point in your favor, but you've got to hire lawyers and fight the thief in the courts, and if he can stand it to hire law yers longer than you, that settles you, and you might
are lots of men in the country getting rich on the discoveries of other people. All they had to do was to take 'em and fight the real discoverers into poverty. The Patent Office, to be respected and to be of any use, ought to have the power to cause the stealer of a patent to be sent to prison.-Railway Review.
[Concerning the above, we would say the function of the Patent Office is simply to assist and encourage in ventors by granting patents for new and useful in ventions and discoveries. To attack or to punish people is no part of the duties of the Patent Office.
Property in patents is held under much the same tenure as other property. If a man receives a deed of lands, he is liable to annoyance from infringers, squat ters, and other claimants. If anybody invades his rights he has a remedy through the courts and is obliged to employ lawyers to defend his interests and defeat infringers. It is the same with patent property. The courts are always open to the inventor for his protection, and his patent, moreover, gives him certain special facilities in the prosecution of infringers which are not enjoyed by holders of real estate. The infringer of a patent, if he does not obey the mandate of the court and desist from infringement when so ordered, may be at once imprisoned.
Property in patents is just as secure, and the means for its defense just as ample, as for any other species of property. It is true there are occasional litigations concerning patents in which inventors are made to suffer at the hands of powerful and unfeeling corporations; but the same may be said, probably to a greater extent, of innocent holders of other species of property. We think it probable the rights of patentees are better respected and inventors less troubled with infringements than any other class of proprietors.
Every year there are granted some twenty-five thousand new patents; yet the number of lawsuits where deliberate infringement appears to have been attempted may almost be counted on the fingers' ends. Indeed, it must be admitted the number of patent suits of all descriptions is exceedingly small, when we consider the immense aggregate of patents issued, and the additional fact that in nearly nine-tenths of all our manufacturing industries patents, in some form or other, are made use of.-Ed. S. A.]

Steam Street Railways in New York and Brooklyn.
The elevated steam street railways of New York and Brooklyn are great conveniences for the public, but they are sources of dirt, din, and danger to many a passing victim in the streets below. Chunks of coal, bolts of iron, hot and cold water, fiery coals, these are only a part of the droppings that fall from the rattling trains. It is a curious fact, however, that many people love to live close to the lines of these roads.
The other day, in New York, a sober burgher was, to his amazement, suddenly knocked down by what he thought was a meteor from the heavens; but it proved to be only a man, who, by reason of a state of dizziness, fell from the elevated railway station to the street below. Both men were considerably hurt, but will ecover.
In Brooklyn, Mrs. Hannah Reilly sat at the front window on the third floor of 37 Myrtle Avenue, rocking her infant to sleep. The structure of the Brooklyn Elevated Railroad is about level with the window. A train passed by on its way to the bridge, and at that moment a missile came through the window, partly tearing out the lower sash, and whizzed by Mrs. Reilly's head. She screamed, and, picking up the baby, ran to the dining room to her husband. Blood poured from three gashes in her face and two others in each hand. She fainted, and her husband sent for Dr. Corrigan, of Jay Street.
Mrs. Reilly was still unconscious when the physician arrived, and he had some difficulty in stopping the flow of blood and reviving her. He succeeded finally, and the woman was put to bed in a state of collapse.
A heavy iron bar was found beside the chair in which Mrs. Reilly sat. Broken glass was scattered all over the room. It is supposed the rod flew from the engine of the train which passed at the time

Steam Engine Saws.
 The Sonora Independent says:

"The introduction of a new saw for lumber is to be noted-an upright implement, thin like a bandsaw. and having direct steam attachment. At each end of it is a steam cylinder, each of which has but a single steam port. The upper piston head draws the saw and the lower piston up, and the lower piston draws the saw and the upper piston down, each piston drawing the saw, but neither of them pushing it-this causing the saw at all times to be rigid, so that a very thin saw can be employed. Below the lower cylinder are a heavy pair of balance wheels, these giving a steady as well as uniform motion to the saw, and to these balance wheels are connected a pair of rods, the upper ends of which connect with a knuckle joint at the lower end of the saw, thus throwing the lower end of the saw out as it is going up and against the log as it is coming down. The log carriage is operated by the same engine that runs the saw."

Notes from the World's Columbian Exposition.
The break in the weather has made a decided change in the appearance of things at the World's Fair grounds. The ice and snow have disappeared, the frost is well out of the ground, and with the milder weather outdoor work is being rushed, giving an appearance of more work being done than has been evident for a long time. Piles of rubbish are being cleared away, and preparations are being made to harden the walks and promenades, lay the grass plots and arrange flower beds. During the winter more or less damage has been done to the staff work on the buildings, either by its being cracked off by frost or being broken in one way or another. These broken places are being repaired preparatory to painting the exterior of all the buildings. The painting machines have been overhauled and new ones secured, and at the rate the work is now going on, the buildings will be painted in plenty of time for the opening ceremonies. The work of gilding the dome of the Administration Building is progressing well, and when completed will add great ly to the effect of the view of the grounds as seen outside the park. The work of gilding the Golden Entrance of the Transportation Building is far enough advanced to show what a startling effect this building will have with] its polychromatic decorating. It has been christened the " Rainbow Building."
Therecent wet weather, together with the melting of snow and ice, showed that there was scarcely a water tight roof on any of the large buildings. There has been more or less trouble from these leaks since the buildings were completed, and the contractors have been requested to make necessary repairs, but have generally failed to do so. Further delay being out of the question, the construction department of the Exposition has now put a large body of professional roofers to work, and little, if any, more trouble will be experienced from this source.
Exhibits continue to arrive by the train load, but during the past month more results could have been accomplished had there been exhibits at hand. Even now there is more delay than there should be, with the opening day so near. Whatever work remains unfinished May 1 will be more from delay on the part of exhibitors than from any fault of the Exposition authorities. Since March 1 all the larger buildings have been near enough completion for exhibitors to begin work of preparing their displays.
In inspecting the buildings that are devoted exclusively to exhibiting purposes, it is a relief to get away from the eve present staff work and see the Forestry Building, the exterior of which is made of natural woods with the bark intact. A broad veranda extends around the building and the posts that support the roof of this veranda are trunks of trees, three being grouped together for each support, and they comprise all the well-known forest trees. Some of the larger flat surfaces are covered with slabs of bark to complete the general intent of the design. The effect of this building is pleasing and it is appropriately located on the shore of the lake. The other Exposition buildings are covered with staff, and the same is true of many of the State and foreign buildings, and also of the structures of the several concessions in the Midway Plaisance.
Many wild reports have been circulated regarding the amount of money the Exposition will receive from the concessions which have been sold. One statement which has been widely circulated was to the effect that an income of $\$ 3,000,000$ or more would be received from this source. The fact is, practically every concession is sold on the commission basis, so that the returns received will depend upon the popularity of the several concessions with the visitors. It is safe to say, however, that very substantial returns will be received, as the concessions are numerous and some of them very valuable. Among those inside of the main grounds are the restaurant service, a sea and lake food restau rant, the Japanese tea house, the Esquimaux settle ment, the Polish cafe, the clam bake, the moving sidewalk, the cliff dwellers, the intramural railway, the electric launches, the steam launches, the Venetian gondolas, and many smaller ones, such as peanuts, pop corn, etc. Most of the concessions pay about twentyfive per cent of their gross receipts to the Exposition, but in some instances, in which the profits are large the percentage on the concession corresponds. Thus popcorn pays seventy per cent of the gross receipts for its privilege.
The Midway Plaisance is lined with special concessions its whole length, from Stoney Island Avenue to Cottage Grove Avenue. Among the more important of these concessions are the Irish industries, the Libby Glass Company, the Venetian display, Hagenbeck's animal show, the Irish village, the Japanese bazar, the Natatorium, the Dutch settlement, the Bernese Alps panorama, the German village, the Turkish vil lage, the Moorish village, the streets of Cairo, the Persian concession, the Algerian and Tunisian display, the Morocco exhibit, the Ferris wheel, the Chinese village and theater, the captive balloon, the Dahomey village, the Lapland village, the national Hungarian orpheum, the sliding railway, etc. Extra admissions
will be charged to view these special exhibits in the Midway Plaisance, and the Fair will receive a commission on all the income. On merchandise sales the percentage is only five to ten per cent.
It has been a good deal of a question just how to arrange for the payment of these commissions, and the financial managers of the Exposition have considered many plans. The one finally decided upon is the check system. The would-be purchaser finds what his purchases amount to, then buys at a booth, managed by Exposition employes, checks to represent the amount of the purchases, and the check is given in payment of the goods. A corresponding check is retained by the Exposition, having been a coupon as it were to the paying check. In this way the Exposition can handle all the funds, while the holders of concessions are relieved from this bother, and all possibilities of fraud or deception are guarded against. Millions of checks, ranging in price from five cents to one dollar, have been ordered printed for this purpose.
The intramural road is nearly ready to be officially tested. Enough of the power plant is installed to run a train, and one train of four cars is already equipped. The purpose of the holders of this concession is to have the system thoroughly tested at least a month before the opening of the Exposition, in order that its efficiency may be guaranteed. There is nothing novel in the power plant except the enormous size of some of the generators, which will be direct-connected to two Corliss engines. But the method of transmitting the electricity is an entirely new one, as the trolley wire will be between the tracks instead of overhead, as in the usual construction. Each motor car will be fitted with four motors, each of fifty horse power capacity, and will be designed to haul a train of three cars. The cars are richly colored, with the word "Intramural" at the top on each side. Each car will be designed to accommodate 100 people. This road comprises three miles or more of double track. The power house is at the extreme southeast corner of the grounds, and the road extends from near the east side of the Agricultural Building, where there is a loop around the group of buildings, with stations convenient to each of the main buildings and most of the State buildings, the loop at the other end of the line being close to the Fisheries Building.
The building which is to serve as kitchen and storehouse for the restaurant service of the Exposition is now being built. It will be a two-story structure, 125 feet wide and 325 feet long. On the first floor will be a dozen or more large ovens, which will have the capacity for using about 100 barrels of flour a day. On the second floor will be a large dining hall, where most of the Exposition employes will be fed. The building is designed to have a capacity to handle 15,000 pounds of meat a day. It is proposed to have 125 or more eating places inside of the grounds, which will be supplied with food mostly from this kitchen. One large restaurant has already been opened for the benefit of Exposition employes and visitors.
The financial report of the Exposition of all expenditures up to March 1 shows that $\$ 15,584,310.16$ have been spent, and all but about $\$ 2,000,000$ of this amount is for construction. The gate receipts up to date are reported to aggregate $\$ 205,310.75$, showing that 821,243 people have visited the grounds since the admission fee has been charged
The International Sunday School Association proposes to construct a model Sunday school building near the Fifty-seventh Street entrance to the Exposition grounds. The building is not only to be convenient in design for Sunday school purposes, but also to be a general place of meeting for Sunday school workers,
services.
Electricians in the employ of the Exposition are hanging arc lamps throughout the buildings and grounds, and in some of the buildings this work is nearly completed.
All of the walks and promenades will be brilliantly illuminated, as the lamps will be placed every seventyfive feet or so. The shores of the lagoon will be almost as light as in daytime, so that at evening sessions of the fair riding in the electric launches and other boats in the lagoons will be one of the most attractive features of the Exposition. The buildings will be correspondingly brilliantly illuminated. In the main
building there will be probably 1,200 arc lamps, in adbuilding there will be probably 1,200 arc lamps, in ad-
dition to a great many incandescent lamps. In the Electricity Building there will be special displays in artistic effects in electric lighting with colored and miniature incandescent lamps, in addition to about 400 arc lamps. The basin will be particularly highly lluminated on open evenings, and for this purpose there will not only be several hundred arc lamps, but also several thousand incandescent lamps, the two electric fountains, and search lights.
A number of brick buildings for hotels and other purposes were rushed up this past winter in the neighborhood of the Fair grounds, and in two or three instances walls which were constructed during the coldest weather, when the mortar froze almost as soo
as it was laid, have begun to bulge out. The city d
partment for the inspection of buildings had a sad lesson a few weeks ago, from neglect to order walls
torn down which were unsafe and which fell down because of this neglect and caused the loss of several lives. With this lesson in mind, the department is particularly active in watching some of the temporary structures in the neighborhood of the Exposition grounds. In all instances walls that are not safe will be torn down or materially strengthened.

Draining the okefinokee swamp.

The work of draining Okefinokee swamp, the bigest undertaking of its character in America, which will eventually reclaim 220,000 acres of the finest agricultural land in the country, is progressing at a remarkably satisfactory rate. The great swamp is situated in. the southeastern part of Georgia, and extends northerly from the border line of Florida. Creeks of St. Mary's River and Suwanee reach to the swamp. One of the engineers in charge of the work was in the city recently and gave the writer an interesting chat about the scheme, which will open up a section which for centuries has been under water and muck, the home of alligators and various other reptiles.
One hundred and fifty laborers are now at work at the swamp, and the construction of the great canal, which is to carry the water from the swamp to St. Mary's River, is being pushed forward as rapidly as machinery and human hands can accomplish it. After January 1, this force will be doubled, one-half working during the day and the other at night, so that this year's results will be twice as much as that of the last twelve months.
This canal, when completed, will be 150 ft . wide and 63 ft . deep, with a fall of 125 ft . to St. Mary's River. The most difficult part of the construction will be through a high knoll two miles long. Through the middle of the swamp another canal, sixteen miles long, will be constructed, with small branches, the whole to act as feeders to the big drainage stream.
When the latter is completed, two hydraulic pumps, with a capacity of 30,000 gallons each per minute, will force the water off the swamps, while the largestinland dredger in the world will remove the muck and tear away the stumps, leaving behind a beautiful clay subsoil, which has become wonderfully rich by the muck accumulations of centuries. This muck averages 6 ft . deep. The dredge is a ponderous machine 90 ft . long, with a 40 ft . beam. It is what is known as a combination dipper and stump puller.
By April 1 the company will be able to secure timber rom Okefinokee. In this alone the wealth of the swamp is incalculable. Its pine growth is the most magnificent in the world in point of size and quality, and its cypress deposits cannot be equaled anywhere. The pines average 70 ft . to the limb, are as straight as an arrow, and from 1 to 8 ft . in diameter, while the cypress trees are enormous in size, the average diameter being from 10 to 12 ft . Saw mill men have diameter being from 10 to 12 ft . Saw mill men have
besieged the company to secure the timber, but, as it besieged the company to secure the timber, but, as it
is of such valuable quality, the company will probably erect saw mills on the edge of the swamp and develop the timber on its own account.
The engineers expect to find many valuable curios as the work progresses. Already they have found evidences of Indian habitation of the numerous small islands which dot the great swamp. Numbers of Indian mounds have been discovered on these islands filled with all styles of pottery, specimens of which have been sent to the Smithsonian Institution at Washington.
The most interesting curiosities, however, are expected when the big dredge begins its work of removing the muck from the swamp. The engineers believe that mammoth wild animals, now extinct, made their homes in the swamp in past centuries, and are anxiously looking forward to the turning up of carcasses to prove their theories.
Just what length of time will be required to complete the draining of Okefinokee the engineers are unable to estimate, but it is safe to say that there is work ahead for several years. When the reclamation is accomplished, the stockholders of the company who had the nerve to put their money into the scheme, which, when first broached, appeared to many as a wild vagary, will realize handsomely on their investments. It may take a long time, but it is one of those things worth waiting for.-Savannah News.

A Trolley Balloon Line.

Mr. Opha Moore, of Columbus, O., has proposed a system of aerial navigation which does away with the necessity of transporting a heavy motor. He proposes to use balloons to carry the passengers, and to provide each balloon with an electric motor. The balloon is to be driven from a trolley line. The motor is to actuate a screw. Exactly where this plan surpasses the system of cable traction applied to balloons does not appear. The trolley lines are supposed to act also to hold the balloon on its course. The poles are to be about one hundred feet high. The air ship is to float 40 to 100 feet above them. Parachute descents are proposed, if necessary.

