A WEEKIY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK. JANUARY 23. 1892.
$\boldsymbol{\$ 3 . 0 0}$ N YEARA.

A PROPOSED METHOD OF TUNNELING UNDER THE HUDSON RIVER.-[See page 53]

Scientific Smerican.
 \author{ hSTABLISHED 1845

}MUNN \& CO., Editors and Proprietors published weekly at
No. 361 BROADWAY, NEW YORK.

O. D. MUNN	

NEW YORK, SATURDAY, JANUARY 23, 1892.

TABLE OF CONTENTS OF
 SCIENTIFIC, AMERICAN SUPPLEMENT NO. 838

For the Week Ending January 23, 1892. 1. ARCH EOLGGY- Thenc. Fataor sale by all news dealer

 Ix. ${ }^{\text {A }}$

为

IMPROVEMENTS NEEDED IN THE NEW NAVY. It is probable that the United States Congress and administration have carried out recently no more popular movement than the creation of a new navy. The efforts of American engineers and inventors have alike contributed to the result seen in the production of our "white squadron." But a few weeks have passed since a further triumph for American skill was chronicled in the success of American armor plate when subjected to the competitive trial. The new navy is small but highly efficient, and is kept in constant service, thereby insuring its readiness for service when needed. A few years only are required to bring this country well to the front as a naval power. At the present day the efficiency in all senses of a single ship may outweigh the value of a number of slower and more vulnerable vessels of an older type.
While the navy is satisfactorily progressing, it has become very evident that the new type of fighting vessel requires a higher grade of skill on the part of the crew. The breech-loading guns served by electric or mechanical elevators, the rapid-fire guns, the machine guns with their breech mechanism, the perpetual change in the direction of improvement of charge, gun, carriage, and training mechanism exact more skill on the part of the actual manipulators of the pieces than was formerly looked for. The actual working of the ship, instead of depending upon the handling of her canvas under the control of a single officer, is a complicated affair. Even the stokers play an important part in the attainment of the highest speed, while in the engineering department each man has comparatively delicate interests intrusted to his care.
It is so throughout. The war ship is now a composite mechanism, under control of two great divisions, the captain's and the engineer's department; while in fighting, the gunnery department needs a distinct recognition.
The navy of to-day is unquestionably deficient in properly trained men. The traditions of an extinct phase of the service, that of sailing ships, pervade the new regime. The men who actually work and control the whole of the complicated mechanism are still considered subordinates, not only for the time, but forever. The road to promotion from the ranks to the grade of officer is so hard to travel that a sailor rarely graduates as an officer. The latter is generally a graduate of Annapolis, who has had but a slight experience of the work of the crew of a modern ship, but he is unhesitatingly put in command of these very elements, whose nature is known to him chiefly by tradition.
A feature of the new service as affecting the crew is the comparative idleness of their existence. The constant handling of the sails and overhauling of the rigging and attention to the multifarious work of the old sailing ship are no longer required. Idleness is unquestionably bad for the morale of any body of men. It is an evil which extends to the officers, but it has a cure within reach.
By legislation, the step from the ranks into the higher ranks should be leading to the consible, but should be encouraged. The inducement of certain promotion for merit should be held out to every recruit, and the service afloat should be organized to facilitate such advancement. Each ship should, in a certain sense, be made a school ship, where the men would acquire knowledge of steam and electrical engineer ing as well as of navigation, and the science of modern gunnery should be practiced and carefully studied. The carrying out of this plan, with designated exam inations for promotion, and with mandatory laws to fulfill such ends, would revolutionize the service. The enlistment of native Americans would become no longer a rarity, and the old-time much-abused Jack Tar would become a relic of the past. The college-bred man would enter the ranks with every confidence that his past work would insure rapid advancement. The intelligent mechanic would find nothing too abstruse in problems of navigation for him to overcome, and his mechanical knowledge would be of the greatest value to the service as well as to himself, in securing his pro motion.
The distinction between officer and man, the relation of subordinates to those commanding them, so necessary to organization, would not suffer. It is an old theory that to know how to command one must know how to obey. It is hard to believe that better material for war commanders could be found than in those who, by sheer industry and force of character, had worked their way up from the ranks.
The officers of a modern ship would be obliged to have more intimate relations with their crews in the way of organizing the statutory study and examina tions which such a system would exact. They would be given far better material to command, and the presence in their ships of a progressive body of actual workers as crews

the entire service

Our navy, as regards material, ships, armor and ord nance, to-day is in the first rank among nations. Al that is now needed is more ships and proper crews.
The ships are being rapidly built. Congress might
supplement the work so well in progress by providing for the improvement of the status of recruits, and thereby securing intelligent and superior men for the naval service.

An Auger Patent Case.

In the Queen's Bench Division, recently, before Mr. Justice Mathew, sitting to take chancery business for Mr. Justice Stirling, the case of Whitehouse vs. W. Gilpin \& Co. (limited), came on for hearing. Mr. Moulton said this was an action brought by Mr. Cornelius Whitehouse, Cannock, Staffordshire, against William Gilpin \& Co. (limited), also of Cannock, for an infringement of a patent for making a certain kind of auger, known as the solid-winged double thread auger, an exceedingly effective tool, and one which was now very largely in demand. In 1868 Mr . Whitehouse invented an auger and took out a patent for it, proposing to make it by means of casting it very nearly in shape untwisted, and then finishing it by boring it, twisting it, casehardening, and finally sharpening it. But that manufacture was a total failure. The metal which could be got by casting was not hard enough for the purpose unless it was casehardened, and if it was case hardened it became too hard to bore or sharpen. Be tween these two difficulties the whole thing was a failure, and it never was put in the market. There was another way of making an auger which was also tried. The tool was made of steel, the wings were forged first, and open, and then they were bent down and welded to the edge of the thread. That plan was also failure, and the tool was not placed in the market. In 1886 the plaintiff hit upon a totally different way of making this same auger, and this was the subject of this patent. He took a piece of tool steel and drew it into a blank with a lump of metal at the ends. He then stamped the steel, in its half finished form, between two dies; then the usual process of twisting was followed, and finally, after drilling, the polished auger was produced. A patent for this plan was taken out by the plaintiff in 1886 , and so great was the success of the invention that in 1887 he sold in round numbers 14,000 augers ; in 1888, 19,000; in 1889, 32,000; and in 1890, 37,000 . In 1891, 28,000 were sold, but there had been a falling off, because, as plaintiff alleged, defendants, who used to buy augers of him, took to making them themselves, and undersold him in the market, thus causing him damage. Mr. Justice Mathew What is the point here? Mr. Bousfield : We say this is an old process, which could not be patented. Mr. Justice Mathew : And I suppose Mr. Moulton says there is nothing to prevent what seems to be old from being new. Mr. Moulton : Yes; that is what I say. Mr. John Willcox, die manufacturer, said he had made the dies for plaintiff. In cross examination, he ad mitted that if he had never made a die of the descrip tion at all, but had seen the auger, and had he been told to make a die for a blank for that auger, he would have known what shape to make it. Mr. Justice Mathew said that ended the case. The invention was ingenious, but it was not new. The action would be dismissed with costs.

Explosions of Coal Dust in Mines.

In the course of a lecture recently by Professo Harold B. Dixon, at the Owens College, Manchester, on "Coal and Coal Mining," he directed attention to the evidence which has been accumulated regarding the action of finely divided coal dust either in promoting or aggravating the intensity of explosions pro duced by fire, or, on the other hand, by igniting itself, and causing an explosion in mines. He said the ques tion which was being considered was this: Is dust capable of creating a flame when it comes in contac with a large flame such as may be produced by a blown-out shot or by an explosion of gas and air? It was not supposed that an ordinary naked light in a mine would suffice for an explosion of coal dust and air. There must be first a great disturbance to raise the dust, and mingle it with the air, to make it an explosive mixture ; and there must be a great heat locally applied to initiate the explosion. But when once this had been set up, a flame might extend so far as there was the coal dust lying on the floor or sides; and the damage done by it was comparable, at all events, with that caused by an explosion of fire-damp and air. This was a view frequently urged; and, in support of it, the lecturer tried a few experiments. He showed that fine dust falling on a flame will give off flame and sparks, and that when mixed with oxygen an intense flame is produced. The difficulty he added, was to obtain the requisite proporitions of coal dust and air to make an explosive mixture.

The Keynote of an Auditorium.
In rooms of poor hearing qualrties Dr. Ephraim Cut ter says: Every hall or chureh has its keynote, and the audience will hear better if the speaker's voice is pitched and held to the keynote of the toom. Fo find the key note, sing the natural scale slowly evenly, and smoo y, or play this scale on piano or organ. The ly, or play this scale on piano or organ
which is most prominent is the keynote.

Scientific Digger Indian Surgery.

The poor Digger Indians, of California, are among the lowest tribes of America, who, prior to emigration there, in 1849 , lived upon spontaneous production, such as they could kill with bow and arrow, and grasshoppers, which I have seen there, which they captured by hundreds of bushels at a single capture. During my travels there from saw mill to saw mill, when I titted and inserted my saw teeth in circular saws at the mills, I met with gentlemen who related curious incidents of these Diggers, as they are called, and among them this exceedingly interesting and curious method they had of dealing with a compound fracture :
I was inserting teeth in a saw for a Mr. Wilcox, in a mining town then called Fiddletown, in Sierra County. Mosc of the yellow metal was obtained by running tunnels under a steep bluff and washing it in a brook. At the head of the town was their saw mill, and about five or six miles from there was an Indian campudia (a five or six miles from there was an Indian campudia (a camp), where several hundreds of these diggers lived.
A saw mill, to them, was a great curiosity then, and A saw mill, to them, was a great curiosity then, and
nearly every day some of this tribe would visit this mill. nearly every day some of this tribe would visit this mill.
One day, about twenty of them were there, and, it being chilly, most of them stood in front of the fire under the double flue boiler, when a very sad accident occurred, by the collapse of the flues, scalding Mr. Hoxey, one of the owners, so that the poor man died about four days after the accident, and it burned several of the Indians, and blew one poor old mohalie (squaw) some twenty feet into an old miner's pro(squaw) some twenty feet into an old miner's pro-
spect hole, and broke one of her legs below the knee, spect hole, and broke one of her legs below the knee,
it being what surgeons call a compound fracture. The it being what surgeons call a compound fracture. The
Diggers shouldered her, and went to their campudia, the only physician there being kept to take care of poor Mr. Hoxey. About four days after the misfortune several hundred Diggers appeared on the high bluff overlooking the town, with bows and arrows and in war paint. Soon down came a tall chief, who walked up in front of the small hotel, and said: "Whar saw mill men 9 " Some men at the hotel pointed to Mr. Wilcox, then coming over a small bridge. The chief walked up then coming over a small bridge. The chief walked up to him, saying: "You saw mill man?" Mr. Wilcox said: "Yes." "Well, Indian came down to see saw
mill, do no hurt, then white men shoot off saw mill, mill, do no hurt, then white men shoot off saw mill,
burn Indian, break mohalie leg; Indian want to fight saw mill men."
Mr. Wilcox was puzzled to know just what to do ; but there was a gentleman in town who had been an Indian agent, and they sent to him, who came at once. The agent asked how Mr. Hoxey was, and was told that he was very low and not expected to live through the day.
So they went to the sufferer's room with the Indian chief, and showed the poor man's wounds, and explained, in Indian language: "No intendi acidenti." When the old chief replied: "Me safe. No fite all wano." Which is: "I understand it was not intended; it was accidental; we don't fight." And the Indians soon disappeared.
Now comes the interesting and scientific part of this story. In a day or so after Mr. Hoxey's burial, the surgeon went to the campudia, and there sat the poor broken-legged mohalie. The physician told me that the Diggers measured around the leg in several places, then cut a piece out of a slippery elm tree, near the size and shape of the leg, took the bark off, shaved off the outside, and made as fine a splint as he ever saw, and fitted it around the broken limb, leaving the space open about one-quarter of an inch on the top, and were pouring in a little water to keep down the fever heat, and that in a few weeks the squaw was limping around town again.
J. E. Emerson.

A Wonderful Cave.

A cave was discovered a short time ago on White River, some thirty miles above Meeker, which seems to River, some thirty miles above Meeker, which seems to
be as important a discovery of that kind as any ever made in Colorado. It was found by a prospector and hunter named Hooper, who reported it to the citizens of Meeker. But no one seemed particularly interested in the new find, as that portion of the country surrounding the headwaters of White River is full of curious things, and the settlers in that locality have become accustomed to them, and their curiosity is not easily aroused. Two gentlemen recently made an exploration of the cave, and found it located in a limestone formation and extending into the mountain for half a mile or more.
The opening has the appearance of a railroad tunnel, twelve or fourteen feet wide. The cave continues at this width for considerable distance, when it grows narrower, and in one or two instances the explorers were obliged to stoop in following the passage. The the form of an incline
When the party had reach
of a mile, the floor sloped
-nce of a quarter of a mile, the floor sloped
dred or three hundred v
-n hundred or three hundred
abrupt drop. Rocks \mathbf{x} ence of water asc was lowered, the \quad d only twelve f
water was f

The air was good, and they found that the passageway continued, and was followed some three hundred yards further, when another drop of seven or eight feet
was encountered. Here was a dry, sandy bottom in was encountered. Here was a dry, sandy bottom in
this cave, and the passageway was found to continue still further, and was pursued thirty or forty yards further, when they came to what was apparently the end of the tunnel. A stream of water two feet or more in diameter was rushing out of the wall at one side, in diameter was rushing out of the wall at one side,
cutting across the foot of the breast of the passageway, and to all appearances was lost in the wall on the other side. The stream was swift and came out with great force, and, stranger yet, the water was quite hot, and when tasted was very much like the water found in the springs at Glenwood.
Where the water comes from and where it goes is a mystery that the explorers could not solve. Aside from the lime formation, the formation surrounding it is lava, and the supposition has been advanced that there is a crater in the vicinity filled up by crumbled there is a crater in the vicinity filled up by crumbled
walls of rock, which constantly discharges hot water, and during the course of ages has eaten its way down through a seam or crevice in the limestone to the river below. A few miles above Glenwood there are springs of a similar nature, which are situated almost in the bed of the Grand River. It is quite probable that further investigations will be made.-Great Divide.

Royal Society Medals.

The anniversary of the Royal Society, London, was lately celebrated with the usual eclat. The medal ards were as follows
prof. stanislao cannizzaro (COPley medal).
Stanislao Cannizzaro, Senator of Italy, and Professor of Chemistry in the University of Rome, has rendered invaluable service to the philosophy of modern chemical science. The work of Avogadro, in 1811, and afterward that of Ampere, had already thrown much light on the relative weights of the molecules of elementary bodies, and on the proportion in which those weights enter into chemical combination. But it is to Cannizzaro that we owe the completion of what they had left unfinished. He pointed out the all-important difference, hitherto overlooked, between molecular and atomic weights, and showed (1) how the atomic weights of the elements contained in a volatile compound can be deduced from the molecular weights of such compounds; (2) how the atomic weights of the elements the vapor densities of whose compounds were unknown can be ascertained by help of their specific heats. By these investigations the series of atomic weights of the
elements, the most important of all chemical constants, and the relation which these weights bear to the mole cular weights of the elements, have been placed on the firm basis on which they have ever since rested. It is to Cannizzaro that science is indebted for this fundamental discovery, and it is this which it is proposed to recognize by the award of the Copley Medal.
prof. charles lapworth, f.r.s. (royal medal).
Prof. Lapworth is the author of some of the most original and suggestive papers which have appeared in the geological literature of this country for the las twenty years. Special reference may be made to his researches ou graptolites, and to his patient investiga tion by these means of the exceedingly complicated
structure of the Silurian uplands of the south of Scot land. He has been able not only to supply the key which has given the solution of the stratigraphical dif ficulties of that region, but also furnish theoretica geology with an array of new facts from which to philosophize as to the mechanism of mountain making. Of not less importance are his detailed studies of the
structure of the Northwest Highlands, and his demonstructure of the Northwest Highlands, and his demonstration of the true order of stratigraphical sequence in that region of complex disturbance. As a stratigraph ist he has attained the highest rank, and he has like wise made himself a chief paleontological authority on thè structure and distribution of the Graptolitidæ. For some years past he has been engaged in a laborious
study of the Silurian and Cambrian rocks of the middle of England, the detailed publication of which is await ed with much interest by geologists.
prof. rucker, f.r.s. (royal medal).
In conjunction with Prof. Reinold, Prof. Rucker car ried out an important series of researches (extending over ten years) on the electric resistance and other
physicalproperties of liquid films, in the course of which the fact was established that the black part of a soap film in equilibrium has a uniform, or nearly uniform, thickness of 11 or 12 micromillimeters, and that there is an abrupt augmentation across its border to a thickness
of about 30 or 40 micromillimeters in passing to the colored portions. This, considered in connection with the well-known sudden opening out of the little black areas in an ordinary soap bubble, proves a minimum of surface tension for some thickness between 10 and 50
micromillimeters, which in the ordinary soap bubble,

- odified by Reinold and Rucker's electric current, is
-ily balanced in virtue of the abrupt change of
${ }^{7}$ roposition of fundamental importance in
ъoory, implying the existence of molecu

In theoretical calculations connected with the compounding of dynamos and motors to produce constant potential difference, constant current, or constan speed, electricians did not see their way to obtain re sults of a sufficiently simple character to be of use in practice, if they employed a function of the current which fairly represented the magnetism. They were therefore, compelled to assume in such calculations that the magnetism was a linear function of the curthat the magnetism was a linear function of the cur-
rent, although it was well known that this was very far rent, although it was well known that this was very far
from being true when the current was large. Prof. Rucker, however, developed a simple method of attacking such problems, and showed how the magnetic saturation of the iron might be taken into account, and a comprehensive solution of the general problem of compounding dynamos and motors obtained in a workable form. Prof. Rucker's paper containing his investigation, and which will be found in the "Proceedings of the Physical Society," is a most valuable contribution to the theory of direct-current dynamos and motors. Prof. Rucker has, with the co-operation of Prof Thorpe, completed a magnetic survey of the British Isles (1884-89), which, independently of its great value in investigations of the distribution of the earth's mag netism, and the changes to which it is subject, is specially remarkable for the exhaustive discussion of the observations in reference to regions of local magnetic disturbance, and their relation to the geological constitution of the earth's crust in the neighborhood. Prof. Rucker has followed up this discussion by a paper on "The Relation between the Magnetic Permeability of Rocks and Regional Magnetic Disturbances," read be fore the Royal Society. The high estimate that has been formed of the value of this magnetic survey is per haps most easily appreciated from the very large sums that the Government Grant Committee have recommended should be contributed to aid in the completion of this work of international importance.
prof. victor meyer (davy medal).
Prof. Victor Meyer, formerly the successor of Wohler at Gottingen, and who now occupies the chair of Bunsen at Heidelberg, is eminent as an original worker and discoverer in almost every branch of chemical science. His methods of determining the vapor densities of substances have been of the greatest service to chemists not only as convenient and generally applicable modes of ascertaining atomic and molecular weights, but also as serving to throw light on the molecular constitution of elements and compounds under varying conditions of temperature and pressure. A striking example of the value of these methods is seen in their application by their author to the study of the molecular dissocia tion of the element iodine-one of the most masterly investigations of recent years, and which is universally recognized as of the very highest significance and importance. Not less noteworthy are Victor Meyer's services to organic chemistry. His work on the nitroso bodies, and his brilliant discovery of. thiophene, the initial member of a class of substances hitherto un known, his subsequent synthetical formation of it, and the remarkable series of researches on its derivatives,
in part carried out with the aid of his pupils, stamp hin in part carried out with the aid of his pupils, stamp him as an investigator of exceptional power and distinc tion.

