
a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, JULY 30, 1892.	${ }_{\text {Werkite }}$

THE DISAPPEARING TURRET FOR COAST-DEFENSE GUNS.-Fig. 1.-[See page 69.]

Srientific gmmerican.

HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors

 published weekly at
No. 361 BROADWAY, NEW YORK

O. D. MUNN. A. E. BEACH.

terms for the scientific american

 One cops, one year, for the U. S. S. .anad or Meriro... MUNN \& CO., obi Broad way, corner of Frauklin Street, New York.

The Scientific American supplement

Building Edition.

Spanish Edition of the sicientifc American.

 MUNN \& CO., Publishers,
 Co Reaers are specially requested to notify the
Ty Aalure dellay, or irrexularity in receipt of papers.

NEW YORK, SATURDAY, JULY 30, 1892.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 865
For the Week Ending July 30, 1892.
Price 10 cents. For sale by all newsdealers

1. AERONAUTICS.-Aviation--An interesting lecture upon arorial
 II. ARCHTEETURE. Mud A materiar in Persian and Eantern

 For irst instaliment
of life in Hollare
Holland.

XII. TECHNOLOGY-Tablet or Compressed Tea.-A new export

13819
\qquad
\qquad
\qquad
\qquad

is perpetdal motion possibles

The reply to this question depends entirely upon the limitations put upon the term "perpetual motion." If we understand these words to mean a machine that would start itself, furnish power for doing work, and continue in operation so long as required, or until worn out, without the assistance of any external agency, we may say with the utmost confidence, perpetual motion is impossible.
If, on the other hand, we define perpetual motion as a machine dependent for its action upon the variability of one or more of the forces of nature, we may say per petual motion is possible. The thermal motor, in which expansion and contraction are produced by natural changes of temperature, is an example of a motor of this kind. In this machine, the changes in volume in a body are made to store energy to be used in continuous regular work. A perpetual clock has been made on this principle.
Sun motors of various forms have been devised, which might be used in connection with storage mechanism for furnishing power continuously. A sun motor of sufficient size with a suitable storage system, could furnish power the year round in almost any part of the world ; success being a question of hours of sun shine and capacities of motor and storage system.
Of course, what is said with regard to the sun motor applies with equal force to water wheels, windmills tide and wave motors. Without doubt, all of these prime movers will come more and more into use as time advances, and storage systems are perfected. Still they do not satisfy the seeker for the ideal perpetual motion. This should fill the conditions first mentioned; but, as we have already said, this is an impossibility.
The first and strongest reason for making this positive assertion in regard to the ideal perpetual motion is found in the fact that never in the history of man has he been able to make a single atom of matter, or create the smallest fraction of a unit of energy.
All the works of man, of whatever name or nature have been constructed of materials already in existence, and all the work done by man and his enginery has been accomplished by using current natural forces, such as the gravitation of water, the power of the wind, and the heat energy of the sun, or the stored energy of coal and other fuels or of chemicals.
Having the command of some of nature's forces, inventors have sought to circumvent nature's laws, so as to make water "run up hill," to cause masses of matter to act alternately in accordance with and in oppo sition to the law of gravitation; in short, to deprive matter of gravity while ascending, and cause it to act with the full force of gravity while descending.
Among perpetual motion devices of this class, pro-
posed and tried, is the one having weights arranged on a wheel in such a way as to fall outwardly and in crease the leverage on one side of the wheel, while they fold in and diminish the leverage on the opposite side of the wheel. This machine, it is needless to say, has never moved on its own account, although it has become classic.
In this device, the superior number of weights on the side where the leverage is least exactly balances the weights at the ends of the extended arms. This is true of all the modifications of this type of ma chine.
A favorite device of the perpetual motion inventor is wheel and count abalanced by spring on which gravity has no effect. Such weights being balanced are sup posed to be capable of being moved upwardly in opposition to gravity without the expenditure of much power. After having been elevated, the weight, while maintaining its position relative to the wheel, descends, causing the rotation of the wheel. After it has done its work the weight must be restored to its original position before the operation can be repeated, and here
comes the rub. Many very ingenious plans have been tried to accomplish this, but the result has always been a perfect balance.
In another device the attempt is made to utilize the Archimedean screw to elevate water to be used for driving itself. The inventors in this case fail to no tice that although the water is running down an in cline in the screw, this incline is always being elevated, so that the water must be actually carried up an inclined plane by a force as great as it would exert if allowed to descend through the same distance. In all these cases friction is left out of the question.
Capillarity has been tried as a means of elevating a liquid to be used as a motive agent, but in this case as in all others, the defeating element is presentthe surface tension of the liquid prevents detaching ductor.
It seems strange that in these days the proposition should be made to run an electric motor with a current from a dynamo and to operate the dynamo by the as this proposition is, it has often been broached in subject shows that the losses incurred in transform
ing the current into motive power, and vice versa, are such as to defeat any attempts of this kind.
The permanent magnet appears to have suggested itself to many as a possible solution of the problem, and experimenters have searched the world over to find an insulator of magnetism to act as a cut-off for releasing the armature after it has been drawn forward toward the magnet; but no such material has been found. Nature, in this case as in all others, refuses to yield energy without its full equivalent of energy in some other form, and the law of the conservation of energy is found to hold good.
We have mentioned but a few of the multitude of devices constructed with the hope, not to say expectation, of producing a self-moving machine by utilizing nature's constant and unvarying forces.
Although the efforts of inventors in this direction have been barren of results of the kind aimed at, yet their labor has not been fruitless; many experimenters who considered actual trial better than any amount of study or calculation have learned that "knowledge comes of experience," and while discovering the fallacy of the ideal perpetual motion, they have been led to consider more practical subjects; making inventions which have proved beneficial to the world and profitable to themselves.
If the inventor of machines intended to se selfmoving will not accede to Newton's statement that "action and reaction are equal and opposite" (third law of motion), and that there is a perfect and wonderful balance in the forces of nature, let him thoroughly ucquaint himself with the principles of physics, and he will erelong be able to say with certainty just how the balance will occur in any and every perpetual motion machine of the ideal kind, and admit that he has not the power of creating energy.

the camera at homestead.

During the recent troubles at the Carnegie iron works, a mob broke down a fence and entered upon the premises to resist the landing, on the company's grounds, of men employed and sent there by the company, and who were being conveyed to their destination by boats on the Monongahela River. Twelve men were killed outright and more than a hundred wounded. Who were participators in this murderous engagement? Who first violated the law, by breaking down the fence and entering upon the grounds of the Carnegie company? Who carried arms, and who used them, in the attack upon the boats which followed? These are questions which are now to come before the courts of Pennsylvania, in a number of cases which have been instituted against the participants in the bloody work which took place at the Carnegie works in the early morning of the 6th of July last.
It is said the company has evidence sufficient to convict against more than a thousand of the active participants, of whom more than two hundred were armed with guns. But what is the character of this evidence against so large a body of men engaged in a fierce, in a bloody riot, when everything was in a state of the greatest excitement? It takes but a line to state it, and at the same time afford unquestionable proof of its high character: "We had detectives with cameras in the mill at the time of the shooting," says Secretary Lovejoy, of the Carnegie company. It is always diffcult to obtain competent witnesses of exciting frays, and those who know the most, either from interest or fear of the consequences, invariably have phenomenally bad memories. But the camera knows neither fear nor favor, never becomes excited, and it brings out a multiplicity of details. Probably by no ther means could such effective corroborative evidence be obtained in cases of this kind.
In the Homestead case the rioters were scattered all over the grounds near the landing place, within the company's premises, armed with guns and other weapons. They were behind fences, in the trees, and occupying other positions of advantage as would have been done in an actual battle. As Judge Magee said at the first hearing, "There were sharpshooters with rifles in the field, picking off men." But to prove all this according to the old methods, with all the contradictory witnesses that would be offered, would be obviously impracticable. The instantaneous photograph emoves the difficulty.
The "camera fiend," as the amateur photographer is sometimes styled, is now almost omnipresent, and one can never be sure when in any public place, in a crowd, or at a scene of excitement, but his person and actions, with all the surroundings, will become the subject of a picture which, whether he might like it or not, would have the stamp of undeniable truth fulness. The disclosures to be made on the trials, as to how well the camera did its work at Homestead, will be awaited with much interest.

THE amount of coloring matter in a pound of coal is enormous. It will yield enough magenta to color 500 yards of flannel, vermilion for 2,560 yards, aurine for 120 yards, and alizarine sufficient for 155 yards of Turkey red cloth.

POSITION OF the planets in adgust.

MARS
is morning star until the 4th, and then evening star. His opposition with the sun occurs on the 4 th , at 1 h . 21 m. A. M. He is then, as the word opposition implies, opposite the sun, rising at sunset, reaching the meridian at midnight, and setting at sunrise, being visible the entire night. As in July he increased in brilliancy when approaching opposition, so in August, after passing opposition, he will decrease in brilliancy, the process being reversed in the two months. The conditions are more favorable for August than July, as the planet is approaching perihelion during the whole month. Mars is nearest to the earth on the 6th, when he is $34,900,000$ miles distant, about 100,000 miles nearer than on the 4th. He is retrograding or moving westward, as observers who carefully note his path in the sky will see. We can add nothing to what has already been said respecting this planet and the wonderful opportunity for observing him under conditions that will not take place again for seventeen years. It is surely not too much to expect that a discovery as unexpected as that of 1877 may reward some unwearied worker in the Martian field, and rejoice the hearts of those who find unceasing enjoyment in the study of the stors!

The moon is in conjunction with Mars the day be fore the full, on the 7th, at $11 \mathrm{~h} .4 \mathrm{~m} . \mathrm{P}$. M., being $1^{\circ} 52^{\prime}$ north.

The right ascension of Mars on the 1st is 21 h .9 m . his declination is $23^{\circ} 26^{\prime}$ south, his diameter is $26^{\prime \prime} .6$, and he is in the constellation Capricornus.
Mars rises on the 1 st at $7 \mathrm{~h} .48 \mathrm{~m} . \mathrm{P}$. M. On the 30 th he sets at 2 h .30 m. A. M.

JUPITER
is morning star. He will be a bright and shining light on August nights, for he is near perihelion and ap proaching opposition. He rises about two and a half hours later than Mars on the 1st, and although he has to yield the first place to his ruddy rival, he will, as soon as he appears above the eastern horizon, share with Mars in the admiration freely bestowed by star gazers upon both planets. The opportunity is favorable for comparing the light power of the two planets. Jupiter, when brightest, gives out two and a half times more light than Mars, probably on account of the reflecting power of his cloud atmosphere, that hides the body of the planet from view, while the real'surface of Mars is probably seen. Under the present conditions, with Mars at nearly his greatest possible brightness, and Jupiter nearly two months from opposition, the light-giving power of the two planets is about equal The conditions are excellent for making the comparison. Mars is on the meridian on the 4 th at midnight and Jupiter at half past 4 o'clock in the morning. There is more satisfaction is observing the latter planet for he is about 30° farther north. Jupiter is stationary on the 13th, and then retrogrades or moves westward. The two planets will afford a rich field for study and investigation during the whole month.
The moon, two days before the last quarter, makes a very close conjunction with Jupiter on the 13th, at 2 h. 26 m . A. M., being 2^{\prime} north. The conjunction is visible, and so close that it will be an appulse, moonand star seeming to touch each other.

The right ascension of Jupiter on the 1st is 1 h .34 m . his declination is $8^{\circ} 16^{\prime}$, his diameter is $41^{\prime \prime} .0$, and he is in the constellation Pisces.

Jupiter rises on the 1st at $10 \mathrm{~h} .15 \mathrm{~m} . \mathrm{P}$. M. On the 30th he rises at 8 h .17 m. P. M.
venus
is morning star. Her period of retreat when she was hidden from view was short, and when the month commences she is far enough away from the great source of light to be a beautifnl object as she appears above the eastern horizon two hours be.ore the sun. As the month advances she risès earlier and increases in luster until she reaches her period of greatest brilliancy on the 15 th at 10 h. A. M. This event occurs thirty-seven days after her inferior conjunction, when she is 39° west of the sun, and one-fourth of her illuminated disk is turned toward the earth, her light number being 187.6 . Venus, as morning star, repeats in reversed order the much-admired phases of her course as evening star passing from inferior conjunction to greatest brilliancy, as she previously passed from greatest brilliancy to in ferior conjunction. Observers find it hard to decide which phase is the more beantiful. In the one she follows the sun, and sinks slowly below the western horizon. In the other, she precedes the sun, rising aoove the eastern horizon, and shining brightly until her light pales in the glowing dawn. Venus, as evening star, finds more admirers, largely from the con venience of the time for observation.
The moon four days before her change is in conjunc tion with Venus, on the 18 th, at 7 h .9 m. P. M., being $9^{\circ} 45^{\prime}$ north.

The right ascension of Venus on the 1st is 6 h .40 m . her declination is $16^{\circ} 44^{\prime}$ north, her diameter is $47^{\prime \prime} .4$ and she is in the constellation Gemini.
Venus rises on the first at 2 h .53 m. A. M. On the 31st she rises at 1 h .53 m. A. M.

MERCURY
is evening star until the 25th, and then morning star. He is in inferior conjunction with the sun on the 25 th at 10 h. P. M., when he ends his short course as evening star and passes to the sun's western side.

The right ascension of Mercury on the 1st is 10 h .31 m ., his declination is $7^{\circ} 12^{\prime}$ north, his diameter is $8^{\prime \prime} .0$, and he is in the constellation Leo.
Mercury sets on the 1st at $8 \mathrm{~h} .9 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st he rises at 4 h .43 m. A. M.

SATURN

is evening star. He is closely approaching the sun, and when the month closes sets an hour later than the sun. The moon, when two days old, is in conjunction with Saturn on the 24 th , at 1 h .55 m. P. M., being 1° 19' north.

The right ascension of Saturn on the 1st is 11 h .52 m., his declination is $3^{\prime} 13^{\prime}$ north, his diameter is $15^{\prime \prime} .0$ and he is in the constellation Virgo.
$9 \mathrm{~h} .16 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On th 31st he sets at $7 \mathrm{~h} .25 \mathrm{~m} . \mathrm{P} . \mathrm{M}$

URANUS

is eveningstar. The moon makes a close conjunction with the planet on the 27 th at 10 h .11 m. A. M., being 11' north.

The right ascension of Uranus on the 1st is 14 h . m ., his declination is $11^{\circ} 48^{\prime}$ south, his diameter is $3^{\prime \prime} .5$, and he is in the constellation Virgo.
Uranus sets on the 1 st at $10 \mathrm{~h} .31 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st he sets at $8 \mathrm{~h} .36 \mathrm{~m} . \mathrm{P}$. M.

neptune

is morningstar. His right ascension on the 1 st is 4 h . 38 m ., his declination is $20^{\circ} 33^{\circ}$ north, his diameter is 2 ".6, and he is in the constellation Taurus.
Neptune rises on the 1st at 0 h .36 m. A. M. On the 31st he rises at $10 \mathrm{~h} .36 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
Mars, Jupiter, Venus, and Neptune are morning stars at the beginning of the month. Saturn, Mercury and Uranus are evening stars.

Mechanical Refrigeration.