THE BICYCLE INDUSTRY.

by ben bolder.
The history of the bicycle is rich in all that pertains to crudeness, novelty, and the subsequent rapid development of lines which were the foundation of the

THE "DRAISINE" OF 1816.
modern bicycle of to-day. Since 1816 the inventive genius of man has been at work upon the construction of cycles; but not until 1869, when the American velocipede appeared, can it be said that cycle manufac-

THE VICTOR "FLYER" OF 1893. is undesirable.
cushion tires have succeeded solid ones, and these in turn have been placed among other back numbers by the more modern pneumatic tire. The highest grade bicycles of 1893 , such as the world-faned Victorbicycles, have probably reached that stage of development where many more improvements are improbable, if not impossible. The maximum and minimum in weight have been reached, and it is now assured that from 28 to 35 pounds is the proper standard, varying from the former for a racing wheel to the latter for rough usage and very heavy riders. Above or below these weights

Again, art in the manufacture of the bicycle has lightened and beautified the material and lines of design, compensating for weight by a better understanding and application of mechanics, until to-day pleasure, touring, or business trips are equally indulged in by all. The bicycle is coming to be as indispensable as the carriage, simply because the art of bicycle manufacture has made it possible to obtain from the bicycle for business or pleasure that which is impossible from the carriage. Of course there is still much crudeness and imperfection in many bicycles. By far too great a majority are cheap, both in quality and price, and it is even stated that there is but one factory in the world where every part of the bicycle is made complete from A to Z; that is the factory, or rather factories, for there are three of them, being, those of Overman Wheel Company, located at Chicopee Falls, Mass., where the Victor bicycles are built complete, without outside assistance. The tires are Victor tires, not those of some part maker; the saddles are Victor saddles, rims Victor rims, and so on. The vast tructures devoted to the manufacture of Victor bicycles were all built expressly for the purpose, with the intention of turning out the best and highest grade bicycles in the world at the highest prices.
That the Overman Wheel Company has succeeded goes without saying, and its magnificent plant, complete in every detail, is an object lesson to other makers who desire to reach the summit of fame. The Victor being the first safety bicycle built in America, its makers have always been a little in advance in improved conturing took even the slightest-form as an industry. struction. The Victor "Flyer" here illustrated is conThe bicycle of to-day is a radically differentaffairfrom sidered the highest development ever attained. Its that of five or six years ago. Within this period the safe- contrast to the crude wheel of 1816 is most marked and ty bicylan ycle has superseded the dangerous high wheel : startling. The Overman Wheel Company has issued necks. As will be seen by the engraving, the machine

consists of a large internal wheel carried in a V-grooved circular casting, which is supported on a bed frame. The wheel carries the cutting tools, and is driven by a large four-speed cone and double and single purchase gearing. One of the tools is arranged to turn between the crank web, and the other for turning over the top of the webs. The machine is fitted with band and self-acting feed motions, and is capable of admitting cranks having throws up to 18 inches centers. The crank shafts are held secure in two adjustable V blocks, which will admit of shafts from 4 inches to 10 inches diameter, whereby the crank necks are quite true with the body of the shaft, which are otherwise sprung by being held in lathe centers. Machine tools of this kind have hitherto been little used. They are now growing in favor, because their defects have been got over by such firms as Messrs. Booth \& Co.

AN IMPROVED MOTOR.

The device shown in the illustration has been in vented by Mr. Joseph Havlina, of Rockland, Wis. It is designed when once started to run continuously. The pendulum rods are connected by other rods with cranks on a driving shaft at one end of the machine, the pendulums swinging alternately, so that one is raised while the other is down. On the same shaft are

HAVLINA'S MOTOR.

also cranks extending in opposite directions to con nections with pitmen, the two sets of cranks having semi-cylindrical hubs, which may be fastened together if desired, so that the cranks on the two sides of the frame may each be practically in a single piece. The pitmen are connected with cranks on a shaft carrying a large fly wheel, and pulleys belted to other pulleys ón a countershaft, from which power may be taken. At one end of the machine is a crank and gear mechanism to turn rollers carrying ropes or cables, by means of which the pendulum rods may be raised one after the other when the machine is to be first started, and there is also a brake mechanism controlled by a lever. By the swinging of the pendulums a rotary motion is given through the pitmen to the fly-wheel shaft and the other pulleys or machinery connected therewith.

AN IMPROVED CRUDE OIL BURNER.

The illustration represents a recent improvement in burners for the combustion of crude oil with the highest degree of efficiency in combination with air and steam, the apparatus being so arranged as to effect a thorough commingling of those elements before the mixture is injected into a furnace. The vaporizing or primary combustion chamber of the apparatus is in the form of a hollow cylinder, G, open at its inner end to allow for the emission of flame therefrom. The vaporizing chamber is secured to the outer end of a furnace (not shown) by means of bolts or other suitable
appliances. D represents an injector for forcing oil commingled with steam into the vaporizing chamber, the oil supply pipe leading into a central bore in which is fitted a needle-pointed screw valve regulated by the small hand wheel, B. The inner face of the injector has a series of nipples, each having a single perforation leading from an annular passage of the injector casing in lines parallel with the central axis of a pipe around the oil supply pipe. The inner end of this pipe is secured in a central opening of a front plate which forms a closure for the outer end of the vaporizing chamber, and the front plate also has circular openings corresponding in number and alignment to the nipples of the injector, so that the minute currents of steam issuing from the perforations of the nipples forcibly inject atmospheric air through the circular openings in the front plate from the space between the injector and front plate into the vaporizing chamber.
As soon as the valve, B, is opened to allow the oil to flow into the injector, the steam current forces the oil, reduced to an oily vapor, into the vaporizing chamber, wherein it mingles with the several currents of air injected through the opening in the front plate to produce an intense combustion.
The lifting power of this apparatus is an especially le feature, that is, owing to the relative position of the steam and oil points being fixed, its siphoning power cannot be varied by any manipulation of its working parts. Perfect safety is thus insured by having oil supply below level of burner.
It will be readily understood that this improvement affords a reliable oil atomizer and air injector for producing and burning vapor gas developed from liquid fuel. The effective method employed for producing a vapor gas from liquid fuel and steam, combined with the capacity of the apparatus to forcibly inject atmospheric air, in numerous small currents, into the mixing or primary combustion chamber simultaneously with the atomized oil and steam, insures a complete admixture of all the constituents, forming a compound and combustible gas, capable of developing the highest heats and in a manner designed to meet the requirements of the many industries where furnares are in use.
This new development in devices for economically extracting and utilizing the full means of heat contained in liquid fuels is well deserving of the examination of those who are seek ing the best means to attain that end The apparatus is manufactured by the Shipman Engine Manufacturing Company, Rochester, N. Y.

AN IMPROVED BOOK OR COPY HOLDER.

The simple and inexpensive device shown in the illustration may be manipulated to support copy or a book in such different positions as may be desired, and when not in use may be folded to occupy but mall space. The improvement has been patented by Mr. B. Gardinier, of Chippewa Falls, Wis. Fig. 1 shows the holder in position to support a book held open upon a table, Fig. 2 representing it holding papers or notes for typewriters, etc., and Fig. 3 indicating one of the supporting devices. The body of the principal holder is essentially L-shaped, one member constituting the table and the other the support. Slideways are formed upon the under surface of the table member, and on its upper rear end is lozated an essentially triangular or V-shaped rail, made of stout wire, and adapted to serve as a support for a rod or other piece introduced into the slideways. The front of the body also has a sliding rest, and in connection with the device are employed angular arms of different lengths, as shown in Fig. 3. These arms may be used to elevate the body and also as extension supports for the table, the book or copy laid on the table also resting on the supports. These arms throughout their length are polygonal in cross section, so that they will not turn when introduced into the sockets or slide-

ways of the table, and different forms of legs are employed in connection with the body and the arms. The holder may be conveniently employed for supporting a thin book or magazine or a heavy book, retaining the leaves extended in open position at each side of the center by means of the tongue members of the arms, while also permitting the leaves to be readily turned as desired. This improved holder is said to

GARDINIER'S BOOK OR COPY HOLDER

have received especial commendation on account of its ease of manipulation and its adaptability to all sizes and thicknesses of books.

A HAT SUPPORT FOR MINERS' LAMPS

The device shown in the picture may be quickly and easily attached to an old cast-off hat or cap, or any article of head wear, to hold a lamp in position with as much safety and convenience as may be obtained with hats or caps especially made to carry lamps. The back plate of the bracket is pierced in three places for the reception of a simple form of metal fastening devices, each made of a single piece of metal, and on the front of the upper central portion of the plate is a socket or keeper, made integral with the plate, and bent forward into inverted cone shape. This socket is adapted to receive the hook or handle of the miner's lamp, the lamp being held by its sides and bottom in a guide frame formed of a single piece of wire bent upon itself, the extremities of the wire forming pins, which enter the socket heads of the upper fastening devices. Many miners, using their old headwear, tack on a

WATTS' BRACKET FOR'MINERS' LAMPS.
piece of leather, to which the lamp may be secured, instead of purchasing patent caps with brackets riveted to them; but this improvement is simple and inexpensive, and far preferable to a leather fastening, while it is readily applied to any article of headwear not especially made for mining purposes.
Further information relative to this invention may be obtained by addressing the patentee, Mr. Julius R. Watts, P. O. Box 824, Springfield, Ill.
Sugar from Cotton Seed. - The cotton plant, which has for so many centuries furnished a large part of the population of the globe with clothing, seems to be almost without limit in its usefulness, remarks a scientific authority.
From the seed a•valuable oil is expressed, while the husks form an article of food for cattle in the shape of cakes. From the lint which clings to the seed after it has passed through the "gin" felt is made, while the oil extracted from the seed is applied to quite a large number of purposes. But, according to the British consul, Mr. Portal, of Zanzibar, cotton seed is also capable of yielding sugar. A process has been discovered for extracting sugar from cotton seed meal, and, though the details of this process have not been disclosed, it is said that the product obtained is of very superior grade, being fifteen times sweeter than cane sugar and twenty times more so than sugar made from beet. This indicates that sweetness is not due to cane sugar, but to some other chemical.

A NOVEL MOTOR.

Mr. Frank Mitchell, of "Bouchon" Works, Red man's Road, E., has patented and perfected an ingenious form of heat motor, which promises to be of great utility in those cases in which small motive power at a trifling cost, involving but little care or attention, is required. This motor consists essentially of a wheel mounted on trunnions. The wheel is hollow and divided into a number of compartments, which are filled with water or other vaporizable fluid, and sometimes charged with a volatile body. The oppo site pairs of compartments are connected together and the whole is permanently sealed up. Since no chemi cal change takes place, one charge is sufficient to las for years of constant work, the wheel being, to all intents and purposes, a solid one.
To set the motor in action, it is sufficient to expose one side of the periphery of the wheel to the sun's rays, to a feeble gas jet, or even to the heat evolved by the human band held near it. No condenser or any other device for concentrating the sun's rays is needed and provided the heat be kept constant, no governor is required to insure regular speed. The application of heat on the one side causes a variation in the pressure of the fluid or vapor in the chambers, and this, by upsetting the equilibrium of the wheel, causes it to rotate with considerable force, which is proportion-

mitchell's heat motok-english patent.

ISKE'S HEAT MOTOR-AMERICAN PATENT.

ate to the difference between the heat applied and the normal temperature. One great advantage in this motor is the absence of all risk, and this, conjoined to the fact that it runs perfectly silently and without dirt, is a grand recommendation. A small motor, standing but a few inches in height and sectuated by the heat from a common gas burner flame turned down to the size of a small pea, will work a small fan or fountain, etc. I present your readers with an illustration of this novel device, which, in point of durability, promises to be the most durable motor extant.
By this invention Mr. Mitchell has at last solved the problem of obtaining power direct from the sun. The apparatus, when arranged as a sun motor, requires no attention. The enormous advantages this will offer for ventilating and other purposes in countries where the sun's heat is so intense will be obvious.
S. R. Bottone.
[The above article, from the English Mechanic, does not explain the construction of the motor. We are inclined to think it is similar, if not exactly like, a motor patented by Mr. Albert Iske, of Lancaster, Pa., in 1888. We annex a cut of Mr. Iske's motor and also give an abstract of his description of it.
In this motor bulbs are arranged diametrically opposite each other, in pairs, each pair being connected by a tube. The motor thus formed of the series of bulbs, the tubular arms and the shaft supporting them is operated by the heat of a small lamp. Each pair of bulbs contains enough water to fill one of them. The wheel thus formed revolves over a deflector which is heated by means of the lamp. The bulbs are exhausted of air, so that pressure sufficient to force the
water from the bulb at the lower part of the wheel into the bulb at the upper part of the wheel is created by a very slight increase in temperature. The water being thus forced into the upper bulb makes the upper portion of the wheel heavier, thus causing it to turn by its own gravity in the direction indicated by the arrow, bringing the next filled bulb into position for being heated. This operation is repeated as the wheel continues to revolve. $-E d s$.]

The New Naval Observatory Telescope.
The new telescope for the Naval Observatory a Washington has recently been completed by Warner \& Swasey, of Cleveland, O. It is entirely new, with the ex ception of the fine twenty-six inch object glass, and in power is second only to the Lick in this country and is excelled by but two telescopes abroad.
The old mounting for the lenses was built no longer ago than 1870, at a cost of $\$ 20,000$, but such a revolution has been wrought in appliances and mechanism for handling large telescopes since then that it was neces sary to construct a mounting entirely in the new style in order to have the telescope in keeping with the other instruments in what is to be the finest national observa tory in the world.
The new telescope will weigh thirty tons, about twothirds of which comes from the cast iron rectangula supporting pier, in which is built the great clock fo driving the telescope in either stellar, solar, or lunar time. By it the star under observation is kept in exactly the center of the field of vision for hours at a time, and it is possible to leave a photographic plate exposed three or four hours with the same results as if the tube and star alike were stationary.
The tube itself is of sheet steel, 38 feet long, 26 inches in diameter at the object glass, 31 at the center, and 24 at the point where the eyepiece is placed. The sheets vary in thickness from one-tenth to one-twelfth of an inch, and have been carefully tested, with a view to bearing all the strain put upon them and maintaining a perfect tube. There is no ornamentation, by polish ing or otherwise, except plain black paint. The weight of the tube is 2,000 pounds.
The telescope is equipped for photographic and spec troscopic work and is very complete in all its appliances. One observer will be able to handle the great instrument easily and quickly, so fine and perfect are the adjustments and machinery. The difficulty met in observing a star when it is low in the heavens and the eyepiece is brought high above the floor is overcome by raising the floor by hydraulic rams. The observe touches an electric button in a keyboard by his side and raises or lowers the floor at will.
The clock is wound automatically by electricity When the weights reach a certain point they switch on an electric current, which is cut off again when they are wound up.
The ease in handling the telescope is increased by the devices to reduce friction. The shaft of the polar axis rests.on hardened steel ball bearings resembling those in fine bicycles, and at the top it works on a necklace of anti-friction rolls.

The Siren as a Fog Signal.

Undoubtedly the siren is one of the best fog signals. Its penetrating, though exceedingly disagreeable, note can be heard farther than any other sound, except, perhaps, an explosion, and it can be given any desired characteristic. Yet of the 255 fog signnls of various kinds in the United States, not including whistling and bell buoys, but 18 sirens are now in use. The reason is the expense. There is but one firm in the world that makes them, so this firm has the monopoly and charges accordingly. It is justified in so doing, however, as it spent a great deal of money in perfecting this instrument.