Cheap Shoes for Europe.

A prominent English manufacturer of boots and hoes arrived in New York recently, and the sole ob ject of his trip is, he says, to learn how to make foot wear more cheaply. "The English people are just beginning to admit that America can beat the world at making shoes," he continued, "and what with your high rate of wages and other heavy expenses, we wish to know how you can possibly do it." The solution of the problem is not difficult to find-machinery and harder and quicker work. The American workman is undoubtedly smarter than his English brother, and can turn out a great deal more work in a given time, and turn out a great deal more work in a given time, and
any one who has visited factories on both sides of the Atlantic will unhesitatingly confirm this statement Atlantic will unhesitatingly confirm this statement.
Then, the English manufacturer who buys American Then, the English manufacturer who buys American
machinery is fond of hiring boys to run it, under the machinery is fond of hiring boys to run it, under the
delusion that this is economy, in addition to which the English workmen are opposed to machinery, as they think that it means less employment for themselves The American system is the system arrived at through evolution, and represents ideas, science, hard work, and never-ceasing enterprise, and it is plain that any country, in order to successfully compete with us, must adopt methods which have proved so entirely satisfactory.-Boots and Shoes.

For some years past foreign travel has been very large. The Secretary of the Treasury estimates that our people spend $\$ 60,000,000$ in gold every year in foreign countries. Other good authority estimates the amount as high as $\$ 100,000,000$. One hundred thousand people go to Europe annually, and spend $\$ 1,000$ each on an average. The great World's Fair approaching will turn travel this way. A contemporary estimates that 100,000 Europeans will come here and spend $\$ 1,50 \mathrm{C}$ each of foreign gold.

History of the Electrical Utilization of Water

The utilization of water power through the medium of electricity forms the subject matter of a patent granted in Italy, on the 30th day of June, 1866, to Felice Marco, of Florence. In the description accompanying the patent it is stated that "it is known that with a mag-neto-electric machine we can obtain electric currents of any desired strength. These are used for various purposes, but the movement of the shaft which carries the magnets is produced by steam, necessitating a cost of fuel. But if this machine is placed in a locality where the gratuitous mechanical force of water can be utilized, electricity is produced without cost by means of said machine. It can be conveyed by means of metal wires to points where it is needed for producing the electric light, and for operating electro-magnetic machines; these machines have up to the present time not been used, solely on account of the expense of the acids and metals required to produce the electric current, which far exceeds the cost of fuel used in steam engines. The application which I propose is to produce the electric light gratuitously and to permit the transportation of the mechanical force of waterfalls and streams of mountains and plains into a city by means of the magneto-electric machine. This is undoubtedly the most simple and rational solution of the problem of the production of electricity and of its application for the production of light, heat, and force.'
It will be seen that Marco clearly foresaw what is a fait accompli to-day, and according to the decisions of the United States courts, his obtaining a patent was "a constructive reduction to practice of the method set forth in the patent, because he who makes the disclosure to the public in a patent benefits the public in this regard equally with him who makes the disclosure by actual reduction to practice.'
The principle of the reversibility of dynamo-electric machines was practically demonstrated at the Vienna Universal Exposition of 1873. A Gramme machine used as a motor to work a pump was run by the current produced by a similar machine connected by cable conductors, and put in motion by a gas engine. This was an illustration of the electrical transmission of mechanical energy to a distance; but, obviously, fuel was required to operate the prime motor. It does not appear that Gramme or Fontaine was aware at that time of the published descriptions of Bessolo in 1855, Cazal in 1864, and Marco in 1866, concerning the driving of magneto-electric machines by water power and the utilization of the currents produced for working distant electric motors. Whether the utilization of natural forces by Gramme machines is an invention or not, need not be considered in the historical treatment of the subject.
An Italian patent granted September 30, 1874, to Francesco Ferrara-Bracco, of Palermo, has for its subject matter the electrica utilization of water and other natural forces by means of Gramme dynamo machines. After describ ing the Vienna experi ments, the patentee states that his invention consists in the electrical transmis sion of energy over long distances and the utilization of all kinds of natural forces. He specially describes the operation of a Gramme generator by means of the power derived from a waterfall and the conveyance of the electric current to distant points for operating other Gramme machines as motors. The description states that " to obtain a practical and useful application of the reversibility of the Gramme machine, it is necessary to dispense with combustibles. Natural forces, such as streams and torrents, can be electrically transmitted by means of the Gramme machine, and the current produced by the same subdivided, in
large and small industrial establishments, for the pro duction of motive power." It is also stated that "the electric current goes through wires suspended like telegraph wires, and is subdivided and transmitted to the Gramme machines (motors) in many ways.'
A. M. Tanner.

The cost of railroads in the United States has bee nine billion dollars.

THE WORLD'S FAIR-AMMONIA MOTOR CAR NOW RUNNING.
ment of the several parts of the engine, this is provided for. A sheet iron cylinder or tank, provided with tubes like a locomotive boiler, is incased in a larger and somewhat longer cylinder, with plenty of space between the two cylinders for the reception of water or a weak solution of ammonia, which can freely circulate around the tubes and all around the inner cylinder. When the inner cylinder is two-thirds filled with liquid anhydrous ammonia, and the temperature of the water ammonia, and all, is $80^{\circ} \mathrm{F}$., the ammonia will boil, and will exert a pressure of $1471 / 2 \mathrm{lb}$. to the square inch, to be used against the piston of the engine. The working cylinder is inclosed in a water-tight jacket, in communication with the large outer absorption tank, so that the exhaust gas, on each stroke of the piston, is taken up by the water, which has great affinity for the ammonia gas. As the water in the outer tank absorbs the exhaust gas, the latent heat of the gas is given out, thus increasing its temperature, but most of this in crease is transmitted through the metallic surfaces of the tubes to the anhydrous ammonia, and thus keeps up the evaporation of the gas.
At starting, the pressure may fall to 130 lb ., but after running some time, it will go up to 160 or 170 lb . showing that there was an actual gain of heat. The liquid anhydrous ammonia used has, however, passed from the central tank as a gas, in which form it has ex erted its pressure upon the piston, being taken up, as exhausted, by the water in the outer tank, the capaci ty of water to take up ammonia gas being seven hun dred times its own volume
When the quantity of ammonia in the central tank is so reduced as no longer to give sufficient pressure the motor is run into the generating station, when the solution of ammonia is withdrawn from the outer tank and the inner tank is again charged with the liquid anhydrous ammonia. The amount of each charge is designed to be sufficient to enable the car ordinarily to run eighteen miles. At the station the gas is separated from the solution by,heat, passing thence to a condenser, when it is reduced to a liquid before passing to supply the tank. The same ammonia is used over and over again, and the working of the apparatus is sim ple and continuous. The charging and discharging is accomplished in about two minutes, and the motor wil hold the charge for any length of time, as there is no leakage, and the pressure does not become reduced.

- The manner of ascertaining the cost of running this motor is simple. The fuel consumed at the stationary plant for separating a given quantity of anhydrous ammonia is carefully weighed. Then a certain quantity of the ammonia is charged into the motor and the distance made ascertained. On the test with the plant while pumping and blow ing, under conditions o actual practice and during extremely cold weather, $1 \cdot \frac{}{}$ lb. of coal produced one gallon of anhydrous am monia, and in running the five-ton motor at the rat of fifteen miles per hour five gallons of ammonia was evaporated per mile run. The coal cost, deliv ered at the works, $\$ 6$ pe ton of $2,000 \mathrm{lb} .$, which equals $31 / 3 \mathrm{lb}$. for one cent The five gallons of anhy drous ammonia, requiring only 6 lb . of coal to pro duce, thus costs only $1 \cdot 8$ cents, and furnishes the power for a mile run of the motor.
This motor is the inven tion of P. J. McMahon, of Louisiana, who was form erly chief engineer of a United States naval vessel. A company has been form ed to manufacture motor of this kind for the various purposes for which they may be adapted. The offices of the company ar at room No. 433 Manhat tan Building, Chicago.

The Spanish govern ment is to give two exhibi tions in September. 1892, in
he ammonia without pressure, and it is this fact which is taken advantage of in the operation monia ice and refrigerating machines.
In this motor the pressure of the gas from the sur face of the liquefied ammonia, as it is evaporato America by Colum hun centenary of the discovery of $\begin{array}{ll}\text { America by Columbins One of these will be held at } \\ \text { Huelva a } & \text { txposition Historique Euro- }\end{array}$ Hue
held at Madrid. It wil made to move the piston of the engine, the the gas being regulated by an ordinary $\dagger^{\dagger} \quad$ eoples at the tina This operation, under ordinary condi+* duce great cold, but in the const
be an interestin World,

Inductive Lights.

At the meeting of the American Institute of Electrical Engineers Mr. Tesla employed a machine having 400 poles, which, when run at full speed, enabled him to obtain 20,000 alternations per second. He believes that electro-magnetic waves cannot produce luminous effects unless they have the frequency of true light waves; but this is not the case with electro-static waves or thrusts, as these can excite luminous radiawaves or thrusts, as these can excite luminous radiamade many experiments with Geissler tubes, and also with lamps, in which only one terminal was used. The filament consisted of a single rod which was in a nontriking vacuum. The energy was transferred entirely by condenser action through the coatings in the base of the lamp. He also showed how exhausted tubes could be made to glow in an clectro-static field, so that if such tubes were merely hung up in a room in which such a field was produced, they would be lighted up, and could be moved about at will. These experiments created the most intense interest, and point to methods of producing light which may bc used in the future.

AN IMPROVED PIANO ACTION.

The illustration represents an action in which the usual spiral spring employed beneath the fly is dispensed with, while the fly is held at all times in position to quickly engage with the hammer butt, thus making the action a very fine repeating one. An improved bridle connection is also provided between the butt and the fly, and the whip is made from one piece of moulding. The improvement has been patented by Mr. Henry Bescher, Jr., No. 228 Suydam Street, Brooklyn, N. Y. To the key, A, pivoted on the base of the instrument frame, is bolted a jack, B, which is pivotally connected by a link with the whip, C , having ears on its upper face, while forward of the ears is a cushion, D , and a rod, E , extending from the upper surface of the whip, holds in position a check. The whip near

bescher's piano action.
its other end is fulcrumed upon an extension of the main action rail, attached to brackets, at the other end of which the hammer rest, F, is secured. The end of the whip has a pin, G, engaging the cushioned lower surface of the damper lever, H , which is spring-pressed and fulcrumed in the usual way on the main action rail, the damper, I, being of any approved form for en gagement with the string, J. The lower end of the fly, .K, pivated between the ears of the whip, has a forward extension to engage with the cushion, D, and its upper end is curved to engage with the butt, M, of the ham mer, N, the hammer butt having the usual catcher, O, to engage with the check. The bridle connection be tween the hammer butt and fly consists of a spring hook, P, and a strap, Q. The release of the fly is regulated by a set screw, R, in the regulating rail. With this construction the complicated bridle strap and bridle connection ordinarily employed are dispensed disengaged fromtt may be readily and convenientl disengar

The first steamboat on Western waters, said the late Mr. J. B. H. Latrobe before the Maryland Historical Society, was the New Orleans, which was built at and started from Pittsburg, Pa., in September, 1811, and reached the city of New Orleans in October of the same year. This boat was built from the designs of Robert Fulton by Nicholas J. Roosevelt, who was associated in this enterprise with Fulton and Chancellor Livingston. The New Orleans was 116 feet long, 20 feet beam, and had an engine with a 34 inch cylinder. The second and third stearniooats built for this service were the Vesuvius and thr Etna, and the fourth boat, the Buffalo, was built under the direction of Mr. B. H. Latrobe, Sr., the architect of the first capitol at Wash ington, who becanne interested with Fulton and Livingston in the navigation of Western waters about 1813.

AN IMPROVED FREIGHT CAR DOOR.

The illustration represents an improved car door, more especially designed for use on freight cars, which can be readily moved backward and forward to open and close the car. It has been patented by Mr. Andrew G. Gray, of No. 20 Orange Street, St. John, N. B., Canada. The door has at its upper end two hangers, in which are grooved pulleys traveling on a shaft secured at its ends to crank arms, held on short shafts turning in suitable bearings attached to the outside of the car. The crank arms are also pivotally connected by links with crank arms on a lower shaft turning in suitable bearings, one of the lower crank arms also having a handle to be taken hold of by the operator to swing the crank arms upward, the links then likewise operating the upper crank arms to swing outwardly the upper shaft, from which the pulleys sup port the car door, which is thus dis engaged from the door opening, as shown in the illustration. From a pin near one corner of the door at the bottom depends a curved arm extending behind the bottom shaft, and adapted to prevent the swing ing of the door too far out, or this may be effected by a pin on the arm passing in front of the car door the arm being then hung higher up. Pins in the bottom of the door ar adapted to engage apertures at the base of the door opening to hold the door closed, in connection with
a suitable catch at the side. The a suitable catch at the side. The vertical links move in keepers, and the keepers are also provided with stops to limit the movement of the door. When the upper shaft is in the outermost position, as shown, the door may be readily moved to one side, and, whenmoved back in front of the opening, it is swung down and inward to close the door by simply turning down the lower crank-arm handle.

The Senate Chamber New Decorations.
The Carpet and Upholsterer's Record reports the way a gushing correspondent describes the new decorations of the Senate chamber: "A carpet, which is a combination of terra cotta, old gold and crushed strawberry, beautiful to look at and soft under foot, has replaced the garish green affair which covered the floor in the last Congress. The niches above the galleries have been painted a delicate terra cotta to harmonize with the carpet. They now offer a better background to the busts within them. The diplomatic gallery no longer offends the eye with its bright blue upholstery, which has given way to a lining of a salmon tint, which is effective. The seats of the other galleries are now finished in gray. The mahogany desks of the senators contrast handsomely with the carpet and mural adorn ments."

IMPROVED SAFETY DEVICES FOR ELEVATORS.

