
testing the pneumatic disappearing gun carriage at sandy hook.
capable of doing the work in drill practice is also proFided. The compressed air is supplied to the cylinde from the receiver, when the gan is in lowered position at a pressure of 1,100 pounds to the square inch, and in raising the gan the pressure in the cylinder and re ceiver is reduced to $\$ 285$ pounds to the inch. As the gun falls back in the recoil the air in the receiver is again compressed, the air then acting as a cushion to take up the force of the recoil, while the air pres sure. in the roceiver is so well kept up in this way a not to need renewing for considerable periods at a time. A by-pass valve operated by a handwhee admits the air to the anderside of the piston when the gan is to be raised, and side buffers assist in support ing the gan when it is down.
To train and elevate or depress the gan, a small re versible air engine is employed, located in a protected position under the gun, and provided with a follow-up stop motion valve controlled by a hand wheel, the compressed air being supplied from the receiver. The slide is traversed by beveled gears engaging in a rack, and worm gears connected with a cross-shaft which gears to the crank shaft of the engine. The elevation or depression of the gun is effected by a rod extending from near its breech to an adjustable connection with the rack, the rod working in line with the elevating levers after the manner of pivoted parallel rulers. The required adjustment of the rod apon the rack to give any desired elevation or depression of the gun is readily calculated, und can be easily effected.
In addition to its use in raising and lowering and training the gun, compressed air is also employed to assist in the loading. Upon a carriage beneath the breech, when the gun is in lowered position, rests the projectile, which weighs 575 pounds, but on the opening of the proper valve the carriage rises to a conven ient position for pushing the projectile into the open breech, and this work is then performed by a pneu natic rammer, shown in the illustration. In a similar nanner the powder is elevated and forced home in the rear of the projectile, the full charge being 250 pounds.
Quite a number of pnenuatic and hydraulic disappearing gun carriages of varions patterns have been built and experimented with in Europe, but all of them, so far as they have been tried, have failed to come up to the practical service standard which the officials of our ordnance departinent have sought to attain. The carriage now being tried was built by the Pneutuatic Gan Carriage and Power Company, of Washington, and after the preliminary rounds, to test the working and adjustment of the several parts, ten rounds of full service charges are to be fired in the gan, $a s$ directed by the ordnance board, and ten more rounds as rapidly as the gan can be served.

Natural and Artificial Aophalts.
A correspondent of the Railroad and Enginoering Journal takes occasion to lay stress upon the essential difference between natural asphalt and certain coal tar products. A well made paint, the body of which is true natural asphalt, can be subjected to any amount of heat not exceeding that of boiling water, and even on vertical surfaces will not run. Moreover, its covering power is great, and its toughness and adhesiveness remarkably enduring. The use in trade of the erin asphalt as applied to certain coal tar products has ed to some confusion of mind upon thesubject. While hese artificial products bear a certain resemblance in ome of their physical properties to natural asphalt, the wo commodities are chemically very dissimilar. They are $s 0$ wide apart in their natures, that it is as improper to classify them ander the same name as it would be to confuse "things volatile and involatile, or destructible and indestructible." There is no product of coal tar, short of the final residuum of coke in the still, the constituent oils of which do not gradually volailize in the sun's heat ; and coal tar products suitable for use as paints also easily become fluid when exposed to sun heat, nutil by eraporation they become so far brittle as to solidify, after which, a little further progress in the same direction causes them to perish and scale off. On the other hand, the constituent oils of datural asphalt are absolutely non-volatile at the high. est sun temperature, and the material does not oxidize ander any atmospheric conditions.

## Invent Wicoly.

The remittance of $\$ 3$ for one year's subscription to the Scientific American for the coming year will be good investment, but there is one that will pay bet ter, and that is to send $\$ 7$ and receive both the Sciestific American and Scientific American SuppleMENT during 1892. With the weekly receipt of the two papers, the subscriber will have placed before him all the scientific, engineering. and mechanical news of the the sci.

Cellolose-made of the ground fiber of cocoanatis couning into favor as buoyant inside armor for war ships. When penetrated by a shot the hole soon closes, r No. 9 will have this improvement

## Fricutifit AmericaM.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. PUBLIBHED WERKLY AT
NO. 361 BRUADWAY, NEW YORK.


TABLE OF OONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 834.
For tho Week Ending Decomber s6, 1891.


## THE NEW ETEAI FERRY BOAT BREMER

It is gratifying to note that the spirit of improvement which prevails among the builders of ocean steamers extends also to river and ferry boats. The latter are among the most important of vessels, as the ives and safety of thousands of people are dependent upon their proper construction and management.
In 1888 we printed an illustrated article describing the Bergen, of the Hoboken Ferry Co., this city, the first of the new style of double screw ferry boats. This use of a screw at each end of the boat, driven by a common shaft, proved so satisfactory that the John McCullough was built for the Erie ferries, and the Cincinnati was built by the Pennsylvania R.R. Co. The owners of the Bergen, gratified by her success, have now built two new vessels of the game general style, the Bremen, just completed, and the Hamburg, which will soon be placed in commission. There will then be five screw ferry boats on the Hudson River at New York, representing the four different kinds of engines, all of them applying the power in the same nanner as the Bergen.
The Bremen has an upper cabin deck, three large cabins, excellent speed, and is easily handled.
The main deck is divided in the usual way, a cabin on either side, with space between for vehicles and teams. All the machinery is below deck. The lower cabins are 156 ft . between entrances with a mean breadth of 14 ft . and are 12 ft .16 in . high. The wo wen's cabin is finished in natural oak, with salmon color panels ornamented with gold. The men's cabin is in antique oak, with decorations to harmonize. The seats, of mahogany thronghout the boat, number 464. A marked feature of each of the three cabins is the uninterrupted view from end to end, the graceful arve of the lines not being broken by the old-time paddle boxes. The upper cabin is an unobstructed saloon, 97 ft . long, 36 ft . wide and 10 ft . high, surroundod by a hood deck averaging seven feet in width and eight feet in height. The boat is lighted by gas, and heated by the Sturtevant system of forced circulation, renewing the air every five minutea, and the cemperature is regulated by electro-therwontats.
The hull was built by T. B. Marvel \& Co., Newburg, N. Y. The material is mild steel throaghout The dimensions are : Length of L. W. L., 217 feet; The dimensions are : Length of L. W. L., 217 feet;
length over all, 222 feet; bean L. W. L., 35 feet; beam over guards, 62 feet : dranght loaded, 11 feet; depth of hold, 17 feet ; displacement, L. W. L., 900 tons.
The frames are 21 inches apart. Epery third frame is a belt, except finose in the engine and boiler compartments, where every frame is a belt. The keel is of the plate pattern, $1 / 8$ inch thick and 24 inohes deep, gainst which the frames butt on either side. A steel rider plate $5 / 8$ inch thick and 30 iuches wide is placed on top of the keel, and floor plates extend the entire length of the vessel. There are three main thwartship bulkheads, one amidship and the others about 40 feet from either end. Between the latter extend longitudinal bulkheads on each side of the vessel, eaving a mean space between them of 23 inches. These longitudinal bulkheads are again divided by short transverse bulkheads extending from the outer sides to the skin of the boat. Forward of the collision bulkbeads, the longitudinals are extended in the form of a Howe truss, and being prolonged to the fantail beams, lend the greatest possible strength to the overhang of the vessel. The deck frame is of yellow pine $\times 8$ inches, except over the boilers, where it is of irou. The deck plank is of yellow pine $8 \times 5$ inches. On the ron deck frame oper the boiler are laid $1 / 1$ inch steel plates, canlked and riveted, upon which the yellow pine deck plank is bolted.
There are two fore and aft compound engines, each with a bigh pressure cylinder of 20 in . diameter and a ow pressure cylinder of 36 in, with a common stroke of 28 in., driving a shaft the entire length of the boat. with a propeller at each end, 8 ft .6 in . in diameter, and 11 ft . pitch.
The shaft is composed of twelve sections with forged conplings; it is 9 in . in diameter, excepting the thrast, stern and crank sections, of which the diameter is $91 / 2$ in. The cranks of each engine are placed opposite each other, and the two engines, when coupled together, have in relation to each other their cranks at $90^{\circ}$, thus insuring perfect balance.
Piston valves are used throughout. The reversing ear is worked by steam.
Two boilers of the gunboat type supply steam. Their length is 21 ft ., diameter 9 ft ., grate area 91 sq . t., developing an initial steam pressure of 125 lb . Engines and boilers are from the North River Iron Works of W. \& A. Fietcher Co., Hoboken, N. J.
There is a Blake independent air circulating and pumping engine, with compound steam cylinders, insaring vacuum whether main engine is ranning or not. The high pressure cylinder of the pump is 7 in . diameter, low pressure cylinder 14 in . diameter, and circulating double-acting cylinder 17 in . diameter, all having a common stroke of 16 in . The two single-acting ir puinps worked by a beam are $173 / 2 \mathrm{in}$. diameter and 14 in. stroke.

The Bremen made her trial trip Oct. 31. Prof. J E. Denton, of Stevens Institate, conducted the tests of engines and boilers. On this occasion she made $133 / 4$ wiles with a steam pressure of 98 lb .; the engines being linked up 7 in., which cut ofl 9 in . in the cylinders, making 1151/2 revolations per minute and developing 788 horse power. By test the engine has developer with 120 lb . stean and full link 1,448 horse power, but she will do her work with 900 horse power.
The plans were drawn by Col. E. A. Stevens and Capt. C. Woolsey, no other engineers having been employed.

## Now Edison station.

The station of the Edison Electric Illaminating Co. now being built at the corner of Pearl and Elm Streets, this city, comprises many ideas which are entirely new in this field. Its capacity will be $30,000 \mathrm{~h}$. p., the engines being of the vertical four-crank quadruple expansion type, with an initial preesure of from 210 to 220 pounds. These engines, it is said, will be of $5,000 \mathrm{~h}$. p. each. A model $1,000 \mathrm{~h}$. p. engine of the same type is being built by the Dizon Company for the Twenty-sixth Street Edison station. This engine occupies only 92 square feet of floor space, exclusive of the overhang of the shaft.
The boilers of the new station will be of the water tube type and will probably be internally fired. This latter point, however, has not been definitely settled. The system for collecting the radiant heat and return ing it to the furnace is peculiar to this station. The doors and windows will be kept closed, and a constant supply of fresh air forced into the building at its lowest level. This air during its passage upward accumulates heat from engines, machinery and piping, and then is made to flow over the boilers and through a piping gallery and an arrangement of pipes in the chimney flue, being finally discharged into the ash pits and over the grates in the proportion of 80 and 20 per cent, respectively, at a temperatura of about 300 degrees.
The steam uains will be of copper and will be run in rows, no single pipe being larger than 8 inches in diameter. Each pipe will be wound with steel wire for its eutire length and corrugated into the flanges, no brazed joints being used.
This system, which we have only briefly touched upon, is the result of the deep study and extended observation of Mr. John Van Vleck, chief electrician of the Edison Electric Illuminating Co., of New York, who promises to reduce the consumption of coal to one pound por h. p. per hour. This, if accomplished, will result in a saving for this one station of the interest on nearly a million dollars. We are indebted to Mr. Van Vleck for these very interesting details.-Elec. Enngineer.

## Luminous Paints in all Colorn.

A German contemporary gives the following series of receipts for these paints, which may prove useful. All the above paints can be used in the manufacture of colored papers, etc., if the varnish is altogether omitted, and the dry mirtures are ground to a paste with water. The luminous paints can also be used as wax colors for painting on glass and similar objects, by adding, instead of the varnish, ten per cent more of
Japanese wax and one-fourth the quantity of the latJapanese wax and one-fourth the quantity of the lat-
ter of olive oil. The wax colors prepared in this way ter of olive oil. The wax colors prepared in this way
may also be used for painting upon porcelain, and are then carefully burned withont aicess of air. Paintings of this kind can also be treated with water glass. For orange luminous paint, 46 parts varnish are mixed with 17.5 parts prepared barinm sulphate, 1 part prepared Indian yellow, 1.5 parts prepared madder lake, and 88 parts luminous calcinm sulphide. For yellow luminons paint, 48 parts varnish are mixed with 10 parts barium sulphate, 8 parts bariun chromate, and 84 parts luminons calcium sulphide. For green laminous paint, 48 parts varnish are inixed with 10 parts prepaint, 48 parts varnish are mixed with 10 parts pre-
pared barium sulphate, 8 parts barium chromium oxide green, and 84 parts luwinous calcinm sulphide. oxide green, and 84 parts luminous calcinm sulphide.
A blue luminous paint is prepared from 48 parts varA blue luminous paint is prepared from 48 parts varnish, 102 parts prepared barium sulphate, 6.4 parts
ultramarine blue, 5.4 parts cobalt blue, and 46 parts luminous calciumsulphide. A violet luminons paint is made from 42 parts varnish, 10.2 parts prepared bariun sulphate, 28 parts ultramarine violet, 9 parts cobaltous arsenais, and 86 parts luminons calcium sulphide. For gray laminous paint, 45 parts of the varuish are mized with 6 parts prepared barium sulphate, 6 parts prepared calcium carbonate, 0.5 part ultramarine blue, 6.5 parta gray zinc sulphide. A yellowish brown luminous paint is obtained from 48 parts varnish, 10 parts precipitated barium sulphate, 8 parts anripigment, and 84 parts luminous calcium sulphide.
Luminons 'colors for artists' are prepared by using pure East India poppy oil in the same quantity instead of the varnish. and taking particular pains to grind the materials as fine as possible. For luminous oil color painte, equal quantities of pure linseed oil are used in place of the varnish. The linseed oil murt be coldpressed and thickened by heat.-Building World.