A siren is a simple enough instrument. It consists of two superposed disks, with a certain and like num ber of holes. One disk is stationary, the other revolves, while at the same time air or steam is forced through the holes. When the holes are opposite each other the steam will pass; when they are not opposite, the passage of the steam is stopped. Hence when one of the disks revolves, the steam passes in a series of puffs. If these puffs succeed each other with sufficient frequency a note is produced, rising in pitch with the rapidity of revolution and increasing in power with the pressure of the steam. In the present siren jthe disks are revolved by a small steam engine, which also opens and closes a valve to allow for the passage of the steam, and thus gives what is known as the characteristic, for a siren used as a fog signal does not sound continuously, but gives a certain number of blasts of a definite length per minute. The steam is supplied by a boiler both for the engine and the siren, and, to avoid possible breakdowns, the boilers, engines, and sirens are always in duplicate. The steam pressure is ordinarily about 50 pounds, and the sound can be heard from ten to fifteen miles, and occasionally much farther, depending on the weather.
The same firm which makes the sirens makes also a very much cheapor and nearly as effective an instrument known as the "self-acting siren," which requires
no engine and which is much used on the transatlantic steamers in place of steam whistles. The steam itself revolves the disks, and the blasts are given by simply opening the valve by hand. The speed of revolution of the disks is automatically regulated by an ingenious centrifugal brake. A self-acting siren would make an admirable fog signal if it could be given a characteristic automatically. This is accomplished by the use of "Crosby signal," a clockwork device, which can be set to automatically open the steam valve any definite number of times per minute, the clock being also wound up automatically each time the siren is blown. One of these fog signals has lately been installed at Execution Rock light station, Long Island Sound. It consists of two locomotive boilers with their accessories, two self-acting sirens, and two Crosby signals, so arranged that either boiler and either Crosby signal can actuate either siren. The sound has been heard a distance varying from eight to seventeen miles. The cost of a first-order siren in duplicate, without boilers, is $\$ 4,800$. The cost of the self-acting siren and Crosby signal in duplicate, without boilers, is $\$ 925$. The Crosby signals are manufactured by the government, the lighthouse board having bought the patent.-Marine Review.

THE UNIVERSAL SCALE

The scale by J. Ernest G. Yalden, 144 West 94th Street, New York, consists of a triangle having a base of 6 inches and an altitude of 6 inches. The base is divided into 30 parts. These parts are connected with the apex of the triangle by radial lines. Lines parallel to the base are drawn through the triangle, to enable one to hold parallel to the base the paper on which the divisions are to be taken.

THE UNIVERSAL SCALE

To divide a line of unknown length into any number equal parts :
Mark on the edge of a strip of paper the length of he line as taken from the drawing. Let us suppose it is to be divided into 12 parts. Fit it between the 0 and 12 radial lines on the scale by sliding it up and down till it fits, keeping the edge of the paper parallel to the base of the triangle. Mark the 12 parts, and then ap ply it to the drawing, using it as a scale.
This is far more accurate than the usual method of drawing parallels from points on a line drawn through one end of the given line. It takes far less time and does not deface the drawing. The draughtsman can construct in like manner a scale to fit any case, and which may be used in the same manner as a scale. Other applications will be obvious.

Rupture of Intestine Caused by a Tapeworm.
In a recent number of the New York Medical Journal, Dr. Fayette Dunlap describes a case of resection of the small intestine for rupture caused by a tapeworm. When he saw the patient he believed that there was an ectopic gestation with ruptured sac. On the abdomen being opened the pelvis was seen to be filled with recent blood-clot, and a tapeworm was found protruding from a large ragged rupture in the small intestine. About two-thirds of the lumen of the intestine was gone, the edges were ragged and gangrenous, but it was quite evident that there had been no previous ulceration. The damaged part was resected and the ends united by the continuous suture after the manner of Lembert. Vomiting was continuous for thirty hours after the operation and only ceased after a large enema of an ounce each of glycer ine and sulphate of magnesium and a quart of hot water. From the abdomen there was removed about eight feet of live tapew.orm, and with the enema there came away seventeen feet more. Dr. Dunlap thinks the worm had become entangled, and in the effort to free itself so eroded the wall as to cause rupture. No antiseptics were used. The patient made a good recovery.

THE NEW COAST DEFENSE WAR SHIP TERROR． The Terror，now fast approaching completion at the navy yard，Brooklyn，is of the class of double turret coast defense monitors with sides armor－plated＇their entire length．The side plating，now being made，is 7 inches thick by 6 feet in depth from the deck．
The Terror is 250 feet in length， 53 feet beam， 14 feet draught， 3,815 tons displacement，mounting four $10-$ inch breech－loading rifles in two turrets fore and aft， as shown in Fig．2．The turrets are plated with $111 / \mathbf{2}^{-}$ inch nickel steel，Harveyized，the port section being $121 / 2$ inches thick，each section weighing about 25 tons． The handling and setting of these plates is shown in Fig．1，being swung by a chain attached to two eye screws in the upper edge of the plate，lifted and moved to its bearings by the large floating derrick，a part of which is shown at the right．
The method of fastening the turret armor is shown in Fig．3，lower right hand corner．The fastenings are 18 bolts， 15 inches long，passing from the inside lining， two half inch plates，through a Georgia pine backing 10 inches thick and tapped 4 inches into the back of the armor plate．
Upon the inside， 3 inches from the heads of the bolts， there is to be another lining of $1 / 2$ inch steel plates，not shown in the cut，for protecting the gunners from fly－ ing bolt heads by shots striking in line with the bolts．
The fitting of the plates and backing is a tedious and slow operation；templates having to be made for fitting the woodwork to the form of the plates，and other templates for laying out the bolt holes in the wood backing，which are then bored and trimmed radially，and so accurately that when the immense plate is brought to its bearing，the bolts freely enter from the inside．

The Salt Lake of Assal，Africa．

The French government has just sold to Mr．Chef neux the right to refine and export salt from Lake Assal，ore of the most remarkable sheets of water in the world．The lake is in the district of Obock，East Africa，only a few miles from the head of the Bay of Tadjourah．The gentleman who has purchased the concession agrees to pay into the colonial office the sum of $\$ 10,000$ a year，and if，during the fifty years that he is to have the exclusive right to export salt from Lake Assal，the annual product exceeds 50,000 tons，he is to pay a tax of 20 cents for every ton in excess． The government will designate a part of the lake where the natives may procure all the salt they want without tax or hindrance．
All along the edge of this little lake，which comprises only sixteen square miles，is a bed of nearly pure salt about a foot in thickness．The water of the lake is so surcharged with salt that it is impossible to sink in it．The bottom is apparently a bed of solid salt．The heavy waters lave the bases of jagged and precipitous mountains which descend to the edge of the lake，mak－ ing it almost impossible to travel around it．Mr．Chef－ neux will probably carry on his work by floating machinery on the lake and dredging in the salt bed at its bottom，though on the west side of the lake an enormous quantity of salt is in sight when the lake is at its lowest level．
Very little was known about Lake Assal until seven years ago．The few men who had visited the lake were unable to tell whence it derived its water supply． The lake evidently had no outlet，and nobody was able to find a single stream flowing into it．The question was dismissed with the answer that the lake doubtless had subterranean affluents，and it was left for $\mathbf{M r}$ Henry Audon，seven years ago，to solve the mystery and prove that Lake Assal was indeed a very excep tional sheet of water．
Mr．Audon spent several days examining the shores， clambering with the greatest difficulty along the rim of the lake．He was about to give up the fruitless search when he heard the murmur of a little water－ fall，and in a few minutes he stood on the edge of a large brook running into the lake．Much to his sur－ prise，he found that the water of the brook was as salt as the ocean，and a little while after it was proved
beyond a doubt that the ocean itself is the source of beyond a doubt that the oc
Lake Assal＇s water supply．

The lake is about 400 feet below the level of the sea． It is now known that three brooks from the Gubbet el Karab，a little land－locked bay at the extreme west－ ern end of the Bay of Tadjourah，conduct the waters of the Indian Ocean inland about ten miles to this re－ markable depression．The salt，which the natives have gathered，perhaps for ages，along the edge of the lake，is carried to markets hundreds of miles inland． N．Y．Sun．

A Boston lady has had a breakfast service of cups， saucers，and plates prepared for her large family，on which are given from photographs the likenesses of the members；so that the waiter can properly place the china to be used．Some one suggests that at any memorable dinner party the same complimentary pro cess might be arranged for each expected guest，in lieu of dinner cards．

Decisions Relating to Patents．

ACTION FOR INFRINGEMENT．
The United States Circuit Court decides that where the right to manufacture and sell a certain patented improvement was dependent on the peformance of a condition contained in the agreement of transfer，the question of the breach of the condition must be first settled in favor of plaintiff before the federal courts can have jurisdiction of an action to recover damages for the unauthorized manufacture and sale of the for the una 1.
It is held by the Circuit Court of Appeals that when a patent has been assigned，together with all claims for past infringements，the fact that a person sued by the assignee has not sold any of the infringing articles since the assignment，and testifies that he intends to sell no more，is not sufficient to exclude equitable juris－ diction，when it appears that hestill has them in stock， and has published a catalogue offering them for sale， and that in his answer he asserts a right to sell them． 2.

INJUNCTION．

The Circuit Court rules that a failure to prove actual infringement before the filing of the bill，as alleged， does not require the dismissal of the bill，or prevent a decree for an injunction and an accounting of profits and damages for infringements subsequent to the filing of the bill and before decree，if the bill also avers an－ ticipated infringements，and prays for injunction and general relief；for the right to injunction rests entirely upon anticipated infringements，and the right to re－ cover damages for infringement between the filing of the bill and the final injunction is incidental to the in－ junction，and necessary to make the remedy com－ plete． 3.

The Circuit Court holds that the fact that a corpora－ tion owning letters patent upon a particular kind of machinery has entered into a combination with other manufacturers thereof to secure a monopoly in its manufacture and sale，and to that end has acquired all the rights of other manufacturers for the exclusive sale and manufacture of such machines under patents，will not entitle a stranger to the combination to enjoin the corporation from bringing any suits for infringement against him or his customers． 4.
In a suit for infringement it was stipulated that the patent was owned by complainant，＂except the County of Knox，Ohio．＂The Circuit Court lays it down that even if this be taken to mean that there had been，not a license merely，but a complete assignment of the mo－ nopoly in Knox County，complainant still retained full title with that exception，and could sue for infringe－ ment elsewhere，without joining the assignee for Knox County as a party complainant． 5.

WHAT CONSTITUTES INFRINGEMENT．
Letters patent No．336，385，issued February 16，1886， to Charles Edward Chamberland，is for a filtering com－ pound composed of pipe clay，or other suitable clay， diluted with water，and then mixed with porcelain earth or its equivalent，the latter being first baked and then reduced to a fine powder；the proportions being about 20 to 40 per，cent of the clay to 60 to 80 of the earth．The Circuit Court decides，on motion for a pre－ liminary injunction，that it was an infringement to use a compound of kaolin clay，or porcelain earth，and finely ground silex，in about the proportions of 30 to 45 per cent of the kaolin and the rest silex． 6.
A certainlever in defendant＇s watch movement could， when the works were out of the watch case，be adjusted to produce normal winding engagement，but in a stem－ set watch，when the works are in the case，it is always held adjusted in such manner as to produce normal set－ ting engagement．Held that such a construction，when used in stem－set watches，is to beregarded as operating on the principle of normal setting engagement，and as not different in that respect from the construction of the Church watch，letters patent No．10，631，granted August 4，1885，to Duane H．Church，for an improve－ ment in stem－winding watches．
The court also rules that letters patent No．10，631， granted August 4，1885，to Duane H．Church，for an improvement in stem－winding watches，is infringed by watches made under the patent of January 3，1888，to Thomas F．Sheridan，No． 376,015 ，and reissued August 5,1890 ，No． 11,100 ；for，although there is a plain dif－ ference in the operation of the springs which produce the winding and hands－setting engagement in each watch，that difference is produced by a simple me－ chanical change，and the other differences arise from the use of mechanical equivalents． 7.
1．Routh v．Boyd， 51 Federal Reporter， 821.
2．Hanzel v．California Electrical Works， 51 Federal Reporter， 754
3．Canton Steel Roof Co．v．Kanneberg， 51 Federal Reporter， 599.
4．Strait v．National Harrow Co．， 51 Federal Re－ porter， 819.
5．Canton Steel Roof Co．v．Kanneberg， 51 Federal Reporter， 599.
6．Pasteur Chamberland Filter Co．v．Funk， 52 Fede－ ral Reporter， 146.
7．Illinois Watch Co．v．Robbins， 52 Federal Re－
porter， 215 ．

©orrespondence．

Double Rear wheels．

To the Editor of the Scientific American：
In the Scientific American for February 25，on page 122，＂J．＂asks some questions about bicycles－ ＇Why can＇t one be made with two rear wheels about 5 or 6 inches apart，＂etc．I would say to＂J．＂that such a bicycle would be much more difficult to ride than the regular two－wheel safety，and any man too heavy or clumsy to ride an ordinary safety had better let such abortions as＂J．＂wishes alone．I know of many men over sixty and heavy，up to 210 pounds，who find no difficulty in riding a safety．The writer is a heavy weight，not at all agile，and much on the shady side of 50 ，and having tried in past to ride narrow gauge three－ wheelers speaks from sad experience．

A．G．
Appleton，Wis．，February 25， 1893.
A Flattering Note．
To the Editor of the Scientific American：
I wish to tell you there is no paper printed that equals the Scientific American，and by reading and looking at the clever cuts which it contains for the last fifteen years，I have been able to make and place on the door of my residence a brass plate，which contains the house number and my name，and a plate which covers the opening，which is a mail box，and by plac－ ing the mail against the plate which contains my name，an electric bell rings in the kitchen until the mail drops from the door on the inside of the house． It is impossible to get a small calling card through without ringing the bell in the kitchen．So you can imagine，if you have not seen it，a mail box，a num－ ber，a name plate，a letter box and a door bell all in one piece．I put it on the door January 25，and it has worked to perfection．I also made an electric alarm work to perfection．The common eight－day clock is downstairs and the bell is upstairs in my bedroom． By turning a small wheel on the face of the clock at any hour，or even minute，the bell will ring in the morning until I get up and shut the bell off．These two inventions I wish to thank the Scientific Amer－ ican for．Let a person take the Scientific Ameri－ can one year，and if he is not able to make some kind of an invention，he is very thickheaded．This year I am taking both papers，and I get the subscription price of a whole year every paper I read．I would like to see the Scientific American in every family． Clinton，Iowa．

G．P．Yule．

Signaling Mars．

To the Editor of the Scientific American：
In all the projects for signaling Mars proposed by learned Thebans，I have seen no reference to what seems to the unlearned layman the most self－evident difficulty．
It is that the bright side of Marsis always toward us． If signals were sent at night from the dark side of our globe by artificial light，the flashes would have to be of such intensity that they could be seen through sun－ light of that planet．To effect this they would have to be intensely bright．If they could be seen，would the observers know from whence the signals came？Unless their powers of vision are different from our own， they could not see our planet in their daylight．Then much less could they see flashes of artificial light sent from it．
Sunlight flashes from a combination of mirrora－ould have to be sent in the wrong direction．Mars is often in our range of vision in the daytime－ねut is lost in the brighter sunlight．At rare intery is the planet Venus can be seen by day．Flashes from mirrors might at such times be sent to it．Such flashes would fall on its dark side and would be seen，if at all，by its inhabi－ tants in their night time．
Yet we hear of no proposition to telegraph that planet，which is as large as our own，and as likely to be inhabited by intelligent beings as our much smaller back－door neighbor．T．M．Anderson，Col．U．S．A．
Vancouver Barracks，February 25， 1893.