At the recent meeting in San Francisco of the American Society of Engineers, a paper was read by Professors Denton and Jacobus on the performance of refrigerating machines, in which, among other valuable conclusions, they show that a pound of coal used to make steam for a fairly efficient refrigerating machine can produce an actual cooling effect equal to that produced by the melting of 16 to 46 pounds of ice, the amount varying with the conditions of working. Commenting on this paper, the Enaineering News says:
"To put the same facts differently, 855 h . u. per lb . of coal converting into work in the refrigerating plant (at the rate of 3 lb . coal per h. p. hour) will abstract 2,275 to $6,545 \mathrm{~h}$. u. of heat from the refrigerated body. The waste of cold in actual ice making is such that the production of ice per pound of coal is about half this, or somewhat more if the ice is not made from distilled water. Ice making is far from being the sole use of refrigerating machines, however; in fact, now that the efficiency and reliability of mechanical refrigeration is proved, it wants only an appreciation of its advantages by the public to bring it into much more extended use than it has yet received.
In a paper on "The Ventilation of Buildings," by Mr. Alfred R. Wolff, M. Am. Soc. M. E., the author allowed $2,000 \mathrm{cu} . \mathrm{ft}$. of fresh air per hour per person as sufficient for fair ventilation. With the air at an initial temperature of $80^{\circ} \mathrm{F}$., its weight per cubic foot will be 0.0736 lb .; hence the hourly supply per person will weigh $2,000 \times 0.0736 \mathrm{lb} .=147 \cdot 2 \mathrm{lb}$. To cool this 10°, the specific heat of air being 0.238 , will require the abstraction of $147.2 \times 0.238 \times 10=350 \mathrm{~h}$. u. per hour. These assumptions may be accepted as correct, except as to the temperature to which the air should be cooled. Probably a temperature of 70° on a hot summer day would cause frequent complaints of cold; a maximum reduction of 10° from the external upon, at least for office buildings. Thus the necessary cooling effect calculated by Mr. Wolff may be accepted as correct.
Taking the figures given by Messrs. Denton and Jacobus for the refrigerating effect per pound of coa as above stated, and the required abstraction of 350 h . u. per person per hour to have a satisfactory cooling effect, the refrigeration obtained from a pound of coa will produce this cooling effect for $2,275 \div 350=61 / 2$
hours with the least efficient working or $6,545 \div 350$ hours with the least efficient working, or $6,545 \div 35$
$=18.7$ hours with the most efficient working, the an monia plant being used in either case, and compressed air being much less efficient. With mechanical refrigeration, if we assume 10 hours' cooling per person per pound of coal as a fair practical service in regular work, we have an expense of only 15 cts . per thousand persons per hour, coal being estimated at $\$ 3$ per short
ton. Of course, this is for fuel alone, and the various ton. Of course, this is for fuel alone, and the various
items of oil, attendance, interest and depreciation on the plant, etc., must be considered in making up the actual total cost of mechanical refrigeration. But, on
the other hand, by the use of the most economical machinery, a much higher efficiency than that which we have assumed or than the highest given in the authors' table ought to be possible, as they have al lowed a coal consumption of 3 lb . per h . p. hour
These figures are sufficient, however, to prove the practicability of artificial cooling for office buildings, hospitals, theaters, hotels, and even for the best class of private houses. It is a curious example of the slowness with which people take advantage of modern inventions that thousands of men sit sweltering in hot offices in the midsummer days; business lags and the efficiency of workers whose time is worth many dollars per hour is greatly reduced. At the same time not more than three or four blocks away are great provision warehouses where the temperature is kept at freezing the year round, and at a very moderate cost. If it pays to keep dead ducks and turkeys cool on Greenwich Street, why would it not pay to keep live business men cool on Broadway?

What They Think of it.

Our contemporaries have universally commended to their readers the value of the "Scientific American Cyclopedia of Receipts, Notes and Queries," as a work of reference for engineers. mechanics, and households. The Boston Journal of Commerce, a newspaper of large circulation and influence in the New England States, has this to say of it :

This splendid work contains a careful compilation of the most useful receipts and replies given in the notes and queries of correspondents as published in the Scientific American during the past fifty years, to gether with many valuable and important additions Nearly every branch of. the useful arts is represented It is by far the most comprehensive volume of the kind ever placed before the public. The work may be re garded as the product of the studies and practical experience of the ablest chemists and workers in all parts of the world; the information given being of the high est value, arranged and condensed in concise form convenient for ready use. Almost every inquiry that can be thought of, relating to formulæ used in the various manufacturing industries, will here be found answered. Instructions for working many differen processes in the arts are given. Many of the principal substances and raw materials used in manufacturing operations are defined and described. No pains have been spared to render this collateral information trust worthy. Those who are engaged in any branch of industry probably will find in this book much that is of practical value in their respective callings. Those who are in search of independent business or employment, elating to the home manufacture of salable articles will find in it hundreds of most excellent suggestions. In fact, the book is an overflowing treasury of practica scientific information, and is worth many times it price to scientific students."

Eruption of Mount Etna.

Mount Etna is at present very active, and it is thought by those competent to judge that a terrible outbreak is impending. The inhabitants of Catania of Nicolosi, and the surrounding country are in a state of consternation. Twelve houses and a portion of a large church have been destroyed. Shocks are ire quent, and a fissure has opened at the summit and a stream of lava is rapidly flowing down the sides of the mountain, threatening to overrun the village of Ri nazzi.
It is thought that the first outbreak of this mounain occurred in the seventh century before Christ, and rom that time on many disasters are known to have esulted from its outbursts.
In 1669, the city of Nicolosi was converted into a heap of ruins. A fissure 6 ft . wide and of unfathom able depth opened in the side of the mountain. In 693 there was another great outbreak which leveled Catania to the ground and buried 18,000 of its inhabitants. At this time fifty towns were destroyed in Sicily, and the total loss of life amounted to nearly 100,000 . The last eruption occurred in 1868.

The Power of Lightning.

On August 1, 1846, St. George's Church, Leicester, which was a new building, was entirely destroyed dur ing a thunder storm. The steeple having been burst asunder, parts of it were blown to a distance of thirty feet in every direction, while the vane rod and top part of the spire fell perpendicularly down, carrying with them every floor in the tower, the bells and the works of the clock. The falling mass was not arrested until itarrived on the ground, under which was a strong brick arch, and this also was broken by the blow. The gutters and ridge covering were torn up, and the pipes used to convey the water from the roof were blown to pieces. Mr. Highton calculated the power developed in the discharge of the lightning which de troyed this church with some known mechanical force He discovered that a hundred tons of stone were blown down a distance of thirty feet in three seconds, and consequently a 12,220 horse power engine would have been required to resist the efforts of this single flash.

AN EASILY REGULATED ELECTRIC MOTOR.

 The simple and effective motor shown in the illustration, in which the current may be readily regulated and easily reversed, has been patented by Mr. Harlon F. Ong, of Newberg, Oregon. It has a compound field magnet formed of a series of field magnets furnished with separate polar extensions, a compound armature formed of a series of armatures arranged upon a shaft and corresponding in position with the polar extensions of the field magnets, and a multiple switch for sending

ONG'S ELECTRIC MOTOR

the current through one or more of the field magne sections in either direction. A commutator is connected electrically with the armature sections formed of two rings, each divided at diametrically opposite points, the divisions of one-half arranged ninety degrees distant from those of the other part, and a pair of commutator brushes is held in contact with both of the commutator rings. By moving the switch arm a limited distance to the right, the current from the battery passes in one direction through one section of the field magnet; by moving the arm farther the current flows through two sections, in the same direction, and so on throughout the series. When the switch arm is moved to the left, the current is made to flow in the opposite direction, thereby reversing the direction of rotation of the armature, the current being sent in a similar manner, as desired, through one or more sections of the field magnet, whereby the power of the motor is regulated.

Mr. Edison Honored

The London Society of Arts prize, consisting of a medal, the prize having been founded in memory of the Prince Consort, has been awarded to Thomas A. Edison. The medal has previously been awarded to Faraday, De Lesseps, and many of the other great scientists.

A COMFORTABLE READING CHAIR.
In using the chair shown in the illustration, the oc cupant is supposed to sit crosswise of the seat, as one would sit in a saddle, resting the elbows on the arm pieces near the top of the back, the book then being supported in a convenient position for reading on an in clined table attached to the rear uprights. Such a chair in a library or study, or elsewhere, affording convenient opportunity for such changes of position from the usual posture as are often sought, cannot fail in many cases to contribute ${ }^{\text {a }}$ materially to one's comfort. The picture is very nearly a representation of a chair used for many years by the Duke of Wellington, at Walme Castle, England, and now carefully preserved there The duke died at this castle September 14, 1852.

Sartull|
A DUKE OF WELLINGTON" CHALR.

One of the first concomitants of age is acquired farightedness or presbyopia. This necessitates wearing ertain glasses for near work.
Whenever a man or woman about forty-five years of age finds himself or herself reading or threading a nee dle at arm's length, their action tells that the littl muscle governing the accommodation is growing weak and needs assistance. By persisting in forcing this muscle to work, much injury is done to the eyes, bu by having it corrected, many a frown would be saved to man and many a wrinkle to woman.
Not only is it important to get glasses, but of more importance still is it to see that you get the kind suitable for each eye. It is comparatively rare that you find two eyes exactly alike, and the aid of an ophthal mic surgeon, who is not only competent theoretically but practically, should be sought.
Men whose knowledge is acquired by long experi ence are often much more useful than those having theoretical knowledge only. When the optician finds, however, that the vision is not the same in each eye or where astigmatism exists, and patient complains of symptoms now recognized as eye symptoms, then his province ends and the ophthalmic surgeon's work begins.
At one time the druggist could exercise the prerogatives of the physician; is it of lesser import that the optician should assume the prerogatives of an ophthal mic surgeon? If the law now prevents the one from prescribing drugs, the other should also be prevented from prescribing glasses, outside of a certain range of years or certain physiological conditions
As age increases, excessive reading, writing, or work upon very small objects must not be persisted in, especially if the eyes grow tired. It must be remembered that the elasticity of the eyeball is lost, and any persistent effort may produce hemorrhage in the retina or such a strain as may lead to other serious troubles. Old people should be careful not to read with a trong artificial light falling on a white glazed surface And the Industrial World concludes: It would be bet ter for such people if our monthly magazines were printed on paper of a neutral tint

Not as Easy as it Seems

You may not think it is much of a task to be foreman or superintendent of a factory or other manufacturing establishment, says the American Machinist, but try it and see, and you will find that it is not the easy job it may seem to the observer. Imagine yourself with from fifty to a hundred men, or even less, and plan out each day's work so as to have work ready for the men as fast as the last job is finished. You must estimat the time it will take this man to finish the job, so the next man can have it in time to start on with it as soon as his present work is completed. You must judge of the time a man should occupy on a job, and also the cost of material in the same, must know whether he is making it right or not, and whether at his present rate he will get it done in time for shipment according to contract. If not, he must have help on it. When you consider all these features, the responsibility of man aging the whole place, and, if the judgment proves faulty, of being solely responsible for the loss, it is not an easy task after all.

AN IMPROVED CAR COUPLING.

The coupling shown in the illustration is designed o be simple and durable in construction, very effect ive in operation, and easily operated for coupling or ncoupling from either the side or the top of the car. The improvement has been patented by Mr. Reuben Quatermass, of Moline, Kansas. The coupling link is in the form of a flat bar, with its ends somewhat nar rowed, and on each end a turned-up head forming a hook, the link also having a longitudinal slot adapted for engagement with an ordinary coupling pin when connecting with a car on which is used the pin and link coupling. Secured on a transverse shaft, journaled in bearings in the drawhead, is a plate whose rounded-off lower end is adapted to engage the hook of the coupling link, the edges of this plate having pins which move in segmental grooves at its side in the drawhead, as the plate is swung upward and downward, by head, as the plate is swung upward and downward, by
means of handles at the side on the transverse shaft, means of handles at the side on the transverse shaft,
or the rod connected with this shaft which leads to the top of the car. When the plate is held horizontally the link is disengaged, but when it is at an angle of about forty-five degrees it is free to engage the head of the link. The shaft on which the plate is held is journaled in elongated openings, so that when a pull is exerted on the plate by the link, the upper or outer end of the plate will abut against a bearing in the under side of the top of the drawhead, thus relieving the shaft of all strain. On each of the handles at the sides is a link adapted to engage a hook on the car, to lock the shaft and plate in position, and one of the handles is preferably adapted for engagement with a spring catch to facilitate the engagement or detachment of the link. When the plate is in its lowermost position, an entering link swings it backward until it
passes the head of the link and drops into engagement
therewith, the handles adding weight to the plate to hold it in engagement with the link. In uncoupling the cars are backed till the link slides rearward, when the handles are turned to swing the plate upward out of engagement with the link. In case of one of the cars leaving the track, the turning of the link to one sido

QUATERMASS' CAR COUPLING.
would effect its disengagement, so that the following car would not be derailed.

A MACHINE TO HOLYSTONE A VESSEL'S DECK.
The illustration represents a machine by means of which holystones may be moved in any direction across and in frictional contact with the surface of a vessel's deck, being rotated and resting freely thereon, while water and grinding material are at the same time supplied in their path. A yoke extends upwardly from one axle of the machine and is attached to a vertical shaft terminating in a crank arm, by means of which the machine may be steered, the crank arm being adapted to engage a rack. A transverse shaft, being adapted to engage a rack. A transverse shaft, is connected by links with walking beams above, and he crank shaft has an attached bevel gear meshing with a bevel pinion on the upper end of a vertical haft to which is attached a stone carrier, consisting of skeleton frame containing a number of pockets. In the pockets are loosely fitted the stones, which feed downward by gravity as their under surfaces are worn away. By the rocking of the walking beams a rotary motion is given to the carrier containing the holytones, whereby the deck may be expeditiously cleaned.
Within the frame of the machine are held two tanks, one containing water or other liquid, and the other an abrading material, each tank feeding its contents in uitable proportions, according as the valves in thei discharge pipes may be adjusted. The machine is moved forward and backward by means of dogs engaging ratchet wheels on the axle at one end, the upper ends of the dogs being adjustably and pivotally attached to levers fulcrumed on the frame, these lever being connected by links with the walking beams.
Further information relative to this improvement may be obtained by addressing the patentee, Capt Samuel Lowberg, in care of Mr. E. C. Benedict, No 29 Broad Street, New York City.

LOWBERG'S DECK-CLEANING MACHINE.

The Apricot Industry in Damascus. The city of Damascusis surrounded by gardenswhich

 are composed of fields of apricots, furnishing an averag yield of from 50,000 to 65,000 quintals of fruit. M. Guillois, the French consul at Damascus, says that the harvest lasts about six weeks, generally from the 10th of June until the end of July. There are six principal de scriptions of apricots, the Sendiani, Hamoni, Onazari, Chahmi, Baladi, and Klobi. The Sendiani appears the first, about the middle of June. It is an oval fruit of a yellow color and of a slightly acid taste. It is con sumed exclusively at Damascus. The kernel of this de scription of apricot is not bitter to the taste.The Hamoni, which follows immediately after the Sendiani, is the most appreciated. It is small, round, with a glossy skin, and the fruit is perfumed and juicy. This variety, like the former, is consumed at Damascus, and it is subdivided into two categories, the Hamon bakir and the Hamoni lakisse.
The Onazari is slightly oval, red, juicy, and per fumed, and resembles the European apricot. The ker nel of this description is large, and of a sweet taste, and is easily detached from the fruit. The price of the Onazari is about a sixth higher than that of the pre ceding varieties, and part of this fruit is consumed at Damaesus and the remainder is sent to Beyrout. The three varieties enumerated above are almost entirely used for home consumption, and in a fresh state; while the following descriptions are largely used in the manufacture of preserves, for drying, and formaking aprico paste.
These are the Chahmi, which externally resembles the Hamoni, but is inferior to it as regards taste, the fruit being dry, and wanting in perfume.
The Baladi, which resembles the Onazari in form and taste, is yet considered to be superior to the latter. The yield of this fruit is about 5,000 quintals, and of this quantity 1,000 quintals are consumed in the fresh state at Damascus, the remainder being used for making dried apricots (Noukou) which form one of the principal articles of export from Damascus. This fruit is gathered from the tree fruit is gathered from the tree when it is completely about the 15th generally a bout the 15th
June. It is then exposed for June. It is then exposed for
three days to the sun on three days to the sun on
planks, covered with a layer of long straw, care being taken to keep the apricots apart, so that they may not touch one another. The third day, each apricot is gently pressed between the palms of the hands, and again exposed to the rays of the sun, and this operation is repeated until the fruit, perfectly dry, assumes the shape of a flattened disk.

This usually takes place in about six or eight days and the apricot loses about 70 per cent of its weight The price of the dried apricot varies between 30 centimes and 1 franc the kilogramme at the time of drying; but at other times, and particularly in the month of Ramazan, when there is a large consumption of the article, the price is doubled. A small quantity of these dried apricots is used in the manufacture of preserves. The remainder is exported to Egypt, Smyrna, and Constantinople, to a value of about $£ 3,200$.
The $K l a b i$, which is a very inferior quality of apricot, is a small, dry, red fruit, and is the only one in which the kernel is bitter. It is exclusively used in the preparation of apricot paste. Apricot paste, known as Kamar el Dine, is, together with dried apricots, one of the principal exports from Damascus. The fruit, of the principal exports from Damascus. The fruit,
when gathered, is crushed in a kind of large iron wire when gathered, is crushed in a kind of large iron wire
sieve, and the thick juice which results from this opesieve, and the thick juice which results from this ope
ration is collected in earthen vats, and then spread on planks covered with a layer of oil, where it is allowed to remain two days exposed to the air. At the expiration of this time the paste is removed and turned. On the fourth day the paste is again removed, and it then has the appearance of a band of leather. very thin, and of a reddish-brown color, about a yardand a half long and half a yard wide. This is the finest quality of paste. The same operation is repeated once or twice to obtain a second and third quality, each time a little water be ing added to the residuum of the former operation. The bands of paste are then folded so as to form bundles of about f re potunds weight, which are sold according to quality-from 35 to 55 francs the quintal. In the same way as dried apricots, apricot paste is exported to Egypt, Arabia, Aleppo, Constantinople, and also to
Belgium. The value of the export amounts annually o about $£ 14,000$
As regards the kernels of the apricots, part of thes
is consumed at Damascus in the manufacture of oil and the remainder is shipped to France, Germany,
Italy, and Austria, the value of this export trade being Italy, and Austria, the value of this export trade being in Damascus, $£ 8,000$. The at $£ 28,000$. These figures, says M. Guillois, are sufficient to show the importance of apricot culture in the immediate environs of Damascus, and in his opinion they might be doubled, if an improved system of culture and irrigation were adopted.