The elevator construction shown in the accompany ing illustration forms the subject of a second patent issued to Mr. Philipp Schmidt, of La Crosse, Wis., and the elevator is thereby rendered safer and stronger, as well as more convenient to control. A heavy weight is suspended from the hoisting rope by means of two plates which loosely embrace the crossbar at the top of the elevator platform, so that a draught on the rope will first lift the weight to the lower side of the rop bar before the platform is raised, the plates having their upper ends spaced apart by two transverse bolts to one of which the hoisting rope is attached. At the center below the platform is a bracket frame with two parallel depending limbs vertically slotted to receive a ransverse bolt, which forms the fulcrum and connec tion of two composite locking bars, each consisting of two metal plates, spaced apart at one end by the pivot bolt of a loose anti-friction roller, and at the other end y a presser foot composed of two angle plates, held in position by transverse bolts or rivets. One member of each locking bar passes between the pair composing the other bar, and when they are pivoted upon the ful crum bolt in the vertical slots of the depending bracket limbs, the rollers bear on the lower surface of the platform. The locking bars are sustained in position by wo parallel bars, pivoted at one end of each to hanger brackets, and centrally connected with the locking bars by the fulcrum bolt, the opposite ends of the parallel bars being connected by a spacing bolt from which suspension rods extend upward through the platform and are connected to a transverse yoke resting upon a tripping lever pivoted upon the top cross bar. From the op posite end of the lever a pendent cord to which is attached a weight extends within the elevator frame and the top edge of the lever is in contact with the lower transverse bolt connecting the plates by which the weight is hung from the hoisting rope, so that this weight will rock the lever and elevate the parallel bars at the ends where the two suspension rods are attached to the spacing bolt. The presser feet ends of the lock-
ing bars are heavy enough to cause their depression by gravity when the hoisting rope is drawn upon, the inclination of the bars removing the presser feet from contact with the surfaces of the side stanchions, whereon they bear strongly when the weight is in the position shown in the illustration.
Near the free end of one of the parallel bars is attached an upwardly extending link hooking fast to a brake lever pivoted on an arm on the edge of the platform, so that a depression of the end of the brake lever form, so that a depression of the end of the brake lever
with the foot will vibrate the parallel bars and cause

S-sischivy

GRAY'S CAR DOOR.

the locking bars to engage their presser feet with the side stanchions. Also attached to one of the parallel bars is a cord passing over a pulley in the elevator car, and by pulling on the cord the platform may be similarly stopped. Attached to the center of the yoke resting upon one end of the tripping lever is a rope extending over a sheave at the top of the elevator frame, thence over a pulley on a side stanchion, and downwardly, this rope affording means for arresting the platform from the exterior.
To strengthen and prevent the spreading of the side stanchions, side strips are oppositely affixed upon their inner faces, which afford locking ribs loosely engaged by the hooked ends of safety clamps, the clamps being normally free to slide on the ribs, but engaging them normally free to slide on the ribs, but engaging them
if the stanchions are inclined to spread apart. These if the stanchions are inclined to spread apart. These
safety clamps are supplemented by others hung from the platform by hanger bars, their ends having lateral hooks loosely bearing upon the outer edges of the ribs. In operation, the breaking of the hoisting rope releases the weight held under the top cross bar of the elevator, when the tripping lever is vibrated and the locking bars are spread apart to engage with the stanchions. This improvement has been for some time in practical use, applied to an elevator in the inventor's

SCHMIDT'S IMPROVED ELEVATOR.
factory at La Crosse, and not long since prevented what would otherwise doubtless have been a serious accident. Two pins broke in the upper wheels while a man with a heavy load was upon the platform, but the safety device prevented the falling of the car.

Sorrespondence

The 100 Puzzle.

To the Editor of the Scientific American
Here is another answer to the 100 puzzle, the solution of which was asked for in a recent issue.
In what way can the numerals $1,2,3,4,5,6,7,8,9,0$ be arranged so when added together they will make 100 ?
Arıswer-

$\stackrel{59}{5018}$
 100

H.

Gilding for Small Gold Baths

To the Editor of the Scientific American:
Dissolve 1 pennyweight of fine gold in 2 tablespoons of nitric-muriatic acid. After it is evaporated nearly dry add 1 quart of water, 8 pennyweights of cyanide potash, and 4 pennyweights of caustic alkali. Let the whole solution boil for about four to five minutes and filter it. This solution is now ready for use, and in order to gild, take a piece of zinc and place the things you want plated on the zinc and put it down in the bath, and in a few seconds you will have a color just as bright yellow as if it was solid gold pickled in acid. I have used this receipt for over cleven years, and I never found one equal, because it not alone is simple, but saves battery and is easy to follow. By adding blue vitriol and a little more cyanide potash, I used the same bath for red color, like polished solid gold.
Many people do not like the steam arising from the evaporation of the acid; but this can be avoided as follows:
Put your nitric-muriatic acid in a cup, together with the gold, and set it outside for about two hours, then the gold generally is dissolved. Add about 4 to 6 ounces of liquid ammonia and filter it. You will then find a yellow mass on your filtering paper, while the ammonia and the acid have gone down in your bottle below. After all the liquid has left the bulk, put the paper and al into the water and cyanide potash, as spoken of above. Boil it until the paper has gone to pieces, and filter. There is need in this process to be careful that all the acid and ammonia has left the gold, otherwise it will spoil the result, and for that reason it is better to let it stand in the funnel half an hour longer than necessary for filtering.

Aug. Larsen.
Syracuse, N. Y.

How to Succeed in Making Storage Batteries.

 To the Editor of the Scientific American:I see questions sometimes asked in your paper about storage batteries. One, in the issue of December 26, 1891, "Notes and Queries" (No. 3791), "M. P.," wants to know how the red lead of storage batteries is made to stay in its place until it can be formed. (I am using storage batteries to light my house. They have been in use two years. I made them myself, and have at tended to them myself, and they are in excellent shape to-day. They are of the Julien pattern.) I can answer this question, I think, so that any one wishing to make anything in this line will have no very great trouble any way, I do not have. And if you think it will be of any interest to the readers of the Scientific American, I am willing to give it. Fill the lead grids with a paste made of red lead and water, let them dry about 15 hours (or, more properly speaking, until they are almost dry, but not quite ; the exact point can be determined with a little practice), then brush them over with a common paint brush, dipped in oil of vitriol, on one side only to begin with, and let them stand long enough to become perfectly cool, as the action will heat them a little. When cool, the same treatment can be applied to the other side, and if successful, they are or will be ready to put into the electrolyte, and be firm after 15 minutes, and the paste will not come out, but will be hard and nice. I have made a good many in this way. It is something of a fine point, where suc cess is sure. If the acid is applied before the plates are dry enough, they will fry and become rough, and will be almost worthless. (The heat from the acid, combining with so much water, generates so much steam with in the pores of the paste that its tenacity is destroyed.) If much acid be used, the piate will appear too dry at first; but in a few minutes will become soft from the acid absorbing atmospheric moisture, and take weeks to dry, and be worth very little then. If the plate will
stand the acid treatment without frying, go ahead; if not, let them dry a little more. Better try a small part of the plate first, and see if it will stand it before going all-over it; and be sure and not use too much acid, as too much is sure to spoil it. Only use just enough to act on the surface and turn it a little darker shade. Do not think you must put enough acid on to drive away

If these directions are carefully carried out, you will be sure to have a plate (positive plate) filled with red lead that will stand with the best of them. I have undertaken to answer this one question in reference to storage batteries the best I can, using nothing but the plainest of language.

Newell F. Wightman.
South Meriden, Conn., Dec. 28, 1891.

Flexible Glass.

Herr Eckstein, an Austrian engineer, claims to have discovered a strong and flexible substance, as transparent as the ordinary brittle glass. His process is as follows : From 4 to 8 parts collodion wool are dissolved in about 1 per cent in weight of ether or alcohol. This solution is intimately mixed with from 2 per cent to 4 per cent of castor oil or other non-resinous oil and from 4 per cent to 10 per cent of resin or Canada balsam. This mixture is spread on a glass plate and dried under the influence of a current of hot air of about 50° C., by which it is transformed in a comparatively short space of time into a transparent, hard, vitreous plate, the thickness of which can be regulated as desired. The material thus obtained is said to resist the action of salts, alkalies, and acids, and besides being transparent is odorless. It is flexible, and almost un breakable. Its inflammability is much inferior to that of other collodion combinations, and it can be further reduced by the addition of magnesium chloride, while an admixture of zinc white produces an ivory appear ance. Any color or shade may be imparted to the new glass.

TOWING CANAL BOATS BY ELECTRICITY.
The fact that a vast amount of freight is still trans ported by canal boats, and that these boats are still drawn by horses or mules, as in the days of Rameses or Tiglathpileser, lends especial interest to a recent invention of a German engineer, Mr. Otto Busser which is well illustrated in the accompanying drawing As will be seen, a stationary cable is laid at the bot tom of the canal and is grasped by a set of sheaves on the deck of the boat, actuated by an electric motor The current is supplied to the latter by means of trol ley wires strung along the bank, the trolley making

contact on the upper side of the wires and being towed along by the flexible conductors.
A peculiar feature of this arrangement is that the whole installation is portable, and is readily fixed to the gunwales of the boat as it enters the canal, and removed at the further end. This is accomplished by fastening the motor upon a bed plate resting upon ad justable cross rods at whose ends are pivoted vertically clamps which fit over the gunwales and are firmly held by set screws.

What it Costs to Learn Engineering,
A correspondent asks the Weekly Stationary Engi neer how much it will cost to learn engineering, and says he would like to learn the business. The question is a very hard one, indeed, to answer, for all men are not adapted to learning the business; for although it may appear easy to the observer, the practice of engineering means hard work, close attention, considerable bother, frequent discouragements, and a great deal of study, and at the last the business is not thoroughly earned, for life is too short for a man to learn all there is to be learned in practical steam engineering. A man or boy who has an aptitude for learning and a desire or the business can learn enough to make himself quite practical at it in a length of time depending on the at tention h
The principles of steam engineering do not include such a vast array of facts that it should deter any one rom an effort to master them, but the degree of succes with which they attain the knowledge depends a great deal on the way they go at it. The practical part o team engineering must be learned in the engine room, and we do not know of any better method of obtaining good practical knowledge of the business than by go ing to work in the fire room for a good engineer. Her a man or boy can make himself useful and note th operation of things, and will have a chance to learn the principles involved; but the practical knowledge of them can be obtained only through long practice with the apparatus. While in such a position, if the young man will procure some good work on steam engineering and study the principles from that, he will gain a bet ter insight into the business in the same length of time than he would be able to obtain in any other manner
that we are familiar with. The engine itself is gene-
rally the point of interest to the would-be engineer but it by no means comprises all that is of interest or all that is necessary to be learned in order to be an en gineer.
Most works on engineering give descriptions of dif ferent kinds of boilers, and the boiler is that part of the machinery that requires considerable attention and frequent investigation to know that it is in safe condition, and not only this, but a great deal of fuel can be wasted in producing the steam necessary for driving the machinery, and the engineer must reduce such waste to the lowest point. There are books on steam engineering that will show clearly the construction and operation of the different parts. When these are mas tered, one essential part of the business is gained; and such knowledge will enable him to talk with some de gree of satisfaction with those who are better posted on the subject, and in this way he will be able to pick up many valuable points in the business, as well as having his attention called to such points as he has overlooked. He will always find that there are a large number of these. If the student will refer to his books for the rules that apply to each part of the busines that he becomes acquainted with, he will find his pro gress quite rapid, and it is usually considered that a good work on steam engineering is one of the best things that a young engineer can have in his possession, and the more frequent use he makes of it and the mor attentively he studies what is laid down therein, the greater will be his progress in the business; but he must not consider that because he has an idea of practice he is capable of putting that idea into practice with the same success that he can after he has had a few opportunities to try his hand at it and learn those points that he has most certainly overlooked. The greater number of rules pertaining to steam engineer ing are commonly laid down in the shape of formulas and for this reason the student in practical engineering must study his arithmetic pretty closely, if he has not already become proficient in figures, as he will find that those who are most capable in practical engineering are those who have the ability to figure out and calculate the different problems that may present themselves, and one or more is quite likely to come up in practice every day.
The practical part of steam engineering consists in taking care of the machinery and keeping it in the best of order, and not simply, as some suppose, starting and stopping the engine and keeping the water in the boiler at the right height; these things come in in the daily routine and form a part of the picnic. The care of the boiler is quite important; too much eannot be learned boiler is quite important; too much eannot be searned
in regard to this piece of apparatus. Boilers differ in regard to this piece of apparatus. Boilers differ
greatly in type as well as in construction, and the man who keeps himself posted on the different styles, study ing out their strong points as well as their weak ones, will be the better able to get the best results out of the apparatus he may have in charge, as well,as being able to take hold of a new plant containing quite different apparatus.
The economical use of steam is of itself a problem re quiring considerable study, attention and investigation and from the fact that improvements are being made every day, it is reasonable to suppose that a person must keep studying in order to keep up with the times. If the student in practical engineering, when reading on such subjects, comes across something that he can not understand, it should be sufficient to indicate to him that he does not possess sufficient knowledge of the subject to make these things comprehensible, and for this reason he should give greater study to that particular subject until it is thoroughly comprehended. The-principles of engineering, as put down in the books are for the purpose of assisting those who are struggling to acquire a knowledge of the subject, and it is not wel to overlook or pass by any of these without making a trong effort to understand them. While the student is studying the subject, it will be well for him, if he can find the time and opportunity, to converse with engi neers who are well posted; but he will find that his time is not put in to best advantage if he uses it in discussing such subjects with those who are no better posted than himself. The more opportunities a young man has for assisting the engineer about the work, making adjust nents, lining shafting, doing such pipe work as he has to do about the boiler, grinding valves, and doing the work on the engine, the more he will be able to learn of such things, for such knowledge as this is gained only through the practice, and seems to be that part of the business that the majority of writers skip when making their books. A person that gives the subject sufficient attention and study will, in the course of a ew months, be able to take a position as second engi neer, but the greatest trouble with young engineers is that they are apt to consider their ability much greater than it really is, and this leads them to take hold of plants that they are not able to handle in a satisfactory manner. As to the cost of learning all of this, that de pends more on the man than anything else, for it is not a question of money, only so far as the money serves to produce the books, etc., required to teach the prin ciples. The principal part of it the man nust learn by study and experience. It cannot be bought.

a method of tunnelina.

by harold avery.
A method of constructing tunnels under rivers whose beds are of mud, clay, silt or sand is shown in the first page illustration. A sectional iron tube is sunk in a cut dredged for it, leveled, topped with clay or concrete in bags, the cut filled in and working shafts built around the ends. The tunnel tube is then pumped out and bricked up by sections, a roadbed made and junction effected with approaches, in detail as follows :
The course of the tunnel is determined by the contour of the river bed, and the curve is preferably a circular are whose chord is the distance between the most favorably situated points for termini, and whose versed sine is the depth of water necessary to avoid interference with navigation. Upon the length and radius of this arc depends the number of sections that compose the tube, for sufficient flexibility must be secured to allow it to follow the curve. For this reason a circular is preferable to an elliptic arc, as it permits of uniformity in length of sections, and it may be advantageous to have the termini at different levels to use it.
The course is dredged deep enough to accommodate the tube and its topping, and where the depth of water permits, some of the excavated material may be used to form a bedding and surcharged bank with natural slope.

The cut is widened at the ends for shafts, and piles driven on the sides at the points where the ends of the tube are to rest.
The cross section of the tube is of such shape as to provide for the greatest useful space with least displacement, a quadrilateral bounded by arcs whose chords form a rectangle.
A flange at each end and angle, inwardly projecting studs from the bottom, and eyes at upper angles for anchor rods complete the iron work.
In the invert of each section a concrete bed is set, to give stability while floating and as a furtherance of the work. The studs hold this in position.
In each end a wooden bulkhead is built of sufficient height to retain a volume of water greater than the difference between the displacement of the section submerged and the displacement due to its weight.
Several sections may be built, bolted, and launched together.
After launching, the divisions are floated, end to end, and bolted together above the water line. A leaf dock is used to complete the work below. At each end of the tube an iron bulkhead fitted with a valve is built.
These vaives control the submersion of the tube, and, with the sectional bulkheads, prevent strain from violent change of gravity.
When the tube is in position for submersion, the water admitted through the valve fills that section to the level of the top of the nearest bulkhead, then, flowing over into the next section, fills that in a like manner, repeating the precess, the one end sinking and the other rising until its valve is above the water.
At this juncture the air is allowed to escape and the tube gradually sinks into place, its motion being regulated by the valve.
When in place both valves are opened. As the tube sinks, the anchors are joined to the tie rods and swung loose.
Where there is a current or tide, the buoyed ends of heavy ship's anchor cables are passed through a catch block, uniting the ends of a number of guys, and the slack taken up. Leveling, where necessary, is now ef fected by sand pumps, and the topping and side filling completed.
The top longitudinal flanges hold the clay or concret topping, making it part of the tube.
A crib bulkhead filled with rock and clay is nowbuilt over each end of the tube and around the extended cut and pumped out, the water falling in the tube to the level of the top of the first wooden bulkhead.
The shaft is built, the iron head removed, the first section bricked up, the next section pumped out and bricked, and so on, progressing by sections from both ends until finished with a roadbed, rails, lights, etc.
The main operations of dredging, building the tube and cutting approaches can be carried on simul taneously, thereby facilitating the completion of the tunnel.
AL application of this method to a tunnel under the Hudson River, between New York and Jersey City, sixhundred feet south of and nearly parallel with that under construction, is illustrated on the front page. A profile of the river bed at this line shows the depth at mean low water, the strata of the bed, the curve and length of tunnel, the pier and bulkhead lines, etc.

As the greatest depth is near the New York shore, the course is laid so that the roadbed will leave that side a a depth of 34 feet, sink to 60 feet, and rise toward the Jersey City end until it terminates at a point 26 feet below mean low water.

The curve is a circular are of 86,000 feet radius and $5250 \cdot 662$ feet in length, embracing an angle of $3^{\circ} 6^{\prime} 10^{\prime \prime}$. The chord is 5,250 feet, vers. sin. 40 feet, and angular extension 1.585 seconds $=7.944$ inches. Allowing a lit-
tle less than one-eighth inch for extension of each tubular joint, we have $7 \cdot 944+0 \cdot 115=69=$ No. joints $=70$ form 20 feet wide by 14 feet 7 inches high, bounded by arcs of 27 feet radius for top and sides and 42 feet 4 inches for invert.
Each section is built of wrought iron 1 inch in thick ness; the plates 36 inches wide, 9 in arch, 7 in each side, and 9 in invert. There are four longitudinal flanges, 12 inches wide, one at each angle, a vertical flange at each end 6 inches wide, and studs 5 inches diameter and 30 inches long projecting inwardly from the bottom, ten in number and set in pairs, 15 feet apart.