Exgress at the Columbian Exposition．

A congress devoted to the discussion of aerial naviga－ tion is to be held at the World＇s Fair at Chicago．The objects are stated to be the discussion of the problems involved in aerial navigation，the collation of the latest results and researches，and the interchange of ideas and effecting of a concert of action among the students of the subject．The work of Langley and of Maxim has given the subject a new impetus in the last two years，and the congress will，therefore，be held under peculiarly favorable auspices．The afternoons of Tuesday，Wednesday，and Thursday，August 1，2，and 3,1893 ，have been assigned the conference．The open－
ing session will open at $2: 30$ P．M．，August 1 ，in one of the halls of the World＇s Congress Art Palace．For cards of admission，list of topics，and other information the secretarylof the organizing committee，Prof．A．F． Zahm，Notre Dame，Ind．，should be addressed．The list of committee members shows a selection of well known representatives of science and professional life．

recreations in photography.

We are glad to see that the directions that we have on several occasions given as to the use of a black background have been put to profit by our readers. We have just received from Mr. R. Riccart, of Sainte-Foix-les-Lyon, a series of very interesting photographs from which we select the specimens herewith reproduced, and which appear to us to be of an original to gives us an idea of the position that we shall have composition. The system employed by the author of $/$ in Colas reduction. An idea that appears to us very these photographs is that of the natural black background obtained through the open door of a dark room,combined with diaphragms skillfully arranged in the interior of the apparatus, between the objective and sensitized plate This is the surest method of obtaining the desired effect with the greatest precision, without the junctions being visible, and with per fect clearness for the section of the parts removed. To this effect, it is necessary to place the diaphragm at three or four centimeters from the ground glass, in the last folds of the bellows of the camera.

- The following are a few data as to the manner in which the scenes that we reproduce were obtained. The first, representing a decapitation by means of a saber (Fig. 1), was taken by means of an exposure in which the head was placed upon the block, the subject inclining forward upon his knees, and a diaphragm, oc cupying about two-thirds of the plate, completely masking the body up to the neck. Then,

Fig. 3.-THE head in the wheelbarrow.

Delftware.

Of the many ornaments that adorn our houses, few are more beautiful than the specimens of Delft pottery some are fortunate enough to possess. A few details as to the date of its origin and other particulars from the Pottery Gazette will not be without interest. One of the best authorities places the date of the first manufacture of delft between 1596 and 1611. manufacture of delft between 1096 and 1611 . other objects representing a number of personages, battles, "kermesses" or fairs, religious or mythological scenes, abounded. In the second half of the seventeenth century this pottery attained its highest degree of perfection. From this period date the lovely views and portraits that made its fame. An artist named Keiser was the first to imitate in this ware Japanese porcelain, also that of India and China. Then appeared lovely groups of flowers and animals. At this time also were employed the beautiful blue, red, and gold tints that became the rage, and at the end of this same century Louwys Fictor held a prominent place on account of his designs, showing garlands and hangings, imitated from Eastern artists. In the eighteenth century this manufacture began gradually to lose its artistic stamp, and tended to become purely industrial. Little by little

Fig. 1.-A DECAPITATION.

Fig. 5.-THE SAWEDOFF HEAD.

Fig. 2.-ANOTHER DECAPITATION.

Fig. 6.-THE REDUCTION.

Fig. 4.-the head upon a plate.

Fig. 7.-MAN IN A BOTTLE
without changing the position of the apparatus, the diaphragm was placed on the other side in order to conceal the head, and the body was photographed in the second position along with the person representing the executioner. It would have been possible, by a third exposure, to so arrange things as to make the executioner the decapitated person. It was by the same process that the three following scenes were obtained: A person with his head placed before him in a plate (Fig. 2) ; a man carrying his head in a wheelbarrow (Fig. 3); and a person to whom his own head is served in a plate (Fig. 4). Such scenes may be varied to in-
original is that of the person in a bottle (Fig. 7). The the furnaces were closed, and instead of the thirty ndividual represented was first photographed on a establishments formerly dedicated to the manufacture sufficiently reduced scale to allow him to enter the of this ware, and which made the reputation of the bottle. This exposure was made by arranging a diaphragm around the subject, that is to say, by using a screen containing an aperture, as for the Russian background. But this precaution was taken merely to conceal the floor, and yet it would perhaps be preferable in such a case to have the subject stand upon a stool covered with a very black fabric. However this may be, when once the first impression has been made, there is nothing more to be done than to photograph
of this ware, and which made the reputation of the
ceramists of Delft, only one exists at the present day, while its products cannot in any sense bear comparison with those of an earlier date.

Invention is only beginning to receive something like just appreciation at the hands of intelligent women. It has been the greatest of all helpers in the advancement of women, in placing each successive generation on a higher plane.-Inventive Age.

an improved traction engine.

This machine is more especially designed for use on farm land, to travel readily over plowed ground, for cross plowing and other work, and is propelled by endless tracks which travel on the ground and are engaged by wheels actuated from the engine. The improvement has been patented by Mr. Charles H. Stratton, of Moscow, Pa. In front of the usual boiler and smoke box is a cold water tank, and the front end of the machine is supported by wheels upon a pivoted axle, the wheels being turned as desired for steering purposes by means of a bevel gear connection with a rearwardly ex tending rod actuated by a hand wheel. The rear part of the frame is supported by tracks in the form of endless chains, a rib or web across the inner side of the track sections affording a straight surface for friction rollers to work upon when the driving wheels meet with obstruc tions causing too great strain. The inside of each link of the tracks is segmental, and their outer surfaces have corrugations or ridges which readily embed themselves in the ground. The axles of the track-carrying wheels, and of a central shaft carrying gear wheels, are journaled in a frame adapted to oscillate to conform to any inequalities of the sur face of the ground, and, to facilitate turning, the forward end of the frame may be raised by a rod and chain, the rod extending back to the platform and being operated by a hand wheel. The central shaft, by means of gears and pinions, is actuated from the engine and communicates motion to the track-carrying wheels, whereby the machine may be propelled backward or forward, the pinions being thrown into and out of gear by a lever extending to the back platform. This machine has far greater traction surface than other machines of the kind, enabling it to travel on the softest of ground. Its track is 12 inches wide and 3 feet 6 inches long, thus affording a surface contact of 500 inches. By means of a bevel gear wheel on the crank shaft, the machine actuates a shaft, not shown in the view, but which may be utilized to drive thrashing, mowing or reaping machines, or for any other purpose for which power may be needed.

PROGRESS OF THE CRUISER MAINE.

The alignment of the outboard bearing of the twin propeller shafts on vessels of the dimensions of our armored cruisers requires to be done after the bracket is in place; owing to the fact that the bracket has to be flanged and riveted to the hull, which under the quarter has a varying surface, which makes it very difficult to fit the brackets with a precision of alignment necessary to so important a work, as the brackets have to be flanged and riveted to the steel plates of the hull. To make the alignment perfect, the bearing in the bracket head is roughly bored somewhat smaller than the finished size, and when the bracket is made fast as nearly as possible in its proper place, the boring machine we illustrate is attached to the head of the bracket, adjusted in the exact line of the shaft, and the hole bored to its pro per alignment.
Our engraving illustrates the mechanism and mode of boring one of the brackets of the war ship Maine, which is now being completed at the navy yard, Brooklyn, N. Y. The ma chine, as represented, was designed and built at the Quintard Iron Works, they being the builders of the engines and propellers of the cruiser Maine. As will be seen by inspecting the illustration, the boring bar is made hollow, to facilitate alignment.
The cutter is moved forward on the bar by a screw driven through the bevel gear seen at the rear end, turned by the spoke wheel striking the brackets at each half turn of the bar, the power being derived from a portable engine below the platform, running by steam from a donkey boiler on board of the ship.

For facing the shaft bearing a radial cutter arm was clamped upon the cutter bar, holding the cutter and fed by a radial screw and spoke wheel. This machine is but one of the ever-varying novelties constantly coming into use to suit every contingency found in making and perfecting the new forms and conditions made
ammonia is present. A white fabric printed with a salt of copper (the ferrocyanide excepted), mixed with a salt of ammonia and exposed to the sunlight, undergoes considerable change in the printed part as a consequence of the production of oxycellulose, but in printing with the same mixture on dyed cloth the
color produced is protected and there is no alteration in the fiber. It is probable, then, that copper exercises its protective action on coloring matters by reoxidization. The salts of iron, tin, and manganese with or without the addition of an ammoniacal salt have no protective effect, says M. Schoen, noting at same time that Persoz, in his work on coloring matters, speaks of the protective action of oxide of tin on a vat blue exposed to the sun. Chloride of vanadium has analogous action to that of a salt of copper, but the effect is less strongly marked. Prud'homme has noted the oxidizing action on an ammoniacal solution of copper. It is possible that in the presence of the light there is a decomposition of the ammoniacal salt on the tissue and the formation of ammonide of copper.

Temperature North and South.
The lowest mean temperature that occurs anywhere, or at any season on the globe, occurs in January at Werkojansk, in northeastern Siberia. Here the mean for the first month in the year is -612°. For the same period the temperature is -40° over the region situated a little north of the magnetic pole. At Werkojansk, the thermometer has registered
great motive power machinery now being made. |over 88° below zero

The Maine ranks as an armored cruiser of the first class. Her keel was laid October 11, 1888, at the Brooklyn navy yard, and she was launched November 18, 1890. Built of steel throughout. Dimensions: 324 feet length, beam 57 feet, draught 21 feet, 6 inches; displacement, 6,682 tons. Speed, 17 knots. Protective armor 180 feet long, 12 inches thick, of nickel steel. Two armored turrets. Engines, 9,000 horse power. She will carry a most formidable armament. Estimated cost, $\$ 2,500,000$.

Copper on Prints.

That the salts of copper increase the resistance of coloring matters to the action of light has been known for some time, and the results of experiments with precipitated copper, the oxide, the sulphide, the sulphate, cipitated copper, the oxide, the sulphide, the sulphate,
and the acetate of the metal, were communicated by

Going to the other extreme, the atmosphere of the Colorado River desert has shown a maximum of 120° and this will give a seasonal variation over the land of upward of 200° Fah., against less than one-third of that range over the water of the Atlantic. The com parative constancy of oceanic temperatures moder ates the climatological conditions of approximate land masses very considerably, and the disparity between summer's heat and winter's cold is still less marked when the seaboard is swept by warm ocean currents. The mean annual temperature of the British Islands is quite 20° higher than it would be did its tempera ture depend upon latitude alone. This is, of course, owing to the influence of the Gulf Stream, which is calculated to pour into the North Atlantic some 38 cubic miles of warm water per hour. The heating effect of this current upon the atmosphere of the North Atlantic is best seen by comparing the position of isothermal lines with the same temperature lines in the South Atlantic. Thus, in the month of January the isotherm of 35° runs in almost a straight line from Boston to Iceland and from Iceland across to the Nor wegian coast. At its most northerly limit it just im pinges upon the arctic circle. Thus, the mean tem perature of 35° is fuund in the coldest month at a distance of 6612_{2}° north of the equator. In the South At lantic during the month of July, the midwinter month, the isotherm of 35 is practically identical with the 50th parallel of latitude. Contrasting the tem peratures for the midsum mer months, it will be seen that while in the South Atlantic the isotherm of 50° has a mean latitude of 45°, the same isotherm in the North Atlantic passes over the middle of Iceland and from there runs in a straight line to the North Cape of Norway in latitude 72°.-Nautical Magazine.

The next meeting of the

 American Association for the Advancement of SciM. Camille Schoen to the Mulhouse Society last year. |ence will be held at Madison, Wis., in August, 1893. It These experiments proved that all these salts exer- is to take place within easy distance of Chicago, durcised the same protective action, whereas the ferrocy- ing the season selected for the various scientific conanide had no such effect. M. Schoen sends a further gresses of the Columbian Exposition. The meeting will note on this subject to the society in which he records doubtless be attended by many men of science from that these salts determine the formation of oxycellulose on the white parts of the fabric, but this production of oxycellulose is very feeble, except when a salt ofabroad. It is desired to make the Madison meeting a success in the matter of attendance, and more particularly as to the character of the papers presented.

THE UTILIZATION OF OLD TIN CANS

In the suburbs of great cities an industry has sprung up, having for its object the recovery of the solder used in making and sealing tin cans. In consequence the formerly despised and useless tin can has acquired sufficient commercial value to rescue it from the back lot dumping ground and garbage scow.

Uner the present system of street cleaning, New York City's refuse is loaded on scows from docks located at convenient intervals along the river front, and then taken to sea and dumped. These docks have double decks, the upper projecting sufficiently to allow the contents of a cart to fall upon the middle of the scow, and be distributed by the trimmers who keep the vessel on an even keel. The trimmers also select everything of value with the greatest care; rags, fat, bone, metal, paper stock, etc., being stored on the lower deck of the dock. The silver and jewelry form no small item of the contractors' profit, and the total value of a scow load is estimated at an average of two hundred dollars.

The space between the dock platforms is of ten closed in with odds and ends, and the interior converted into a miserable habitation by the trimmers, men and women, who thus herd together, their supplies being drawn from the dump.
These dumping docks are the principal source of supply for the industry we illustrate, and a wagon load of tin cans can be bought at such places for four or five dollars.

The furnace is an old soap boiler, into which a few sticks are thrown; the bowl is then filled with cans, a quart of kerosene poured over them and ignited.

The heat developed by the oil is not great enough to attack the tin, but melts the solder, which flows to the bottom of the bowl. The solder recovered from a load of cans averages forty pounds. After this process is completed the tin plate scrap is sold to make what is called "acid."
Into a large open vat containing waste acid, acid ferric sulphate, sulphuric or hydrochloric acid, the scrap is thrown and allowed to remain until the tin is stripped from the iron underneath; more scrap and metallic iron is added until the solution is neutral. The tin thus distral. The tin thus dis-
solved is used as a basis solved is used as a basis
for the preparation of stannates or other tin com pounds, and by dyers.
The iron plate is rolled into balls for melting, the ferrous sulphate purified and sold) as commercial and sold as commercial copperas, and the remain-
ing acid used in repetition of the process.

Chemical Notes.

At the last meeting of the Manchester section of the Society of Chemical Industry, Dr. Carl Otto Weber read three short papers. The first touched upon "The danger attending the presence of ammonium nitrate in nitro-cellulose." He described an explosion which had occurred when he was preparing a small quantity of di-nitro-cellulose. In order to obviate washing out the last traces of acid, he had used a dilute solution of ammonium hydrate for the last washing. On drying the nitro-cellulose at about $70^{\circ} \mathrm{C}$., a violent explosion occurred.
He had observed on a previous occasion that a mixture of ammonium nitrate and acetic acid, when evaporated, subseq uently ignited with almost explosive violence, and he deduced from the experiments which he had made that the presence of small quantities of ammonium nitrate in such bodies was a source of considerable danger.

The second paper referred to the dyeing of woolen goods in copper vessels. He mentioned that the action of alkalies and acids in such vessels often affected the shades of the dyes in a prejudicial manner. To overcome this difficulty he instanced the use of strips of zinc on the Continent, which, with the copper, formed an electric couple, the zinc passing into solution instead of the copper.
The third paper was on the oxidation of cotton in bleaching and cop dyeing, which led to a somewhat chatty discussion between Dr. Schunk, Messrs. Terrey, Crippin, Levinstein, and Dr. Weber, during which the chairman, referring to the former paper, pointed out that the presence of zinc salts might be as objectionable assalts of copper, and also that the hydrogengas evolved might form an objectionable element in some cases, The discussion turning to the conveyance of corrosive liquiḍs in dye and other works, Mr. Levínstein men-
tioned, for the benefit of the members, that he had overcome the difficulty formerly experienced in transporting nitric acid about his works by using the glasslined tubes made by a firm at Barnsley (Messrs. Dan Rylands, Limited), the adoption of which had, in his case, been attended with highly satisfactory results.