## Towers and Rontaurants at the Columblan Expooltion.

Permission has been granted to erect five observation towers on the gronnds. So says the $A$ merican $\Delta$ rchitect. They will be 250 feet high, and will have elevators running to the different buildings. At the base the space inclosed will be over 100 feet square, and the plan is to use this for a restaurant. The company has decided to erect one at the head of Sixtypany has decided to erect one at the head of street, which will be completed early next year. A pansage for termporary use will connect this with the A passage for ternporary use will connect this with the
region beyond the fair grounds, so those desiring to watch operations before the opening of the fair will be ble to do so.
The Columbian Tower Company, it is said, has also nearly completed arrangements to build a tripod tower near Fifty-seventh Street and Stoney Island Avenue. It will cost, so report goes, 8650,000 . The first landing will be 500 feet from the ground, with double pavilions, one 20 feet above the other, each suitable for a cafc. Six electric elevators will run from the ground to the first landing. The second landing will be 800 feet above the ground, the third 1,200 feet, and the fourth 1,400 fent. The top landing will have two sky parlors, one 10 feet above the other. Three electric elevators will run between the first and top landings. The floor spaces of the sky parlors will be about 800 square feet
each. The wigwam at the base, 800 and more feet on each side, is to be fitted up with cafee and booths after the different styles and customs of foreign countries. But when all this much has been said, we may add that we have become a little skeptical on the tower subject, as well as on the subject of Oriental streets, scenes, bazars, etc.
One interesting feature of the fair will be its restau rants, and the plans for them have just been com pleted. The feeding of the vast crowd that will assemble on the grounds is no small part in the whole colossal undertaking. There will be 115 dining rooms, 27 restaurants, 17 complete hotel kitchens, and 1,000 cooks and scullions. It has been estimated that if the dining rooms were thrown into one great hall it would cover 5 acres and 6,500 people can sit down at the same time. The restaurants will, of oourse, be placed in the different buildings. So, wherever one happens to be at meal times, a place will not be far off for refreshing the inner man. There will be 16 restaurants on the main floor of the Manufactures Building, located under the galleries and just within the loggias; on the east and west sides of the building. Entrance to the restaurants will be made from the inside as well as from without, and in pleasant weather lunch will be served in the corridors. These dining rooms are cach $100 \times 82$ feet. They are supplied by 8 kitchens on the main lloor, with store room and dining room for servants in the basement. In the galleries are to be 76 private dining rooms, connected with the kitchens and restau rants by dumb waiters.
In the Mines Building there will be one restaurant, $40 \times 162$ feet, and $f$ ive dining rooms $40 \times 20$. The restaurants in the Electricity Building will, so far as situation is concerned, be the most attractive on the grounds. They will occupy the big bays at the north end of the building, and will overlook the lagoon and the island.
Machinery Hall wlll have four restaurants, with a seating capacity for nearly 500 guests, and private dining rooms seating over 800.
The Horticultural Building will have two restan rants, one at each end of the parilion. These rooms are 100 feet square, and will seat 1,000 people.
At the restaurant in the Fishery Building, which will seat 200 people, nothing but fish and oysters can
be obtained. Equally in keeping with the Transportation Building will be a typical American railway lunch counter, where 200 hungry mortals can be satisfied at once. The cow will do her atmost to feed the hungry in the Dairy Building, the lunch there being restricted chiefly to her products.

## Remarkable Fire Eseape Trial.

A Chicago correspondent of the American Architect writes as follows : The copestone of the great Masonic
Temple here in our city has been laid. Just a year has elapsed in the construction of the twenty stories which compose the building. The ceremony, without doubt, was interesting to the brotherhood of white-plamed knights, but to the world at large a much more inter later in the ment was tried by the inventor of a pocket fire escape. The stairs in the building are not yet completed, and it was a tremendons operation : the climb to the top story enabled the spectators to fully realize the height from which the test was to be made. The machine which played the principal part in the experiment is a simple device. It consists of a metallic tape one-quar-
ter of an inch wide and a thirty-second of an inch ter of an inch wide and a thirty-second of an inch web belt that passes around the waist. The reel is provided with a brake whereby the person using it can control the speed of his descent. There is also an
automatic brake to keep a required tension on the
tape and thus prevent a sudden drop. The end of the tape is provided with a thamb screw which can be fastened to the window sill or any object in the room. The machine in appearance is like a fisherman's reel and is about twice the size of a spool of thread. The experiment, was entirely successful, but, to say the least, decidedly ghastly at the commencement, when, after having placed the thamb screw and adjusted the webbing belt, the inventor stepped off apparently into space from the twentieth story. He at first descended slowly, then faster and faster till it seemed as if he must have lost control over the little machine, the slender tape of which could scarcely be seen, and at any tinne looked no larger than an ordinary cord. At the tenth story the man stopped suddenly, gave the crowd beneath time to compose itself, and then made another ran to the seventh story, from which he descended, ranning and stopping by turns till he reached the scaffolding, where he took three men on to the line with him and dropped to the ground with them. If the invention is what it appears to be, it is a very ngenious one, and one which will be of great use to mankind.

## Electro-plating with Aluminum.

The essential features of a new system of electro-platng with aluminum are as follows
A solution of ammonia alum in warm water is prepared, containing 20 per cent of alum. To this is added a solution containing about the same quantity of pearl ash and a little aminonium carbonate. The mixture results in efferveecence, and in the deposition of a pro cipitate. The latter is filtered ofl and well washed with water.
A second solution of ammonia alum, containing 16 per cent of alnm and 8 per cent of pure potassium cyanide, is now prepared warm and poured over the precipitato previously obtained, the mixture being then boiled for 80 minutes in a closed iron veesel, jacketed o insure uniformity of heating.
The proportions suitable in the above solutions are as follows:

| FRtrst Alum Solution. |  |
| :---: | :---: |
| Ammonla alam. | 2 kilogrammen. |
| Warm water... | 10 |
| Pearlash Solution. |  |
| Pearlach. | 2 kdiogrammea |
| Warm water | 10 |
| Ammoniam carbonate | 10 grammea. |
| Seco |  |
| Ammonia alam. | 4 kilogrammee |
| Warm water. | 85 |
| Potacosum cyanide |  |

At this stage about 20 kilogrammes of water are addod, and about 2 kilogrammes wore of potassium cya nide, and the whole is kept on the boil for about a quarter of an hoar.
The liquid is then filtered from the precipitate, and now ready for use in the electrolytic bath.
The anodes are perforated or slotted plates of aluminum, arranged so that that they can be conveniently raised or lowered. The cathodes receive the deposit. The anodes and the cathodes are connected respeotively to the terminals of a battery or of a dynamo machine, and the current is thus transmitted through the bath, which is kept throughout the operation at a tempersture of about $80^{\circ}$ to $150^{\circ}$ Fah.
By attaching to the alnminum anode pieces of other metals, e. g., gold, silver, nickel, copper, etc., the tint of the deposited metal can be somewhat varied. When the deposit presents a gray tint, it is brightened by dipping the plated article in a solution of caustic soda, which has aleo the effect of impeding oxidation. - Electvical Reviev.

## Artincial stono.

Ten parts of silicic acid, powdered and freed from impurities, are mlzed with 90 parts of water and 100 of quicklime, all by weight. One hundred parts of the product are mized with 100 parts of sand and 5 parts of magnesia or fluorspar, and the mase moulded as desired. The articlee are allowed to dry for 12 to 24 hours, and subjected to steam pressure under 10 atmo spheres pressure for 48 to 72 hours, after which they are treated with boiling saturated calcium chloride solution at a pressure of 10 atmospheres for 6 to 12 hours. They may then be dried by air or the circulation of steam. Marble, magnesia, magnesium limestone, eto., may be substituted for the sand. The stones thus ormed are said to resernble marble, sandstone, granite. etc., closely, to be fireproof, and to resist the action of the weather as well as natural stones.-C. George, Berbin. Germany.

A succeation to Employors and Fachora.
What better Christmas present or New Year's gift can an employer give a faithful superintendent, foreman, or workinan, or a father his son, than a copy of
the "Scientific American Cyclopedia of Receipts and Queries," just published by Munn \& Co.? Certainly oothing could be more useful, or likely to be better appreciated than a copy of this book. It may be had at any book store or will be sent from this ofice by mail on receipt of price, $\$ 5$.

A CONVENIRET HOIBTIFG APPARATUS
The improvement shown in the pisture is designed to displace the usual endless chain employed for hoist ing heavy articles into a building, placing ice in a ing heavy articies into a bullding. placing ice in a
storage house, etc. It has been patented by Mr.


Sannuel Kaye, Yazoo City, Miss. The frame may be of metal or wood, its sides suitably connected by tie rods, and the windlass has a hand crank at one end and a ratchet wheel engaged by a pawl at the other end, the hoisting rope attached to the windlass pass ing over a pulley or sheave journaled in the forward part of the frame. Swiveled in a bail at the top is a hook, for conveniently securing the hoist to any suitable elevated support, such as a hanging link at the top of a window frame or door. When the apparatus is out of use the handles hang down, but when the boisting rope is attached to an article to be raised, the handles swing up to a convenient position to be grasped and held by the operator as he turns the crank handle. The swiveled hook permits the com plete revolution of the frame, and when the weights of the loads to be lifted make it desirable the point o connection of the bail with the frame unay be changed, there being a series of perforations in the top portion of the frame to receive the pivot of the bail.

## AN ICE CACHINE IN WHICH A CONTINUOUS CYCLE

 OF WORE IS EFFECTRD.The illustration repreeents an ice machinc designed to be run with comparatively small power, without leakage of gas. It has been patented by Messrs. Frank leakage of gas. It has been patented by Messrs. Frank
L. Fonda, Robert C. Roach, and Walter H. UnderL. Fonda, Robert C. Roach, and Walter H. Under-
wood, of Hutchinson, Kausas. The operating shaft is wood, of Hutchinson, Kausas. The operating shaft is
jourualed in stuffing boxes in the ends of a cylinder within which is secured a spider, shown in the small view, there being a fixed wing on the shaft within the cylinder, and the shaft being connected by crink arins and links with the main driving shaft, wheroby

an improved ice hachine.
an oscillating movement is given to the cylinder shaft and its wing, to compress gas within the cylinder in the space above the spider. The several arms of the spider extend from one end of the cylinder to the other and form longitudinal chambers, in the top one of which the wing oscillates, moving close to the top sur faces of the spider arms on each side, to fully expel all bers are conne the chamber. The in the web of the
spider to form a single suction chamber, while the chambers immediately above, one on each side, ar discharge chambers for the compressed fluid, the suc tion chambers being connected with the compression chamber by suction valres, and the discharge chambers being connected with it by discharge valves. To keep the compression chamber cool it is surmounted by an open tank supplied with water from a suitable source and having an overflow pipe to carry off the surplus. Into one of the bottom chanbers leads a fluid inlet pipe, with a valve to regulate the amount of flaid sucked in, and from the diacharge chambers at the top two pipes lead upward through the water in the reservoir to a transverse valved pipe, from which extends upward the pipe A, discharging into an oil trap $B$, in which is a horizontal strainer or sieve, the lower compartment receiving the oil, and having a draw-off compartment receiving the oil, and having a draw-of
cock. From the upper compartment a pipe extends to cock. From the upper compartment a pipe extends to
the coil C, forming a condenser, in connection with a the coil C, forming a condenser, in connection with a
spraying tank $D$ above. The other end of the coil conspraying tank $D$ above. The other end of the coil con-
nects with a filter $E$, in which a diagonally arranged nects with a filter $E$, in which a diagonally arranged
strainer filled with filtering material is designed to purify the fluid or freezing mixture, the pipe from the bottom of the filter leading to a brine tank, $F$, in which the brine is cooled in the usual manner. The pipe $G$ leads from the brine tank to the suction pipe, whereby the used gas is drawn back into the cylinder to be again compressed in the same manner as before, the operation being continuous and the flluid being used over and over again. The construction of the entire wachine is designed to be very durable and simple. Further particulars in regard to it may be obtained by addressing R. C. Roach, Secretary, No. 16 First dvenue, West, Hutchinson, Kansas.

## Le Danck

Under the name of "Le Dansk," there is being introduced into England, so says Industries, by M. Auguste Pellerin, of Paris, a butter substitute which appears to possess the merit of being wholesome as well as economical. Its manufacture has just been begun at arge works which have been erected at Southampton, and which were recently opened. "Le Dansk" is alrcady known in the trade, having hitherto been produced at M. Pellerin's factory in Paris. Its basis is the fat obtained from freshly slaughtered cattle, which is first converted into oleomargarine, and afterward treated and made into "Le Dansk." The process consists in first reducing the fat to small pieces of uniform size in special machines, and then melting it at a temperature of $50^{\circ} \mathrm{C}$. It is then transferred in a liquefied condition to water-jacketed tanks, in which it is kept for about two hours and a half at the same temperature. After this it is drawn off into shallow vesels, where it remains for thirty-six hours at a temperature of $82^{\circ} \mathrm{C}$. , daring which time it assumes a rystalline condition. The product now consists of leo and stearine, and these are separated by means of hydraulic presses, the oleo being pressed out, and the tearine remaining in the press cloths. The oleo is then placed in churns with certain proportions of new wilk and oil and some pure butter, and the ingredients are charned for fifty minutes. The contents of the charns are then rewoved and cooled in iced water, and the margariue is afterward placed in mixing machines. Here it is salted and thoroughly incorporated, and afterward packed in boxes and baskets for the trade. The cooling apparatus and the general machinery are driven by a horizontal compound engine of 80 h . p., which also drives a dynamo, the work being lighted by electricity. The factory is well laid out, and every precaution appears to have been taken to insure the absolute wholesomeness of the product scrupulous cleanliness being everywhere observable.

## AN AUTOMATIC WINDYML REGULATOR.

The regulator shown in position in the accompanying illustration is intended to be attached to any windmill used for pumping purposes, to regulate the supply of water in the tank, automatically throwing the wheel out of the wind when the water reaches a certain height, and throwing it into the wind again when the water has been lowered a few inches. The improvement has been patented by Mr. E. B. Wilson, a farmer liviug near Central City, Neb., and has been for some time successfully used by him on his own farm. The wheel shaft has a crank pulley operating the pump rod in the usual way, and a cable securad to the vane runs downward to a pulley on a shaft inounted in crossburs of the main frame. On this shaft is loosely monnted a ratchet wheel having an elongated hub with teeth at its outer edge, the wheel being held from moving longitudinally by a pin through the shaft entering opposite grooves in the hub, and being turned orward by a pawl pivoted to an arn, one end of
which is pivoted on the shaft while the opposite end is secured to the pumping rod. On this arm is pivoted a bent rod having an eye at one end encircling the cable from the vane, the other end of the rod extending beneath the pawl. When the mill is thrown out gear the cable moves downward, and a stop upo it strikes the eye and tilts the rod, raising the pawl sol cit
that it will not engage the ratchet wheel, and a sudden gust of wind starting the mill will not be likely to break any of the mechanism. A sleeve sliding on and turning with the shaft has teeth on its inner end to ongage the teeth of the hub, the sleeve and the hub


WILSON's WINDIMILL REGULATOR.
forming a clutch operated by a lever, the free end of which is connected by a wire with one arm of what is virtually a bell crank of novel construction, to permit a slight independent movement of its two arms, the other arm being connected by a wire with a float in the tank. The free end of the lever which operates the clutch is also connected with one arm of a bell crank whose other arm is connected with a de pending wire terminating in a handle, whereby the regulator may bo moved by hand if desired at any time. With the wheel in the wind and pump rod moving normally, the ratchet wheel is constantly moved, but without engaging the sleeve; when the float rises sufficiently, the bell crank is operated and e spring is released by which the sleeve is thrown into engagement with the bub of the ratchet wheel, and the cable is wound on its pulley to swing the vane or rudder out of the wind, thus stopping the mill. With the lowering of the water in the tank, the weight of the loat again swings the bell crank to release the clutch and allow the rudder to swing back into the wind.

## IMPROVED 8A8H CORD PLIERS,

A tool which can be easily and quickly handled to withdraw a sash cord from an opening in the sash into which it is inserted, for the purpose of knotting the cord or otherwise securing it to the sash, is shown in perspective and as applied in use in the accompans ing engraving. It has been patented by Mr. Grafton H. Duvall, of Philadelphia. It consists of two mem bers pivoted one upon the other, with their curved handle sections normally forced apart by a spring, maintaining the jaws, whose inner faces are roughoned, some distance apart and parallel with each other.


DUVALL'S SASH CORD PLIERS.
Further information relative to this improvement may be obtained of Mr. Philip R. Wells, No. 4283 Frank. ford Avenue, Philadelphia. Pa.

This number closes the volume of the Scientific American. Present subscribers will oblige the pub ishers by signifying their intention of continaing the cited.

AUTOMATIC DIBTRIBUTERS OF BEVERAGES. If there is any simple and practical means of suppressing the largest number of media between the producer and consuiner, it is unquestionably the institution of those automatic fountains and popular bars that have been in operation for about a year in Paris and in some other large cities of France and foreign countries, and which we propose to describe to our readers.
In the automatic distributers of which we speak, and a specimen of which is shown in Fig. 1, it suffices to put a coin, say a five cent piece, in a slot, when a tube placed beneath the money box allows a small glass of malaga, a large glass of beer, etc., to flow. The apparatus operates with perfect regularity, and the quantity of liquid is always accurately measured, its volume varying with its nature. There are distributers of this kind that serve hot liquids (such as coffee) or iced ones. A series of different types is at present instailed at the Exposition of Labor at the Palace of Industry. Our Parisian readers will there be able to observe the regularity with which these automatic apparatus operate. Several bars provided with them are installed in different parts of Paris. We give, in Fig. 2, a representation of one that is in operation at 32 Moutmartre Street, where a great variety of at 82 montmartre Street, where a
liquors is automatically distributed.
Before describing in some detail the ingenions processes that have permitted of solving the problem from a mechanical point of view, it is not without interest to set forth the reciprocal advantages that such a combination offers to the two principal parties interested -the consumer and the producer. To the consumer, the antomatic distributer offers the advantage of immediately delivering, for a moderate sum, and without any loss of time, an accurately measured quantity of a hot or cold beverage furnished directly by the producer. The latter, selling his merchandise directly, can deliver it at a very low but remunerative price and through the aid of the mpparatus. with placards, circulars, etc., put at apparatus. with placards, circulars, etc., pust of the consumer's
advertisements.
In fact, these antomatic distributers of liquids already have, for natural enewies, all the mannfacturers whose indifferent or unwholesome products cannot undergo the decisive test of a previons tasting. We cannot dwell upon the numerous applications to which the automatic distributers of liquids may be put outside of the simple establishments of consumption. In railway afations, public gardens, etc., it will be passible to utilize these apparatus, either with the charitable object in view of furnishing the poor with wholesome and strengthening beverages (such es milk bonillon, etc) at a low price, ar with the imple wotive of making a new or with the slm le product known and appreciated. The functions of these antrmatic distributers are extremely varied, and so their form and arrangement are likewise extremely varied, according as it is a question of distributing a liquid at the surrounding temperature-hot or coldunder pressure like beer, or easily fermentable like milk, etc. We shall consider, in the first place, the simplest case, that in which it is a question of distributing a non-fermentable liquid at the surrounding temperatare and without pressure.
The type of automatic distributer that we have selected to illustrate our discription (Fig. have selected to illustrate our 1) presents externally the ap-
pearance of two superposed pearance of two superposed kegs. The upper.keg protects a glass bottle containing the supply of liquid. The lower keg conceals the entire mechanism. The total height of these two kegs is less than four feet. The mechanism is exceedingly simple and certain, for it utilizes the most constant and infallible force constant and infalible force
at our disposal-that of at our gravity
The work produced by the fall of the coin from the slot into the pan effects the starting of the mechanism and the opeting of the cock. The liquid on flowing into a reservoir makes the latter tilt, and this, at the rame time that it closes the cock and stops the mechanism, causes the advance of a counter that verifles the number of drinks fles the number of drinks
taken. The apparatus is then taken. The apparatus is
ready to operate anew.
ready to operate anew.
The money is inserted through a rectangular slot, regulatable at will, according to the price to be obtained. Coins that are too large can-


Fig. 3. - MECHANISIK OF THE DISTRIBUTER REDUCED TO ITS EBSENTIAL PARTS, THE SUPPORTS AND AXES REYOVED.
. The pan Into which the coin drops. B. Starting lever of the valve. C. Staring cam. D. Lever for controlling the eccentric. E, that
opens the valve, F. G. Outlet of the liquid. H. Tilting reser voir. L. Piece bearing agninst the lever that regulates the diecharge M. Cami mounted upon the lever $N$, and oocillating around $\mathbf{O}$. $\mathbf{P}$
Welght for regulating the volume of liquid difecharged. Weight Yor regulating the volame of iquid diecharged. $Q$. Lever tha
raises the lever $D$, which controls the eccentric $E$, for arrestiug the fow of the liquid.


Fig. 1.-AUTOMATIC DIBTRIBUTER OF MALAGA WINE.


Fig. 8.-GEJERAL VIEW OF A BAR WITE AUTOIATIC DIBTRIBUTERE
not pass through it, and those that are too small are thrown outside without causing the apparatus to operate, and thas notify the expectant consumer of his error or of his dishonesty. Coins of the proper size fall into a pan, A (Fig. 8), which tilte and starts the apparatus.
After the tilting, the coin falls into a lead-sealed box whence it is impossible to take it without ireaking the seals. The balanced lever supporting the pan, $A$, frees, during its inotion, through the aid of the cam, $C$, of the lever, $D$, and of the eccentric, $E$, the valve, F , that retains the liquid in the bottle. At this moment the liquid flows with a velocity that may be regulated once for all at the time of setting up the apparatus. The valve having been raised, the liquid begins to flow, and through the pipe, $\mathbb{C}$, enters a small reservoir, forming a balance, whose fall is regulated by a counterpoise, $P$, wounted by a screw upon a lever arm, O P. Upon moving this connterpoise more or less from the axis, we modify at will the volume of the liquid delivered before the tilting that effects the stoppage of the apparatus and the closing of the cock that holds back the liquid. The tilting of the reservoir, H . occurs in two periods. In the first period, as soon as a small quantity of liquid has fallen into H , a motion takes place that causes the piece, $L$, to bear against the cam oscillating around the point, $N$, and mounted upon the lever, NOP. The second tilting takes place only when the increasing weight of the liquid in the reservoir, $H$, is great enough to lift the counterpoise, P. This tilting is regulated with great - precision by the shifting of the counterpoise, $P$. The reservoir, $H$, then comes into the position shown by the dotted lines, the lever, $Q$, lifts the lever, $D$, turns the eccentric, $E$, and closes the valve, $F$, and this arrests the flow of the liquid. As soon as the reservoir is empty it rises and sets the measuring lever, M NO P, anew by turning back the cam, $M$, around the point N , in order to allow of the passage of the curved piece, $L$. As the lever, $D$, during the second tilting motion, has set the cam, C, every thing is ready for a new operation as soon as another coin, deposited by a customer, falls upon the pan, $A$.
This same apparatus is capable of serving for the discharge of quantities of liquids vary ing between two ounces (spirituous) and ten ounces (coffee). It is possible, moreover, through a modification of the dimensions of the reservoir and connterpoise, to discharge any volume whatever. The liquid falls into a porcelain-lined cast iron veesel terminating in a small bent tube beneath which the glass that is to receive it has been placed. It will be seen that, ander such circumstances, the apparatus is always ready to serve a drink as long as anything remains in the bottle. The readings of the counter of drinks dispensed, moreover, are very useful for making known to the attendant, without opening the appa ratus, whether or not the bottle needs to be refilled. It suffices to note the figure marked by the counter at the time of the last filliug, the capacity of the bottle and the volume occupied by each drink. A very simple calculation then permits of determining what the connter will mark when the bottle is empty, and will render it possible to take the precau tion to fill it anew before its exhanstion.
Such are the principal arrangements of the automatic distributer of liquids at the surrounding temperature. When the liquid is to be drawn hot or cold, it previously traverses a worm placed in a hot water bath or in a vessel filled with chopped ice. The simple passage ! through the spira suffices to communicate to it the proper temperature, which latter is regulated by a cock placed upon the bottle and that allows the liquid to traverse the spiral with varying rapidity. Modifications upon which it does not appear necessary to dwell permit of distributing liquids under pressure (such as beer and gaseons beverager), with the same facility.-La Nature

## Banana Flour.

We have received from Messrs. W. Keidel \& Co., Durban, South Arrica, a spe cimen of flour made from the banana fruit, which appear to be a useful article. The mode of preparation is not stated.
 IIDDESET.
By the generous action of one of Philadelphia's noble itizens a magniticent institution for industral learuing has been established in that city; and on the 17th inst. the beautiful structure was the scene of dedicatory exercises of a highly interesting nature.
The institute was built and endowed by Anthony J. Drezel, head of the great banking firm of Drezel \& Co., and its scope and objects as outlined by him "are the extension and improvement of industrial education as means of opening better and wider avenues of employment to young men and women."
The building was erected at a cost of $\$ 600,000$, and Mr. Drexel has endowed it with a fund of $\$ 1,000,000$. Mr. Chanpeey M. Depew, of New York, made the dedicatory address. He was followed by Wayne MacVeagh, who presented, on behalf of Mr. Drezel, the doeds of trust conveying the building and endownent funds. Dr. James MoAllister, president of the institute, responded.
The institute is located at Thirty-second and Ohestnut Streeta, West Philadelphia. The oost of the building and grounds was about $\$ 800,000$. The bnilding is In the style of the elasic Renaiseance, constructed of buff brick with terra cotta ornanentation, the base being of rook-faced granito. A riohly decor high, forms in Chestnut Street, 20 . This admits to a portico of colored marblen and paneled oak celling, which in turn opens into a spacious hall, the ceiling of which is supported by pillars of red Georgian marble. Beyond is a creat central conrt, 65 feet square and the entire height the building and covered with a cailing the center $f$ which is of eined miace A donblemarblestairvey Which is of stalned alase. A double marble stairway loads to the upper floors and descends to the andiorinm and the workshops in the bawement. Broad galleries axtend around the court on the second and third floors. These are supported and inclosed by arcades. From these galleries entrance is afforded to the classrooms, laboratories, and studios, all of which are lighted from without. The portico, entrance hall, and central court are wainscoted in marble; the arcades are faced with enameled bricks, and the dividing cornices are of terra cotta. The woodwork throughout the building is of polished oak.
The offices, library and reading room are on the first floor. There is a lecture room, with a seating capacity or 250 students ; the auditorinm is capable of seating 1,500 persons. A grand organ ocoupies the space back of the stage at the eastern end. The seats in the auditoriun consist of rowe of upholetered.arm chairs. The classrooms are commodious, averaging from 48 by 84 to 56 by 44 feet. There are three physical laboratories on the second floor, the chenical laboratory being on the third floor, and the gymnasium on the fourth floor front. Theee connect with bath and dreasing rooms. The photographic studios and laboratory are in the rear on the fourth floor. Cloakrooms and lavatories, finished in marble and oak, are placed in all four storiee of the building. The trustees' room is on the second loor. The shops for mechanical work are in the basement, as are also the steam and electric plants The object of the institute is the extension and improvement of industrial education as a means of opening better and wider avenues of employment to young men and vomen. The plan is comprehensive, the ain being to provide liberal means of culture or the masses by means of lectures, evening classes, library and museum. It is expected, however, that modifications will be made as the growth of the several departments and the experience gained in conducting them way require.
The work of the institute will be arranged under the following general divisions: 1 , Art Department ; 2, Scientific Department; 8, Department of Mechanic Arts ; 4, Depart ment of Domestic Economy ; 5, Technical Department ; 6, Business Department ; 7 Department of Physical Traiuing; 8, Nor mal Department for the Training of Teachers ; 9, Department of Lectures and Evening Olasses; 10, Library and Reading Room; 11, Museum.
Independent of the regular departmenta, students will have the option of taking such courses as they may elect and can advantageously pursue. Other departments will be added as the need or demand for them becomes apparent. A department of choral music will probably be instituted at an early day. A system of free scholarships will be established for the regular and special courses.
In order to guard against the abuse of the privileges of the institute, fees will be required, but the liberal endowment of $\$ 1.000,000$ is designed to make the charges moderate, and all moneys received will be applied to the maintenance of the work of the institute. Deposits will be required to guard against loss through breakage in the laboratories. Students will be expeoted to supply text books, and those in the milli nery and dressmaking clasess will provide part of
the materials ased, but all tools and material stitute.

## THE NEW TUMREL UNDER THE THAYES

The London County Council have at last signed contract for the construction of the mach-debated tun nel at Blackwall, and should there be no hitch, we way anticipate in three years the completion of a work which will be of incalculable value to that busy and populous portion of the metropolis which lies east of London Bridge.


When the Metropolitan Board of Works received its quietus, the County Council began de ncovo to consider the best means of communication across the river. They consulted Mr. Wolfe Barry, who recommended a bridge; but, after a thorough examination of all the pros and cons, they decided that a tunnel, as originally approved of by the Metropolitan Board of Works, would beat meet the case if it were carried out in a modiffed form, and they decided to construct a tunnel of 27 feet in diameter, which, in consequence of the advance in knowledge that had been obtained in dealing with works of this kind for the last three years, was now con-
sidered a feasible though strikingly bold conception. sidered a feasible though strikingly bold conception. Mr. Binnie (the chief engineer to the County Council) has prepared the plans and specifcations of the work, as now to be executed, in consultation with Sir Benjamin Baker and Mr. Greathead.
On the north side the entrance to the tunnel is in the East India Dock Road, quite in the heart of a busy and densely populated district On the sonth side it will


THE DREXRL INBTITUTE OF ART ECIENCE AND INDUBTRY.
and when we state that this exceeds by $53 / 2$ feet the largest tunnel ever attempted ofythis class, the uniquo nees of the work will be apprexiated. The tunnel ander the Hudson, which is also being built by Messrs. Pearson, has a diameter of 19 feet 6 inches, and the Sarnia tunnel under the St. Clair River, which Bir Henry Tyler opened recently, is about 20 feet 6 inchee. The work at Black wall will give a roadway of 16 feet available for two lines of vehicular traflic and a footpath on each side of 8 feet. The tunnel being an exact circle, the roadway will be raised about a fourth from the bottom, leaving a headway of 17 feet $11 / 2$ inches. The space under the roadway is to be utilized for a subway, 4 feet wide by $41 / 2$ feet high, for drainage. lighting, and other purposes. Fcr 8,688 feat the tanael will be constructed of iron, with a lining of white glazed bricks; 761 feet of "cut and cover" will be of concrete and brick, and 1,645 feet of "open cut" will be of the same material. The iron will be 2 inches thick and the brick lining 15 inches. Fourteen segments and a keypiece will inake up a ring $21 / 2$ feet wide. The work of tunneling will be carried out by shields, having novel safety faces and other special appliances, on lines suggested by Sir Benjamin Baker. This work will undoubtedly be the most difficult of the kind ever attempted, as the bore will come within 6 feet of the bad of the river, and nothing will intervene between the shield and the 45 feet of water at high tide but 6 eet of gravel. The Severn and Mersey tunnels were built in rock, and in their case the work was done on known and tried methods, but at Blackwall we have uite other conditions, and without the shield system it would be a simple impossibility to do the work. It will be necessary to use compressed air for at least two thirds of the entire length of the tunnel, and care will a consequence have to be exercised in picking the men, for while some can work with perfect inpunity ander a pressure of 80 pounds to $\mathbf{4 0}$ pounds, other would be maimed for life. Operations will begin at several points, the shafts which have to be sunk being utilized for this purpose. Three of these shafts, abont 00 feet in diameter, will remain permanently as stairways for foot passengers and the fourth for ventilation.
The Parliamentary estimate for the original scheme was $£ 1,124,000$, whereas the contract has now been let or $£ 871,000$ for a tunnel to answer practically the purposes of the three tunnels originally proposod to be built. As compared with former works the cost is ex tremely moderate. The old Thames Tunnel was built or about $£ 1.200$ per yard, while the Blackwall Tunnel will work out at abont one-third of that armountPall Mall Budget.
daptation or Photography 20 Printig in dolora The Petit Journal, of Paris, has just put ont a new weekly pablication with colored illustrations. It may be of interest to show how photography has been used n obtaining the typographic printing blocks. The at tention of the great printing establishments of the whole world has been directed to the appearance of a rotary printing machine, which, receiving the white paper in rolls, converts it into a journal printed in fonr colors, and this at a rate of 12,000 copies in an hour. This result is due to the ingenuity of the celebrated engineer Marinoni, who for the adjustment of the different monochromes has had recourse to photography. The colored picture of the artist is photo graphed by Messrs. Vallot Bros., who use for this work isochromatic preparations and colored screens, in order to obtain the rela tive values of the different tones of the original. From this negative, skillful work men print four positive prints, which are transferred to wood; the work then passes into the hands of the art engraver, Mr Meanle, who engraves on each of the block the cuts necessary to obtain in the printing all the lines which will deposit on the paper the same color. The blocks are then con aded to a worker in galvanoplaety. who noulds and deposits the copper in sufficien quantity to take the place of the wood, and orm the metallic block to be used in the printing. The metallic block is strength oned by running lead on the back, then bent according to the diameter of the cylin-
debouch on Greenwich Marshes, about a mile and a der of the machine upon which it is fixed.
quarter from Greenwich Hospital. The heavy traffic from the docks will be able to reach Greenwich. Deptford, and the popalons districts of South London by way of the tunnel, instead of making the circuit of London Bridge-a saving of at least ten miles. The gradient, of which so much has been made, will not be a serious obstacle. It is less than that of the roadway at St. Martin's Church, leading from the Grand Hotel to the corner of the National Gallery.
On each side there will be an open approach to the tunnel of about 800 yards, and the total length of the tundel proper will be 4,464 feet, of which 1,212 feet is to be under the river. The exterior diameter of the tan nel is, as we have aaid, 27 feet and the interior 24 feet,

By the aid of an ingenious contrivance of M Marinoni's invention the sheet of paper is printed in one color by passing under a first block ; immediately it presents itself under a second block, which prints the second color, in the same manner under the third and finally ander the fourth block, which limita and forms the connection by printing the text. With these saperposed colors, and by the intervals showing the white of the paper, it is possible to obtain the delicate tones of the aquarelle. This rotary machine, by using colored printing inks, has overcome a dificulty exist ing when chrouno prints are made requiring four im pressions. M. Marinoni is now preparing a inachine for printing in six colors.-Progres Photographigue.

## Correspondence.

Agriculture in CaMrornia, 1850 and 1890. Io the Editor of the Scientific American:
Probably no part of the world contains such vast agricultural resources as our Pacific Coast, and none has ever displayed greater genins than her people. Necessity during her earlier periods gave birth to her great work. In 1853, when I first visited her golden bills, agriculture was but in swaddling clothes. All of us sought her monntains of gold, and not her vast and rich agricultural valleys, then rich with guano where sea fowl had swarmed for ages, and wild cattle and other wild animals had roamed over them. The men who went there then, and only remained a short time till they "got their pile," as they called it never stopped to investigate her agricultural possibilities. A few, however, engaged in agriculture in a quite A few, however, engaged in agricultare in a quite
small way, and soon diseovered that to supply the small way, and soon discovered that to supply the
growing cities, villages, and mining camps was very growing cities, vilages, and mining camps was very
profitable, and safer really than prospecting for yellow profitable, and safer really than prospecting for yellow
metal. Potatoes soon became so abundant that hunmetal. Potatoes soon became so abundant that hun-
dreds of tons rotted in sacks or were emptied to save dreds of tons rotted in sacks or were emptied to save
them for another year's sacking. It only cost the plowing and sowing to get a good crop of whast, but the straw was so enormous, and grew so even in height, that in place of the old reaper the heading machine was substituted. Then came the attachment of the thrasher and winnower, and before I left in 1859, I saw sixteen horses to one machine going through these vast!fields, clipping off the heads, which fell into a hopper and were thrashed, winnowed and bagged and dropped along the field, a team following to pick them up. During the summer droughts, as the ground shrank in drying it became fall of cracks. Into these would falls ufficient of the grain in harvesting, so that when the rainy weather came, and the cracks partially closed up, a "volunteer" crop followed, which often was quite productive for the third year before a second cultivation was necessary. But the wheat fields then contained considerable oats, scattered
by cattle fed on wild oats, that was a spontaneous and by cattle fed on wild oats, that wa
natural product of the foot hills.
About two years ago I visited the Pacific coast again, and spent several weeks at Paraiso Springs. In Spanish Paraiso is Paradise, and in these hot springs the old Spanish monks bathed for their health. One day while there a gentleman invited three of us to take a ride with him. The day was beantiful, and behind two fiying horses we soon rode about fifteen miles, tand came to the edge of a wheat field. "This is my place," said our friend. As we rode on a mile or two I could see no end, and I asked: "How long is this wheat field, sir ${ }^{7}$ " He replied, "About nine miles, and a mile wide." "How much will it average to the acre?" "Oh, about sixty bushels," said he. I saw nothing but clear wheat, without a spear of oats, although I had seen oats in other fields which we passed on the road. "How do yon keep out the oats?" I asked. "Well," said he, "I work about four hundred horses and mules to get in my crops, and 1 am very careful never to allow them to eat whole oats, for if I do, then they drop them along as I cultivate the fields." "Where do you sell all this wheat ?" said I. "Oh, I ship it all to Europe, as I can do better with it there than here."
After changing our team and taking another fast pair, we rode over the remainder of his vast estate, which actually contained thirty square miles. In one section was his forest for wild deer, and in another an extensive field for grazing cattle and horses, where I was shown one fat cow that he told we weighed 1,890 pounds. We were soon on the way back to our "Paradise," which we reached about sundown, after one of the most interesting rides that I ever had the pleasure of enjoying. I afterward learned that this gentleman's property was valued at over $\$ 5,000,000$.
J. E. Emerson.

## The Great Dam of the Periyar, India.

 To the Editor of the Scientiflc A nerican:In the Scientific American for February 7, 1891, suw an account of this great engiueering work, now being carried on in Sonthern India. Permit me to add a few more particulars. Before entering in to the details of the work, a few remarks regarding its object are necessary.
The Madura district of the Madras Presidency is separated from the native state of Travancore by the
chain of mountains known as the Western Ghats chain of mountains known as the Western Ghats. The average rainfall of this district is about 40 inches a year. It is watered by the river Vegay, which runs dry for the greater part of the year, thus causing almost all the wet cultivation of the district to be dependent on rain-fed tanks, so that on occasions of drought famine is almost imminent, while on the other side of the watershed ridge of the Western Ghats, separating Madura from the Travancore territory, is a vast tract of uninhabited jungle, having an average rainfall of 100 inches a year and watered by a perennial river, the Periyar. This river rises in the Western
Ghata, near the boundary between the Tinnevelly dis-
trict, the most southerly one of the Madras Presidency and the Travancore State ; and its course is generally and the Travancore State ; and its course is generally northeast in the mountains, until, some sixty or seventy
miles below, it emerges from the Ghats, and take miles below, it emerges from the Ghats, and takes
almost a direct conrse to the Indian Ocean, into which almost a direct conrse to the Indian Ocean, into which coast.
Ever since the year 1801 schemes have been drawn up to utilize the superabundant rainfall on the west ern slope of the Ghats for irrigation in the Madura district ; but practical dithealties and want of experionce in the methods proposed prevented them being carried out. The present one is a considerable modification of the others, and may be described as follows The object of this work is to divert the waters of the Periyar into the Vegay, and this is effected by building dam 155 feet high across the valley of the Periyar, a dam 155 feet high across the valley of the Periyar, head of the Gudular Ghat, on the main road from Madras to Travancore. The effect of this dam would be to back up the river to an extent of eight miles of its length and up its various tributaries, thus forming an immense reservoir, about 8,000 acres in area, meandering through the hills in which the river is en bosomed.
The capacity of the reservoir, when full, will be bout 18,300 millions of cubic feet of water, of which 16,815 millions will be available for irrigation. For disposing of the flood water the lake will have two waste veirs or escapes, which will be formed on the saddles of the hills on the right and left flanks of the dam That on the right bank has solid rock at a level of about 150 feet above river bed, and will be cut down or a length of 420 feet to a level of 144 feet, or 11 feet below the crest of the dain. On the left bank, solid rock is at a level of about 100 feet above river bed, and the saddle will be built across with a masonry wall to a level of 144. The length of the wall will be 403 feet,
and a further length of 97 feet will be obtained by cutting away the rock at both ends, giving a total length of 500 feet. The two escapes will have an aggregate length of 920 feet. This is considered sufficient to discharge the greatest flood ever know
10 feet on the crests of the escapes.
Up the Muliaparyaim, one of its tributaries, which onters the Periyar at about a mile above the site of the dam, and which also has its source in the watershed ridge separating the valley of the Periyar from that of the Vegay, at a level of 113 feet above river bed at site of dam, a cutting through the watershed ridge, terined the "watershed catting," is in process of construction unning northward and having a fall of 1 in 440 . When the depth of cutting in rock reaches 30 feet, it will be replaced by a tunnel 80 square feet in area, with a fall of 1 in 75. At its lower end the tunnel communicates
with the bed of the strean Varia Vennarby a catting with the bed of the stream Varia Vennar by a cutting 160 feet long, similar to that at its south end. The otal length of the tunnel, when completed. will be , 650 feet.
The Varia Vennar empties itself into the Toorooliar, which after a length of 46 miles from the mouth of the cannel joins the Vegay. The waters of the Periyar will be then carried some 40 miles down the Vegay to a place called Perranny, situated about 20 miles west of Madura, where an ancient or low dain is built acrose he river. Above the aucient an irrigation canal take off, and id carried as close as possible aloug the foot of the Allighery and Sirumally range of hills, which form the northern boundary of the Madura district ; this canal will be about 36 miles long. Thedistribution of the water will be effected by twelve branch chanaels, which are being carried along the ridges of the
slopes of these hills, so that they may be in a commanding position to ins, so that they may be in acom, and be as little exposed to injury from cross drainage as possible. The total area irrigated by these channels will be about 80,000 acres. Already 20 miles of the main canal have been opened, and five branch channels completed.
From a professional point of view the work is inter esting, as the dam is to be built entirely of concrete, srcupt a casing of rubble masonry in front and rear Its height, as stated above, is to be 155 feet above mean
river bed, the river bed at site of dam being $2,897.36$ feet above mean sea level. The bottom width of the dau s 186 feet, top width 12 feet. It will be surmounted by a parapet 5 feet high and 4 feet thick, thus making he total height 160 feet.
The fonndation of the dam is rock (syenite), which depth of from 20 ther, and which is found at a of the hills forming the banks of the river.
The limestone for the concrete is obtained at the foot of the hills, at a distance of some 12 miles from the site of the dain. An analysis of four specimens shows it to be an eminently hydraulic lime and well suited for the ork.
It will be conveyed up the gbat to the head of the watershed cutting" by a wire tramway about 12.000 feet long, having a general rise of about 1 in 10. the power for driving the tramway being a Girard turbine
of 30 horse power, with a fall of 160 feet. From of 30 horse power, with a fall of 160 feet. From the
head of the "waternhed cutting" the limestone will
carried down the Muliaparyaim in barges, the tributary being rendered navigable by means of a lock and four dams, the limestone, at the dams, being transported from the barges in the upper reach to those in the lower reach. The stone is at present obtained from the cutting made through the hill to form the right bank eseape, and when this is exhausted it is proposed to convey the stone from the "watershed cutting," down the Muliaparyaim in the same manner as the limestone.
Excellent sand for mortar is obtained from various parts of the bed of the river. It if at present raised by means of hand dredgers, but will in future be raised by means of a eand pump, which is an ordinary 6 in . centrifugal, having a set of cutters working at the end of its suction pipe The concrete is manufactured en tirely by mechinery, the power for driving the sane tirely by inachinery, the power for driving the saine
being an inward-flow Waverley turbine'developing 150 being an inward-flow Waverley turbine, developing 150 orse power with a fall of 20 feet, and is worked by the river itself. The plant consists of six Baulus portable
stone orushers, four disintegrators for pulverizing the lime and burnt clay, the latter being added if the lime is found not sufficiently hydraulic ; two mortar wirers, and two concrete mixere. The materials are measured autowatically by means of drums, which are all placed on the same shaft and worked by gearing from the countershaft driving the mortar mixers. The porportion in which the ingredients are mixed is : 25 parts of lime, ground but not slaked, 80 parts of sand, and 100 of broken stone. If burnt clay, or "sueki," as it is termed, is added, the proportion of sueki will be the same as that of the lime. From the measuring drums the lime and sand pass into the mortar mixer and frum theuce into the concrete mixer, where the mortar meets the stone, which is measured directly into the latter. the stone, which is measured directly into the latter.
A puinp supplies the necessary amunnt of water and A pump supplies the necessary amunnt of water and
also feeds a emall service reservoir, from which water also foeds a emall service reservoir, from which water
is distributed to the various houses of the engineering staff. From the concrete mixers the stuff is discharged into trucks, which carry it to a wire tramway, driven by a belt from the main shaft of the workshop. This tramway first carries it across the river, and then along the front of the dam, the empty buckets bringing back the raw materials, which are brought by the barges to the front of the dam.
The great difficulty that presents itself at present is the disposal of the water during the construction of the dam. The method now adopted is raising the water as the dam is being built np and diverting it round the right flank of the dam, and from thence allowing it to flow down to the workshop, which is situated on the right bank of the river and in rear of the dam.
The operation of boring the tunnel is carried on, at its lower or north end, by means of machine drills, worked by compressed air, the power beiug a Girard turbine of 50 horse power, with a fall of 150 feet. The whole of the tunnel is through hard syenite, which forms these hills. At the apper or south end a shaft is sunk and the tunnel is carried downward by hand drilling. Two semicircular tunnels taking off from the east and west face of the shaft connect it with the watershed cutting. Somewhere about the center of its length another shaft is being sunk, and the tunnel will be worked from both faces, by means of machine drills driven by compressed air, the power being team.
Sowe idea of the difficulties of the work may be gathered from the fact that a river, flowing through bauks formed by hills and subject to heavy floods, causing it to rise eor has to be gradually raised and diverted daring the construction of the dam; and afso the work has to be of such a character as to be able to stand any scouring action from the river, which, during flood time, frequently rises to the extent of completely overtopping and submergiug the works; of en causing considerable annoyance and delay. To this may be added, that for three months in the year the place has to be left, owing to the malarious fever which spreads over these places during the hot, dry months of April, May, and June, endering it unhabitable except to a few hardy ones.
Periyar, Madura District, South India.
B. C. E.

## Lead-Coated zinc.

A process of coating iron with lead on zinc has been exhibited in operation at the works of Messrs. Joseph Westwood \& Co., Napier Yard, Millwall. It consists in first pickling the iron articles to be coated with lead in a weak acid bath, through which a mild current of electricity is passed. This loosens the magnetic oxide or scale and cleans the iron, which is next 'placed in a lime water bath, by which the acid is neatralized. The iron is then washed in a bath of clear water, all three iron is then washed in a bath of clear water, all three
baths having a temperature of $120^{\circ}$ Fah. The next step is that of immersing the iron goods in a liquid wetallic bath, composed of zinc and tin in equal parts. in a solution of hydrochloric acid, at a teruperature of $110^{\circ}$ Fah. The iron is subsequently passed through a bath of molten lead in the eaune way as in the ordinary galvanizing process, and this gives it the desired lead coating. The coating is said to be very strongly adherent, and to withstand very severe treatment.
A. C. HOBBS, THE LOCR EXPERT. The death, on October 6 last, at Bridgeport, Conn., of this most noted of American lock experts, recall many striking incidents of his remarkable professional career. for in the study of locks and the wechanism of opening them he made a unique profession and a world-wide reputation. He was born in Boston, October 7. 1812, his father being a carpenter and joiner from England, and his mother coming from Wales. At ten years of age he commenced bis work as a boy on a farm, which was followed by a place in a dry goods store, and that by comwencing to learn wood carving. Carriage body making came next, and then a short trip as a sailor, after which tin plate work trip as a sailor, after which tin plate work
and coach and harness trimming were tried, and coach and harness trimining were tried,
to be followed by an apprenticeship at glass cutting, an occupation he followed for about eight years. In connection with cutting glass door knobs he invented and patented a new method of fastening the knobs in the socket by which they were attached to the lock, by which he was first
brought in contact with lock makers. He afterward opened a store in New York to sell locks and fireproof safes, and made a specialty of bank locks. He got up for himself a very fine set of tools for opening vaults and sales, and made his first call vaults and sales, and made his first call
with them and one of his own locks on a with them and one of
bank at Stamford, Conn.
They had on their doors a Jones padlock, which held an iron strap over the keyhole of an Andrews bank lock which had cost the bank $\$ 150$. In addition they had a warded lock, making three locka, any one of which was considered quite secure against being opened without the proper key. Also a supposed secure lock was placed on the outside door of the bank. The bank directors decided that if the lock on the outside of the door and those on the vault could be opened in two hours without injuring the locks, they would purchase a from his assortment, opened the ontside door and the three locks on the vault in twenty-three minutes. No further argument was needed, the new lock was parchased,' and their vault made secure. This occurparchased, and their vault inade secure. This occur-
red in January, 1847. From that time until 1851 his red in January, 1847. From that time until 1851 his
whole attention and time were occupied in visiting whole attention and time were occupied in visit
banks, including nearly all in the United States.
you think you can open it 9 " "Yes," said Mr. Hobbs " and 1 leave for New York as soon as I have finished patting on this lock."
Mr. Hobbs went to New York and had thirty days in which to open the safe, within which had been placed a check for $\$ 500$. The room was cleared at 9 o'clock in the evening, and at $111 / 2 \mathrm{Mr}$. Hobbs had the position of all the tumblers marked out and a wire inserted by which the bolt could be withdrawn. Early in thi

A. C. HOBBS.
later lock wl ich was used on the safe of Brown. Shipley \& Cc., baukers, and in orde: to open it the letters of, a word were selected from a dial on the door. Mr. Hobbs called at the bank and had an interview with Mr. Brown, who locked the safe and then said that it was utterly impossible to open it without knowug the condination. While conversing with Mr. Brown, Mr. Hobbs stood with his back to the dial, and with one haud behind him unlocked the safe and pronounced the lock worthless.
Mr. Hobbs began lock making for himself in Cheapside, London, and in time the business grew enormously. In 1860 he came to New York, but retained his interest in the firm of Hobbs, Hart \& Co. Then he took charge of the Howe Sewing Machine Worke in Bridgeport, and in 1868 was placed in charge of the Union Metallic Cartridge Works of Bridgeport, of Schuyler, Hartley \& Graham of New York. A few buildings were erected. The works have grown to be the largest in the world of the kind, from 1,500 to 2,000 hands being constantly employed in filling orders from all parts of the world.
Mr. Hobbs continued to superintend the works until three years ago, when he was succeeded by his son, Alfred J. Hobbs, the present superintendent. Mr. Hobbs had been called Commodore for many years because of his active interest in yachting sports. He was owner of the yacht Quinnipiac, on which he spent a good portion of his leisure. He leaves one son, two daughters, and a widow.

## CHAUTAUQUA.

Who has not lieard of Chautauqua? That great literary center whose influence, perhaps, permeates the entire globe. Certain it is that among all degrees of literary culture, from that of the university man down to the graduate of the simplest village school, the down to the graduate of the simplest village school, the
Chautanqua "circles" claim their devotees. They have found entrance even through the dense walls of have found entrance eventiaries, and many darkened or pro no interest, now bless the name of the inaugurator of the movement, good Bishop Vincent, as, in the pages the movement, good Bishop Vincent, as, in the pages
of their histories, they study the progress of the world, and thus lose sight of their own darkened past and despairing present.


## THE DOCK AT CHAUTAUQUA.

In 1848 Mr. Hohbs was at the bank of Lancaster, Pa., putting on a lock that he had sold them. As the cashier came in the bank with bis morning paper, he said, "Mr. Hobbs, there is something for you," throw-
ing down his New York paper, in which was an advertisement from a Mr. Woodbridge, of Perth Amboy, offering $\$ 500$ to any one who would open his lock then on one of Herring's safes in the Merchants' Exchange reading room in New York. Mr. Hobbe said to the cashier, "That is my money." "What," said he, " do
ecured the $\$ 500$. In April, 1851, Mr. Hobbe went to London to examine a wonderful lock made by Brahma. There was a standing offer of 200 guineas to any one who should be able to open it without the key. A cominittee was appointed, long articles were published in the newspapers, and the trial began. It took Mr. Hobbs fifty-one hours to pick the lock, and there was! a complete overthrow of the locks in general use in England. William Brown of Liverpool was the inventor of a

Yet this great literary center, this beehive of intel lectual activity, is comprised in some fifty acres of New York soil, situated on a ten mile strip between Lakes Erie and Cbautauqua, the latter being 700 feet above the level of Lake Erie. The Assembly Grounds are three-quarters of a mile long by one-quarter broad, and inclosed by a high fence, beyond which, for ingress or egress, one mas not pass without per mission, procarableonly by presentation of a Chautan-

Taking the steamer at Mayville, on the shore of Lake Chautauqua, we cross to the summer city, landing at "The Dock," a tasteful wooden structure gleaining white across the waters; and having purohased our tickets, in delighted wonderment we pick our way over the ininiature Palestine, said to be a perfect representa tion of the Holy Land. It is laid out on a scale of two feet to a mile for horizontal distances, and 380 for Ver tical measure, with the various towns and villages re presented in plans on plaster mounds.
Leaving the main road at "Beersheba" we follow the valiey of the Jordan to the city of "Dan," threading our way among the Bible students, who with open maps in hand attentively study the plan beneath their feet. Taking a seat for a moment, perchance in the grateful shade of Mount Hermon, we plan a future eramination of the ingenious model which, in all prob ability, we never get a ohance to ezecute. owing to the continuous succession of prayer meetings, club meotings, "round table" discussions, concerts and lectures, eaeh, in its way, a literary treat, from the moment of opening our eyes in the tiny, sweet-smell ing bedrooms of the cottages, roused by the cry of the newsboys-"Chautauqua Assembly Daily Herald!"to the close of the busy day, when, with lights out and windows open to the quiet sky, we woo the fresh straw ticks and smile ourselves to sleep, soothed by the lullaby of the good old curfew.
But besides the literary and musical entertainment which are open to every visitor, the various sum mer schools of music, elocution, physical culture dress reform, photography, cooking, and Christian sciences prove very fascinating to young and old alike The superficial observer can form no conception of the valne and thoroughness of the work done in these brief summer schools. Take, for instance, that department of the School of Physical Education under the charge of Mrs. Coleman E. Bishop, whose lithe, light form and eary grace give ample testimonial to the efficacy of the Delsarte system, of which she is a leading exponent
In the daily exercises of this class the nervous sys tem is so trained and developed that an amount of lightness and grace never before dreamed of is ac quired by the delighted student, and it is claimed tha the dignity of the body gives dignity to the menta and moral nature, just as true as the lofty mind and pure heart, when not connteracted by self-conscious ness, find a natural expression in dignifled carriage The system is a revelation to those nerve-bound per sons who, with well developed muscles, keep such tension upon them when not in use that their vita Yorce is aselessly squandered. It teaches how to con serve vital energy; how to avoid wasteful nerve tension; so that the student works better, rests better and also, by the physical exercise of certain nerves, gains more brilliancy and activity of mind.
Nor are the other schools less profitable, less inter esting. The voice of the declaimer, the notes of the singer, the tones of the organ, are heard on all hands; and Professor Charles Ehrmann and his troop of ama teur photographers, armed with cameras, excite the envy of those who have not been fortunate enough to secure his instructions.-Annie Crawford in Domin ion Illustrated.

## Improved Alloye.

These are alloys for the manufacture of boring and outting tools having a hardness equal to that of tempered steel, with the further advantage of not losing their hardness when heated by friction. The follow ing alloy is saitable for the manufacture of boring tools such as drills, milling cutters, reamers, and the like:


The following alloy is suitable for the manufacture of nail-cutting blades, cutting blades for machines cutting-out tools, and the like :

| Pig iron. | 17.25 |
| :---: | :---: |
| Ferro-manganese.. | 4.50 |
| Chromium. | 20 |
| Tangsten. | $7 \cdot 50$ |
| Aluminnm. | $2 \cdot 00$ |
| Nickel. | 0.75 |
| Copper. | 1.00 |
| Bar iron (8wedısh) | 0500 |

In making these alloys the pig iron, ferro-manga uese, chromium, and tungsten are melted together it graphite crucibles ander stick charcoal and calcined borax, the tungsten and pig iron being preferably melted first. The alloy so produced is then remelted in clay crucibles together with the bar iron; and the nickel, copper, and aluminum are then added. The metal is this time covered with stick charcoal only tino, Sheffehl, and F. R. Martino, Birmingham.

THE MADIBON sqUARE GARDEN WEATHER VAIE, THE HUNTTRESS DIANA
The tower of the new Madison Square Garden, of this city, has recently been completed, and has been surmounted by the great weather vane representing the huntress Diana discharging an arrow in the direction whence the wind is coming. On account of its elevated position and high artistic character the colossal statue,for such the weather vane really is, has attract ed much attention. The general design is due to Mr. Stanford White, of this city, who was the architeet of the building and the tower, and who is the architect of the Washington arch in this oity, now approach ing completion. The statue proper is the production of the celebrated sculptor, Augustus St. Gaudens. The full sized model was supplied from the artist's studio, and the statue was reproduced in metal by W. H. Mulling, of Salem, Ohio.

The statue, whose general appearance is given very ccurately in the cut, is 18 feet in height, and, with its ron frame, armatures, and counterpoising, weighs 1,800 pounds. It is made of 28 ounce copper, struck up in drop presses. The process of manufacture was as ollows :
Using the statue as a model, a number of plaster of Paris moulds were made to cover, section by section,

pipe runs down a further cistance of 9 feet; and this is surrounded by a 10 inch pipe, which extends up a short distance through the bottom of the upper ball. The It is obver is 3 feet 4 inches in diameter.
It is obvious that as the statue turns, the 9 foot seotion of pipe wust also turn, and that the upper ball at Lached to the figure turns with it. The construction it will be seen, absolutely excludes all rain from the interior of the 10 inch pipe. The weight of the figure is sustained by two horizontal ball bearinge about 9 feet apart and within the 10 inch pipe and lower ball. Each bearing consists of two annularly grooved flanger, between which a number of $1+$ inch steel balls work within the grooves. By adjustment of the relative parts, principally as regards the location of the frame, the center of gravity in brought as nearl as possible to fall opon the axis of the 7 inch pipe. A bolt and nut at the bottom of the rotating pipe holde the figure down to its position, so that it cannot leave the ball bearings. It is found that a wind pressure o one-fourth of a pound to the square foot is sufficient to move the statue.
Below the figure is the great crescent, measuriug about 12 feet from tip to tip and 28 inches in hori zontal depth. This is built upon an angle iron frame The sides and bottom are closed with plate glass in small panes, and a series of lids close the top. Within the crescent are 66 incandescent lamps, ten of 50 candle power and the rest of 16 candle power each. In mediately above the crescent, ten reflecting lampe ar arranged to cast their rays upward upon the figure These are carried by ten arms of gas pipe.
The apex of the figure is 347 feet from the groond The highest point accessible by fixed ladders is the crescent, 323 feet from the ground.
A lightning rod connection with the rotating fig ure is thus arranged : The upper part of the 10 inch stationary tube is surrounded with a copper ring im mediately under the upper ball. From this ring six arms of copper rod extend upward, terminating in points almost in contact with the ball, which latter it will be remembered, turns with the figure. From the ring the main lightning conductor is carried down to the ground.

## Ice Cream Dlet

Dr. Herstey reports, in the $A$ merican Medical News, three cases of gastric ulcer in which recovery had fol lowed the use of a diet of ice cream. This novel method of treatment was suggested to him by the experience of a patient, a woman of thirty-five, who had for three inonths suffered from symptoms of gastric ulcer. She had hsmatemeeis and severe pain, and could retai nothing until by chance she one day took a smal quantity of ice cream. She had lost 25 lb . in weight As all ordinary methods of dieting had failed, and digested food administered by the rectum was rejected the patient at her own desire was allowed ice cream, and told to take as much of it as she could. He severe symptoms at once began to subside, and at the end of two months, during which from one to three quarts of ice cream were taken daily, she had gained 24 lb . in weight. Solid nourishment was gradually added to her diet, and she made a complete recovery Dr. Herstey had a similar experience with two othe patients, in one of whom there were symptoms of perfo ration and local peritonitis, and he is naturally inclined to think highly of the mode of treatment and to recom mend its use in similar cases. He believes that the ice cream in those cases is beneficial because of the local ansesthetic action of the cold permitting digestion to go on withont pain, while at the same time sufficien material for digestion and nourishment is supplied in the cream. But he insists that every care must be taken to insure the absolute purity and freshness of the ice cream, and for this parpose he recommend that only that which is made at home should be used in such cases.

Grand Marais Harbor, Michigan.
At Grand Marais, Mich., nine miles east of Big Sable light, thirty-five wiles east of Grand Island, and forty nine miles west of Whitefish Point, the government has made a deep water harbor, now in readinees to afford shelter to vessels in the Lake Superior trade The width between the piers is 500 feet, and there is at this time a channel into the harbor midway between the piers having a width of 175 feet with not lese than 17 feet of water in it. The fall width of 500 feet bet ween the piers will in time be dredged to a suff between the piers will in time be dredged to a sam
cient depth for Lake Superior vessels. The harbor is cient depth for Lake Superior vessels. The harbor ia
about a mile and a quarter long and 1,000 feet wide in about a mile and a
its narrowest part.

The Densmore Typewriter Company have lately added some novel features to their machine, one of which is a diagonal ribbon movement which greatly increases the printing life of the ribbon and contino ally brings fresh ink to the letters, prevents centre wear, etc. These improvements will be greatly ap wear, etc. These improvements will
preciated by all users of the machine.

Srientific Amprican.
[December 26, 1891.

## REGBTLI PATEMTLD IfVETIOMA.

## Engineoriag.

Automatic Shut-off for Eiveintes. Poter Davideon, 8L. Mary's, Ohlo. This invention relaces to atacionary engines which have no governora
for regulating the throtule valves, and provides for rigidly connecting the valve with a rod sustalined by crip support, and arranged to be tripped or dislodged br the jar of the engine in apeeding. The device it onglie when an accident occars, like the breaking of belto, etc., while it may aleo be arranged to affor facility for the proper regulation of the fow of steam

Hydrocarbon Burner. - Josep Burns, Fort Plain, N. Y. This invention is designed co aford a simple and darable burner which will permi the operator to change the intenolty of the fiame when inver required, aud direct the fanme to any desired place amaller concentric air pipe open at both ende int which extends a oliding and burning oil tube, having on ite front end a burner proper and a fancet. According a the operator tarns the oll enpply plpe be changes the pooilion of the barner, so that the game varies correapondingly, the nheet of hame extending horizontally, varied as the pipe is moved inward or outward.

## Rallway Appliancen

Car Coupling. - James H. Sweeney Frankilin. Tenn. In this device the link Hifter has a baft provided. with a woothed segment or plate engage by a pawl, a rod connected at one end with the paw drawhead, wher is is connected with a pin eapport The arrangement is sach that cars of different heighte or with atraight or bent linke can be convenient coapleal thereby, the pawl being released and the link andtes from elther eide.
Car Brake.-Heary F. Braun, Deni son, Texas. The ordinary brake beame are dispensed with by the ave of the car brake mechanism provided alyusting levera. Combined with the operating brake rode and independent shoes are ixed lever arms having aned pirotal beanng in the car rame, and independ ent lever arme connected with the brake eboes, the axed arms, and the operating rodp, the independent leven atling lever rod can be arranged to be operated by air acting lever rod can be arranged to be operated by air adapted to car bodies now in eeneral ase withou changing their constraction.

## Mechanieal Appliancos.

Brick and Tlle Cutter. - Davis Brown, Decatur, III. This is au automatic cutting ai long bars or a continuous bar of clay, to cot delle fitio suitable lengthe, the construction being euch that the cutting eurfaces are readily changod when damaged The tahle and the measuring roller belt of the attach ment are so arranged that should the column of cla cease moving, the operative parts of the attachment will
be simultancously stopped, while the driving speed it Carpenter's Gauge. - Christopher C. Harris, Miseoula, Moutana. This invention coneiste of haped gulde rod sliding with one end on the fixed head while a connecting arm eliding on the guide rod is connected with the movable head. The implement e of simple design, and convenient to mark for hinge and doors and jambe, to facilitate the hagging of door and for nee by other mechanic.

## Miscellancous.

Aerial Machine. - Stewart Cairn rose. Grafton, North Daliota. Thls air ship has keleston frame with $a$ smooth closed botlom, a shor
istance over which are held gas hage designed to aseit in lifting the machine and supply gas to engines is work propellers for directing and oteerink the machin
in the air, as well as for lighting and heatiog cars to be carried by the machine. The invention is an improve ment on a former patented invention of the same in ventor, providing a constraction designed to be light in weight but of greas strength, and ander the ready con-
rool of the operator in ascending or descending or rrol of the operator in
craveling in any direction.
Tfpewriting Machine. - Michae Hearn and Morgan Donne, London, England. The patent of this mactine presen to an ela borate exposituon in eight pages of drawings and eix pages of specinca
tions, of its various partw aud their combination and ar angement. It has independent type levers, normall held vertical by gravity, and at their endo furniobed wit long type pieces having several characters apon the face. whle a cylindrical plateu mounted io a frame is connect receive a differential depression by pistons to bring the platen into position to receive the impression of the capitals or the namerals of the type piecen. Th machine be be moved out of the way if desired in to troduce a stencil in waxed pape
Typewriting Machine.-Jefferson M Prentice, San Francieco, Cal. This improvement con
eftet in arranging a whift bur at the front of the machine parallel with the ordinary apace bar, and in the means for connectiug It with the plaren or rolker, and makee of but one hand. The keyboard is elmplifed by the re noral of two kevs, and the sabritate for them lo not cambersome uldition to or enlargement of the ma chine, extending bat one-fourth of an inch from the front and havin
apace bur.

Telegraph Kry.-Louis F. Robare, a sabue Forks, N. Y. This is a simpio loxiese key trom which the regular hading posks are omiued, the ey being formed of a beac piate, while piliare form the bearings of the key trunnions and serve as binding
posta. The conotruction obviates the necoseity of driviog stapices into the table on which the key to monnted JEWELER's T OOL.-Frank Heller, Brazil, Ind. This io a watchmaker's ruby pin setter and consitits of a handle havng a chack to hold the balancen stiff and a head with a series of grooves to receive the roller pln, with a clamping device to bold the dent to appliod. With this tool a roller jowel of any watch may be quickly and eccurately Cloth Measuring Machine.-Hubert Hobert, Lake Linden. Nich. The main rrame of thi preesed etrip monted on a croses piece of the frame provided with adjnatable guide pins, a regioter being upported on horizontal alides so that it may be ro ated by the traveling cloth. The conetraction is sim ie, and by means of the machine loone cloth may be apidly and nicely rolled into a web, or clotu may be may be sccurately mesaured.
Show Case.-Charles A. Bacon, st. John's, Mich. This case is more especially designed has a door and one or more glazed sides and inwardy projecting adjastable arms to eapport the caddies. ranged to project down within the top of the caee is lampening box having perforated sides, within whic and a wet sponge, the whacto bolag thas kept mols
Shutter Fastener. - William B. Uiming, Philadelphia, Pa. This io a simple secaring de re for the derachable connection of one folding sec ho pame window blind. It consiats eseantially of a cyi ndrical apring box, to be embedded near the center of longth of a shatter or blind, in one of two adjacent sec one, the device facilitating the manipulation of eecional folding blinds by detachably locking two or more
Fire Escapk.-Henry Schwannecke, Vew York Clty. This improvement consiats eseentially eecends the other will ascend, the balconies being protracks, and cushions being 80 will sustain no shock when the bulconies reach the round. This are eacape is designed to be placed at the ide of a building withoat detracting from its appearince, and the construction is simple, darable, and in-
Hose Coupling -Ransom Reid and Hames P. Browne, Santa Ana, Cal. An exterior annomale member of the coapling and adapted wengage a correspondingly ebaped opening in the female member booke being monnted to side in the female member and ergare the back of the bevel to draw the male
nember to its eeac. The device facilitates a ready and member to its seat. The device facil
Wherl. - Evert Takken, Donglas, vich. A realicle wheel constracted in the manner prodided by this lavenilion is desigued to be raadily adasted to take up all wear, and in bo be easily repaired in seot and sapports dished rings, one of the ringe abuting against the offeet and both havine parallel nangew with recesscs through which the spokes extend, while a ut screws on the onter threaded end of the hub against he ontermost ring, and boits fasten the inanges of the -
Fond Mill. - James D. Smith and Thomas H. Duhart, Worcester, Maes. Brend and milar articles may be raplaly and convenienily culinder with a perforated bottom, near which ithin the cylinder, are held a number of inclined snives, saws being moanted in a hopper above from
which material is delivered to the cylinder, and the and sewing Machine Spool Race Laise Lewy, New York cily. Comblied with a pook having a fixed and a hlaged arm is a diek turning be ween the arms from which extend spool-carrying pindies, a locking plate on the hinged arm engaging the disk to prevent to turning. The device to dealgoed hold and lock a number of spools in place, and pre ent congling and waste of the thread, while gaiding he thread of one of the spoois to the head of the sewing machine, the ready
Vkil Holder.-Linnie A. H. Grenelle Hampton, Iowa. The body portion of the holder, which may be of crescent shape, plain or ornamented,
conaists of two piecee detachably connected together, O which are hinged pins having knackle-like profec uons, there being springe within the body pieces en aging the projections of the pins. The device is designed to make a pretty hat or bounet ornament and Necetir Fastener.-Jaines A. Morrie tilanta Ga. Thin is a skeleton or open frame, designed or struck ay by dies from a single piece of shee metal, and having a inger projecting outward from one pper corner and a retaining tang projecting inward to gased ander the finger. The device is deaigned to af ord meane to arrange a accarf in the "four-in-band" yle in a speedy manner without a mirror.
Cover for Tables or Stands. Fred E. Waring, Saratoga Springe, N. Y. This is a lisple and convenlent cover which may be made a
dieappear through a slot in the table or stand, and io adapted to cover a phonograph or other article. The
cover is of a semi-cyllodrical shape and has it ende cut
way, while cleats are piroted at their oater ends to ith the ends of the cover.
Burglar alarm. - Carl Guelich Otawa, Kanaso. In a saitable caoing is a bell and engeging a ato to the triker haft carries a rope or cord whose outer end is conected with a wight reating on the bottom of the Cacoing, a string being aleo secared to the weight, by which it may be withdrawn from the casing. The dovice may be conveniently carried about and set up a any place desirvd, the string being stretched across he anticipated path of the burglar, whose pressare the alarm.
Dumb Waiter. - Michael Sullivan, Highwood, Conn. An improved lift for dnmb walter cobes, and similiar articles is provided by this inven lon. Within the frame is an upper transverse shapt aving an operating palley, a small fast gear, and a ble suspending the walter, while there is a lowe haft with a large and small axed gear meehing at all nes with the other axed and loose gears. The in every simple and durable.
Game Board. - Edwin L. McConaghy, Philiadelphia, Pa. This board consista of a fat table with a cushion aroond its edge and an air jet device located near its center and adapted to radially project a light ball on the table toward any one of a
series of pockets formed at diferent pointa in the top
 torface of the table, the pockets having diferen.
Nots.-Coples of any of the above patents will be Norniched by Munn \& Co., for 25 cents each. Pleabe sotd name of

SCIENTIFIC AMERICAN
buILDINa EDITION
DECEMBER NUMBER.-(NO. 74.)
table of contents
Handeome plate in colore of a cotrage erected o a cost of 8800 complete. Floor plans and per spective elevalion.
Plate in colors of a beantifal residence at Cheste Hill, Mount Vernon, N. Y., also a second view $\Delta$ comfortable cottage to cost $\$ 8,000$. Plane a comforiable
perspective.
Dealgn of an orname
adwelling at Paris.
Whan erected on Cheoter Hill, Moun Fernon, N. Y.. at a cost of $\$ 8,100$
Floor plans and perapective elevation
6. Dwelling at Monclais, N. J. Cost E, 500 complete Floor plans and perspective.
an atracive cottage at Portchester, N. Y., e Handsome residence at Bensonharst, Long IEland, erected at a cost or $\$ 7,000$ completa. Peropectit sketch of a mall cottage or lodge.
ga recently erected at Brook block. Mesars. Fehmer $\& \quad$ Page, architecte Booton, Mases. Floor plans and perspective. handsome hoase for $\$ 7,500$ erected at Montcla Floor plane and perspective.
12. Triamphal arch, Timegad, Algeria, from a drawing by Mr. Alexander Graham, F.S.A
from a drawing by Mr. Alexander Graham, S.A.
modern dwelling of attractive design erected o Grand Avenue, at Abbary Park, N. J. Coo elevation.
Queen Anne cottage recently erecied at Larch mont Manor, New York. Cost $\$ 8,700$ complete
Frank E. Wallie, architect, New York. Plan and perspective.
16. Engraving of the new Wealeyan chapel. Sunda schoo
land.
17. View of the Kentacky National Bank Building ville, Ky.
ere.-Non porone walls.-The Scisntific Aneri OAN a help to builders.-Architecte' diffculties.Roof drenchers.- -How to catch contracte. - Cy orty. - Some of the merits. - Boechin.-W Fite pipes of alder.-Iron levels with doable plamb, illustrated.-The largeat plank in the world.-A steel ribbon for hanging windows or heav
deore, illustrated. - Marston's hand an 1 foo power machinery, illnatrated.-The Fuier $\&$
Warren Co.., heatera, illustrated.-Stamped stoel frame, illastrated.
The Scientafc $\Delta$ merican $\Delta$ architects and Ballder sittion is issued monthly. su. 50 a year. Single copiea two hundred ordinary book pages ; forming, practi cally, a large and eplendid Maazinz of Abchitre TURE, richly adorned with elegant plates in colors an with ane engravinge. Illnstrating the most intereetin allied subjects.
The Fullieses, Richnese, Cheapneses, and Convenienco of this work have won for it the Laresar Cricolatio of any Arcaitectaral pabicadion in the worla. sold by newndoalern.

IUNN \& CO... PUBLOHES
Broedway, Now Tork

ఔusiness and ねersonal.
 theoments must be recelved at pubiticat ion ofthe as earty as
Thuroday mornino to appear in the followino woekis tissie.

For Salo-Now Grindstone Frames made in one cept
ng. Will furnilh cectings only if desired. W. P. Davia Rochenter, N. X.
Beme ensine, 1 to 5 H. P. Soe adv. nert iscere.
Beat 812 Portable Forse. Amer. Tool $\mathrm{Co}_{n}$ Clov., O.
Presese \& Died. Ferracate Mach. Co., Bridecton, N. J. 6 Spindle Turrot Drill Prees. A. D. Quint, Hartiford. Ce For Dle Sinking, Steel and Iron
N. Focles \& Son, $A$ uburn, $\mathrm{N} . \mathrm{T}$.

## Machinery wanted for cruahing asbeator and eeparat- ing the iber. Eeasbey \& Mattison, Ambler, Pa.

Steam Hammers, Improved Hyaraulic Jacka, ana Tube
Expandera R. Dudgeon, 2 Colambla 8lu, Now Yort.
Scrow machinea, millinp machinee, and dril prezees.
The Garvin Mach. Co., Lelght end Canel Ste., Now Yort.
Centrifugal Pumps for paper and puip mills. Irrigating
and send pumplan plants. Irvin Van Wie, Syracrise, N. Y. "Pneumatlo Cotton Plcker" will plet 30 acres dally.
Will sell share or place on royalty. C. Baldinin. Quincy.

For Salo-A vacuum, pan, a digester or converter, a
till. All copper. Apply to J. Edw. Crusal, New Orieana, Billungs' Double-ecting Ratchet Drilla, Drop Forginga,
Bronso Foreinga Bllings \& Bpencer Co. Hartiora, Conn.
scale removed and prevented in boilers; for each 50
horse, 10 conte a week. Pittsburgt (Ph.) Boiler Scale Electricity. Mustratod. Now York. 24 pagea The
leading electrical papor in the United Stateer eq 50 per rear. December number of this year free.
The best book for electricians and beetuners in aleo ridity is "Experimental Bclence," by Geo. M. Hapkins.
By mall. M; Munn \& CO., publishers, sil Broed way. N. Y.
 Comperent perens 10 Ro roaney Sh. Brookly, N. Y.
 bamay, Now Yori.
cr Send for new and completo catalogue of Botentian Nor Yort. Yree on aie by Munn \& Co., \%l Brondwa


## Hints to corrispondents      Mince. prarite ent for examination should be distinctly marked or labeled.

(3786) D. W. writes: I have constructed a indnction coil and it does not work, so I ehould like primary coil is $5 x$ inches long and compoeed of ayers of No. 20 single-covered wire wound on a core of No. 18 annealed wire and is $\%$ inch in diameter. The core
I bonnd tightly together and soldered at one end. We I bonnd tightly together and soldered at one end. Wu
that wrong : The eecondary is 5x inches long and 1 inat wrong: The eecondary is 5x inches long and
inch in diameter and is composed of 8 layers of No. 81 plag paper and each layer shellacked. I have teeted both colle singly and they work in circuit with a detector gal vanometer, showing that there are no breaks or abort ircaits, bat when I connert ap as it oaght to be it will oot work, A. Your primary wire is too the and your secondary wire is 100 coarne to secure good resulta,
Two layers of No. 16 would have been better for the orimary and twelve or fifteen layers of No. 26 wire for he .eecoudary. It would have been better to have mitted the soldering together of the wires forming the core. For such a coil yon should use two or three celle of plunging bichromate battery, or any other batters of (8787) C.
(8787) C. W. S. says: I have a nice flat bottomed row boas, in which I woald like to nee a mall,
but I do not want to put a center board or keel board in It. I have heard of asing lee boarde, but don't know ow to ase one; you will oblige me by letting me know if possible how to use a lee board. A. You can make a angle or double lee board by making a frame of 9 ound iron as long as will reach acrose the boat, with he ends torned at right anglees and fiattened, with screw
boles to attach the lee boards, which should be made of thin oak eharpened on the edges and of enfficient nises to ink to the proper depth. Theiron frame to be dropped into the row locke, or an eye may be attached to the anwales to hold the frame
(3788) R. S. G. asks : 1. Which side of saather belt should be placed next palley, and reacon ? A. The fesh che of healuer bells is asaally pat nex ased in tnis way by many. It is probably the appuarnce of the belting when Atting ap new mills that keepe the hair side ont. 2. Why should a water gauge, glese tabe, break after ward. if washed when taken out to be
cleaned 1 I hear it cluimed that it will do
os, bat will deaned I hear it clammed hat it will do co, bat wif not if wiped dry. The breaking to happen 8000 after
it is uned, or within a day or so. A. Wator gage

December 26, 1891.]
cineose crack by cleaning, from minates saratchee medo
on the inside. It matiess not how joa cloan them, pro-
on the inside. It matress not how yoa cloan them, prorided you do not ecratch the inolde. The inalde car-
face is under tenvion from imperfect annealing and only requires the elightoest ecratch to start a crack. 2. What otreagth of rech, blace, yellow, violtt, and parple and white light \& $A$. Of the colors of the spectram, the yellow is the strongseat. Then follow orange, green, blee, red, indigo, and vilow. The relative numbera being
$100,04,48,17,9,3,8$. White light, being the same beam 100, 值, 48. 17, 9, s. 8. White light, being the eame beam
from which the spectram to separated, represents $2 \mu 4$ in the above scale.
(8789) J. H. C. aske : Will you give information how to photograph on china and the mothod
 Hion.
(8790) W. D. L. asks what to put on a lamp wick to light it with a plece of ice ? A. A piece of potaselinm laid apon the wick can be wised for the
above purposes. A emall piece only should be need, as it to lisble co ar aboull picce enty
(8791) M. P. asks how to make the red lead, ased in the preparation of storage batterien, ad here to the plate. He has need plates perforated with 1/ inch holes. The litharge keepe well and hardens it comes in contact with the acidnatated water. $\mathbf{\Delta}$. We refer you to a recent article in the Scientipio amirbicAX, in which the writer recommends wrapping the electrodes to which the red lead is applied with paper, and keeping them so wrapped until after the battory to formed, then removing the paper and replacing the plates in the solution.
(3792) I. G. says : Please decide for us Whether the dow rises from the groand or falle to the earth in the form of rapor. A. Dew may be derivod from the alr near the earth, coming in contact with veretable or other sabetances that have become cold by radiation. Dew falling upon metalic roofs is free from the inflaence of ground moistara, and is due to satioration of the tion.
(3798) J. H. \& S. E. N. ask why the Manhattan Elevated Rallioad Company have adopted qualities? A. The change is nupposed to have been made to arrest sparks or cindern, which are more or lese a naisance by falling on the clothing and goode of
(8794) O. O. E. asks: 1. Is there any thing I can mix with wax 80 se to make it hard so that it can be worked into modela, gear wheels, etc., and yet
be melted afterward ? Can this be done with tallow A. Tallew will not harden. Try reain with your wast 10 to 30 parts will make it mact harder and fairly toogh
(8795) H. M. W. asks : 1. Is it possible Terned. Hytrogen binozido can be prodncod by spedal Is a temperatare of $\mathbf{3 , 0 0 0 0}$ Fah. ever obtained in any blast furnacos : $\mathbf{A}_{\boldsymbol{o}} \mathbf{\Delta}$ temperatare of over $\mathbf{3 , 0 0 0 0}$ Fah.
to supposed to be produced in the blast farnace. It is is supposed to be produced in the blast farnace. It to under given conditions of sizo, fuel, Aux, etc.
(8798) J. H. W. says: Please tell me oil, after said oill has paseed through Roper's oll ex. tractor. A. Oil from the centrifagal shoald be allowed to settle in tanks and then drawn off from the top. If aitration is then needed, the oll should be ran through woolen clothe or blankes, two or three thicknenseb, like a bag and hung in a barrel or oil can.
(3797) D. J. McI. writes : 1. I want to make n:y watch dial luminons. In what way shonld I dial so that there will be no danger of the phoophorno ligniting, and when dry it will be laminoas? $\mathbf{A}$. The sabotance to use is not phosphorus, but sulphide of barlum or come other earth-metal. The componind ts sold in commerce as Balmain'slaminons palint. It is described in the "Scientifc American Cyclopedia of Recelpts." ture of nitro-cellulose and camphor. The mixtare, to some extent a species of solution, may be effected by heat, kneading and rolling, or by the use of other solvents such as alcohol and ether. 3. How are gelatine plates containing pitassium bichromate made? How long should one be exposed under a negative to the light, and face to represent the lighta? A. By mixing the gelesting solation with potanelum blchromate and condicting the preparation in general in a don-actinic light. a How is the best silvering solution made, and how many sill ver bath? A. For wet in one ounce of a 20 gral allver to one ounce of water; for sensitizing nitrate of 30 grains to $10 x$ of water for wet weather, up to 00 grains for cold weather; raln water or diatilled wuter must be used, and the solation should be sunned antil altered through cotton. 5. How is the silver and gold taken ont of their solation in photography? $A$. The salted gelatino paper precipitates silver chloride in ite
own mase. The gold in the toning solution is reduced and precipitated by the action of the rediced aillver componds on the paper.
(3798) J. M. asks the different speeds a wood-turaing lathe ought to run to turn the following and a amall job 1 in . diameter. A. Base all calculatione on a peripheral speed of 500 ft . per minate. This is as mach as the tool will stand. For the three caees cited this would give speeds of 240,55 , and 1,920 revolatione per minate approximately.
trielty- W. a tricity.-W. A. Q. aske procees for gilding frames and foriltare. To oxidize brase. Cast ima cannot be solG. M. R. acke how to polich cattlo marne.-L. R. G.
acke for a llquid India ink.-8. 8. E. aeke for a liqua made.-R. O. K. aska how to colten rehber.-F. E. M.
 Watch maker's oil.-M. B. acks for a hotion for romor-
ing pimples and freckles.J. F. H. aeks for the beat na pimples and frecklee. J. F. H. aoks for tho beat A. F. aeaks for recolpus for paste blecking.-H. C. aeke Can you give me formula for a goud uquid dreseing lor harnees leacher, aleo so called Lovant ink for apply ing to ladies boots ? O. B. C. nelks: Will you plese send me a good receipt in a powder form for taking out iron
react I have used salta of lemon, but it don't work in every caco, and I woald like nomothing difierent-J. S. W. R. J. S. W. alts how to clean brase.-J. E. J. aska aboat starch.-G. W. T. ask how to regild pictare frames G. W. W. asks how to etch on catlery.-F. C. G. asks how to make white and tranaparent soops.-J. B. T H. asks how to make rubbar stamps.-B. T. aske how to colur a meerschanm pipe.-E. E. A. asks how to pre serve frult. -W. B. B. aeks for a receipt for making baking powder.-F. H. B. acks for a cemont or paste to ce nent tisoue paper.
Answers to all of the above quarios will be found in and "scientines," Am which our correapondenta are referred Tho adverticement of this book is printed in another colamn.
(3799) B. F. G. writes : I have some por colain wash basins, and I want to drill two balf-Inch holes in the sides of them. Can you inform mo throus
your valuable paper the eadicest way I can drill them A. You can readily drill holes in the hasin by uesing a common drill hardened in a strong solution of chloria bould be heated to a low red before being cooled to the chloride of zinc. See the "Cyclopedis of Receipte."
(8800) S. R. S. writes: What is the renuine diamond: A. Probably the white topas come as near the dimmond in goperal charnctaristics as any thlng. Specina giace, callod peoto, lo noed for artificial tones, and varions arificces are ueed for enhancing the No. 8117 . For fartber Lores see answer to query No. © 17 . A nomber of formulas or artiacial joweis an
given in " Scientilc $\Delta$ merican Cyclopedia of Receipta Notes and Queries."
(3801) J. E. K. asks for a good and quick way to tompor cant steol or the general run of on "How to Harden and Temper Steel" in "Sclentiac American Cyclopedia of Receipta, Notes and Queries.

IEW BOOKS AND PUBLICATIOIS.
Practical Telephone handbook and GUADE TO THE TELEPHoNe EX
 cents.'

## This in a manual for telephone attendants and operator

 giving descriptions of the various celephonic instra montr and of the contral office syotem. It also give information on the constraction of lines, on long dis duction, and many other polnts which are of interest to eelephone operators and neera, and those who are engagod in experimental lavestigations in these lines.Modern Practick of the Electric York : D. Van Nostrand Co. 1891 Pp. xiii, 234. 185 illustrations. Price
$\$ 1.50$.

This is the fourteenth edition of this standard work it having been rewritten and enlarged. It in a practical book by a pracucal man, which bringe che litera anent, deecribing the more recent betterte present mo ment, describing the more recent batteries and rest in
strumenta, theorice of circuits, elementa of electromagnets, modern telegraph instruments and appliancus. It is a book calculated to interest the stadent of elec. tricity, as well as the telegraph operator and thqee spe cially interested in telegraphy
TESTING OF Insulated Wires and
Cables. By Herbert Laws Webb New York vii. 118 . Price $\$ 1$ No

This book compriees a series of prictical articles and found great favor among electriciane. The boot. enters into the particulars of electric teating and ex plains the varions testa, also the inetruments noed in making them. It gives instructions in making testa for ineulation, teents for cupacity and tests of the resistance of the condactor. It has an illustrated description of a complete lay-oat of tesing instraments, and ex heets.
The Elictromagnet and Elfectro MAGNETIC MECHANISM. By Silvanus
P. Thompson, D. Sc., B.A., F.R.S. New York : E. \& F. N. Spon \& Co.
Pp. xx, 250 . 218 engravinge. Price $\$ 6$. While the name of the anthor io a sumflent guarant -
of the value of the book, it is well perhapa to state something of the nature of its contents. The Arot chapter is devoted to a historical introdaction, the poz reats generally of electromagnets and electromagnet man, describing ispical formation electromagnete any the magme the sabject of a chapier. the principle of the of magnets is given; then follows a description of mag. vets and electromagnetic mechaniam of various kinde adapted to spocial parpoces; alternating carrent electro magnete recelve their share of attention and motors and great practical value to electrical engineerra, eloctricino asd atudents of eloctrioity.

INDEX OF INVENTIONS
For which Lottore Patome of the
December 15, 1891.
AND EACR BEARINE THAT DATE. [See note at end of unt about coples of thees patmate]


## 



爰







Badge, B. D. Fisher.
Badge. Y. B. Houston..
B.
Badze. J. H. Tounner..


TRADE MARKS



 A printod oppo of the gaofifation and araming ot




## Drovertisements.

Inide Page, each insertion - - 75 cents a line
Back Page, each insertion -.- 81.00 a line




## USE ADAMANT WALL PLASTER



Hetive.adid Poricand
.


Seneca Falls Mfg. Co. 695 Water St., Seneca Falls, N.Y.
Improved Screw Cutting
Foot and Power. Drill Presses, shapers, Ban
 SEBASTIAN LATHEE COMPANY,
$44-46$ Central Ave., CIncinnati, $\mathbf{O}$


 Nomsion
 DRAPER'S THERMOMETER Standardized

Warranted.
Clives a correat and con
weokiy charra
The Draper Mfs. Co 52 Front Street,
Woods
BRACKET
Planed Ready for Use. Books of Design.
CABINET WOODS AND VENEERS. THE E. D. ALBRO CO., Eastern Branch, 200 Lewls st., New York, U. s. A.
H. T. Bartlett, M ${ }^{\prime}$ 'r. F. W. Honerkamp, Ass't Mor.


SPECIAL NOTICE!



## PLENTY OF MONEY TO SPEND




 ings; 7, acres of good land.
iere swat you can do:
Raise Speckled To



## Meanwhile. while trout and cranberries are growing, Raise, on contract for 4 years, a new special product





 2nd ucos MACHINERY

## 

 Manufactured by HARRISBURG FOUNDRY AND MACHINE WORKS, Harrisburg, Pa., U. S. AA NEW LIGHT
U. S. INFALLIBLE METAL POLISH.

No. C. W. Wambing Hor FMAN, Manu'frin

## NOW READY!

A NEW AND VALUABLE BOOK. the scientific american
©yclopedia of Receipts,
NOTES AND QUERIES.

This splendid work contans a arafut compliain the Notes and Queries of correspondents aspub-
lished in the Scientific American during the past fifty years tontifie American during the
important additions. important additions.
Over Tw we
are here collected ; Thousand selected receiprs are here collected; ; nearly every selected receipts
ful arts being represented. It the by fare the mose
comprehensive volume of the kind ever placed before the public. be regarded as the product of the
The work may bact
studies and practical experience of the ablest chemists and workers in all parts of the world; the in-
formation given being of the highest value, ar-
ranged formation given being of the highest value, ar-
ranged and condensed in concise form convenient
for for reaay use. inquiry that can be thought of,
Almost every inting to formulæ used in the various manufac-
res turing industries, will here be found answered.
Instructions for cesses in the arts are given.
It is impossible within the limits of a prospectus
to give more than an outline of a few features of so extensive a work.
Under the head of paper we have nearly 250 re-
ceipts, embracing how to make papier maché; how to make paper water proof and fire proof; how to make sand paper, emery paper, tracing paper,
transfer paper, carbon paper, parchment paper, cranser paper, carbon paper, parchment paper,
colored papers, , azor strop paper, paper for doing
up cutlery, silverware; how to make luminous up cutiery, siverware, now.
paper, photograph papers ete.
ceinder the head of inks
ceiple have nearly 450 receipts, including the finest and best writing inks
of all colors drawing inks, luminous inks, invisi-
ble inks, gold, silver and bronze inks, white inks ble inks, gors, , silver and bronme inks whinte inks;
directions for removal of inks; restoration of
fade faded inks, etc.
Under the, head of Alloys over 700 receipts are
given, covering a vast amount of valuable information.
Of Cements we have some 600 receipts, which
include almost every known adhesive prepar incluce almost
and the modes
How to mak How to make Rubber Stamps forms the subject
of a most raluable practical article. in which the the
complete process is described in such clear and excomplete process is described in such clear and ex--
plicit terms that any ntelligent person may Leadily
 receipts.
Under the head of Etching there are 55 receipts,
embracing practical dircections for the production of engravings and printing plates of drawings. Paints, Pigments and Varnishes furnish over
800 receipts, and include everything worth know-
ing on those subjects. ing on those subjects. Cleansing over 500 recipes
Under the head of
are given, the scope being very broad, embracing are given, the scope being very broad, embracing
the removal of spots and stains from all sorts
of objects and materials, bleaching of fabrias cleaning furniture, clothing, bleaching, of lase, fabther, metars,
and the restoration and preservation of all kinds and the restoration and preservation of all kinds
of objects and materials.
In Cosmetics and Perfumery some 500 receipts Soaps have nearly 300 receipts.
Those who are engaged in any branch of industry
probably will find in this book much that is of probably will find in this book much that is of
practical value in their respective callings
Those who are in search of independent business or employment, relating to the homend manufacoture
of sample articles, will find in it hundreds of most

MUNN \& CO., Publishers,
SOIENTIFIC AMERICAN OFFICE,
DEAFNESS \& HEAD NOISES CURED


## CIARIE'S

WARP DYEENGGANDASHERES, MACHINES, POWER WRINGERS FOR HOSIERY AND DRYINGAND OENTILATINGFANS,
WOOL AND COTTON DRYERS, Etc. GEO. P. CLARK,


STATIONARY and PORTABLE. All Sizes.


Dwarfs in Size, but Giants in Strength.
Expense one cent an
hour per horse power
and requires but litule
 No




| Galveston harbor works. Garnets and peridots Gas Gn coal. presssure of Gas, natural, law of <br> Gas, naturai', Wellsburg. Gas, water, improvements in Gate, raulroad. Close's. Gauge aligning. B...oupier. Gelatine plates, surfracing Gems of the United States. Generator, heat, Geologlical notes Geological organization, new Geologists Geoologists, intern. congri Geysers, eruptive GInseng farm, Stanton's. Glacial period Glass larze panes of Glass materlal for Glow worm caves. Government, expense of. Grain mensurer, Eers Grand Marais Harbor. Grante cement Grass collector, Latbam" $^{2}$ |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



Paper, parchment, cement for....
Paper
Paper
Baed, the... $\underset{\substack{\text { Pyro-eement........................................ } \\ \text { Pyrometer, electric........ } \\ 150}}{160}$








Trownown

sweepe
swimm に.




December 26, 1891.] ฐ̌ixntific લูmerican.

A Great Repository of Practical and Scientific Information.

Ohe of the Fullest, Freshest, and Most Valuable Handb
Practical M $/ n_{\text {. }}$

NOW READY.
Price $\$ 2.00$.





 Price $\$ 2.00$,
 HENRY CAREY BAIRD \& CO. CaIE DRAUGHTSMEN

VALUABLE HOLIDAY BOOK.


FERTILIZER MACHINERY
Crushers, Mills, Mixers, Digesters, Dryers, etc
C. H. DEMPWOLF \& CO, York, Pa


OUR "ELECTRIC PLANT," $\$ 5$

 The Nowotury Heetric Co. Cincinnati, Ohio.
OWN A

 GOLD Matero



MINE


NO SKITMHD FNCINWFRI The Shipman Automatic Steam Engine stationary and marine.

## ELECTRIC VENTILATING FANS,

 electrical mining apparatus of every description. Send for Hlustrated catalogue $M 2$.THOMSON-VAN DEPOELE ELECTRIC MINING CO., 620 ATLANTIC AVE., BOSTON, MASS.

PETER F. MEYER, Auctioneer. BY ADRIAN H. MULLER \& SON, wednespay. december 30,
 By order of Chas. TV. Cotitin, Executor of An undivided thity-fino one-hundreaths iniorest of
 process for kiectric smeltive.




 IMTRROVED PROCESS OF MAKING ACIDS.



 HE PENNA. DIAMOND DRILL \& MFG. CO.


FOR COLD HANDS.

PURE TEMPERED COPPER


ROCK BREAKERS AND ORE CRUSHERS


STEEL TYPE FOR TYPEWRITERS





ELECTRO MOTOR. SIMPLE. HOW TO


 CAST SPLIT FIELDS FOR SIMPLE MOTOR


INVENTIONS Practicall DEVELOPED
 LEARN WATCHMAKING of W. W. . A. Woodoon, Wh LITTLE HERCULES DRILL OHUCK




GEAR AND RACK CUTTING.



NEW ELEETRIC WIRE GAUGE.

 Novelty Eleetric Co., 54 N. 4th Street, Phila, CATES ROCK \& ORE BREAKER

 Bailear of Hikh ombua wimn CATES OARONWOR Con


Tine Best Mechanical Help For inventors, experimenters, etc., comes rom a real machine shop with first-rate men and tools accustomed to regular in a primer-sent free.

##  CHUCKS. $\begin{gathered}\text { Catalogue No. } 12, \text {, just issued. } \\ \text { with over } \\ \text { sent free A Aewn in instrations. }\end{gathered}$ STEAM LAUNCHES. <br> 111

STEAM YACHTS \& TOW BOATS,


ARE YOU LOOKING (asmen in one to? Then write Whitehal Improvement or move (Cor
onaticulars concerning best and liveliest town in

 what you want
WHITEHAL TMPROVEMENT CO.,
Whitehall, Mich.

## WEST PULLMAN.

The Ideal Manulacturing and Residence District

## is CHICAGO.

Factory Sites and Residence Lets. Eleration 40 Fect abo The Lake.

Hinois Central Railroad Suburban Service. chicago freight rates to all points
in the united states. PERFECT SEWERAGE, CITY WATER.
LOCATED in the heart of the Great Calumet FIFTEEN MINUTES' RIDE from World's Fair

ELECTRIC ROAD under construction, reaching all parts of city.

A Limited Number of Shares
Are offered for sale at par, which shares are Buy lots now snd secure the eerter
Buy lots now
rance next year
end for Circulare, Maps, ate Adre
WEST PULMAI LAND ASSOCIATIOI, 103 Dearborn Street, Chicaga.

FREE SITES TO SUBSTANTIAL MANUFACTURING ENTERPRISES



[^0]2んDvertisements.
Inside Page, each insertion - 75 cents a line
Back Page, each insertion -- 81.00 a line Back Page, each insertion - - - 81.00 a line
The above are blarges per agate line about elght
Words per line. This notice shows the width of the line.



## H. W. JOHNS' <br> Thr Bras

 FIRE- ROOFING AND BUILDING MATERIALS
 Asoestos Fire ano Water-PRoof Sheathina Fire-Proof Construction materuls
STEAM PIPE AND BOILER COVERINGS

 Aseesto-sponge Cement Feltina
STEAM PACKINGS

 AsBestos Cioths, for Theatre Curtains, ETc.
 Proof Coro, Twine, Rugs, Mats, Screens, etc.
FIRE-PROOF COATINGS, CEMENTS, ETC. FIRE-PROOF COATINGS, CEMENTS, Etc.

VULCABESTON
Electrical insulating Sheets, Rings,
 UMP VALVES, Accumulano Clis, STEAM Packims,
ELECTRICAL CONSTRUCTION MATERIALS mples and Descriptive Price List Free by Ma
H. W. Johns Manufacturing Co.,



Motor of the 19th Centary Coat Abtornorge orover iour to


## 

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877. No. 186,787 .

The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all the consequences thereof, and liable to suit therefor.


SMOKELESS GUNPOWDER.-AN IN-



## POPULARITY <br> Uoct



COLUMBI AS
 Witbout a Rival. POPE MFG. CO., naty nity nows

King of Kameras.
The new model Folding Kodak, with glass plate attachment, Asbury Barker frictionless shutter. Greatest range of automatic exposure ever attained. No sticking on slow speeds. Accurate, reliable.
Best combined tripod and hand camera ever made. Best workmanship. Best Finish. Send for cireulars.

THE EASTMAN COMPANY,
Rochester, N. Y.


WHEN NOUMAKE

 Alogeve ati teitimimins

H. DUDLEY COLEMAN MACHINERY CO., NEW ORLEANS, La., U. S. A.



THE SMITH PREMIER TYPEWIITER




## MODELS ANO CEARS

 SIEMENS' + CABLES.

## SUBMARINE, UNDERGROUND, INTERIOR,

 TELEGRAPH, TELEPHONE, ELECTRIC LIGHT. Manufactured under authority of SIEMENS \& HALSKEby THE EDISON GENERAL. ELECTRIC CO. at their SCHENECTADY WORKS.
Wire Department, Edison General Electric Company, bisonom bulinding.

Investment

ICE-BOATS-THEIR CONSTRUCTION


regulations for the formation of ice-boat clubs, the sa
ing and management of ice-boats. Price 10 cents.




ICE-HOUSE AND COLD ROOMI-BY R R R
G. Hattelas. with directions for construction. Four



AJJUSTABLE STOCKS AND DIES, universally acknowledged to be
 ARMSTRONG MFG. CO., Bridgeport, Conn.


## MEGRAVESYELEVATORS.

# TANITE 

Emery,
Emery
W
Emery Wheels, Emery Whetstones,
Grinding Machines, Knite Sharpeners,
The Tanite Co., Knite 6 rinders.
Stroudsburg, Pa
161 Washinaton St., New York.

## Scievilic Mericav

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World
Only $\begin{gathered}83.00 \text { a } \\ \text { Weekly } \\ \text { Year } \\ \text { Numbers a } \\ \text { Including Peartage. }\end{gathered}$
This widely circulated and splendidiy tulustrated paper is published weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electrictty, Telegraphy, Photography, Archltecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week.
Terms of Rubscription.- One copy of the Scres-
TIFIC AMERICAN will be sent for one postage prepald, to any subscriber in the United States Canada, or Mexico, on recelpt of three dollars by the publishers; six months, 81.50 ; three months, 81.00 .
Clubs.-Special rates for several names, and to Post Clubs.- Special rates for several names, and to $P$
Masters. Write for particulars. Masters. Write for particulars.
The safest way to remit is by
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk seldom goes astray, but is at the sender's risk. Address
all letters and make all orders, drafts, etc., payable to MUNN \& CO., 361 Broadway, New York.

Scientific dancrican supplement
This is a separate and distinct publication from THE SCTENTIFC AMERICAN, but is uniform therewith in size,
every number containing sixteen large pages full of engravings, many of which are taken from forelgn papers
and accompanied with translated descriptions. SCIENTIFTC AMERICAN SUPPLEARENT is published week-
Sithed sy, and includes a very wide range of contents. It pre-
sents the most recent papers by eminent writers in all the princtpal departments of Sceience and the Useful
Arts, embracing Biology, Geology, Mineralogy, Natural Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archeology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineeri tig.
Steam and Railway Engineering, Mining, Ship Build-s. Marine Engineering. Photography, Teehnology, Mamu-
facturing Industries, Snaitary Figineering, facturing Industries, Sanitary Engineering, Agriculture,
Horticulture, Domestic Economy, Biography, Medtclne Horticuiture, Domestie Economy, Biography, Medicine,
etc. A vast amount of fresh and valuable tinformation obtainable in no other publication.
The most important Engineering Works, Mechanisms,
and Mancfactures at home and abroad are illustrated and Mancfactures at home and abroad are illustrated
and described in the SUPPLEMENT. Price for the Supplement for the United States and
Canada, 85.00 a year; or one copy of the Scientific AmERICAN and one copy of the SUPPLEMENT, both malled or one year for 87.00 . Single copies, 10 cents. Address ani
remit by postal order, express money order, or cheek, MUNN \& CO., 361 Brondway, New York, $\underset{\text { Publishers ScIENTIFIC Amrertcan. }}{\mathbf{3 6 1} \text { Brondway, New York, }}$
क्वuilding Exdition.
The scientivic american architects' and BUILDERs' EDITION is issued monthly. ${ }^{82.50}$ a year.
Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages: forming a large and splendid Magazine of Architecture, richly
adorned with elegant plates in colors, and with other fine adorned with elegant plates in colors, and with other fine
engravings; illustrating the most Interesting examples engravings; illustrating the most interesting examples
of modern architectural construction and allied subjects. A special feature is the presentation in each number
of a variety of the latest and best plans for private restdences, city and country, including those of very mod-
erate cost as well as the more expensive. Drawthgs in perspective and in color are given, together with full
Plans, Speeifications, Sheets of Details, Estimates, etc The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all newsdealers. 82.50 a year. Remit to

MUNN $\underset{\mathbf{3 6 1} \text { CO., Publishers, }}{\text { Broadway }}$ N

## Steam! Steam!

Quality Higher, Price Lower. 2-Horse Eureka Boiler and Engine, - $\$ 145$

B. W. PAYNE \& SONS,



[^0]:    易ATENTS!
     In this line or lor lisentors.
    
    
    
    
    
     MUNN \& CO., Solicitors of Patents,
    