Eyes are set at terminals of upper longitudinal flanges, into which are let ties to whose ends broadfaced anchors of narrow section are joined, when the completed tube sinks. The bed of concrete is then laid, the wooden bulkheads constructed, and the section is ready to join to the next. The form and dimensions of the tube may be explained by reference to the engrav ing and the following table:

Section.	
Perimeter. 1,029 122 i
Area vertical section..	.. $538 \cdot 122$ 8
" plane of flotation	.. 1,950
Displacement	.. 13,713
submerged	40,359 159
Draught.	. 7
Weight in Position and Finished.	
Iron... 141131	Total weight,
Concrete............ 250'68	1,400:211 tons.
Brick............. . 6039	Displacement,
Roadbed............ 4.5	1,156:371 tons.

This topping is held in place by the upper longitudinal flanges, and does not include the filling of silt Concrete might be substituted.
In the view that shows the launching, two sections have been built and joined, and are being launched together. The method of construction and the bulkheads and draught, as well as their general relations, are here represented.
After launching, two divisions of two sections each are placed end to end and bolted together above the water line. A leaf dock accurately fitting the immersed part is employed to complete the junction. Two divisions of four sections each are then joined, then two of eight, and so on until the limit of length desirable for towing from place of construction is reached.
In the extreme ends iron bulkheads are built and fitted with radially apertured valves actuated by a rack and pinion movement. Set axially with the wheel that gears with the pinions is a large wheel operated of a derrick boom (so as to keep an even tension at different levels) and around the drum of a hoisting engine. The action of this arrangement is shown in the engraving. The cut has been dredged and the guys anchored to counteract the swing of the tide. The valve on the New York end has been opened, the water has filled the greater part of the tube, flowing over bulkhead after bulkhead and gently submerging the tube until the operation is nearly complete. The anchors are being joined to the ties and the valve closed.
The telephone and telegraph have kept those in charge The telephone and telegraph have kept those in charge
at the opposite ends in constant communication, while the electric lights have enabled the greater part of the work to be done before the traffic of the day has com menced. When the tube is sunk, both valves are opened and the water allowed to fill the tube. Leveling is now attended to by sand pumps, clay or concrete two feet deep is thrown upon the top in bags and the filling finished after the tube has had time to settle firmly in position.
The sectional view of a terminus explains the position of the crib bulkhead, behind which the water has been pumped out to the first wooden bulkhead, a brick working shaft constructed, the iron head and valve removed and the process of completing the bricking up the first section begun. Radially pressed bricks allowed by arches of the same radius are used. The brick and concrete are 28 inches thick. The bricking is completed section by section as previously described The dimensions of this tunnel call for

Ballast per linear foot $3 \frac{1 / 3}{6}$ tons.
Among the advantages claimed for this method are he increased safety, rapidity, and simplicity of construction, the lessened cost of operation, applicability
to nearly.every place whose business warrants a tunnel, and adaptability to single or double track, trade or travel.
The Whitinsville (Mass.) Machine Company have lately put into successful use a 100 horse powerselec trical locomotive, made by the Thomson-Houston Co. It takes the current from an overhead wire by trolley. The machine is used for drawing freight ca

Ornamenting Fabrics and Garments.

The main object of this invention is to obtain, in a more economical manner than heretofore, the effect of embroidered appliqué, by means of the brush, and to insure advantages not hitherto secured in such ornamentation. In attaining this, a woolen or a silken fabric is taken, and stretched on a table, and the design is traced upon it which is to be applied in colors. Suppose a Japanese design is required, having, as leading feature, a dragon, a ground color is applied within the outlines of the figure, of a tint somewhat darker than that of the fabric. The tint will consist o an aniline or other dye, brought to a suitable con sistency to prevent its running when applied with a brush. When the tinted portion of the fabric is dry, t will be ready to receive the detailed markings, which re made in appropriate colors with oil paints, prepared as described below, so as to render the same flexible when dry. In some cases, bronze powders of various hades may be employed to heighten the effect : these are mixed with a medium that prevents them from tarnishing. The ornament thus produced may have any desired degree of artistic finish, the result being obtained without showing any indication of over weighted ornamentation, such as is observable in sacerdotal robes decorated with moulded patterns. In applying the invention to silk robes or curtains, the appliqué ground, by leaving unobscured the luster of applique ground, by leaving unobscured the luster of
the silk, presents a good contrast to the oil color, which the silk, presents a good contrast to the oil color, which
represents the embroidery. In carrying out a floral represents the enlbroidery. In carrying out a floral
decoration after the conventional type, the ground may be tinted for the leaves, buds, and flowers, accord ing to the appropriate colors, taking care, however, to retain the style peculiar to embroidery, or brocade, and distinct from that of painting. By this mode of pro cedure, ornamentation is quickly produced, which will give less stiffness to a garment than embroidered appliqué would impart, and will have no tendency to crack or peel off ; and, in preparing hangings in place f tapestry, artistic effects are produced in one-tenth of he time required for working tapestry. The proper thickening of the dye liquor used for the ground color is obtained by mixing a gelatinous compound, prepared in the manner described, and using it in about the follow ing proportions: One quart of the dye liquor, brought to the required tint, and mixed therewith $11 / 2$ pints of a thick solution of gum ghatti, $11 / 2$ pints of a thick solu tion of Iceland moss, $1 / 4$ pint of liquid ox gall, and 1 ounce of glycerine. In case it is desired to store this mixture in stock bottles, to preserve the mixture from deterioration, $1 / 2$ pint of methylated spirit and $3 / 4$ of n ounce of nitro-benzole are added. The softening of the oil colors for bringing out the details of the drawing is obtained by mixing with the colors on the palette a small proportion of a composition which is prepared as follows: To 1 ounce of hard German paraffin, melted with heat in 1 quart of spirits of tur pentine, 2 ounces of terebine drier is added. The bronze powders are mixed with a medium composed of equal parts of copal varnish, crystal varnish, and tur equal parts of copal varnish, crystal with the addition of terebine drier, equal in pentine, with the addition of terebine drier, equal in sufficient to bring them to the consistency of oil paint and thus the firm adhesion of the bronze powder to the fabric to be decorated is insured, and also the bronze powder is protected from the tarnishing action of the atmosphere. Decorations effected by the means above described will stand ordinary careful washing. The process is, therefore, applicable not merely to silks, but to linen and other washing materials.

```
Resorcin as a Dermatic
```

Dr. A. Ravogli, of Cincinnati, says :
"I have found resorcin a valuable remedy in the treatment of skin diseases, either in children or in adults. In children those cases of eczema which were called Melitagra fluorescens, where the surface is cov ered with yellow, greasy crusts, a salve with resorcin has, in a few days, removed the eruption. I usually prescribe in these cases :
Resorcin
Salicylic acid.
Vaselin
Ruh on twice a day
"Not long ago I had several children living in the same neighborhood affected with Impetigo contagiosa Several remedies had been prescribed by other phy sicians, but in spite of them the eruption was gaining larger proportions. I prescribed the same tormula, raising the dose of resorcin to 3 j in 1 ounce of vaselin. After a few applications the crusts came off, showing the pustules dry, and in a few days nothing remained but a red discoloration in the place of the pustules.
"In cases of Seborrhea capitis and Seborrhea nas the best results were obtained from this remedy. It dried up the greasy contents of the glands, which appear as dark points. The inflammation of the sebaceous glands subsides, and the redness which accompanies the seborrhea disappears.

In cases of Trichophyties, the use of resorcin gave some improvement, but not fully satisfactory results.
"In cases of Psoriasis, resorcin did not prove so beneficial as pyrogallol, althoughresorcin has the advantage of not staining so much."-Lancet-Clinic.

Cleaning Rubber Blankets.
The use of turpentine for removing ink, fat, oil, and colors from the rubber blankets has spread of late to such an extent that a few remarks on the subject may not be amiss. As little turpentine as possible should be employed when its use seems advisable, and it is necessary to be careful that the cleaned blankets are thor oughly dry before they are used again. This is a very important point, as otherwise the surface of the rubber would be softened and the impression of the cylinder would spoil the blanket by cracking or corrugating the surface. The best way is to clean the blankets in the evening, after the day's work is over; this will allow plenty of time for the drying of the turpentine and the return of the blankets to their natural condition, which would not be the case if the cleaning were done during the day, when the blankets may be required any moment.
As a very effective substitute for turpentine, spirits of hartshorn is highly recommended. It cleans more quickly and thoroughly, and offers less danger of spoiling the blankets. The spirits of hartshorn should be diluted until it has a strength of about 6 or 9 degrees; it can easily be obtained of a strength of 18 degrees, and be diluted by adding one or two equal parts of water. After cleaning the blankets they should be dried with the use of pulverized magnesia or chalk. If treated in this way, the spirits of hartshorn dries very quick-much quicker than turpentine-and nothing prevents its use without the slightest danger of deteri-oration.-Lithographic Art Jour.

VERTICAL CYLINDER BORING MACHINE.

We illustrate a vertical cylinder boring machine made by Messrs. Thomas Shanks \& Co., Union Iron Works, Johnstone. Engineering says: We believe it is the largest machine of this class ever made; it has three interchangeable boring bars of 18 in ., 12 in ., and 10 in . in diameter respectively. The width of framing for the work is over 13 ft ., and the height $121 / 2 \mathrm{ft}$. ing for the work is over 13 ft ., and the height $121 / 2 \mathrm{ft}$.
The traveling table for holding the work is 8 ft . wide and 14 ft . long. It will be seen from the illustration that no head room is required for lifting the boring bar to clear the work, because when the table is traversed to the front the crane can drop the cylinder upon it clear of the machine. The boring bar, with the worm wheel attached to it, is then placed inside the cylinder, and both are traversed back into position on the machine. Any final adjustment which may be required is then performed. No alteration of the upper structure with regard to the feed is required, as the connection is at once made when the bar is fixed. Any feed and any driving power is obtained by a simple change, not occupying more than a minute of time, and the boring blocks can be elevated or lowered quickly by power through friction clutches or slowly by hand; the at tendant having full con trol from the work table whether the bar is rotating or is at rest.
The changes of gear allow of work to be bored varying from 11 in . in diameter up to 130 in . in dia meter, while the surfacing range extends to 144 in . in diameter. The illustration shows only a conical socket with heavy collar fitted on four scraped surfaces upon the bar, and kept tight by gun metal wedge strips but the machine is fitted with a complete series of boring blocks, each bored to fit the taper socket, and with four tool holders arranged to vary the diameter of cut up to 12 in . These blocks are further fitted with two interchangeable surfacing compound slide rests, which are readily detached after the cylinder is faced and the cys me faced and recessed. The weight of the machine with the 18 in . bar is 52 tons. The two interchangeable smaller bars weigh 8 tons, the boring and surfacing apparatus weigh 10 tons, so that the complete weight of the machine is $\mathbf{7 0}$ tons.

IMPROVED SIPHON CONDENSER.
The cut herewith represents the latest and most improved form of siphon condensers, and is manufactured

by the Chicago Water Jacket Condenser Co., 47 W. Washington Street, Chicago.
The novel features are the water jacket that entirely cold amount of water admitted can be closely regulated. Another valuable feature is that, in the event of the

LARGE VERTICAL CYLINDER BORING MACHINE.
annular water passage becoming clogged, it can be promptly flushed out without any stoppage or disconnection. A vacuum of 24 to 28 inches is attained, and is produced by the weight of the column of condensing water itself, no air pump being necessary. The apparatus is extremely simple and durable, and the vacuum obtained is the very highest.

Deep Water to Duluth.

Briefly stated, the object of the deep waterways convention, which met in Detroit recently, was to secure a channel with a uniform depth of not less than twenty feet of water all the way from Duluth to Buffalo. This is the first thing demanded by thealready immense and rapidly increasing commerce of the lakes. It can be secured by dredging out about half a dozen shallow spots between the links of the magnificent chain of lakes which form a magnificent highway along our northern frontier, and the cost would not be excessive-between three and four million dollars is the estimate. Next, the sentiment of the convention was in favor of "a waterway of sufficient capacity to allow the free passage of vessels drawing twenty feet of water, through our own territory, from the great lakes to the Atlantic Ocean;" and it requested Congress to authorize the Secretary of War to have surveys and estimates made for such a canal. No particular route was specified, but the limitation of the work to "our own territory" cuts out the St. Lawrence route and makes it neces sary for the canal to run from either Buffalo or Oswego to the Hudson River, entering that stream at Albany -a route which has been under consideration for some time.
If the proposition be carried out in its grand entirety, an immense amount of grain will be loaded on vessels at Duluth, Superior, and Chicago, and be water-borne directly to Europe, or else to New York and Atlantic ports, without touching any of the railroads which would bring it to Philadelphia, while corresponding amount of imports for the West would be carried back over the same cheap and convenient route. It looks as if the proposed waterway would "side-track" this city more than any other enterprise has done since the Erie Canal was built, and while this city would not seek to hinder such a great national improvement on that account, it naturally feels some apprehension over it. But perhaps the danger is more apparent than real. Canals do not always hurt the railroads with which they compete. The operations of the Erie Canal have not injured the business of the New York Central road nor has the Susquehanna Canal, in our own State, proved a formidable rival to the Northern Central Railway. There is freight enough for both, and the canals take a great deal of bulky, unprofitable mate rial which the railroads do not want if they can get anything better.-Phila delphia Inquirer.

Professor Pettenkofer, of Munich, has recently re ported upon the contamination of the River Isar, into which the city of Mu nich drains. Munich has 280,000 inhabitants, a nd about $40,000 \mathrm{lb}$. weight of sewage are discharged into the river daily. Neverthe less, at Ismanig, three and a half miles below the sew er outfall, no trace of sew age could be found in the water by analysis. At the mouth of the sewer the bacteria numbered 198,000 per cubic centimeter; but at Ismanig this had been reduced to 15,230 and to 3,602 per cubic centimeter at Freisling, nineteen miles below. Professor Pettenkofer holds that there is no danger of sewage pollution in the river if the vol ume of sewage discharged does not exceed one-fif teenth the volume of the flow of the river, and if the sewage enters at a greater velocity, so as to prevent banking up.

THE longest mileage ope rated by a single system is that of the Union Pacific10,928 miles.

THE WORLD'S FAIR FRANKLIN STATUE.

In a conspicuous positon, mounted on a pedestal before the south entrance of the Electrical Exhibits Building, at the Columbian Fair, will be the statue of Franklin shown in our illustration. The statue is 21 feet high, and is the work of Carl Rohl Smith, a Dane. Repre senting Franklin, as it does, actually conducting the lightning to the earth in his well known experiment with the kite in Philadelphia, there could not well be found a subject more strikingly appropriate for the place it is to occupy, in front of the spacious edifice t be devoted to the display of electrical appliances.
The names of forty one eminent electricians now dead will be placed over the entrance to Electricity Building, as follows: Franklin, Galvani, Ampere, Faraday, Ohm, Sturgeon, Morse, Siemens, day, Ohm, Sturgeon, Morse, Siemens,
Davy, Volta, Henry, Oersted, Coulomb, Davy, Volta, Henry, Oersted, Coulomb,
Ronald, Page, Weber, Gilbert, Davenport, Soemmering, Don Silva, Arago, Damill, Jacobi, Wheatstone, Gauss, Vail, Bain, De la Rive, Joule, Saussure, Cooke, Varley, Steinheil, Guericke, La Place, Channing, Priestley, Maxwell, Coxe, Thales, and Cavendish.

Revival of Sailing Ships.
A marked revival in the use and construction of sailing vessels is now in pro gress both in this country and abroad the distinctive characteristics of the new vessels being great size and use of steel. In Great Britain the sailing ship Maria Rickmers, which was recently launched by Messrs. Russell \& Co., Port Glasgow, is, by 14 feet, the largest sailing ship in the world. Besides having five masts, she is provided with auxiliary steam power, which will enable her to make power, which will enable her to make progress, even when there is not sufficient wind to fill her vast sails. The vessel has
been built for Messrs. Rickmers, of Brebeen built for Messrs. Rickmers, of Bre-
men, and is of steel. Her dimensions men, and is of steel. Her dimensions
are: Length 375 feet, breadth 48 feet, are: Length 375 feet, breadth 48 feet,
depth 28 feet $41 / 2$ inches. Her tonnage is depth 28 feet $41 / 2$ inches. Her tonnage is 3,813 tons gross, and she will carry 5,700
tons deadweight on Lloyd's freeboard. She will be supplied by Messrs. Kincaid \& Co., Greenock, with triple expansion engines of 650 indicated horse power, with 160 pounds working pressure, cylinders to be of 16 inches, 26 inches, and 42 inches by 27 inches stroke. The propeller will be of "Bevis" patent feathering type, and it is calculated that a speed of from six to seven knots an hour will be attained in calm weather with the vessel fully loaded. Her spread of canvas will be enormous. The vessel will have several special features of construction to distinguish her from the ordinary type of first-class sailing ships. She will be fitted to carry a large quantity of water ballast in a suitably subdivided double bottom. For facilitating loading and discharge of cargo she will have three steam winches, steam donkey boiler, and steam windlass, besides a fan engine. She will be employed in the East India rice trade.
The Pass of Melfort, one of the newest type of sailing vessels, and intended for carrying chiefly large deadweight cargoes, was recently launched by the Fairfield Shipbuilding and Engineering Company for Messrs. Gibson \& Clark, Glasgow. Her dimensions are: Between perpendiculars, 298 feet; beam, 44 feet; depth of hold, 24 feet 6 inches. She has four masts the entire length of steel. Her lower masts and top masts are in one, and topgallant and royal masts are steel, having a small pole about two feet long of wood on top. The jigger or fourth mast is a pole mast entirely of steel, with a jackstay riveted on back so as to run the gaff up and down on the mast. All the yards are of steel except the royal yardg, which with the spanker boom are the only parts constructed of wood. The bowsprit and jibboom are in one, also built of steel. Wherever steel could be employed it has been used to replace wood. The deck from stem to stern is of steel, sheathed with wood; the topgallant rail is of steelthe very hatch beams and fore and afters are all of steel. On the forecastle the old catheads are no longer in use, but a crane and a novel method of shipping and letting go the anchors has been substituted. The rigging is all set up with screws-even the fore and aft stays are set up with screws-so that if in the working of the vessel there is any slacking of the wire rigging, it can be instantly tightened up by the crew. The old fashioned ratlines of ropes on the shrouds have given place to round iron bars. The vessel has double topgallant yards, and the patent halyard winches of

Messrs. Shaw \& Hastie are applied to the topsail yards, so that the sails on these can be rapidly set in about a seventh of the time that it would take under the old method. The Pass of Melfort is 2,355 tons gross, and carries for her net register 2,195 tons, an excep tionally large cargo, having upward of 3,950 tons dead weight on board.

occupation for old People.