Fire Service of New York City.

The present fire department is organized in companies of 12 men each, including a foreman, assistant foreman, and two engineers. A truck company has the same number of men and officers without the engineers. These companies are formed into battalions to the number of 12 , each battalion consisting of 5 to 10 companies, and being in charge of a chief. These 12 battalions are again divided into two divisions, each division being under the immediate supervision of a deputy chief, and the whole under the direction of the chief of the department.
The engine companies are equipped with a steam fire engine, drawn either by one or two horses, according to the size of the engine, its weight varying from 5,500 to 9,500 pounds. On some of the heavier engines three horses are used. The truck companies are supplied with ladders which reach to a height of from 16 to 85 feet. They carry all the modern appliances used in putting out fires, such as tin cutters, hooks, cellar pipes, and other implements which are likely to be of help.
Each fire company is assigned by a regular order to respond to fire alarms in certain localities, on the first, second, third, fourth, and fifth alarms, and in special calls if necessary. So that every company when called knows exactly by the signal where to respond and report for duty. This they do at the signal box nearest he fire.
The first alarm covers a territory about a mile
-

makes the investigation himself. He is then obliged to make up his mind on the spot as to the best positions from which to attack the fire, and assigns his men accordingly. Sometimes he is successful in the plan he has laid out, while often he is compelled to abandon it. This change is made necessary on account of the combustible material in the building, which throws out such an intense heat that the men cannot remain at the original points decided upon. At other times he at the original points decided upon. At other timeshe is successful in forcing an entrance into the building,
in which case he is generally able to extinguish the fire.
Fires are strange things to handle; they have a certain individuality. Each fire burns in a different way, and it requires a technical knc wledge and long experience as a fireman before a man is able to form even an approximate judgment as to the cause of a fire and the best way of putting it out. The decision must be made instantaneously. There is no time for thoughtful deliberation or consultation. You must judge of the surroundings, the size and character of the building, the material that is inside of it, and the possibility of the extension of the fire under certain emergencies. When the fire breaks loose from the building in a seemingly furious effort to escape from its confinement, then you must be ready to meet it and prevent its extension to adjoining buildings, or possibly across the street.
All these conditions are such that no man can possibly foresee them, and therefore no general plan can be laid down for putting out a fire, loecause, as I say, each one burns differently.
A man entering the fire department of New York is appointed under the civil service rules for the probationary term of 30 days. He is sent to what we call our school of instruction, where he is taught the use of the different apparatus, the scaling ladders, the life lines, and the tools and implements used in the department. His days are devoted to the school, his nights to service in the department where he has been assigned. At the expiration of the probationary term, if he is recommended by his commanding officer for actual fire duty, and also by the instructor of the school, he is regularly appointed a fireman, but after his appointment continues his instruction for 30 days more. He is required to become perfect in the use of the scaling ladder, life lines, belts, etc., and to display an ambition to become a proficient worker. He is taught to lower people from the roof, te raise ladders up to windows to the height of 90 feet, etc. After a man has attended the school of instruction for 30 days he is assigned to for 30 days he is assigned to
square; the second, two miles; the third, three, and so on, the territory growing wider at each alarm. The calls, regularly numbered, are printed in a book, a copy of which is at the central fire station, and also in the possession of each engine house in the city. For instance, we will suppose that the call is "485." The book will show what companies are to respond. The record in the book in this particular case appears as record in
follows:

485	Engine Companies.	Hook and Ladder Companies.	Chiefs of Battalions.
3d Avenue		2, 7,	8, 9,
40th Street.	$\begin{aligned} & 10,20,1 \\ & 54, \\ & 59,14,2,5 . \end{aligned}$		

Station 485 is at Third Avenue and 40th Street; engine 21 is just around the corner ; engine 8 is at 50 th Street. Those are the two nearest companies, and they respond to the first alarm. In case the fire is a large one, there is a second alarm, which brings out three engines, one truck, another chief of battalion, a deputy chief, and the chief of the fire department. A third alarm brings five engines and another chief. When the fire is a very large one, the signal called the " two nines" is sent out, which means that all the companies
due on the third alarm at that particular station shall due on the th
report there.
In fighting a fire, the first object of the chief in charge of the firemen is to ascertain the locality and extent of the conflagration. Sometimes he does this by sending one or more messengers into the building; but generally, in order to make sure of the matter, he
year's service at $\$ 1,000$, if he proves himself efficient, he will be advanced to the second grade, which gives him $\$ 100$ a year additional salary. He is always on his good behavior, and even one charge of improper conduct of any kind will prevent his promotion in the ranks. Hugh Bonner, Boston Globe.

Tempering Large Armor Plates.
A new process of tempering a 14 inch Harveyizing armor plate was tested in Bethlehem, Pa., recently. Heretofore this was done by ejecting ice water against a red hot plate in a vertical position, with the result that the water was made boiling the instant it touched the upper end of the plate, and the heated water running down did not have the proper effect on the rest of the plate. In the new process the plate was laid of the plate. In the new process the plate was laid
down in a specially prepared frame; the water was down in a specially prepared frame; the water was
made ice cold by treating it with salt, and was then led to a large sprinkler lowered within one foot of the plate. The water was forced through the sprinkler under great pressure, while the under side of the sprinkler was kept cool by water running over it from a fixed spigot. The sprinkling continued for $11 / 2$ hours, and the plate was then taken by a crane and immersed in the oil baths, there to remain 30 hours. The government officers present regarded the new process as highly successful.-Manufacturers' Gazette.

New Invention Wanted.

Electric gutter for melting snow and ice, in towns and cities, to prevent accumulations, such as now are impeding travel, and costing more to remove by cartage, etc., than would pay for electric gutters, if econo-

recentiy patented inventions.

 Engineering.Rotart Engine.-Alexis F. Gillet earney, Neb. This engine is preferably constructed wit two steam chambers, with pistons arranged to operate
alternately, and the abutment or slide valve is formed aiternately, and the abutment or silide valve is formed
with two apertures, and operated for variable move with two apertures, and operated for variable move
ments by the piston, the valve alternately connecting the main chamber with the steam inlet to drive the piston
and the valve pocket to cubhion the valve It has a solid and the valve pocket to cuasion the valve. It hasa a siolid
base portion and channel way connected therewith, pro base portion and channel way connected therexith, pro-
viding for a sufficient steam abutenent to hold the valve viding for a sufficient steam abutment to hold the valve
against the piston. The engine is constructed of few against the piston. The engine is constructed of few
parts, and the piston travel and abutment movement are regular, the usual jarring and thumping being
avoided.
Road Wagon.-Clarence Gillett, Gloversville, \mathbf{N}. Y. This invention relates to traction
engines propeled by steam, compressed air, electricity, etc., providing a simple and durable road wagon, dapted oo carry passengers or freight, and to be propelled at a
high rate of speed and easily steered as desired. The high rate of speed and easily steered asdesired. The
boiler is preferably of the Shipman style, to utilize oil as a fuel for generating steam, and the wheels are so
mounted that they will readily pass over any obstructions in the road.
Furnace to Treat Ores.-Charles J. Fauvel, London, England. This is a furnace for the other metals, and is one in which the oxidizizing of the impurities is effected by a current of hot air entirely out of contact with the furnace gases, so that the ore will be
delivered in what is known as a " sweet" condition. The delivered in what is known as a "sweet" condition. The furnace is so constructed that the oridizing carrent
separately heated, and the passages are so arranged that neither the ore nor the oxidizing current can at any the fuel, while the flues for the latter are designed to se care its utilization to the utmost extent. The farnace is also applicable for utilizing
the chlorinating medium.

Rallway Appliances.

Car Coupling.-George W. Mahan, Cold spring Harbor, N. Y. This is an antomatic coup. ler of strong, simple, and durable ocnstruction, which
embodies the principle of the old-fashioned link and pin coupling, and is so constructed that the pin by its weight will hold the link in position to enter an opposing coupling. The device may be operated to uncouple from either the top or the sides of the car, so that the
man need not go between the cars to uncouple them.
Railway Block Signal.-Frank B. Burt, New York City. This invention provides a simple nechanism for the expeditious and positive operation of
block signal system, in which the signal will remain set in the block while the train is in the block, but when the train Ieaves the block, in setting the signal of the down or concealed. The mechanism of the system i rought into action by a trip mechanism carried dy a car
or by the engine, and at each block it is is connected with the signal of that block and the signal of the block in advance.
Clamp.-Walter Hewitt Robinson, St. Paul, Minn. This is an improvement on a formerly patentec invention of the same inventor, for $\left.\begin{array}{l}\text { a clamp } \\ \text { which can be readily applied and manipulated for con- }\end{array}\right]$ veniently removing or replacing the cap and spring in air-brake cylinders.
strong and simple.
Ratlroad Construction.-Eliphalet L. Arnold, Georgetown, Texas. This invention provides very expensive, and which can be rapidly laid. The cross
lith ties are essentially triangular in cross section, are hollow,
to be filled with ballasting material, and each has a hori zontal cross brace near the top serving as a support for railssupporting chairs. The tie has a dovetailed recess to
receive the railsuupporting chairs or wedges, by which receive the rail. supporting chairs or wedges, throughou
the track rails are held firmly on both sides thro Thus a perfectly chance for the rail joints to settle. Thus a perfectly
smooth road may be made.

Loom Let-Off Mechanism. - Teremiah C. Bill, willimantic, Conn. This is a very sensitive and automatic mechanism, whereby, as soon as the slightest pull is exerted upon the warp, friction disks are
so moved that the warp beam is turned a sufficient dis ance to let off the warp required by the working of the loom. An arm mounted to swing, and controned rom
the warp beam, is connected with a friction disk adapted the warp beam, is connected with a friction disk adapted beam and driven from the operating mechanism of the oom.
Quill Winder.-Corry Jones, Long Island City, N. Y. This winder has a frame to be se-
cured to the loom or other machine, and on the frame is journaled a hollow slotted spindle provided with a disk and a amat and loose pulley, a travelere actuated from the spindle having a slot and a thread guide, while a vertically movable rod actuated by the rise of the quill has an arm
on its lower end in the upward path of which is a pivoted brake arm, a belt shifter being loosely engaged by the brake arm. The device is very effective and
operation, and not liable to get out of order.
Wrench.-Walfrid A. Aberg, New Westminster, Canada. This is a strong and simple
wrench arranged to permit of moving the jaws into any desired angle elelative to the handle, os as to turn nuts in close quarters. It has a swinging head having a poly being pivoted to the handle at rightangles to the axis of the wrench head, and having a polygonal opening at one end to receive the polygonal head and lock it, there be also means for locking the swinging arm in place.
Tile Machine and Cutter. - John
constructed machine for quickly and accurately produc
ing pipes or tiles of different sizes, from clay or composition of like consistency. The larger pipes or tiles may be delivered vertically, while the argaller ones leave the mill in a horizontal position, the pipe or tile being automati-
cally cut off in required lengths from a continuous bar or cylinder coming out from the formers
Concentrator.-Joseph A. Coombes, London, England. An improved hand power device, for conveniently and thoroughly separating gold from gravel
and alluvial beds, is afforded by this invention, it being and alluvial beds, is afforded by this invention, it being
also designed to save precious metals from pulverized quartz and tailings without the aid of water, quicksilver, v chemicals. The gravel or other material to be treated of sieves hopper, from which it is passed overa serie of sieves, and thence into a hopper where it is subjectea
to a draught caused by an exhaust fan, the arrangement being guch that the currents of air are broken up and
eddies are produced to facilitate the collecting of fine eddias are
float gold.
Cam for Stamp Mills.-George A. Thompson, Tombstone, Arizona Ter. This is a cam for lifting the estamps, and is made in sections for conveniently fastening it on the shaft or removing it without
disturbing the other cams or parts on the shaft. The disturbing the other cams or parts on the shaft. The
cam comprises two interlocking toothed sections, each cam comprises two interlocking toothed sections, each
provided with a hub portion, a sectional band engaging the hub portions being provided with lugs for the re ettion of bolts.
Timber Mortising Machine. Carrles P. Turner, Johnstown, Pa. This machine is pecially designed for producing nortises in large timvers or in heavy beams, and or honstraction is such that be brought into action as may be desired, the cutters being also capable of removing material between the adjacent bores or apertures made in the timber or beam. The entire machine is po
beams or upon a table.
Lathe Center. - William C. Roe, Honolulu, Hawaii. An outer center engaging the work to be turned is mounted to turn on an inner fixed or dead
center, the latter having the usual shank adapted to encenter, the latter having the usual shank adapted to en-
gage the tail stock or the main head stock spindle in case gage the tail stock or the main head stock spinde in case
the device is used as a live center. The device may be quickly applied and arranged to be conveniently adjusted
bring irregular work into a true position for tumis it to bring ir
Weight Motor.-John G. Ball, ChesTrille, Ohio. This motor is more especially designed mined time and then stopping automatically It consists of a lever connected at one end with the machinery to be driven and at its other end pivoted to a pitman connected with a crank arm attached to a shaft belonging to a train of gear wheels connected with a drum on which winds a ope carrying a weight.

Agricultural

Plow. - Chandes H. Gerrard, Xenia, In. The beam, the shank, and the handles of this plow to be used upon soilis of a wide variety of character, may be quickly and conveniently attached to the beam and
shank. The plow is very simple, strong, and inexpensive, and its colter may be easily removed, or it can
without trouble be carried upward out of the way. The invention comprisesJvarious novel features of construc a
Clletivator.-Bluford T. Scott, MilYord, Ill. This invention provides in one implement a combination of gopher blades and shovels, tofists stir the
ground with the shovels and then level it by means of round with the shovels and then level it by means of
the gopher blades. The shovels are kept away from the lants, but the blades run closer, so as not to endanger or rajustasting bars of the blades, the outer end of the lade is always the lowest, so that it can run close to young plants, without injury. The blades are reversible, and may be adjusted to allow the operator t
soil to or from the plants as he may desire.
Planter and Cultivator.-John B. Burke and John F. Badger, Quitman, Ga. This invention relates to grain-sowing caltivators, and provides a machine that is easy to adjust and operate, not costly to
build, and designed to be very durable. The plow may build, and designed to be very durable. The plow may
be of the ordinary construction, with a clevis in front to
 the plow can readily be held at any desired height, o travel of the machine from one part of the field to the other. In a hopper-shaped seed box secured to the beam of the main frame is jourraled a astirrer wheel, but the
stirrer is removed and a dropping disk inserted for stirrer is removed and a dropping disk inserted for planting corn, an opening plow being then placed in ar
of the seed dropper and a coverer plow at its rear.

