

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCLENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE ST, CLAIR TONNEL DRAINAGE SYSTEM,-[See page 373.]

Brientifir ghmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors published weekly at
No. 361 BROADWAY, NEW YORK.

NEW YORK, SATORDAY. DECEMBER $12,1891$.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 832.
For the Week Ending December 12, 1891.
Price 10 cents. For eale by all newedealers

FAILURE OF THE DYNAMITE CRUISER VESUVIUS.
This novel type of war boat is declared by our best naval advisers to be of little use in her present con dition, and it is recommended that she be altered into an ordinary torpedo cruiser.
The striking success which attended the experiment of Lieut. Zalinski in New York harbor, 1887, in throw ing projectiles charged with dynamite from pneumatic guns located on shore, led to the belief that simila weapons might be successfully used on shipboard ; and the government, anxious to possess itself of an arm that appeared to be at once novel and formidable, hurried forward the construction of the Vesuvius She was launched in 1888.
The Vesuvius is a steel ship of $\mathbf{7 2 5}$ tons displacement 252 feet long over all, and $261 / 2$ feet wide. She is with out masts, and practically unarmored. She draws maximum of nine feet of water; the mean draught is eight and one-half feet. Her engines, which have been illustrated and described by us, are of four-cylinder, triple-expansion type. They actuate twin screws, and sive a speed of about twenty knots an hour. He model is characterized by very fine lines, engines 400 horse power.
In the forward part of the ship the three pneumatic guns that form her armament are placed. These are built into the ship. Their muzzles are carried forward and project above the deck near the bow. They are 15 inches in diameter, fifty four feet long, made of thin cast iron, not rifled, the vanes upon the projectile being elied on to give any desired axial rotation.
The full-sized shell for this gun is $143 / 4$ inches in diameter, and its body is about seven feet long. Back of the body is a tail fitted with spiral vanes, which se-
cures its alignment and rotation. The body is made cures its alignment and rotation. The body is made
of thin drawn brass tubing, and will hold 600 pounds of high explosive, dynamite or gelatine, the whole weighing about 1,500 pounds when charged. This is the largest shell the guns are adapted to fire, and the effects of such a heavy charge of explosive can only be surmised. Should one explode in the air over a ship the effects of the concussion on her crew would proba bly be very disastrous. According to the opinion of students of torpedo practice, the submarine explosion of such a shell within 20 feet of a ship would destroy it
The air by which the projectile is driven is com pressed under a pressure of 2,000 pounds per square inch into tubular reservoirs.
No attempt has ever been made to test the guns with a full charge of the explosive, by reason of defects in the mechanism which render dangerous the operations of loading and discharge.
The naval bureau considers this vessel in no respect fitted as a gun platform for artillery of this description even if the latter proved of any military value. It wil be readily appreciated that, unarmored as the Vesu vius is, her stores of high explosives and a large por tion of the length of her guns are completely exposed to the fire of rapid-fire ordnance. The effect of a sin gle shell from a 1-pounder sent into her magazine o high explosives may be imagined.
The vessel, as is well known, possesses only indiffer ent steering qualities, and, this being the case, it is probable that two torpedo boats of the type of the Cushing, armed with an automobile torpedo and with rapid-fire guns of smaller caliber, would very much overmatch her. It is cousidered, therefore, that the question of the value of the guns for war purpose should receive an early conclusion.
It is believed that the range of efficiency of the Vesu vius would be greatly increased by turning her into torpedo cruiser. Her displacement is such that, with her dynawite guns removed and a battery of consid erable power placed for fore and aft fire, supplement ing the larger calibers of rapid-fire guns with a num ber of 6 -pounders, this vessel would then become formidable antagonist for any of the unarmored types.
Her tubes, however, would be useful should they pass the necessary test for shore stations, or perhap for a moored battery in harbor defense. The number of these weapons ordered for the land fortifications at New York, Boston, and San Francisco will also give opportunity to thoroughly investigate their value un er more favorable circumstances than exist on boar the Vesuvius.

HEAVY GUNS AND THE BEST ARMOR

As the result of the efforts made during the last hal dozen years, the position of the country as to mean of offense and defense has been vastly improved. No only have we the fine new vessels of the whit squadron, with many other and more formidabl ships approaching completion, butin the manufactur of heavy guns and armor we have about passed the experimental stage, and in several private establish ments, as well as in the government shops, are now turning out both guns and armor believed tobe equal to or better than any made heretofore in Europe. The ex periments which have been made in the testing of armor and armor-piercing projectiles, in trials of smokeless and other powders, and as to the service
possibilities of various types of guns and gun carriages,
have been carried out with great thoroughness, and the work of production is now being pushed in Ameri can shops and by our own skilled mechanics.
In the recent report of Commodore Folger, chief of the Bureau of Ordnance, an interesting account is iven of the armor tests conducted during the year nd the report says the bureau considers that two im portant results have been achieved: First, a bette plate, of American manufacture, has been produced than the department was able to purchase abroad a year ago; secondly, it has developed a new principle in the manufacture of armor, of American origin which will furnish greater protection to the vital parts of a vessel of war than any other system hitherto ew ployed. It has been established definitely that armo of excellent quality may be produced by the rolling process, and that forging by means of the hammer is not absolutely necessary. The report strongly urges he establishment of a national gun factory on the Pacific coast similar to that in Washington
The expenses of the bureau for the year are esti nated at $\$ 4,780,291$, of which $\$ 4,186.250$ is to be applied oward the armament of new vessels authorized to b built. The number of guns required to arm the new vessels is placed at 347, ranging in caliber from 4 to 13 n. The guns completed number 155, of which 11 were 6 in . caliber; 294 sets of forgings have been ordered and 246 have been delivered. Although none of the ships authorized to be built requires guns of 16 in caliber, it is believed that such guns may be needed, o the necessary plans have been made, and authority is sought for construction of one of them. It is believed that the difficulties experienced abroad with these arge guns can be overcome
The trials of smokeless powder, invented and manu factured at the torpedo station, are said to have result ed so satisfactorily that it is believed that within a very short time the use of gunpowder will be entirely abandoned in calibers of six inch and below it, being eplaced by one of the smokeless powders. An orde or 50,000 pounds of gun cotton the best known hig explosive for naval use, has been placed with the Du ponts on condition that a complete plant be erected The condition has been accepted, and with the assist nce of the naval experts a plant capable of turning out 1,000 pounds a day will be in operation in two months. After describing successful trials made with mmensite, the report says: "It is the bureau's inten tion to recommend the adoption of a relatively shor gun of large caliber, using powder as the propulsiv charge and firing a projectile containing a charge of emmensite, or gun cotton, for a feature of the arma nent of vessels, with a view of utilizing an aerial or ubmarine torpedo effect at ranges where the question f accuracy of fire is absolutely eliminated."
After recounting the efforts made to secure an effec tive automobile or fish torpedo, the report says " The present state of work, in connection with auto mobile torpedoes and their accessories, is such as to justify the belief that the installation of outfits on board vessels will commence early in the coming year and that our navy will soon be equipped with torpedo outfits equal, if not superior, to those possessed by for eign nations." Touching the submarine gun now ap proaching completion, the report says: "A further consideration of the subject of submarine artillery inclines the Bureau to the belief that it will prove a valuable and important adjunct to our defensive armament, particularly when mounted on board of vessel intended especially for ramming. It seems possible that the chances of the ram being able to reach her antagonist with destructive effect will be quadrupled by the addition of this weapon to her means of of fense.'
Under the bead of armor it is announced that negotiations are in progress to cause the plate to be deliv ered by the Bethlehem Company for the double tur ret monitors and the Maine and Texas to be of nicke teel. The armor ordered from Carnegie, Phipps \& Co. is to be of the same material, the department sup plying the nickel; 800 tons of ore for that purpose were purchased last year.

Public School Finances.

The public school finances of thirty-one States have ow been published by the Census Burean. The cen sus bulletins Nos. 54, 98, and 141 contain these interest ing statistics. They give the number of pupils enrolled, amount expended on salaries and miscellaneous accounts, and total expenditures. These are given in sum totals and reduced to sums expended per capita of pupils enrolled, and the total expenditures are also reduced to sums per capita of population. Many other tabulations of the money employed in the varions unctions of the public school system are also given. To all interested in education and the much-debated public school system these figures will be of the highest interest. Curious instances of the wide range of expenditure occur. Alabama is given as expending hut $\$ 1.85$ per capita of pupils against Massachusetts' $\$ 17.27$ and Colorado's $\$ 164^{\prime}$). The total expenditure per capita of population does not fluctuate so widely, Alabama spending $\$ 0.37$ against $\$ 4.08$ in Colorado,

Decisions of the Courts Relating to Patents.
Supreme Court of the United States.
Adams v. Bellaire Stamping Company et $a l$. Decided November 16, 1891. Mr. Justice Field delivered the opinion of the court.
The claim of a patent for an improvement in lanterns was for securing a removable lantern top to the upper part of the guard by means of a hinge connecting it thereto, and on the side opposite the hinge a removable fastening or spring catch, which when detached allowed the top of the lantern to open and swing back upon the hinge. Upon an action for infringement, Held invalid for want of patentable novelty.
An aggregation of old devices, each working out its own effect, without securing some new and useful result as the joint product of the combination, does not constitute a patentable invention. (Quoting Hailes v Van Wormer, 20 Wall., 353, and Pickering v. McCullough, 104 U. S., 310.)
Where the question is upon the patentable charac ter of the invention, evidence that it had practically superseded all other devices of its kind and tending to establish novelty is not material. Where there is no invention, the extent of use is not a matter of moment
Patent Clothing Company, Limited, v. Glover et al.
Decided November 16, 1891. Mr. Justice Brewer delivered the opinion of the court.
The claim of an original patent was for an inelastic bridge or check piece arranged across the crotch of pantaloons, whereby the strain is received by this bridge or check piece, instead of at the angle of the crotch itself. The reissue contained two claims, and in an action brought for its infringement it was successfully contended by the defendant in the lower court that the reissue was broader than the original patent. Held that this is an immaterial question, because both the original patent and the reissue are invalid for want of patentable novelty
The idea of the patentee was to add to the strength of the thread the strength of a piece of cloth, and this he did by a strip crossing the crotch as a bridge, and running up along the button and button hole strips, and fastened to them respectively.
But this was no new idea. It is as old as pantaloons themselves. It has been illustrated in the experience of every boy, for in his sports he not infrequently tears his pantaloons, and his good mother, not content with sewing the torn ends together, and thus holding them by the direct strength of the thread, is wont to place underneath a piece of cloth, and fasten it to the main body of the garment for some distance on either side of the tear. In this way the whole strain, which otherwise would be solely on the threads closing the tear, is largely borne by the new cloth underneath. Surely when this idea is so well known, and been so practically illustrated for generations, it cannot be that there was any exercise of to any part of the panta loons.

The Electrical Atom.
At the recent dinner of the Institution of Electrical Engineers, London, Professor William Crookes, the president, said :
We have happily outgrown the preposterous notion that research in any department of science is mere waste of time. It is now generally admitted that pure both the investigator himself and greatly enriches the community. "It blesseth him that gives, and bim that takes." Between the frog's leg quivering on Galvani's work table and the successful telegraph or telephone there exists a direct filiation. Without the one we could not have the other.

We know little as yet concerning the mighty agency of electricity. "Substantialists" tell us it is a kind of matter. Others view it, not as matter, but as a form of energy. Others, again, reject both these views. Professor Lodge considers it " a form, or rather Nikola Tesla demurs to the view of Professor Lodge, but thinks that " nothing stands in the way of our call but thinks that "nothing stands in the way of our call-
ing electricity ether associated with matter, or bound ing electricity ether associated with matter, or bound
ether." High authorities cannot even yet agree whether we have one electricity or two opposite electricities The only way to tackle the difficulty is to persevere in experiment and observation. If we never learn what electricity is, if, like life or like matter, it should re main an unknown quantity, we shall assuredly discover more about its attributes and its functions.
The light which the study of electricity throws upon a variety of chemical phenomena-witnessed alike in our little laboratories and in the vast laboratories of the earth and the sun-cannot be overlooked.
The old electro-chemical theory of Berzelius is superseded, and a new and wider theory is opening out. The facts of electrolysis are by no means either completely detected or co-ordinated. They point to the great probability that electricity is atomic, that an electrical atom is as definite a quantity as
chemical atom. The electrical attraction between two chemical atoms, being a trillion times greater than gravitational attraction, is probably the force with which chemistry is most deeply concerned.
It has been computed that, in a single cubic foot of the ether which fills all space, there are locked up 10,000 foot tons of energy which have hitherto escaped notice. To unlock this boundless store and subdue it to the service of man is a task which awaits the electrician of the future. The latest researches give well founded hopes that this vast storehouse of power is not hopelessly inaccessible. Up to the present time we have been acquainted with only a very narrow range of ethereal vibrations, from extreme red on the one side to ultra violet on the other-say from 3 ten-mil lionths of a millimeter to 8 ten-millionths of a milli meter. Within this comparatively limited range of ethereal vibrations, and the equally narrow range of sound vibrations, we have been hitherto limited to re ceive and communicate all the knowledge which we share with other rational beings. Whether vibrations of the ether. slower than those which affect us as light may not be constantly at work around us, we have
until lately never seriously inquired. But the researches of Lodge in England, and Hertz in Germany give us an almost infinite range of ethereal vibrations or electrical rays, from wave lengths of thousands of miles down to a few feet. Here is unfolded to us a new and astonishing universe-one which it is hard to conceive should be powerless to transmit and impart intelligence.

Experimentalists are reducing the wave lengths o the electrical rays. With every diminution in size of the apparatus the wave lengths get shorter, and could we construct Leyden jars of molecular dimensions the rays might fall within the narrow limits of visibility. We do not yet know how the molecule could be got to act as a Leyden jar, yet it is not improbable that the discontinuous phosphorescent light emitted from certain of the rare earths, when excited by a high tension current in a high vacuum, is really an artificial production of these electrical rays, sufficiently short to affect our organs of sight. If such a light could be produced more easily and more regularly, it would be far more economical than light from a flame or from
the arc, as very little of the energy in play is expended in the form of heat rays. Of such production of light nature supplies us with examples in the glow worm and the fireflies. Their light, though sufficiently energetic to be seen at a considerable distance, is accompanied by no liberation of heat capable of detection by our most delicate instruments.
By means of currents alternating with very high requency, Professor Nikola Tesla has succeeded in passing by induction through the glass of a lamp energy sufficient to keep a filament in a state of in
candescence without the use of connecting wires. He candescence without the use of connecting wires. He
has even lighted a room by producing in it such a con dition that an illuminating appliance may be placed anywhere and lighted without being electrically con nected with anything. He has produced the required condition by creating in the room a powerful electrostatic field alternating very rapidly. He suspends two sheets of metal, each connected with one of the ter minals of the coil. If an exhausted tube is carried any where between these sheets, or placed anywhere it remains always luminous.
The extent to which this method of illumination may be practically available, experiments alone can decide. In any case, our insight into the possibilities of static electricity has been extended, and the ordinary electric machine will cease to be regarded as a mere toy.
Alternating currents have at the best a rather donbtful reputation, but it follows from Tesla's researches that as the rapidity of the alternation increases they become not more dangerous, but less so. It further appears that a true flame can now be produced with out chemical aid-a flame which yields light and heat without the consumption of material and without any chemical process. To this end we require improved methods for producing excessively frequent alternations and enormous potentials. Shall we be able to obtain these by tapping the ether? If so, we may iew the prospective exhaustion of our coal fields with ndifference. We shall at once solve the smoke ques ion, and thus dissolve all possible coal rings.
Electricity seems destined to annex the whole field not merely of optics, but probably also of thermotics Rays of light will not pass through a wall, nor, a we know only too well, through a dense fog. But elec trical rays of a foot or two wave length of which we have spoken will easily pierce such mediums, which for them will be transparent.
Another tempting field for research, scarcely yet at tacked by pioneers, awaits exploration. I allude to the mutual action of electricity and life. No sound man of science indorses the assertion that "electricity s life;" nor can we even venture to speak of life as one of the varieties or manifestations of energy. Nevertheless, electricity has an important influence upon vital phenomena, and is in turn set in action by the living being-animal or vegetable. We have electri
fishes-one of them the prototype of the torpedo of modern warfare. There is the electric slug which used to be met with in gardens and roads about Hornsey Rise, there is also an electric centipede. In the study of such facts and such relations the scientific electrician has before him an almost infinite field of inquiry. The slower vibrations to which I have referred re veal the bewildering possibility of telegraphy without wires, posts, cables, or any of our present costly appli ances. It is vain to attempt to picture the marvels of the future. Progress, as Dean Swift observed, may be too fast for endurance. Sufficient for this generation are the wonders thereof.

Photomicrography.

The importance of modern photography as applied to microscopic objects is forcibly brought cut by the following remarks made by Prof. Robert Koch, the minent bacteriologist, who employs photography with great success to bring out the most minute parts of organic and inorganic bodies
Prof. Koch likens the negative plate to a human eye not blinded by a sharp light nor tired out by long-con inued examinations.
" The negative," says Prof. Koch, " frequently shows very fine bodies and parts, which are afterward dis covered by the microscope on the object itself, bu only after very hard work and under the most favor able conditions regarding light, etc.
"Accurate measurement of but faintly visible ob jects is almost impossible under the microscope, bu on the finished negative the task is rendered compara tively easy. The photographic picture of a grea many objects is frequently of more importance than the object itself. If I gave to somebody a prepared specimen for viewing certain parts of the same under the microscope, for instance, lymph vessels containing bacteria, then I am not certain that the party has found the right spot, and if this is the case, I am not positia that he is viewing the part under the same light and conditions as I did. A photograph, however, gives the microscopic picture exactly in the same light, the same enlargement, etc., as I viewed it at the time of focusing it.
'It is very simple to explain the photogram to a number of persons at the same time, as one can point with the finger to a particular part, or measure it with the compass, or compare it with other similar photographs placed alongside of it, in short, you can do almost anything in order to come to an understanding over a disputed part."

Colorado oil

A recent paper on " The Florence Oil Fields of Colo rado," by Geo. H. Eldridge, of the United State Geological Survey, says
The locality is situated on the Arkansas River nea Canoro City, and 30 miles from Pueblo, Col. The oilbearing zone occurs in the Pierre formation, the lowest strata of the Montana group of cretaceous rocks, which is here about 4,000 feet thick. The most pro uctive wells are 1.155 feet below its top, or 2,000 feet rom the surface. There is then about 350 feet of bar ren ground, and then more oil is found. Below this is again 350 feet of barren ground, and finally, at the bot tom of the zone, there are some small wells. The oi seems to have originated in the Pierre rocks. The per centage of producing wells to the number bored is 571% and the wells yield from 5 barrels up to 250 barrels per day. The total yield of the district in 1890 was about 1,200 barrels per day, but the wells could yield 2,000 barrels per day of 31° Baume oil. Out of 300,000 bar rels of crude oil there was produced last year 100,000 barrels of illuminating and 5,000 barrels of lubricating oil.

The Thrift."

"The Thrift" is a species of banking association instituted under the auspices of the Pratt Institute, o Brooklyn, N. Y., for the purpose of encouraging peo ple in economical habits, and to train up the young especially in the right use of money. The central office is in the Pratt Institute. It includes an investment branch, in which interest is given on account of regular installment deposits, at the rate of about 6 per cent per annum; a deposit branch giving interest on depos ts made at any time under stated regulations; and a oan branch, designed to encourage the acquiremen and building of homes, somewhat as in building and oan associations. The security includes a first mort gage on the property and assigned life insurance equa to one-half the amount of the loan. An explanatory circular has been issued, explaining more at length the workings of the association, and it is evident that its eapacity for good is very great.

To Harden Iron all Through

Ox hoofs and leather are soaked in French nut oil, and are then burnt, pulverized, and mixed with sea salt and potash. The following proportions are used 30 per cent of hoofs, 30 per cent of leather, 30 per cent of sea salt, 10 per cent of potash. This product is said to harden iron all through.

The Great Railway station, Jersey City.
The new terminal station of the Pennsylvania Railroad, Jersey City, N. J., opposite New York City, has the largest train shed in the world, surpassing that of the St. Pancras terminal of the Midland Railway, in the St. Pancras terminal of the Midland Railway, in London. It is 652 feet 6 inches long, 256 feet wide, 86
feet clear height at the center, and 110 feet from rail feet clear height at the center, and 110 feet from rail
level to top of skylight. The structure consists of level to top of skylight. The structure consists of
twelve pairs of main roof trusses, 252 feet 8 inches betwelve pairs of main roof trusses, 25% feet 8 inches be-
tween centers of end pins, with the lower chord or tie rod running across under the platforms. The trusses are of riveted connection, and are hinged at each foot and at the apex to allow for contraction and expansion. The ends are filled in with glass, and half of the roof area is of glass, with wire netting inside to prevent the fall of glass in case of breakage. Along the vent the fall of glass in case of breakage. Along the
apex of the trusses is a large skylight, with open apex of the trusses is a large skylight, with open
sides for ventilation, and there is also a skylight sides for ventilation, and there is also a skylight
along each side of the main arch. The radius of the outer line of the main arch trusses is 215 feet at the sides and 150 feet at the middle, while the inner line is 125 feet radius at the middle, 162 feet 6 inches at the sides and 45 feet to the platform level. There are twelve tracks, arranged in three double-track and six single-track lines, with platforms 12 feet 2 inches to 22 feet wide. The station is approached by a fourtrack plate girder deck elevated viaduct, which has already been described, as well as the complete switch and signal and interlocking plant. A station and office building will be erected, the former having waiting, refreshment, and ticket rooms, etc., and the latter a five-story building for the general offices of the New York division of the road. The railway platforms are about on a level with the upper decks of the new ferry boats connecting with New York across the river.

A FEEDER FOR STOVES AND FURNACES.

A device designed to automatically feed a desired amount of fuel at regulated intervals to a stove or furnace, and which will also shake the grate to prevent the accumulation of ashes, is shown in the accompanying illustration. It has been patented by Mr. William Jones, of No. 2551 Bloomington Avenue, Minneapolis, Minn. The hopper has a lower opening leading into a chute which delivers into the fire pot, the inner end of the chute being closed by a swinging door when the coal is not passing, so that gas from the fire pot cannot escape by this channel. A shaft extending through the upper portion of the chute carries a cylindrical the upper portion of the chute carries a cylindrical
bucket, turning immediately beneath the mouth of bucket, turning immediately beneath the mouth of
the hopper, and which has on one side an opening admitting coal from the hopper, the coal being discharged from this opening down the chute when the bucket is turned over, as shown in the sectional view. A tongue pivoted in the lower portion of the hopper extends over the edge of the opening to prevent the coal in the bucket from clogging and facilitate the rotation of the bucket. On one end of the bucket shaft, within a suitable casing, is a clock-work mechanism to turn the
shaft, the mechanism being operated by a simple form shaft, the mechanism being operated by a simple form
of spring motor which can be easily adjusted to run as of spring motor which can be easily adjusted to run ab
fast or slow as desired, according as the feed is to be regulated, this being effected by sliding in or out the blades of a fan, thus causing an increased or diminished air pressure. It is preferred that the bucket be not too large, and be made to turn comparatively often, thus supplying small quantities of coal at frequent inter vals. On the other end of the bucket shaft is a crank connected by a rod with a block engaging the longer

jones' feeder for stoves and furnaces.

arm of a bell crank to operate a grate-shaking attachment. The grate does not tip, but oscillates, and has a laterally extending jointed arm supported in a longitudinal slot, this arm being connected with the short arm of the bell crank. The longer arm of the bell crank has at its free end a weight, and this arm is designed to be raised and dropped by the revolution of the bucket shaft, causing the oscillation of the grate from the connection of the latter with the short arm.

To give the grate more of a vibrating movement, a spring is arranged at one end of the slot through which the arm of the grate extends, the opposite pressures of the spring and the weight acting to increase the movement of the grate, whereby it will be effectively shaken, to keep the fire free from ashes, each time a charge of fuel is delivered into the fire pot.

AN ELEVATOR DOOR OPERATING DEVICE.
The improvement shown in the accompanying illus-

BUTLER'S ELEVATOR DOOR OPERATOR.
tration is designed to automatically close the door o an elevator shaft, in conjunction with an ascending or descending car. It forms the subject of a patent issued to Mr. Louis W. Butler, of No. 1 Broadway, New York City. Upon the front of the car, and held slightly out from it by end and intermediate bearings, is a vertical rod, upon which slide four sleeves, arranged in pairs, to which the ends of levers are pivoted, the levers of each pair of sleeves being pivotally connected. The sleeves bear at their inner ends against the intermedi ate bearings, and when the levers are pressed toward the rod the sleeves of each pair slide up and down, the levers tending to assume a vertical position. The levers are normally held in their triangular position, as shown, by a spring-actuated drum pivoted on a stud a cord or chain wound around the drum and passing over guide pulleys being connected at one end with th upper sef of levers and at the other end with the other shaft, and preferably a slight distance above the shaft opening, is held another rod, on which slides the sleeve of a door-shifting rod, the lower end of which is pivoted to the rear edge of the door near the bottom, while on the inner side of the rod a friction roller is journaled upon a stud, and the rod is pivotally connected by a link with a lower sleeve on the rod held on the shaft wall. In operation, as the car moves up or down, Fin passing a closed doorway, the friction roller easily presses in the levers sufficiently to allow the car to pass without moving the door. When the car stops at a floor the friction roller stands between the two sets of levers, and the door may be readily opened. When the car commences to ascend, the door being open, the shifting lever will be in a nearly vertical position, and the friction roller on the lever will then contact with the upper lever of the lower set and travel out on its inclined surface to force the door to a closed position. If the car is going down, the contact will be upon the lower lever of the upper set, the door being closed by a similar movement in both cases. The tension of the spring in the drum connected with the levers is such that, should any one entering or leaving a car be caught between the door jamb and the door, no serious injury will be inflicted, as the door may be readily forced back against the tension of the spring.

The Rain-Making Experiments.

A letter from a citizen of Texas who witnessed the recent Dyrenforth rain-making experiments in that State pronounces them the most veritawhich it is possible to abste of public money o trial party were shrewd enough not to begin opera tions before the season when, from time immemorial rain has come down plenty and often in that region. In his belief, too, unwarranted claims and representa tions were sent out as to the results of the experi ments.-Buston Journal.
G. Vulpius finds that reliable determinations of pe troleum in turpentine oil may be made by the followng modification of a method proposed by Hinsdale 1 gramme of the sample and 1 gramme of a pure oil of turpentine are weighed on separate watch glasses, which are then floated on a basin of water maintained at about $80^{\circ} \mathrm{C}$. As soon as the pure turpentine has evaporated, both watch glasses are weighed. The weight of the residue from the pure oil of turpentine (small quantity of resin always presentin pure turpentine) is deducted from that of the residue in the watch glass which held the sample. The difference is petroleum, which may thus be determined to one-tenth of a per cent.

AN AUTOMATIC FRISKET FOR PRINTING PRESSES. The improvement shown in the accompanying illustration is designed to facilitate the keeping of a per fect register in doing work on hand presses, while saving the pressman the labor of operating the fris ket. It has been patented by Mr. Lorenzo D. Clark of Fort Jones, Cal. The large view represents a press to which this improvement has been applied, Fig. 2 being a side view of the bed only with the tympan folded down upon it, and Fig. 3 being a partial section of the device in open position. At one side of the bed, adjacent to the tympan, is adjustably secured a shoe, having a vertical offset or ear with a cam surface. Near the lower end of the tympan a shaft is transversely journaled in three bearings, the bearings being so constructed as to admit of adjustment to any size of form. Upon the end of the shaft projecting over the offset of the bed shoe, is a disk, provided with a wrist pin projecting from both its faces, the inner portion of the pin being adapted to ride upon the caw surface of the offset, while the outer end of the pin is connected by a curved link with the ear of the bed shoe. One end of the link is pivoted to the pin, and its other end is bent to form a hook, and has a sliding connection with the ear, whereby the link will draw upon the wrist pin to turn the disk and $i t s$ shaft when the tympan is being thrown back, but will slide freely in a slot in the ear as the tympan is being put down. Upon the opposite end of the disk-carrying shaftis a head block, with a perforation at each end to receive a connecting rod, the other end of each rod being similarly connected to a head block on the end of a shaft journaled on the tympan near its top. The rods cross each other near their central portion, where they pass hrough guide sleeves, the crossing of the rods causing the shafts to be rotated in opposite directions, and the upper shaft has at its opposite end a crank arm, which is pivotally connected by a link with a spring, the ten sion of which is away from the tympan. Each of the shafts at the top and bottom of the tympan is pro vided with grippers, and as the tympan is put down, after a sheet has been placed in position, the pin on the inner side of the disk engages the cam of the bed shoe, whereby the disk is revolved and both shafts are turned, the tension of the spring then operating to press the grippers firmly upon the sheet. When the tympan is raised, the link connecting the bed shoe with the disk causes the shafts on the tympan to be revolved sufficiently to release the grippers, when the tension of the spring, as the crank arm to which it is connected is carried over the center of its radius, hold the grippers open. It is also designed, where desired to use guard strips in connection with the gripper

CLARK'S FRISKET FOR HAND PRESSES
shafts, to prevent the soiling of the sheets, the guards being so placed as to stand out at an angle when the tympan is raised, and not interfere with the work of the pressman.

A most important feature of the scientific instruc tion in the lower grade of schools should be the collertion of specimens which should form the subject of object lessons.

THE LARGEST OF OUR NEW WAR SHIPS.

 Larger by about fifteen hundred tons than any vessel ever before launched from a United States shipyard, the new cruiser New York, named in honor of the Empire State, smoothly slipped from her way.s at the Cramp shipyards into the waters of the Delaware, on Wednesday, December 2. The launch as an interesting spectacle, and one invoking a degree of patriotic ardor, was in every way a splendid success. It was viewed by scores of thousands, and there were numerous representatives present from the highest official circles. The shipyard where the launch took place has acres of shops amply provided with lathes, forges, furnaces, derricks, etc., and three other formidable ships for the new navy now being built there, on which the work is well advanced, contributed not a little to the feeling of unalloyed satis to the feeling of unalloyed satis-faction which the occasion brought out.
The new ship is said to have been the especial pride of the Navy Department, having great offensive and defensive qualities, a high rate of speed, and great coal endurance, and it was re marked, as she lay on the ways that her sharp, graceful lines suggested the speedy transatlantic liner rather than a ship of war. Three firms bid for the construction of this vessel, as follows: Class 1. Hull and machinery, including engines, boilers and appurtenances, cowplete in all respects in accordance with the plans and specifi cations provided by the Navy Department-Williain Cramp \& Sons, of Philadelphia, $\$ 3,150,000$; Union Iron Works, of San Francisco, $\$ 3,100,000$; Risdon Iron and Locomotive Works, San Francisco, $\$ 3,450,000$. Class 2. Hull and machinery, including engines, boilers and appurtenances, complete in all respects in accordance with the plans and specifications provided by the bidder, guaranteeing strength of materials, displacement, speed, etc. - Union Iron Works, of San Francisco, $\$ 3,000,000$; William Cramp \& Sons, of Philadelphia $\$ 2,985,000$. The proposal of William Cramp \& Sons to build the vessel, under the second classification, for $\$ 2,985,000$, being the lowest received was accepted, and a contract was entered into on August 28, 1890. The modifications included a rearrangement of the boilers, so that additional longitudinal and transverse bulkheads could be fitted in the engine and boiler spaces, thereby affording greater protection to the machinery and waking the boilers less vulnerable to attack from rams and torpedoes. The keel was laid on September 30,1890 , and the contract requires that the vessel shall be finished and ready for delivery to the United States on or before January 1, 1893.
The length of the New York is 380 feet and $61 / 2$ inches; breadth of beaw, 64 feet; mean draught, 23 feet and $31 / 2$ inches; displacement, 8,150 tons. Her highest speed is to be 20 knots an hour, and the sustained sea speed 18.5 knots. With 1,500 tons of coal in her bunkers and stored on deck, she will be able to steam 13,000 miles at the rate of 10 knots per hour. She has the ram bows and high freeboard of the large cruisers, but her stern is lighter, indicating the effort to produce a speedy model. Having a high freeboard, her guns may be worked in a seaway, the 8 inch rifles being 25 feet above water. In the absence of sail power, the entire dependence must be on her twin screws. The two masts are for fighting and signaling purposes, and are to be provided with protected tops. She has four

THE CHACMA.

draught. It is covered with two courses of plating, inches in thickness amidships and $21 / 2$ inches fore and aft. The slopes amidships have an additional thick ness of 3 inches, making a total thickness of 6 inches. n the wake of the machinery is a belt of thin armor between the protective and berth decks, the total thicknesses of armor on the sides being 6 inches. A coffer dam, 3 feet and 6 inches in depth, between the protec ive and berth decks, and extending the entire length of the vessel, is to be filled with a water-excluding ma erial.
In her armament the main battery is to consist of wore but lighter rifles than the Maine's. She is to have six eight inch breech loading rifles and twelve four inch rapid fire guns. In the secondary battery are to be eight rapid fire six pounders, four rapid fire one pounders and four Gatling guns. Of the six torpedo tubes, one is to be in the bows, one in the stern tubes, one is to be in the bows, one
and two are to be on each broadside.
Two of the eight inch rifles are to be mounted n a barbette forward on the upper deck, two in a similar barbette aft, and two are to be carried in broadside amidship on the upper deck. The men working the rifles in the barbettes are to be protected by ten inches of steel armor, and the revolving coni cal shields of steel are to be seven inches in thick ness. The big rifles amidships are to be protected by partial barbettes two inches in thickness. The fou nch guns on the spar deck are to have sponsons fou inches in thickness and are to be protected by shields The men at the six pounders are to be protected by eight inches of armor. The sloping armor beneath the barbettes is to be five inches in thickness, and the ammunition tubes below are to be five inches also.