When people get old, the question as to what shall be their occupations may be more important than it has been at any previous period of their lives. They may hat stay out their existence, with the consciousne have fallen out of the procession which is marching

THE WORLD'S FAIR-FRANKLIN STATUE IN FRONT OF THE ELECTRICAL BUILDING.
the same way. Physicians can report many cases wherein are manifested all the symptoms of age at the very beginning of manhood, and so also they can point out examples of physical and intellectual youth even at a period exceeding the psalmist's limit of life. Run through history yourself, and more especially the history of our own time, and you can make out a long list of men distinguished in statesmanship, science, iterature and the church, whose intellectual prowess has been displayed up to fourscore years and beyond. They would not grow old ; they would not allow themselves to be counted out of the world of thought and accomplishment. They remained in the competition to the last. Life was not mere animal existence for them after they had passed the limit where conventional age begins. Longevity did not bring rest, for they kept the intellectual machine bright with the friction of continued use. It simply gave them time to learn more and to do more with the advantage of a training and an experience so much prolonged. Consciousness of decay brings depression, but discovery of the ability for growth gives youthful exhilaration. Nothing is so delightful as finding out that the machine has not worn out after all, but is ready for use to good purpose even to the end. What men want in both youth and age is the recreation which is afforded by a keen interest in occupations that make them forget themselves. It prolongs their lives, for the foundation of youth is not exhausted. A variety of occupations furnishes far better recreation than the mere pursuit of pleasure for itself. Even a hobby serves the purpose more effectually than any direct chase of happiness, so elusive is the prize when you go hunting for it instead of waiting for it to come to you while you are seeking only to make the best use of your life.-CYhau tauquan.

A Permanent Magnetic Field.

At the meeting of the Physical Society, of London, on December 4, a paper was read on "A Permanent Magnetic Field," by Mr. W. Hibbert. The author had noticed the approximate constancy of an "aged " bar magnet, and he obtained still greater constancy by attaching pole pieces to a bar magnet of such a shape as to give a nearly closed circuit of smal "magnetic resistance." The pattern now described consists of a steel rod 1 inch in diameter and about $21 / 2$ inches long, with a cast iron disk, 4 inches in diamete and five-eighths of an inch thick, fixed at one end The other end is fitted in hemispherical iron shell, which surrounds hemispherical iron shell, which surrounds the bar and comes flush with the upper surface of the disk. An annular air space,
less than one-sixteenth of an inch wide, is left between the cylindrical surface of the disk and the inside of the shell, and when the bar is magnetized a strong mag netic field exists in this space. To use this field for producing electro-magnetic impulses, a coil of wire is wound in a shallow groove on a brass tube, which can slide easily through the annular space thus cutting all the lines. The tube is al lowed to fall by its own weight, a neat trigger arrangement being provided for effecting its release.
The instrument exhibited had 90 turns of wire in the coil, and the total magnetic flux across the air space was about 30 C . G. S. lines. A large electro-magnetic impulse is therefore obtainable, even through resistances as great as 10,000 ohms. Tests of three instruments show that there has been practically no mag netic decay in seven months. The au thor, therefore, considers them satisfac tory, and is prepared to supply them as magnetic standards. To facilitate calcu along with the progress of the world and have been left lation, the number of lines will be adjusted to a con behind to die as beasts and some savage tribes of men venient number, say 20,000 or 25,000 . abandon the exhausted of their members. Such old people, pitiable in their decay, may be sustained by appropriate regard, but they do not represent the true dignity of age. They have dropped behind when they might have gone ahead. They have accounted them selves supernumeraries in society when really they might be among its most important and useful factors if they would only forget their age as measured by years alone. They have put themselves on the retired list when they are still fitted for active service. Their faculties fall into decay simply because they do not exercise them. No matter how young a man may be in years he. No matter how young a man may be

Several uses to which the instruments are well suited are mentioned in the paper, and a simple way of de terming permeability by the magnetometer is described.

Aconite as an Antidote to Insect venom
A correspondent from Durango says that formerly about one-half of the children in the city died from the sting of the scorpion; but now nearly all the lives are saved, if taken in time, by the use of a strong tincture of aconite, of which five or six drops are put in a tumler half full of water and a teaspoonful given at fre quent intervals.-Merck's Bulletin.

Evolution in the Flower.*
The flower has a special importance to us in studying the life history of the plant. It is the indication of its endeavor to discharge the second of the duties of the organism, the preservation of the species or the propagation of the race. It consists of parts whose meaning is only evident when regarded from this point of view. On a stalk there are superposed successive whorls of modified leaves; a conspicuous outer ring, often composed of two sets of leaves, known as sepals and petals, and within this two other whorls, the stamens and pistil. Of these the stamens develop in their club-shaped heads, or anthers, a number of grains of various forms known as pollen, which give rise to what is the male element in reproduction. The pistil or collection of carpels develops the ovules, in which we have the female cell ultimately produced. The problem of reproduction involves the transference of pollen from stamen to carpel in an organism which itself is passive and motionless. The pollen must reach a particular portion of the carpel known as the stigma, which is usually its uppermost part, and here the changes leading to fertilization are initiated.
It has been found by Darwin and others in long-continued experiments that the best offspring is produced when pollen from one flower in applied to the stigma of another flower, either on the same plant or on another plant of the same species. This cross fertilization, as it is called, has given rise to various curious and interesting mechanisms to secure it.
The original flower was probably one of a very humble type, such a one indeed as we now find on our forest trees. It had no particular color and was not conspicuous among the foliage. It produced large quantities of pollen and was often provided only with stamens or with pistil.
It was fertilized by natural agencies, of which the wind was the most usual.
From such a type the varioushighly colored, scented, and curiously shaped flowers we now know have been developed.
In the order of such development the aid of the insect world has been prominent. To effect the change from wind fertilization to insect fertilization is the initial difficulty. That once effected, various modifications would soon ensue, and those that were advantageous to the plant would be preserved by natural selection. Now, insects are largely feeders on pollen, and it is easy to see how the vast amount of pollen produced by such a flower would attract an insect to visit it. The successive visits of the insect to various flowers would result in the deposition of pollen from one on the stigmas of others, so that the first insect-fertilized or entomophilous flower would arise. It would be in character such as would be due to the influence of quite a short-lipped insect, with a feebly developed sense of color. We find instances of these still existing, quite simple in structure, wide open, regular in shape, and offering only pollen to the insect, and either white or yellow in color.
But many flowers offer another attraction than pollen, in the shape of honey. It is not uncommon to find honey secreted by other parts of the plant than the flower. If we suppose that this secretion of honey a some time came to be poured out on the flower, such a
flower would have an increased attraction for an insect, and this property, possibly arising accidentally at first, would be perpetuated, and so the nectary come to be a regular part of the flower.

A further development would follow in the shape of various mechanisms for the shelter of the honey from rain, and so lead to its being hidden in tubes or spurs, and accessible only to particular insects.
This development, so briefly sketched out, has not proceeded along one line. Many visitors have been at tracted by flowers, and each has led to particular modifications. I shall consider only two of these, the fly and the bee.
The fly is an insect of a low order of intelligence, shy and lazy. It is attracted both by pollen and by honey, and the structure of its mouth enables it to eat both of these.

Its peculiar characteristics have led to the development of flowers which secure it in a kind of prison and retain it for a few days, ultimately releasing it. Such are the flowers of Aristolochia and Arum. In both these the fly enters by pushing past a fringe of hairs, which are set at an angle inclined forward. The insect is by these prevented from going out. The stigmas of the flowers are ready to receive pollen on its entrance, and if it has emerged from another flower it is dusted with pollen, which, as it crawls over the stigmas, it leaves behind it. After a day or two the stigmas in the prison fade, and the anthers ripen and discharge their pollen, with which the visitor becomes coated. At this time the hairs wither and the fly is enabled to escape and to visit other flowers, where the same programme is re peated.

The low intelligence of the fly is taken advantage o by the so-called grass of Parnassus. In this a number

* Notes of a lecture delivered at an evening meeting of the Pharma ceutical Society, Wednesday, November
The Pharmaceutical Journal (London).
of shining knobs are developed in part of the flower near the stamens, and from a distance these look as if coated with honey, and the fly, deceived thereby, visits flower after flower and effects fertilization.
A higher type of flower visited by flies is seen in Veronica, where honey is hidden in a small tube in the center of the flower. To reach it the fly is obliged to hold on by the stamens, and in so doing it dusts its body with pollen, which on a visit to another flower is deposited in the stigma, this being so placed as to touch the insect before the stamens do.
The conspicuousness, however, which first attracted the fly also attracted other insects, whose visits did not always lead to the desired end. Even highly organized flowers still suffer from this disadvantage. The flowers of the Columbine, Oxlip, and Bean are still visited by short-tongued bees, which cannot reach their honey in the legitimate fashion. These bite holes in the petals and steal it without benefiting the flower.
We have to look to this fact for the explanation of arrangements to protect the flower from these depre dators. We have these seen best in the so-called bee flowers.

Bees, as a class of insects, are characterized by more intelligence and greater industry than flies. They have a higher color sense and a more complex mouth. With these endowments we co-relate the fact that, unlike flies, they store up food for their young. Some of the more interesting types of bee flower are seen in the Leguminosæ, where elaborate mechanisms lead to the dusting of the visitor with pollen on the part of his body to which the stigma of the next flower must be applied. In Lotus the pollen is forced out of the flower by a sort of piston, made of the dilated ends of some of the stamens. This is made to work by the weight of the bee when it alights upon the flower. In the Broom the same effect is secured by a sort of explosion, which takes place when the bee commences its search for the honey of the flower.
In the Violet a curious cup-like hinged projection has been developed, which opens as the tongue of the bee, coated with foreign pollen, passes down the tube of the flower, but closes and covers up the stigma, when it is withdrawn carrying pollen from the flower's own

In the Barberry and in the Cornflower the stamen have become endowed with a peculiar irritability, which subserves the same purpose of dusting the visitor with pollen.
In Salvia, the sage, a curious modification of part of the stamen into a lever leads to the pollen falling on to the back of the bee, where the stigma of the next flower isited finds it
The variuus forms of orchids introduce us to still more elaborate mechanism, rendering fertilization with out insect aid impossible.
The development of color in flowers and the explanation of the various markings on the petals must be studied also in connection with insect life.
Probably white and yellow flowers were the earliest, the first distinction being drawn thereby between flowe and foliage. These were visited probably by lowly forms of insects, as they are to-day. When honey be gan to be secreted and hidden, more distinctiveness
was needed, and the insects with a high color sense became the agents of further modification. The markings on the petals, usually straight lines or rows of dots pointed the insect to the part where the treasure lay So the development of blues and reds accompanied the evolution of the elaborate mechanisms already decribed.
Of lowly forms, with easily accessible honey, Muller has shown 60 per cent are visited by flies, as against per cent by bees, while of reds and blues it can be noted that the reverse obtains. Flies visit yellow or white flowers more than twice as frequently as red or blue ones.

A New Pudding furnace.

At a recent meeting of the Cleveland Institute of Engineers, Middlesbrough, Eng., the secretary read a paper by Mr. James Van Langer, of Leeds, "On the Pietzka Patent Puddling and Heating Furnace." The inventor of the furnace is Mr. Gottfried Pietzka, manager of the puddling and rolling mill departments at the Witkowitz Works, in Austria, where altogether abou 10,000 men are employed. The novel features of the furnace are a reversible hearth, or rather a double
hearth mounted on a platform turning on a hydraulic ram. The pig iron is charged on to one division of the hearth, and when melted the double hearth is raised about four meters by the hydraulic ram and turned ight round, so that the other division of the hearth re ceives a fresh charge of pig iron, while that already melted in the first division is being puddled. The heating too is done by gas fuel instead of by coal as in the ordinary puddling furnace, a recuperator being rected in close contiguity to the furnace. At the Witkowitz Works the furnaces have been in operation for about twelve months, and the average saving there
during the past half year has been 10s. per ton, the los of iron also being 2 to 3 per cent less than in an ordinar furnace. Mr. Howson said they had heard of the flint
age, the bronze age, and the iron age, but now they had got to the steel age, and Mr. Langer was wanting them to go back to the iron age. He feared it would be very costly in comparison with the ordinary puddling furnace. Mr. J. E. Stead said this was cer tainly the greatest advance toward economy, so far as gas producers were concerned, which he had seen, and that advance was produced by having the gas producers close to the puddling furnace. To his mind the furnace was a tremendous improvement on any thing else they had seen, and if it did allow an economy of 60 per cent it was a very great advance indeed. In answer to questions by one or two gentlemen, Mr. Langer said there were more men to a furnace in Austria than in England, but the rate per ton was much about the same. The cost of the new furnace was about four times that of the old type, but the output was seven tons per day, as against two tons in the old furnace.

Sodium.
According to Rosenfeld, when sodium which has been kept under mineral oil and is covered with a crust is immersed in a mixture of petroleum three parts and myl alcohol one part, or rubbed with a cloth soaked with this mixture, it acquires at once a silvery luster. If now it be put into petroleum containing 5 per cent myl alcohol, then washed with pure petroleum and kept in petroleum containing one-half to one per cent f amyl alcohol, it preserves this luster for a long time becoming covered very slowly, however, with a film of odium-amyl oxide, which is easily removed with filte paper. Potassium and lithium can be purified simi arly. Sodium thus cleaned combines at once with mercury, evolving light. By pressing clean sodiun and potassium together, under a mixture of one part amyl alcohol and nine parts petroleum, the liquid alloy of these metals is easily obtained. By mixing one sramme of the clean sodium rubbed to a fine powder with three grammes of salt, with 0.7 gramme of sul phur, avoiding pressure, combination takes place with he evolution of light and sodium sulphide is formed. Selenium and tellurium behave similarly.-Ber. Berl. Chem. Ges.; J. Chem. Soc.

Slag Paint.

Among the papers presented at the recent Glen Summit meeting of the American Institute of Mining Engi neers was one by Mr. A. Sahlin, of New York City, de scribing the utilization of puddle and reheating slag: for paint stock. According to Mr. Sahlin, these slags are being used with much success, and command as high a $\$ 30$ to $\$ 40$ a ton for this purpose. The slag is ground down to an almost impalpable dust by means of a crusher and a disintegrating machine or pulverizer Samples of the slags used at the works at Boonton, \mathbf{N} J., have shown the following chemical composition:

	Puddle slag.	Heating cinder
FeO.	$52 \cdot 430$ \}	$71 \cdot 290$
	${ }_{6}^{19} 6.420$	0.210
CaO.....................................	$0 \cdot 810$	
	$0 \cdot 380$	7.780
${ }_{\mathrm{P}_{2} \mathrm{O}_{5} \ldots \ldots . ~}^{\text {an }}$	16.890	20 270
s............		trace.

The cinder gives best results, but both the slags are said to make good paint stock. Mr. Sahlin described at length the machinery used, and stated that the dus produced is so fine that it cannot be measured by creens, and is good enough for any high grade paint When mixed with linseed oil and ground on an ordinary burr mill it makes up into a dark olive-green color, so neutral in its tint that an addition of from 3 to 15 per cent of coloring matter will change it into a bright blue, yellow, drab, or glossy black. About 40 per cent of the slag is thus directly available. The emaining 60 per cent is collected in the settling cham ber, ground to a fineness of about 225 mesh, and used for producing durable shades of dark red for railway and other purposes. The chemical reactions of the pro cess were fully described by Mr. Sahlin, who wound up his paper by stating
"The slag paints are remarkable for their durability, body, gloss, and covering capacity, and for the stubbornness with which they resist all chemical reaction. They are cheap in price and uniform in fineness as in composition. The raw material is available in great bundance and at a nominal cost ; and, as their supe riority and the simple methods of preparing them become better understood, there is no reason to doubt that they might be universally used, and might form a most valuable by-product of the iron industry."

A strange death is reported from New Orleans. It is said that while playing a hose upon a fire a telephone wire and an electric light wire got crossed, the strean of water from the nozzle struck the wires, a heavy cur rent followed down the water and killed the fireman who was holding the nozzle.

Results of Extirpation of the Liver.
In a preliminary note Dr. Von Meister confirms, from his own experimental observations, some of the results previousiy obtained by Ponfick of the remarkable degree of reparative power exhibited by the liver, and applicable, doubtless, to other glands in greater or less degree. Thus he finds that in the dog and cat, as well as in the rabbit, the removal of more than three-fourths of that organ is not followed by any serious consequences, and that within the space of thirty-six days repair has advanced to such an extent that the weight of the organ is regained. This regeneration is effected partly by hypertrophy of the hepatic cells, but mainly by their hyperplasia; but new lobules are not formed, and biliary ducts, as well as blood vessels, share in the new formation.
Observations were also made upon the effect of extirpation of such large portions of the liver upon the excretion of urea. It was found that the total quantity of nitrogen notably diminishes, but not in proportion to the nitrogen of the urea, so that the proportion of the latter to the whole nitrogenous excretion is decreased. On the other hand, the amount of extractive matters is increased, and their nitrogenous constituents appear in greater proportion than normal to the total nitrogen. The diminution in urea is proportionate to the amount of liver substance remored, total extirpation of the organ leading to a very marked decrease in urea. It was further found that after partial extirpa-tion-within a period of from eleven to fifteen daysthe quantity of urea rises until it once more attains the normal degree.-Lancet.

Magneto Heat Motor.

A curious scientific toy was recently exhibited at a meeting of the Royal Society in London. It is a heat engine, based upon the principle that nickel, magnetic at ordinary temperatures, promptly becomes nonmagnetic at a temperature of $572^{\circ} \mathrm{F}$. The construction of the engine is as follows: A disk of copper is suspended by two strings so that it can swing like a pendulum. Mounted on the copper disk is a magnet which holds up a piece of nickel. An alcohol lamp placed below the disk heats the nickel until it becomes demagnetized and drops away, when the copper pendulum makes an oscillation. During this oscillation the nickel cools sufficiently to regain its magnetic character and is caught up by the swinging magnet only to be passed again over the lamp, which causes it again to drop, and so on, the pendulum being thus kept in motior.

A BOW FOR STRINGED MUSICAL INSTRUMENTS.
The improvement represented in the accompanying illustration is designed to facilitate the ready insertion and secure fastening of the ends of the hair in the frog in rehairing the bows of violins, violas, violoncellos, bass viols, etc. It has been patented by Mr. William H. Ayres and Henry Schroeder. Fig. 1 is an inverted perspective view of the end of a bow provided with the improvement, with the hair removed and the cover partly open, and Fig. 2 is a side section, the hair being secured in place. The screw rod turning in the end of the staff engages a nut held on the frog, sliding as usual on the end of the staff. The frog is preferably of sheet metal, and into its under side projects a vertical

AYRES \& SCHROEDER'S BOW FOR VIOLINS, ETC.
extension of the inclined bottom over which passes th hair, the ends of which are tied in the usual manner and pressed securely in contact with the extension by a wedge-shaped block (Fig. 3), the rear end of the block abutting against a slightly inclined interior wall of the frog. The under side of the frog is closed by a longitudinally sliding cover, so that the block is held in place and the several parts are locked together.
Further information relative to this improvement may be obtained of Mr. W. H. Ayres, box 294, Madison Barracks, Sackett's Harbor, N. Y.

AN IMPROVED DUMPING CAR.

The car shown in the illustration is designed to be mple and durable in construction, and is arranged to dump automatically when the door is unlocked, dis invention of Mr. P. Emerson Glafcke, of Sixteenth Street and Warren Avenue, Cheyenne, Wyoming. On Street and Warren Avenue, Cheyenne, wyoming. On friction plate, and upon the latter rests a turntable supporting a frame turning on a central pivot in the circular plate. This frame supports the car body,

which widens toward the front and has a large open lower end, preventing the wedging of the load in the car. The large end is closed by a door hinged upon a rod at the top, and at one side of the door is a pin adapted to engage a notch in a pivoted latch, the rear end of the latch being pivotally connected with a rear wardly extending handle rod. To hold the door in open position, a rod pivoted to its other side has teeth adapted to engage a loop on the side of the car, whereby, when the door swings open, one of the teeth on the rod engages the loop to hold the door open, the end of the rod having also a handle, by pulling upon which the door is released and allowed to close automatically. In the frame carrying the car body is a vertically pivoted locking arm whose free end passes into a notch in the turntable and into one of a series of notches in the circular plate upon the truck, this arm being also connected with a rearwardly extending handle rod having a notch adapted to engage a transverse brace of the rear standard, to hold the rod in a locked position. Before the dumping of the load, if the car body is to be turned in any particular direction, the locking arm is disengaged by means of the handle rod, when the frame can be turned as desired to bring the front end of the car body to the point of dumping, and the locking arm is then engaged with a notch in the lower circular plate, holding the frame in locked position. The load is dumped automatically by the operator pulling the handle rod to disengage the catch by which the door is held closed, the pressure of the load on the door causing the latter to swing outward, when the load slides down the inclined bottom of the car body. A car of two tons capacity embodying these improve ments has been in successfur Lilver Crown Milling, Min ing and Smelting Company, for several ing and Smelting Company, for several
months past, and it is said that the owners, months past, and it is said that the owners,
engineers and miners all pronounce it supe engineers and miners all pronounce it supe-
rior to the old style, all the catches workrior to the old style, all the catches work
ing by gravity, so that it can be operated by a boy, while it is said to cost no more than the common cars to build.

Progress of the Pan-American Railway.
The executive committee of the InterContinental Railway has recently been in session in Washington reviewing reports received from engineer officers and others concerning the project. The first surveying corps, under the leadership of Captain M. M. Macomb, of the Fourth United States Artillery, has surveyed three lines through Guatemala from the Mexican boundary to Guatemala City. The most popular route runs through the coffee country, the second follows the coast, and the third is across the highlands in the interior.
Wm. F. Shunk has charge of the second party, which left Quito, in Ecuador, last June, to survey northward. They had reached the city of Pappegan, at the head of the Cauco River, when last heard from, and are working down the river toward Panama. The third party started southward from Quito last fall, under the leadership of J. M. Miller ; but Mr. Miller's health was broken by the climate and he was obliged to return to the United States, leaving Mr. Kelly in
charge. The corps has surveyed a distance of 450 miles, and reached the boundary of Peru. They will stretch their chains along the Maranon River to Cero de Pasto, the terminus of the New Orola Railroad, and expect to complete their work in eighteen months. The engineers report that their work has not proved nearly so difficult as was expected. No insurmountable diffculties have been encountered.

Colima again in Eruption.

A dispatch from the city of Mexico says: Thursday December 3, was a day of terror in Colima. Between 4 and 5:30 P. M. on that day the volcano of Colima was in a state of violent eruption, and at 8 o'clock that night a heavy shower of ashes began falling upon the city. It lasted over an hour, covering the streets and roofs of buildings and greatly terrifying the inhabitants.

The volcano of Colima, which is in the State of Jalisco, Mexico, is 12,000 feet high, and forms the Jalisco, Mexico, is 12,000 feet high, and forms the
southwestern extremity of the chain which traverses Mexico from east to west. For forty years it had been inactive, and was supposed to be extinct: but on July 12,1869, it began to smoke, and a few weeks later to pour forth pumice stone intensely heated, which spread for miles and covered hundreds of acres.

AN IMPROVED WEED PULLER

A machine designed to pull weeds entirely out of the ground, or to kill them, in case they are well rooted, by stripping off their seeds and leaves, is shown in the illustration, and has been patented by Messrs. John F. F. Gatgens and Robert C. Dowdin, of Central House Butte County, Cal. It is adapted to be pushed for ward by horses attached as indicated in the picture and a sprocket wheel on the drive wheel is connected to rotate a forward shaft turning in suitable bearings, this shaft having a gear wheel by which is rotated a drun on a shaft turning in bearings on the front end of the main frame. A shifting lever, operating a clutch turning and sliding on the drum shaft, affords the means of readily connecting it with or disconnecting it from the drive wheel. The drum, shown in the small figure, ha longitudinal slots in its rim, in each of which moves a comb, the teeth of which are secured to a bar whos ends are formed with trunnions passing through seg mental slots in the heads of the drum. The teeth are curved and so pointed that two adjacent teeth form a V-shaped opening into which the stems of the weed readily pass and are firmly gripped. The outer ends of the trunnions of the teeth-carrying bars have friction rollers traveling in cam grooves of cams bolted to bearings on the front ends of the side beams, and the bars are guided by attached arms pivoted to the inside of the heads at the centers of the segmental slots of the re spective trunnions, so that when the drum is revolve the teeth of the several combs are made to projec through and be withdrawn into the longitudinal slots in the face of the drum. Each comb is moved to its outer most limit previous to reaching its lowest position, so that the teeth come in contact with the weeds from the rear, but as soon as the comb with the weeds or leave has reached about a horizontal position, the comb, owing to the action of the cam, commences to reced within the drum, whereby the weeds, seeds, and leave are pushed off and drop to the ground, the comb again moving outward in the same manner in the furthe revolution of the drum. Pivoted disks prevent the entry of dust, dirt, etc., to the drum through the segmental slots, and a lever fulcrumed to one of the longitudinal beams facilitates the raising or lowering o the front end of the machine, this lever being held in

GATGENS \& DOWDIN'S WEED PULLER.
Gatcens a mow wed puller.
adjusted position in a suitable vertical rack bar. This machine is said to have given great satisfaction in prac ical work, being well adapted to pull up or kill weeds in cultivated ground in which the grain has appeared without injury to the grain.

The self-pouring tea pot, of which we gave an illus ration in the Scientific American, of October 17, 1891, is now made in several elegant forms by Messrs. Paine, Diehl \& Co., 1430 South Penn Square, Philadel phia, Pa.
becently patented inventions. Rallway Appliances.
Car Coupling. - Frank Vaughan, Elizabeth City, N. C. According to this invention the drawhead is supported to turn on an axis, and has a link and link mortise arranged on different radii, the drawhead being arranged to turn to adjust either the link or the nortise to position to face the meeting drawhead,
receive its own link or to set its link to enter the to receive its own link or to set its link to enter the
other mortise. The link may be a hook bar, arrowother mortise. The link may be a hook bar, arrow-
head rod, or other suitable construction, and the linksecuring pin is pivoted and arranged to close at its oppecuring pin is pivoted and arranged to colose at its op-
posint a shoulder forming a fixe part of the
drewhead or consisting of apring plate escured to the drawhead or ocnaisting of of apring palate secured to the
drawhead, when by depressing the plate the pin is redrawhead
leased.

Mechanical Appliances.
Brick Kiln.-John B. Griswold, Zanesville, Ohio. This invention provides for the novel arrangement and connection of kills in a aeries,
and cornccing them to s single and connccting them to a single stack, in succ a manner
that the waste heat from a kiln juat burned off will be that the waste heat from a kiln just burned off will be
ntilized in a green kill. The improved kill is also designed to burn brick, tile and similar articles uniformly and of even hardness, by a perfect combustion of the gases and fuel at all times, a large part of the ware being burned by radiated heat before the fire
touches it, the ware being protected from direct con. touches it, the ware being protected from direct con-
tact with the fre at its hottest points, thereby preventtact with the fre at its hottest points, thereb
ing it from being blackened or fire-marked.
Printers' Side Stick and Quoin.Albert A. Bogen and Robert Nix, New Ulm, Minn. This device consists mainly of two bars having parallel outer sides aud connected together by a central casing
the outer bar having its Inner side formed with in clines or bevels adapted to be engaged by blocks or clines or bevels adapted to be engaged by blocks or
wedges mounted to slide between the bars, the wedges being engaged by screw rods revolving in suitable bearings in the casing. The screw rods are revolved through gears by means of a key, whereby the wedges are moved againat the Devels of the outer bar to force its outer
side in contact with the form, the outer gide of the side in contact with the form, the outer side of the
other bar reating againet the inside of the chase, or vice versa. The device is designed to be simple and durthe form flrmly in the chase.
Counterbalance for Journals. William H. Wood, New York City. The journal box fitted to the shaft has a groove for receiving packing, an adjustable packngg being fited to the groove and the shaft, while ducts connected with the groove are
supplied with a fluid under pressure, and a duct leads to the space in the journal box within the packing containing fluid onder pressure. The invention provides
means for opposing the weight or pressure of a shaft on its bearing, or the thrust or pressure of any moving body revolving or sliding in frictional contact with any body, so a
to a minimum.
Multiple Button Drilling Ma-chivs.-Jobn W. Lewertb, New York City. This is a compact and durable machine by means of which
several holes may be drilled simultaneously. A frame having parallel arms is movable to and from a table on which is a button-clamping device, a stud on one of the are pinions meshing with the teeth of a are pinions mesbing with the teeth of a revoluble
sleeve. The frame is rased and lowered to raiee and slower the drills in the progress of the work, and motion power.

Agricultural.

Hand Planter. - Herman Seppmaun, South Bend, Minn. This invention provides
neans whereby two hand planters may be connected means whereby two hand planters may be connected,
held at a suitable distance apart, and operated to simulaneously plant two hills. A lever is fulcrumed at each eide of the center of a horizontad frame connecting the two planters, a spring normaty forcing the levers rating mechanism of the planters. The operator carries the $t w o$ levers toward each other, and when they are released they return automatically to their normal poeition, at one movement the seed being planted in the ground
and at the next movement the shoes being charged, so and at the next movement the shoes being charged, 8o
that they may be again operated to plant their reppective bills.
Wagon.-Paul H. Munroe, Plainfield, II. Thus is a vehicle eeppecially adapted for farm work, riuing and hanling easily and turning in a small space,
while it is also provided with adjustable cutters for ntting corn or other produce, the cotters being mone ed on the under side of the body near the middle. The wagonalso a variety of other novel details.

Miscellaneous.

Well Casings.-Charles C. Chamberin, Washington, Pa. This invention relates to an gas or water wells after the casing has been lointed and arranged in the well. To the tube is secured a horiontal bearing collar, apon which rests a wheel with apwardly and outwardly inclined periphery, and the wheel and tube are connected by a rope, so that as the
wheel revolves the tube is also revolved, tightening the casing. A fange on the lower side of the wheel prevents the rope dropping off, and several coils of rope being passed around the wheel, the rove is paseed over and receives power from the power wheel of the
derrick

Electric Meter.-Charles K. Huguet, New Orleans, La. A closed receptacle, to which is at-
tached a presesure gange, is filled with a suitable electroyttic ligaid, and from its bottom projects two stems of afxed and an adjuatable electroate, throngh which a portion, preferably aboat one thoosandth part, of the
whole current may be pased, the solution being thus decomposed and the pas created causing a pressare whlch is indicated on the pressrre gauge, the total pres-

Ing the proportion of the total current which pasees
through the sunuts on which the meter is in placed throagh the shants on which the meter is placed. A
table for measuring ampere hours is also designed for

Hot Water Heater. - John Q. A Gantt and Jobn D. Bloomhardt, Altoona, Pa. This heater has a dobble-walled fire box with vertical end pipes arranged in a zigzag, manner, and connected with a hollow head piece. The coils or circulation pipes are nexpensively made, and the number may be readily added to, to increase the capacity of the heater, which is designed to atilize the heat of the fuel to its follest extent. The coils, fire box and head piece are an Sash Rail Fastener. - George w. Galbreath, Sedalia, Mo. This is a fastener for the meeting rails of asebes, designed to be simple, ines-
pensive, and of durable construction, in which the locking pawls are gravity pawls, and the fastener may be operated to release the two sashes by the use of one
hand hand, which hand may also be employed for raising the
sush. The keeper section consists of a casing having n opening in one side consitsts or a casing having cally fulcrumed in the casing, while the bolt eection consists of a casing in which a apring-controlled bolt ie
held to slide, being moved within the casing ngagement with the keeper section by a shifting lever.
Knob Attachment. -George E. Hamlin, New York City. This invention is an improvewo parts, in the form of flat bars secured together by crew. The spinde sections have shoulders adapted to fill cavities in the knob shanks, and the sections are connected by a pin or fastening key, when washers are
dropped over the spindle, and roses are attached in the aropped over the spindie, and roses are attached in tio isual manner, concealing the'washers and the ends of gick and effective adjustment is readily obtained knobs for doors of different thickneseses, the knobs being readily removable as may be desired.
Poise for Scale Beams. - Gustav Wilkening, Hoaston, Texas. This is an improvement or the poise to move on when being adjusted to weigh the hook carrying the poise having at its upper or nose end an intervening roller sapported by pointed screws Porming the running bearing, below which projects
a front pointer or indicator, while combined with the poise and its asspension hook is a spring arranged to carry the weight. The easy lididing of the poise and
hook-carrying roller on the beam are designed to save much time in weighing, and prevent the cutting and

Alarm Gong. - Vernon T. Lynch, Chicago, III. This 18 a device for uec on different types of vehicles, and is also designed for use in connection with cable motor cars, the gong being guspended below the end platform. A bent standard is held within the
gong to sapport a ball in gong to sapport a ball in a keeper box in such position
that the ball will be repeatedly struck by radial strikin that the ball will be repeatedily grrack by radial striking
arms to
sound the
gong on
a arms to sound the gong, on a sleeve being revolved to
which the arms are attached, there being on the sleeve a pinion mesms ing with a toothed sector barr, with which bar. By placing the foot npon the block and rocking it gickly, the arms. strike the block in rapid succession, hrowing it against the rim of the gong.
Cake Baking Pan. - Mary E. McDaniel, Mineola, Texas. This pan has a lower main
section, with flaring side walls and a centertube and section, with flaring eide walls and a center tube, and an in which are openings, while above this is a pivoted upwardly dished lid. The circulation of hot air currents within the oven is thus afforded free access to the
Cake material on its upper surface while leteral drang is cut off, the cake rising withinithe extension chamber

Melon Carrier. - John K. Fler, Leavenworth, Kansas. This device consists of flexile side strands connected by cross plates or bars, with cross handles at the ends, one of the handles being arranged to serve as a hand hold, making a simple and
nexpensive carrier, designed especially for carrying