Miscellaneous.
Breech-LoAding Shot Gun.-Charles . Hacker, Parsons, Kansas. This improvement is designed to afford greater simplicity, strength, and durability in the construction of locks, ejectors, and fore tself, and with greater safety in a hammerless gun. Comned with an annular hammer is a stationary hub or cylinder arranged within the hammer, and a coil spring
arranged within the cylinder, while the gun barrels have independent ejectors, and a separate spring mechanism for throwing out the ejectors, push pins being connected with the spring mechanism and operated upon by the
hammers to put the springs under tension to indehammers to put the springs
pendently throw out the shells
axle Lubricator.-John W. Schoaf, McKeesport, Pa. The wheel hub has, according to this invention, an oil chamber surrounding its central tubular
portion, the oil inlet being at one end of the hab and its portion, the oil inlet being at one end of the hub and its
outlet at the other end. which moves next to the contact surface. This outlet is closed by a spring-pressed ball valve, adapted to turn or roll as it abuts against the con-
tact surface, and when not so engaged being held closed by the spring. The invention is likewise applicable to

Sash Fastener.-Robert D. Murphy Baltimore, Md. This is an improved article of mann with roughened exterior and eccentrically pivoted oppositely.projecting twin hooks having a shank pivoted to the disk. The device is very simple, and may be ap-
plied either to the sash or to the casing, holding the sash in any position in which it may be placed or locking it
Door Check.-James S. Patten, Balti
nore, M. This is an inexpensive door check and stop with a securing plate attached to the door in the ordinary nanner, from which projects an arm on which is eccenion extend to each side of the ais of the disk wherebs dion extends to each side of the axis of the disk, whereby
stop fices at opposite sides of the pivot are provided when the contact portion is turned to engage the floor.
Vegetable Cutter.-James S. Pat ten, Baltimore, Md. This device has a main supporting ten, Baltimore, MA. This device has a main supporting
frame with a holder for receiving the vegetables, a reciprocating slicer knife, movablein the bottom of the holde table against a reciprocating cutter platen or frame. The machine is simple and cheap in its construction, easily aanipulated, and very effective for the uses designed.
AWNING. - Rodolph D. Thornton, Brookiyn, N. Y. The construction of this awning is such that the lower portion, which is usually open, may be closed by a screen, thus admitting of the window be-
ng kept open without the possibility of flies entering the room. The screen is so made and attached that it ma be elevated with the awning, or be brought up close to thas asas when occasion may demand. the lower portion of the hood may also be a screen held in fixed position
Display Stand.-William E. Stow Newborn, Ga. This invention provides a special con struction ana drangeement of parts of a revoving stand
for exhibiting goode in conneotion with a canopy of netting, which may be raised above or lowered around the goods for their protection. Display wheels, on which central standard, supported upon a suitable base, which is either portable, with casters or rollers, or may be a sationary fixture.
Piano Stool-Charles O. Parsons, Milwaukee, wis. This is an inexpensive stool, which is vertically adjustable, but which does away with the
ordinary screw, and has a revoluble seat, which may be ordinary screw, and has a revoluble seat, which may be
fastened at any desired height, so as not to be accident ally changed. In the central bore of the usual pillar ie either one of which may be engaged by the lower end of either one ofed latch pivoted in a hollow shaft extendin vertically through the sleeve, the upper end of the latci being connected with a horizontal push rod terminating in a push button in the edge of the seat. The button is
to be pushed in when the seat is to be raised or lowered, the latch entering the nearest hole when pressure on the

Razor.-Carl R. Evertz, Brooklyn N. Y. This invention provides a razor stock with a deconnection of the blade with the stock or back piece, and to permit the blade to be removed readily and safely for interchange with isimiar blades, It is designed th ofure
nish a set of blades with a single stock and hande, so hat a d
sharp one.
Spool Thread Cabinet.-James W. Hayden, Lewisport, Ky. This cabinet has a closing lic
or cover, and may be of any size or shape, and within are cells, preferably arranged in transverse rows or clue ters, in which the spools are arranged in single columns to be delivered therefrom by pulling a knob, which in
turn operates a releasing device. The invention cover various novel details of construction and combinations of
${ }_{\text {Wagon }}^{\text {parts }}$ Box Strap.-Godfrey \mathbf{W} Bauder, Sheldon, Iowa. This invention relates to that variety of straps used to connect the floor and side piece to secure the end boards or gates in place. Its body por tion has parallel ribs forming a groove in which the end gate may be held, while a flange overlaps the end of the side of the wagon body, and another flange rests on its

Lifting Device.-Willis L. Brown tfram Lake preferably made of gas pipe, to a cross piece at the upper
end of which is pivoted a lever, the device being readily set up and adjusted, and arranged for conveniently lifting and supporting stoves, safes, and other heavy objects, for
setting or removing them. It may be readily folded up in small space when not in use.
Shells for Plated Ware, etc.William McAusland, Taunton, Mass. Oval and oblong shells for hollow plated ware are, according to this improvement, produced of ductile or plastic material by
first making a round, seamless shell, and then expanding first making a round, seamless shell, and then expanding
it to an oval or oblong by introducing successively secit to an oval or oblong by introducing successively sec
tional former blocks of different size and shape, to be expanded progressively by a tapering plug forced ce nay be eugh. By this method not only new shen nay be shaped, but also thos
rubber, and other materials.
Grain Scourer.-Archibald P. Campclinder the perforatioms adapte to receive the grain and means for delivering grain into the cylinder and removing it therefrom, while revoluble brushes are held to impinge on opposite sides of the
cylinder shell. The perforations are slightly larger on the inner side of the cylinder than on the outside, and the kernels of the grain catch in the perforations and are
brushed, being thence dropped into a discharge spout.
Musical Instrument attachment -William Leiner, Milwaukee, Wis. This is a simple device for attachment to harpe, zithers, etc, a sliding an yieldingly supported bar above the etringg of the instrue
ment carrying dampers adapted to contacat with stringe
ampers. It may be conveniently operated to change the ey, and is arranged to damp all the stringsexcept those

RUb Flute.- Balilla Carpigiani, Philadelphia, Pa. In a suitable base is hela a row of
ods of different heights, preferably of wood, each rod erminating in a socket, the sockets being connected together by a silken cord or other brace. Each socket has a removable top section, by changing which the tones of with gloved hands, the gloves being resined and drawn ongitudinally along the rods, the long rods emitting rel-
Music Board.-Harry S. Sharpe, attle, Washington. A series of connected bars is provided with notation lines, and between the adjacent bars music characters are adapted to be inserted, each having a rear-
wardly extending lug to hold the character in proper osition relative to the notation lines. The improvement designed to facilitate the teaching of music, permit-
ting of readily inserting or removing the music charting of readily in
Penholder Design.-Dent L. Lydick, Quaker Oity, Ohio. This is a combined penholder
and paper cutter, whose lower stem portion is a tube, hile the upper portion represents a feather, having one straight marginal edge.
Nort.-Copies of any of the above patents will be urnished by Munn \& Co.. for 25 cents each. Please
end name of the patentee, title of inventicn, and date of this paper.

NEW BOOKS AND PUBLICATIONS.
Theory of Structures and Strengti
New York: John Wiley \& Sons. 1893. Pp. xv, 81\%. Price $\$ 7,50$.
The preface states that this work deals with that por-
tion of applied mechanics which has to do with the deign of structures. It therefore will be found to develop nto a very full and exhaustive treatise on the strength of material, truss and girder calculations, and all those matters which are now acquiring such importance in the
architectural and engineering worlds, where the use of ron and steel of known constants enables exact matheratical calculations to be applied to the practical dimenan of the sizes of the members of bridgesand building

Manuel Theorique, Instrumental et Pratique DElectrologie Medi-
cale. Par G. Trouve. Paris: Oc-
tave Doin, editeur. 1893. Pp. xxii, tave Doin, editeur.
78. Price 8 francs.
Gaston Trouve is well known as a constructor of a wide ial was invented for use in a medical application of elecricity. The present work is largely devoted to his own different apparatus, but notwithstanding that, his re-
searches and work have been so complete that it will be ound a very good treatise on the titular; subject. A ibliography is given, and numerous illustrations and bles of data give value to the
Engine Room Chat. By Robert Grim-
shaw M.E. New York: Practical shaw, M.E. New York: Practical 144. Price \$1.

A very graphic presentment of the engineer's difficulastic vein make this little work excellent reading. The uthor is known as a very spirited writer, and in this The advice he gives is excellent, and it really seems as if The advice he gives is excellent, and it really seems as if would make it a more suitable dose than when given in more serious shape.
Рното-Engraving. A practical treatise by modern photographic methods. By Carl Schraubstadter, Jr. 8vo.
Pp. 132, 60 engravings, cloth. PubPp. 132, 60 engravings, cloth. Pub-
lished by the author at St. Louis.
Price $\$ 3$.
This book will fill a want long felt for a treatise which will enable an amateur or professional photographer to make good printing blocks. Zinc etchingis by no means n easy process to work, and really requires practical instruction from a man in the business if the highest class
of work is to be attempted. With a book like Mr. tadter's it is possible to make excellent engrav wet plate negatives is well described, and full details of the preparation of the zinc, the etching and finishing are iven. Half tone work comes in for a share of attention, hough the subject is not as fully treated as it might be. he simple and double washout processes, as well as the welled gelatine process, are also described. Altogether of work is a very satisfactory addion to the of the subject, which is by no means meager
book which will be well received by amateurs.
Copy for Photo-Engraving. By Carl
Schraubstadter, Jr. St. Louis, Mo. Schraubstadter, Jr. St. Louis, Mo.
24 mo Pp. 25, paper. Price 25c. A valuable little work giving full information in regard to the paper, pens, and ink which will obtain the best Catalogue of American Localities
of Mineralis. By Edward Salisof Minerals. By Edward Salis-
bury Dana. New York: John This reprint of a very practical portion of Dana's Min-
 price.

Waterdale Researches; or, Fresh Light on the Dynamic Action and
PONDEROSITY OF MATTER. By Hall, Ltd. 1892. Pp. xvi, 293 .
The author has addressed a special prefacs to his
the discovery of some result other than the hypothesis of
attraction to account for the gravitation of one body toward another. This will indicate at once that the book is of the inconoclastic type, and shows that the author may be expected, in it, to remorselessly attack
modern scientific conceptions. He seems to have cov modern scientific conceptions. He seems to have covef is treatise fayorsus with about 100 pages of appendiz Domestic Science: A book for use in schools and for general reading.
(Second and revised edition.) James W. Talmage. Published by Georee Q. Cannon \& Sons Co. 1892.
Pp. 889 .
We have gone through this little work emanating from far-off Salt Lake City, and have been most pleasantly impressed by the selection of topics and the judicious way in which they are arranged and treated by the author.
He seems to have the talent oi making a readable and He seems to have the talent or making a readable and
consecutive work from materials which normally are consecutive work from materials which normally are considered of a somewhat disconnected nature. From
what we have seen of it we feel strongly inclined to reommend it to the general reade
The Coal Tar Colors. With especial reference to their injurious qualities sanitary and medico-legal investigadelphia: P. Blakiston, Son \&
1892. Pp. xii, 154. Price $\$ 1.50$. his interestin ing importance. The toxicology of the coal tar colors has hitherto been rather neglected. The use of such
colors not only in textile fabrics, but in food and elsecolors not only in textile fabrics, Dortance to understand what their effects upon the human system are. This work is done for us in Dr. Lethman's translation of

Electrical Experiments. A manual
of instructive amusement. By G. E.
Bonney. London : Whittaker \& Co.,
Paternoster Square
252 . Price 75 cents.
Much that is old, but for that reason none the less interesting, appears in this book. The usual topics of mag. electrolysis are given, and the work will doubtless be considerable interest to amateurs. Many of the cuts will
be recognized as old friends, yet they are all pertinent to be subject.
Any of the above books may be purchased through
this onfice. Send for new book catalogue just pubhis office. Send for new book catalogue just pub-
lished. MUNN \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN

BUILDING EDITION.

MARCH, 1893, NUMBER.-(No. 89.)

table of Contents.

Elegant plate in colors, showing an attractive dwelling at Springfield, Mass. . Floor plans and perspec.
tive elevations. Cost $\$ 9,750$ complete.
E. L. tive elevations. Cost \$9,750 comp
2. Plate in colors showing the residence of the Hon John J. Phelan, at Bridgeport, Conn. Two per
opective views and floor plans. Mr. A. H. Beers rchitect, Bridgeport, Conn. An excellent design Cost $\$ 6,000$ complete
3. A dwelling at Springfield, Mass., erected at a cost of lans. Messes. Granger \& Morse, architects, Spring field, Mass A model design.
4. A cottage erected near Brighton, Mass, at a cost of
$\$ 2,800$. Floor plans, perspective view, etc. A. w . Pease, architect.
5. Engravings and floor plans of a residence at Greenwich, Conn. A beautiful design in the Colonia
tyle of architecture. Mr. W. s. Knowles, archi style of architect
tect, New York.
6. A dwelling recently erected at Brookline Hills, Mass. at a cost of $\$ 5,300$ complete. A picturesque de.
sign.
Perspective elevation and floor plans. sign. Perspective elevation and floor plans
Messrs. Shepley, Ruton \& Coo idge, architects,
Boston.
7. Sketch of a tasteful design for a three-family cottage olel
8. Plans and elvations of an English cottage of quain and pleasing design.
9. View of the Fifth Avenue Theater, New York. splendid example of modern architecture in th
style of the Italian Renaissance. Together with portrait and biographical sketch of FrancisH. Kim ball, architect, New York City.
10. Misscellaneous contents : Paving estimates.-World'
Fair items.-Painting the World's Fair buildings.Frair items.-Painting the World's Fair buildings.Drawing instruments for colleges, etc., illustrated.-
A tasteful fireplace design, illustrated.-An improved steel spring hinge, illustrated. - Vegetable growth in water mains.-American machinery in London
-A foot radiator valve for hot water radiators, il lustrated.- New tin plate plant.-An improved furnace, illustrated.-Cincinnati woodworking ma chinery.-An improved.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies
25 cents. Forty large quarto pages, equal to about $2 \int$ cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practi cally, a large and splendid MAGAZINE of ArchitecTURE, richly adorned with elegant plates in colors and
with fine engravings, illustrating the most interesting with flne engravings, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of any Architectural Pablication in the world. Sold by all newsdealers.

MUNN \& CO., PUBlishers,

PBusiness and Persomal.
or earge for Insertion under this head is One Dollar a line

isements must be received at publication office as early

U. s." metal polish. Indianapolis. Samples free.

Shingle machinery. Trevor Mfg. Co., Lockport, N. versal and Centrifugal Grinding Machi
Pedrick \& Ayer, Philadelphia. Pa.
Jessop's steel has been in the market on
ars. Few tool makers not familiar with it.
Steel fingers hold and quickly grind drills true.
brill Grinder. T. Hall, 853 Broadway, New York.
The Improved Hydraultc Jacks, Punches, and Tu tow fexible shaft. Invented and mufactur ow Mfg. Co., Binghamton, N. Y. See adv., page 174. Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating
and sand pumping plants. Irvin Van Wie, Syracuse, N. Y. Portable engines and boilers. Yacht engines and Portable engines and boilers. Yacht engines and reet, New York.
For Sale-Patent on improved mine car. See illustrated notice on page 180. For terms
Guild \& Garrison, Brooklyn, N. Y., manufacture stean pumps, vacuum pumps, vacuum ap.
acid blowers, fliter press pumps, etc.
Split Pulleys at Low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting orks, Drinker St., Philadelphia, Pa
Perforated Metals of all kinds and for all purposes, general or special. Address, stating require
Harrington \& King Perforating Co., Chicago.
To Let-A suite of desirable offlces, adjacent to the apply to Munn \& Co., 361 Broadway, New York.
Hydrocarbon Burner (Meyer's patent) for burning crude petroleum under low pressure. See adv. page
31. Standard Oil Fuel Burner Co., Fort Plain, N. y. Fine Castings in Brass, Bronze, Composition (Gu
Metal), German Silver. Unequaled facilities. Jas. J Metal), German Silver. Unequaled facilities. Jas.
McKenna \& Bro., 424 and 426 East $23 d$ St., New York. For Sale-New 5 horse power upright engine, $5^{\prime \prime} \times 5^{\prime \prime}$ teed. Spot cash, only \$181. Wm. C. Codd, Balti Liore, Md. The best book for electricians and beginners in elec-
tricity is "Experimental Science," by Geo. M. Hopkins. By mail. \$4; Munn \& Co., publisbers, 361 Broadway, N. Y.
Competent persons who desire agencies for a new popular book. of ready sale, with handsome proftt, may
apply to Munn \& Co., Scientiflc American office, 361
Broadway For S
For Sale-Electro-plating dynamos. Three 12 inch
Weston for silver or nickel, one 8 inch Weston for silver, and one American Giant No. 4. Address Crane \&
Breed Mfg. Co. Cincinnati, Ohio. reed Mfg. Co., Cincinnati, Ohio.
Send for new and complete catalogue of Scientific New York. Free en application.