Tests of Rubber Hose.

The tests made recently by the Cleveland Rubber Co., with regard to the best sorts of hose for particula purposes, resulted as follows :
Where a pressure of 25 pounds or less is used, four ply should be ordered for $11 / 4$ inch and smaller sizes, and five-ply for $11 / 2$ inch and larger sizes.
Where a pressure of 60 pounds or less is required, five-ply shoald be ordered for $11 / 4$ inch and smaller sizes, and six-ply for $11 / 2$ inch and larger sizes.
Where the pressure exceeds 60 pounds, add one ply for each additional 10 pounds of steam. Where 90 pounds or more pressure is required, the hose should be duck-covered and wire-bound.
the viadoct du loup.
A new railway line has lately been opened in the South of France, between Nice and Puget Theniers and Grasse, a distance of $621 / 2$ miles. It passes through a mountainous and picturesque region, full of lovely
as good as the Saatz hops; and the Dauba district with an area of some 2,500 acres, producing an inferio grade of hops.
The most celebrated of these districts is the Saatz, and the hops grown there are claimed to be the best in he world. The hops of the Saatz district are again subdivided into Stadt, Bezirks, and Kreis classifica ions, according to quality, and the Stadt, or city hops, are the highest grade, while the Kreis, or circuit hops, are supposed to be somewhat inferior. In the Saatz and Rakonitz districts the hops are grown under simi ar conditions, and the products differ very little. The hops grow in a ferruginous, reddish clay soil, along the banks of the River Eger, while the region is protected from the cold north winds by a spur of the Erzgebirge and the only prevailing winds are from the west and southwest. The elevation is about 800 feet above the sea level, and the mean temperature during the yea bout 7^{\prime} Reaumur. The excellent qualities of the hop are ascribed to the peculiar properties of the soil and to he very slight atmospheric depression. The hops of he Saatz, Rakonitz, and Auscha districts are all know under the general name of red hops, while the Dauba hops are called green hops. The distinguishing mark of the Saatz hops are a long flower, closed at the top with innumerable leaflets-from a hundred to a hundred and fifty-which are as soft as velvet to the touch. They are characterized by a delicate picy aroma, and the bitterness is greatly appreciatedThe flower, when ripe, is of a greenish yellow color with a slight reddish tint. Dauba hops, the type of flower with fewer leafletsfrom forty to sixty-and the odor exhaled somewhat re sembles garlic. The color of the ripe flower is of a yellow ish green. Red hops form three-fifths and green hop two-fifths of the total crop. Outside the regions above mentioned, the cultivation is carried on only on a smal scale. The average crop in Bohemia is $9,000,000$ pounds in round numbers. The average yield per acre is not large; in the Saatz district it is between 350 and 450 pounds, while in the Auscha district, in a good season, there is a yield of 60 pounds to the acre. The labor required for the cultiva tion is cheap, and hop pickers receive about tenpence for day's labor. With a view to securing a uniformly highe standard of hop culture there have been established, within the last two years, technica schools for the study of hop culture at Rakonitz and a Laun. These schools receive financial support from the government of Bohemia, and also from the cities and dis tricts where they are located
roses, violets and jasmines, from which the choices perfumes are made. The new road has been con structed at great expense. A number of tunnels and bridges have been required. We illustrate one of th latter, the viaduct Du Loup, which carries the rails through the valley of the same name.
This structure is composed of masonry, of eleven arches of about 63 ft . span, built on a curve of about 675 ft . Height, 170 ft . ; length, $1,050 \mathrm{ft}$.

Hop Growing in Bohemia.

The United States consul at Prague, in a recent re port, says the large breweries all the world over alway eep in their storehouses at least a small quantity o Bohemian hops, although the price paid is frequently high one. This fact is a high tribute to the excellence f the Bohemian product, the superior qualities of which are attributed to peculiarly favorable conditions of soil and climate, and to careful and well tried methods of culture. Since the sixteenth century hop have had their home in Bohemia, and their fame, then already established, has been maintained and increas ed, and hop growing still continues to occupy a position of the first importance among the various forms of agri culture. The hop gardens are not extensive, and hop rowing is confined to a comparatively small area, whil the so-called hop belt is a limited one. The total area under this cultivation amounts, according to the latest statistical returns, to about 26,000 acres, and this is di vided into districts known under the names of the citie around which they center. The largest and the best known is the Saatz district, with an area of about 10,000 acres. The neighboring district of Rakonitz with an area of about 600 acres, produces a grade of hops very similar in quality to that of the Saatz district; then come the Auscha district, with an area of about 4,000 acres, the product of which is not considered

Being situated in the midst of the hop districts, every
opportunity is afforded for practical work. In connec tion with the Rakonitz school there is an experimenta hop garden, where innovations in cultivation are tried The courses of instruction offered are both for student attending regularly and for farmers desiring special intruction. Among the regular courses of instruction are hop culture, theoretical and practical, from a botanical and practical standpoint, treatment of the oil, choice of the young plants, fastening of the poles, selection of the poles, hop picking, hop sorting, etc The attendance at the schools has so far been consider able, and many students have come from other coun ries. The results have been so satisfactory that it is expected that hop culture will show a decided improvement as the schools become older and the students turn the knowledge acquired to practical use

As an indisputable instance of the material benefit accruing to a sugar estate through the saving of fuel by the use of scientifically arranged furnaces, we are able to-day to refer to Pln. Perseverance, Essequebo, which has just had considerable additions made to its evaporating plant, including a triple effect, and its fur naces placed in order. During the present grinding there has been nothing consumed but green begasse, and all that comes from the mill is not required to sup ply the demand. Neither wood nor coal is wanted and the one "coal" boiler that had been left unmodi fied is not used, and to all appearances is not likely to be. Those who know what the coal account of a sugar estate can amount to during a grinding season will be able to understand the enviable position a proprietor is in who can obtain all the fuel he requires from the debris of the canes that are giving him the sugar. At Perseverance the work of remodeling the furnaces was carried through entirely by Mr. Price Abell,-Argosy.

Sorrespondence.

Rattlesnakes and Prairie Dogs.

To the Editor of the Scientific American :
It is often remarked that owls, prairie dogs, and rat tlesnakes live amicably together in one hole, which the prairie dog is supposed to have prepared. In order to test the question of the peaceful relations between the dog and snake, an old army officer tells me that he once turned a rattler loose in his room. Opening the cage of the prairie dog, the little fellow at once came out and ran back and forth immediately in front of the reptile, which was coiled with its head poised ready to strike the dog. The snake followed the dog's movements with its head. The dog's eyes were constantly directed toward the snake's eyes. After a time, the movement of the snake's head from side to side grew slower. It seemed to have become confused or dizzy from the continued exercise. With a quick spring the dog seized the snake's neck close to the head and bit it viciously. He continued biting the snake along the spinal cord from neck to tail, the first bite having practically ended the snake's life. When the dead reptile was swung to and fro from the bars of the dog's cage, the animal tried to ward it off with his fore feet. These actions convinced the officer that the dog ap preciated the dangerous qualities of the snake. This observer also thought that snakes did not strike adult dogs when living with them because the holes were too small to maneuver in.
M. Y. Beach

San Diego, Cal., July 1892

History of Table Utensile.

How many persons there are who do not know, or at least know but vaguely, that the manner of taking meals has not always been the same as it is at the present time, and that most of our table utensils are of quite recent origin. We shall briefly discuss this subject in speaking successively of all the objects that in our day constitute the equipment of a well-served table.
Let us, in the first place, speak of the table. Every one knows that the Romans took their meals in lying upon very low couches that somewhat resembled what we call a lounge. When we say that they lay down, our statement is not exactly accurate, since cushions permitted them to change position frequently, for it would have been very difficult for them to abandon themselves to the pleasures of the table in constantly occupying a horizontal position.
When Gaul was conquered by the Romans, the lat ter introduced their habits into the provinces subdued by them, and it was not till about the time of Charlemagne that the guests at a repast seated themselves upon cushions around a stand in order to take their meals. At the homes of the great, these cushions and stands were relatively elegant as regards decoration. The table made its appearance later on, in the middle ages, accompanied with benches provided with backs, which were placed all around the board. At first, the table was not covered with a cloth, and napkins likewise were unknown. The first that mention is made of were manufactured at Reims, and offered to Charles VII. at the time that he was crowned there, thanks to Joan of Arc. They became quite common under Charles V. and Francis I.
The Greeks and Romans were acquainted with plates, or rather with a sort of porringer, and yet, during a portion of the middle ages, people made use of slices of bread cut round, which took the place of plates. This practice is again spoken of in the coronation ceremonies of Louis XII., at the beginning of the sixteenth century. After the repast this bread was given to the poor.
The spoon must date back to a very ancient epoch, for, although it is always possible to eat solid food with the fingers-a very ancient and very natural prac-tice-the same is not the case with a liquid or semisolid aliment, and it is not possible that the famous Lacedemonian black broth was consumed otherwise than with a sort of spoon. Moreover, spoons have been found at Pompeii and in several excavations and notably in the famous treasury of Hildesheim. In a much remoter antiquity, the Egyptians, in the seventeenth century before the Christian era, used spoons for mixing certain powders with beverages. These?spoons, of which quite a large number are in existence, were remarkable for their generally fine and very rich ornamentation. The Museum of the Louvre possesses several of them.
The use of spoons in France was not generally adopted until toward the end of the fourteenth century, but there is a question of this in the will of Saint Remi, who baptized Clovis in 496. The use of the knife is very ancient, and the first that we know of were of hard stone. Herodotus tells us that the knives used by the Egyptian surgeons were likewise of stone. Yet the use of the knife among us as a table utensil does not date back to a very ancient epoch. Although there was a famous cutlery works at Beauvais in the tenth century, it does not appear that the knife was much used upon the table At this epoch, and for
a very long time, the blade was fixed and inclosed in a sheath. It is not two centuries since the use of clasp knives became common. The tables were not provided with them, and each person carried his own. This cus tom has been preserved even in our day in some dis tant provinces, by old men, who, when they go to dine out, take their knife from their pocket and us it skillfully during the whole course of the meal. Such are evidently exceptions, which are daily tending to disappear, yet they serve to show the rarity of the knife, to within a short period, upon the tables of per sons belonging to the lower classes. The fork was absolutely unknown to the Greeks and Romans, who, for taking their solid food, used their fingers, which they washed in basins. The meats were served cut in piece of varying size, and each one divided the piece that $h e$ had before him as best he could with his fingers.

In the middle ages, the fork appeared only as a cu riosity, and the use of it was not as yet the same as that to which it is now put. It was employed for eat ing fruit or slices of bread and cheese.
We find a few forks figuring in the treasury of John II., Duke of Burgundy ; and Galveston, a favorite o Edward II., of England, owned, says a historian of the time, sixty-nine silver spoons and three forks for eat ing pears with. Again, we find quite numerous traces of the existence of forks in the middle ages, but they were never used for eating meat. At this epoch they had but two tines, and it is from
hat is derived their name of fork
Henry III. was the first to use forks upon the table He had a certain number of silver ones made, and the use of the article spread very quickly at court. It must be added that such use was regarded as quite ridiculous by the public, as may be seen from the following passage from a satire upon the court of Henry III. Firstly, they never touched meat with their hands, but with forks, and they carried it to their mouth in bending forward the neck and body upon their seat. They took salad with forks, for it is forbidden in that country to touch meat with the hands, however diffi cult it may be to take, and they prefer that this little forked instrument, rather than their fingers, shall touch heir mouth."
Despite the morose criticism that we have just cited, the use of the fork rapidly extended, and the fact must be recognized that it was not without good reason.
Since the remotest antiquity, cups have been em ployed at banquets for the beverages drank thereat. They were of metal,more or less precious, according to the wealth of the amphitryon
In the middle ages, drinking glasses and cups were very rare. They were generally mounted upon a foot or stem, of gold or silver, enriched with precious stones. It was not till the fifteenth century, the epoch at which Venice began to spread abroad her products, that the use of glasses became more general, yet, in or dinary life, people continued for a long time to use tin drinking vessels, which were often of beautiful workmanship, and which figured with other utensils, likewise of tin, upon the dressers and buffets of the lords.

The custom of setting several glasses before each person, for the different wines that are to be served, belongs to the nineteenth century. In the eighteenth century the glass was dipped, at each new wine, into small earthenware vessels filled with water, and which were placed upon the table within reach of the guests.
The salt cellar dates back to remote times, and that is natural, since the use of salt is lost in the night of time. Homer qualifies it as divine. Among the Greeks and Romans, it occupied the place of honor at banquets. Among the wealthy, it was of silver or gold, and was handed down from father to son. Benvenuto Cellini chased some for Francis I. that were of the most exquisite workmanship. There are likewise some beautiful specimens in faience, and at the Louvre may be seen those made at Orion for the celebrated set called the service of Diana of Poitiers or of Henry II. Although salt cellars were likewise made of very common earthenware, Olivier de la Marche tells us that, at ordinary repasts, the salt cellar was often a piece of bread hollowed out to receive the salt, and which was placed near each guest.

As for the caster or cruet stand, which was unknown to the ancients, it has been impossible for us to find out to what epoch it dates back. It is probable, how ever, that it is not older than the sixteenth century.
Such is the origin of the utensils that are now to be found upon the humblest tables, and it will be acknowledged that a notable progress has been made in the manner of taking one's daily food.-La Science en Famille.

Basic steei.
Speaking at the meeting of the Iron and Steel Insti tute, at London, Mr. Andrew Carnegie said that an exhaustive series of tests just undertaken by the Pennsylvania Railway had placed basic steel alongside of acid steel for boilers and fire boxes, and he had been informed that the question was being seriously enter tained whether they would not specify that nothing
but basic steel should be used for those purposes. He considered that so far as the United States had proceeded in armor it was merely experimental. They had not made enough material. So farit was true that they thought that the admixture of the nickel in certain proportions did give one quality to the steel, viz. tenacity, so that shots passing through it did not crack t, but were held in. With regard to the harveyizing, hey had harveyized a few plates, but the result was a matter to be decided in the future. They had gone to this extent in America. A few experimental plates had been made, and while one part of the plate had shown extraordinary results, the other part of the plate had not. He, therefore, wished to disclaim for America any share of extraordinary credit for anything it had done in armor. What it might do the future would show.

Items of interest.

The streets of London, if put end to end, would ach from that city to St. Petersburg.
The lighthouse tower at Cape Hatteras is 189 feet igh from its base to the center of the lantern. It is the tallest lighthouse tower in existence.
A new telegraph cable has been laid between Ellis Island and the Barge Office in this city. It is 8,000 fee long and contains four working wires. It was made in Paterson, N. J., and is covered with an imported insu lating material.
In a recently invented watch for the blind, a smal peg is set in the middle of each figure. When the hour hand reaches a given hour, the peg for that hour drops. The owner, when he wants to know the time finds which peg is down and then counts back to XII.

The Swedish government has adopted a new smoke less powder which is said to have the following advan tages : it is easy of manufacture, produces no flame, and does not heat the rifle. It gives the ball an initial velocity of 2,100 feet with a pressure of 2,260 atmo pheres
According to M. Flammarion, the French astrono mer, the mean temperature of Paris during the pas six years has been about two degrees below the nor mal. It is also stated that Great Britain, Belgium Spain, Italy, Austria and Germany have also been growing cold.
Some attention has been directed to a paper read by Dr. Leo Bergenstein, of Vienna, before the late hygienic congress, on "The Working Curve of an Hour." To demonstrate the fluctuation of brain power in chil dren, he collected two classes of little girls and two of little boys, the children's ages being eleven and twelve years, and set them to work on easy sums in arithmetic for successive periods of ten minutes, with five minute intervals of rest; then the results of the work, the calculations and the errors were carefully tabulated and compared. The total number of calculations made by all the children increased, roughly speaking, $4,000,3,000$ and 4,000 in the second, third and fourth periods, respectively. During the third period of ten minutes the increase of work done was not so great as at other periods; the number of mistakes also increased, say $450,700,350$ in the different periodshere, again, during the third period, the quality of the work was at its lowest. It would thus appear that children of the ages mentioned become fatigued in three-quarters of an hour; that the organic material is gradually exhausted; and that the power of work gradually diminishes to a certain point during the third quarter of the hour, returning with renewed force in the fourth quarter. This experiment is regarded as demonstrating that continuous work for school chil dren of these ages, even though the tasks are not diffcult, ought not to last longer than three-quarters of an hour

The Drift of Lake Currents.

During the next few months a great many bottles will be cast upon the shores of Lake Michigan. They are to be thrown into the water for experimental pur poses by lake captains, who will undertake the service at the request of the United States government. The experiments are to be conducted for the purpose of determining the set and drift of lake currents, and will be under the direction of the weather bureau The bottles are to be given out to vessel captains, who will agree to throw them overboard and enter certain data on blanks furnished for that purpose. In orde to do the work systematically, the great lakes have been mapped out in numbered sections, commencing at Duluth and numbering eastward. There are 410 sections in all, each containing about 180 square miles. When the captain throws one of the bottles in the water, he will place in it, before so doing, a the water, he will place in it, betore so doing, a
slip of paper, upon which the data and the position of slip of paper, upon which the data and the position of the vessel is entered. On each slip is the request that
the finder send it to the chief of the weather bureau the finder send it to the chief of the weather bureau
at Washington or hand it to the nearest government observer, lighthouse keeper or postmaster, to be forwarded. By noting where the bottles go ashore, data will be obtained from which the movement of the lake currents can be calculated

THE OSCILLATING DISAPPEARING TURRET.
The necessity of protecting guns of large caliber iny armored turrets has been recognized for several years. Almost all fortresses are now provided with different systems of these apparatus, and we shall here merely briefly recall the fact that they consist of a large steel plate cylinder resting upon a masonry base through the intermedium of a roller path like that of a railway turn-table. This cylinder is covered with an iron cap from 8 to 10 inches in thickness, and, through an arrangement that we shall describe, is capable of taking a rotary motion around its axis by means of a very simple mechanism installed at the bottom and actuated by manual power. This motion assures of pointing in direction, and at the same time, if it continues after the firing, it permits of causing the embrasures to disappear from the sight of the enemy, and of thus exposing the weak part of the turret to his shots for a short time only. But the time during which this part remains under the fire of the adversary has appeared, with this system, still too long, and so an endeavor has been made, by different means, to shorten it as much as possible. We shall mention that especially which consists in rendering the whole of the turret movable in a vertical direction, and, by means of a sort of elevator and a counterpoise, causing it to rise at the moment of firing and to descend immediately afterward.
Commandant Mougin, engineer of the Saint Chamond works, has found another solution of the problem, which, by the simplicity of the mechanism, surpasses everything that has been done up to the present, and it is this system of disappearing turret that has just been constructed for one of the forts of Bucharest, and which is represented in its entirety in Fig. 1, on the first page. We shall try to make the operation of it understood.
As in all other turrets, we find here the cylinder covered with its cap and placed upon a turn-table pro-

Fig. 2.-THE TURRET AT THE MOMENT OF FIRING.
vided with rollers. Two embrasures allow the muzzles of the guns that arm the turret to appear. But in order to cause these to appear or disappear as quickly as possible, the turret, instead of being placed directly upon the turn-table, rests thereon through the inter medium of a steel piece, B (Figs. 4 and 5), which is a fraction of a cylinder 14.75 feet in length and of 8.5 feet radius. The section at right angles with the axis, represented in Fig. 1, shows the arc of a circle profile of this piece, and it will be at once understood that resting upon such a base, the turret is capable of taking an oscillatory motion analogous to that of a child's rocking horse. The extremities of this oscillation cor respond, one of them, to the position of firing, and the other to the position of loading (Fig. 3).
We shall now see how this huge mass, weighing 528,000 pounds. can be placed and maintained in one or the other of these two positions with the greatest facility. To the right and left of the cylinder (Fig. 5) may be seen two supports, G. These pivot around an axis that permits them to keep a vertical position, what ever be the inclination of the rest of the system. It is these supports that chock the turret. They are, in fact, so arranged that when the oscillation is at its maximum, the one that is most elevated places itself, through its own weight, over a roller, H (Fig. 5), and thus prevents the motion from continuing in the opposite direction.
In order to move it from such position, it suffices to press upon a handle that actuates a series of levers, A (Fig. 5). This motion may be effected by one man, because, in all the transmissions of the levers between each other, care has been taken to avoid movements of friction. There are merely rollings upon each other of parts that are perfectly hard and polished. The same is the case, moreover, with the support, G, and roller, H, as may be seen from our engraving. At the least stress, acting otherwise than in the vertical direction, it will be seen that G will slide upon H. This is what takes place, in fact, as soon as the man selected
for the maneuver, after bearing upon a safety pedal,
pulls toward him the handle that controls the levers,
A. If at this moment the weight of the turret is pre A. If at this moment the weight of the turret is preponderant on this side, the entire system will proceed only, because the support placed on the other side

Fig. 3.-Loading position.
will produce the same effect as the one just men tioned.
Being given these arrangements, it suffices to assure the preponderance of weight of one side or the other of the turret, according to the direction in which it is desired that it shall incline.
Let us say in the first place that there is, invariably, a preponderance upon the part represented to the right in our figures, by means of masses of lead fixed thereto. It suffices, then, that it shall be possible to place or remove a weight heavier than those of the other side in order to produce the motion desired. Such weight, represented at ${ }^{3} \mathrm{P}$ (Fig. 5), is suspended by a chain from an arm, R, which is independent of the oscillating system and which is connected with the stationary tube, T, that occupies the center of the turret, and in which the charge and the projectiles are lifted. The chain from which the counterpoise, P, is suspended passes over pulleys and ends beneath at a windlass, M, which is maneuvered by two or three men. In the other figures these arrangements are not represented, as they fould have hidden important details. Figs. 3 and 5 would have hidden important details. Figs. 3 and 5
represent the turret in the position of disappearance. represent the turret in the position of disappearance.
The gun has just been fired and is about to be reloaded. During this time, men placed at the windlass, M (Fig. 5), raise the weight, P, to a certain height. The rest of the system will not budge, since it is chocked to the right by the support, G. But, as soon as all is ready, one of the men will bear upon the lever mechanism that controls this support; the weight, P, being raised, will have no more action, and the part to the right having the preponderance, as we have said, the turret will oscillate on this side, and will take the firing position shown in Fig. 2. The shot will be fired at once. But, upon reaching this position, the floor of the turret will be inclined, and will rejoin the weight, P. A special arrangement (not visible in the figure) having at this moment automatically thrown the windlass, M, out of gear, this weight will rest upon the floor and will assure a preponderance on this side of the turret. As soon as the support that keeps it in the firing position is raised, it will again assume the disappearing position.
We just spoke of the tube that occupies the cente of the turret and is situated between the two guns

Fig. 4.-SECTION OF THE TURRET TO THE REAR OF THE TWO GUNS.
(Fig. 3) that arm the latter. As we have said, this tube is immovable, and it will be seen from an exam nation of Figs. 2 and 3 that, in consequence of the motions of oscillation of the turret, it is in the vicinity of the breech of the guns only during the position of disappearance, which is also that of firing. It is through
the intermedium of this tube, and by means of a special windlass, that the ammunition is raised. It is utilized also for ventilating the turret by means of a small turbine that may be seen at the bottom and to the left of Fig. 1.
We shall now, in a few lines, recapitulate the very simple maneuvers of the turret.
The firing is directed by an officer standing in an external observatory connected telegraphically with the turret. Here there is a sub-officer who directs the maneuvers, but who, as regards pointing, merely executes the orders of his superior without seeing the effect produced. For direction, a graduation of the circle is indicated to him, and he causes the turret to be revolved, by means of a windlass placed to the right, until it reaches the desired degree. And so too for pointing in elevation, he lowers or raises the breech to the degree indicated. As for the firing that is done electrically by pressing a button.
As may be seen, the artillerymen are reduced here to the role of a wheelwork interposed between the commandant and the gun. Completely isolated from the outside, they mechanically execute a firing of which they see neither the object nor the effects.
In becoming scientific, the art of war, like the industry from which it borrowed its processes, has had to specialize individuals and reduce their initiative, and, while admiring the ingenuity of the new inventions, we cannot help averring that they are tending more and more to cause the disappearance of whatever of the picturesque and poetic battle might have. We can no longer think, without shuddering, of the moral state of these few men, inclosed in this carapax of iron, when the enemy's projectiles strike the wall of it when deafened by the fearful shaking of this huge bell, suffocated by the heat, and obliged to keep their ventilator in continuous operation, lest they be completely smothered. They run the risk at every moment of being buried alive by a breakage of commu-

Fig. 5.-TURRET RETURNING TO THE POSITION OF disappearance through the agency of the COUNTERPOISE.
nications or a stoppage of the mechanism. Doubtless he wars of the future will have their heroes, but hero ism will have changed nature, like war itself and its apparatus, and victory will be the triumph of the me chanic.-L'Illustration.

Chloride of zine for Tuberculosis.

M. Lannelongue's treatment of tubercular diseases, as brought under the notice of the Paris Academy, is essentially based on the simple fact that fibrous induration is to be regarded as the natural curative process of tubercular change; and it having been found that chloride of zinc is peculiarly apt to excite such sclerotic processes when administered in sufficiently small quan-tity-two or three drops of a 10 per cent solution-so as to obviate its more powerful escharotic action, this sub stance has been employed, yielding very satisfactory results in external tuberculosis, and its application in the case of pulmonary tubercle is, according to M . Lannelongue, equally encouraging. It would appear from the accounts given of this treatment that the from the accounts given of this treatment that the tubercular formation itself is less influenced by the
agent-which has no specific property-than are the healthy tisues that surround the tubercles. The aim of the Lannelongue method is, therefore, to induce the formation of a densely fibrous investment to active tubercle, and by this process to limit the diseased pro duct, and as it were to imprison the bacilli.

The New Postal card.

The Morgan Envelope Company, Springfield, Mass. has the contract for $24,000,000$ double postal cards, a new device which has long been considered by the Post Office Department. The card will be five and onehalf by three and one-half inches, and will be folded in the middle, presenting four surfaces. The outside sur face is for the address and the inside for the message. At the fold the card is perforated, so that the recipient will tear off one half and then answer on the other.

MECHANICAL SINGING BIRDS

The first automatic birds are quite old, and a remarkable specimen of them exists at the Conservatoire des Arts et Metiers. We represent this herewith (Fig. 1). It dates back to the last century. The birds are in-

Fig. 1.-MECHANICAL SINGING BIRDS OF THE EIGHTEENTH CENTURY

Bontems, consisted in the substitution of a genuine warbling for the music box, and in giving these little singers the perfect appearance of life. A reproduction of the true song of all birds has been successfully obtained, and we have been enabled to hear all our ordinary artists, with the repertory peculiar to nary artists, with the repertory peculiar to each of them; the nightingale, the blackbird, the chaffinch, the canary, the lark, the goldfinch, the bullininch, and the warb-
ler, and, among exotics, the tanager, the
ator of the bellows, F, to act through the rod, E. The onger it takes the teeth to pass, the longer the valve is open and the longer the bellows (No. 2) is actuated. The motion of the teeth is communicated to the rods, G and E , behind the support, S
It will be understood that the song of the bird may differ so long as th two wheels, C, have not made a revolution, but that the same song must then begin again at the second revolution of the wheel, the same teeth commencing again to actuate the rods, G and E.

Fig. 2.-MECHANICAL SINGING BIRD OF MODERN
CONSTRUCTION.
closed in a cage, and the mechanism is contained in the basc of the latter
The construction of such birds has now reached great perfection.
In the first place, let us speak of the external appear ance of these little automatons. At first sight, th bird is absolutely like the natural one, whose plumage it borrows, whether it represents a simple nightingale or is adorned with the brilliant feathers of a bird of paradise. Neither in the pose nor the form could the art of the taxithe pose nor the dermist do better. The attitude of each species is carefully studied and leaves nothing to be
desired, even by the most fastidious ornithologist. Certain of these birds are inclosed in a simple cage or are placed upon a branch forming a perch, while others, placed upon a tree, flutter from one branch to another, without it being possible to see the little rod, mounted upon a pivot and hidden in the leaves, that carries it back and forth. Again, others may be placed upon a stand (Fig. 2), or, owing to the small size of their pedestal, in a basket of flowers. There are others (and these are humming birds) that are concealed in a snuff box (Fig. 3), and which, when the cover of the latter is raised, suddenly appear and begin to sing. After the air is finished, they re-enter the box and the cover closes of itself. The snuffboxes in which they are inclosed are decorated in all possible ways, with inlaid enamel work, Japanese designs upon silver and gold, old silver, repoussé work, inlaid work, etc. All styles are put under contribution, and especially the Loui XV. and Louis XVI. in gilt silver.

A very ingenious model is the one that we repre sent in the form of a pistol (Fig. 4). When aim is take with the pistol, and the trigger is pulled, the bird, which was first concealed in the barrel, makes its exit, sings its song, and then re-enters the weapon.
The first automatic singing birds had a motion of the bill only, and it was by means of a bird organ or a

Fig، 4.-MECHANICAL BIRD MAKING ITS EXIT FROM A PISTOL. These rods turn the head, open the bill, make the tail waggle and cause the wings to flap; and the various motions do not take place at hazard during the song, but

chewit, etc. We shall now explain the principle of the mechanism with which it has been possible to repro duce the modulations of the song of birds, and which we may observe is the same for every song.
Fig. 5 gives a general view of the apparatus with its

There has been an improvement introduced that conists in placing upon the same rod three pairs of wheels instead of one pair, and, when the air noted upon the first pair is finished, in bringing the following pair, by means of a snail, in front of the levers, where

Fig. 3.-MECHANICAL BIRD IN A SNUFFBOX. In order to be complete in this explanation et us add that the intermission in the song is produced by the lever, P, which acts upon the bellows, and that the latter itself is actuated by a ratchet placed behind the box, M, of the motor. The apparatus that we have just described is the same for all birds. It is larger or smaller more or less strong, and is placed in one direction or another, according to the space left free in the mechanical piece, but the principle does not change. In each bird, and especially when it is a question of a new song to be created, the delicate point of the adjustment is the whistle, aided by the bellows and piston, that will give the true character of the song and modulate it so as to make it rapid, sharp, grave or slow. It will be understood that the whistle may vary in diameter and length and have a more or less rapid escapement of air so that its effects may be modified.
We have said that in snuff boxes, pistols and other small objects in which a singing bird and its mechanism are concealed, the opening of the object causes the bird to make its exit and to begin its song. It is here a question of a curiosity, and no attempt is made to especially of a spring coiled in its barrel, is placed at produce an illusion, but rather astonishment. In the M. It sets in motion an axle, A, that carries a star other birds, always exposed and visible, it suffices to wheel or eccentric, B, which, through the levers, D, press a detent placed behind the box, M, to set the ap and the rods, $\mathrm{H} H$, communicates motion to the bird. ${ }^{\text {paratus in motion or to stop it. Of course, this detent }}$

IFig. 5.-MECHANISM OF A SINGING BIRD.
music box that they seemed to sing. As nothing better was to be had, these had to answer; but they really produced no illusion. Several types of this kind, of the time of Louis XV., are in existence.
The invention of the true automatic singing birds, and the improvements afterward introduced by Mr.
are naturally combined with the warbling that occurs at the same instant. This warbling is produced
as follows: The same axle that carries along the sta as follows: The same axle that carries along the star
wheel revolves, at the same time, two coupled wheels C, which, irregularly toothed, cause the piston or whistle (3) to act through the rod, G, and the regu-
does not produce its effect unless the clockwork move ment is wound up. The little mechanical songster whose plumage leaves nothing to be desired, when placed either in a cage or in a spray of flowers or foli age, gives the illusion of life very accurately.-La Nature.

THE BAKER SUBMARINE BOAT.

During the past three months several trials have been made in the Detroit River, near Detroit, of the Baker submarine boat, shown in the accompanying illustrations, and, at the direction of Commodore Fol Sims, an inventor well known in connection with the Sims-Edison torpedo boat, is looking into the capabilities of this new boat as affording a possibly valuable

SUBMARINE BOAT-AFTER PARTIAL SUBMERGENCE.

addition to the navy. The boat has needed some repairs since its preliminary trials, and, as soon as these are effected, it is expected that it will be taken to Newport and placed under the supervision of government officials for further experiments.
Mr. George C. Baker, the inventor of the new craft, is a Chicago business man. The hull is designed to withstand the pressure of the water at a depth of eighty to a hundred feet, and with this view it is constructed of three-inch oak plank, six inches wide. Its dimensions are 40 feet over all, 9 feet beam and 14 feet deep, from top of conning tower to bottom of hull betower to bottom of hull be-self-contained throughout, and needs no shore con nections to drive it. The driving power is in duplicate, an electric plant and a steam plant, the former for running under water and the latter for surface propulsion, the steam plant being so arranged plant being so arranged generate electricity for charging the storage batteries.
The electrical equipment consists of a 50 horse power motor, built by C. D. Jenney, of Fort Wayne,

Ind., and 232 Woodward storage cells of the "M. S." type. The motor was designed for a pressure of 220 volts and runs at a maximum speed of 900 , turning the two screws, which are four-bladed, at a maximum speed of 300 revolutions per minute. This rate of revolution, it was calculated, would give the boat a speed of from eight to nine miles per hour. The gearing is very substantial and of steel. The motor is connected to run as a dynamo by the simple movement of convenient switches. When it is run as a generator it is speeded up to 1,025 revolutions per minute, so as to give a charging pressure of 220 volts. The cells are charged in four sets of 58 each and are discharged in two sets of 116 cells each, this arrangement giving at the motor an available pressure of 232 volts. In the top of the boat, within easy reach of the pilot's assistant, there is a convenient controlling switch connected with galvanized sheet iron resistance coils in the forward end of the boat. By this switch and a circuit breaker the speed may be varied as desired.
The steam plant consists of a $41 / 2$ by $51 / 2$ foot Roberts

SUBMARINE BOAT-AS IT APPEARS UNDER WATER.

water tube boiler, with telescopic stack, which is lowered and the stack hole covered when fire is not required. The 7×7 inch Willard engine can be thrown in gear with the main shaft, and it can also be belted to the motor. There are two 24 -inch propeller wheels, one on either side, connected with one shaft amidships. To the ends of the shaft are attached gear wheels, working in the gear attached to propellers,
which are turned in any position by means of a sleeve \mid wheels are turned at an angle of about 45 deg. and the around the shaft. This sleeve is connected to a hand boat is propelled forward, neither rising or sinking un wheel with chain belting. By means of this hand less the pitch of the wheels is changed. When the comwheel the propellers may be placed in any position. mander or pilot wishes to ascend, the machinery is The propellers are protected by brackets from coming stopped and the reserve buoyancy causes the boat to in contact with any obstruction. The rudder fits close to the hull and the boat answers to it readily It is expected that, ordinarily only two men will be necessary to operate the boat, a pilot and an electrical engineer, and the air sup ply needed for their comfortable maintenance under water will, it is intended, be afforded by the quan tity held by the hull itself at the time of submergence, this volume being equal to 1,500 cubic feet. In one of the trials two occupants were within the closed vessel two hours and forty-five minutes with out experiencing any unpleasant effects. The boat has about 75 ton displacement, the hull weighing 20 tons, the ballast 30 tons, the storage battery cells 10 tons, engine and boiler and gearing 8 tons, and mo tor 3 tons, leaving 4 tons buoyancy The normal draught of the boat leaves about two feet of the crown

SUBMARINE BOAT-JUST BEFORE STARTING. of the hull above water.
In starting, the pilot and electrical engineer enter \mid rise to the surface. Any accident that would stop the through a man-hole in the conning tower, and the machinery would also cause the boat to ascend. The cover is drawn over and fastened, when the boat is air- storage battery plant is designed to contain enough tight. The electrically-connected pump is started and power to run the boat three hours at a speed of eight two or three tons of water is pumped into the water miles an hour.
bottoms, this additional weight leaving nothing of the The torpedo boat of Mr. J. L. Tuck, and the method

THE BAKER ELECTRICALLY-DRIVEN SUBMARINE BOAT-SECTIONAL VIEW

 of operating it, represent ed in one of the views, wa built at the Delamate built at the Delamate Iron Works in 1885. It was 30 feet long, $71 / 2$ feetbroad, and 6 feet deep. It had several small compartments to be filled with water when the boat was to be sunk, and a number of 6 -inch iron pipes filled with compressed air to fur nish a supply for its single occupant. Its propeller was turned by an ordinary dynamo, run by storage batteries, and it had a common rudder for hori zontal steerage, and a hori zontal rudder for guiding it toward or away from the
and surface. A well-hole in the center of the deck wa conning tower. To sink directly downward the wheels fitted with an air-tight hatch, from which an individare turned perpendicularly to the shaft and the moto is started. The amount of spare buoyancy determines the amount of power necessary to sink the boat When the desired depth is attained, then the propeller

THE TUCK SUBMARINE TORPEDO BOAT OF 1885.
al in a diver's suit, by means of suitable devices might direct those inside in elevating, lowering and propelling the boat. It was designed with this boat to attach torpedoes to the bottom of a vessel, then run a way to a safe distance and explode the torpedoes by means of wires paid out while moving away.

Irrigation in Washington.

Census Bulletin No. 198 has been prepared by Mr F. H. Newell, special agent of the Census Office for the collection of statistics of irrigation, under the direction of Mr. John Hyde, special agent in charge of the statistics of all branches of agriculture, and relates to the State of Washington, in which there are 1,046 farms that are irrigated out of a total of 11,237 farms in the 13 counties in which irrigation is practiced. The total area of land upon which crops were raised by irriga tion in the census year ending May 31, 1890, was 48,799 acres. The average size of the irrigated farms, or more strictly of irrigated portions of farms on which crops were raised, is 47 acres. The average first cost of water right is $\$ 4.03$ per acre, and the average cost of prepar ing the soil for cultivation, including the purchase price of the land, is $\$ 10.27$ per acre. The average present value of the irrigated land of the State, including buildings, etc., is reported as $\$ 50$ per acre, showing a apparent profit of $\$ 34.45$ per acre, less cost of buildings The average annual cost of water is $\$ 1.75$ per acre, which, deducted from the average annual value of pro ducts per acre, leaves an average annual return of $\$ 16.35$ per acre.

Cause of the Unequal Wearing Away of Electric Light Carbons.
In an electric arc the positive pole is hotter than the negative, the positive showing a temperature of about $4,000^{\circ} \mathrm{C}$., the negative showing a temperature of $3,000^{\circ}$ to $3,500^{\circ} \mathrm{C}$. This difference of temperature produces a counter electromotive force which acts like ohmic re sistance. Ine cause of the positive pole wearing away twice as fast as the negative is due to this difference in temperature.

vibrations.

Prince Kropotkin gives an interesting article on elecricity as a mode of motion, in a recent number of the Nineteenth Century. It summarizes the results of the latest researches as simply as their nature admits of, and the net result of seemingly conclusive experiments is that with vibrations or wave lengths in the ments
$0 \cdot 000,01=$ to 0000,016 in. long, we have....... .. chemical energy

to 0.000,129 "" ". ". ".electiant heatit.
If these results may be accepted, we have squarely before us the problem: Given, vibrations of any length in the "ether" (whatever that is), to modify their length at will. The problem of the transformation of energy reduces down to that. When some benefactor of mankind has solved that problem, if it ever is solved, a new era indeed in civilization will open. We may then have electricity from heat, light without heat from electricity or any other form of energy, and divers and sundry other things which we can now only dream of, or perhaps not that. When we consider that pretty much all that is now known of the real nature of electricity, heat and energy is the fruit of the last twenty years (Joule's equivalent and first series of experiments were not announced until 1849), it seems a pretty safe conclusion that science is yet young, and that all which has been yet achieved is but a trifle compared with what is yet to be achieved. Moreover, we know that in the living organism, heat and energy, energy and light, energy and electricity, are transformed into each other by some mysterious process with the greatest ease, and to a large extent according to the will or ease, and to a large extent according to the will or
needs of the organism. It may be that this power is needs of the organism. It may be that this power is
one of the properties of living "protoplasm," and that one of the properties of living "protoplasm," and that man will never be able to understand it or to imitate it recent tendency of science is to indicate that the secret of transforming one form of energy into any other may yet be discovered, and perhaps by very simple means, compared with which our steam engine will seem but a "relic of barbarism."
The fact that electricity, like heat, light, and radiant chemical energy, is a manifestation of energy, has long been known, but up to the last four or five years scientists have been uncertain as to the manner in which energy existed in the electric current. The old idea of an electric fluid, which is still prevalent outside of scientific circles, served to mislead investigators. At present, however, the researches of such scientists as Hertz, Lodge, Crookes, Sir William Thomson and Tesla seem to have established the fact that electricity, like heat and light, is merely a vibration in the socalled "ether" which is believed to permeate all space. It is notable that all the original theories as to what we now call forms of energy were materialistic. The Newtonian (corpuscular) theory of light, which was the generally accepted one for half a century, was that light was an effect produced by an incessant fire of infinitesimal but material cannon balls thrown off in all directions from the light-giving body. Heat was a material something stored in the pores of the visible body. Electricity was a "fluid." All these assumed material substances have been shown to be non-existent, and not necessary to explain the phenomena. But there still remains one grave difficulty with the later theories. The notion of a material ether itself is almost as contrary to what we know of the nature of other matter as the corpuscular theory of light, and almost as much a mere evolution of the scientific inner consciousness, to explain what is otherwise inexplicable. We have not a particle of direct evidence to prove that there is a substance with properties such as we assign to this ether. We have only to eliminate the notion of a material ether, as we have eliminated down to hard pan! "I believe because it is impossible," the old monk declared. The modern scientific ble," the old monk declared. The modern scientific
man, possibly, would do well to reverse this logic and man, possibly, would do well to reverse this logic and
declare : I disbelieve because it is so very convenient declare: I disbelieve because it is so very convenient
a theory, with nothing but its convenience to support a theory, with nothing b
it.-Engineering News.

A New Metallic and Rubber Wire Mat.

A new style of woven wire mat, to which is attached a soft rubber cleaner, with edges and top roughened to fit every shape in the sides or edges of boots and shoes, has recently been patented and put upon the market by Messrs. Emerson \& Midgley, of Beaver Falls, Pa. Another description of mat or rug coming from the same firm is made of variously colored galvanized wire and has a thin rubber strip held on its edges by polished metal loops, the construction being such that there is no point upon which the most delicate trail of a lady's garment is liable to catch. The mats lie loosely on the floor, without fastening, so that they can be readily lifted, rolled up, and washed or shaken, and are furnished lettered as desired, three inch brass letters being used for the purpose. A mat oi duis kind is now in use at the entrance of the Scientific American office. They are manufactured by the Trenton Iron Company.

POLYCHROME PROJECTIONS BY MEANS OF UNCOLORED PHOTOGRAPHS.
For the last two years there has been much talk in the United States on the subject of a remarkable ap plication of photography to the reproduction of natural colors-an invention attributed to Mr. Ives, of Philadelphia.
In reality, Mr. Ives, who is a very ingenious scientist and a fortunate investigator, has, aside from a few variants, merely put in practice a process published in France in 1869 by Mr. Louis Ducos du Hauron and Mr.
C. Cros. C. Cros.

These two inventors, without any connection exist ing between them (Mr. Cros living in Paris and Mr. Du Hauron in Agen), conceived the same idea at about in the dime. It consisted in the use of photography in the decomposing of the essential colors of any polychrome object whatever. The method published by each of them is nearly the same, and leads to the ob taining of three negatives of the same object, prototypes that are identical with each other as regards lines and dimensions, but different as regards the manner in which the various colors are reproduced.
This result, obtained by means of photography, is analogous to that sought for by a chromolithographer
when he is executing the various monochromes of a subject upon stone and which correspond to distinct colors, the superposition of which, at the moment of printing, are to give a polychrome nearly like the original. The work of selection due to photography may be so nearly complete that three negatives, the positive impression of which will be done with the three colors, yellow, red, and blue, may suffice for the obtaining of a most satisfactory polychrome image.
As a proof of the exactitude of the method devised
by them, Messrs. Du Hauron and Cros have published by them, Messrs. Du Hauron and Cros have published various methods of recognizing the value of their photographic analysis of the colors of an object. Among the number of the synthetic processes that they have described there is one to which it is well to call more especial attention, because it consists in the use of a projection, upon a screen, of a combination of three positive pictures, each illuminated through a medium of a different color. The recomposition of the true colors is to be effected upon the screen.
It is useless to dwell upon the error committed by the two inventors when they say that the colored media should be yellow, red, and blue. They recog nized this error later on, and in March, 1879, Mr. Cros, who, moreover, had come to an agreement concerning it with Mr. Du Hauron, distinctly directed the use of violet, green, and red screens.
We desire to well establish this question of priority in favor of our two fellow countrymen, not only because there seems to be a disposition on the other side of the Atlantic to consider Mr. Ives as the inventor of the process that we are about to describe, but also because the experiments relative to this process, now being tried in France, are of a nature to cause its adoption with a view to substituting, in cases where the thing will be possible, polychrome for colorless projections, which are evidently less attractive.
There is reason to hope that many lecturers will soon have recourse to these kinds of projections of a truly fascinating effect, and we must then know who were the inventors of this so curious an application of photography, which is perhaps destined to render many services, as yet unforeseen, to science and the fine arts. This act of justice accomplished, we shall try to explain, as clearly as possible, the principles that serve as the bringing of them into play may be more easily understood.
In the first place, it is necessary to produce the three negatives of which it has just been a question. Upon the good quality of these will depend the success of the final synthesis. They should, as we have said, be identical with each other as regards dimensions, but differ as to the rendering of the distinct colors of the original.
An example will make the result that it is a question of obtaining better understood. Let us suppose that we have to analyze the colors of a polychrome object composed of three colors, yellow, red, and blue. We shall have to obtain a first negative containing the yellows and the combinations thereof, a second containing the reds and their combinations, and, finally, a third negative corresponding to the blues and their combinations. It is evident that if this result can be obtained, we shall have effected a decomposition such that the mixture of the radiations corresponding to each of these three colors, and assorted by the positives
and in the desired proportions, will necessarily recom and in the desired proportions, will necessarily re
Owing to the property that certain coloring sub stances possess of modifying the nature of films sensitive to light, it is possible to use sensitized plates adapted to the printing of blue and violet radiations to the exclusion of green, yellow, land red, or of yellow and green radiations to the exclusion of blue and red, or, finally, of yellow and red to the exclusion of blue.
The three prototypes of the same object will have to
ee reproduced ia a camera of the same focus, the first
upon the sensitized film most susceptible of receiving
the impression of the blue radiations. A plate called the impression of the blue radiations. A plate called
"ordinary" is the one most suitable, since such plates, s well known, are not very sensitive to green, yellow, and red radiations. The second negative will be taken upon a sensitized film capable of receiving the yellow and green radiations, but not the red. These kinds of plates are easily obtained by incorporating with the sensitized film a dye that possesses the property of aborbing the yellow and green rays.
At the same time there should be interposed between the plate and the objective a translucent yellow screen for the purpose of retarding the action of the blue rays.
In order to obtain the third prototype, we use a plate treated like the preceding, but with a dye that gives it sensitiveness to the red rays as well as to the yellow. As for the blue, they must have no action upon this plate, such action being prevented by means of an orange-yellow screen.

As soon as a few experiments on the analysis or decomposition of colors have been made in this way, which is absolute only as regards the result to be obtained, but which is susceptible of modifications as regards the means to be employed, we shall have sufficiently mastered the process to succeed every time. After the negatives have been obtained, two methods of employing them are at our disposal. They may be used for pigmentary impressions of polychrome images analogous to those of chromolithography, and in this case it will be necessary to superpose the three mono chromes, yellow, blue, and red, furnished by each negative corresponding to each of these three colors.
We have not to occupy ourselves at this moment with such application, as interesting as it is. The other application, which forms the main object of this article, relates to polychrome projections. It is well to remark, only, that when it is a question of projections, the colored media are not the same as in the case of pigmentary impressions, although the negatives are the same. For such impressions it would be absolutely impossible to attain the object if we employed ternary yellow, red, and blue, while the use of the same ternary in the re composition of the colors by means of radiations would give improbable effects of color. Such recomposition can be effected only by the aid of the three primary colors indicated by Young and Helmholtz, viz., violet, green, and red.

We remark, in fact, that if we mix these three radiations by projecting them separately upon the same point of a white screen, we obtain pure white-a result that is not produced with the mixture of the blue, yellow, and red radiations made under the same conditions.

Now it is found that the color of each of the media to be employed is precisely the complementary of the color adapted to the pigmentary impression. Thus the negative which would furnish the pigmentary yellow will give, in view of the projection, a diapositive that it will be necessary to cause violet radiations to traverse -violet being the complementary color of yellow.
The negative of the pigmentary red is that which produces the diapositive to be illuminated in green, the latter being the complementary of red.
Finally, the negative of the pigmentary blue is that which, for the projection, will give the diapositive of orange yellow, the complementary of blue. Thanks to these preliminary explanations, the facts that are to follow and that we are going to explain will be better understood.

The putting in practice of the recomposition of colors requires the use of a lantern in three parts, or, at least, of a special apparatus constituting a single lantern pro vided with three projection objectives. To simplify things, let us be content for the time being with the things, let us be content for the time being with the
ordinary three-bodied apparatus constructed by Mr. ordinary three-bodied apparatus constructed by Mr.
Moltine, which has been used by us for our own experiMoltine, which has been used by us for our own experi-
ments. This apparatus is represented in perspective ments. This apparatus is represented in perspective
and in action in Fig. 1, and the arrangement of it is shown by the diagram in Fig. 2. Three distinct lumin ous sources, F, F, F, illuminate the lanterns, 1, 2, and 3. Such illumination may be furnished by an oxyhy drogen light or by electricity, or else by kerosene lamps or illuminating gas with Auer burners. The three black diapositives are placed at $\mathrm{D}, \mathrm{D}, \mathrm{D}$, and behind each of them is located the colored medium correspond ing to the analytical value of the diapositive appropri ate to its special radiations. Behind D, therefore, is placed a violet glass, behind D No. 2 a green glass, and behind D No. 3 an orange yellow one.
The projections of the three uncolored (black) mono chromes, D, D, D, are exactly blended into a single image perfectly registered upon the screen, $I, I^{\prime}, I^{\prime \prime}$, on which the three objectives, $o, o^{\prime}, o^{\prime \prime}$, project the image. Each of these three radiations, as shown in the diagram, reaches all the parts of the composite image pro jected; and from the combinations with each other of these three sorts of radiations, violet. green, and red result all the possible colors that can be obtained with the seven colors of the spectrum. We have a proof of this, moreover, when we witness the truly wonderfu spectacle of the immediate recomposition upon the screen of the infinite shades of color of the original, and
this synthesis is indeed one of the most curious experiments in optics that can be made for demonstrating the relations that exist between the colors called primary and the unlimited variety of the various tones that they are capable of producing on combining with each other. It will be understood that, since the violet, green, and orange-yellow radiations produce white through their admixture, white will be produced in the composite image in colors at every point where the parts of such image correspond to points of the negatives likewise traversed by the three sorts of radiations. On the contrary, where the diapositives present spaces likewise opaque, black will be produced upon the screen, and, for all the intermediate values, going from white to black, we shall have combinations in variable proportions according to the respective opacities of the diapositives, and, consequently, colors or shades varying by reason of such proportions.
If the green and red radiations are absolutely arrested in two symmetrically corresponding points, the blue radiations alone traversing the diapositive of such radiations, the screen will receive the blue color all by itself. If the green radiations are alone suppressed, while blue and red radiations pass over two symmetrical points, there will be a resultant of a more or less reddish or of a more or less bluish violet upon the screen, according as the dominant resultant is found in the greater translucency of the diapositive of the red or of the blue radiations, and so on $a d i n f i-$ nitum.
At first sight, it may seem difficult to reach the desired result when we reflect that we are in presence of twelve variables which it is necessary to bring into a state of perfect accordance in order that the composite image sought shall effect the exact reproduction of a given polychrome object. These twelve variables are the three negatives, the three diapositives, the three colored media, and the three sources of light. If a single one of these twelve unities be modified, there may result therefrom a modification of the polychrome projected, to the detriment of the accuracy of the rendering. This is true, but we must not get scared in the presence of such a difficulty, for it is easily surmounted.

The obtaining of the three negatives, in suitable conditions, can be quite regularly effected. As for the diapositives, they are easily printed upon plates sensitized withgelatino-chloride of silver, and, with a little familiarity with the method, one may know when to stop at the most apposite point. One is always free, moreover, after a trial, to make the necessary correction if it is indicated by an inexact result.
The colored media should present, in the first place, the essential condition of furnishing pure white through the mixture of their three radiations. After a few tentatives, we shall quickly find those that best lead to the effect sought, and thereafter it will be useless to modify the threecolors adopted. They will then pass to the state of constant.
As for the illumination, it is not indispensable that they shall be absolutely identical in the three lanterns. There is even a certain advantage in being able to modify the intensity according as it is desired to bring out a dominant in the three radiations. With gas or the oxyhydrogen light, it is merely a question of cocks, and the operator can thus regulate the effect of the projection at will by graduating the intensity of the luminous sources corresponding to each of the diapositives.

To tell the truth, these twelve variables are reduced to three, say to the prototypes, of the value upon which depends all the rest, nothing being easier, if one or more of the diapositives are too strong or too weak, than to make others of the desired intensity.
Upon the whole, the three diapositives represent the colors collectively of any polychrome object whatever, provided that they be projected, as has just been said, by means of three objectives, and traversed by the three distinct radiations that have been indicated.

This process of synthesis offers the great advantage of permitting of obtaining the representation of the colors of nature and of works of art without the intervention of the brush, and without the interpretation, however able it be, of any translator whatever. Our first tentatives in this direction, susceptible of leading to numerous applications of great interest, permit us to believe that it is possible to reach perfection in the rendering of colors. The images thus projected are fugitive, it is true, yet we can succeed in fixing them in a

Fig. 3.

Fig. 1.-PROJECTION BY MEANS OF A TRIPLE-BODIED LANTERN
less striking but also less exact manner, through pigmentary impression by means of the same negatives. In that way, the method of the photographic decomposition of colors, combined with certain easily em-

Fig. 2.-Diagram of the apparatus.
ployed correctives, leads to results that are remarkable and much superior to anything that can be obtained thus by the use of the ordinary processes of chromolithography or chromotypography.
The first public experiments in Franceon this method

Fig. 6.-DIAGRAM SHOWING THE COLORS OF THE FLOWERS REPRESENTED IN THE FIGURES.
of recomposing colors by way of projection took place at the Conservatoire National des Arts et Metiers in our lecture of February 7, 1892. Since then they have been repeated, with completer elements, at the session

Fig. 4.

Fig. 3.- Monochrome designed for giving red, in the sta Fig. 4.- Diapositive that gives green radiations; monochrome of red for the printing of pigmentary colors. Fig. 5.-Diapositiv
that gives blue radiations; monochrome of yellow for printing with pigmentary colors.

Fig. 5.
of the French Society of Photography of the 4th of March, and before the Photo. Club, of Paris, on the 9 th of March.
The three engravings (Figs. 3, 4, and 5) repre sent, in its three states, one of the subjects projected, the diagram of which in Fig. 6 indicates the colors. These three images are a reproduction of the same bouquet of artificial flowers under the special conditions detailed above. If we compare with each other the corn poppies at the top and at the left, we find that they nearly resemble one another in Figs. 4 and 5, where they are rendered by a color almost black, while they are white in Fig. 3. The yel low flower situated beneath and to the right of the bouquet is of a dark shade in Fig. 5, and, on the contrary, nearly white in Figs. 3 and 4. The yellow centers of the daisies are black in Fig. 5, and of a light tint in Fig. 4, and stil lighter in Fig. 3
Two of the daisies were purposely colored with ultramarine. In the last two images, 4 and 5 , these are nearly white, like the white daisy, while in the first (3), from which the action of the blue rays was excluded, they have a vigor com parable to that of the green of the leaves.
It seems to us useless to carry the comparison farther it suffices to show the dissimilitude that exists between these three diapositives, as regards the rendering of the colors, although identical in their lines and dimensions. It will be remarked that the white lilac is every where found reproduced with an equal value, the white having acted in the same manner upon the three sensi tized films, possessing solely different properties as re gards the simple colors.
The favorable reception accorded by the numerous spectators present at these experiments is a sure guar antee of the future in store in France for the use of this method of polychrome projection. It has been almost unknown there up to the present, although its in ventors are Frenchmen. The proof of a possible per fect realization has now been given, and there i nothing more to do but construct apparatus adapted to this special object-cameras and lanterns designed for obtaining negatives and the projection of their diaposi tives. We know that skillful constructors have already taken the work in hand.
What as splendid application for our intelligent and artistic amateurs is that which is to permit them to bring back from their excursions photographic image that it will be only necessary for them to project in a composite state upon a screen in order to show their friends or others the places visited, and cause them to admire not only the picturesque character but also the beautiful colors thereof.-La Nature.

Analysis of Iron

In a paper read before the Chemical Society, Messrs A. E. Barrow and Thomas Turner gave results of analy ses of best bar and sheet iron and common bar and sheet iron. They attempted to estimate the slag by combus tion in chlorine, a method already employed by one of them for cast iron (C. S. Trans. 45, 263), but they found that the iron was attacked by the chlorine, the action taking place quite sharply at a scarcely visible red heat. A considerable number of iron ores and slags were examined, and it was found that action takes place in the sense of the equation $3 \mathrm{FeO}=\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Fe}$, the iron being removed by volatilization as ferric chloride. This action was unexpected, and so far as the authors are awgre, has not been observed before. Deville has, how ever, shown that when ferrous oxide is heated in hydrogen chloride, it yields magnetic oxide of iron and fer ous chloride. They then dissolved the iron in cold solu tion of sodium copper chloride. The authors conclude that for practical purposes the weight of slag in best and common iron may be taken as identical, and that on reheating and rolling each loses about the same weight of slag. The additional loss noticed on reheating im pure iron is due chiefly to the elimination of phos phorus, probably in the form of ferrous phosphate.

\section*{Length of Street Railwa | Cables. |
| :--- |}

Among the longest cables made by the Washburn \& Moen Manufacturing Compa ny were one manufactured fo the Denver Tramway Com pany of Denver, which wa 32,145 feet in length, weighing 86,867 pounds ; one manufac tured for the Portland Cabl tured for the Portland Cable Railway Company, which
was 33,000 feet in length was 33,000 feet in length,
weighing 76,350 pounds; and weighing 76,350 pounds; and
another manufactured for the Metropolitan Street Railway Company, of Kansas City 32,300 feet in length, and weighing 95,200 pounds.

Consclence in Work.
The policy of right doing cannot be doubted. Every intelligent man and woman must see that in nearly every instance it pays richly and fully for whatever labor or self-sacrifice it may involve, and in the few cases where they cannot see this result most of them have sufficient faith in the law to trust it. Yet, if this be the only motive in action, it cannot be called right doing in the best sense. That which is done solely from the hope of gain or advantage cannot be of the highest type.
The habit of doing what we have to do as well, as thoroughly and as speedily as possible, without immediate reference to its probable or possible effects upon ourselves, is one which would of itself secure at once the best success for ourselves and the greatest good of the community. It would settle many vexed questions and solve many knotty problems. Instead of this, the common course is to consider closely the comparative benefit that is likely to accrue to us in return. There are all degrees of this calculation, from the strictly just to the grossly selfish. One man tries to estimate the true worth of his labor and performs it accordingly, another gives as little work and secures as large returns as possible, and between these there is every shade. But in all such reckonings there is one important element left out. No one can count up the value of the labor which is both generous and conscientious. Even its money value can never be calculated.
The youth who enters business determined to do all that comes to his hands as well and as quickly as he can, who is anxious to learn and anxious to please, who never measures his labor by his wages, but freely gives all the work and the best work in his power, is
vastly more valuable than the one who is always bearvastly more valuable than the one who is always bear-
ing in mind the small pay he is receiving and fearing that he should give too much in return. So the mechanic or the clerk who, beyond his stated salary, chanic or the clerk who, beyond his stated salary,
beyond even his obligations to his employer or the de-
mands which public opinion could make upon him, exerts himself to make his work as perfect as he can, and delights in its thoroughness and excellence, apart from any private benefit it can render him, has a value which can never be computed. It matters not what the work be, whether it be done with the spade of the laborer, the pen of the clerk, the brush of the artist, or the voice of the statesman. Such people are sought far and wide, there are places always open to them, and their services are always at a premium. Talents and skill tell for much, but conscience in work tells for
more. He whose integrity is unquestionable, who can more. He whose integrity is unquestionable, who can
be trusted far and wide, who will work equally well alone as when every eye is upon him, and will do his best at all times, is an invaluable member of society. And he cannot do this simply from the motive of self interest. It is the result of something more than intelligence and foresight, it is conscience, vitalizing every telligence and foresight, it is conscience, vitalizing every
detail of labor, and raising it to its highest pitch of ex-cellence.-Condensed from a lengthy editorial in the Confectioners' Journal.

An Observatory for Mont Blanc.

A second attempt is to be made to build an observa tory at the top of Mont Blanc. As the workmen who tunneled last year through the snow just below the summit did not come upon rock, M. Janssen has de cided that the building shall be erected on the frozen snow. A wooden cabin was put up, as an experiment, at the end of last summer, and in January and early in the spring it was found that no movement had oc curred. According to the Lucerne correspondent of the Times, the observatory is to be a wooden building 8 meters long and 4 meters wide, and consisting of two floors, each with two rooms. The lower floor, which disposition of climbers and guides, and the uppe floor reserved for the purposes of the observatory floor reserved for the purposes of the observatory.
The roof, which is to be almost flat, will be furnished
with a balustrade, running round it, together with a cupola for observations. The whole building will rest upon six powerful screw jacks, so that the equilibrium may be restored if there be any displacement of the snow foundations. The building is now being made in Paris, and will shortly be brought in sections to Chamounix. The transport of the building from Chamounix to the summit of Mont Blane and its erection there have been intrusted to the charge of two capable guides-Frederick Payot and Jules Bossonay

Cornell University had, in 1891-92, a larger number of students in her technical departments than any of the nine technical colleges of Germany, with the ingle exception of Berlin (Charlottenburg). Sibley College, in its courses in mechanical engineering alone has a larger number of students than the total in any
German technical college except Berlin, Munich and Carlsruhe. The following are the figures: Berlin 1,756: Cornell, 1,090; Munich, 642; Carlsruhe, 586 Sibley, 525; Hanover, 514 ; Stuttgart, 363; Darmstadt 334 ; Dresden, 251; Brunswick, 237; Aachen, 110.
When it is considered that the German colleges are the wards of the state, and are fully supported by their guardians, while Cornell University and its technical colleges are the wards of New York State, and left to be supported by private liberality, the contrast is something remarkably creditable to the latter, and not t all to the State so greatly benefited.

ew Pacific Mail St

A new steamship, the Peru, for the Pacific Mail Steamship Company, was launched on the 11th from the yards of the Union Iron Works at San Francisco. The Peru is a steel steamer, 350 feet long, with triple expansion engines of 2,800 horse power, and is expected expansion engines of 2,800 horse power
to attain a speed of 15 knots per hour.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.

Car Coupling. - Robert S. Russell, Brownsville, Tenn. This is an improvement in that lass of devices known as "twin-jaw" couplers, a
coupling jaw of novel form being pivoted within each drawhead, the jaw having a horizontal hook at its forward end and a shoulder on the lower face of its weighted rear end, while a rock shaft jonrnaled beneath the drawhead carries an arm adapted to contact
with the jaw and the shoulder. The beveled forward ends of the courling jaws pass each other as the cars come together, their hooks becoming automatically engaged, means being provided for locking the parts in coupled or nncoupled position. This coupling is inespensive and always safe, and the device is readily

Mail Bag Catcher.-James W. Horon, Madison, Ind. Catching and holding arms, normally pendent, are secured to a main or supporting bar
hung in bearings npon the outer faces of the car door poste, these arms being swung out into operative or horizontal position by a lever arm. The catche either direction of movement of the car, the arms positively grasping the bag, while the holding devices
yield to its inertia to overcome the shock. The de-

BagGage Stamp or Check.-Thomas M. Cunningham, Nashville, Tenn. This invention consists of a railroad ticket having separate and independent stamps or checks secured to it indicating the
amount collected by the initial road on the route for the baggage of the passenger, with other particulars, baggage. The improvement has for its object the more certain division pro rata of charges for excess of haggage on connecting railroads using coupon ticke
although it is likewise applicable to local tickets.

Mechanical.
Grinding Wheel Attachment. John H. Goetsche, San Francisco, Cal. Emery and other grinding wheels are, by this improvement, pro-
vided with a casing formed with an annular recess to retan the oil, the inner wall of the casing resting on the face of the wheel and being held in place by a
washer. The arrangement is such that all the lubriwasker. The arrangement is such that all the lubrihe casing and retained therein, from which it can be readily removed by a sponge or other means, the work
being protected from the oil or other lubricant orwheel.
Claw Bar. - James W. Gray, Brooklyn, N. Y. An implement especially adapted for
drawing spikes from railroad ties, and capable of speedy and convenient adjustment to any size of spikehead, is afforded by this invention. The jaw is curved ou its under side to rock, and its forward end is curved downward and inward to form a beak, in the rear of which is a vertical slot in which a bar has a sliding and
pivoted movement. The construction is such that one of the clamping jaws may be utilized as a fulcrum for he bar in drawing the spike, the implement being also light, durable, and inexpensive.

Agricultural.