Her motive power will be twin screws, driven by four vertical direct-acting triple expansion engines located in four water tight compartments. The diame ers of the cylinders of each engine are 32, 46, and 70 inches respectively, and the stroke is to be 42 inches. For the great speed expected the screws must make 129 revolutions a minute. It is estimated that the collec tive indicated horse power of propelling, air pump and circulating pumps will be 16,000 . The steam for the circulating pumps will be 16,000 . The steam for the
engines is to be supplied by six double ended main engines is to be supplied by six double ended main
boilers arranged two abreast in three water tight com boilers arranged two abreast in three water tight com-
partments, with six athwartship fire rooms. Each is partments, with six athwartship fire rooms. Each is feet three inches in length. They are to be worked under forced draught on the air tight fire room system. The lighting is to be by electricity, and the search lights are to have the latest improvements. She is to be fitted as a flagship, and a large and valuable library is to be given the ship by a New York merchant, while a large sum has been raised to present her with a handsome service of plate.

THE CHACMA OR SOUTH AFRICAN BABOON

by nicolas pike.
Africa is especially the native country of baboons. Of all the quadrumani they are about the ugliest, chiefly those of the genus Cynocephalus. A curious fact is that out of over fifty species of apes, monkeys, and baboons inhabiting Africa, there are said to be only one or two known instances of an African species occurring in Asia or an Asiatic one in Africa The one I am about to write of is the chacma, or C. porcarius This animal is met with in most of the southern ranges of mountains from the tropic of Cancer to those of the Cape colony. Even in the great Sneeuw berg range, where snow rests on some of the peaks the year round, troops of baboons are met with quite as numerous as those of the lower forest lands. Table Mountain, so conspicuous a feature rising above Cape Town, and grandly visible as you approach it from the sea, used to s warm with large and formidable roops of these creatures, whence they swooped dow on the lands of the poor farmers, doing irreparable damage to their crops. As the country round Cape Town has become settled and many of the baboons been killed, they, like so many other animals, have re ceded before civilization.
In the kloofs or rocky passes of the mountains where there is not much traffic, fifty or sixty may be seen stretched out, basking in the sun. At the slight est noise or disturbance they are on the alert and heir how lings and screams of defiance resound along he hills. They inhabit the dense forests, also where there are ledges of rock, for their habits and structure prevent their easily climbing trees. They prefer steep verhanging cliffs, and if surprised at their base readily mount them by clinging to the giant lianes that form a network over them. Hand over hand they go up, and many species of these plants go by the name of "bavians touw," or baboon's ropes, from the use they make of them. When half way up and they think they are out of danger, they have an ugly habit of rolling down stones or pieces of rock on the inruder, rendering it no easy matter to escape, if no orewarned.
The local name chacma is taken from an old Hot-

THE NEW ARMORED CRUISER NEW YORK, LAUNCHED DECEMBER 2.
tentot word T'chackamma, given with a peculiar click of the tongue, unpronounceable by white men except in rare instances by those brought up in the colony. This click runs through the whole Hottentot language and that of many of the Katir tribes. It is not often heard now from the Hottentots, as the old small race heard now from the Hottentots, as the old small race
is fast dying out. Curious to say, the constant adis fast dying out. Curious to say, the constant ad-
mixture of white blood has developed a large and imixture of white blood has developed a large and
good-looking race, and these " bastard Hottentots," as they are called, use a medley of low Dutch and English, or the latter entirely.
The ordinary food of the chacma consists of bulbous roots, which they dig up and peel adroitly, berries, wild grapes, and even grass when pressed by hunger. They eat greedily of all kinds of insects; especially are they fond of locusts, of which so many species abound in the Cape, and they are also credited with sucking birds' eggs, and destroying the young. Unfortunately they do not confine themselves to such food as nature provides, but will travel long distances to raid the farm lands wherever melies or Indian corn, millet, oats or pumpkins are planted.
The generic name of Cynocephalus was given to the chacma by Cuvier; from two Greek words signifying dog and head, the prolonged truncated muzzle resembling that of a dog, and having the nostrils at the extrewity. Their swall, deep set eyes, with white upper eyelids and projecting brows, give them as indescribable look of ferocity and cunning. The males are large and robust, and when angry display their great canine teeth, which gives them so fierce an asspect, and the old ones would be most formidable foes to tackle, as they could tear a man to pieces like a tiger. When young they can be easily tamed and are quite playful. They are said to guard a house even better than a dog, giving instant notice of the approach of a stranger. They are seven or eight years old before they are full grown, when with few exceptions the old ferocity begins to develop itself and they are most uncertain of temper. When adult they are far too dangerous to have loose around, as they
rarely attach themselves to more than one person, and even with him, on the slightest provocation, they pass from caresses to the most violet expression of rage. The females are rather more gentle than the males, and siwaller, but when in troops are terribly quarrelsome with each other, particularly when they have young ones. These are tended with the greatest affection by the mothers, but the males inculcate pretty strict obedience by a good sound cuffing once in a while. Their teeth greatly resemble those of a human being, also their internal organization, and the fingers of their hands are free. Their walk is rather slow, but their usual gait is aj trot or short gallop. They can stand erect with the greatest ease, but usually go on
all fours. There is a great number of edible bulbs or ground nuts in the Cape, some good and very wholesome, but others poisonous. The senses of taste and swell in the chacmas are so keen that they readily reject the bad ones. When Le Vaillant was traveling in South Africa, he had a tame chacma with him, and when he found strange fruits on roots, his men would not touch thew till they had been offered to the baboon. If he ate of them they were glad to do so too, and equally refused them when he did. Le Vaillant tells a curious story of how his chacma unearthed the roots it was so fond of. It seized the tuft of leaves with its teeth, dug about and loosened the root with its fingers, and then by drawing the head gently back ward generally managed to extract it without break
ing. When this course failed, he seized the tuft as before, as close to the root as possible, then suddenly before, as close to the root as possible, then suddenly
throwing himself head over heels, the root rarely failed to follow. The cheek pouches are large, and when the animal found a good supply it was stowed in them for future use.
When I was at Simon's Bay, about twelve miles from Cape Town, I set off for a long tramp near the coast, but was warned to look out for baboons and keep out of their way. As I was going alone, I carried a double barreled gun, a pistol and a knife. Strange to say, unless attacked, baboons will avoid any one carrying a gun. On my way I fell in with a Scotch missionary, who was in charge of a small mission station in a very lonely part of the road. He was surprised to see we alone, and told me I wight encounter danger from baboons or snakes. He and a Hottentot boy accom panied me for some distance and they told :ne numer ous tales of the maraudings of the former.
Later on, I came to the house of an old pilot, and he showed me the wreck of his garden, that only a shor a fine harvest of pumpkins and melies. Half of them had been carried away, which was bad enough, but the greater part of the rest was destroyed. They will go any distance to a field of pumpkins, for the sake of the seeds, of which they are passionately fond. They tear them open to get at the seeds, and often one baboon will destroy a dozen in order to fill his pouches. A trap is sometimes set for them in the eastern districts, when
their greediness brings their speedy destruction. A their greediness brings their speedy destruction. A
large pumpkin has a hole made in it just large enough for a hand to enter when open. Fresh shelled corn is
mixed with the seeds, which is also a great temptation to the thief. A chacma comes along, and seeing a fine hand, which slips in easily. So he clutches a handful of seeds and corn, but it will not cowe out again. So reluctant is he to give up the favorite food that he will not relax his hold, but tries to escape with the pumpkin. This so embarrasses him and retards his flight that he falls an easy prey to the gun of the owner in ambush. Ordinarily the chacma would tear it to pieces, but loses his head under the, to him, strange conditions.
When going on their burglarious exploits, the chacmas display a great awount of intelligence and
cunning. Arrived at the field of their operations, sentinels are posted on any eminence while the rest of the marauders collect their provision with the greatest expedition, filling their cheek pouches and tucking the green ears of corn under their arms. This is done silently, and at the slightest warning note, a low, peculiar cry of danger frow the sentinels, a way they
rush yelling and screaming, very rarely being caught. Should any of their number cowe to grief, it is said that they drag away the unlucky sentinel who has failed in his duty to warn them of danger in time, and but it is so deatieved how true it may be
Many people refuse to shoot them, for if not killed outright it is so terrible to see their death agonies. The wounded animal gives forth such mournful, pitiful cries, with so human a voice, as if asking for help, that few white people can be induced to shoot a second. Most of the quadrumani do the same. A little gray monkey I saw accidentally shot made so painful a scene before it died, its appealing looks, actions and cries were so exactly those of a badly hurt child, that I vowed never to shoot a monkey, and I never did, though I had several chances.
I had often heard that baboons can appreciate fire though they cannot make it. A party had been picnicking in some woods, and in one part was a steep descent crossed by bold ledges of rock that made a series of steps down to a spring below. This place was
fixed on as a capital one to dine in, a nd a large fire was fixed on as a capital one to dine in, and a large fire was
lit on one of the ledges for cooking purposes. During lit on one of the ledges for cooking purposes. During
the afternoon the party was broken up, and all dis persed, but considerable fire was left, as some of the logs used were very thick. Later it was discovered that one of the ladies had left her shawl or sowe other article on one of the ledges, and several of the gentleruen returned for it. On arriving at the spot they were startled to find the ledge where the fire was left with a new set of occupants. A number of baboons had seated themselves near the fire, and some were en
gaged pushing the ends of the smaller sticks into it gaged pushing the ends of the smaller sticks into it, while the others devoured the pieces of bread, rice and varied scraps left from the dinner. Luckily, the wiss ing article had been dropped on the upper ledge, and the spectators did not linger long in such dangerous vicinity to these uninvited guests. Some farm hand
who went there late in the evening found the baboons still chattering round the burning embers. Dogs are of very little use as guardians against these ferocious depredators. They pay no heed to them, unless the dog has the temerity to go for the chacma, when he
gets handled so severely it is rarely he will attack a gets handled so severely it is rarely he will attack a
second time. Native guardians are littie better, for the chacmas, with their patience and cunning in watching their opportunity, outwit the men, and gain their ends in the long run, in spite of them. The screechings and yellings they make when disturbed in their haunts are enough to frighteu any one within hearing, and when you find great pieces of rock pelting down dangerously near your head, you are apt to take to your heels, happy if the screeching monsters do not overtake you
During my residence in the East, I had a fine young chacma given me about three years old. He grew
rapidly, and in about a year he was a large and dangerous animal to strangers, though very tame with me. He would sit beside me, playing like a child, but let any one come into the room, man or boy, and he raised himself fully erect, every hair on his head and neck standing out, made hideous faces and showed his powerful teeth, enough to intimidate any one, but a ew gentle words frow me calmed him. Fearing some accident. I had a large iron chain attached to a thick ring and placed round his body, and this was fastened by a strong bolt driven into a tree. Mr. Jean Louis, as he was called, took it all quietly, but on the first chance he got alone he broke a link in the chain with a stone in the same manner as a human being would do it, yet the links were as thick as the little finger of a man. On my return with a friend I found him up in a large bread fruit tree. The sight of a stranger so excited him he began pelting us with the heavy fruit, pretty angerous missiles, when sent with so accurate an aiu retreated precipitately, but when I was alone I soon had Jean Louis down under control. He was alway accustomed to watch for my return, when at once he set to work with the impatience of a child to examine or other fruit.

His curiosity was great, also his imitative faculties. Once he "atched me attentively make a hole with a gimlet and insert a screw with a screwdriver, and he did the same fairly well. He could drive a nail as well as I could, draw a cork frow a bottle and drink wine from a glass, and I believe I could have taught him almost anything save speech. I was the only male he would allow to approach him, but he never showed the same disposition to a female. His ferocious looks, however, were enough to deter any woman frow going near him. It was my intention to bring him with me to America, but circumstances prevented it. A few days before I set sail, Jean Louis got loose and made for the cathedral and began tearing off the clapboards. Seeing the door open, he walked in and went to the pulpit, to the horror of the sexton who then caught sight of him. He seized and tore the velvet cushions, and when an at tempt was made to dislodge him, he flung the Bible and prayer book at him and fairly drove him from the building. The police were called, and two men with loaded carbines shot my pet while standing erect defying them, but if I had been called I could have got him away quietly. When brought to the house and laid on the veranda he had almost a human look about him. Jean Louis now occupies a prominent place in the Museum of the Royal Society of Arts and Sciences at Port Louis, Mauritius.

The Keweenaw Copper Deposits.
A peninsula called Keweenaw Point, jutting into Lake Superior from the southern shore toward the northeast, is famous as the center of a vast copper min ing industry. Last year the mines produced no les than $105,586.000$ pounds of refined copper, and it is es timated that during nest year production will be in creased by at least 20 per cent. Mr. E. B. Hinsdale who contributes to the latest bulletin of the American Geographical Society an article on the subject, has much that is interesting to say about the numerous prehistoric mines which have been found in this region These ancient wines, judging from their extent, must have been worked for centuries. Who the workers were no.one can tell. They seem to have known nothing of the swelting of copper, for there are no traces of wolten copper. What they sought were pieces that could be fashioned by cold hammering into useful articles and ornaments. They understood the use of fire in soften ing the rocks to enable them to break away the rock from the masses of copper. They could not drill, but used the stone hamwer freely. More than ten cart loads of stone hamwers were found in the neighhorhood of the Minnesota mine. In one place the excava ion was about 50 feet deep, and at the bottom wer found timbers forming a scaffolding, and a large shee of copper was discovered there. In another place, in one of the old pits, was found a mass of copper weigh ing 46 tons. At another point the excavation was 26 feet deep.
In another opening, at the depth of 18 feet, a mass of copper weighing over 6 tons was found, raised about 5 feet from its native bed by the aucients, and secured n oaken props. Every projecting point had been taken off, so that the exposed surface was smooth Whoever the workers may have been, many centurie must have passed since their mines were abandoned Their trenches and openings have been filled up, or nearly so. Monstrous trees have grown over their work and fallen to decay, other generations of trees spring ing up. When the mines were rediscovered, decayed trunks of large trees were lying over the works, whil a heavy growth of live timber stood on the ground.

world's Fair Notes.

The great dowe of the administration building which will be the wost conspicuous architectural feature of the exposition, and the four sualler domes will be covered with aluminum bronze, a newly dis overed amalgam, which is said to glisten brighte than gold. The contract for gilding the dowes has been let for $\$ 54,000$.
The party which, under the direction of Chief Put nam, of the Department of Ethnology, of the exposition, has been making excavations of the mounds in Ohio for three months or more, wet with rare succes on Nov. 14 near Chillicothe, in making one of the ichest finds of the century in the way of prehistoric remains. While at work on a mound 500 feet long, 200 feet wide and 28 feet high, the excavators found nea the center of the mound, at a depth of 14 feet, the nassive skeleton of a man incased in copper armor. The head was covered by an oval-shaped copper cap the jaws had copper mouldings; the arms were dressed in copper, while copper plates covered the chest and stomach, and on each side of the head, on protrudin sticks, were wooden antlers ornamented with copper The mouth was stuffed with genuine pearls of im nense size, but much decayed. Around the neck wa a necklace of bear's teeth, set with pearls. At the side of this skeleton was a fewale skeleton, the two being supposed to be those of man and wife. It is estimated that the bodies were buried fully 600 years the king of the mound builders.
the st. clair tunnel drainage system.
Our first page illustrations enable one to readily comprehend the amount of work that was deemed necessary for the purpose of keeping the great railway tunnel between the United States and Canada always free from water, and the manner in which the engineers wet the difficulty. The area of sunken roadway included in the approaches, and the land on each side, for which drainage had to be provided, was fourteen acres on the Canada side and eleven and a half acres on the American side. The amount of rain which may fall in twenty-four or forty-eight hours at any given place, in localities where even the most complete records are kept, is always a variable quantity; but in a work of this kind, where absolute safety and the most thorough provision against any interruption of most thorough provision against any interruption of
traffic are required, it was necessary to provide ample traffic are required, it was necessary to provide ample
facilities for the immediate disposal of any quantity which wight fall, and the engineers appear to have made their calculations on this basis.
On the Sarnia side two sizes of pumps are provided, the larger one, shown in our first page view, being a vertical, direct-acting, compound steam pumping engine, with a capacity of five million gallons in twenty-four hours. It is not expected that it will be necessary to employ this pump except during heavy and proionged rains, a smaller duplex pump being and having a capacity of five hundred gallons per and having a capacity of five hundred gallons per
minute. All precipitation is led by stone drains at the base of the retaining walls, and from each side of the track, through a culvert crossing under the track, to a sump or well hole, from which the water passes,
through a six-foot iron pipe, to the pumping shaft, 160 through a six-foot iron pipe, to the pumping shaft, 160 together in a manner similar to that followed in the coustruction of the tunnel, and is 15 feet 2 inches in diameter and 81 feet 3 inches in depth. It rests upon diameter and 81 feet 3 inches in depth. It rests upon a timber base, upon which, within the shaft, is a six-
foot masonry foundation for the large vertical and the small duplex pumps.
The vertical pumps are surmounted by large waterways or pipes reaching to the surface of the floor above,
and through which pass the piston rods that connect and through which pass the piston rods that connect with the steam cylinders resting upon the top of these in diameter leading to a drainage connection with the St. Clair River.
As will be seen by the plan and sectional views on the first page, ali of the water collected from the drainage area provided for is directed to and discharged frow the pumping shaft, none of it being permitted to enter the tunnel. The compound engines employed have two high-pressure cylinders, $191 / 4$ by 24 in ., and two low-pressure cylinders of $333 / 8$ by 24 in ., and the pump cylinder is 22 by 24 in . •These are all located in a permanent house upon the bank of the approach, where also are four large steam boilers, two independent Ball dynamos that furnish the incandescent lights in the tunnel, and two large size Root exhausters that in the tunnel, and two large size Root exhausters that
draw the foul air from the center of the tunnel, draw the foul air from the center of the tunnel,
through two 20 inch sheet iron pipes, and one air and condensing pump for engines, capacity 20,000 cubic feet per minute.
The water that collects upon the American watershed is mostly directed in the same manner as upon the Sarnia side to a well near the tunnel entrance, where, in a masonry ouilding on the south side of the tracks, are four dupex pumps, either or all of which may be called into use if necessary. Upon this side the banks are terraced, and part way down from the the banks are terraced, and part way down from the
top of the bank a ditch is dug-extending U form from the beginning of the approach-the full length of the bank on each side and with a fall toward the tunnel. At the lower end of the U near the tunnel entrance a sewer connection gives sufficient fall for the water to flow to the river, thus lightening the work of the fourinch pumps. The capacity of the four pumps in this section is a total of 3,000 gallons per minute.
It will thus bed seen that the drainage of both approaches is independent of the tunnel. The tunnel system is quite simple, and owing to the perfection of the tunnel work, but little water is required to be raised. We are informed by Mr. Hobson, the designer and builder of the entire tunnel, that with the exception of what little would be driven in to the ends of the tunnel by a slanting rain storm, there is not much more than the natural condensation upon the sides of the tunnel. Although this section covers a length of
6,026 feet, its drainage is provided for at the lowest slope of the tunnel by two pumps, as shown in the cut, one on either side of the tunnel, upon a bracket bolted to the rings, with the suction pipes curved against the side of the rings, and extending to the cen ter of the track. These pumps are of the capacity of 500 gallons per minute. They are operated very inseniously and without being at all objectionable in the tunnel. At the comwencement of the work on the
tunnel a trial shaft was sunk near the river bank, and tunnel a trial shaft was sunk near the river bank, and
this shaft now serves the purpose of receiving the steam pipe, exhaust pipe, and discharge pipe of the pumps and engines.

In making the plans for this great drainage work
the meteorologist of the Canadian government was
consulted as to the recorde of the heaviest known rainfalls, and due consideration wasgiven to all other available data. The average annual rainfall of the State of Michigan, and of all that section, has been for several years considerably below that of the sea coast in the vicinity of New York, but it is not the average rainfall so much as the sudden, heavy storims which reof the water. The heaviest rainfall ever known in New York was in Septewber, 1882, when the precipitation was just over six inches in depth during twenty-four hours, and during three days the fall wasfifteen inches. Taking the rate for the day in which the fall was heaviest, a similar rain upon the fourteen acres for which this drainage system has been established at Sarnia would give only $2,280,936$ gallons of water to be disposed of, which is not half the quantity whose removal is positively provided for at Sarnia in any twenty-four hours.

oil Fires.

The Engineering Magazine for November contains a number of excellent articles. Among them is one by Edward Atkinson, in which some very practical and wholesome lessons are given relative to the construction of buildings for mechanical purposes. The following hints on oil fires are also given :
When oil or cotton waste takes fire in shops, one of he first impulses is to throw wateruponit. The points brought out by Mr. Atkinson are of importance to all mechanics. He says that one of the largest losses which the insurance company of which he is president was ever called upon to pay was mainly caused by the wisuse of a bucket of water. He describes the occurrence as follows:
"In the early evening a mechanic, who was working aloneafter mill hours near the main gears, dropped his lantern in the slush box, setting fire to the grease and lint collected therein. It burned with dense smoke and very little flame. Two or three shovels of sand or a wet blanket would have put it out. But he did what he supposed was the right thing-he threw a bucket of water upon the burning grease. Instantly a fierce flame sprang up to the very ceiling of the basement, passing through the belt holes, setting the will on fire, which was completely destroyed. I was not then an officer of an insurance company, and I did not at that time take up the subject for investigation. A little ater I happened to go to my seaside house with my boys in the early spring. I had not then in vented the Aladdin oven, and we undertook to fry some fish cn the top of the cooking stove; not being very skillful, we set the fat on fire. I took a dipper and poured some water into the burning fat. Straightway another great flash of flame roared up, singeing my hair and whiskers and reaching the ceiling of the kitchen. I then recalled the incidents of the will fire, and determined to find out what it all meant."
Mr. Atkinson then consulted Prof. Ordway, of the Massachusetts Institute of Technology, who explained that steam combines with and takes up other gases, its own volume lifting or raising them, thus becowing a carrier of combustible vapor and flame to anything combustible situated over the fire. The best thing to extinguish burning fats or oils or oily waste is sand; and it would be a prudent thing to have buckets of character are liable to originate.

Printers' Roller Composition.

This composition, by Hawkins and Stacey, London, has an affinity for printers' ink, and is free from glycerine, which is a principal ingredient in roller compo sitions as usually made, but which repels the ink. A composition prepared according to the following formula has been found to answer well in practice : Glue or gelatine, 1 pound ; water, 12 ounces; linseed or other suitable oil, 1 pound 8 ounces; treacle or sugar, from 1 pound to 1 pound 8 ounces ; calcium chloride or potash, $3 / 4$ ounce; powdered resin (if required), 2 ounces. ash, $/ 4$ ounce; powdered resin (if required), 2 ounces.
The glue is first soaked in the water and then welted, and the linseed oil (warmed to a temperature of about $150^{\circ} \mathrm{F}$.) is then very gradually added and thoroughly mixed with the melted glue. The sugar or treacle is then added to the mass kept at a suitable temperature, and the calcium chloride then incorporated. If a very tough composition be required, the resin (dissolved by heat in a little linseed oil) is to be added. The composition may be made non-absorbent of water by dispens ing with the calcium chloride and substituting a simi lar amount of bisinuth carbonate.

A Word to Mail subscribers.
At the end of every year a great many subscription o the various Scientific American publications exTh
The bills for 1892 are now being mailed to those Nhose subscriptions come to au end with the year. Responding promptly to the invitation to renew saves secures without interruption the reception of the paper

Sorrespondence.

Pure coal in oregon.

T'o the Editor of the Scientific American:
In your answer to inquiry in the Scientific AmeRICAN of November 7th regarding the finding of a supposed mineral wax at the mouth of the Nehalem River, Oregon, you state:
" The occurrence in quantity indicates the possibility of a . . . lignite bed in the neighborhood." There are two distinct veins of pure coal found within three wiles of the beach where the wax is found, 30 in . and 26 in . in thickness respectively. Both veins are of excellent quality for this coast. The analysis of the 26 in . vein is as follows:

These may beof the lignite age, but hardly a lignite coal. Aug. C. Kinney.
Astoria, Oregon, November 20. 1891.

Ring Magnets. Stientific American

To the Editor of the Stientific American
In the early part of July, 1891, I separated the plates of a compound horse shoe magnet to remagnetize it, and, placing two of the plates on a board, with opposite poles touching, passed the poles of the other plates several times over them. The same process was used, alternately, with all the plates.
On the 13th of July it occurred to my mind that a study of the closed circuit of magnetism, when the two plates were lying on the table, with opposite poles touching, might open the way to some interesting discoveries. This led to an investigation of the old proposition, that a solid steel ring or circle cannot be magnetized in a circular direction. The usual proof offered to establish this proposition are: (1st) That it has been tested by trial and found to be true, and (2d) that the proposition is self-evident, because there are no points, breaks, or openings for poles in a continuous or solid ring. Not satisfied with extant theories, the writer commenced a series of experiments in order to be able to demonstrate clearly and positively that the proposition is true, or to show, beyond question, that it is false. The result of these experiments fully establishes the counter proposition, and decisively proves that a solid steel ring can be circularly magnetized.
The first step was to have a flat steel bar, one-half inch wide, three-sixteenths thick, and twelve inches long, bent edgewise into a circle, and the two ends solidly welded. While hot and soft, it was sawn at two opposite points, on the flat side, more than half way through its thickness, that it might the more easily be cut into two semicircles, when cold, and after an attempt had been made to magnetize it. Then, when separated, if the two semicircular parts were not magnetic, the old proposition would be confirmed. If, on the contrary, any polarity, however feeble, could be observed, acting longitudinally, in the severed pieces, this would be irresistible evidence that the ring had been magnetized.

For obvious reasons, that ring has not yet been divided into two pieces. At each of the marked places, magnetism developed into a corresponding pair of poles, with power sufficient to take up and hold in suspension an eightpenny nail. This settles the question.
Instead of two, had several partial cuts been made in the ring, at each of them polarity would have appeared. The magnetic current passes through every atom of the metal, and only requires an opening to develop its presence. Further trials have revealed the peculiar fact that widening the cut within given limits, not indefinitely, increases the power. It has also been ascertained, by preparing a second ring, that one single cut develops more magnetism than each of two or more.
Pushing the investigation onward, as new paths for exploration came into view, another ring was pre-
pared, similar to the first and second, except that it was not welded. The two ends were nicely dressed and brought into close contact, so as not only to touch but to press tightly together, by the elastic force of the steel. This ring, as were the others, was left untempered, except at the two ends, where it was made very hard. When magnetized, it possessed extraordinary attracting power, at the ends or poles. By a simple device they were made to separate or touch at pleasure. When the opening was from a sixteenth to an eighth of an inch wide, the magnet would lift more than three times its own weight. A ring magnet is certainly stronger than that of any other form, and yet 1 have never before known that shape to be used. If a nuin ber of such plates or rings were bolted together, they would make a surprisingly effective compound magnet.

Thos Henderson.

Black Horse, Mu., July 21, 1891.

THE TOCCI TWINS.

We give illustrations of what are probably the most remarkable human twins that have ever approached maturity. They recently arrived in this country. They are known as the brothers Giovanni and Giacomo Tocci. They were born on July 4, 1875, their wother being nineteen years old. The mother's waiden name was Antonia Mezzano. Their birthplace was Locana, Turin (Italy). The same mother has had nine children, all strong and well. The twins are connected frou the sisth rib downward, and have but one pair of legs and a single abdowen. The spinal columns are distinct untii the lumbar region is reached. There they unite at an angle of 130 degrees. The sacrum seems to be a single bone. They have two distinct stomachs, hearts, and pairs of lungs. The arterial and respiratory systems are quite dis. tinct ; the heart beats and breathing differing often in the two individuals. At the age of thirty days they weighed eight pounds, and in the next thirty-one days gained nearly three pounds.
It was at this period of their lives that they were first subjected to critical examination.
Their lives are distinct. They have regions of common sensibility, and of purely individual sensation. One often sleeps when the other wakes. There is no direct correspondence of their appetités. One may be hungry while the other is fast asleep.
In their general appearance there is nothing repulsive. They have bright, intelligent faces, not of the peculiar cast common to cripples. They are educated and write their names cated and write theirnames
as souvenirs for visitors
They are able to stand,
They are able to stand, but have not yet succeeded in walking, as each leg is governed by its own brain. The want of correspondence has proved fatal to any attempts in this direction. They can stand quietly, so that it is not only a question of strength. At their home they spend much of their time on the floor, using their inner arms for the wost part, crawling and tumbling about and thus retting a certain amount of exercise. They can dress and undress themselves.
The one on the reader's left as he faces the picture, Giovanni, drinks beer in considerable quantities. The other one Giacomo, not liking beer, drinks mineral water in its place. Giovanni is quite fond of sketching and draws with some spirit. He rests the book or paper on his knee. Sometimes his brother, who is more of a talker and more volatile in disposition, finding sowe fault with the drawing, will kick the drawing off his knee. All this in good part, for they live on excellent terws with each other and seem unconscious of any misfortune in their condition.
They are disconnected as regards illness. Quite re-

Figs. 1 and 2.-SPIRIT SLATES.
cently one of them had a cold, while the other was suffering from a bilious attack.
The Siamese twins Eng and Chang, who died in 1874, within a few hours of each other, at the age of sixts years, were very celebrated. They were far less com pletely united. A thick fleshy ligament connected the owerends of their breast bones. They were of a good degree of intelligence, conversed with visitors, and seemed reasonably well contented with their lot. Had the uniting ligament been purely wuscular they could

THE TOCCI TWINS.
persons. The possibility of doing this was often dis cussed in their life. But on post mortem examination it was found that a process of peritoneum extended frow one abdowinal cavity to the other. But one or two cases are on record of the severing of such a ligawent at the time of birth, with survival of even a single wember of the pair. Before the Siamese twins, the "Hungariau sisters," Helena and Judith (1701-1723), obtained much celebrity. Their region of connection was the sacrum. The South Carolina negresses, Millie and Christine, exhibited under the misleading title of the two-headed nightingale, were another interesting example of twinning. They were also counected by the lower parts of the back, including the sacrum and probably lower lumbar region. They had four legs, the Siamese twins. They enjoyed excellent health and spirits and used to sing together. They progressed by walkingeither on the rear pair of legs or on all four, in which case they moved sidewise. Waltzing was one of their accomplishments. Unquestionably their intestines were united. While they possessed common sensory nerve systems as regards the legs, both feeling a touch, the motor nerves were so distinet that one could not move the limbs of the other. They were born about 1851 .

Fig. 3.-passing a finger, rod, and egg through a hat.

EXPERIMENTS IN PRESTIDIGITATION,

Spirit Slates.-Two ordinary wooden framed slates are presented to the spectators, and examined in succession by them. A small piece of chalk is introduced between the two slates, which are then united by a rubber band and held aloft in the prestidigitator's right hand.
Then, in the general silence, is heard the scratching of the chalk, which is writing between the two slates the answer to a question asked by one of the spectathe answer to a question asked by one of the specta-
tors-the name of a card thought of or the number of spots obtained by throwing two dice. The rubber band having been removed and the slates separated, one of them is seen to be covered with writing.
This prodigy, which at first sight seems to be so mysterious, is very easily realized.
The writing was done in advance; but upon the written side of the slate A there had been placed a thin sheet of black cardboard which hid the characters written with chalk. The two sides of this slate thus appeared absolutely clean.
The slate B is first given out for examination, and, after it has been returned to him, the operator says: "Do you want to examine the other one also ?" And then, without any haste, he makes a pass analogous to that employed in shuffling cards. The slate A being held by the thumb and forefinger of the left hand and the slate B between the fore and widdle finger of the right hand (Fig. 1), the two hands are brought together. But at the moment at which the slates are superposed, the thumb and forefinger of the right hand grasp the slate A, while at the same time the fore and widdle finger of the left hand take the slate B. Then the two hands separate anew, and the slate that has already been examined, instead of the second one, is put into the hands of the spectator. This shifting, done with deliberation, is entirely invisible. During the second examination the slate A is laid flat upon a table, the written face turned upward and covered with black cardboard. The slate having been sufficiently examined, and been returned to the operator, the latter lays it upon the first, and both are then surrounded by the rubber band.
It is then that the operator holis up the slates with the left hand, of which one sees but the thumb, while upon the posterior face of the second slate the nail of his middle finger makes a sound, resembling that produced by chalk when written with. When the operator judges that this little comedy has lasted quite long enough, he lays the two slates horizontally upon his table, taking care, this time, that the non-prepared slate shall be beneath (Fig. 2). It is upon it that then rests the black cardboard, and the other slate, on be-

Fig. 4. THE ENDLESS PAPER RIBBON.
ing raised, shows the characters that it bears, and that are stated to have been written by an invisible spirit that slipped in between the two slates.
Our readers will not ask us how we manage to know in advance what should be written upon the slate. It is useless to say that deceit is allowable in prestidigitation; loaded dice always turn up the same number, and nothing is easier than to know the name of the card that a spectator will draw from a pack composed of thirty-two similar cards, if one is not skillful enough to cause him to take the forced card.
Tricks with a Hat.-Prestidigitators frequently bor row from their spectators a hat that serves them for the performance of very neat tricks which are not always easily explained. We shall describe some of the most interesting of these.
The operator will begin by proving to you that the felt of your hat is of bad quality, and, to this effect, he will pierce it here and there, with his finger, his magic wand; an egg, and with a host of other objects.
This is all an illusion, the mystery of which is explained by Fig. 3. See the finger B. It is either of wood or cardboard, and terminates in a long slender needle. The prestidigitator, who has concealed the finger in his left hand, thrusts the point into the top of the hat, whose interior is turned toward the spectators. Afterward, raising the right hand, the forefinger of which he points forward, he seems to be about to pierce the top of the hat, but, instead of finishing the motion began, he quickly seizes in the interior, between the thumb and forefinger, the point of the needle, wiggles it around in all directions, turns the hat over, and the cardboard finger, which moves, seems to be the prestidigitator's own finger. The same operation is performed with the wooden half egg, C and the $\operatorname{rod} A$, which, like the finger, appear to traverse the hat, in the interior of which are hidden the true rod and egg. We may likewise solder a needle to a half of a five franc piece, and thus vary the objects employed for this recreation to infinity.

In order to take from a hat a large quantity of paper in ribbons, and then doves, avd even a duck or a rabbit, there is no need of special apparatus nor of a great amount of dexterity, and still less of the revolving bobbin or of the mysterious machine whose existence is generally believed in by the specta. tors when they see the paper falltors when they see the paper fall-
ing regularly from the hat, and ing regularly from the hat, and turning gracefully of itself as the
water from a new sort of fountain would do.

Nor is there here any need of a high hat; a simple straw hat (or a cap, at a pinch) will suffice. The prestidigitator holds close pressed to his breast and hidden under his coat a roll of the blue paper prepared for the printing apparatus of the Morse telegraph, and which is so tightly wound that it has the aspect and consistence of a wooden disk with a circular aperture in the center. In turning around after taking the hat, the opening of which rests against his breast, the operator deftly introduces into it the roll of paper, which has the proper diameter to allow it to enter by hard friction as far as to the top of the hat, and stay where it is put even when the hat is turned over.
Were it needed, the paper might be held by a proper pressure of the left hand exerted from the exterior. The introduction of the paper is effected in a fraction of a second.
"Your hat, my dear sir, was doubtless a little too wide for your head, for I notice within it a band of paper designed to diminish the internal diameter," says the prestidigitator, while, at the same time, he draws from the hat the end that terminates the paper in the center of the roll. Then he reverses the hat so that the interior cannot be seen by the spectators The paper immediately begins to unwind of itself and to fall very regularly and without intermission (Fig. 4, to the right).
When the fall of the paper begins to slacken, that is, in general, when no more than a third of the roll re mains, the prestidigitator turns the hat upside down, and, with the right hand, pulls out and rapidly revolves in the air the paper ribbon, whose capricious contours, succeeding one another before the first have
had time to fall to the floor, produce a very pretty effect (Fig. 4). The quantity of paper extracted frow the hat appears also in this way much greater than it really is, aud at length forms a pile of considerable bulk.
This experiment may be completed in the following manner : 'The operator, approaching his table, which, upon a board suspended behind it, carries a firmly bound pigeon, quickly seizes the poor animal in passing, and conceals it under the pile of paper, while he puts the latter back into the hat, in order to see, says he, whether all that has been taken out can be made to enter anew.

Having thus introduced the pigeon or any other object into the hat, the paper is taken out, and it is at the moment that the hat is restored to its owner that he pretends to discover that it still contains something. -La Nature.

THE GALAPAGAS TORTOISES.

If the visitor to the Central Park menagerie will pass into the house behind the lion quarters, and walking into the house behind the graceful antelopes of South
past the stalls where the

the galapagas tortoises.
Africa, the pretty gemsbok (Oryx gazella), are con fined, look over the last bin on the right hand side, he will see a group of interesting objects-the Galapaga ortoises. If the temperature, the character of the day nd their own dispositions are in accord, he will find them taking some interest in their surroundings, and nay be able to observe their stiff and strained atti tudes, their inane, staring eyes, their gaunt, wrinkled necks, and the comical protrusion of their legs. But if it is dark, or the surfeit of a late dinner has thrown them into post-prandial reflections, he will observe nothing but a bundle of dirty brown box-like humps, which are marked on their outer surface by a series o sculptured and raised ridges, while dimly eeen within the gaping edges of their front and back margins, the folded limbs and withdrawn somnolent heads of their nmates are provokingly descried, motionless and tor pid. These lumps of bone have, however, to th naturalist a great interest. They have been brought rom that remarkable group of islands which lie some seven hundred miles from the west coast of South Anerica, opposite Ecuador, beneath the equator, and belong to a fauna which, from its remote and insular position, has assumed an indigenous and unique ceived their name from thene large tortoises. The
name Galapagas alludes to them, which is seen more clearly in the German translation, \mathbb{N} childkroteninsehn, and in the French, 1sles des Tortues, both designations being literally the islands of the tortoises. Chas. Dar win has devoted a chapter in his "Voyage of the Beagle" to a description of these curious reptiles, and they have been made the subject of many sketches by the chance tourists or wandering visitors of this remote region. Dr. A. Gunther also prepared a masterly paper on these animals for the Philosophical Transac tions, of England, and their discussion is a wide and tempting field in the subject of animal distribution and variation.
The Galapagas Islands are volcanic in their origin and present desolate surfaces of scoriæ, rugged and black surfaces of blistered and splintered lava. Here these immense tortoises were found by some of the earliest navigators, and were long resorted to as food by the buccaneers of the Spanish Main. Their flesh, especially that upon the breast bone, as instanced by Darwin, is very delicious, and as they retain their size and sweetness after wonths of confinement, they afforded a very convenient source of food for the provisioning of ships which would be for a long time away from means of supply of fresh meat. The great numbers of these rep tiles in the islands before they had become reduced by men were surprising. They had multiplied in unchecked fecundity, and this, combined with their length of life, resulted in an enormous population. In 1680 Dampier said of them The land turtle are here so nu merous that five or six hundred men might subsist on them alone for several months without any other sort of provision." As early as Admiral Porter's visit to these islands (1813) the difference between the occupants of the different is lands had been noticed. Dr. Gunther has separated the tortoises from this group into five different species, each restricted to its own island, and assumes their derivation from some typical ancestor whose characters have gradually diverged into these subordinate races by reason of the varying features of food and habits. Darwin has given some of the most interesting ob servations about these strange creatures. They live by preference on the higher and more moist por tions of the islands, though found in the arid and lower coast country. They are forced to travel consider able distances toward the center of the islands to secure water, and in this connection Darwin makes one of the most suggestive and enter taining statements in his accoun of his visit to the Galapagas Is lands.
He says ("Voyage of the Beagle"), "The tortoise is very fond of water, drinking large quantities, and wallowing in the mud. The larger islands alone possess springs, and these are always situated toward the central parts and at a considerable height. The tortoises, there fore, which frequent the lower dis tricts, when thirsty are obliged to travel from a long distance. Hence broad and well beaten paths branch off in every direc tion from the wells down to the seacoast, and the Spaniards, by following them up, first discovered the watering places. When I landed at Chatham Island I could not imagine what animal traveled so methodi cally along well chosen tracks. Near the springs it was a curious spectacle to behold many of these huge creatures, one set traveling onward with outstretched necks, and another set returning, after having drunk their fill. When the tortoise arrives at the spring, quite regardless of any spectator he buries his head in the water above his eyes, and greedily swailows great mouthfuls, at the rate of about ten in a minute. The inhabitants say each animal stays three or four days in the neighborhood of the water, and then returns to the lower country; but they differed respecting the frequency of these visits. The animal probably regulates them according to the nature of the food on which it has lived. It is, however, certain that tortoises can subsist even on those islands where there is no other water than what falls during a few rainy days in the year." A most surprising peculiarity of this creature is the retention of water iu its urinary bladder which abserves the purposes of the animal, and can even be bladder is full, the liquid is quite limpid and only
slightly bitter. The Galapagas tortoise appears to be quite deaf, and gives but few audible indications of life. These are limited to the deep hiss it emits when disturbed, as it withdraws its head within its hard integument, and the roargiven by the male in the breeding season. The female deposits its eggs in the sand and covers them up, but in rocky places drops them "indiscriminately in any hole." The eggs are white and spherical and are found 7 inches in circumference. The young become the prey of the flesh-eating buzzards, while those who escape and reach maturity die from accidents, as a natural death from disease or age seems almost unknown. They can be handled with impunity, but from their enormous size they frequent ly require the united efforts of five or seven men to lift them. They feed upon cactus or the leaves of vari oustrees. They appear to be aboriginal inhabitants of these islands, and, therefore, have an almost exciting interest to naturalists; but they are also representatives of a wider distribution, for allied forms and even fossil remains of congeric species are found in Mauritius and its neighboring islands. They may be remnants of a tribe which over a broad Pacitic continent has had an extreme easterly and westerly dis-
ly to have expert janitors and showmen for the valu able public property. It is expected, however, to give certain drills-especially boat, torpedo, and gun drills -as in a vessel of war.
The structure will, therefore, serve the double pur pose of housing the naval exhibit and illustrating the manner in which the men of the United States navy live. The dimensions of the structure will be those of the actual battleship, to wit: Length, 348 feet, and width amidships, 69 feet 3 inches. From the water line to the top of the main deck, 12 feet, on top and in the central position of which is a superstructure 8 feet high, with a hammock berthing resting on the same, 7 feet high, and above these will be the bridge, chart house, and the boats. At the forward end of the superstructure there will be a cone-shaped tower, called the military mast, near the top of which will be placed two circular tops as receptacles for sharpshooters, and rapid-firing guns will be mounted in each of these tops. The height from the water line to the summit of this military mast will be 76 feet and above it will be placed a flag staff for signaling the staff will be 24 feet long. The battery, mounted will be four 13 inch breech-oading rifle guns, eight 8
coated with cement. The ends are to be shaped with ron plates. On the inside of the walls, and over the concrete on the berth deck, there will be a coating of cement, thus making the structure fireproof and free from moisture. Along the top and bottom, and taking the shape of the superstructure, are heavy angle irons, to which vertical T-irons are fastened, spaced about 4 feet apart, and braced diagonally. The walls, outside and inside, are to have a thick coat of cement on meta lathing, well secured to the vertical framing. The nain and superstructure decks will have a rise of nches in 69 feet. The deck plank will be yellow pine 6 nches wide and 2 inches thick, the seams of which will be caulked. The main deck beams will be steel T-bulb pattern, 7 feet by 5 feet, and 26 pounds per foot, the ends turned down and fastened to bearing plates on brick piers in the sides of the hull. The superstructure deck beams will be steel, T-bulb, 7 pounds by 5 pounds and 10 pounds per foot, the ends fastened to the top angles at the sides of the superstructure. Iron tube pil ars are to be used further to support the beams. Gutter of galvanized iron are carried around the waterways, olling over and forming a bead finished on the out ide, from which numerous conductors carry the water

MODEL BATTLESHIP, WORLD'S COLUMBIAN EXPOSITION, CHICAGO, 1893.

persion, and now separated from their western allies have, in conjunction with these latter, undergone varietal changes which have become inherited, and established separate generic groups.
L. P. G.

MODEL BATTLESHIP AT THE WORLD'S COLUMBIAN EXPOSITION.
A model man-of-war is to be exhibited by the United States government. This; to all appearance, will be a faithful full-sized model of one of the new coast line battleships designed by the Bureau of Constructio and Repair of the Navy Department, and now beine built at a cost of about $\$ 3,000,000$ each, by Cramp \& Son, Philadelphia, and the Union Ironworks, San Francisco. This imitation battleship of 1893 will be erected on piling on the lake front in the northeast corner of Jackson Park, at the pier which forms the prolongation of Fifty-ninth Street. It will thus be surrounded by water, and will have the appearance of being moored to a wharf. The structure is to have all the fittings that belong to the actual ship, such as guns, turrets, torpedo tubes, torpedo nets and booms with boats, anchors, chain cables, davits, awnings, deck fittings, etc., together with all the appliances for warking the same. Officers, seamen, mechanics, and marines will be detailed by the Navy Department during the Exposition, and the discipline and mode of life on board naval vessels will be completely shown. The detail of men will not, however, be so great as the complement of the actual ship, the object being main-
nch breech-loading rifle guns, four 6 inch breech loading rifle guns, twenty 6 -pounder rapid-firing guns six 1-pounder rapid-firing guns, two Gatling guns, and six torpedo tubes or torpedo guns.
The 13 inch guns are to be placed at each end of the superstructure, six feet above the main deck, mounted in pairs within a circular turret that revolves within redoubts 36 feet 7 inches in diameter; the redoubts extend below throngh the main deck, and rest on the berth deck. The 8 inch guns rest upon the superstructure deck. and are also mounted in pairs within turrets and redoubts, from which large circular am munition tubes pass down to the berth deck. The 6 inch guns are on the main deck, within the super structure, and have ports cut through the sides of the same, with automatic shutters. The 6-pounders ar placed along the sides, on top of the bridge and ham nock berthings. The 1-pounders are on the forwar and after ends of the berth deck, and in the "lower top" of the military mast. The Gatling guns are in the "upper top" of the mast, and the torpedo tube are on the berth deck-two on each side amidships and one at each end of the vessel, with ports cut hrough the sides and ends for the torpedoes.
The structure will, as stated before, rest on piles as a foundation. The berth der'. will be composed of thick plank laid upon the foundation, on top of which there is to be a substantial layer of brick concrete. The sides of the hull are to be of brick, stepped to give contour, over which there will be a filling of concrete, thickly
that may fall on the deck down the scuppers close to the water line. The turrets and redoubts for the 8 inch and 13 inch guns are to be made up of cement on metal lathing fastened to a wood framing, and are to have all the appliances for operating them. A 13 inch gun is 44 feet long, and weighs with its carriage $1151 / 2$ tons. The transportation and placing of so much weight upon a structure such as is described being wpracticable, the difficulty of showing what the real battleship carries has been overcome by building the gun of cement over a wooden tube, to be rifled, and fitted with a breech plug complete, the finish of the cement being such as to give it the appearance of an actual gun.
The military mast and conning tower are to be framed with gas tubing, to which will be secured a metal lathng, with a coat of cement on the outside. The tops of the military masts are to be made of iron, securely astened to the framing of the mast. The exterior of the entire structure will be tinted in accordance with the navy regulations, so as to give it the exact appearance of a vessel of war
Beneath the berth deck, and directly below the turrets of the 13 inch guns, are to be the magazines, showing the stowage, lighting, and flooding, according to the navy regulations. The superstructure will show the cabins, state rooms, lavatories, mess rooms, galley and fittings, mess table for crew, lockers, berthings, etc., also the methods in which officers and enlisted men live, according to the rules of the navy.

RECENTLY PATENTED INVENTIONS. Agricultural.
Potato Digger. - John W. Cook, Jefferson, Oregon. This is designed to be a simple,
easily worked and inexpensive machine, in which the easily worked and inexpensive machine, in which the
revolving hoe or digger is formed of a series of radial scoops having cutting and lifting blades at their outer
ends and screening portions to the rear of the blades. ends and screening portions to the rear of the blades.
The digger is connected to the main axle to be reThe digger is connected to the main axle to be re-
volved in a direction opposite to the movement of the Volved in a direction opposite to the movement of the
machine, to scoop forward and lift the dirt and potatoes up over the digger axle, sifting out the dirt and dis
charging the potatoes to the rear.
Cultivator Attachment. - Charles A. Armstrong, Pawnee Rock, Kansas. This is an im young plants while being cultivated, being designed to prevent dirt from being thrown upon them by the
cultivator plows or teeth. The cover device or procultivator plows or teeth. The cover device or pro-
tector consists of two adjustable sections, arms protector consists of two adjustable sections, arms pro-
jected from one end of the device and beams pivoted to the arms, while removable clamps connect the beams
with the axle of the cultivator, and there is a connector. With this device the plows may be safely sat lor.
much closer to the rows than heretofore, and the
amount of earth delivered by the plows to the plants amount of earth delivered by
Corn Planter. - John B. Adams, Jr., Malden, N. Y. Corn may be planted in hills by
this device, and fertilizer be also deposited in the hills previous to dropping the corn, the mechanism regulat ing the supply of fertilizer and seed acting together
Means are also provided whereby the fertilizer will be Means are also provided whereby the fertilizer will be
partially covered before the seed is dropped in the hill, the seed being also covered and the ground pressed down upon it. A simple and effective check attachbe converted into a check row planter, and it may b used with a single set of boxes and drawn by a single horse, or as a double machine, drawn by a team, and
operating on two hills at once.
Corn Cutting Machine. - Harry Willits, New Boston, Ill. This invention relates to Yormer patented invention of the same inventor for a
device for slicing corn ears into pieces, and provides device for slicing corn ears into pieces, and provides
additional features to increase the cutting capacity and eneral efficlency of the mach provided, and a nove gauge to regulate the length of con ear subdivisions.
The cutter shaft of the machine is rotated by working a treadle, the operator using both hands to thrust corn ears, piled on the table, down through the throats, and the pieces sliding through a chute away from the cutter.

Mechanical Appliances.

Miners' and Blasters' Tool. Richard A. Mc Vitty, Snohomish, Washington. This is a combination tool comprising all of the implements
necessary for use in the treatment of fuses or for the necessary for use in the treatment of fuses or for the
attachment of caps to fuses, or for inserting the capped fuse in a cartridge. It consists of two pivoted spring actuated members having cutters of different shapes and sizes adjacent to their.pivoted points, with recesse
in the inner faces of their head sections, one of the in the inner faces of their head sections, one of thi
recesses being provided with a removable blade, whil a link is adapted to close the handle sections of the members and serve as a suspeusiou device. The tool is a small space, and capable of being quickly and easily manipulated.
Roll for Cutting Metal Blanks ing roll for cutting blanks for fence posts for wire or board fences, and consists of a pair of metal rolls having indented casts or cuts therein, the pattern for the hlanks covering the entire periphery of the rolls,
and the patterns on the two rolls forming the cutting and the patterns on the two rolls forming the cutting of the metal sheet into blanks with as little waste a cutting edges on the rolls to sever the blank strips into individual blanks. The sheet metal is preferably run through the rollers hot, and in the same heat used
in rolling the sheet, to avoid the expense of reheating.
Wire Feeding Device. - Joseph S Blackburn, Salem, Ohio. This is a feed more especially designed for use on nailing machines, and is designed to be simple and durab.e in construction and very ef-
fective in operation. The improvement 18 mounted on a plate, to which two vertical parallel leversare pivoted at one end, the other ends of the levers being pivoted against the levers, while a piate serving to holding the wire in place is pivoted to and connects the jaws.

Miscellaneous.

Clothes Line Support.-Robert McNab, Paterson, N. J. Combined with a horizontally swinging support secured to the outside of a windo frame, is a main arm journaled on the support and
having teeth on one side, a pulley head provided with a pawl sliding on the arm. The device is adapted to hold oneend of a line when the opposite end is held on aitable outdoor supports, and is designed to be quickly the main line roller may be made to align with any out door support, while the device automatically adjust decrease in the length of the line
Clothes Pin. - Theodore Garrison, Hazleton, Pa. This device consists of a single piece of clamping tongues integral with and bearing having clamping tongues integral with and bearing upon it,
and coiled spriug suspending eyes, the device being normally attached to the line, and clasping and holding the clothes, which are not clamped directly to the line.
Clothes Drier. - John McKinnon, Moscow, Iduho. A reel is supported upon a post in
such manner that a number of lnes may be attached to the reel arms, and the lines be readily brought within
carry a large quantity of clothes in proportion to its size, and when the reel is brought to a horizontal posi-
tion it turns easily, so that the clothes will be freely exosed to the wind and sun to facilitate their dryin apidly
Adjustable Pole.-Stephen A. Bart mproved construction of polesfor use as measurin ods, clothes poles, etc., a slding connection being pro vided for the members whereby the pole may be length ned or shortened as desired. An anti-friction roller mounted in one of the guides and a cam lever in the other guide, to clamp the members together, the ca lock is pivoted to the inner face of one member to contact with the opposite member under the pressure of he cam lever.
Coffin Lid and Hinge.-William J collinson, Hazleton, Pa. This invention provides a lid and hinge enabling the lid to be easily raised or pushed oo one side, to lie flatwise on the coffin, the peculia as well as to operate as an ordinary hinge. The im as well as to operate as an ordinary hinge. The in croveme
Car Wheel Chill. - Ferdinand E.
Canda, New York City. This is an improvement on a former patented invention of the same inventor, by means of which the chill is so constructed that each
segment of the chilling face will be supported at two segment of the chilling face will be supported at two
oints instead of one, preventing it from warping o oints instead of one, preventing it from warping o
twisting out of shape, so that the periphery of a whee ormed on the chill will be truly circular. The chil ings, two series of webs projecting inwardly from the ings toward the center of the chill, the webs of one eries of webs being supported by one outer ring and ninner ring, and the other series of webs being supported by the other outer ring and an inner ring, while webs, the chilling faces, the webs, and the rings being
wind ormed integrally in a single casting.
Table Leaf Support. - Charles K Ison, Red Wing, Minn. Combined with a curve and pivoted brace having a transverse recess in its oute he brace, while a bodily movable locking key havin headed ends fits loosely in the transverse slot of the racket above the brace, with other novel features, the
mprovement being very simple in construction, and mprovement being very simple in construction, and
forming a support for the drop leaves of tables which very easy of adjustment and holds the table lear accident, while it may be easily released so that the eaf will drop when necessary
Music Leaf Turner. - Evander B ewcomb, Parsons, Kansas. This is a simple, durached to or detached from the music rack of an in strument, to facilitate turning over the leaves of the music. Combined with arms adapted for engageme an actuating mechanism having connected finger blocks, the latter beng adjustable to and from the

Safety Envelope. - James Malone Louisville, Ky. This invention relates to envelope used for holding money bords, or other valuables, providing an envelope which, when sealed and folded,
cannot be opened by steaming, while the content annot be reached by instruments inserted through the joints or seams without obvious mutilation. The blank of novel form, and is designed to be so folded that and all the corners of quadruple thickness, thereb aking a strong and Carable as well as a safe envelop Artificial Fruit. - Caroline Hyde tonington, Conn. The skin portion of the fruit to be ade, according to this invention, consists of silk or
ther suitable fabric, which will admit of being painted or represent the fruit, and a straight piece is puckered r ruffled along two edges, the rufles on each edge eing united by a thread. One of these threads is the clown to close one ruffled edge, and the ends of thed bsorbent and penetrable, referably flocculent, ma terial, is inserted as a filling, a wire thread or cor being run up through the filling, and virtually formin he stem of the fruit.
Invalid Bedstead.-William Cough in, New York City. The bottom of this bedstead is
made in two sections, of which one is fixed and the other is hinged to the rails of the bedstead, to permit of onveniently placing a patient in an inclined position
without touching him. The mattress and other parts of the bed resting on the fixed and movable parts of the bottom are sufficiently flexible to readily adapt them-

Ther
Therapeutic Electric Battery. ery A. Crisp, Jefferson, Ohio. This is a simple bas the body and quickly adjusted to give the desired curent. It consists of a series of cells of copper and inc plates with an interposed absorbent material, th copper plates having projecting ears and the zinc plate
of one of the cells a socket, the ears projecting through a waterproof pocket which receives the battery, while conducting wires have fingers which engage the socket nd one of the ears.
Vapor Bath Appliance. - Clark adad, , aldron, Mich. Tor use with an ordinary cooking stove, and
adeam generato connected by tubing with a closed box in which a apor bath may be taken. The device is under the control of the operator, who can regnlate the generating of the steam to suit himself, and provision is made ing apparatus.
Washing Machine. - Randison Newell, Kenton, Tenn. This invention relates more
particularly to an improved machine which combines features of those classes of machines known as "roller
invention is desigued to provide a machine of cheap
and simple construction, easy and convenient and simple construction, easy and convenient to operrapidly without injuring them. The construction rapidly without injuring them. The construction
Measuring Tank. - Charles W roctor, Lake Forest, Ill. This device consists of basin with which is connected a gauge glass, and fro which leads an outlet pipe. The tank 18 especially adapted for holding oil and similar liquids in such manner that the contents cannot be easily spilled, while the liquid may be quickly and accurately measured, so th
from the tank.
Horse Cleaner. - William W. Cole, Eudora, Kansas. This is an implement to be used in place of the usual curry comb. It consists of a frame carrying wires under adjustable tension and provided with a suitable haudle by means of which the implement may be applied to a horse. In doing this the long the skin in one or both directions.
Figure Toy. - George Y. S. Wada, an Francisco, Cal. This toy is so constructed tha aused, by the working of certain levers, to make the movements of actual prizefighters engaged in a contest with one another. Means are also provided whereby ne of the men represented as fighting may be forced
uddenly downward, as though he had been knocked uddenly downward, as though he had been knocked Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Pleas send name of
of this paper.

SCIENTIFIC AMERICAN

buildina edition

DECEMBER NUMBER.-(No. 74.)
TABLE OF CONTENTS.

1. Handsome plate in colors of a cottage erected o Great Diamond Island, near Portland, Maine, a spective elevation.
2. Plate in colors of a beautiful residence at Cheste Hill, Mount Vernon, N. Y., also a second view in
3. A comfortable cottage to cost $\$ 3,000$. Plans and comfortable
4. Design of an ornamental oriel or bay window from a d welling at Paris.
colonial house erected on Chester Hill, Moun Vernon, N. Y., at a cost of $\$ 8,000$
Floor plans and perspective elevation.
. Dwelling at Montclair, N. J. Cost $\$ 3,500$ complete Floor plans and perspective.
n attractive cottage at Portchester, N. Y., estimated cost $\$ 4,200$. Perspective and plans. Handsome residence at Bensonhurst, Long Island erected at a cost of $\$ 7,000$ complete. Perspective elevation and floor pians.
5. Sketch of a small cottage or lodge.
. Block of seven dwellings recently erected at Brook hine, Mass., at a cost of $\$ 150,000$ for the entir block. Messrs. Fehmer \& Page, architect
Boston, Mass. Floor plans and perspective. Boston, Mass. Floor plans and perspective.
a bandsome house for $\$ 7,500$ erected at Montclai handsome house for $\$ 7,500$ erected at Montclair,
N. J. The design is a unique model of coziness. N. J. The design is a unique
Floor plans and perspective.
6. Triumphal arch, Timegad, Algeria, from a drawing by Mr. Alexander Graham, F.S.A.
7. Restoration of triumphal arch, Timegad, Algeria, from a drawing by Mr. Alexander Graham, F S.A.
modern dwelling of attractive design erected on Grand Avenue, at Asbury Park, N. J. Cost
$\$ 4,500$ complete. Floor plans and perspective elevation.
A Queen Anne cottage recently erected at Larchmont Manor, New York. Cost $\$ 3,700$ complete.
Frank E. Wallis, architect, New York. Plans and perspective.
8. Engraving of the new Wesleyan chapel, Sunday land.
9. View of the Kentucky National Bank Building, Louisville, Ky.
10. Miscellaneous contents: The education of custom-ere.-Non-porous walls.-The Scientific Ameri CAN a help to builders.-Architects' difficulties. Roof drenchers.-How to catch contracts.-Cy pre-s timber and its uses.-Improve your prop-
erty.-Some of the merits. - Boschin.- Water erty.-Some of the merit.s. - Boschin.- Water
pipes of alder.-Iron levels with double plumb, pipes of alder.--Iron levels with double plumb,
illustrated.-The largest plank in the world.-A
steel ribbon for hanging windows or heavy steel ribbon for hanging windows or heavy
doore, illustrated. - Marstou's hand and foot power machinery, illustrated.-The Fuller \& Warren Co., heaters, illustrated.-Stamped steel
ceilings, illustrated. - An improved window ceilings, illustrate
frame, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 5 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practi cally, a large and splendid Magazine of architecTURE, richly adorned with elegant plates in colors and with fine engravings, illnstrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circolation all newsdealers.

MUNN
. Publishrrs,
301 Broadway, New York
$\mathfrak{B u s i n e s s}$ and Personal.
charge for Insertion under this head is One Dollar a line for each insertion: about eight words to a line. Adver-
tisements must be received at publication office as early as tisements must be received at publication office as early as
Thursday morning to appear in the following week's issue. For Sale-One $22 \times 22^{\prime \prime} \times 5^{\prime}$ Putnam and one $22^{\prime \prime} \times 22^{\prime \prime} \times x$
4^{\prime} Powell planer. Both in first class order. Price very Powell planer. Both in frrst class order. Price ve

Acme engine, 1 to 5 H. P. See adv.next issue. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Steam Hammers, Improved Hydraulic Jacks, and Tube Screw ma The Garvin Mach. Co., Laight and Canal Sts., New York. C. E. Billings' Patent Surface Gauge. Drop Forgings.
Bronze Forgings. Billings \& Spencer Co., Hartford, Conn. Centrifugal Pumps for nd sand pumping plants. Irvin Van Wie, Syracuse, N. Y. For Sale-A vacuum pan, a digester or converter, a
till. All copper. Apply to J. Edw. Crusel, New Orleans, Cast iron calender rollers, twelve inches, three feet
ong. Cheap. Wm. H. Bowden, 155 West $29 t \mathrm{th}$, N. Y. Scale removed and prevented in boilers; for each 50
horse, 10 cents a week. Pittsburgh (Pa.) Boiler Scale horse, 10 cents a week. Pittsburgh (Pa.) Boiler Scale
Resolvent Co . Good paying, well established machine business for
sale, with tools and fixtures. Address "Machinery " care Scientific American.
The best book for electricians and beginners in elec-
ricity is "Experimental Science," by Geo. M. Hopkinor For the original Bogardus Universal Eccentric Mill,
Foot and Power Presses, Drills, Shears, etc., address Foot and Power Presses, Drills, Shears, etc., address
J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Brown \& Sharpe Mfg. Co., Providence, R.I., announce
that the prices of their swivel vises for use on milling that the prices of their swivel vises for use on milling
and planing machines have been reduced. Price of the
No. 2 vise is $\$ 24.00$. Price of the No. No. 2 vise is $\$ 24.00$. Price of the No. 3 vise is $\$ 30.00$. For-
mer prices, $\$ 31.00$ and $\$ 38.00$. For Sale-Two 250 16-light,
mos, compound wound. Three 25016 -light, 110 volts incandescent dynamos, shunt wound. These machines are
cond new, and were taken in payment of a judgment. Guaran-
teed to be first class. Price 6425 each. f. o. b. Baltimore

HINTS TO CORRESPONDENTS.
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto. This is for our
information and not for pubhication.
eferences to former articles or answers should References to former articles or answers should
givedate of paper and puge or number of question.
Inquiries not answered in reasonable time shonld
be repeated correspondents will bear ine be repeated, correspondents will bear in mind that
some ansers require not a little research, and,
though we endeavor to reply to all either by letter or in this department. each must talie his turn.
Specili Mrite Information on matters of
personal rather than general interest cannot be expected without remuneration.
sientific Aments rican Supplements refred
to may be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of Books referred to promptly supplied on receipt of
price.
Hinerals sent for examination should be distinctly
marked or labeled.
(3706) M. S. says : I am running a saw mill and am greatly troubled by my mill roof any paint or composition that will render it fireproof against sparks), and if so, how to make it, and how to pply it ? A. A wash for your roof that is fairly fire-
proof may be made of Portland cement, borax, and al ammoniac. In each pail of water dissolve $1 / 4$ pound orax and 34 pound of sal ammoniac. Then add cement nough to make the water creamy, so that it will spread that every crevice cating of the cement.
(3707) M. B. asks : What is the differnce in the power required to move a load mounted on
wheels 4 feet in diameter, and the same load on wheels why, on iron rails? A. The larger wheels will move slightly the easiest, from the increased leverage between the radus of the wheel and the radius of the axle.
(3708) P. Y. C. asks: Why does the e side cut off and after leaving full apcenter it becomes straight, when it again assumes a curved line, this time concave? Why does it not remain convex until new moon azain? A. The phases of the moon are the same between the new moon and the ull moon as they are between the full moon and new moon, only that they are reversed in position. This you
can readily illustrate and prove by holding a white ball at arm's length and watch the phases as you turn round at a short distance from a strong light.
(3709) A. T. C. asks: Will you please give me a composition that will cause small stones,etc.,
o adhere, for about two mon ths at least, to a wooden arface, and be able to mon ths at least, to a wooden e several cements. Plaster of Paris makes a quick etting cement for stones. Easily applied. Asphalt is much used, but requires to be applied hot. Portiand
cement is also good, but does not set as quickly as plaster of Paris.
(3710) G. M. G. says : Will you give me formula of paint for a tank (both wood and metallic) that will be durable and one that will not injure the
water for house use? Also does galvanizing iron tank injure water for domestic use? A. Oxide of iron paint mixed with boiled linseed oil is the only suitable paint
for water tanks, wood or iron. for water tanks, wood or iron. For iron tanks there
should be not less than two coats, the first well dried before the second is put on. Use no turpentine. For fore the paint, and well dried. Water standing in gal-
vanized irrn tanks becomes impregnated with and vanized iron tarks becomes impregnated with and tastes of the zinc. Such tanks should be painted with
the oxide of iron paint.
(3711) H. L. says : I have an assorted lot of wath hair springs, that I have wropped in
paraffined paper, put that in a tin box (small) and that paraim ind paper, put that in a tin box (smail) and thal
again in an impervious box. Still they have a tendency to rust. Is there anythng in the paper (paraffine)? and
could you give me a better way to keep them? A. If could you give mea better way to keep them? A. If
the paper is white, it may have been from stock bleached with acids or chlorine. Use tissue paper slightly quicklime in the bo
(3712) B. W. H writes: 1. I would sige to ask in regard to 3 377: What is the acid of cider
sther than acetic. Is it phosphoric or malic, as some old books give? A. Malic and phosphoric acid are both present in cider. The latter is probably combined with
some base. 2 . As to $3883,348+$, is there any direct consome base. 2. As to 3483,348 , is there any direct con-
nection between the velocity of electricity and connection between the velocity of electricity and con-
ductivity? A. There is no direct relation. It is probductivity? A. There is no direct relation. It is prob
able that when an electric current is started, a portion of able that when an electric current is istarted, a porthon or
its energy is transmitted witb the speed of light, but it may take many minutes for the entire current strength to be felt at the end of a long line of high
capacity. 3 . Several years ago the Scievtrice Ambri capacity. 3. Several years ago the Scientipic AmrRL-
can gave some elaborate details of bicycles (velocipedes). Have there been any recent articles on the

 with the solder or the flux? A. It is probably with the flux, although the actions are so interdependen that it can only be attributed to both. 5. What is the lowest temperature at which a "real" "enamel will set,
and composition of same? A. A mixture of 12 parte white fluorspar, 12 parts of unburned gypeum, and 1 part of borax gives a fusible enamel. There are
many other formulas. The temperature you ask for mannot well be given, as it is rather indefinite
(3713) A. B. C. asks: What are the proper ingredients required in mixing concrete to be
nuedil 1 n building a small solid concrete house? Will usel in building a small solinc concrete house? Wil that they will never crumble? Stone lime and lake shore
gravel are bolh cheap here. Kindly give full directions for mixing so as to insure success. A. You cannot
use lime to make concrete suitable for house walls or foundations with beach sand or gravel. Use hydraulic cement. See ScIENTiPIC AMERICAN SUPPLEMENT, No
285, "How to Build Concrete Walls," and No. 119 , il lustrating a concrete dwelling.
(3714) D. W. B. asks for the rule for finding the horee power of any steam engine, whether
marine or stationary, and whether single acting, com pound or triple expansion. A. The rules for computing the horse power of all kind of engines will
occupy more space and illustration than can be given in notes and queries. We refer you to the "Practical
Engineers' Hand Bookk," by Hutton, 87 , or "Roper" Engineers' 'Hand Book,", by Hut
Engineers' 'Handy Book,", 8.50 .
(3715) E. B. S. asks what creameries or butter or cheese factories use to keep the odor and
the taste of the wood frum impregnating the butter or cheese. It occurs to me that a coating of tasteless
paraffine wax would be a valuable aid in a case of thi kind. A. Butter tubs are only washed with sall water and cheese boxes have no preparation. Should judge
your suggestion a good one.
(3716) C. W. P. asks how to make sweat through. A. Cement particularly adapted fo attaching the brasswork to petroleum lamps is made
Puacher, by bolling 3 parts resin with 1 part of caustic Puacher, by bolling 3 parts resin with 1 part of caustic
soda and 5 parts of water. The composition is then soda and 5 parts of water. The composition 18 then
mixed with half its weight of plaster of Paris, and eets firmly in half to three-quarters of an hour. It is of great conductor por, and not permeable to pel attack b hot water. Zinco white, white lead, or precipitated
chalk may be substituted for plaster, but harden chalk may be
more slowly.
(3717) S. R. S. asks if there is a mix ture or conpposition that can be used on very fine cut
crystals to give them the true luster, fire and sparkle of the real diamond. If it is a chemical liguid or compound, and how to apply, so as to oive a lasting effec to back cheap stones by the jewelry trade. A. There crystal of class of any kind to impart to it the tru luster or fire of the real diamond. It is said that
some parties pretend to apply to glase a solution of diamond. In the frrst place it is impossible to dis solve the diamond to make a solution, hence it can not be applied. In the second place many of these
stones were not cut out of quartz crystals, but were somes won French paste, in other words lead glass, which
comer may show some of the fire of the diamond, but has no durability, owing to its hardness not being greater than that of ordinary ylass. There is no composition or paste
that is called paste that is used to back cheap stones. that is called patte that is used to back cheap stones.
The stones themselves are called paste. Pastes are frequently backed by means of small metallic caps con-
taining mercury or they are coated with mercury taining mercury or they are coated with mercury
amalgam, so as to impart to them a mirror like reflec-
(3718) J. A. S. asks : Will metallic zinc
precipitate metallic iron in a solution of chloride and in a solution of protochloride of iron? A. It will not.
(3719) J. E. asks how to dissolve cellulioid into a liquid? A. Amyl acetate is a well
known solvent. A misture of alcohol and ether, and many other substances, may also be used.
(3720) S. G. H. writes: A, B and C A and B draw frrst. A wins and retires, leaving B to draw with \mathbf{C}, who loses and does the work. What was
the chance of each in such a scheme? Is the following the chance of each in such a scheme? Is the following
problem similar to above: A, B and C have equal claim to a prize. A says to B, you and I will draw lots and the winner shall draw lots with C for the prize. Th
answer as given for this is $\mathrm{A} \% 4$, $\mathrm{B} / 4$ and $\mathrm{C} 1 / 2$. A . In the first case, in the actual drawing B b has twice the chance that A has, as he draws twice against a sin-
gre competitor. The anewer might be put: $A=1 / 2$, c
$=1, B=1$. Originally the chances of A and B are even
and each has one-half the chance of doing the work that C has. This would give $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=2$. This They are really identical
(3721) W. E. asks the meaning of the oin. coin. A. The emall letters seen sometimes on coins
are oflex the initials of the die cutter. Thus on the silver dollar a very minate M is to be seen on the base of the neck, which indicates "Morgan." The initials
B. L. which you speak of are undoubtedly those of J. B. Longacre, who some years ago was United States mint engraver attached to the Philadelphia mint. Sometimes tae smal
the coin was struck.
(3722) T. A. A. asks how many (or aout) cubic feet of gas it will require to lift one hun-
dred pounds, and whether hot air has the same buoy ncy as zas. A. Pure hydrogen gas will lift about 701b.
on 1,000 cubbc feet, or 100 lb. to 1,429 cubic feet; stree 1,000 cubct feet, or and ib. to 1,429 cubic feet; stree gas wins has less lifting power on the average.
balloons
(3723) C. M. S. asks: 1. Will you please Fourth of July are mave-what the chemicals are, etc. A. They consist of a minute quantity of fulminate or
mercury mixed with mercury mixed with gravel and twisted up in thin
paper. 2. Will you please tell me of some book like dictionary, that tells how the different chemtcals are
made? A. We can only refer you to general chemistries such as Fowne's or Roscoe's chemistry. All such w
(3724) J. B. T. writes : Having been a soldier for twelve years and over, I have tried to dis-
cover some preparation that would dive leather a black, while without requiring continual working. Can yo give a receitp for its A. The only effectual way is to regularly japan the leather, making what is known as
patent leather. A solution of shellac in ammonia is patent leather. A solution of shellac in ammonia is
sometimes used for leather. This might be mixed with good black pigment. Long standing is required
(3725) B. W
(3725) B. W. J. asks: 1. How can watch be demagnetized by means of a dynamo? $\begin{aligned} & \text { A. } \\ & \text { A watch can be demagnetized by tying it to a string, }\end{aligned}$, twisting the string, allowing the watch to be whirled by eoang of the field magnet, and then withdrawn. 2 Could a Rhumkorf coil be made to run incandescent lights? Please give directions for one that would run aloout
ixten candle power lamps. Could you attach it to a sixten candle power lamps. Could you attach it to an
incand escent circuit ? To settle a discussion would on incandescent circuit? To settle a discussion, woold one
thus connected require as much current (by meter) to run three lamps as the lamps would if connected direct the Rhumkorf coil. The coil can be operated by connection with an incandescent circuit. As the lamp cannot be run in this way, the latter part of this question
does not admit of an answer. 3. What would you ad vise a young man to study for, either electrical or me hanical engineer? A. A knowledge of either electri
 to ask which of the two professions is preferable, we would reply, choose the one most in accord with your
natural inclinations.
(3726) C. J. R. asks: 1. How many andle power of incandescent light would it take to ight a room 8 feet long, 8 feet wide and 6 feet high
: A 10 candle power lamp would answer for a ro of the size mentioner.a. 2 . How many cells of battery would it take to run that number of candle power
amp? A. It will require about six cells of large lamp ? A. It will require about six cellis of large Bunsen
battery to run such a lamp. a. How often would it be necesary to refill the cells, providing I use the light an
verage of three hours a day? A. The Bunsen battery requires renewal once a weeek. 4. What substances
shall I use to make the solution for the cells? A. Use a ichromate solution. Consult any work on batterie or SUPPLEMENT, Nos. 157, 158, 159, and 792 for informa-
ion on batteries. 5 . What is the best kind of wire to ion on bateries. 5. What is the best kind of wire to
use between the batteries and the lamps? A. No. 18 fice wire will answer for the leads.
(3727) G. S. P.-Harness polish is made by breaking 4 ounces of glue in pieces and pouring
over it 1 pint of vinegar. This is allowed to remain until perfectly soft, then make another solution of 2 ounces of gum arabic and half a pint of black ink. To mix add another half pint of vinegar to the glue eolu-
tion over a moderate fire, but do not let it boil. When is dissolved add the gum solution, keep at a temperaure of 180° Fah., and further add 2 drachms of isinglas a a little water, then remove from the fire and draw of
or use. It is to be applied by a sponge, and a very thin for use. It is to be applied by a sponge, and a very thit
coat given, allowing to dry quick, which gives a bet ter polish.
(3728) W. H. R. asks : 1. Will an alternating current do as well as a continuons current fo
ighting incandescent lamps? And what is the difte ence, if any? A. The alternating current is extensively used for incandescent lighting. 2. Which is the more saving in carbons in the arc lamp, the alternating or
continuous current? A. There is practically no differ ence. 3. What is the principle of the multiphase dy namo, or generator, osed at Latfen, which sends the
current to Frankfort? And also the multiphase or rotary current mo
PLEMENT, No. 825
(3729) W. G. says : 1. Can you tell me ow to make a paint for barrel heuds, bright and dlassy?
A. Mix the colors with quick drying varnish. 2 . Can I make a mould of a china ornament to cast from again, and how and of what material ? A. You can mould the
onnment in fne loam, such as used by brass founders ornament in fine loam, such as used by brass founders;
or if you want to make a pattern from the orcament oil it and make a mould of plaster of Paris, in which you can cast a pattern with type metal. 3. Receipt for good heavy whitewash. A. For a brilliant whitewabi
To a half bushel of best lime slaked in hot water, add 8 quarts of salt dissolved in hot water, $2 / 2 /$ pounds
ground rice boiled to a thin paste,stirred in boiling hot,
alao 1 pound cleari glue dissolved in hot water, and $1 / 2 /$
ponnd fine whititg, with hot water enough to make the whitewash spread properly with a brush. Let it lie fo
day or two and then apply hot.
(3730) J. J. M.
(3730) J. J. M. asks : What hydrometer standard on same A Also a receipt of a good tin oxiizer, also a receipt of a nickel oxidizer? A. Baume
hydrometer is the best. Silver solutions vary by the use of the bath. You will have to gauge the condition the bath by trial. Tin and nickel do not make oxiposit of silver and the silver must be oxidized by sulphide of sodium bath.
(3731) J. T. N. asks : Can a force pump be placed at my house, 88 yards from and 22 feet above and draw water from it? I am afraid my spring is not strong enough for a ram, and see no other way to
get the water. Can you advise me? A. You can pult set the water. Can you advise me? A. You can pu
he water the distance and height named if you cut ditch a few feet deep into a recess in the ground at the pump, so as to use a subchamber pump, and lessen he height of int say to 17 or 18 feet, you will have
little or no trouble in keeping the pump charged. Suction pipe should be perfectly tight, with a foot valv
(3732) T. A. B. asks : What materia can be applied to cement floors now laid to make them gases working through them, and not act injuriously o the cement? What material can be mixed with ce laying new floors: Marerial must be capable of with tanding as much wear as ordinary cement floor and be comparatively inexpensive. A. There is nothing loor to make it water and aas proof. Make the co ar thin with turpentine, o that it will not only strike To the cement, but may be easily brushed on with ting each dry before the next coat is applied. We re. commend the same for new floors to be made of Port
(3733) E. B. U. says : A few days ago we Brusels carpet. Can you tell me through your quer column in the Scientific Ambrican of any receip which will take out, if not all of it, at least some of the kerosene, and not tak? out the colors in the carpet?
tind that your receipst in that column are very useful nd have a note book into which I copy most of them A. Expose the carpet to heat. For example, hang th burning, until the oil is evaporated. This is an effectual
(3734) S. M. writes : Do you know of substance which will make silicate of soda insoluble in with asbestos, the former to be the binder, but afte rying and pressing the mixture, water will again act o the silcate of soda. A. You cannot make it completel it normally would be, out complete insolubility canno be imparted to it.
(3735) A. A. U. writes : My house has the cistern water is about the color of good coffee.
very disagreeable to use and is coloring the clothes Is there anything I can put in to take out the colo
We have had a big rain and have a winter's supply. Nothing can be done. After a time the shingles will cease coloring the water. Empty the cistern and the
nest supply will not be so bad. It will not be clear for next supply will
several months.
(3736) W. A. H. asks for a formula for report when not confined. Wish to use same on light by heat, it can be used on trick matches, but it is very dangerous and is exceedingly powerful. Iodide of ni.
trogen answers your description betur, but is almost rogen answers your description bebier, but is almo
spontaneoosly explosive. The combination you ask fo (3737) J. W. A. asks: Can water be heated above 212. Fah. \& A. Water cannot be heated
above 212° Fah. in an open vessel, but in a closed steam above $212{ }^{\circ} \mathrm{Fah}$ in an open eassel, but in a closed steam
boiler the water may boheated much higher. For exboiner the water may bateated much higher. For ex-
(3738) G. W T J an co sucting a aas generator on a small scale and intend asswering or giving me any information in regard to the following: 1. Can gasoline gas generated by forcing air throagh the liquid and pumped into a a gasometer be
used the same as artificial gas used in cities (coal gas) used the same as artificial gas used in inties (coal gas)?

2. Has it the same degree of heat? If not. can it be sedd successsully with a blow pipe to solder 20 cara | oud ? . Would heating the gasoline by setting it |
| :--- |
| hot water aid its combustibility? 4. Will gasoline gas | remain unchanged for an indefinite time, if kept in and air should not be slored in a a tank. The are possibilities of disastrous explosion. By passing air from holder through a small vaporizing pan with a

large evaporating surface, so that there will bz an excess of gasoline vapor, there will be less danger, as this method is used for lighting. A saturated vapor will operate with a blow pipe for the purpose desired, but
will be more smoky and give more trouble than an oil lamp. Hot water will facilitate evaporation, but the
exceess will condense in the cold pipes and cause excess will condense in the cold pipes and cause
rouble. For ordinary dental purposes there is nothing better or safer than an alcohol lamp and blow pipe
(3739) D. E. S. says : 1. On page 119 of in an article of a Serpollet generator. Please explain them and the principle involved. Are any made in an iron pipe fattened and coiled. The water is in-
jeeted into the coil only an tant pat wantod for steam.

The walls of the coil are so close that the water does no enter into the spheroidal state. They are described and
illustrated in our SuPPLEMENT, Nos. 732, 746 , and 751 Thestrated in our Supplement, Nos. 732,746 , and 75 en
They are in France. 2. What is a naphtha enThey are made in France. 2. What is a naphtha en-
gine and how does it differ from a gas or gasoline ensine? A. A naphtha engine uses vaporized naphth surface condenser and returned to the boiler. 3. Ho is the steam condensed in a condensing engine? A. I condensing engine the steam is exhausted into a con enser or chamber, meeting a jet of cold water, th ater and arr being pumped out. 4. Has either a ga f amateurs building them? A. We can mail "Mode Engine Making", by Pocock, $\$ 1$, and "Gas Engines," Ey Clark, \$2.50. 5. Could double the amount of powe be got out of a given amount of steam by having two
istons in acylinder one at each end ? What would pistons in a cylinder., one at each end ? What would be he result of such an arrangement on a a yas engine? A.
You cannot add to the power of a piven amount of steam gas by using double pistons.
(3740) A. R. L. asks : 1. I have precipi ated the eold from several toning solutions with Feso and afterwara dissoved with nitro-muriatio acid. Im-
mediately
upon adding some of the solution after being ormed and the prints would alow precipitate wa contained some sodium salts. A. The trouble was pro. bably in the evaporating. Evaporation to dryness
partly decomposes gold chloride. Evaporate repeatdly with successive additions of water, to sirupy co listency only and on a water bath, not directly over the iame. The object of this treatment is to expel all acid.
Would also like to know of an easy way in which the kin and teab can be roved from a cote head to tann a good skull. A. The approved method is by soakng for several weeks in water, washing in warm water ate perfectly clean and bleaching in chloride of lim This is slow and very dieagreeable. You may instead boil the head until the flesh all comes away; after dry of lime water. The time of boiling and of bleaching depends on the specimen. Use judgment.
(3741) I. F. C. says: This town has waterworks. I do not know what style to call them,
only, the water is forced direct from a large spring owest part of city. There is no water tower, standpip nor anything of that kind. There is a reservoir used in ise
ise of fires. Now, here is the trouble: When pressure
an usual, there is a great knocking and pounding of pipes In dwellings and business houses, at every revorution he pumping machinery, which is very annoying, and
wish to kuow if there is not some way of stoppong the nuisance. All you can get out of our city authorities is, "IIs air in the pipes". If that be the case, cannot it ngineer or, and is it not ignorance on the part orthe judge that there is want of air in the right place. With proper air chambers at the pumps, on both suction and
orce pipes and small air chambers at the ends of the pipes and above the bibbs in buildings, there should be no noise at any time. If there are invert siphons in the maine,
places.
(3742) E. B.-To reduce over-dense nerai make a solution of hyposulphite of soda, 10 10 to 30 grains of ferridcyanide of polassium. Use at
Ind once, as the solution deteriorates rapidly. Retouching

Alcohol.....
 Alcobol. Sandarac.
 Camphor. Castor oil.

(3743) J. H. S. asks how to dye or stain J. Heack. A. Apply a solution of nitrate of inver and expose to the sun. The solution 18 applied
several times to the article to be stained, but it is necessary the first coat should be dry before another
is applied.
(3744) R. J. G.-Diamond ink is made by mixing with hydrofluoric acid enough barium suland show well on the glass. Ammonium fluoride may also be added. After the writing has stood some time materials sare easily obit and the etching appears. The cals. Hydrofluoric acid is poisonous and the fumes percha bottle.
(3745) A. B. asks: 1. What is meant by cuivalent focus and back focus? A. Equivalent
ocus is the focus due to the distance of the bject focalized, and usuanly called the conjugate focus. The back focus is only another name for the conjugate
focus, all being beyond the principal or focus for parallel rays. 2. Give formula for good toning solution. A. Culoride of gold.

1 gr .
30
. Acetate

8 oz.
3. What place of acetate of soda in the toning bath. 4. In what
number of SuPPLEMENT or regular edition will I find best directions for making camera for $21 / 2 \times 2 \nless$ inch Bee Scien For ilustrated description of camera bellows, SIENTITIC AMERICAN of October 13, 1888, page 23i. 5 . What is size in fraction of inch of $\frac{-1}{32}$ stop? A. The
size of the stop is the focus in inches divided by 32 ; for

inch stop

(3746) Enquirer asks : If galvanized iron oxidize from condensation, coming from the heated gases and steam in the foundry? A. Iron roofs are in
nse for foundries. If well painted on the under side they do not oxidize more than for other buildings. Galvanized sheet iron is largely used for covering. It wears
well．but as the fault of condensing steam or moisture
on the under side in cold weather and interferes on the under side in cold weather and interfereres with the
moulding and pouring by dropping water where it is inot moulding and pouring by dropping water where it is is ou
wanted．We recommend slate on irou frames as bes wanted．We
and safest．

Replies to Enquiries
The following replies relate to enquiries recently pub $\underset{\text { lished in Scie }}{\text { therein given ：}}$
（3627）A．T．writes in answer to H．D．G． I use 11 cells Julien 5 Stype storage and charge with power and three 12 candle power 20 volt Edison lamps． Conductors No． 10 and 12 B．and S．gauge wire．Have not been very successful，owing to great consumption forms of gravity now sold with on zincs．I tried the them a great improvemeni，but charging current is so low，conld only burn one 16 candle power lamp for three or four hoars，or say 18 to 20 hour charging．［The de－ posit of copper on the zincs，if occurring while charg ing，is due to insufficient current．If you had 52 gravity
cells in two parallel series，the result would be much better，as nearly twice the current would pass．This is during the charging．If，however，your battery stand long on open circuit，the trouble will inevitably occur rrangement fo rawing off the upper two inches of solutio from the cells when not charging．Forty－four gravity cells on 11 storage cells gives an unnecessarily high voltage．To use that number，place 8 cells in series and pp 36 in 2 in parallel and 18 in series．－Ed．］
other

TO INVENTORS．

An experience of forty years，and the preparation o tents at home and abroad，enable us to understand the laws and practice on both continents，and to possess un－ qualed faclitities for procuring patents everywhere． foreign countries may be had onapplication，and person ontemplating the securing of patents，elther at home o hich are low，in accordance with this office for prices， nsive faclities for conducting the business．Addres UNN \＆CO．，office SCIENTIFIC AMERICAN， 361 Broad－

INDEX OF INVENTIONS

 United States were Granted December 1， 1891

AND EACH BEARING THAT DATE

Clamp．See Hose clamp．Sewing machine nee－

Thill coupling．determining points in laying
Courts，device for ditang
out rectanguar，L．A．Swope．

Crusher．See ore crisher．．．．．．．．．．．．．．．．．．．．．．．．．
Crushin．and pulverizing machine，R．McCully．．．
Cus chalker，A．
Cue chalker，A．A．Otto．．．．．．．．．
Cultivator，J．Mrinkerhof．．
cultivator，J．C．Cigt．

Cut－oft，untomatic，©．C．Wialiärf．．．

Fen

Knitting machines，loop holder mechanism S．Cook machnes，loop holder mechani
Lace curtan strectere，A．P．Böhinger

dön
ner，traver H
Lamp，electric arc，W．A．Nic
pps，treating
antern，folding，L．：V̇on der Hö

維

and

リン：

Roof cresting，C．B．Nelson． C.

Nelms．．．．．．．．．
 for
毋）
索

Basket，work，W．H．Plumb． Bottle，E．J．S．Van Houten． ${ }_{21}^{21,187}$	
acket，B．H：Sanders	
Napkin ring， W_{R} ．H．Hud	
	Pen holder，O．Muss

20,46
$20 ; 434$
20,419

are to-day more loved in America than ever before. Hundreds of floral exhibitions attest the fact. Over 10,000 people visited the great New York Chrysanthemum Show on one evening, and it was open seven days. Thousands of country homes made beautiful by gardens are living witnesses of the new growth of this ancient art, which is fast becoming as fashionable as the wearing of good clothes. To acquire the art of flower culture, or of making home attractive with Naturc's means, one needs a reliable guide. This is found among periodicals ONLY in The American Garden, for it is the only independent, popular journal of gardening in America. All others are cleverly devised advertising sheets of seedsmen. The American Gurden is a 64-page, profusely illustrated, monthly magazine, devoted to Fruit, Flower and Vegetable culture, and Ornamental Planting. Special attention is given to illustrated instructions for arranging small places and to answering questions from subscribers. Price only a $\$ 1.00$ a year (lately reduced from \$2.00). Specimen number sent for io cents, or it may be ordered of your newsdealer. Address,
THE RURAL PUBLISHING COMPANY

SPECIAL NOTICE!

aUTOMATIC IN FUEL AND WATER SUPPLY. The Shipman Automatic Steam Engine STATIONARY AND MARIEE.
4, 6 , and S Horse Power, Single.
For Elevating Water, Creameries, and all Manufacturing Purposes , and all Manufacturing Purposes.
CO. 210 Summer St. BOSTON A NEW LIGHT
Fremaakeor woods MAGICLANTERNS ABI Send stamp for catalogue. CABINET WOODS AND VENEERS.
THE E. D. ALBRO CO., Eastern ${ }_{\text {Branch, }}^{200}$ LEW. E. 6 IS St. St. $\{$ NeW YOrk, U.S. A.

Nicker. Castings for al
Atkinson "Cycle" Gas Enğine

DEAF NESS \& HEAD NOISES CURED

NOW READY!

A NEW AND VALJABLE BOOK.
the scientific american
©yclopedia
of Peceipts,

NOTES AND QUERIES
12,000 Recelpts. 680 Pages. Price $\$ 5$.
This splendid work contains a careful compilaThis splcndid work contains a careful compila-
tion of the most useful Receits and Replies given
in the Notes and Queries of correspondents as pubin the Notes and Queries of correspondents as pub-
lished in the scientific Am merican during the lished in the scientific American during the
past fifty years together with many valuable and important additions.
Orever Twelve Thousand selected receipts are here collected; nearly every branch of the use-
ful arts being represented. It it by far the most
comprehensive volume of the kind ever placed becomprehensive
fore the public The work may be regarded as the product of the
studies and practical experience of the ablest chemists and workersin all parts of the world; the in-
formation given bein of the tighest formation given being of the highest value, ar
ranged and condensed in concise form convenient for ready use.
Almost every inquiry that can be thought of
relating to formulæ used in the various manufac Almost every inquiry that can be thought of
relating to formulæ used in the various manufac
turing industries, will here be found answered. turing ndustries, will here be found answered.
Instructions for working many different processes in the arts are given.
It It is impossible within the limits of a prospectus
to give more than an outline of a few features of so extensive a work. Paper we have nearly 250 re ceipts, embracing how to make papier maché; how
to make paper water proof and fire proof ; how to make sandpaper, emery paper, tracing paper transfer paper, carbon paper, parchment paper,
colored papers, razor strop paper, paper for doing
up cutlery, silverware; how to make luminous up cutlery, silverware; how to make luminous
paper, photoraph papers, ete.
Under the head of Inks we have nearly 450 re ceitst, including the finest and best writing inks
of all colors, drawing inks, luminous inks, invisiof all colors, drawing inks, luminus inks, invisi-
ble inke, gold, silver and bronze inks, white inks directions for removal of inks; restoration o
faded inks, etc.
Under the head of Allors over 700 receipts ar given, covering a vast amount of valuable infor Of Cements we have some 600 receipts, which
include almost every known adhesive preparation,
and the modes of use How to make Rubber Stamps forms the subject of a most valuable practical article, in which the
complete process is described in such clear and excomplete process is described in such clear and ex-
plicit terms that any intelligent person may readily
cearn the art. For Lacquers there are 120 receipts; Electro-Metallurgy, 125 receipts; Bronzing, 123 receeipts; Pho-
tography and Microscopy are represented by 600 Under the head of Etching there are 55 receipts,
embracing practical directions for the production embracing praand printing plates of drawings Paints, Pigments and Varnishes furnish over
800 receipts, and include everything worth know800 receipts, and include everything worth know-
ing on those subjects.
Under the head of Cleansing over 500 recipes are given, the scope being very broad, embracing
the removal of spots and stains from all sorts
of objects and materials, bleaching of fabrics, of objects and materials, bleaching of fabrics,
celeaning furniture, clothing, glass, , ,eather, metals
and the restoration and preservation of all kinds of objects and materials. are given.
Soaps have nearly 300 receipts.
Soaps have nearly 300 receeipts.
Those who are engaged in any branch of industry
probably will find in this book much that is of probably wilu ind their respective callings.
practical who
Those who are in search of independent busines or employment, relating to the home manufacture
of samplearticles, will find in it hundreds of most

MUNN \& CO., Publishers SCIENTIFIC AMERICAN OFFICE 361 Broadway, New York

GEAR AND RACK CUTTING.

CTARTER:S WARP DYEING AND SIZING, MACHINES POWER WRINGERS FOR HOSIERY AND DRYINGANDVENHATINGFANS, GEO. P. CLARK,

EXAMINATION OF SOILS.

JUST PUBLISHED.
A GUIDE TO THE SCIENTIFIC EXAMIT-

 HENRY CAREY BAIRD \& CO.,

VALUABLE HOLIDAY B00K.

OJR NEW BOOK

" Experimental

Science"

is the best gift obtainable. It is not only an elegant book, but one that will confer a life long benefit on its owner

A perusal of its pages insures a knowledge of Physical Science in all its branches. It is simple, easily understood and reliable.
740 Pages. 680 Illustrations. Elegantly bound in cloth. PRICE, BY MIAII, $\$ 4.00$ Send for illustrated circular.
MUNN \& CO., Publishers Office of the SCIENTIFIC AMERICAN 361 BROADWAY, NEW YORK.

 SPECIALIST, GAMFIELD State Street, Che dicago.

THE INTERNATIONAL CYCLOPFADIA.

NEW EDITION READY FOR DELIVERY DECEMBER 15, 1891.

ains the United States Census and Statistics of 1890; also Latest Census of Foreign Countries, including 189 The Best Ready-Reference Cyclopæodia in the English Language.
Write for our New Sample Pages. Muiled tree. DODD. MEAD \& COMPANY, $755^{2 \pi}$ \& HAMERS AND COUPIIMSS C Mex

COMPLETE STOCK OF Double Brace, Self-Oiling, Adjusta ble Ball and Socket Hanger Pillow Blocks, Post Hangers, Etc.

EDISON GENERAL ELEOTRIO CO., SCHENECTADY, N. Y.

Manufactured by HARRISBURG FOUNDRY AND MACHINE WORKS, Harrisburg, Pa., U. S. A
EIEDHPRIC FIOISTS FOR MINING WORK. ANY DESIRED CAPACITY. ELECTRICAL MINING APPARATUS OF EVERY DESCRIPTION.

Send for Illustrated catalogue $\mathbf{M} 2$.
THOMSON-VAN DEPOELE ELECTRIC MINING CO., 620 ATLANTIC AVE., BOSTON, MASS.

2nd acs MACHINERY

PELTON WATER WHEEL

OIL WELL SUPPLY CO.

Shepard's New $\$ 60$ Screw-Cutting Foot Lath

The series of papers entitled "American Supremacy in
Aplied Mechanicse", by Prof Coleman Selers, E. D...
which begin in the December numbe will

 In other respects the December number is a specially
strong one, the leading articles being: A A Perranent
Census Bureau ? by Ed ward At ingo

 to your great interest that all, the articieles are and find tech-
nical or engineering subjects."-Electrical Engineer, Lon-
don. Non. ${ }^{\text {News stand.s on by mail, } 25 \text { cents a number; } \$ 3.00 \text { a year. }}$
Sed 10 conts for a sample copy, and mention the ScIEN-
TIFIC AMERICAN.

FOR SALE.-Telescope, mounted on tripod, worth
$\$ 200 .{ }^{\$} 75$ will buy it. Prof. Hammes, Keokuk, IOwa.

 GATES ROEK \& ORE BREAKER
 Gapacity y pto 200 tons per hour. Has prouced more ballast. road metal, and broken more ore than meta, and broken more ore than altoter Breake sembined. Builders of High Grade Mining CATES IRON WORKS, 50CSO. Clinton Wt, Chicago 215 Franklin St., Boston, Mes.

U. S. INFALLIBLE METAL POLISH,

free sites to substantial mANUFACTURING ENTERPRISES

MODELS AND CEARS $1-1{ }^{2}$

STAR HACK SAWS.

 93 READE STREET, NEW YOBR

STEAM LAUNCHES,

STEAM YACHTS \& TOW BOATS,

DO U \&FEIT POWVER?

Motor of the 19th Centary

TRE AMERCANBEL TPR PPHONECO
95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell. March th. 1876, No. 174,465, and January 30th 1877. No. 186.787

The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use. and all the consequences thereof, and liable to suit therefor.

LEARN WATCHMAKING, Engraving, and kin-

 DEFIANCE MACHINE WORKS, defia nce, ohio, l
WOOD-WORKING MACHINERY Hub, Spoke, Wheel, Wagon, Carriage Bending,

RUBBER BELTING

The MONARCH and MALTESE CROSS RED are the Best. THE GUTTA PERCHA AND RUBBER MFG. CO Para Building, 35 Warren St., New York

HARTMAN'S MTLION

POPULARITY

COLUMBI AS

Witbout a Rival. POPE MFG. CO.

THE EASTMAN COMPANY,

MEGRAVESELEVATORS.

TANTIEEmery Wheels, Emery Whetstones Grinding Machines
Knife Sharpeners, Knife Grinders.
The Tanite Co., Knite Gri
1 h1 Washington $\mathrm{S}_{\text {t., }}$ New Yor LITTLE HERCULES DRILL CHUCK

H. DUDLEY COLEMAN MACHINERY CO.,

NEW ORLEANS, LA., U. S. A.

THE ARMSTRONG MACHINE

 ARMSTRONG MFG. CO., Bridgeport, Conn. THE NE W MODEL "HALL."

 \section*{--
 \section*{--
 }

B. W. PAYNE \& SONS,
ELMIRA.

PRINTING INKS