HINTS TO CORRESPONDENTS.

or in this department, eachly must alke either by lis limp lett
Special V ritten Information on matters of
personal rather than general interest cannot be

to may be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of
price.

Minerals sent for e marked or labeled.

(4757) N. N. writes : I have an artesian ell 612 feet deep, 5 inches diameter, and flows 190 gal lons of water a minute. How much power can I get from it, and in what way can I test the pressure of it with a
steam gauge? A. We should know the height that the low of water can be utilized for power, as well as th quantity. You can reduce the area with a 2 or 3 inc hole in a po tap the side of the pipe for a gauge and close the top for the total pressure. Can you give the vertical height of the stream from the open pipe? With the water
that is flowing, if you can get 20 feet fall, you can realize that is flowing, if you
$3 / 4$ of a horse power.
(4758) R. V. De B. writes: It is proposed o feed a reservoir from a lake situated on a higher level. The lay of the land is such that a canal with a slight but reservoir, the water in the canal running at the rate of say ne foot per second. Would there be any objection to the onstruction of an open canal, 3 feet deep, on account A. The question of climate should decide the matter of an open water ditch. In your climate slow-running water is liable to freeze from 2 to 3 feet thick during the ecessity for constant flow through the ditch, it will be at considerable risk to depend upon its supply during prolonged cold weather. If the cost is not a bar, we recommend cast iron pipe, or if within the range of size,
glazed tile pipe
no pressure.
(4759) E. R. F. asks: If the air con tained in a cylinder 8 inches long and $11 / 2$ in diameter is compressed into $1 / 8$ of that space, with the pressure of ow many atmospheres would it rest on a square inch of suddenly be released and escape from the cylinder through a tube 14 of an inch in diameter, and in its pas sage through the tube encounter a bullet weighing $\%$
ounce, what force in pounds would it exert on the bullet,
and how far and with what force or penetrating power would such a force drive it (the bullet)? A. The pres.
sure as stated will be about 150 pounds per square inch depending upon absorption of the heat of compressio and leakage. The isothermal pressure $=103$ pound $s=7$
atmospheres. The adiabatic pressure $=235$ pound $s=$ atmospheres. The adiabatic pressure $=235$ pounds $=1$
16 atmospheres. If the air were let into the air gun a the instant of compression, the pressure upon the bullet would be about 200 pounds per square inch and would eject the bullet with a velocity of about 500 feet per second having a range of from 100 to 200 yards, according to smoothness and length of barrel and facility for giving
free vent of the compressed air to the barrel. The force f impact would be that due to
(4760) W. K. M. asks: Has the process ossible to use it in the open air without fear of its tarnishing? Also please state the comparative weight and process of tempering aluminum has not been discovered except by alloying with other metals. It does not readil arnish in the open air. Aluminum, 26,000 pounds square inch tensile strength, weight 168 pounds per cubic foot; copper, 30,000 to 33,000 pounds per square inc ensile strength, weight 552 pounds per cubic foot ; steel, 70,000 to 90,000 pounds per square inch tensile strength, weight 490 pounds per cubic foot. See a valuable treatise
on "Aluminum: 1ts Manufacture, Properties, Alloys, and on "Aluminum: its Manufacture, Propertie
Working," by J. W. Richards, $\$ 5$ mailed.
(4761) F. W. W. says : I have a few hives of bees which I keep for pleasure. Ever since
first had them, my extracted or strained honey has susared or crystallized. This takes away its fine Havor, as some of the sugar will not melt on being heated to the oiling point of water. I have kept this honey in a warm the desired result. The honey is extracted by removing the caps of the cells and whirling the combs in a honey extractor. My neighbor, who also has a number of hives is troubled in the same manner. The honey was ex-
tracted in July. Do you know of any way of preventing this crystallizing without detracting from the value of he honey? A. There is a possibility that your bees hav Otherwise the centrifugal extractor may carry too much air through it, evaporating part of the moisture. Try moistening the air of the extracting room with steam while the work is being done. A boiling pan of wate may answer the purpose.
(4762) C. G. C. asks: Will there be a gain (ff so, how much ?) in mixing hot air (furnace gases with steam in working an ejector (pump) to lift col
water on high lifts to prevent condensation of steam What proportion of hot air would be most useful? A
Hot air mixed with steam in an ejector is of but little o Hot air mixed with steam in an ejector is of but little or
no value, and without pressure decreases its working no value, and without pressure decreases its working
power, and in any quantity nearly destroys its lifting ower. The power of an ejector to lift and force water is in the property of steam to condense and disappear as
vapor at the instant of imparting its velocity to the water. Air mixed with the steam retains its gaseous pies the space that would otherwise be occupied by the water jet. Air alone is of little value in a wa
ejector. Will soon publish something on ejectors.
(4763) W. C. R. asks : How can I count the flaps of a small bird's (sparrow) wings, and how may rregular in form? A. You can only approximate the wing vibrations of small birds by eye comparison with a wing itted to a vibrating mechanism with a variable power and registering index. The area may be computed by sec-
tional divisions of a drawing to be made exactly of the tional divisions of a drawing
(4764) Subscriber asks: Can wood car . wood carbon was the matery carbon in an are in light electric arc by Sir Humphry Davy, but it is not as good The old authorities used to recommend saturating with mercury to improve its conductivity. 2. Is ther any way of changing heat direct into electricity? A
The nearest approach to the direct conversion of hea into electricity is found in the thermo-electric battery.
(4765) H. G. asks : What explosive pow der when mixed with powdered magnesium will cause a purposes? A. Magnesium powder, 6 ounces; potassium chlorate, 12 ounces; antimony sulphide, 2 ounces; 75 to
0 grains of the powder should be used.

Magnesium 40 p Permanganate of potassium........ 40 Peroxide of barium

Peroxide of barium................. 20
(4766) A. D. M.-A good cement for of spirits of camphor, and 3 to 4 parts of 90 per cen alcohol. The cement should be applied warm, and the entirely evaporated.
(4767) G. M. R.--The designs for watch orks are made on an enlarged scale, generally ten times with a decimal makes the actual dimension expresse with a decimal point one digit to the left. There is no
(4768) E. R. S.
(4768) E. R. S. asks : 1. What book is there on friction, suitable for a young student, yet giving
practical calculations, such, for instance, as finding the practical calculations, such, for instance, as finding th a required speed (the dimensions of the shaft and its weight being known)? A. We recommend Thurston'
work on "Friction and Lost Work in Machinery," $\$ 3$ mailed. Also our Supplement, Nos. 572 to 576 , for an admirable series of articles on friction. 2. If the resist ance of the air is not taken into account, does the speed with which an azle or shaft will revolve in its bearings vary as the horse power applied ? A. Friction varies
with the speed, and relatively decreases in proportion to the increase of work in revolving machinery. 3. What book is there, showing how to calculate an electric mo culations are given in Sloane's "Arithmetic of Flec
tricity," $\$ 1$ by mail. Multiply the desired horse power by 746 , divide by the potential difference at your disposal.
This gives you the amperage. Then calculate on the This gives you the amperage. The
lines of a dynamo of similar factors.
(4769) R.-No one has the right to make patented article for his own use without consent of the patentee.
(4770) O. M. W. writes : I have built a mall electric machine, windings and pattern after the 8 ght dynamo described in the Scientific American, iameter; armature $31 / 4$ inches long, $23-16$ inches in, magnet coils 18 wire gauge; armature No. 20; 16 commutator bars; each armature coil six turns per layer, two layers deep. As a motor it seems to be a success, but as
a dynamo a complete failure; can only get a current of even-tenths ampere up to 1800 revolutions, above that speed less. What is the trouble? What sized wire and what manner of winding can I get the largest amperage as a dynamo, using very soft cast iron magnet or very oft forged iron magnets? Magnets and armature size as above. A. The iron used in a field magnet hould always be as solt as possible. If the iron in your magnet is hard, it accounts for your failure. With
No. 18 wire on the field magnet you should use No. 18 wire on the field magnet you should use
your machine as a series wound machine. If you find the resistance is too great with the two arms of the magnet in series, you can put these in parallel. If you de-
sire to use the machine as a shunt wound machine, the resistance of the field magnet is not great enough. Probably the winding of the field magnet for a shunt machine ould be of No. 22, or possibly No. 24 wire.
(4771) W. H. D. writes: I want to know bout the resistance necessary for a $1 / 8$ horse power mo-
tor when running it with fan on a 500 volt T. H. street tor when running it with fan on a 500 volt T. H. street
railway circuit, with amperage bearing as high as 240 . railway circuit, with amperage bearing as high as 240 .
You will do me a kind favor by letting me know through your valuable paper how many ohms resistance it will wate. A. An electrical horse power is 746 watts. A in amperes equals the electromotive force divided by the resistance. You have an electromotive force of 500 volts; for $1 / 8$ horse power you require 93 watts. You will thereore need about 5 amperes of current, and a consequence your machine will need to have a resistance of 100 ohms. (4772) W. A. S. writes : I have been trying to smelt tin cans, tin clippings, and all kinds of rough iron scrap, in a common straight cupola such as all foundries use, and have been unable to get any iron. There is a great quantity of slag, which is very thick and let any wind through. We have not used anything for flux. A. You cannot run down wrought iron scrap in a cupola. It shoul x be piled in masses of 100 pounds or a power hammer. The tin scrap may be used in small quantities with cast iron in the cupola.
(4773) C. E. B. asks how big a space he needs for the gas in a gas engine with a cylinder $11 / 2$
inches in diameter and a stroke of $21 /$ inches, also how big space he requires for the compression of the air. A A compression gas engine uses about 1 part of gas to 7 or 8 of air. We think you will find it extremely difficult to operate an engine of the size given. The space for the
gas and air varies with the system tupon which you progas and air varies with the system tpon which you propose to run a motor. If you are running it without wash-
ing out the cylinder with air before each explosion, you ing out the cylinder with air before each explosion, you
will need a space twice as large as that required for the will need a space twice as large as that required for
combustible mixture. If, however, you wash the cylincontain the combustible mixture be only large enoug
(4774) M. T. B.-Your proposed improvement in telescopes would have no value, as the furthermore, each reflection and each refraction of the lightabsorbs an appreciable quantity, so that vour tele scope would lack in illumination as well as defining
(4775) W. M. C.-(1) First select a clean perfectly fitting cork for each bottle. Then melt your alve and pour it into the bottles from a vessel provided ith a spout, taking care in doing so not to allow any or There is nothing dangerous in the use of the inhalations ecommended to you for the asthma. (3) You will find a aluable article on the "Etiology and Cure of Asthma Scientific American Supplement, No. 589. Price
(4776) E. F. S. writes: I was in a store the other day, and saw a clerk take a cotton string about
six or eight inches long (common wrapping twine) and six or eight inches long (common wrapping twine) and
stick it to a glass showcase on the inside with a piece of set paper across the middle and let both ends hang down
ser alike, but opposite each other, from the round side of the howcase. Then he rubbed the back of his hand on the utside of the glass, and the strings began to move backward and forward until the one nearest the hand hit the glass and stuck to it; the other end stood out the other way, and became rigid. Some said that it was electricity, and some magnetism. Please tell us what it was. A. The results which you describe are probably due to frictional
electricity
generated by rubbing the glass with the hand.
(4777) A. A. asks what size wire to wind the four cores of a small shunt wound dynamo, the cores
of which are 4 inches by 2 inches by $7 / 8$ inch. I wish to ind these with such wire as will, when wound to about -16 inch thick all over, permit about 1 ampere of urrent only to pass through the coils. The armature wich I expect to get 4 amperes and 50 volts. A. You will need about 1,000 feet of No. 27 wire for your field magnet.
(4778) T. B. writes : I have a magnet at I wish to wind to obtain best results. The size of the ize and quantity of wire shall I wind on bobbins? A. Wind each core of your magnet until the thickness of oor wire equals the thickness of the core. If you intend to use the magnet for local work, No. 24 magnet
(4779) G. A. G. asks : How far will the
from one trolley wire to the other, supposing the wires to
be cut, and how far would the electricity I extended an additional wire from the trolley wire oward the ground or rail? A. The current on a trolley will not jump across a space until the wires are first placed in contact and then separated so as to form an of probably two or three inches might be produced.
(4780) G. T. W. asks : Are there two inds of electricity? How are the batteries made they ase on railroads for telegraphy? They are not gravity alt. A. The idea of two kinds of of some kind of lod 10 of f now as positive and negativeelectricity. The satterie o which you refer are probably the Edison Lalande batteries. You will find a description of this battery in Surlement, No. 792.
(4781) C. M. asks: 1. Regarding the peed of electricity, how fast does it travel through or nder different circumstances. In the Atlantic cable it is very much retarded, so that it requires two or tbree seconds to send a signal. The speed of electricity under that of light, viz., 185,000 miles per second. 2ame as
2. Can water be compressed? A. Water can be slightly com-
(4782) J. B. asks: What pressure of team is carried on the boilers of passenger steamers ne ocean, using triple and quadruple expansion con ensing engines? A. Steam pressures on boilers of large (4783) P. \& M. ask: What link in a moving train of 20 cars has the most weight on it ? Please
(4784) A. W. B. asks the method used adjusting the cork used in making the joints of cerain wood wind instruments, as the clarinet, flute, and instrus. A. The corks for flutes, clarinets, and other They are secured to the means of thin tubular cutters. fichromatized glue or marine glue.
(4785) H. W. R. asks : 1. For recipe for the most durable whitewash for trees. Also for woo ences, if different. A. For a durable whitewash for boiling water. Add to the cream 4 pounds sulphate of inc and 2 pounds common salt disolved in water. Make the mixture thin enough to use with the brush. If a light brown color is required, add a little hydraulic ce ment, ocher for yellow and Venetian red for pink or red . How can we best make cinders from our boilers availble for durable walks? If to be mixed with cement walks of of cement and in what proportion? A. For and ond hydraulic ce sand. Lay coarse cinders on the bottom, roll or ram hard and finish with the cement mixture from one to two ches think, as you can afford.
(4786) W. J. M. asks : What government olds the fastost cruiser and the highest speed attained ine government, 22 knots, six hours

Replies to Enquiries
The following replies relate to enquiries published in the Sc
(4687) Answering No. 4687, the method of winding Thomson-Houston spherical armatures is as are put from one head tothe other and these wound with iron wire, forming an oblate spheroid. An insulating covering is put on and the surface divided into six sections by wooden pegs. Beginining at end of shaft opposite from the armature, one half of No. 1 coil is wound in sections opposite one another. Armature is turned next 120° and $1 / 2$ of No. 2 coil wound. Turn 120° and wind whole of No. 3 coil. Turn 122° and wind remainder
of No. 1. Turn 122° and wind remainder of No. 2. Connect all of inside ends together and carry outgide ends to commutator segments. A $9 \cdot 6 \mathrm{~A} .1250 \mathrm{~V}$. dynamo of this make has 10 ohms No. 7 B. and S. wire on field magnets and 12,075 feet No. 12 B. and S. on armature, the resist ance of the coils averaging about $13 \cdot 25 \mathrm{ohms}$, two alway being in series. such an larmature weighs about 520 pounds. J. G. (4693) will, I think, find that article he efers to in the Electrical World. It was published in
1889 or thereabout, in the early part of the year.-C. 889 or thereabout, in the early part of the year.-C
M. D. M. D

TO INVENTORS

An experience of forty-four years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unynopsis of the for procuring patents everywhere. A foreign countries may be had on application, and persons ontemplating the securing of patents, either at home or broad, are invited to write to this office for prices ensive facilities for eondnce ing the business. Addres IUNN \& CO., office Scientific American, 361 Broad

INDEX OF INVENTIONS

 United States were Granted March 14, 1893,
AND EACH BEARING THAT DATE

[See noteatend of list about copies of these patents.]

y. N . Shat Beebive, L. A. Aspinwaiii.
Beer cooler, R. Ledig.....