Plow.- Henry M. McCafferty, Montose, Col. A combination sulky plow and roller has
been devised by this inventor, an implement designed to thoroughly plow the soil and roll it nicely at the same time, the roller forming one of the main wheels
of the machine. The frame is supported by an or
dinary wheel at the landside, and the land roller inary wheel at the landside, and the land roller the opposite side of the frame. so that it will have free lateral swingıng movement. This improvement designed to afford especial advantages from the fact easily just at the time they are turned up by the plow and the weeds and vegetable matter are thus
effectually covered up that they rot more quickly.
Fowl Crate.-Friedrich W. Ewert Hood Lawn, ill. A transverse partition divides this crate into upper and lower compart ments, and transverse and longitudinal bars in each upper and lower division are made to form single compartments, one each compartment formed of a bar eliding on vertical rods, guide rods held on the bar sliding in bearings on the crate. The crates are more especially designed for shipping fowls to a distance without injury, perfect
ventilation being afforded, and the construction being simple and durable.
Egg Carrifing Package.-Robert G. Dale and Walter S. Weightman, Durango, Col. The
outer body of this package or case is made of paste board or thick paper bent or folded to form two tubular sections lying side by side, with their inner walls
dividing them but left free to open, inner thin paper dividing them but left free to open, inner thin paper or flexible strips being looped to form a series of
separate egg chambers in each tubular section. The separate egg chambers in each tubular section. The
improvement is more especially designed to facilitate the safe delivery of eggs in small lots to consumers, ackages containing any number of such divided packag
lots.

Cheese Vat.-Leopold Meyer, Ahnapee, Wis. This is an improvement upon vats having a
water tank and heater, the milk being heated in a removable vat suspended upon the water tank. The milk vat has a sliding and detachable connection with the water tank, and a longitudinal discharge pipe extends along the under side of its bottom, the projecting
end of the pipe entering an aperture in one end of the water tank when the vat is secured to the tank, the
latter having a heating pocket in its bottom. The bot tom of the sheet metal milk vat is strengthened, and a simple and convenient means provided for drawing off the whey from the curds, the tank and vat being easily

Muzzle for Horses and Stock. Marcus S. Moremen, Switzerland, Fla. This is a
simple and practical device, attachable to the head of simple and practical device, attachable to the head of
the animal to prevent injury being done to other cattle the animal to prevent injury being done to other cattle
or to trees and shrubbery, while allowing freedom to or to trees and shrubbery, while allowing freedom to
graze. The skeleton muzzle is secured upon the jowls of the beast, and its open bottom is normally closed by from the latter engaging the ground to swing the plate upward within the muzzle when the animal

Powder Duster.-John P. Wright, Thomaston, Texas. This is an inexpensive device easily operated by the driver to distribute poison upon plants. A bed or platform carries uprights supporting a hand shaft with crank handle, this shaft being connected by a belt and pulley with a distributer shaft on the outer ends of which are poison-distributing cylinders, which may be held at different heights, as de-
sired, for dusting the plants. The distributer shaft is sired, for dusting the plants. The distributer shaft is
operated by the turning of the crank handle by the driver, and not by the moving part of the machine, so that the powder may be app
and none of it will be wasted.

Miscellaneous.

Toy.-William H. Gregg, New York City. The evolutions of a body of soldiery can be imitated and different positions of a company of infantry may be accurately represented by this novel and amusing toy, instruction in the order of marching bodies of base board, a series of figures is supported on trans verse strips secured pivotal'y at both ends on parallel bars, and thus adapted for changing the position of the igures by ranks.
Puzzle.-Antenor Assorati and Arturo Cuyas, New York City. A puzzle in egg form, simuating the mythical egg of Columbus, is provided by this invention, the egg being so constructed that when handled in a certain manner it may be made to stand
upon its end. Although the toy is inexpensive the pon its end. Although the toy is inexpensive, the iderable expertness to solve the puzzle.
Design for. the Ornamentation of Sheet Metal.--Leopold Kahn, New York City. The strips of ribbon-like and lace-like metal, the latter figures simulating different varieties of lace, and having preferably scalloped edges overlapping the ribbon-like
Design for a Shoe Shaper Plate. Joseph W. Skinner, La Crosse, Wis. The edge lines of
the flat main plate converge slightly toward both ends, which are turned up at right angle, one upturned end

Pressure Regulating Valve.-Walfrid Gustafsson, Brooklyn, N. Y. This invention provides a valve of simple, durable, and inexpensive construction, with which, no matter what the pressure may be upon the inlet, the pressure at the outlet may
be diminished as desired. The invention also provides a means whereby the regulating mechanism of the valve may be manipulated in a convenient and exnovel details of construction and combinations parts.
Feed Pipe for Vacuum Pans. Henry Basanta, Ponce, Porto Rico. The feed pipe is preferably ring-shaped, provided with a series of perforations, and located directly above the heating coil
of the vacuum pan. One end of the pipe is closed and the other registers with a short pipe leading to a cham ber into which discharges the supply pipe, valved with this chamber, the valves in the latter pipes being ordinarily closed. The regular perforations in the feed pipe cause a uniform discharge of the sirup under an equally distributed pressure, any crystals in the
sirup not being liable to break, and facilitating the sirup not being liable to break, and facilitati
production of well-grained sugar in the boiling.
Transfer Paper.-William Schwartz, New York City. This invention relates to an jmproveproviding at a low cost a paper by means of which providing at a low cost a paper by means of way
number of copies of a mannscript or design may quickly and conveniently taken on single sheets or on the leaves of books. The coating is composed of glycerine, carpenter's glue, agar-agar, and other com-
ponents, in specified proportions, and is applied while ponents, in specified proportions, and is applied while
hot. The compound never thoroughly dries, but alhot. The compound never thoroughly dries, but al-
ways retains its absorbent qualities, and with the paper thus treated a distinct and perfect impression is
HAR
Harness. - Thomas J. Magruder, ness, of simple and durable character, especially adipted for connecting the inner and outer belly-bands, or for conpecting any two straps crossing one another

The device has side bars with upwardly curved ex-
tremities from which tongnes extend inardly tremities from which tongnes extend inwardly, a
bridge bar connecting the side bars, the bridge bar

Sack Holder. - James C. Bratney, Sparta, Ill. This is a device for holding any kind of
sack in a position to be eaeily filled, and is readily adsack in a position to be easily filled, and is readily ad-
justable to suit and support eacks of different lengths. The holder has a funnel top, with depending neck to enter the sack, and on opposite sides of the funnel are downwardly-depending sockets to receive supporting egs. The funnel has projections or teeth and hooks to ngage the sack, which may be fastened in place by one motion of the hand, and thus held without injury, ply hooks not extending through the fabric, but sim-
into aligning perforations.
Embroidering.-Hermann Gehnrich, New York City. Thie invention relates to a fabric holding frame for embroidering machines, and esmachines. The frame may be secured to the machine in any well known manner, is of simple and inexpensive construction, occupies but little space, and the
fabric can be readily and securely attached to it and stretched without injury. It is provided with an au-tomatically-working lock, so that when the fabric is
SHow CASE. - James C. Loughry, Greensburg, Pa. This case is especially adapted to exhibit cigars and permit them to be easily reached. It has a vertically-sliding glazed front, operated in ways
by chains or cords extended over guide pulleys to the rear of the case and there weighted for operation by the salesman, there being a shield or mirror in front of the upper ends of the ways. The salesman pulls on
the chain to raise the glass front when a customer desires to select a cigar.
Combination Lock. - William H. Thompson, Winnipeg, Canada. This lock has a rotary
bolt with a locking notch in which rests a tumbler on a spring bar, at right angles to and operating on which is a grooved pull-shaft, in the grooves of which play one or more adjustable elides. The lock can be opened only by one knowing the proper combination, and is adapted for use on cupboard doors, drawers, safe locks.
Stovepipe Fastening. - John H. Johnston, Little Rock, Ark. Metal loops are, accord-
ing to this invention, riveted to the pipe sections on he inside near their ends, a separate connecting strap or tie being bent around the loops and connecting the opposite pipe sections, thus forming a firm and secure
union of the sections to prevent them from becoming or unsightly cffect.
Furniture Construction. - Frank M. Haiman and Andrew L. Eaton, of Ottumwa, Iowa. ing the legs to tables, stands, desks, and similar articles, temporarily for shipment. A diagonal right and left screw bolt is made to connect the rails in the rear of their spaced ends, the leg being clamped between the rail ends heyond the screw, which serves to
nect and brace the rails when the leg is removed.
Fish Hook.-William H. Hunter, Farnhamville. Iowa. A bowl and two hooks are combined in this improvement, the shank of one hook being
fixed in the bowl while the shank of the other hook enfixed a hin or lug on the bowl to hold the two hooks in a closed position. While trolling the hooks are thus held closed to prevent them from getting caught in
weds, grasese, etc., but they are adapted to open in. werds, grasses, etc., but they are a
stantly when the fish takes the bait.

July 30, 1892.]
Wood and Coal Box.-Rudolph Federroll, New York City. This box is preferably made
of metal, and hus an open-topped case in which slides a wood box, the box heing mounted on rollers so tha it may be easily moved about. The lower portion of the box is divided into upper and lower compartments
by an inclined partition, in which is an opening, there by an incined partition, in which is an opening, there
being also an opening closed by a vertically-swinging door in the front of the lower compartment. The bos is cheap and compact, and holds the coal in such a
manner that it may be easily shoveled out without $\underset{\text { manner }}{\text { mpiling. }}$
Detergent Paste. - Joseph Judge Pittston, Pa. This is a paste for scouring and polishing purposes. It may be used for polishing and scourbeing very cala metalis without much labor, its action of the surface, and it leavess polish which will last considerable length of time.
Hat.-Samuel Cohen, New York City This is a hat more especially designed for the use o hunters, etc., baving a sufficientiy siff brim to affor readily folded up to carry in the pocket. The may be ade in sections folding one upon the other, and the hat is made of a coverng material and lining betwee which are interposed stiffening plates made of card board, rubber, leather, metal, etc., joints being formed by the covering material and lining at the ends of ad
jacent plates. acent plate
Vaginal Syringe. - John D. Kirkwood, Pullman, Washington. This a device of nove construction, made in one piece, without joint or seam or screw thread, 8o that dirt or other matters canno collect in it, while it has no
Design for a Medal. - albert 0 . Quiuby and Thomas H. Bates, Fresno, Cal. This is a entation of a spread eagle surmounting s shield.lik gure bearing a bird's eye view of the expositio buildings.
Nort.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please f this paper

SCIENTIFIC AMERICAN

BUILDINGEDITION

JULY NUMBER.-(No. 81.)

table of contents.

1. Handsome plate in colors of a residence recently | rected at Yonkers, N. Y. Perspective views, |
| :--- | foor plans, etc. Messers. Rossiter

architects, New York. An excellent design.
2. Plate in colors of a residence erected at Marina Heights, Black Rock, Conn. Perspective elevations and floor plans. Cost $\$ 7,000$ complet . Perspective view and floor plans of a brick house at Chambersburg Pa .
4. A cottage near Orange, N. J., from plans prepared 7,000 complete. Perspective view and flo plans.
5. A residence at Portland, Me., erected at a cost o $\$ 5,575$ c
elevation
6. A residence at Bensonhurst, Long Island. Cost $\$ 9,800$ complete. Messrs. Parfitt Bros., architions and floor plane.
7. Perspective elevations and interior views of the merican Yacht Club House, at Milton Point near Rye, N. Y. A handsome building of the Queen Anne style. Mects, New York.
8. A dwelling at Upper Montclair, N. J., erected at a cost of $\$ 7,000$ complete. Messrs. Munn \& Co., plans.
9. A cottage at Babylon, Long Island, N. Y., erected a cost of $\$ 3,700$ complete. Plans and perspecation.
. Sketch of an Australian bush home. Cost from $\$ 1,200$ to $\$ 1,500$. A simple and economical design

1. Miscellaneous contents : Electrical cotton gin.-Aluminum.-The efflorescence on brickwork.Larnaces, illustrated.-How to stain woed yellour and gray.-Ink for writing on glass or porcelain -An improved wood-working machine, illus-rated.-An improved revolving chimney top, illustrated.-Elevators in the amphitheater of Rome.-An improved hot water heater, illus-trated.-Natural wood grille and screen work, ductors, illustrated.-Sliding blind patents. The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practically, a large and splendid Magazine of architecTURE, richly adorned with elegant plates in colors and with fine engravinge, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this wori have won for it the Largest Circulation
of any Architectural publication in the world. Sold by ll newsdealers.

MUNN \& CO., PUBLISHERs,
361 Broadway, New York

PBusiness and Personal.
for each insertion: about eight words to a line. Adver tisements must be received at publication office as early ous

Grindstone Frames-With cabinet base and all improvements. Send for
Davis. Rochester, N. Y.
"U. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. 6SpindleTurret Drill Presses. A.D. Quint, Hartford,C G.D. Hiscox, 361 Broadway, N.Y., Consulting Enginee Portable and Stationary Cylinder Boring machines. Pedrick \& Ayer, Philadelphia, Pa
The Improved Hydraulic Jacks, Punches, and Tu Screw. R. Dugen, A Coll Screw machines, milling machines, and drill presser Centrifugal Pumps. Capacity, 100 to 4,000 gals. per inute. All sizes in stock. Irvin Van Wie, Syracuse, N.Y. Crandall's patent packing for steam, water, and am-
Conia. See adv. next week. Crandall Packing Co Palmyra, N. Y.
Portable engines and boilers. Yacht engines and
oilers. B. W. Payne \& Sons, Elmira, N. Y., and 41 De treet, New York.
Wanted-Pattern makers accustomed to machine den, care of Scientiftc American.
For mud dredging engines. J. S. Mundy, Newark, N. J.
Guild \& Garrison, Brooklyn, N. Y., manufacture stea umps, vacuum pumps, vacuum apparatus, air pump
acid blowers, fllter press pumps, etc. Split Pulleys at Low prices, and of same strength an Works, Drinker St., Philadelphia, Pa.
Perforated Metals of all kinds and for all purpose eneral or special. Address, stating requirements, Th Harringonal
The best book for electricians and beginners in elec
tricity is "Experimental Science," by Geo. M. Hopkin By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y. What do you want to buy? We will send without co o you, catalogues, price lists, and information concernng anything you wish. Paret, Willey \& Co., 265 Broa ng anything y
way, New Yor
Competent persons who desire agencies for a new
popular book, of ready sale, with handsome proft, may pply to Munn \& Co., Scientific American office, 361 Broadway, New York.
Boiler, new or second-hand, 60 to 80 horse power, and Engine, 30 horse power, wanted near Louisville, Ky., or Cincinnati, O. Also good Fan Blower and Heater
State price and particulars to Steam Boiler, Box 773 State price
New York.
Send for new and complete catalogue of Scientifl New York. Free on application.

\%hturex (buris

HINTS TO CORRESPONDENTS.
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our
or information and not for publication.
References to former articles or answers should References to former articies or answers should
give dateo of paper and puye or number of question.
Inquiries not answered in reasonable time should be repeated: correspoondents wins bear in minh in that
some answers require not a littie research, and,
though we endeavorto renty or in this endeavorto reply to a all either by lette
dent. ench must take his turn. or in this department, ench must take his turn.
Speclal Written Informalion on matters of
personal rather than general interest cannot be personal rather than general interest cannot be
expected without remuneration.
cientific American Supplements referred Scientific American Supplements referred
tomay be had ar the office. Price 10 cents each.
cooks referred to prompty supplied on receipt of Mincrals sent for examination should be distinctly
marked or labeled.
(4465) A. R. S. wants to know what is the best proportion of materials to make a German silparts, zinc 18 parts, copper 16 parts, and white cast ron 10 parte. (4466) M.
ticed taxidermy. J. writes : Having prac nterest the article on "Dangers of Arsenical Soap,"
in Scientific American of April 23, 1892. For the last eighteen years I have used arsenical soap only, beleving it to be less harmful than white arsenic. 1. Now (as this article asserts) arsenic is non-volatile, and ct only as a tonic," how comes it that a single grain of arsenic in a square yard of wall paper is so injurious ? A. The poisonous effect of mixtures of arsenic with organic matter by formation of volatile products is still somewhat in debate. The ill effect of arsenical wall
paper is still somewhat uncertain. 2. The taxıdermist receives many valuable specimens in the first stages of decay. Will not the application of white arsenic to the
skins of such develop ptomaine of arsenic also? A. Ptomaines may be developed in such cases. 3. If the best white toilet soap is used, can ptomaine be developed in the arsenical soap? A. Distinction in favor of olive oul or other vegetable soap might be drawn. 4. Is there any safe, reliable substitute for areeuic in the preparation of skins? A. Arsenic seems to hold its (4467) R. G. P. says: In the manufacA. The odors of plants reside in different pant is used ? A. The odors of plants reside in different parts of them,
sometimes in the roots, as in'the iris and vitivert; the leaves in mint patchouly and thyme; the stem or wood in cedar and santal; the flower in the roses and violets; the seeds in the tonquin bean and caraway; the bark in cinnamon, etc. Some plants yield more than one odor, which are quite distinct and characteristic. The orange tree, forlinstance, gives three: from the leaves one called petit grain; from the flowers we procure neroll,
and from the rind of the fruit essential oil and from the rind of the fruit essential oil of orange,
named Portugal. The fragrance or odor of plants
tained in small vessels or sacs within them or gener-
ated from time to time, during their life, ated from time to time, during their life, as when in
blossom. Some few exnde, by incision, odoriferous ums, as benzoin, myrrh, etc.; others give, by the same tures of an odorous oil and an inodorous gum.
(4468) N. McH.-Commercial dextrine is obtained by heating dry potato starch to a temron or copper drums, similar to those used in coffee oasting, whereby it is transformed into semi-trans parent, brownish lumps, which are converted into pale yellow powder by grinding between millstones. be completely soluble in cold water, from which it ma hol. Potato starch is generally used, but starch from other sources will answer. The best tests to ascertain ts purity are to agitate briskly a few grains of the dex rine in a test tube with fifty times its weight of pure cold water, then set it aside for 10 minutes. Pure dex rine dissolves completely in cold water to a clear so lation. If not all dissolved, pour off the solution, add ittle water to the residue, heat to boiling, let cool, and
(4469) W. A. B. asks : 1 I have an in (4. W. A. Bks 1. duction coil I made that gives a shock as strong as
can bear with a current from two cells of gravity bat cery. What would be the best kind of battery to use o occupy very little space and at the same time not be expensive? A. Use a plunging bichromate battery. What length of focus, size of glasses, distance apart nd number of glases should be in a microscope aagnify 350 diameters? I can make the glasses and gives information on this subject, tell me the number and I will send for it. A. The formula for a good miroscope objective requires very careful calculation, and the lenses must be made of special glass and carefully corrected. We do not think you will be able to o this unless you are an expert optician. You will find
(4470) W. T. B. writes : In Sloane's (4470) W. 1. B. writes: In Sloanes copper wire can safely carry is given as current th for a No. 18 wire, Birmingham gauge. Other authors whose works I have vary but slightly from 8 amperes or No. 18 B. and S. gauge, a smaller wire than the other gauge. Now, will you please tell me what is the safe carrying capacity of say No. 18 B. and S. gauge cop per wire? A. The $2 \cdot 5$ amperes is credited to No. 18 B. There is no hard and fast rule. The figure Biven in the arere is no hard and fast rule. The figure given in th the wire is insulated. A bare wire would carry consid ably more. 2. What is the ratio of the current capacity of wires to their diameters? A. The square of the carying capacity varies with the cube of the diameter (4471) R. M. McG. asks for a so-called window pane barometer. A. By panting the window
pane or wall paper with any one of the following solupane or wall paper with any one of the following soluchanges, owing to the well known properties of nickel and cobalt salts, which charge color in accordance with the variation or amount of moisture in the air. No. 1. Cobalt chloride 1 part, gelatine 1 part, water 100 parts. No. 2. Copper chloride 1 part, gelatine 10 parts, water 100
parts. No. 3. Cobalt chloride 1 part, gelatine 20 parts, water 200 parts, nickel oxide 0.75 part, copper chloride clear weather No. 1 will be blue No. 25 yellow, and No

TO INVENTORS.

An experience of forty years, and the preparation of An experiene hundred thousand applications for patents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices tensive facilities for conducting the business. Address mUNN \& CO., office Scientific American, 361 Broadway, New York.

INDEX OF INVENTIONS

United States wers Patent of th

July 19, 1892,
and EACH BEARING THAT DATE.

479,228
479,365
 479,208
4796

 479,212
479,281

TRADE MARKS.
Apparel, outer, and under wear, bedding, and the
materials of thich theV are made. .earing, Dr.
Jaeger's Santtary Woolen System Company

 Cbains, rings, clips. hoobs, and otter carioge
hartware, Baker Chain and
facturing Company.............................

Culinary Jessels, H. Aich. H
Dentifrice

Company

 Pea soup, compressed, C. W. Kopf Company, 21.50
Pencils, oomprising lead pencils and pencil
pen holders, American Lead Pencil Company

Salve, Bickmore Gall Cure Company.............
Scouring and cleaning powder T. Armstrong:
Sewing achines.
Soan for Akam,

 Whisky, T. Pease, Son \& Co
Wingky C.M. Roor
Wine, sherry, E. Felamainan.

DESIGNS

Bottle, pocket, H. N. Fraser.......
Button, campaign, R. Liebmann.

Spoon, C. S. Champion.
Speon, F. F. Horn
Spoon, H. B. Housto...
Spoon, J. M. Vanslyse.
Table top, F. Yo okel..........
Watch case, c. C. Depoiier.
Watch case, J. C. Dueber
Watch charm, J. A. Dawley.

 issued since 180, will be furnishe throm this office for
25 conts. In ordering please state the name and number
of the patent disered and remit to Munn \& Co., 361
Broadway, New York.
Canadian patents may now be obtained by the in-
ventors for anyof the inventions named in the fore-
going list, provided they are simple, at a cost of 84 each.

E. Korio Tnventores.
 ars. Guarantees to work out ieas in strictest secerecy,
and any impovemet that he cor sugopst gope with the
work. Thousands of men have crude though really val-

PELTON WATER MOTOR.

Groular, Adaresis
The Pelton whe

Many atter tring one

THE EVOLUTION OF COMMERCE.--

$$
\stackrel{\text { OVER }}{\mathbf{3 3 , 0 0 0}} \stackrel{\text { SOI }}{ }
$$

OTTO Tass ad asocinis enoines, Sanimeatoner

$\mathbf{3 3 , 0 0 0}$ SOLD.
OTLO GAS ENGINE WORKS, PHLLADELPHIA. HAVE YOU READ
Experimental ${ }_{2}$ Soience?
 you need to give you a good general knowledge of
Physial Science. No one having the spirit of the Piysical science. to one han anford be without the kind of scien-
times can armation contained in this book. It is not
tific inf instructive, but entertaining.

PERU.-AN INTERESTING PAPER

sted Ipp in Mrifict Ilatibua

STEVENS PATENT FINE ADJU\$TING AND TRANSF
OUTSIDE CALIPER.

Useful Books!

 classifed with n names of aut hors. Perronns desirink z
copy have only to ask for it, and it will be mailed to
them. Adress,

Over 700 pages: 680 fine cuts; substantiany an
beautifully bound. Price by mail, $\$ 4.00$.
MUNN \& CO., Publishers,
NUNN \& CO.̈. Publishers,
office of the SCIENTIFIC AMERICAN
361 BROADWAY, NEW YORK.
CMANUFAGTURERS OFECS

A New and Important Book on the Manufacture of Ink, the only one in the English Language. JUST READY.
The Manufacture of link.

 in the Preparation of Inks containing Tannin. V. Chem
ical Constution of inks containg Tanin .
tions for the Preparation of inkg containing Tannin

 dry Blue. Index.
GP A circular sho wing the full table of contents of the
above book sent free to any one who will apply.
 Arts, sent free and free of postage to any one in any part
the world who will furnish his address. HENRY CAREY BAIRD \& CO. 810 Walnut St., Philadelphin, Pa., U. S. A. LARKIN'S BRASS AND IRON

 Norks, Philadelphia. A new revised and greatil
enlarged edition. In one volume, $12 \mathrm{mon},{ }^{200}$ pages.

 De Descriptive circular, qiving full table of contents of
the above book, sent free to any one who will send his
address

"SGIENCE."

(Weekly)
$\$ 3.50$ per year
TENT \bar{H} YEAR.
More than Four Hundred of the leading Scientific Men' and Women of tribute to
" SCIPスNCص
during the coming year; and as others are constantly joining in this move to make the paper more valuable than ever, it cannot be long before there will be a body of One Thousand competent users of this Weekly Medium of Scientific Discussion.
Send Fifty cents (in stamps, if more convenient)
I. D. C. HODGES

874 BROADWAY, NEW YOKK.

TO BUSINESS MEN
The value of the ScIENTIFIC AMERICAN as an adver-
tising medium cannot be overestimated. Its circulation now published. It goes into all the States and Territories, and is read in all the principal libraries and reading rooms of the world. A busincss man wants something
more than to see his advertisement in a printed news paper. He wants circulation. This he has when he ad-
vertises in the ScIentific A MERIC AN. the advertising apent influence you to substitute some other paper for 1 der ScIENTIFIC American, when se-
lecting a
a your interest to advertise. This is frequently done for
the reason that the apent gets a larger commission from the papers having a small circulation than is allowed on the SCIENTIFIC American.
For rates see top of first
For rates see top of frrst column of this page orad-
dress MUNN 361 Broadway, New York.

BUILDERS OF HIGH GRADE BOATS.

 SEND 10c. FOR COMPLETE CATALOGUE. DAVIS BOAT AND OAR CO., DETROIT, MICH., U. S. A.

Our new General Circular "S. A.", showing specimen
of all our work Tg now ready. Send stamp and particu

A Machine Shop and Laboratory

 Where inventors may be helped out oftheir mechanical troubles. Will send a primer that is itself a help.

园Canning Machinery Dil Burners for Soldering, Ai
Pumps, Can Wipers, Can
Testers, Labeling Machines, Testers, Labeling Machines,
PRESSES AND DIES. B URT MFG. CO.
 Inventions. Perfected. Novelty and Duplicate Work
CATALOGUE. A.J.W Wead Co., 106, 108Liberty St., N. Y:
 After being on the Market Six Years Ine "ACME" Sill leats
 ROCHESTER MACHINE TOOL WORKS. Brown's Race, ROCHESTER N. Y. ROCK BREAKERS AND ORE CRUSHERS

AIIUTMIINU IMI
$\begin{aligned} & \text { In all shapes. Manufactured by } \\ & \text { Cowles Electric Smelting and Aluminnm } \mathrm{O}_{0}\end{aligned}$

VOLNEY W. MASON \& CU. FRICTION POLLEYS CLDTCHES and ELEVATORS

INSTRUMENTS FOR DRAWING Curves.-By Prof. C. W. MacCord. Description of in-
struments for dra wink ellipes, from the trammel to
more complicated devices

Do you desireth eservices of a rellable company

 We can save you money. Onexcept
Write for pamphlet and particulars CHICAGO COMMERCIAL COMPANY,
stop Billing: Une Depue

AUTOMATIC TIME RECORDER. ery employe
his own time Manufactured by BUNDY MFG. CO., Binghamton, N.
Send for circular.

FERTILIZER MACHINERY, Crushers, Milis, Mixers, igesters, Dryers, etc
Complete Fertilizer Works designed, erected and started.
C. H. DEMPWOLF \& CO., York, Pa.
HARRRISON CONVEYOR!

PRDPOSALS.

NOTICE TO ARCHITECTS
T WE Honorable the Chief Commissioner of Lands and before the 3otr September next (oompetititve) plans and
estimates of cost for the construction of certain Pro-
vincial Governent siniates of cost for the construction of certain Pro-
vincill Government Buildings.
canditilars of compenetition and further information om the undersigned. GORE,

NOTICE TO CONTRACTORS

U. S. ENGINEER OFFICE, CUSTOM HOUSE, CIN-

U. S. ENGINEER OFFICE, CUSTOM HOUSE, CIN

 EATMNSS \& HEAD NOISES CURED
 MLATOGANTY TEAK FOR YACHTS, SPANISH CEDAR THE E. D. ALBRO CO.,
 H. T. Bartlett, Mg'r. F. w. Honerkamp, Ass't Mg'r. Mills, Cincinnati, o.)

WHAT ELECTRICITY IS.-BY W. W.

HELICOID SHANK WOOD SCREWS.

The new quick-winding Waterbury watch has a jeweled movement and is cased in coin-silver, and gold filled cases.
American machinery and brains have added beauty and elegance to a watch that was always noted as a

Good time-keeper.
It is still a low-priced watch.
No cheap Swiss watchmade by the foreign labor system-can compare with it.

RATENTS! MUNN \& CO_{3} Soliciciors of Patents

mie I 892
 Model
 Remington

Typewriter

For Ease and Convenience of Operation, Simplicity of Design and Durability of Construction, is
 SEND FOR CATALOGUE.

WYCKOFF, SEAMANS \& BENEDICT, 327 Broadway, N. Y.

Regular Junior Folding Daylight Ordinary
Cotect osures improvements, registers for expoading, glass plate attachments; dayligh THE EASTMAN COMPANY

I4 $\begin{gathered}\text { styles and sizes } \\ \text { for the season of }\end{gathered}$ for the season I892,

 $\$ 6.00$ to $\$ 65.00$. Pany

THE SMITH PREMIER TYPEWRITER

Important lmprovements.

 BOX TOOL POST WRENCHES,

The BILLINGS \& SPENCER CO., Hartford, Conn

FIRE-PKOOF. Easily applied by anyone. Sond forSamples and Descriptive Price List.
H. W. JOHNS MANUFACTURINC COMPANY,
 87 MAIDEN LANE, NEW YORK,
JeRSEY CITY, CHICAGO, PHILADELPHIA, BOSTON, ATLANTA, LONDON.
ELECTRIC POWER APPARATUS, FOR EVERY VARIETY OF MECHANIOAL WORK. SAFE, SURE, FELIABLE. THOMSON-HOUSTON MOTOR CO.,

620 ATLANTIC AVENUE, BOSTON, MASS.

$\xrightarrow[\substack{\text { Contractors' Machinery } \\ \text { EnGives }}]{\substack{ \\\text { and }}}$ ENGTS, ADI BOILERS, BRICK MACHINERY. Thomas Carlins' Sons ALLEGHENY,

GAS OR GASOLINE FOR FUEL.

Engine operated by spark
from mall battery.
Yoururn the thewitch,

THOMAS KANE \& CO., CHICAGO, ILL.

RIDIEOIN

GENERAL ELECTRIC CO.
INCANDESCENT AND ARC LIGHT PLANTS.
Stationary and Railway Motors.-Lamps.-Safety Devices. district offices.

mitninglevaions

WEBER GAS AND GASOLINE ENGINE
 Simplest . .nd most economical
engines orthen
Fully Guaranteed. Fully Guaranteed.
A boy starts it, requires only
few minutes' attentlon a das.
 Weber Gas Engine Works,

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World Only $\underset{\text { Weekly }-52}{\$ 3.00}$ N Numbers a Year. This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixeen pages of useful information and a large number of representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History etc. Complete list of patents each week histor tc. Complete list of patents each week. THYIC AMERICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States,
Canada, or Mexico, on receipt of three dollars by the Canada, or Mexico, on receipt of three dollars by the
publishers ; six months, $\$ 1.50$; three months, $\$ 1.00$. Calt bs. - Special rates for several names, and to Post
Masters. Write Masters. Write for particulars.
The safest way to remit is Dy
The safest way to remit is dy Postal Order, Draft, or
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address 11 letters and make all orders. drafts, etc., payable to
MUNN © CO., 361 Broadwa, THE
Scientific Sumericatt Supplement This is a separate and distinct publication from The
SCIENTIFIC AMERICAN, but is uniform therewith in size every number containing sixteen large pages full of engravings, many of which are taken from foreign papers and accompanied with translated desoftptions. The
SCIENTIFIC AMERICAN Stpriementispublished weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archæology, Astronomy Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building,
Marine Engineering, Photorraphy Marine Engineering, Photography, Technology, Manu-
facturing Industries, Sanitary Engineering Agriculture Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh id valuable information etc. A vast amount of fresh
obtainable in no other publication.
The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and Manurfactures at home and a.
and described in the SUPPLEMENT. Price for the SUPplement for the United States and Canada, 85.00 a year; or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLEMENT, both mailed
for one year for $\$ 7.00$. Single copies, 10 cents. Address and remit y p postal order, express money order, or check.
MUNN $\&$ CO., 361 Broad was, New York.

Zhuilding Cedition.
The Scientific american Architects' and BUILDERS' Edition is issued monthly. \$2.50 a year.
Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming a
large and splendid Magazine of Architecture, richly large and splendid Magazine of Archtecture, richly engravings ; illustrating the most interesting examples of modern architectural construction and allied subjects. A special feature is the presentation in each number
of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the moreexpensive. Drawings in perspective and in color are given, together with full
Plans, Specifcations, Sheets of Details, Fstimate etc Plans, Specifcations, Sheets of Details, Estimates, etc.
The elegance and cheapness of this magnificent work have eogance and cheapars it the largest Circulation of any Architectural publication in the world. Sold by all newsdealers. $\begin{aligned} & \text { 2.50 a year. Remit to } \\ & \\ & M U N N\end{aligned}$

MUNN \& CO., Publishers,
361 Broadway, New York.

PRINTING INKS