Draught Equalizer. - Walter B. Dreace, Traer, and Frank w. Reisinger, La Porte lowa. According to this invention Eeveral different whiffetrees are so arranged and connected with levere that an unequal number of horses may be worked on
different sides of the pole and still have an equal for ward pull npon it The adjustment of the levers mas be made at different points, according to the number and strength of the horeses pulling on different sides of the pole, and means aro provided for remedying any Verict
Vehicle Spring Brace.-Sidney J. Graham, Colville, Washington. This invention pro-
vides an equalizer block turning upon a stud projecting downward from the eeat, and having bores in which larn ping pivotally connected with brackets, which are connected by links with the lower ends of the springs.
The improvement is designed to prevent the springe rom swaying out of perpendicular. cansing the springs to settle in a straight Dne and avoiding all side stain no matter what weight or load is placed on one side of he wazon or one eide of the eeat.
Pad Screw for Harness. - Charles 3. Waterbouse, Rising City, Neb. According to this
nvention the pad screw has 2 longitudinal pertoratio which extends through the ecrew head, then turns outward and vanishes on the threaded shank. A sor metal rod or key is inserted in this perforation, and ite inner end engages and locks-a nut concealed within the move the pad screw.
Physicians' Operating Table. Grant B. Nichole, Wapakoneta, Ohio. The table frame has a horizontal midale part and downwardly Inclined
end parte, and the table top is made in three sections, of which the middle one is eecured to the horizontal part
inclined ends. The table is designed to be readily changed into the desired position to make the patient as
comfortable as possible while permittimp the surrean niently perform an operation.
Burial apparatus. - Murray L. Smith, Smyrna, Ohio. This is a compact and easily
handled apparatus to enable undertakers to safely lower a cofll Into the grave with but little asiestance and withoot allowing the cofln to slip or fall. The invention provides a novel construction and arrangement of the parts of a folding derrick with cords and
windlases, very light and foldable into small compase windasases, very light and foldable into small compase
Suspenders. - Elias H. Lieberthal, Bay City, Mich. According to this invention a aloted
metal plate or clamp is concealed within or made to lie metal pate or clamp is concealed within or made to lie
flush with the junction piece of the bifturcated end Aush with the junction piece of the bifurcated end web paeses, having teeth to catch but not peete math web, whereby the saspenders may be readily lengthen aid or shortened and a secure hold established, all buckles and projecting parts beng dispensed with.
Watch Charm Design.-Fayette W. the omaha, Neb. This design simulates an acorn, at the lower end of the cap of which is a band in
which appear abbreviations of the days of the week, while below are vertical panels containing columns of figures, the whole presenting the appearance of an
acorn calendar
Nors.-Copies of any of the above patents will be Yarnished by Munn \& Co., for 25 cents each. Please send name of
of this paper.

NEW BOORS AND PUBLICATIONS

Machinery Pattern Maring. By P. S. Dingey. ${ }^{12 m o . ~ P p . ~}{ }^{90} 22$ plates,
cloth. John Wiley \& Sons : New York. 1891. Price ${ }^{2}$ 2.
This work, which is freely illustrated with 376 Agures and many full size profiles of gear wheels, will prove of value to all pattern makers. The proceesees of making
important typical patterns and core boxes are fully delmportant typical patterns and core boxes are fully de-
scribed. Great attention is is iven to the making of pat terns for gear wheels, which has always been a stambling block to pattern makers. For a work of its size

t contains a large amount of useful information.

SCIENTIFIC AMERICAN

BUILDING EDITION.

JANUARY NUMBER.-(No. 75.)

table of contents.

1. Elegant plate in colors of a picturesque residence in the American Renaissance style of architec-
ture, erected for Gen. T. L. Watson, at Black Rock, Conn. Two perspective and an interior view, with floor plans, etc.
architect, Bridgeport, Conn.
arcitec, Brageport, Conn. land Maine Por Land, Maine. Perspective
plans. Cost $\$ 3,800$ complete
2. A very attractive residence at Sea Side Park, Bridg port, Conn. An admirable design. Floor plans and plete.
3. A cottage at Richmond, Mo., erected at a cost of
$\$ 1,600$. Perspective elevation and floor plans.
4. Two floor plans and perspective view of a mountain cottage in Massachusetts designed by the late H. H. Richardson. Cost $\$ 10,000$.
5. View of the Dresel Institute of Art, Science, and Industry, recently erected at Philadelphia, at a he Parsonage of the First Baptist Church at Gardner, Maine. Cost $\$ 2,500$ complete. Per spective and floor plans.
6. Ground plan and perspective view of the First Baptist Ckurch recently erected at Gardner, Me Cost complete, $\$ 8,000$. $\$ 3,400$. Perspective and plans.
7. View of the German House in Chicago
8. A church recently bailt at Oneida, N. Y. Cost $\$ 2,400$. Floor plan and perspective.
The beautiful residence of Gen. C. Hollister, Esq.,
at Rochester, N. Y. Mr. James Cutler, architect at Rochester, N. Y. Mr. James Cutler, architect. staff decorations.
Miscellaneous contents: Durability of redwood.Is iron rust a cause of fire ?-Types of chairs, old and modern, illustrated.-How to build a rain
water cistern and filter, illustrated.- Bird tracks water cistern and filter, illustrated.-Bird tracks
in stone.-Reparation of zinc castings.-Still in stone.-Reparation of zinc castings.-Still
water mains in Toronto. -The builder of the Worid's Fair notes, - A heavy standard poulder illustrated.-A staircase and hall design, illus-trated.-Hot water $v 8$. steam heating.-Schmidt's
improved window frame, illustrated.-Value of thoroughness.--Improved Warner door hanger illustrated.-An improved band scroll and resaw, illustrated.-Artificial ston
The Scientific American Architects and Builders 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages: forming, practically, a large and splendid Magazine of architecTURR. richly adorned with elegant plates in colors and with ine engravinge, illnstrating the most interesting xamples of Modera Arcatectural Construction and allied subjects.
The Fullinese
The Fullness, Richnese, Chespness, and Convenience of thi work have won for it the hasembr Circountion
of any Architectural pablication in the world. Sold by
.

gel Broedway, Now Yorto

Pusiness and Personal.
for eacic insertion : about eight words to a line alar a line for eacii insertion; about eight words to a line. Adver
tisements must be received at publication office as early as tisements must be received at publication office as early as
Thursalay morning to appearin the following week's issue.

A Bargain-One 48×36 inch tron pulley. Weight, one
n. Two sets of arms. Good as new. W. P. Daris, Acme engine, 1 to 5 H. P. See adv. next issue
Presese \& Dies. Ferracute Mach. Co., Bridgeton, N. J. 6Spindle Turret Drill Presses. A.D. Quint, Hartford,Ct. d hand lathes and plater, Amer Cl_{C}

Oniversal and Plain Milling Machines
Pedrick \& Ayer, Philadelphia, Pa.
Steam Hammers, Improved Hydraulic Jacks, andTube Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating
and sand pumping plants. Irvin Van Wie, Syracuse, N. Y. "Pneumatic Cotton Picker" will pick 30 acres daily.
Will sell share or place on royalty. C. Baldwin, Quincy. ill.
Scale removed and prevented in boilers; for each 5 -
horse, 10 cents a week. Pittsburgh (Pa.) Boiler Scale horse, 10 cents
Resolvent $\mathbf{C o}$
The best book for electricians and beginners in elec-
tricity is "Experimental Science"" by Geo. M. Hopking tricity is "Experimental Science," by Geo. M. Hopkins.
By mail. $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y. For Sale-Patent Office official Gazette complete, 53
vols. Also "Annual Index and Report," 17 vols. Price vols. Also "Annual Index and Report," 17 vols. Price,
8125. Address H . Huntor, 1449 Q St., Washington, D.C. For the original Bogardus Universal Eccentric Mill, For the original Bogardus Urilversal Eccentric Mres,
Foot and Power Preses, Drill, Shears, etc., addrees
J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Competent persons who desire agencies for a new
popular book. of ready sale, with handsome proft, may apply to Munn \& Co., Scientific American offce, 361

IT Send for new and complete catalogue of Scientific and other Books for sale by Munn \& Co., 361 Broadway,

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto.. This is for our
information and not for pablication. information and not for publication.
Refors is orers should Rererencess to former articles or answers should
Inque date of paper and puge or number or question.
be repeated not answered in reasonable time ehonld
berrespondents will beartin mind that some answers require not a little research, aud,
though we endeavor to reply to all either by letter
or in this department each must take bis the or in this department. each must take his turn.
Special Writen liformation on maters of
personal rather than general interest cnnnot be

Mince. $\begin{array}{l}\text { pris sent for examination should be distinctly } \\ \text { marked or labeled. }\end{array}$

(3916) F. M. A. C. asks: How mach maller than a hair can German eilver wire be made?
Something depends on the size of the hair. We think German silver cannot be drawn finer than the nnest hair.
(3917) W. W. P. asks: What is the cause if a telephone magnet producing severe shocks and will continue when the insulated connection or wire is touched to the armature, which also produces a spark ? A. The magneto ueed for signaling on telephone of givinuces an alternating current which is capable traceable to the magneto, your hes is probably crosed by a telegraph line or electric light wire.
(3918) R. F. asks what to apply to prints to render them transferable to paper. A. Try or a strong lather of shaving soap.
(3919) G. .H. P. asks: Does the throwing off and on of the current in an incandescent lamp have a tendency to injure it beyond the extent of the
burning? If so, why? For instance: Would the burning of a lamp ten times, ter minutes each time, be any more injurious than the burning of the eame lamp for one handred consecutive minates \mathbf{A}. With reference o the above query, Mr. Edison says that he tested by
automatic means the effect upon an incandescent lamp of throwing off and on the current fifty thonsand times, and found that it made no difference in the life of the (3920)W. O. P. asks how to render drawing paper transparent? A. Use purifed benzine for
(3921) J. S. J. asks how to put a steel scraper smooth with very fine emery pader hen with powdered finely pumice stone and water, and anieh with rotten stone and oil or water.
(3922) A. D. S. asks: 1. I inclose a ample of powder which is used to make a depolarizing solution for batteries. Will you please inform me
what it is, so I can obtain it through our druggists? A. It is potassium nitrate, or ealtpeter. 2. How is the proper way to charge and diecharge the Leyden Jar? I have induction coil that will make $11 / 2$ in. spark, but
cannot do anything with the jar? A. To charge a Leyden jar with an indnction coil, connect the knob of the jar with one terminal and the onter coating with the
other terminal and pase the corrent until it is charged,
and remove while the current is still passing. To
discharge, put the knob and outer coating in electrica discharge, put the knob and outer coating in electrica
connection. 3. Why is the change in dates of Easte Sunday? A. Easter corresponds with the Jewis there are several telegraph wires; one terminal ends out side the office, the other is brought into the office and terminates at the switch board with the free end loose about 8 in.; that wire becomes charged at times so a spark will heap throogh the insulation if you approach it with the hand. Is it an induced current set up in the wire? A. As regards the wire, it may be in imperre
electric connection with some high tension it may be excited inductively. We should advise its re moval unless you are certain that it does not touch an there is any danger of such contact existing.
(3923) M. D. writes: May I trouble you to name any literature that may have been published on
poisonous decoration of houses, or decorations con taining poison,with sources whence, it may be obtained A. See Supplement, Nos. 219, $220,283$.
(3924) B. W. A. writes: I have about 30 dwt. of gold flings and clippings in which ther is a certain per cent of iron and platinum as well a
other dirt. I want to convert this into pure gold Please give the process and the best way for me to go to a refiner, buve been in the habit of giving my scrap as I use nothing less than 18 K . A. By fusion of the metal with borux and sodium nitrate you can get rid o the iron, etc., and have rothing but the precious metal left. It is quite possible that treatment with hot nitric acid will do the same, but if any chloride is present the gold from the platinum heat for several hours wit mercury, and pass the amalgam through a cloth. Th hind. Any adhering amalgam can be removed wit more mercury. Distill the mercury from the gold in a regia. evaporate almost to dryness, and precipitate the platinum with absolute alcohol and ammonium num chloride is filtered out, washed and ignited. Th ons sulphate.
(3925) D. H. writes: I am doubtful about simple electric motor described in Hopkins 16 ft . boat where I want to run it, in Jamaica Bay; the tide in some places runs five miles an hour. Pleas answer the following questions through Notes and Queries: 1. What power would motor have if made a ment, it would have eight times the power. If all the parte had double the sectional area, it would have twice ing the current in the field magnet or the armature, but not in both. 3. Will same size wire do for windin field and armature? A. Yes; if used as a series machine. 4. How should it be geared for boat? A. So the armature will make from four to six revolu batteries of the screw. 5. What kind of storage A. For the machine in its present size, two cells in parallel. The cells weigh about 15 lb each. 6. How many gravity cells would it take to recharge them, ir hoat is used two or three times a week and not mor than two hours at a times A. Four cells of gravity to one of storage battery. ${ }^{\text {. How many amperes and }}$
volts are there to a horse power? A. 746 watts con stitute an electrical horse power. A watt is a vol
multiplied into an ampere. D. H . adds: I am delighted with Cyclopedia of Notes and Queries; there is more information in it for the money than any book I eve
(3926) E. M. asks how to find the speed of a motor that is too small to run a common speed indicator without reducing its speed to a large extent A. On the armature shaft place a cardboard disk pro ided with a circular row of equidistant holes number holes with a pipe having a diameter equal to that of the holes. Compare the sound with a sound of the same pitch made by some correctly tuned musical instru ment. The number of air puffs per revolution and the namber of vibrations required to produce the musical sound will furnish a basis for a tolerably correct esti-
(3927) R. E. P. gives the following method of cutting off glass bottles: A fine wire is ad
justed by means of a block around the bottle. B justed by means of a block around the bottle. By passing a current of electricity through the fine wire, it
becomes very hot, heating the bottle where separation is desired. If it does not break at once, pour a little wate
(3928) J. B.-The two specimens sen (3929) K. J. D. writes: 1. I wish to $\Delta \mathrm{N}$, No. 15, April 11, 1885, page 230 , and wish to kno the porous caps used in the Leclanche battery will ofor this? A. Yes. 2. If so, shonld the tin celle be made larger in proportion to the porous cups? A
Yes; it would be better to bave them proportionately
(3930) D M. asks: 1. Have you any book or Scientific American Supplement giving similar to the one described in Scientific American of November 28, 18919 I have an engine screw-cuttin lathe, and by baying a compound actiromatic 1ens. think I can construct a good one. A. We have no inSpecial instructions are hardly necessary; all that is needed for the equatorial mechanient is the three axe he ones in and the one for latitude adjustment being of course, adjustable. 2. In making the plange batter escribed In "Experimental Science," Fig, 394, can use any other cell than the one described, either glass or porcelain? Wonld glass frutt jars do, by makin
plate circular? A. Glass cells can oe used to advan
tage. 3. How much solution would it take for each
filling? A. About one gallon per cell. 4. Can run lling? A. About one gallon per cell. 4. Can I run my 43 in. between centers? A. Yes; but you will tind it an expensive and troublesome power. Better use a gas or steam engine. 5. In wiuding field magnet for smal and onnamo, is the winding all in one piece like
spool, or is it wound like the one in Suppement. No 00% A. All in one piece. 6. Is there, or have any engines been made with a endess cylinder, so that
there is not any dead center, like an overshot whee with a jet of steam on the
not much used.
(3931) D. H. says: I about to build trunk from my dam to my mill, a distance of about about one foot under ground. Cnn you give me any inormation as to a method to preserve this trunk. The
ood being anderground, and filled with water all the time, will.naturally decay, and I thought you might be able to tell me some way to prevent this rapid decay to a certain extent. I know you are anthority on all such matters, and if you will tell me where I can regard, or if you can help me, it will oblige me state that the trunk will be buil hemlock. A. So long as the trunk iskept filled with
water, there will be but little decay. Wooden wate pipes buried in the earth and kept filled with water are (3932) A. W. asks: Is there any chemi al sensitive to the action of gaslight, that is, is there ny chemical, perfectly invisible in yellow or red ligh which will darken on exposure to the light of a gas jet Want to prepare the surface of a blank sheet of whit ure which will burn and char the surface of the paper leaving a black design on the paper. I have tried saturating with saltpeter, but it burns the paper through, an s too slow, and have tried a preparation of sugar an chlorate of pctash, $1 / 2$ chlorate of potash to 1 pint sugar oth pulverized; it will burn a few inches, then go ou prepared the paper by going over it with mucilage
with a camel's hair brush, and carefully dusting over he powder, and have tried making a paste ont of the ugar and pouash, and painting it on, but it would not work. How can this be done ? The powder must be white. I want a chemical, colorless, that will turn black
on application of another; for instance, if I draw a degn on a sheet of paper with a colorless solution o me chemical I would like to bring it out with anothe ne, and would like to know what will destroy th color then produced. I have a few good receipts on mprove. I use chloride of iron and gallic acid, usin the acid as the base and the iron as a developer, and can estroy the color with oxalic acid in solution. Now is here any color that oxalic acid will bring out, which to go over the paper with a colorless solution of $t w$ on the paper already prepared, and by going over it with one developer one of the pictures will appea nd then by going over the same paper again with econd developer to bring out the second picture which has remained invisible, and at the same time
destroy the first picture produced. I have come very ear accomplishing the above, and can do it with ear accomplishing the above, and can do it with
solutions in glasees, but they won't work on paper Perbaps some of our will be coun ane the housand receipts given in the "Scientific America
(3933) J. M. McC. asks: Can you giv ne the different processes of testing vacuum? In testing with an induction coil, how can yo What kind of an induction coil should be used ? An ow many volts should be used $\%$ Is there sach a thin oil will not pass through an air-flled of an induction oil will not pass through an air-filled tube when the
distance between the points is greater than the strikin distance of the coil. On exhausting the air, the dis charge takes place irrcgulurly and presents a bluis color. As the exhaustion proceeds, the discharge omes more regular and the color becomes purple. This about the degree of er haustion of Geissler tubes. O xhausting still further the tufe becomes more luminou ad the color is apple green. By carrying the exhausestroyed, and the discharge of the coil will not tak pace even over a very short distance. Tubes exhausted o this degree are sold as "perfect vacuum" tube exhausting apparatus to indicate when a high vacuum as been reached. A coil like that described in SUPLEMENT, No. 160, answers well for vacuum tabe work bly of an inverted glass suphon of small caliber partly
(3934) B. J. says : In casting zinc rod 14 inches diameter they in cooling settle down in enter, leaving a hole; how can I avoid ttis? A. You angle of about 60° and by tipping the moulds at an nould down the side, if you make two rods in bursting of the mould by pressure. 2. How to make it eaid to be completely satnrated? A. The solutio will be saturated when no more of the salts can be disoived. You can keep it satur
(3935) I. J. M., Syracuse, says : In one of the streets in this city is laid a water pipe 6 inches in plugs 400 feet apart with $21 / 2$ inch discharge gates. En-
gine No. 1 takes one takes one plug and goes pumpin water. Engine No. 2 takes the plug 400 feet nearer the ountain head and also goes to pumping water. Ther
 ine. A claims that engine No. 2 will get the most water if the couplings from engine to plug are ight and
don't draw aır. B claims that engine No. 1 , which is 10
eet lower, will get the most water. Which is right?
The water pipe is $51 / 2$ feet in the gronnd. A Both he water plpe is $51 / 2$ feet in the gronnd. A. Both endues will get water according to their ability to pro
duce a vacuum in their suctiou pipe. The fiow water will also increase in the main equal to the addi honal head produced by the suction of both engines. The probability is, with the ordinary hydrant conneca
(3936) L. B. A. asks: Which takes the why fuel, the high speed or slow speed engine, and y using larger pulley on engine with same efficiency If not, why? A. The speed is not essential to the
economy of steam engines, although some strong claims re made for high speed engines of the automatic class. peeds of 75 to 120 revolutions for medium size engines. tigh or low speeds for driving dynamos are both use with special reference to engineering preference, but or large plants the moderate speed engines belted (3937) A. M. asks for the method of naking celery totally white by some bleaching process,
ot blanching. A. 'There is no method of bleaching reen celely. Celery is prevented from turning gree by cover
vances.
(3938) F. A. R. asks whether carbons and porous cells of old Leclanche batteries could be ours in hot water.
(3939) G. C. K. asks: Can a man get more power out of a dynamo than it takes to run it, dynamo, how much power would I get out of the dyamo? A. Out of 20 horse power put into
ou could get from 75 per cent to 90 per cent.
[Pitman's "Teacher" of Shorthand or Phonograph furnished at 15 cents, not 10 cents, as stated in our reply 3858, Jan. 9.-Ed.]

Replies to Enquiries.

The following replies relate to enquiries recently pablished in Scientific American, and to the number
(3713) Lime Concrete.-Referring to query 373, Wm. H. Bond, of Greensboro, Ind., says. ears ago, entirely of gravel and lime, not a particle of ement in it, and seems to-day almost as solid as stone outside walls 12 inches, and inside 10 inches thick.
(3715) J. S. J.-Referring to query and hat some. No. 3715, about hang butter tubs, would sa butter use a paraffine of low melting point on the inside of tub and then cover the top of the butter with a hin coating of the same. This makes an air tight packto tub.
W. O. P. asks (1) how to mount drawings. (2) For the composition of pattern maker's varnish. - C. F. C. asks
or compounds for boiler incrustation. Also for waterproof glue.-G. D. M. asks how to make transparen ooaps.-D. K. T. asks how to make blue prints.-K. L. S. asks how to remove comedones.-J. M. S. asks for
an ink eraser.-J. H. T. asks how to make printer's ink.-E. S. asks how to make chewing gum.-H. M.
asks how to make a hektograph.-W. H. E. asks how asks how to make a hektograph.-W. H. E. asks how
to get rid of red ants.-R. N. S. asks how to make a hektograph, and also how to make hektograph ink. -M . bons.-P. P. C. asks for a metal polish.-R. N. s. asks how to make a hektograph and for hektograph ink.-
H. W. Z. asks for an elastic cement to cement H. W. Z. asks for an elastic cement to cement powE. D. asks how to make glycerine soap.- - B. E. H. asks how to make artificial diamonds.-E. B. asks how bak ing powder is made.-J. C. M. asks for a receipt for
making artificial meerschaum.-W. M. asks how to make the hair grow. $-W$. W. asks for formulas for making good rubber cements.
Answers to all of the above queries will be found in he "Scientific American Cyclopedia of Receipts, Notes The advertisement of this book is printed in another column

TO INVENTORS

An experience of forty years, and the
more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unsynopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home or
abroad, are invited to write to this office for prices, which are low, in accordance with the times and our ex-
tensive facilities for conducting the business. Addreas MUNN \& CO., office Scientific American, 361 Broad way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the

nited States were Granted Janaary 12, 1892,
and each beahing that date. [See note at end of list about copies of these patents.]

 Chad
Chris
Char
Clark
Clark
Clark
Cote
 ,iviz coater
cole,
Cole,
C

$\stackrel{3}{3}$

demereme
k
，mom

gifecieiner
$\underset{y}{\text { unditicic }}$
筑

nitilize

DESIGNS．

TRADE MARKS

Dfdvertisements

Steam！Steam！
Quality Higher，Price Lower． 2－Horse Eureka Boiler and Engine，－\＄150

B．W．PAYNE \＆SONS，

SPECIAL NOTICE！

Rope bridges and their mili

\qquad
MODELS AND CEARS

TO BUSINESS MEN

The value of the SCIENTIFIC AMERICAN as an adver－ tising medium cannot be overestimated．Its circulation is many times areater than that of any similar journal is many times greater than that of any similar journal

now published．It goes into all the States and Territo now published．It goes into all the States and Territo－
ries，and is read in all the principal libraries and reading rooms of the world．A busincss man wants something
more than to see his advertisement in a printed news－ raper．He wants circulation．This he has when he ad－
vertises in the Scientiric AnErcan． vertises in the Scientific american．And do not let
the advertising agent influence you to substitute some the advertising agent influence you to substitute some
other paper for the ScIENTIFIC AMERICAN，when se
lecting lecting a list of publications in which you decide it is fo
your interest to advertise．This is frequently done fo the papers having a small circulation than is allowed on the SCIENTIFIC AMERICAN．
For rates see top of first column of this page or ad－
－FCOMING INTO A KINGDUM突

SUPERIOR，WISCONSIN：

of the conster of the polar lights，
of the constant star in the Northern height Owner of husbandry，shipping and trad
Forestry，mining and all thngs made．
Minister，I，to the wide world＇s weal：

The Great and Growing METROPOLIS at the Head of Lake Supeiior． For Manufacturing，For Merchandising， For Loaning Money，For Investments in Real Estate， FOR EVERYTHING－－th best place in america．

Land and River Improvement Co．，

 WEST SUPERIOR，WISCONSIN．

Fratacowe woons

NOW READY！

a NEW AND VALDABLE BOOK．

12,000 Rectipts． 680 Pages．Price $\$ 5$.

This splendid work contains a careful compila－ in the Notes and Queries of correspondents as pub－ past fifty years：together with many valuable and mer Twelve Thousand selected receipts

Tre work may be regarded as the product of the
studiesand practical experience of the ablest chem－
 for ready use．
Allos． very inquiry that can be thought of，
relating to formule used in the various manufac－ reating to formulx used in the various manutac－
turing industies，will here be found onstered．
Instructions
for
 so extensive a work．or paper we have nearly 950 re－
ceipts，the head orracing how to make papier maché how to make paper water proof and fire proof，how to
make sandpaper，emery paper，tracing paper，
mand transer paper，carbon paper，parchment paper，
colorea papers．caror strop paper，paper tor oring
up cutlery，siverware；how to make luminous paper，photograph papers．ete．．e．mave nearly 450 re－
ceipts，intledudid the finhest and best writitg inks
 ble inks，gold，siver and bronzinous，inks．invisi－ink
directions for removal of inks；restoration of
dis． ladid the head of Allors over 700 receiptsare
given，covering a vast amount of valuable infor－
get
 and the modes of use．Stamps forms the subject
How to take
of a motst valuable practical articre，in which the complete processi is described in such chear and ex－
plicit terms that any intelligent person may readily learn the art．t．there are 120 receipts：Electro－Me－
tallurga， 125 receipts：Bronzing， 127 receipts；Pho tegraphy and Microscopy are represented is
receits
Under the head of Etching there are 5 receips，

 cieaning furniture，clothing，elass，leather，，metals，
and the testatationd
of obiects and materind preservation of all kinds In objects and materials．
Soaps have nearly 300 receipts．
are given
Sta
Those who are engaged in any branch of industry
probably will find th this book much that is ot ractical value in their respective callings．
Those who are in search of independent busines

MUNN \＆CO．，Publishers， sCIENTIFIC AMERICAN OFFICE，

THE MODERN ICE YACHT, - BY

WATER FRONTS Near NEWBURGH-ON-

 RAINMAKERS IN THE UN NTED
 TFIC. Ay Mrof. SUP HEMENT, Notaired in SCIEN
cents. To be had at this oftce und from all newsiealers.

The mot siofectifil Impreator LAN DUENELSEAENTER

Scientific Book Catalogue

 361 Broadway, New York. FREE SITES TO SUBSTANTIAL MANUFACTURING ENTERPRISES
 and General Manager of numerous Land, Companies
situated anong the lines of the Norfolk \& Western
Railroad.

OFFICES. 40 Muraar St, NewYorku. SA.
 PLATING
 NCKEL \& ELECTRO-FLATING OUTFITS.

ELEC'TRICAL LABORATORY FOR

 BARNES'
"EVERYBODY'S HAND-BOOK"

Useful Books!

 MUNN \& CO., 361 Broadway, New York.

STEEL TYPE FOR TYPEWRITERS LEARN WATCHMAKING of $\begin{gathered}\text { of } \\ \text { wona, Finin. }\end{gathered}$

ICE-HOUSE AND COLD ROOM.-BY R.

$\underset{\text { lection of interesting letters to }}{\text { OEL }}$ BOATS editor of the SCIEN-

$\int \begin{gathered}\text { SHRINKAGE } \\ \text { WOOLEN } \\ \text { Prevented } \\ \text { STOCKINGS }\end{gathered}$

The STOCKING STRETCHER

EARTH SCRAPERS-DESCRIPTION

Mariner \& Hoskins, Assajers \& Chemists
 ANY) All kind hassayed.

A NEW LIGHT

ELECTRIC PERCUSSION DRILIS. ELECTRICAL MINING APPARATUS OF EVERY DESCRIPTION.

THOMSON-VAN DEPOELE ELECTRIC MINING CO., 620 ATLANTIC AVE., BOSTON, MASS. Drawinss, Pattern Making, Experimental and Fine Ma-

 MACHINE WORKS, Harrisburg, Pa., U. S. A

JeNins UPRIGHT CISHIONED

 RMAGIC LAETEBAS ana other new potaresworth

GATES ROCK \& ORE BREAKER

$\underbrace{8}_{0}$Capaily upto 200 toos per hour.

 Machinery. Send for Catalogues.
CATES IRONW WORS
jocso. Clinton St.. Chicawo

OTAREIETE

 WARP DYENOL WASHERS, PATENT RUBBER COVERED SQUEEZE POWER WRINGEES YEOR HOSIERY AND DRYINGAND VENHLATING FANS, CEO. ${ }^{\text {Catalogues free. }}$ Windsor

ELECTRIC POWER TRANSMISSION

TWELL DRILLING MACHINERY.

 WILLIAMS BROTHERS, ithaca, N. Y.,Mounted and on Sills, for deep or shallow wells, with steam or horse Newspaper By A. AD Siexf ried.
on
paphe work interesting paper

2¢pertisements．
Inside Page，each insertion－－ $\boldsymbol{7} 5$ cents a lin Back Page，each insertion－－－ $\mathbf{\$ 1 . 0 0}$ a lin

Sprague，Duncan \＆Hutchinson，
FRANK J．spracue，
LOUIS DUNCAN，Ph．D．
ALFRED BISHOP MASON，
CARY T．HUTCHINSON，Ph．D．
Consulting Electrical Engineers．
15 WALL STREET， NEW YORK．

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465；and January 30th， 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor．
SMOKELESS GUNPOWDER．－AN IN－

 Dr Motor of the lith Century

Chatind aiaioucine SMALL ELECTRIS MOTOR FOR AM．

The $\$$ io．oo Kodak．

潘
 This new camera with latest improvements makes 24 snap

米 Beautiful finish．Splendid workmanship．

Developing and Printing Outfit，\＄1．50．
Complete Illustrated guide to photography with each kodak outfit enables you to＂do the rest＂yourself．

Send for circulars．THE EASTMAN COMPANY，

THE STANDARD
HOLJULTS RSELSTOS BPILEPCONEAUGS

\qquad
patentisd $\xrightarrow{-1}$

BOHLRTRS

A SPECIALTY．
ENGINES AND SAW MILLS．
NO FARQUHAR BOILER EVER EXPLODED． A．B．Farquhar Con（umitea，York，Pa．

15ISOOTN GENERAL ELECTRIC CO．

INCANDESCENT AND ARC LIGHT PLANTS． Stationary and Railway Motors．－Lamps．－Cables．－Safety Devices． DISTRICT OFFICES．

Mercican and South American Department．

THE WARDEN MFG．CO．， Horizontal，BEILERS Manning Vertical Boiler，Large H．P．Lin

YOU HAVE SOMETHING

ADJUSTABLE STOCKS AND DIES，
universally acknowledged to be Tring Biser ARMSTRONG MFG．CO．，Bridgeport，Conn．

ESTAB1ISHED 1846.
The Most Popular Scientific Paper in the World
Only 83.00 a Year，Including Postage． Wienkly－52 Numb

This widely circulated and splendidy illustrated paper is published weekly．Every number contains six－ paper is pubished weetil．Eery namber contane number of
teen pages of useful information and a large nismer original engravings of new inventions and discoveries，
representing Engineering Works， New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity，Telegraphy，Photography，Archi－ tecture，Agriculture，Horticulture，Natural History， etc．Complete list of patents each week． Terms of Enbscription．－One copy of the Sciein－ postage prepaid，to any subscriber in the United States， Canada，or Mexico，on receipt of three dollars by the publishers；six months， 81.50 ；three months， 81.00. Clubs．－Special rates for several names，and to Post The safest way to remit is D Express Money Order．Money cartaluly placed fnside of envelopes，seourely sealed，and correctly addreesed，
seldom goes astray，but is at the sender＇s risk．Address sellom goes astray，but is at the sender＇s risk．Add ress
all letters and make all orders．drafts，etc．，payable to MUNN \＆CO．， 361 Broadway，New York．

This is a separate and distinct publication from Thi
SCIENTIFIC AMEMICAN，but is uniform therewith in size SCIENTIFIC AMERICAN，but is uniform therewith in size gravings，many of which are taken from foreign paper and accompanied with translated descriptions．The ScIENTIFIC AMERICAN SUPPLEMENT is published week－ ly，and includes a very wide range of contents．It pro
sents the most recent papers by eminent writers in all the principal departments of Science and the Dseful Arts，embracing Biology，Geology，Mineralogy．Natural History，Geography，Archæology，Astronomy Chemis－
try，Electricity，Light Heat Mechanical Engineering St，Emecricity，Light，Heat，Mechanical Engineexing
Steam and Railway Engineering，Mining，Stip Builiontisg Marine Engineering，Photography，Technology，Mann－ facturing Industries，Sanitary Engineering，Agriculture，
Horticulture，Domestic Economy，Blography，Medicine Horticulture，Domestic Economy，Biography，Medicine，
etc．A vast amount of fresh and valuable information obtainable in no other publication．
The most important Engineering Works，Mechanisms and Manufactures at home and abroad are illustrated Price for the SUPPIEMLEMENT
Canada， 85.00 a year；orone copy of the ScIENTIFIC AM－ ERICAN and one copy of the SUPPLEMENT，both mailed for one year for 87.00 ．Single copies， 10 cents．Address and
remit by postal order，express money order，or check， MUNN \＆CO．， 361 Broadway，New ， 361 Broadway，New York，
Publishers Scientific Amprions．

Bfuilding Cerdition．

The scientific american Architects＇and BULLDERs＇EDITION is issued monthly． 82.50 a year to about two hundred ordinary book pages；forming large and splendid Magazine of Architecture，rithly adorned with elegant plates in colors，and with other fin engravings；illustrating the most interesting example A speciel feature is the presentation in eech number of a variety of the latest and best plans for private reai dences，city and country，including those of very mod erate cost as well as the more expensive．Drawings in
perspective and in color are given，together with fon perspective and in color are given，together with fo
Plans，Specifications，Sheets of Details，Estimates，etc． The elegance and cheapness of this magnificent wort bave won for it the Largest Circulation of any deslers 8250 year Remit to

361 Broadway，Ne

GEAR AND RACK CUTTING．

SYLPH CYCLES RUN EASY

PRINTINTG INEE