 Bracket. See Shement brack.t. G. Harding...........
Brake. See
Bar brake.
Brand mash and composition for same, making
M. Wool
 Broom J. A. A. Cook. Cok
Bridul bit. C. Whilips.
Brush, C.'Smith.

 | Butto |
| :--- | :--- |
| Cable |
| Cable |
| Cake |
| Came |

Shakespeare, J................iume.
Cane any forming stoon, combinied , A. A. Nixon.
Cap making machine, H. Schaake.
Car brake, G.J. Ferguson
Car bufer and end sill, J. Timms...

Collar, horse, H. W. . Ross.
Combination lo.....
Commutator
Commutator for daynamo-electric......................................

Cresting, rouping. M. M. Vance.
Crupper, Baker \& Doris....
Cuttivator, B. F. Coons.
cut-out and

ter.
Damper for household staves, A. Flechtner
Damper, furnace pipe, F. S.
Demper, stove F. F. F Farwell.
Dental chai, A.
Gould

wood i....................................
Embroidering machine.
Emulision and making thesame, W. S. Barnard.:
Engine. See Carding engine. Locomotive en-

Extractor. See Sump extractor.
Fabrict
Fasten paper cutter, Ging device, M. Trisen. Burbank.

Fend
Fifth
Fifle
Fire
Fire
Fire
Fire
Fire
Fire
Floo
Floor
Flue
Fluid
Fuid
Fold
Fol
Fold
Frait
Fruit
Frirn

ata
\#,
\%
发
n journal be
mpering

2んдvertisements．

Patent Foot Power Machinery Woomplete Outfits．

 T．A．G．THETVSGARORA，ADVEKC
 WELL DRILLING MACHINERY，
wILLIAMAS BROTHERS，
ITHACA，N．Y．g
Mounted and on Sills，for
deep or shallow wells，
with steam or horse
power．
Send for
catalogue． OIL WELL SUPPLY CO．

IMPROVED ATHES MODERN ENGINE LATAES DESIGNS

TRADES UNIONS，THE TENDENCY

 In all shapes．Manufactured by
Oowles Electric Smelting and Aluminam Oo．，
Correspondence solicited．\quad LOCKPORT，N．Y．
WM．GRAVER TANK WORKS，
 Manlucturarer of f fron and Stel STORAGE TANKS 3d Floor，Rookerery Bldg． chicago，ill． ALUMINUM：IS USES AND AP
 New Full Mounted Lightning Screw Plate．

Wiloy \＆Russell Mfy．Co．，Oreenfeld，Maso．，U．s．A

1 CHAPMAN VALVE MANUFACTURING COMPANY， For steam，water，gas，AMMONA，GIL，ACID，Etc．；also

VELOCITY OF ICE BOATS．A COL－

V VANDUZEN STEAM PUMP
Pumb iss Mivit worili

\％ELECTRICITY BELLS，${ }^{\text {send for our special Price List }}$ ， ELECTRICAL SUPPLIES， STANLEY \＆PATTERSON Eletrical House Furnishings，
E2\＆ 34 Frankfort St．，N．Y．City．
 STEVENS PATENT
DEPTH GAUGE．NO． 85
Price，by mail． 50 Cents．
 ITeal and Leauer spring Dlvi－ Tools．
J．STEV ENS A RMM \＆TOOL
CO．P．O．Box 280 Chicopee Falls，Mass

Undeveloped Wealth． The edge of an invention crops out of the mechanical means of following it up． He needs a shop to go to or write to．We have a primer to send．
The Jones Brothers Electric Co．Cin＇Tr，O．

エエアヨ

The Most Popular Scientific Paper in the World Only 83.00 a Year，Including Postage．
Weekly-52 Nnmbers a Year.

This widely circulated and splendidy illustrated paper is published weekly．Every number con six－ teen pages of useful information and a large n mber or
original engravings of new inventions and discoveries， representing Engineering Works，Steam Machinery，
New Inventions，Novelties in Mechanics， New inventions，Novelties in Mechanics，Manufactures，
Chemistry，Electricity Telegraphy，Photography，Archi－ tecture，Agriculture，Horticultipe，Natoral History， etc．Complete list of patents each week
Terms of Subscription．－One copy of the Scien－ IIIC AMERICAN will be sent for one year－ 52 numbers－
postage prepaid，to any subscriber in the United States， postage prepaid，to any subscriber in the United States，
Canada，or Mexico，on receipt of three dollars by the Canada，or Mexico，on receipt of three dollars by the
publishers ；six months，$\$ 1.50$ ；three months， 81.00 ． Clubs．－Special rates for several names，and to Post
Masters．Write for particulars． Masters．Write for particulars． The safest way to remit is by Postal Order，Draft，or
Express Money Order．Money carefully placed inside Express Money Order．Money carefully placed inside
of envelopes，securely sealed，and correctly addressed， seldom goes astray，but is at the sender＇s risk．Address
all letters and make all orders，drafts，etc．payable to letters and make all orders，drafts，etc．，payable to
MUNN \＆CO．， $\mathbf{3 6 1}$ Broadway，New Yorls．

历cientific Gucricat ฐupplement This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN，but is uniform therewith in size， SCIENTIMIC AMERICAN，butisuniform therewh full of en－ every number containich are taken from foreign papers
gravings，many of wich and accompanied with translated descriptions．THE
ant
Scr
anciric AMERICAN SUPPLEMENT is published week－ Scinimific American Supplement is published week－
ly，and includes a very wide range of contents．It pre－ sents the most recent papers by eminent writers in all
the principal departments of Science and the Useful Arts，embracing Biology，Geology，Mineralogy，Natural History，Geography，Archæology，Astronomy Chemis－ try，Electricity，Light，Heat，Mechanical Engineering，
Steam and Railway Engineering，Mining，Ship Building， Marine Engineering，Photography，Technology，Manu－
facturing Industries，Sanitary Engineering，Agriculture facturing Industries，Sanitary Engineering，Agr，Medicine，
Horticulture，Domestic Economy，Biography，M etc．A vast amount of fresh and valuable information
obtainable in no other publication． nd Manve important Engineering work，are illustrated and described in the SUPPLEMENT．
Price for the SUPPlement for the United States， Canada，and Mexico， 5.00 a year；or one copy of the
ScIENTIFIC AMERICAN and one copy of the SUPPLE－ MENT，both mailed for one year to one address for $\$ 7.00$ ． Single copies， 10 cents．Address and remit by postalorder， press money order，or check，
MUNN \＆CO, $\mathbf{3 6 1}$ Bren
gruilding（14ditidu．
The SCIENTIFIC American Architectis AND Single copies， 25 cents．Forty large quarto pages，equa to about two hundred ordfhary book pages；forming a large and splendid Magazine of Architecture，richly adorned with elegant plates in colors，and with other fine
engravings；ilustrating the most interesting examples engravings；iliustrating the most interesting examples
of modern architectural construction and allied subjeeta． A special feature is the presentation in each number of a variety of the latest and best plans for private resi－
ances，city and country，including those of very mod dences，city and country，including those of very mod－
erate cost as well as the more expensive．Drawings in erate cost as well as the more expensive．Drawings in Plans，Specifications，Sheets of Details，Estimates，etc． The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architectural publication in the world．Sold by all news－ dealers．$\$ 2.50 \mathrm{a}$

MUNN \＆CO．，Publishers

The Story of the
Atlantic

Telegraph．

CHARLES SCRIBNER＇S SONS，

Yort

NO BUYERE
SEEGER \＆GUERNSEY＇S
Cyclopedia of the Manutactures and Products o the United States．

 One vol．， 1500 pages．Price，\＄10，carriage paid．
THE SEEGER \＆GUERNSEY COMPA THE SEEGER \＆GUERNSEY COMP

VOLNEY W．MASON \＆CU． FRICTION POLLETS，CLDTCHES，and ELEVATORS

W

UNRIVALED	
Excellence of	
Design and	
Construction，	～＊＊
Simplicity，	
Easy Operation，	Adopted as the Official Writing Machine of the
Speed，	World＇s Columbian Exposition．
Durability．	f，Seamans \＆Ben
Send for Catalogue．	327 BROADWAY，NEW YORK

No one ever wrote 1000 Letters an Hour， EDISON MIMEOGRAPH

Canning Machinery Outfits Complete． Pumps，Can Wipers，Can
Teesters，Labeling Machines， PRESSES AND DIES．
B URT MF G．CO． The Monitor INCUBATOR．

 M
PHOTO SMOKE CIGAR HOLDER

INVENTIONS

ORDNANCE OFFLCES，WAR DEPABTMENT

PROPDSALS．

Moodie＇s Gold Mining and Explora－ tion Company，Limited．
Transmission of Electrical Power． TO CONTR A CTORS．
 Africhan hepubild of oertain MACHNERY，PLANT．
etc．，of the puryose of horse power，by Electricity，to various Sub－comparies． Specifcation and Conditions of Contract，etc．，can be
obtained from，and Plans seen，at the following places： OFFICES OF THE COMPANY
 Johannesburg（Messrs．Red wood \＆Watson）

 C．J．MACFARLANE，Secretary．

BOOKS．

 Electricity Simplifed．The aimof this book isto
 Electro Depo．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 1.008$

戸卫卫戸.

Our entirely new Catalogue of Scientifc and Techni－
cal Books，containing over ${ }^{\text {Ono }}$（itles，and embracink
 MUNN \＆CO．，
Publishers of the＂Scientific American，＂ 361 Brọadway，New York．

Əhdertisements.

Victor Bicycles

Are first in tires and improvements. The best pneumatic with inner tubes remov-
able through the rim. If you are going ride why not ride the best?
Victor catalog is yours for the asking.
Overman Wheel Co., Boston, Washing-
n, Denver, San Francisco. A. G. Spalding

 Patented May 10, July 19, 1887 . Oct. 29, 1889
aug. 19, Oct. 21, 1890; A pril Aug. 19, Oct.
July 19, 1892.
Its Advantages are:
2. Uniform and wide slot.
3. Requires the us
wood.
wiser
5. Centralized point.
6. Superior holding power.
7. The screw being Cold Forged. instead
of Cut, leaves on its entire surface ${ }_{\text {a }}$
metalic skin.

AMERICANSCREW•CO. PROVIDENCE, R. I.

TTBENDFOR SHECATALOGUE TUBING, WASHERS Made Hard or Soft. A HORN LIKE MATERAL. LIGHTAND STRON
FOR GENERAL USEIM THE MACHIME SHOP. CAN BE WORKED LIKE AMETAL.
DELAWARE HARD FIBRE CO. WILMINGTON DEL.

THE COPYING PAD-HOW TO MAKE and how to use, with an engraving. Practical directions
ho toprepaet the gelatine pad, and alsothe aniline ink
by which the conieg are made how to apply the written

Link-Belt Machinery $\mathbf{C o}$ Link-Belting and Sprocket Whee Elevators and Oonveyors Rope Transmissions Special Mining Machinery special Woodworking Machinery Gear, Pulley, Sheave \& Fly Wheel
Castings. Send for Circular "C."

Good living
doesn't come from riches. It comes first, and brings riches. While the poor man walks, he will stay poor. His prosperity begins when he rides, and eats a good dinner, and carries a good watch. A "poor" watch is the very badge of poverty, worse than none; but either condition is too expensive for a poor man : he can't afford to lose the time of day. Keeping that under his thumb, he may yet be wealthy. Then comes true economy: diamonds for his wife; a man to guard them. But still, for his own pocket, the same trusty watch that "made" him: the quick $=$ winding Waterbury.
All styles at all jewelers. $\$_{4}$ to $\$ 15$. A pamphlet sent free of charge on application, con-
 Assignments, Rejected Cases. Hints on the sale o
Patents, etc.
We also
tent Laws, sho of charge, a synopsis of Foreign Pa the cost and method of securing Patentsin in all the principal countries of the world.
MUNN \& CO. Solicitors of Patents,

LOVELL

DIAMOND CYCLES
HIGHEST GRADE. LOWEST PRICES.
FOR LADIES OR GENTLEMEN

John P. Lovell Arms Co., Manufacturers BOSTON, MASS.

KODAK FILMS.
Our New Films are giving perfect satisfaction They are highly sensitive, and repeated tests show that tuey rotain this sensitiveness as well
as glass phates. No other flms are so free from as glass plates. No other films are so free from
imperfections; none so uniform; none so relable. Our film doesn't frill.

Eastman Kodak Co.
 Rochester, N. \mathbf{y}. THE STIRLING BOILER is economical in fuel, repairs, and
absolutely safe at high pressure. absolutely safe at high pressure.
Practically self-cleaning. HE STIRLING COMPANY, genneral offices: ULLMAN BUILDING, OHIOAGO

The Smith Premier Typewriter

Easiest Running, and Nearly
without Soiling the Hands.
All type cleaned in Ten Seconds without Soing the Hands.
The Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A.
James Smith Woolen Machinery Co. THE HUB FRIGTION GLUTCH. POWER TRANSMISSION MACHINERY. 411 to 421 Race Street, PHILADELPHIA, PA NEW DOUBLE LEVER HUB FRICTION CLUTCH.
The Best Clutch Pulley in existence for Electric Light Plants and all Machinery
requiring great speed. The most simple, effective, durable, and economical Clutch on the market. Made in sizes to transmit from two ap to one thousand h. p. The
Hub Friction Clutch is in use in all parts of the Hub Friction Clutch is in use in all parts of the United States. More than 12,000 sold

ASTRONOMY Poole Bros. Celestial Planisphere
Felial Handbook just published.

A Great Field for Manufacturers and Factories. Portland is its great industrial center. Her perfect water power unequal ed anywhere, has every facility of location for Mills and Factories. Is situated on tide water at the terminal connecting point of Railroad and Sea and River navigation. Full information furnished free by the Oregon State Board of Immigration, Portland, Oregon

CNE PRICE COLUMBIAS
 He who would own a Columbia pays the price of it - the same \int price for everybody-Keep both "eyes on the man who has a f don't know what you're getting -the world knows Columbias.
 All About Columbias,-free at Columbia agencies, or sent by 1 mail for two two-cent stamps. 4 York, Chicago, Hartford.

ELECTRO VAPOR ENGINE.
gas or gasoline for fuel.
NO BOILER. NO FIKE. NO DANGER. NO ENGINEER.

THOMAS KANE \& CO., CHICAGO, ILL.

Tha Amaivar Bell Taphoma Comatioy

I25 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent No. 186,787, granted to Alexander Graham Bell, January 30, 1877, the scope of which the United States in the following terms:
"The patent itself is for the mechanical structure of an electric telephone to be used to produce the electrical action
on which the first patent rests. The third claim is for the use in such instruments of a diaphragm, made of a plate of iron or steel, or other material capable of inductive action; the fifth, of a permanent magnet constructed as described, with a coil upon the end or ends nearest the plate; the sixth, of a sounding box as described; the seventh, of a speaking or hearing tube as described for conveying the sounds; and the eighth, of a permanent magnet and plate combined. The claim is not for these several things in and of themselves, but for an electric telephone in the construction of which these things or any of them are used."
This Company also owns Letters Patent No. 463,569 , granted to Emile Beriner, November 17, 1891, for a Combined Telegraph and Telephone; and controls Letters Patent No. 474,231, granted to Thomas A. Edison, May 3, 1892, for a Speaking Telegraph, which cover fundamental inventions and embrace all forms of microphone transmitters and of carbon telephones.
THE SIMPLEX TYPEWRITER
$\$ 250$

yr mail orexpresps
prepaid on receipt
of $\$ 270$. See Sci.
PRTNTLINC INKE:

