

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE AMERICAN PORE IMDUSTRY-HOG KILLING $\triangle T$ THE CHICAGO STOCK YARDS.-[See page 291.]

sientifit ،egmericau.

hetablished 1846.

MUNN \& CO., Editors and Proprietors

 published weekly atNo. 361 BROADWAY, NEW YORK.
O. D. MUNN. \quad A. R. BEACH.

TERME FOR THE SCIENTIFIC AMERICAN. One copp, one year, for the U. S. Cannda or Mexico.
One copy, oix montha, for the U. S . Canade or Mexico One copy, air montha, for the U. 8, Canada or Merico................ 150
One copr,one your,to any forelem country belonging to Pootal Union.
40 Remit by pootal or exprees money order, or by bank drath or check.
MUNN \& CO, 8 Bl Brow way, corner of Yrauklin Street, New Yort.

Bullding Edition.

NEW YORK, SATDRDAY. NOVEMBER 7. 1891.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT NO. 827.

For the Weok Ending November 7, 1891.

Price 10 conta. For sale by all nowndcaler

 III. ENGINEERENG.-The Stampede or Caccade Tunnel on tae Northern PaciAc R. R-By CEABLES W. HOBABT. - A full article, rial.. 1
Univeraal suction Rem. $-\mathbf{A}$ new form of ram for elevaling water to considerable helghta- 1 engraving
North River Bridge at Now York Ctty. -The new bridge pro-
posed for connecting Now Yort City posed ior connecting New York City and the Jerbey shore.-Full
detalls, showing the size compared with the Forth oridge in land, Brooking bridge over the East RIver, Poughikeepele oridge over the Hudson River, and the 8t. Louis briage over the Miselmisc
V. Miscrllanneous.-" Pree
Meat.-By Dr. Brono trane

Meat.-By Dr. Brono Tring...................................
Mirror Lens.- A deceription, with 1 engraving, of a useful ald to reading. - In the glinecription, with ine engraving, of a useful ald to 1 image of the printing is shown conslderably magnited...
Remalns of Wonderfol
Remains of Wonderfui Ant.....................................
subject of which intile is generally known. subject or which ittie is generally known
soing Birds.-An mitereoting paper......
V. NAVAL ARCHITECTURE-A Description of the Presidente
Pinto.-A new Chilian cruiser.-One engraving, pull deecription VI. PHOTOGRA PH Y. - Kite Photography. -Interesting experi-
ments in photographing from high alitudes. -2 engravings, lluptrating Wenz's photographic kite, and a reproduction of a kite photograph...
Photograph
Photosraphic Chemistry.- By Prof. R. MiLDOLA, F. R. 8.-
These lectures, which bave been published in the SUPPLEM ENT, These lectures, Which bave been pubilished in the SU The Photographic Record of Alternate Current Curree......... II. TECHNO Process of Maring.-With 1 engraving.
Rolling Fluid Metal. - On the manufacture of continuous she................
of masllenble iron and steel direct from fuld metal.- By Sir HeNRY

DAFGEPS OF LARER FLY WHEELS.

The bursting of the 68 ton fly wheel of the great engine in the Amoskeag mills, Manchester, N. H., urnishes additional evidence, if such were needed, to prove that with the meaus now at hand the possibility of flaws in large castings cannot be determined with certainty. In his testimony before the coroner's jury, the superintendent of the mill said: "The remnants of the fly wheel show very many internal flaws where the iron is drawn badly by shriukage in cooling, all of which it was impossible to discover without destroy ng the wheel; sounding would not show the flaws. If you join two cubes of iron of equal size, one solid, the ther flled with these shrinkage flaws, the parts would vary largely in weight; such tests would be impracticable in castings as large as the integral parts of this ay wheel." According to the testimony the wheel was woving at its usual rate, the same being 61 revolutions minute, and this is strange enough when we conider that it had been in use over eight years for about three months of each year, water power being employed in the interim. This, like all big wheels, was composed of segments bolted together, and, of course, it is possible that the trouble began on the riu, the bolts loosening and the component parts of the wheel r those of imperfect make, being unable to withstand the shook of the wrenching that followed.
In another recent fly wheel catastrophe, that in the power house of the Electric Street Railway Company, Cincinnati, O., the wheel, a twenty ton one, suddenly lew apart and at a tinue when, so far as the engineer could see, there was not any undue acceleration of the ngiue's movements.
In this case there were no casualties, as at Manchester, and hence no inquest. The investigation that lollowed was conducted by interested persons who, notwithstanding the declaration of the engineer, who was present at the time, attributed it to a sudden withdrawal of the load and the consequent racing or "runniag away" of the engine. The fact that the utomatic cut-off, operated by the governor, was found o be intact might fairly be accepted as helping to sustain the assertion of the engineer, because, had the engine been relieved of its load, this automatic ent-off would undoubtedly have held the engine to within a few turns of its normal speed. It would seem, therefore, as if this, too, might be a case of defects in casting.
A recent inquiry among the makers of these big fly whe Is failed to discover one among them who knew of any test for large castings by which the presence of fiaws, the result of air bubbles in moulding or inproper cooling, could be discovered. About a year ago there was a report that a French inventor had devised means of doing this by electricity, the apparatus be ing called a "schiseophone." It was said for it that it would indicate the presence of flaws in steel rails
that the ordinary hainmer test could not be relied that the ordinary hainmer test could not be relied upon to discover, or, to put it more correctly, that the huwan ear is not sensitive enough to read the warning that may be given in the haminer test when put to large castings. Nothing, however, seems to have come as yet of all the promises made for this invention. Till such or similar means are found to discover flaws in segments for large fly wheels, it is not safe to use them in the vicinity of workrooms, as at Mancheater.

Luminous Painte in all Colorm

A German contewporary gives the following seriea of receipts for these paints, which may prove useful. All of these paints can be used in the manufacture of colored papers, etc., if the varnish is altogether omitted, and the dry mirtures are ground to a paste with water. The luminous paints can also be used as wax colors for painting on glass and similar objects, by adding, instead of the varnish, 10 per cent wore of Japanese wax and one-fourth the quantity of the latter of olive oil. The wax colors prepared in this way may also be used for painting apon porcelain, and are then carefully burned without access of air. Paintings of this kind can also be treated with water glass.
For orange luminous paint. 46 parts varnish are

4 is nish, 10.2 parts prepared barium sulphate, 6.4 parts lnminous calcium sulphide.
A violet laminous paint is made from 42 parts varnish, 102 parts prepared barium sulphate, 2.8 parts ultramarine violet, 9 parts cobaltous arsenate, and 36 ultramarine violet, 9 parts cobal
For gray luminous paint, 45 parts of the varnish are
prepared calcium carbonate, 0.5 part ultramarine blue, 6.5 parts gray zinc sulphide.

A yeliowish-brown laminous paint is obtained from 48 parts varnish, 10 parts precipitated barium sulphate, 8 parts auripigment, and 84 parts luminous calcinm sulphide.
Luminous colors for artists' use are prepared by using pure East India poppy oil, in the same quantity, instead of the varnish, and taking particular pains to grind the materials as fine as possible.
For luminous oil-color paints, equal quantities of pure linseed oil are used in place of the varnish. The linseed oil must be cold-pressed and thickened by heat.

Tobacco and Physical Health.
Dr. J. W. Steaver, College Physician and Instructor in Athletics at Yale University, reports that he has made a comparative study of the users and non-users of tobacco in the senior class during the past four years, and from his measurements he sums up his statistics as follows :
A verage increase in lang capacity in users of tobacco, 0.15 liter; non-users, 0.25 ; or an increase of 66 per cent greater for non-users.
Inflated chest measurements, in users, 0.0304 meter; non-users, 0.0364 , or an increase of 19 per cent greater for non-users.
Height, in users, 0.0169 meter; non-users, 0.0202 , or an increase of 20 per cent greater in non-users.
Weight, in users, 0.4 kilogramme ; non-users, 0.5 , or an increase of 25 per cent greater for non-users.
With regard to the possible effect on scholarships, the statistics are: Of those who received junior appointments above dissertations, 95 per cent have not used tobacco ; of those above colloquies, 871/2 per cent have not used tobacco; of all who received appointments, 84.3 per cent have used tobacco ; of the entire class, 70 per cent have not used tobacco.
Dr. Steaver says that these figures accord with statistics that he has kept for the past eight years, the greatest percentage of gain always being on the side of those who do not use tobacco. The greatest variation in the two years' widest part has not been more than 4 per cent. Some of the students who are classed among the non-users do smoke, but not oftener than once a week, or at such long intervals that the tobacco is apt to have little or no effect on them. Dr. Steaver states that the prominent athletes do not smoke or otherwise use tobacco as a rule, Calhoun being the only exception in college. All the candidates for the crew abstain from tobacco.

Preparing Waterproof Cloth.

'I'luse methods may be divided into two groups. In some, a precipitate of salts of the fatty acids is produced upon the tissue itself; in others, the cloth is saturated with melted or dissolved substances, which, when they are once solidified on the fiber, have the property of repelling water. If any of the former class of methods is selected, the cloth is passed into a special machine, in which it is saturated with aluminum acetate; it is dried and passed into a soap beck. It is necessary in this operation to produce a basic compound. For this purpose, there are employed equal weights of salts of aluminum and of lead. Care must be taken not to introduce to large quantities of free acid with the aluminum sulphate, since the latter contains always a certain quantity of sulphuric acid, which, during desiccation, displaces the acetic acid. To avoid this inconvenience, there are added per liter from 10 to 80 grms , of soda. The most favorable temperature is 50 deg. Heating doy direct steam must be avoided. For preparing the soap bath the author utilizes the fact that an aqueous solution of soap forms true solutions with mixtures of fat and wax, resing, mineral oils, and even caoutchonc. To this end he mineral oils, and even caoutchonc. To this end he takes a ten per cent solution of gum Paragnay in oil
of turpentine. The proportions to be employed for a of turpentine. The proportions to be employed for a
square meter of cloth are 30 grms. tallow soap. 25 Japan wax. 1.5 gum Paraguay, 1 grm. goor varnish. The wax is first melted, the gum and the varnish are added, and then for each kilo. of the solid gum there are added 0.5 grm . of a solution, saturated in beat, of potassium salphide (liver of sulphur). The mixture is stirred and boiled, when sulphureted hydrogen is liberated. A boiling solution of soap is added, when the bath is fit for use.-Etm. Doring, in Romen's Journal.

Detection or Copper in Distilled Water.
Distilled water, the purity of which has been ascertained by the ordinary methods, becomes colored yellow on dissolving in it potassian iodide. A close examination admits of the detection of infinitesima quantities of copper, which neither ammonia nor potassiuin ferrocyanide had revealed. The presence of this impurity occasions the yellow coloration of the solution of potassium iodide in the water. The reagen cives a feeble yellow coloration with 1 part in 200,00 n parts of water. The liquid mast not contain any othe substance capable of decomposing the iodide and libe rating iodine.-Herman Thoms, in Pharm. Central halle

Pushing the Work for the World's Falr. From a recently issued report of the Department of Publicity and Promotion of the Columbian Exposition to be held in Chicago in 1893, it is apparent that a
much greater anount of work has been already done much greater atuount of work has been already done
than is generally known. It is stated that all of the great buildings have been contracted for and are under construction, and on several of them work is proceeding night and day, all being pushed to completion by large forces of workmen. Insurance is placed and increased on the buildings as their construction proceeds. It is the intention to carry insurance aggregating $\$ 300,000$,000 on the buildings and exhibits. The following state ment of the exposition's finances is made by the report : Resources-Stock subscriptions, $\$ 5,608,110$; city of Chicago bonds, $\$ 5,000,000$; prospective gate receipts $\$ 10,000,000$; concessions and privilges, $\$ 1,500,000$; salvage, $\$ 1,000,000$; interest on deposits, $\$ 270,035$; total $\$ 23,135,145$. Of the subscriptions already received, 60 per cent has been called for, and considerably more than $\$ 3,000,000$ has been paid in. The number of sub scribers is over 30,000 . The $\$ 5,000,000$ in city bonds is certain to be realized in full, as Chicago's credit is excellent. The gate receipts, concessions and privileges, and salvage are necessarily prospective, and the amonnts given are of course estimates. It is believed they are moderate.
The amounts thus far appropriated by the States and Territories to secure their proper representation at the fair are as here shown :

The following States have appropriations pending in their legislatares. The sums they are endeavoring to raise are :

Alabama.	.8100,000	Oregon........	8100,00
Arkansan.	100,000	South Dakota.	80,00
Florida.	100,000	Tennewee	50,0
Georgla.	100,00C	Tex	0,000
Kanasa....	.. 100.000		

The foreign nations and colonies that have so far deterwined to participate in the exposition, and the amounts they purpose to expend, are the following: Argentine Rep...
Austria-Hangary Austria-E
Bolvia...
Brasll...

815,000
7,000

70.000
1000
10 1200,000 20,000
500,000 750,000
20,000 $\begin{array}{r}20,000 \\ 100,000 \\ \hline\end{array}$ 30,000
3,000
This partial list foots up thirty-one nations and fourteen colonies, and appropriations aggregating priated this The United States government has appro priated thus far $\$ 1,000,000$,
ble for its building alone.

RULES FOR EXHIBITORS.

L. W. Robinson, chief of the department of machinery, has formulated the rules. They have not been officially approved by the Director-General, but with a few minor modifications they will probably stand as follows:

A limited quantity of steam and water power will be furnished for the purpose of exhibiting maohinery in operation, the quantity of each to be definitely settled at the time of allotment of space. Any ex cess will be charged for at a fixed price. Demands for such excess must also be settled at time of allotment of space.
Exhibitors will not be allowed to exhibit any kind or class of goods except those specified in the application.

Exhibitors must be manufacturers of machinery and not dealers only.
Exhibitors must provide showcases, shelvings, counters, filtings, countershafts, pulleys, beltings, etc., a their own expense.
Exhibitors are required to furnish the following in formation and a drawing to the scale of one-fourth inch to the foot of the plans and distribution of the objects they wish to exhibit. If machinery, actua horse power required. Cubic feet of steam used per hour at a preesure of 150 pounds. Diameter of steam and water pipes. Diameter of discharge drain pipes. The main shafts will make 120 and 240 revolutions per minute. Dinensions of space required mast be given in feet and inches, without including any allowformed by females in the production of articles ex
hibited. Whether the applicant is a producer or manufacturer.
By special arrangements the installation of heavy articles requiring foundation should begin while the building is under construction.
The floor of Machinery Hall will support 250 pounds per square foot. The heaviest single piece received nust not weigh more than 30,000 pounds, as facilities will not be provided for handling heavier weights.
The steam pressure supplied will be 150 pounds to the square inch. Those wishing to secure lower pressure may do so by using a reducing valve.
Water pressure will be that due to a head of 225 feet, or a pressure of 98 pounds to the square inch and a head of 40 feet, or a pressure of 175 pounds to the square inch.
The line shafting will be 16 feet from the center of he shaft to the floor
Driving pulleys are limited to thirty-six inches in diameter.
Exhibitors of steam and other machinery who desire to offer the exhibits for use by the Exposition Company should send their applications as soon as possible. Such exhibitors may select their own men to operate this machinery. Their wages will be fixed and paid by the Exposition Company.
The Exposition Company will defray the necessary expenses of exhibitors, loaning them machines, tools, etc., for use beyond that which they would have incurred as exhibitors simply, wear and tear excepted.
Platforms, counters, ornamental partitions, show cases, etc., will be at the expense of the exhibitors and must not exceed these dimensions: Show cases, fifteen feet above the floor; counters, two feet ten inches; platforms, one foot ; partitions, fifteen feet.
All exhibits of machinery in motion must be inclosed by a railing two feet and six inches in height to come inside the space. No signs will be allowed to extend over the passageway and no signs will be allowed made of muslin, linen, canvas or paper.
No fire will be allowed in Machinery Hall except by special permission. Not more than a day's supply of oils or other iuflammable substances will be permitted n Machinery Hall, but a suitable place for the storage of these materials will be provided.
No steam or water pipes will be permitted to extend ver the passageways except when specially provided. Exhibitors not desiring to employ attendants or watchmen may leave their exhibits in the care of the department, which will assume the responsibility of their cleanliness.

Toning FerrooPrusalate」 Prints.
The intense blue color of the ordinary blue print pives unnatural effects in prints from photographic aegatives, also in architectural drawings where views and elevations of buildings are reproduced. The fol owing method of toning such blue prints has been ound to be easy of application, and to give tones vaying from a brilliant blue through violet blue to neutral tint and warm shades of gray, according to the ntensity of the action of the bath. The paper employed may be common blue print paper, sold ready for use in rolls, or the specially made paper sold in packages of cut sheets by the dealers in photographic supplies. The solar printing is carried out in the usual manner. The best results are obtained with dark prints, as the intensity of the color is somewhat reduced by the toning process. The following bathe are employed :
bath a.

The prints are immersed face downward in bath A until all the soluble salts contained in the paper are dissolved and removed, then dipped into bath B until the negative turns a violet blue and the whites are clear, care being taken that the immersion in the amhe peo not continued too long, as the deanition of erred from the ammonia bath, placed face upward in a tray filled with bath C, and exposed to bright sunshine for from five to ten minutes, until no increase in the strength of the picture can be noticed. The pictures are finished by toning in bath B until the
desired shade of color is obtained, the picture becoming first a brilliant blue, then violet, and finally, by prolonged action, blaish gray or neutral tint. The toning may be varied by a second immersion in the taunic acid bath C, followed by a second toning in ight in the usnal manner. The above process is specially applicable to prints from photographic negaiven, enabling the amateur in the fleld, provided with a printing frame, some sheets of prepared blue print
paper, and the above easily procured chemicals, to test the printing quality of his negatives, with results only slightly inferior in detail and definition to those obtained by the complicated process of silver printing.

Dialnfoction.

According to Behring, lime has about the same germicide value as the other caustic alkalies, and destroys the cholera spirillum and the bacillus of typhoid fever, of diphtheria, and of glanders, after several hours' exposure, in the proportion of 50 c.c. normal-bauge per liter. Wood ashes of lye of the same alkaline strength may therefore be substituted for quick lime.
It mast not be forgotten that we have a ready means of disinfecting excreta in the sick room, or its vicinity, by the application of heat. Exact experiments made by the writer and others show that the thermal death point of the following pathogenic bacteria and of the kinds of virus mentioned is below $60^{\circ} \mathrm{C}$. $\left(140^{\circ} \mathrm{F}\right.$.) : Spirillum of oholera, bacillus of anthrax, bacillus of typhoid fever, bacillus of diphtheria, bacillus of glanders, diplococcus of pneamonia (M. Pasteuri), streptococcus of erysipelas, staphylococci of pus, micrococcus of gonorrhea, vaccine virus, sheep pox virus, hydrophobia virus. Ten minutes' exposure to the temperature mentioned may be relied upon for the disinfection of material contaiving any of these pathogenic organ-isme-sms-except the angraz bacillus when lat stage of in the proportion of three or four parts to one part of in the proportion of three or four parts to one part of
the material to be disinfected may be safely recomthe material to be disinfected may be safely recom-
mended for such material. Or, better still, a 10 per mended for such material. Or, better still, a 10 per
cent solution of sulphate of iron or of chloride of zinc, cent solution of sulphate of iron or of chloride of zinc,
at the boiling point, nuay be used in the sane way at the boiling point, may be used in the sane way
(three parts to one). This will have a higher boiling point than water, and will serve at the same time as a deodorant. During an epidemic of cholera or typhoid fever such a solution might be kept boiling in a proper receptacle in the vicinity of the hospital wards containing patients, and would serve to conveniently, promptly, and cheaply disinfect all excreta.-Jour. Amer. Med. Asso.
 The author stated that as gunpowder making and gunnery had developed into branches of science, more accurate methods of obtaining the characteristic qualities of the explosive were required. The instruments used for determining the velocity of a projectile may be divided into two classes: 1. Those used for determining its velocity in the bore of the gun ; 2, those used for measuring its velocity outside the bore. All chronographs comprise two principal organs, one for weasuring time, and the other for recording the motion of the projectile. Clocks, pendulums, and taning forks have teen employed for the former, while electrical devices have been universally adopted for the latter, except in the oldest instruments. For recording the motion of the projectile by electrical means some sort of interruption in the circuit is used. When the movement in the bore has to be registered, a continnous wire is placed in the gan, the current through which is temporarily interrupted by the passage of the shot, this interruption furnishing the means of record. To obtain the record after the projectile has left the gun, upright frames placed in the path of the projectile have wires stretched over them in such a manner that, on the projectile passing through the frame, the wire carrying the current is broken. After briefly describing the principal chronographs which have been used, Captain Holden described in some detail those now employed at the proof butts of the Inspection Department of the Director of Artillery.
At the time the early Boulenge instruments were introduced, the highest muzzle velocity was about 1,000 ft. per second; now the velocities are nearly double this amount, and will probably reach $3,000 \mathrm{ft}$. per second. As an example, to show the degree of accuracy to which time has to be measured in order to obtain the velocity of a projectile to a foot per recond, the following was given: With a shot whose wean velocity between two screens placed 180 ft . apart is 1.800 ft . per second, a variation of 1 ft . above or below $1,800 \mathrm{ft}$. per second is represented by a decrease or increase in time of only 0.0005 of a second approximately. Such accuracy can only be obtained by a careful elimination of the sources of error in the instrument used. The muzzle velocity is obtained from the recorded velocity by means of Bashford's tables, a factor being employed which varies with the form of head of the projectile.

Recentily at the Occidental Mill one-half of a log was sawed, which was 10 feet 3 inches in diameter. It was worked up into 8,900 feet of lumber. While this is not a remarkable thing in redwood logs, still a whole log that yields 7.800 feet of lumber is deserving of honorable mention.-Eureka (Cal.) Standard.

AN ADJU̇GTABLE PICTURE HANGER.

The device shown in the illustration can be readily attached to any picture frame, and renders the task of hanging aud adjusting pictures to the proper height a comparatively easy one. The hanger is permanently attached to the frame by a screw, and the adjustment for height of picture is then effected by simply tarning the hanger to the right or left, the picture wire being attached to the hanger, and being wound up or unattached to the hanger, and as desired. To hang heavy pictures, where a separate wire is required on each side, two of these hangers are preferably used, and the leveling of the

billinge picture hanger.

picture is then easily effected. This improved hanger is manufactured by H. E. Billings, of Hartford, Conn

Varnishing oll Paintings.

The chief use of varnish when applied to oil paintiugs is to preserve and bring out the full value of the colors used, and to prodnce a uniform surface. Unvarnished, the picture appears dead in one part and glossy in another. It is a mistake to apply a thick coating of varnish to a painting, as all varnish oxidizes and darkens in color with age, consequently the thicker the coat of varnish the sooner it becomes discolored, and in such cases some of the most delicate of the tints are obscured. Therefore it is best to use the varnish thin, for while it protects the work from dirt and foul air, it also fulfills all the other conditions required. Of course, the above remarks apply equally to the finer examples of decorstive work. For oil paintings mastic varnish is universally used, a drop or two of refined linseed oil added to the varnish prevents it cracking; it admits of being used then without reducing its body. The reason why varnish cracks, as it often does, is a debatable question among experts. Apart from the question of good or badly made varnish, there are several causes which produce the same effect. The fact is that both pictures and decorative work are varnished before the paint underneath has had time to become hard; the result being that the varnish being of a bighly elastic nature contracts, as it dries, and the paint not being sufficiently hardened gives way, and at once a crack-making process begins, which can ouly end in the work becowing one mass of cracks. Oil paintings and decorative panel work crack because the getting up of the ground work, whether on canvas or panel, has been improperly done; from this cause alone a large percentage of otherwise good work is ruined. The result is the same in many cases whether the work has been got up in quick color or in distemper.

The Constitution of the Royal Ordnance Factortos
The autumn meeting of the Iron and Steel Institute was opened on the 6th of October, at the Literary In stitute of the Royal Arsenal, Woolwich

The first paper read was by Dr. W. Anderson, Director-General of Ordnance Factories. He stated that the Royal Ordnance Factories were founded upon the principle that means should be provided for the production of every kind of warlike material in a limited degree, and without discoumaging the same manufactures by private establishments. The usefulness of the Royal Factories lies mainly in the facilities they offer for testing the value of warlike appliances, for the repairs of service stores, and for the prevention of "rings" among the few firms who manafacture war material. In addition, the special experience of the managers and foremen, and the abundant means available, have enabled the Ordnance Factories to supply stores which private firms are unable to produce in reasonable time.
The Royal Ordnance Factories are six in number. Three of these are situated at the Arsenal at Woolwich. Common to all the factories is the Department of Building Works, which at Woolwich has charge of of Building Works, which at Woolwich has charge of
twenty miles of railway, forty locomotives, and corresponding rolling stock, the hydraulic establishment, the electric light installation, the gas manufacture. the telegraph and telephone lines, etc. The Ordnance Factories differ from private factories. There is no floating capital beyond some $£ 400,000$ invested in stores; consequently, the customers for whom the work is done have to provide the money when they
give the orders. The higher appointments are governed by the War Office rules. After describing the method of correspondence, the form of orders, and the preparation of estimates, the anthor stated that the capital account stood at $£ 557,945$ for buildings and £718,949 for machinery. The larger part of the work is done by the piece, but snb-letting is not permitted. The wages of the workpeople is in accord with outside trade prices. No special charge is made for machines and tools. The stores are kept with a care and accuracy not found in private establishments. The number of hands employed in the Ordnance Facories is 17,000 , of which 18,000 are at Woolwich. Women are not employed. The average wages earned is 32s. (\$8) per week per einploye. In the financial year 1889-1890, the amount of completed work issued amounted to $£ 2,259,126$, the expenditure on all services was $£ 2,590,053$, of which wages were $£ 1,839,045$, and materials $£ 1,055,224$.
Dr. Anderson, in describing the official method of binding the correspondence on any one subject together by the " much derided red tape," caused some amusement by exhibiting samples of the offleial corwrapper in connection with a bundle of correspondence indicated that the subject matter was of urgent importance, and should be immediately dealt with.

A NEW ELECTRIC LIGHT SUPPORT.

This device is especially designed for use around machine shops, etc., rendering the light adjustable to lamp-supporting arm is hung by a ball and socket joint from the ceiling there being a set-serew celling. there being a set-screw lor regulating the lriction on the ball at the apper end of the first rod, to which is adjustably attached a rod upon which the lamp-supporting and currentconducting wire is secured. The adjustable rod has its bearings in screw eyes set in the sides of the upper rod, and is pressed against the bearings by an adjustable spring. This device is equally well adapted for use on wall brackets. It is wanufactured by Messrs. R. Hollings \& Co., of No. 545 Washington Street, Boston, Mass.

A HACHINE AND HAND NEEDLE THREADER

The device shown in the illustration is extremely simple and inexpensive, and can be readily attached to any sewing machine needle in place in the needle bar, as shown in one of the views, to facilitate threading the needle. It is also adapted for use in threading a hand needle, as shown in the other figure. The devict is made of the proper size to allow it to be attached to the needle just below the needle bar, and is adapted for use on any style of machine. A groove extends do wn the front of the body, on the lower end of whicb is a thickened transverse portion having a funnelis a thickened transverse portion having a funnel-
shaped opening at its front opposite the eye of the needle when the threader is placed in position. The funnel opening has a slit in its upper side to permit of the removal of the thread, and a flat spring attaohed to an inclined back portion of the threader holds it in place on the needle. In the hand threader, the groove

slensby's heedle threader.

needle being held in place before the thread opening by a flat spring, as in the case of the machine needle, while the base of the groove is made with an inclined portion which permits of the ready adjustment of fine or coarse needles before the needle opening.
Further particulars relative to this invention may be N. Y. City.

The Basking 8hark.
The " basking shark" (Selache maxima, L.) is appaently no very ancommon visitor in New Zealand wa ters. In the new volnme of the Transactions and Proceedings of the New Zealand Institute, Mr. T. F. Cheeseman, Curator of the Auckland Museam, de scribes a specimen, over thirty-four feet long, which was stranded near the mouth of the Wade River. Mr. R. H. Shakspere, of Whangaparaoa, who saw the specimen very shortly after it was stranded, has informed Mr. Cheeseman that every spring several individuals of the same species can be seen near the entrance ot the Wade River, and along the shores of Whangaparaoa Peninsula. He believes that they visit these localities in search of their food, which be thinks is composed of small Medusax and other pelagic organisms. They can be easily recognized from their habit of swimming on the surface of the water, a portion of the back and the hage dorsal fin being usually exposed. It is from this circumstance, taken with the fact that their motions are very slow and sluggish, that they have received the name of the "basking shark." They are easily approached and harpooned, and on the west coast of Ireland as many as ive hundred have been taken in a single season. The liver often weighs as much as two tons, yielding six to eight barrels of oil.

\triangle TRUTDLER FOR BPOOLED WIRE. 1

The illustration shows a strong, light, and conve aient device for distributing fence and telegraph wire otc., coiled on flanged spools, along the lines where fences are to be made or electric conductors are to be puc up. It has been patented by Mr. Cullen R. Smith of Prairie Lea, Tex. The frame of the device has a its forward end curved L's, one of which has a hinged connection to the side bar, as fully shown in Fig. 2. these L's terminating in aligning pintles adapted to be axially inserted in perforations in the sides of the spool

gMITH'S TRUNDLER FOR BPOOLED WIRE.
drum. Attached to the hinged L is a bent arm con nected by a loop or eye with a pusher rod sliding in staples on cross bars of the frame, the opposite end of the rod being bent to form a locking shoulder and handle, while its central portion is intersected by a turnbuckle. By pushing this rod forward one of the pintles is swung outward, as shown in Fig. 2, to per init of attaching the device to a spool, when the rod is drawn back and its shoulder engaged with one leg of the staple, whereby the device is held in locked position upon the spool. To bring tension upon the wire as laid, the turnbuckle is turned to shorten the pusher rod, the shoulders on the pintles thus being pressed inward to cause friction on the spool ends. The device may also be utilized to transfer wire rolls from one may also be atilized to trausfer wire rolis from one the ends of the pintles, in the latter case, being slightthe ends of the pintles, in the latter case, being slight-
ly pointed, to engage the opposite heads of the vessels.

To Color Iron and steel a Dead Black. A new blacking fluid has been invented by M. Mazure. According to Cosmos, this liquid has the following formula:

Bismnth chloride..................................... 1 part Mercary bichlo Hydrocnloric acid
Alcohol.
Mix. To use this fluid successfully, the article to be blacked or bronzed must be clean and free from grease. It may be applied with a brush or swab, or, grease. It may be applied with a brush or swab, or,
better still, the object may be dipped into it. Let the better still, the object may be dipped into it. Let the
liquid dry on the metal, and then place the latter into liquid dry on the metal, and then place the latter into
boiling water, and maintain the temperature for half boiling water, and maintain the temperature for half
an hour. If the color is then not as dark as desired, repeat the operation. The editor of the National Druggist finds it to work beautifully. After getting the desired color, the latter is fixed and much inproved by placing for a few minutes in a bath of boil ing oil, or by coating the surface with oil and heating the object until the oil is driven off.

HOG KILLING AT THE CHICAGO sTOCX YARDS. According to the United States Department of Agriculture, there were, on Jan. 1, 1891, over fifty millions of swine in the United States, more than three-fifths of which were in twelve so-called packing States, fonr of these States, Iowa, Illinois, Missouri, and Kansas, having together 18,598,000, or nearly two-fifths of the total for the whole country. The city of Cincinnati was for many years familiary designated as Porkopolis, as the leading center of the pork-packing business, but Chicago long ago passed the Queen City in this specialty, almost at the same time that it attained so striking a prominence in the business of beef packing. There is probably no more interesting subject to the economist and statistician, at the present time, than that presented by an investigation of the vast business carried on at the Chicago stock yards, and it is not sarprising, therefore, that visitors to Chicago are always expected to make the tour of the stock yards before they can be said to have a proper appreciation of the enterprise and business ability which have made the city what it is.
In the accompanying illastrations we have endeavored to make our readers participants in the advantages of such a visit. so far as our artist has been able to represent one of the most important branches of business carried on at the stock yards, the pictures howing details of the pork-packing industry, as carried on by the house of Armour \& Co., who have long stood at the head of the trade as being the largest packers and shippers. Their trade extends to all parts of the globe, and the number of hogs killed by them for the year ending April 1 last numbered 1,714,000, besides 712,000 cattle and 413,000 sheep. They have 7,000 employes, 7,800 employes, nd quippla re rigerating appaatus for the transportation of heir products. The ground area covered by the buildinge, is 50 acres in extent, iving a floor area of 140 acres, a chill room and cold storage area of 40 acres, and a storage capacity of 130,000 tons. In ddition the frm das separate aru sors, with build ngs covering 15 g covering 15 ands are employands are employ, their produc lion last year havng been 7,000,000 pounds of glue ertilizers.
The hogs, as they arrive by train from all sectrain from all sec-
 THE CHICAGO sTOCX YARDS-SUCCESSIVE OPERATIONB FROM CATCHING PEN TO COOLNG ROOM ot parts are required. extent that it has been made the subject of very careenerally in all the important centers of commerce. as follows not over sixteen pieces, including the regular propor-

After the carcass has been thoroughly cooled, in Aoms which are always kept at a temperature below 40° F., it is run along, still on the labor-saving rails, to the cutting-up departinent, where it is taken down and separated into two sides, and then a workman with a powerful chopper cuts off the ham, shoulder, and anderlying ribs if necessary, separating the feet to be canned, pickled, or passed into the lard tanks. It is onderful to what accuracy these workmen attain, never mauling the weat, and always cutting to a hair's breadth just where the separating cuts for the differ-

A large portion of the product of the slaughter houses is distributed in bulk to the principal markets of this country, the number of hogs slaughtered singly by armers for general consumption being small; but the cutting and packing of hog products, for both the home and export trade, is a business of such enormous ful and exact rules, recognized by commercial bodies The requirements of the Chicago Board of Trade in this particular may be somewhat briefly summarized

In barreled pork, standard mess must be from sides of well-fatted hogs, split through or on one side of the backbone, and equal proportions on'both sides, 190 to 193 pounds of green meat to make a barrel, numbering tion of flank and shoulder cuts, the packing to be done with forty pounds of coarse salt, and the barrel to be flled with brine. Prime mess is made of the shoulders and sides only of hogs weighing from 100 to 175 pounds, pieces of four pieces of four pounds each, twenty pieces of
shoulder cuts to shoulder cuts to thirty pieces of side cuts, and in addition to the salt twelve ounces of saltpeter are placed in each barrel. Extra prime pork is made from heavy antrimmed shoulders, and light mess pork is made rom sides, but with as many as twenty-two pieces o the barrel. Extra clean pork as the park and ribs tackene保 pieces to the barand in clear ork the backone and half the rib next to it is aken out
In pickled meats, careful requirements are orinulated for standard sweet ent to the buildings uxtensive yards and sheds adjaering which may be a fow days or banted for slaughWhile, which may a few days or but a well fed and watered, and they are selected for killing according to the various markets, their ages generally according to the various markets, their ages generally
being from six to eighteen months, and the average being from six to eighteen montbs,
weight being from 150 to 200 pounds.
eight being from 150 to 200 pounds.
Each lot of animals, as they are taken from the pens, is duly weighed on standard scales, after which they are driven over what is styled the "Bridge of Sighs" into an upper story of the building where the work commences, about a score being inclosed together in a catching pen. Then to one hind leg is attached a short piece of chain, having a ring at its pposite end, and into this ring the operator passes a hook on the end of a chain lowered frow a roller overhead, the latter chain beiug steadily wound up by power. As the head of the animal is raised, another hook, suspended from a wheel, is fixed into the ring, and this wheel runs on a rail onward through several large rooms, always at an incline, down which the animal is carried by his own gravity. As he is swung over the wall of the catching pen, the butcher, with one thrust of a sharp, short inife, always reaches to the heart, insuring almost instant death, there being no squealing and but very little muscular twitching after the thrust. The blood fows through an inclined prating into a receptacle below, and of itself is an article of considerable value, utilized for several important purposes.
Passing on beyond the butcher, the animals are nnhooked and plunged into a vat of steam-heated water, where nine or ten are immeried together, and where
hind legs from a trolley, and thus passed over the leaf lard is removed at a following table, and farther along the heads are removed and the tongues taken out, the last operation being the splitting, before the carcass is ran into the cooling room, the time taken to catch the hog, slanghter, cleanse. dress, and deliver him in the cooling chamber being ordinarily only from ten to fifteen minutes.
Each portion of the internal organs is carefully separated, cleansed, and set aside for use, the lungs, heart and liver going to the sausage department, and the intertines, stripped of fat, cleansed and scalded, following to form the casings. Many kinds of sausage are made, among which are "liver," "blood," and pork, "Frankfurter" and "Bologna," while the sof parts of the heads are made into head cheese or brawn The minciug of the sausage meat, which also include trimmings from the sides and hams, is effected by team-driven mincers operating in large vats. Fron hogs in good condition it is estimated that as much as
forty pounds of lard is obtained on an average from each animal. The fat and other refuse is placed in tanks heated by worms from steam boilers, and afte melting is drained off in different grades, the firs quality being made only from the leaf and trimmings. Some of the bristles are used for brushes, and others go to the cobblers, but the great balk of the hair is mixed with horse hair for stuffing cushions and simila purposes. The blood is largely used for making albu men for photographic uses, as well as in sugar refining and for a fertilizer, the crushed bones and other refuse also forming a very valuable fertilizer, although man other uses are likewise found for the bones.
standard 8 wet
pickled hams and shoulders, New York shoulders, Boston shoulders, California hams, skinned hams, pickled bellies, etc., while cut meats form the subject of a long list of regulations in which are described, mong other things, what must constitute Cumberand, Birmingham, South Staffordshire, Yorkshire, Wiltshire, and Irish cut sides, South Staffordshire and Manchester hams, etc. The bacon put up for foreign consumption is usually packed in bores holding about 500 pounds each, and much of the Chicago packed meat is retailed at many places in England and other foreign markets as of the choicest domestic production in the neighborhood where it is consumed.
The promised removal of the long standing restric. tions upon the trade in American pork by Germany, France, and Italy will undoubtedly result in a large ncrease in our exports of hog producte, the total of which for the last fiscal year, ended June 30, 1891, was 84,908.698. This sum is made up as follows : Bacon, $37,404,889$; hams. $\$ 8,245,685$; fresh pork, $\$ 56,358$. pickled pork. $\$ 4,787,343$; lard, $\$ 34,414,323$. For the preceding year our exports of the same articles were 372,476 greater than during the last fiscal year.

Antieeptic soap.

An antiseptic soap for physicians and nurses, which has been found to possess the property of closing cratches and healing sores and cracks, has been introduced by M. Vigier, and is having considerable sale in Paris. It is made of 12 parts dried sulphate of copper incorporated with 88 parts of any good soap material. The product bas a pleasing green tint and is dovoid of any irritating action

The Treen for Hedgen
When barb wire fences became common, the opinion was generally entertained that hedges would be wanted no longer, being superseded by the wire fence. But hedges are not entirely given up, since it has been found that the strong objections made to them have arisen from the careless manner in which they have been treated, and often left to take care of themselves. Carelessly planted, many parts have died and left gaps, and with pruning neglected or performed at the wrong season, large vacancies have been leit below. But they
will not berome important farm barriers to any extent, will not berome important farm barriers to any extent,
rather the ornamental boundaries of home grounds, or rather the ornamental boundaries of home grounds, or
screens for protecting gardens from intruders or prevailing winds. Fet in some instances they may still be useful boundaries of farm fields, as an example of which we now have had for over twenty years an Osage hedge nearly a fourth of a mile long, which for more than that time has afforded perfect protection between cattle and horses on one side and fruit trees and plants on the other. It was cultivated on each side for a few years, until large enough, after which the soil was allowed to harden or become covered with grass to check the growth of the hedge and favor early ripening of the young wood. This reeult has been increared by a tile drain a few feet from it, giving the Osage by a tile drain a few feet from it, giving the Osage
plants a dry bottom. As a consequence, the hedge has plants a dry bottom. As a consequence, the hedge has
never been injured to any extent by cold winters. It never been injured to any extent by cold winters. It
has been annually cut back enough to reduce the height to about six feet. It is perfect throughout, and no animal or any man has ever attempted to pass it. It has cost less, in the long ran, than a good board fence. The Cultivator and Country Gentleman. from which paper we copy, mentions these facts becanse intelligent planters very commonly pronounce Osage orange not hardy enough for the North, and it is not under common treatment.
Much discussion has taken place lately on the best trees or plants for hedges. W. G. Waring gives his views in the Tribune after mach experience. He strongly favors the barberry, which he has found sufficient to exclude ill-bred boys from the fruit garden, who previously disregarded barb wire and picket fence. The plants were set eight inches apart, had been pruned back enough to "present countless needle points from ground to summit." The objection is mentioned too that the barberry is unfavorable to the wheat crop, but this is not always the case, as we have barberry hedge and barberry bushes in close proximity to unblighted wheat fields, and in other instances we have seen promising wheat crops destroyed by rust, although no barberries were kno
miles of such devastated localities.
In the same journal, Andrew S. Fuller justly pronounces the common hemlock as forming the handsomest and most perfect hedge. For its rich green leaves and soft foliage it surpasses the Norway spruce and the arbor vitm. Its dense growth in its own shade and in that of other trees might have been mentioned as an additional recommendation, in which it is unlike many other evergreens, which present a bare growth of denuded branches when the interior is examined by lifting the exterior foliage. This characteristic allows it to be used for screens (taller than hedges) in the shade of deciduons trees, and to give it a full rounded growth when other evergreens would lose their leaves.
Since the introduction of barb wire, a larger list of hedge trees may be made than formerly, a few atrands of the wire passing lengthwise in the interior giving of the wire passing lengthwise in the interior giving the same advantage to thornless branches as formerly
possessed by dense thorns. Evergreens may thus become efficient barriers. The buckthorn, which has the advantage of being easily raised from seed, easily transplanted, and having a natural hedge-like growth, may have sufficient artificial thorns supplied it; and densegrowing ornamental shrubs may now be used in the same way, if the planter will add the wire to the interior as they gradually increase in height.

Animal Temperature and Food in Disease.
The Lancet, of July 27 ultimo, brings forward the question whether the animal temperature is reduced by ohange from an animal to a vegetable diet, or to a diet in which animal food forms a main part. It refers to a gentleman and lady who, under what is called the V.E.M. system (vegetable, eggs, and milk), seem to have brought down their animal warmth from 98° to 96°, with 97°. Fah. as a maximum, and at the same time have remained in perfect health and strength. If this be true, it is argued, the assumed natural standard of the geniss homo is above the required standard, and men and wowen are wasting their powers by an unnecessary dispersion of energy. It is auggested that we ought to ascertain, from a long, pationt, and truthful series of observations on the temperatures of aniful series of observations on the tomperatures of ani-
mal and mixed feeders whether, by changing them mal and mixed feeders whether, by changing them
into pure vegetable feeders or fruit feeders, any modiinto pure vegetable feeders or fruit feeders, any modi-
fication of temperature is induced. The idea is a good one, but the research should be extended to observations on the effect of dietaries in the course of disease. We have no system in the treatment of disease, of febrike disease especially, that so much as touches this
all-important matter. In high fever we give cold
drinks, with broths and beef tea, guided more by what from very crude ideas, we are led to think the stomach
will bear, than by any forethought of what the substance, supplied as food, will do when it passes into the circulation. It is not known, elementary as the question is, whether the imbibition of cold water reduces when ledge whether those which are animal and fleshy, or those which are farinaceous, or thoee which are fruity are the most active antipyretics. Perchance there might be discovered some food and drink that of itsel would be sustaining and antipyretic. I am usually led by what is called the "instinct" of the patient in di recting foods and drinks, and my late friend $\mathbf{M r}$. Thomas Hunt, a shrewd and original observer, wrote once an essay to prove that instinct was an infallible
guide for food in disease. It is a doubtful doctrine guide for food in disease. It is a doubtful doctrine,
but possibly up to date as good as any other, if not the but possibly up to date as goo
best.-Dr. B. W. Richardson.

Chmatology in Rolation to Childhood and Old

 Age.As regards childhood, we mny safely lay down the generai laws that children respond more readily to change than their elders, that they commonly do very well at the seaside, that they often benefit most sig-
nally by a sea voyage, and do not suffer severely from nally by a sea voyage, and do not suffer severely from enjoy and benefit by a country life, that they suffer more than grown people from the depressing infla ences of city life, and that, as a rule to which there are probably many exceptions, they do not specially beneft from the climate of high altitudes Snch, in tology of childh the leadiag prilescence. That child ren love the sea and that the sea very generally suits them are familiar facts of observation. The explana tion is to bo found in such considerations as that child ren are commonly in a condition to bear stimulation not having used-up nervons systems, that they are attracted by the sea and its products, and by the amuse inents natural to the seaside, and that some of thei
commonest ailments, such as struma and rickets, ar commonest ailments, such as strums and rickets, are
among the affections most amenable to marine influ ence.
It is very striking how happy children are, as a gen eral rule, on shipboard; how readily they accommo date themselves to their novel conditions of existence inconveniences of the life at sea; how deeply they are interested by the rather monotonous round of sights and sounds, and how astonishing is frequently their progress toward health under such conditions. Th onjoyment and benefl which children derive fron country life do not call for comment. That city life especially under the insanitary and nnwholesome con-
ditions prevailing in many of our large centers of population, is prejudicial to the normal and healthy developunent of the child is a fact sufficiently obvious, but for which it is difficult to find an adequate remedy. The question is too large to be discussed incidentally in this connection, but it is not too much to eay that the great problem in hygiene which the twentieth centary will be compelled to solve will be how to reconcile the growth of gre
That the national health
That the mountain climates are not very suitable for children is probably a true general principle, but on apon which it would be rash to insist too rigidly. The explanation would appear to be that, upon the whole,
the general conditions of climate and life which exist the general conditions of climate and life which exist tain morbid conditions, do not promote in a simila degree normal physiological development. We must admit, however, that this point has not been at all ade
quately worked out, and that any hard-and-fast rule areat least premature.
The climatology of old age may be roughly summed op as follows : Elderly people in general do well with equability and moderate warmth; they bear cold badly; they benefl by abundant sunshine. The high altitudes are very rarely saitable to them, and are usually decidedly injurious; they do best in leve
places, where there is abundant shelter. They may or may not benefit by the seaside or a sea voyage, but these measures cannot be recommended with at all the same confldence as in the case of ohildren. Most o these principles become almost obvious upon a little consideration. The failing vitality, by which we mean impaired vigor of circulation, assimilation, and excre tion, which characterizes advanced years, and the special maladies most frequent at that time of life, such as rheumatism, cardiac disease, gnat, and renal affec tions, serve to determine the climatological problem Moderate warmth with fair equability, abundance of sunshine with adequate shelter, and level walke, ovidently meet the most obvious indications called for by these affections.
The unsuitability of the mountain climates to the aged is due partly to the cold, which depresses those in whom the circulation is feeble either constitution
changee, which are es pecially trying to the rheumatic or the subjects of renal disease, partly to the imposaibility of obtaining sufficient easy exercise on the level gronnd, which is a serions difficulty in cardiac cases. A sea voyage, though by no means out of court at any period of life, is often a doubtful experiment for the old, who do not take kindly to such a revolution in their daily habits as life at sea necessarily involves, who often suffer severely on shipboard from sea-sickness and insomnia, and who may not possess sufficient elastlcity of spirit to rise above the depressing in. flasticity of spirit to rise above the depressing in-
fluence of separation from home and friends. The fluence of eeparation from home and friends. The
elderly constitute the class most likely to benefit by elderly constitute the class most likely to benefit by the various spas, which now enjoy at least a sufficient
vogue. The effect of mineral waters is in most cases vogue. The effect of mineral waters is in most cases
to promote elimination, and this is often the first into promote elimination, and this is often the first in-
dicatlon in the case of those advanced in years. It should never be forgotten, however, that vigorous eliminative measures are a great drain upon the system and may easily be abused.
We hardly need to say, in conclusion, that in nothing is the superior recuperative power of youth over age more apparent than in the greater readiness and certainty of its response to change of climate. We can confldently recommend to the young measures which we suggest dubiously to the old. In fact, change is we suggest dubiousiy to the old. In fact, change is rarely at fault in the earier years of life, whereas it is
very often a doubtful, and sometimes a most hazardvery often a doubtful, and sometimes a most hazard-
ous, experiment for the aged. In the case of the latter we need to have solid reasons and tolerably definite prospects before we induce them to give up the comorts and safety of home for the uncertainties of travel -Lancet.

Cycling: lite Une and Abuce.
Those who believe in the necessity of physical exercise, and we belong to their number, have need also to remember that even so good a thing as this is in excess an evil. The use of the cycle is a form of bodily recreation in itself doubtless wholesome; none the less is it open to the mischievons effects of undue indulgence. Tempted by the ease of movement, combined as a rale with attractive scenery, every one trys it. Every one too finds he can do something with it, and considerations of weather, constitution, age, and health are apt to be dismissed with summary imprudence. One fruitrul source of injury is competition. In this matter not ven the strongest rider can afford to ignore his limit of endarance. The record breaker, who sinks axhausted at his journey's end, has gone a point beyond this. The septuagenarian who tries to rival his juniors by doing and repeating his twenty or thirty miles, perhaps against time, is even less wise. Lady cyclists, too, may bear in mind that their sex is somewhat the reaker. So likewise among men the power of endurance varies greatly, and it is better for some to admit his and be moderate than to labor after the achievements of far more muscular neighbors. In short, whenever prostration beyond mere transient fatigue follows the exerciee, or when digestion suffers and weight is markedly lessened, and a pastime which ought to exhilarate becomes an anxious labor, we may be sure that it is being overdone. He that would reap its best results must content himself with much less than this; but unless he can observe such moderation, he had better abstain from it altogether. -The Lancet. London.

Now Coloring mattor.
It is said : Some Belgian manufacturers of glass and porcelain have recently introduced from Germany a new coloring matter, which can be fixed without the use of fire. In this process a mixture of two solutions, of which one consists of 100 parts of strong potash and 10 parts of acetate of soda, and the other of 15 parts of wetate of lead in 100 parts of water. The second solntion consists of 50 parts of borax dissolved in 100 parts of hot water and 20 parts of glycerine. Sixty parts of the first mirture are mixed with 40 parts of the second. When the composition has been applied, the objects are placed in a bath, which is composed of 1 part of borax diseolved in 12 parts of water, mixed with 50 parts of hydrofluoric acid and 10 parts of sulphuric acid. After being allowed to remain in the bath for ten minutes, the objects are washed in clean water, when the color appears as clearly as when the objecte are fired.

Pallure of the Galvonton Harbor Worke.

After more than twenty years of experiments, froquent changes of commanding officers, several modifications of plans, the expenditure of $\$ 2,273,111.66$ to June 30,1890 , and more than a quadrupled estimate of cost to complete, it may be said that the injaries caused by the works are greater than the benefits, and that the difficulties in the way of securing a deep water channel over the outer bar have been preatly increased rather than diminished, while it is proposed to apply $\$ 6,200,000$ to a continuation of these experiments on a
plan which must prove fatal. Snch is believed to be a plan which must prove fatal. Snch is believed to be a
frank, though greatly abridged, statement of the problem of securing deep water at Galveston, as it axists to-day.-Lerois M. Haupt, C.E.

Correspondence.

Practical Uw or a small Eloctrical Powor

To the Editor of the Scientific Ainerican:
I have a battery (primary) charging two cells of stor age battery, which has been in daily use for nearly year without once failing. From the storage cells I run a motor, one-eighth horse power, giving we power enough for all dental operations, viz., my dental engine used in the mouth and the lathe for grinding and polishing, the electric mallet and mouth lamp. The power is fully equal to the demand at all times. As you well know, the secondary battery needs no atten tion whatever, and all that I have ever done to the primary battery is to pour out the water once in t"o months, and put in about four pounds of blue vitriol to each jar. There are ten jars of primary coupled to give five volts and about one ampere; as a matter of fact, it will give more than one ampere during the two months, but after that period the quantity lessens The cost of maintaining this is about 75 cents per month, and it requires about one hour to renew, if al the cells are cleansed at the same time, which is not necessary. The capacity of the storage cells is 4 volts and 35 ampere hours. This summer, before I went on my vacation, I discharged the secondary battery, and in so doing ran the motor without load for six hour continaoasly before it stopped.
J. E. Stanton.

Boston, Mass., October 14, 1891.
[The above account of Dr. Stanton's experience con tains information of value to a large number of readers who are interested in the practica use of tricity in a mall way. We would be pleased to hear from others having a similar experience.-ED.]

The Formula of Amido-phenol
To the Editor of the Scientific American:
In issue dated October 17, in answer to E. B. C., you give the formula for paranidophenol as
$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{3}\right) \mathrm{OH}$
The phenols have six C's. Simple phenol, or carbolic scid, in graphic formula is

Consequently paramidophenol would be graphicall

or
$\mathrm{C}_{6} \mathrm{H}_{\mathbf{\prime}}\left(\mathrm{NH}_{2}\right) \mathrm{OH}$
instead of
C.H.(NH2)OH

Am I not correct? Herbert B. Tuttler.
[The formula should read as you give it-
$\left.\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{4}\right) \mathrm{OH}.\right]$

The Tidee.

To the Editor of the Scientiflc American:
If Newton's theory accounting for the tides is correc -of which I presume there is no doabt-can it not b proved, and the amount of the attraction of both the sun and moon upon the earth be ascertained, by the means suggested below?
It appears to we that at new moon a properly ad justed water wheel with a given amount and tempera ture of water, and under a given bead, should make larger number of revolutions at 6 o'clock than it could make at noon, as at noon the attraction of both sun and moon would be counter to the earth's attraction and would decrease the weight of the water, while at 6 o'clock their attraction, being at right angles to the earth's, would have no effect upon the weight of th water

Ward Stone.
[Yonr idea of the relative difference of the sun, and
but the direct attraction of the sun's and moon's force does not agree with the tidal development which fol ows the moon's position by six hours. Whatever the difference is, in the gravity of falling water, it will be least at noon and greatest at midnight at time of new noon; since the moon's mass is only about one-eightiath the earth's, and its distance thirty times the dianeter of the earth, the lifting force at a point upon the earth's surface which has the zooon in the zenith, expressed as a fraction of the earth's gravity, equal rostove, or a body of water weighing 4,000 tons has a total variation in weight of about one pound, due to the position of the moon, whether in the zenith or badir. Attempts have been made to observe directly the variations in the force of gravity produced by the noon's action, but they are too small to be detected with certainty by any experimental method yet con idered. The differential force of the suu is 80 much maller than that of the moon that it may be left out in questions of the above kind, and is only manifest in the problem of the precession of the equinoxes. - En.]

Is it Mineral Wax?

o the Editor of the Scientific American

There is a legend among the Indians here that a Spanish vessel loaded with beesway was wrecked on he beach near here about one hundred years ago. On the beach at the month of Nehalem River, in this county, about forty miles south of the mouth of the Columbia River, is found large quantities of wax having the appearance of a mineral, at first sight, but on closer inspection and with ordinary teste appeare to be pure beeswax. In fact it is gathered and sold as beeswax; and one man residing at Nehalem makes a egular business of gathering it and shipping it to Astoria, where he receives the regular market price of beeswax.
It is washed ashore at high tide, apparently having been unbaried from the shifting sand bars by the wares, and it is common to see a man plowing on the beach to unearth the treasures of wax. It has also been found at quite a distance from and considerably elevated from the beach, in the black soil, where large trees are now growing. It occurs in pieces of various sizes, from the size of a walnut to one handred and fifty pounds, and some of the larger pieces are said to have borne inscriptions in some unintelligible len guage. The Indians use it for torches.
Inclosed you will find a small piece, and if yon ar anable to determine from this what it is, will send you more, as it is very plentiful in this county, almost every one having samples on their mantelpieces.
W. F. D. Jones.

Tillamook, Oregon, October 10, 1891.
The specimen is probably mineral wax. The fact hat it is found in the soil at a distance from the beach and elevated above the sea level entirely discredits the Indian legend.
The occurrence of mineral wax or resins in the lig nite beds of the Northwest and British Colambia has been known for several years. The results of partia been known for several years. The results of partia logical Survey reports. The occurrence in quantity indicates the possibility of a Cretaceous or Tertiary ignite bed in the neighborhood. The wax belongs to the hydrocarbon series allied to the retinites and ambers-the fossil remains from the resinous trees o the Tertiary age.-Ed.]

Leprosy in China.

To the Editor of the Scientific American:
I read with much interest an article on "Leprosy" in September 19, 1891, number of the Scientific Ambrican ; and after reading the article in question it struck me that your readers perhaps might be interested in knowing what ideas are prevalent with regard to the dreaded disease which formed the substance of the said article in your valuable paper, in a conntry like China, where it has been flourishing for so many enturies.
Having lived in China for a number of years, and having traveled extensively during that time in the ervice of the Chinese government, I have often come upon whole districts and towns where leprosy was pre valent ; and speaking and reading Chinese fairly well, I made several inquiries, with a view of ascertaining the natives' ideas as to the origin, spread, and prevention of that fearful disease.
On one occasion I came upon whole leper col jnies at, and close to, the city of Yen Ping, in the province of Fu-chien. I asked the prefect of Yen Ping Fu if he knew anything about the cause of the disease (which n Chinese is known as Ma Feng) and what steps the ocal authorities took to prevent the spread of the disease. He answered ine that very little was known about the cause, but that leprosy was about as old as China itself. It is, however, probably caused, he said, by "a small animal, but so small as to be in visible to the eye, and on the whole not perceptible to the senses at all." This struck me at the time as very interesting, as it proved that the Chinese had made a shrewd guess-ages before the "civilized West"-at the now se commonly discussed bacillus. The prefect
arther said that the general idea was that the seeds of leprosy entered the rice through the water in certain localities, and that it was through the food that the disease to some extent was propagated, and of course through actual bodily contagion! There were numerons asylams at Yen Ping Fu for lepers, but they were allowed to go about a good deal. The lepers in the said district were allowed to intermarry, but no marriage was allowed between healthy people and those suffering from leprosy. I was shown a good many young boys and grown-up girls, several of whom showed no ontward signs of the disease, and several of whom even were very good-looking, but who nevertheless all of them had the taint of the disease. The Chinese claim to be able to recoguize the existence of the disease in such cases by the peculiar, nearly abnormally healthy complexion! The gness at the bacteris is said to have been made many centuries ago: many remedies (all, or most of which rere ago ; many relike (all, br more to time bat prom time to time, but prelet alid that really thore was no remedy, and only one way of preventing the spread of the dieease, namely, by keeping the lepers strictly in their asylums and prohibiting marriage of lepers altogether, and thus stopping the spread of leprosy by contagion and heredity !
There are many superstitious notions in existence in Chins with regard to the cure of the disease. Thus a Chinese official told me that many of the natives hought that a person suffering from leprosy could be cured by marrying a healthy person of the opposite sex: and great cunning has often been used to conceal the disease, and thus carry out matrimonial plans of such kinds, with a view of curing either the son or daughter as the case might be.
This, of course, proves the ignorance of the masees and also how still further new channels are opened for the propagation of the disease. On another occasion women offered me and a friend some "peanuts"; an official who wasitraveling with us rushed up, saying only: "Ma Feng, pu mai," which means: "Leprosy, don't buy," which proves that the Chinese are fully convinced that the contagion can be communicated by touching or eating anything which has been handled by lepers; and it also proves, as your correspondent of September 19 mentions, the great risk one unknowingly runs in buying frnit or any other kind of produce coming from places where lepers are allowed to go about at large. Whatever some " western" physicians may say as to the non-contagion of the disease, I think no sane person will deny that the experience gained through thousands of years in a country like China must and does prove something, especially as after all most of our present knowledge of medicine is based on observation and tradition. Besides, the Chinese knew the use of vaccination as a preventive against small pox more than six centuries ago ; and, although they of course do not possess our knowledge of chemistry and surgery, they have always been careful recorders of history within their own sphere of knowledge.
Vancouver, B. C.

Long Distance Eloctrical Power

At a recent meeting of the Engineers' Club, Philadelphia, the secretary read, for Mr. Coleman Sellers, a letter communicating information obtained from recent letters from Switzerland respecting the electric transmission of power from Lauffen to Frankfort, a distance of 175 kilometers, or about 100 miles.

A 300 horse power turbine at Lauffen supplies power to a three-phase dynamo which furnishes currents of 65 volts, which are at once transformed to 25,000 volts and carried to Frankfort by a three-wire line, each wire having a diameter of 4 millimeters.
The wires are carried by porcelain insulators with oil grooves, on wooden poles about 50 meters (164 feet) apart. At Frankfort, the high tension current is retransformed to an alternating current of 65 volts. This current supplied (on the evening of September 14) 1,000 incandescent 16 -candle lamps and a three-phase receiving dynamo of 100 horse power.
From considerations of safety, the horse power developed at Frankfort has not yet exceeded 120 borse power, and the tension actually used has not exceeded 15,000 volts, the quantity reaching only 1,500 amperes. The 100 horse power dynamo furnishes at present only 40 horse power to a centrifugal puwp.
Owing to the false indications given by ordinary amperemeters and voltmeters, the nuinber of watts recorded is greater at Frankfort than at Lauffen.

Thought Transferonce

Professor Lodge, president of the section of Mathe matics and Physics at the late meeting of the British Association, used the following language : "May there not also be an immaterial (perbaps an ethereal) medium of columunication? Is it possible that an idea ean be transferred from one person to another by a process such as we have not yet grown accustomed to, and know practically nothing about $?$ In this case I have evidence. I assert that I have seen it doie and am perfectly convinced of the fact."

HOW BTONE IS CRUBHED AND SCREENED.

 The stone-crushing establishment shown in the illus tration is situated near the West Shore R. R. depot at Weehawken, N. J., and is fitted up with three Blake hydraulic crushers and the necessary screens and elevators. The crushers are made of cast iron, about 6 inches in thickness, and the feed opening at the top is 15 inches in length and 7 inches in width. Each crusher has a stationary vertical jaw and a movable jaw swinging on a pivot to approach the other. Both jaws are flated, the ridges of one jaw being opposite the grooves of the other. The movable jaw, which ap proaches to within 3/8 of an inch of the bottom of the other, is made in two sections, so that the fluted part when the ridges are worn out can be replaced by a new one, which is fastened in place by means of keybolts. On the back and lower half of the movable jaw bolts. On the back and lower half of the movable jaw is a groove about 4 inches in height and 3 inches in depth, in which rests the larger end of a V-shaped toggle plate, 4 inches thick, 14 inches wide, and about 17 inches in length. The small end is round and rest loosely in the end of a small 9 inch cylinder, the end where the toggle plate rests being shaped inside like a druggist's mortar about 5 inches in depth. This small cylinder slides into a large 20 inch cylin der, and when the wheel of the hydraulic engine revolve, the piston or plunger which runs through the top of the large cylinder descends and presses the 1 gallon of water which the cylinder is supplied with against the small cylinder. A 8 ton pressure is thus given which drives the small oylinder forward, with the toggle plate and movable jaw, the latter being moved up to within $\%$ of an inch of the bottom of the fixed jaw, and breaking all the tone between the jaws.
Connected to the movable jaw, and running underneath the cylinder, is an India rubber spring which draws the jaw back as the plunger ascends. As the stone is broken it falle into a chute on the under side of the crusher and passes into a circular iron screen which is perforated with different sizes of holes. This screen is 8 feet in diameter, 8 feet in length, and made of $1 / 2$ inch iron. It is uade in ten sections securely bolted together. The holes in the screens are $1,11 / 2$, and $21 / 2$ inches n diameter. The screen is hung at an angle so that the larger pieces of stone as they fall into it will roll down to the lower and and pews through the large pass through the large The elevator is about 50 feet in length and runs out to the center of a large stone bin. The sides are made of heavy timber, about 2 feet apart, and running between them on 8 inch wooden rollers is an 18 inch wooden belt made of strips of wood 2 inches in width and 1 inch in thickness. These are fastened losely together by means of a 12 inch rubber bel unning across the center and screwed fast to the under side of the strips. The stone as it falls from the to the end of the elevator, vhere it falls down into the stone bin. The bin is elevated about 7 feet from the pround and rests on 12 by 12 timbers, which are placed far enough apart for a cart to back in underneath the hin for a load of stone. Projecting down from the bot tom of the bin about 6 inches is a 7 inch iron pipe covered at the bottom with an iron plate. The cart is backed directly under this pipe, when the driver pushes the plate one side and down comes the stone, which tils up the cart in about two minutes. The plate is then pushed back again over the mouth of the pipe until the next cart comes. The stone is sold by the cubic yard. One stone breaker will crush from 50 to $\mathbf{6 0}$ yards of atone every 10 hours. The establishment is ran by steam power, a 24 h . p. engine being used. The plant is owned by John Marphy, of Weat Hoboken, N. J., and cost about $\$ 10,000$.

IMPROVED STONE CRUSHING MACHINERY.
or rather of part of it, starchy mixtures, and even milk, which constitute the diet of patients with influenza and other fevers, cancict supply these elements, and atrophy at the root and falling of hair result. The color and strength of hair in young mammals is drugs, iron has long as milk is their sole food. As to drugs, iron has prompt influence. The foods which most abundantly contain the above-named element are the various albuminoids and the oat, the ash o that grain yielding twenty-two per cent of silicon With care these foods are admissible in the course of febrile diseases, when ulbumen is the constituent suffering most by the increased metabolism. I have often found a dietary largely composed of oatinea and brown bread greatly promote the growth of hair especially when the baldness was preceded by consti pation and sluggish capillary circulation. Those race of men who consume most meat are the most hirsute Again, it is well known in the zoological gardens that carnivorous mammals, birds, and serpents keep thei hair, feathers, or cuticle in bad condition unless fed with whole animals, and the egesta contain the cuti cular appendages of their prey in a digested or partly
digented atate." digented atate." adorns the wuseum at Bern.-Lancet

The Hosplce of the Great st. Bernard. This asyluin for the Alpine wayfarer (7,609 feet above the sea level) is said to have been founded A.D. 962 by St. Beruard of Menthon, while, according to some authorities, it rose a century earlier, under Charle wagne. Neither saint nor emperor is likely to make good his claim, as the archives of the hospice have been completely destroyed in two successive conflagra tions. But like other Christian institutions, it had un doubtedly a pagan predecessor. The Rowans on the self-same spot built a temple to the Pennine Jove, and that in turn occupied the site of a still earlier shrin of prohistoric antiquity. The truth is the Alpin of prehistic antiquity. Tho truth is, the Alpin the Cristian world treading the rat moute which the Chrician had been trodden by the Romans, who also availed themselves of the track made by the aborigines. A its highest point the tutelary deity had his place o worship, and this was served by the local priesthood who rendered assistance to the distressed or ailing traveler and received votive tributes in return for it good offices. The exist the spot, with its staff o priests, is well known ; and the relics that have turned up near it attest its uses t have been similar to those of the present hospice. A discovery of importance has just been made in it vicinity-a bronze statu in excellent preservation of Jupiter himself. Its ar tistic value is very great its height, forty centime ters. At the same time other treasure-trove wa brought to the surface, in cluding a number of me dals and a statuette of lion measuring sixteen centimeters, also of fin workmanship. These ar now the property of the monks, and will attract to the hospice a public mor able to keep them in fund than the proper recipient of their kindness. Sad to relate, the revenues of the monastery, heavily drawn upon by the travelers (from 16,000 to 20,000 annually) who throw themselves on its bounty, are diminish ing, the contributions lef by these comfortably ac commodated guests being miserably below what, in the majority of cases, they can afford.
The heroism of the monks should be remem bered by the well-to-do holiday visitor. They begin their career at the age of eighteen or nineteen. After fifteen years' service the severe climate has made old men of them For eight or nine month out of the twelve they se none but the poorest way farers, when the cold is in tense, the snow lying deep the danger from storms in vesant and fearful. Thei sole companions are the cogs, whose keen scent has guided them to the snow wreath under which the buried traveler has so often been rescued and brough to life-dogs like that noble fellow "Barry," who saved corty men in his time, and who now, carefully stuffed,

Intereating Discovery in Egypt.
The correspondent of the London Times at Alex andria telegraphed on October 11 that three colossal statues, ten feet high, of rose granite, had just been ound at Aboukir, a few feet below the surface. The discovery was made from indications furnished to the overnment by a local investigator, Daninos Pasha Ehe Erst two represent in one group Rameses II. and Queen Hentmara seated on the same throne. This is nique among Egyptian statues. The third statue represents Raneses standing upright in military attire, scepter in his hand and a crown upon his head. Both bear hieroglyphic inscriptions, and both have been thrown from their pedestals face downward. Their ite is on the ancient Cape Zephyrium, near the re nains of the temple of Venus at Arsinoe. Relics of the early Cbristiuns have been found in the same locality.

Microber and carpote.

In our endeavor to be coufortable in this vale of tears, there is a tendency to overlook the elementary laws of hygiene, and in no respect, perhaps, more so than in the superabundance of curtains and carpetsthose non-patented contrivances for hindering the free circulation of fresh air and stultifying nature's automatic arrangements for the deodorization and diein fection of our homes. Carpets are always objection able when they are not designed to permit of easy removal for cleansing purposes without the necessity of turning a room topsy-turvy. In most houses the carpet only comes up once a year, by which time it as full of microbes and accuas full of microbes and accu will allow. if our row. No wonder, then, if our rooms preserve a musty smell in spite of periodical opening of windows and vigorous sweepings, which only displace a portion of the dust to settle promptly elsewhere in some less accersible spot. Fized carpets are even more objectionable and unwholesome in bedrooms, for there they absorb the fetid ewanations of the night, and souk up various decompen ble materials for future use. The ideal would be a polise The ideal would be a polished wooden floor garnished with rugs in sufficient number to give an aspect and feeling of comfort, while admitting of easy exposure to the salutary influence of air and light. Rugs, carpets and curtains ought to be frequently shaken and hang up in the freah air if they are to remain sweet, not once a month or year, but twice or thrice a week, if not oftener. At this price only can we hope to deprive confined spaces of their native una holesomeness, and the sooner house wives lay this maxim to their hearts and act upon it the better.-Hospital Gazette.

Union Label-Trade Mark.

An interesting decision has just been rendered by the Supreme Court of Pennsylvania in a suit brough by Cigarmakers' International Union No. 126, of Ephrata, against one Brendle, to restrain him from using the Cigarmakers' International Union label on his goods. The defendant was a nnion manufacture who had incurred the ill-will of local officials, and declined to use their labels, but issued similar labels or trade marks of his own. The union secured an in junction in the court below, but the Supreme Cour junction in the court below, but the supreme Court
reversed the decision of the court below on the gronud that the Cigarinakers' Union, formed for the mental, that the Cigarinakers' Union,
uoral, and physical welfare moral, and physical welfare of its members, was a personal and social organization, not a commercial one, and, therefore, could not own a trade mark under the laws of Con gress. It appears that the union label described the cigars it accompanied as be ing made by first class work men, stigmatized all cigars not having the label as of inferior workmanship, and inferior workmanship, and recomind a dio cigars to all suokers through out the world. In its decision the court said : "This is an attempt to use the public as a means of coercion in order to find a market for their goods or labor. A frst-class workman is one who does first-class work, whether his name is on the rolls of any given society or not. Filthiness and criminality of character depend on conduct, not on membership of the union. Legitimate competition rests on superiority of workmanship and business methods, not on the use of vulgar epithets and personal denunciation. The International Union in this case has an avowed pur pose to do harm to non-union men, to prevent the sal of their work, to cover them with opprobrium, and they ask a court of equity to say they have a right t do so. We decline to say so."-Bradstreet's.

THE finest stationary engines made in the world, for economy, durability, and elegance in design, are made in the United States. English engives are often bulky and clumsy. French engines are frequently erratic in design and fragile in construction.

HE MANCHESTER SHIP CANAL-VIEW OF ORE OF THE LOCE GATES.
open side basins, or widenings at ship building yards or where cargoes are discharged or loaded, for manu facturing establishments or storehouses adjoining the canal.
Five sets of locks-at Eastham, on the Mersey sea estuary ; at Latchford, on the Mersey, above Warring ton; at Irlam, above the junction of the river Irwell with the Mersey; at Barton, on the Irwell; and a Manchester-raise the level of the canal, on the whole 60 feet above the sea. Of its entire length, twenty three miles, inland from Runcorn to Manchester, will have been formed by cutting a straight and deep channel for the rivers Mersey and Irwell. The lowe channel for the rivers Me nection, from Eastham to

This grest engineering work is now rapidly approachog completion, and will soon be in full operation The first completed section, from the entrance at East han on the river Mersey to Weston, was opened for traffic on the 29th of September. The length of this completed portion is eleven miles, being almost one third of the entire length of the work.
The first consulting engineer was appointed (to look the project and report) in the sumwer of 188, was only in August, 1885, after making three trials, hat the sanction of Parliament was obtained for building the canal. Before a single sod was turned
\qquad

THE MANCHESTER 8Hip CANAL-VIEW FROY LOGIs LOOEING ALOMG THE CANAL. section, from Eastham to Runcorn, forms a curved line of twelve miles along the Cheshire shore of the broad inner expanse of the Mersey estuary; but at Weston Point, neeting the estuary of the navigable river Weaver, which is connected with an extensive system of canals, it will obtain valuable local traffic, especially the shipment of salt. A large trade with Cheshire and the Staffordshire potteries, by the Bridgewater canal, will also reach the ship canal at Runcorn, as well as that of the chewical manufacturers at Widnes. The Shropshire Union canals will feed the traffic at Ellesmere Port, near Eastham.
The Manchester docks. formed on both banks of the Irwell, chiefly in Salford, but also in Manchester on the site of the Pomona Gardens, Cornbrook, and extending to in the great work, $\$ 1,750,000$ was spent in forwarding \mid Throstlenest and the Albert Bridge, near the Old and contesting the canal project. In July, 1888, the contract for building the entire canal was let to Mr . Thomas Walker for $\$ 28,750,000$. The allowed time for finishing the work was four years, with a large bonus for whatever time was gained in finishing.
The canal extends from Eastham Locks on the south bank of the estuary of the Mersey River to Manchester, having a total length of a little over 35 miles. The minimum width on the bottom is to be 120 feet. The depth throughout is to be 26 feet. This is a very large cross section when compared with existing canals, which are as follows :
Ghent canal, 55 feet 6 inches wide on the bottom, 21 eet 2 inches deep.
Suez canal, 72 feet wide on bottom, 28 feet deep Amsterdam, 88 feet 7 inches wide on bottom, 28 feet deep.

Throstlenest and the Albert Bridge, near the Old Trafford Road, will afford ample accommodation to the trade of that city. They occupy a space of two hundred acres. The water area of the dock basins is sixty-two acres and a half, and the quay frontages are three miles and a half in aggregate length, to which may be added a mile of open wharves along the wide part of the canal just below ; and there will be two miles and a half of the canal bank, lower down, available for discharging cargoes into barges and lighters, and putting them ashore. Fifty hydraulic cranes, some of great power, will be provided at the Mrnchester and Salford docks.
The docks at Warrington, twenty-two acres and a half in extent, will have a railroad connection with the London and North-western and the Great Western Railway, which will bring a large coal and general Railwa
traffic.
At Runcorn, at the head of the Mersey estuary, the docks belonging to the Bridge water Caual Navigation, hav ing been purchased by the Manchester ship caual, will always be accessible, instead of being entered only at spring tides as hitherto; the local trade advantages here as well as those of the docks at Weston Point for Weaver navigation, have al ready been noticed.
The ship canal will be entered from the sea, or rather from the Mereey oftuary, about four miles above Birkenhead, by the tidal locke at Eastham, all the gates of which will be open at high tides. The sills of these en trances will be 11 feet lowe than the deepest dock sills a Liverpool or Birkenhead and the channel approaching them will be dredged 3 feet deeper than the lock sills.
One of the great causes of One of the great causes of tire work, but the sudden death of Mr. Walker, the tion or reconstruction of railway bridges crossing the energetic contractor, proved rather embarrassing. Mr. E. Leader Williams is the chief engineer of the work and has been one of its principal promoters from he beginning.
The canal is 48 feet wider than the bottom of the Suez canal, while the depth is equal ; so that the largest cargo steamers can pass each other in the Manchester ship canal. At several points, near the locks and near the docks, this canal is wide enough for such ships to turn. For a length of three miles and a half, approaching Manchester, the width at the bottom is 170 feet, so that ships can lie outside the docks along $\left.\begin{aligned} & 170 \text { feet, so that ships can lie outside the docks along } \\ & \text { the wharves on the Salford side. There will also be }\end{aligned} \right\rvert\, \begin{aligned} & \text { opened, to contain the water of the Bridgewater canal, } \\ & \text { beld }\end{aligned}$
canal, each at a high elevation, to give a clear head way of 75 ft . above the water, and with the approach lines of railway to rise by moderate gradients on each side. The Cheshire Lines Rail way at Irlam, the Wigan Junction line, the Warrington and Stockport line, the Grand Junction line at Warrington, and the London and North-Western Railway at Runcorn, must be treated with such costly alterations. The Barton reated with suide Barton aqueduct of the Bridgewater canal across the Mersey iron trough, closed at each end when the bridge is held thus safely above the level of the ship canal

There will be hydranlic lifte by which laden bargee can easily be transferred from the one canal to the other. The locks on the ship canal are not sinple, but each set of locks has receptacles of different sizes for vessels of different classes, to avoid the waste of water
marsh meadows chiefly, pretty straight beyond the junction of the Irwell and Mersey, avoiding the many Findings of those rivers, which are generally turned into a new artificial channel, somewhat to the south of the old left bank of each river. In a few places only, on the old left bank of each river. In a few places only, on
the Mersey, where the ground is higher, the cuttings
the Panama ship canal, including the Culebra hill cut ting; but the undertaking of M. De Lesseps had other difficulties to contend with, in the dam of the river Chagres. Mr. Walker, the contractor for the Man chester ship canal, set to work as large a nuinber of men, not negroes, but English " navvies," with more numerous and powerful machines, and with about one tenth the expenditure of money. It is stated that nearly 15,000 bands were at one time employed, with eighty steam excavators of four difierent kinds, pump ing engines, steam cranes, and 150 locomotives, for which 200 miles of railway were laid down to remore the earth.
We give herewith a map of the Manchester canal and illustrations of some of the locks.
As originally designed, the canal was to extend several miles into the Mersey, and it was upon the effect of this extension that Mr. James B. Eads, of St. Louis gave an opinion which was conclusive to Parliamen that the works built as designed would lead to the deterioration of the channel over the bar at Liverpool. His argument on this subject, with the illustrations drawn from maps and notes, some of which were a cen tury old, is one of the best engineering papers extant, and was so conclusive to the minds of the Parliament ary cominittee that the plan was thrown out immediately. It was for this, on which he spent about three weeks' time, he received probably the largest professional fee ever received by an American engineer, at least, for an equal time spent on any subject, neer, at least, for an eq
namely, nearly $\$ 17,000$.

Improved Iron Procema.
At the recent meeting of the Iron and Steel Insti tute, the contribution of Mr. Massenez was in many respects the most valuable. Manganiferous molten pig, poor in sulphur, is added to sulphureted pig iron, poor in manganese ; the result being that the metal is desulphurized, and a manganese sulphide slar is formed. The mixer in which the process is carried on is a large vessel, in appearance, to judge by the drawings shown, like a converter. The apparatus in use at Hoerde will hold seventy tons of molten pig, but it has been shown that a vessel of about twice the but it has been shown that a vessel of about thice the
size would be advisable. Details of the working are size would be advisable. Details of the working are
given by the author, and will be of great use to steelmakers working with phosphoric pig. In the discussion which followed several speakers bore testimony to the value of the invention, Sir Lowthian Bell intimating that asaving of 2 s . 4d. per ton could be made by this method over the process of remelting pig in the cupola-a step which has to be taken when it is desirable to combine the product of different blast furnaces. In the large mixer, metal from two or more furnaces can be brought together.

Explosions of Coal Dnes

Two accidents due to the explosion of coal dust are described in the Jahresbericht d. Re. preuss. Gewerberuthe fur 1888. At the Reichenwald works an explosion of coal dust took place in the dried coal store room while the operations were in full progress, with the result that the front of the drying house was violently blown out and a considerable conflagration occurred in the factory. At Furstenberg on the Oder, where the works are entirely built of stone and iron, a similar explosion occasioned no damage, either to the workmen or to the buildings. The ignition of the coal dust appears to have commenced in the lowest feeding screw belonging to the drying room elevator and to have spread forward to the store room and backward to the two drying houses. Five explosions followed in to the two drying houses. Five explosions followed in detonation being strongest in the store room, and in a detonation being strongest in the store room, and in a
few minntes all the chambers containing dry coal dust few minntes
were on fire. were on fire
These accidents afford further proof of the wellknown fact that coal dust is itself a dangerous explosive, the presence of which must be guarded against in factories, mines, etc., by thorough ventilation and other protective measures.

The American Nowepaper Annual for 189\%.
This splendid volume, issued by N. W. Aỵer \& Son, Philadelphia, contains a descriptive list of the newspaper press, a gazetteer of the places in which papers are published, and a guide to the intelligent placing of general and special advertising. It contains nearly 1,400 pages, but there is no waste room between its covers, every page has its purpose and is fall of solid, useful matter.
The total number of newspapers and periodicals enumerated, located, and described in this edition is 19.011, an increase over last year of 480. The average net growth in legitimate newspapers and magazines for the last three or four years has been from seven to eight hundred; and excepting in a few localities, there has been no great variation from this average thin year.
.The price of the annual is $\$ 5$. It represents a vast amonnt of laborious research, and is of unequaled value to all who are in need of an accurate and reliable compendium of the American press.
requires. The canal level descends 16 ft . at the Trafford locks, near Manchester, 14 ft . at the Barton locks, 14 ft . at the Irlam locks, again at Latchford, 16 ft . more, and finally at Eastham, to the level of the sea. The largest lock at Eastham is 600 feet long and 80 feet wide.
The line of the canal is cut through flat country,
are 50 ft . deep, partly through sandstone, which has been utilized for the construction of walls, and here the pendid the canal, being of rock, are made more per quantity of earth and sor to groun. The whole computed at forty-eight millions of cubic yards, which

Goological Notes-Cryotalline Rocke of Miscourt. We have received Bulletin No. 5 of the Geological Survey of Missouri. Besides a paper on the clays and building stones tributary to Kansas City, by G. E. Ladd, resident geologist, it also contains an extremely interesting and valuable paper on "The Age and Origin of the Crystalline Rocks of Missouri," by Erasmus Haworth. The following prefatory remarks to this paper are by Arthur Winslow, State Geologist:
" The crystalline rocks of Missouri occur exclusively in the southeastern portion of the State. They are abundantly exposed in Madison, Iron, and St. Francois Counties; but they are also found, though less frequently, in at least eight other countias of this section of the State. They constitute the mass of the rugged hills and mountains of Iron and Madison Counties, and slsewhere their characteristic occurrence is in similar bills surrounded by limestone valleys. These are truly ancient elevations, older than any others in the State, older than the mountains of Arkansas, older than the Appalachians, older than the Rooky Mountains. If venerable be an attribute of great age, they certainly merit that appellation. And not only are all other rocks of Missouri youthful as compared with these, but there is a genetic relationship, and the former are in a sense descendants of the latter. For, when the limestone and other sedimentary rocks were yet naformed, these crystalline rocks must have existed as parts of a continental mass, and from the degradation of this continent resulted the materials of the later formed sedimentary rocks. The present granite and porphyry hills are but protrudiug parts of the remnant of this ancient continent which stood as islands above the ocean waters while the beds of limestone and sandstone were being formed around them; which rose with these beds when they were lifted frou the waters; which now, ragged and weather-beaten, yet tempered by age and varied experience, rear themselves above the surrounding younger rocks and bid fair still to live when the latter have yielded to the forces of degradation.
"The question of the origin of these rocks has; heretofore, never been made a subject of such exact study as modern methods call for and as its importance justifies. Swallow," while recognizing the granites and the porphyries as igneous rocks, presents little or no demoustration in support of this view, and, further, he classes, as metamorphosed slates and conglomerates, rocks which the present work shows cannot be separated from the porphyries. Other writers seem to have substantially accepted this conclusion in a large part, but Pumpelly f expands upon it and applies the hypothesis of metamorphosis to all of the Missouri porphyries.
" Mr. Haworth's study of these rocks began in the summer of 1886, and he bas ever since pursued the subject with zealous yet patient enthusiasm. This he has done partly at his own instance, partly in the interests of the National or State Geological Surveys, but always withont pecuniary gain. Hence this survey, though fortunate in gleaning the results of his years of study, is also ander obligations to him for this contribation.
"The association of iron ores with these rocks brings the question of the origin of the latter into direct economic importance; for the distribation of these ores is fundamentally dependent upon this question. Exploration for, or development of, such ore bodies based upon wrong theory must invariably lead to profitless expenditure."

Rare Salte.
At a recent meeting of the Chemical Section of the Franklin Institute, Mr. Waldron Shapleigh exhibited the following specimens of salts of the rare earths:
Praseodymium, neodymiun and lanthannm oxides, sulphates, nitrates, chlorides, carbonates, oxalates, acetates and double salte with the alkaline metals.
Cerium oxide, oxalate, chloride, nitrate, and the double nitrate of the cerous and ceric oxides with ammoninm.
Yttrium and erbinm nitrates, oxides and oxalates.
Zirconium oxide, nitrate, sulphate and some double salts.
Yttrium and erbium (not separated) oxides and nitrates obtained from cadolinite, cerite, monazite, ferpusonite and samarskite. Thorium and vanadium salts.
Also large specimens of the following minerals from which these salts were obtained : Samarskite, zircon crystals and monazite sand from North Carolins, monazite sand from Brazil, gadolinite from Texas and allante from Virginia.
Mr. Shapleigh said the collection was of interest, as it is the first time the salts of praseodynium and neodyminm have been shown, and probably separated in this country. Some of the salts have not been heretofore prepared.
The separation of these elements is long and tedious; the specimens shown have undergone nearly 400 frac*Second
188 to 135.
188 to 135.

+ Report on the Iron Ores and Coal Frelde of Miseouri. By Raphel
Pumpelly, State Geologist, 1873 ; pp. 3 to 28.
tional crystallizations, and have beeu in a state of con-
tional crystalizations, and have beeu in a state of con-
stant preparation since early in 1888. Tons of cerite and stant preparation since early in 1888. Tons of cerite and
monazite sand have been nsed, and tons of the salts of monazite sand have been nsed, and tons of the salts of
cerian and lanthanam obtained, but the yield of praseodymium oxide has been only a few kilos. The percentage of neodymium is much higher.
Dr. Carl Auer von Welsbach, in 1885, was the first to separate didymium into these elements, and, together with Professor Bunsen, to determine their atomic weights, that of $\operatorname{Pr} 143 \cdot 6$ and of Nd 140.8. The oxides are $\mathrm{M}_{3} \mathrm{O}_{2}$ and probably $\mathrm{M}_{4} \mathrm{O}_{7}$.
With one exception, the salts of praseodyminm exhibited were of a pale green, and of neodyminm pink or amethystine color.
Zirconium, lanthanam and cerinm should no longer be classed among rare earths, as hundreds of tons of ores frow which they are obtained have been located in North Carolina, and there seems no end to the deposits of monazite sand, one of the richest ores, and containing most of the rare earths. In Brazil it does not have to be mined, as it is in the form of river sand
In North Carolina it is found in weshing for gold. In North Carolina it is found in washing for gold.
Should the arts, trades, or manufactures create a demand for these so-called rare earths, nature could readily supply it from these two localities.
Thorinm and yttrium minerals are not so easy to obtain; they have, however, recently been found in quantity in North Carolina and Texas.
Working on a commercial scale, he finds the yield of lanthanum from cerite nearly one per cent higher than stated in the analyses published.

The Lous of old Age.

The type of eseay De Senectute, of which Cicero gave us the model, is not much affected now. Perhap the Roman orator exhausted the sentimental and philosophic side of the subject. At any rate, the view of old age which most interests moderns is not how to enjoy it, but how to get and prolong it. Perhaps this is really the essential thing, since it appears us if, despite sanitation and all our modern improvements in living, old age is gradually slipping away from us.
It is true that we have immensely lessened infan mortality and extended the mean duration of life to over forty-five years. But the average number of old people is not correspondingly increased, and it is even charged that when great old age is now reached it is abnormal and the evidence of a deep-seated
neurosis whose penalties are visited on succeeding neurosis wh
geuerations.
The foregoing statements are not vague generaliza tions, but based upon carefully collected vital statistics. Sir James Crichton Brown, in a recent address on old age, states that since 1859, in Great Britain, the decline in the death rate has been 17.5 per cent at all ages noder ifty-five, and only 2.7 at all ages above five there has actually been an increase in the death ive th
rate.
The
The cause of this increment in later death rates is attributed to cancer, heart diseases, nervous diseases, and kidney diseases.
These diseases are mainly of the degenerative class, and due to the wear and tear of modern life. This is
shown by the fact that the death rates after forty-five are less among women and less in the country than in the city.
Dr. Brown gives us the further discomforting reflection that men and women are growing old before their time. "Old age," he says, "is encroaching on the with it are stealthily, and the infirmities the systew some years earlier than they were wont to do in former generations. Deaths due simply to old age are now reported between forty-five and fifty-five years of age and in large numbers between fifty-five and sirty and there has been a reduction in the age at, which atrophy and debility-another name for second child-ishness-kill those who have passed middle life. Pres-
byopia, or the long-sightedness of old age, in which byopia, or the long-sightedness of old age, in which
near objects cannot be distinctly seen nuless held at a considerable distance from the eye, is believed by some experienced ophthalmologists to begin, as a rule, rather eariier than it used to do. No trustworthy statistics on the subject exist, and of course genera must be difficult to distinguish how far the early recognition of ocular failure in these days is attributable to the increased care bestowed on the eye, and how far it should be ascribed to notimely invasion, but I certainly attach great weight to the opinion of Mr . Critchett, who says, My own experience, now extend ing over a quarter of a century, leads me to think that both men and women now seek ald from glasses at an
earlier period of life than their ancestors.' Very significant also is the statement of Mr. Brailey that people who have lived long in hot climates like India become presbyopic four or five years earlier than they would otherwise have done,' for life in a hot climate The ordinary excessive wear and tear to a European. reading used to be fifty; it is now, I believe, nearer forty-five."

The teeth are dropping out earlier, baldness is more prevalent, senile insanity is more common, and appears ooner than it used to do ; suicide is increasing, and nost suicides occur between the age of forty-five and ixty-five.
This is rather a doleful outlook, and one naturally eeks to know if Dr. Brown has a remedy for the ills he portrays. "There is," he tells us, "no short cut to longevity. To win it is the work of a lifetime, and the promotion of it is a branch of public mediclne. Perhaps one of these days we may have an International Congress on Old Age, with an exhibition of dotards for warning, and of hale and hearty centenarians for encouragement. At any rate you inay rest assured that it is by steady obedience to the laws of health that old age may be attained, and by judicions regicon that it may be prolonged."
This is all very true, but, unhappily, it has been well nown since the daya of Hufeland. Perhaps the best and only thing that we can do is to teach children more earnestly the fact that to enjoy the last half of life they must take care of the first half. The maxim, "Dum vivimus, vivamus," is the one which above all makes old age a sickly and unhappy one.-Med. Record.
ncreaning Locomotive Cyinder Power at speed. The Startevant Blower Manufacturing Company, of Boston, describes many experiments relating to the resistance to the flow of air through pipes at a high velocity. These experiments nhow that a single opening of a given area is vastly more effective to conduct steam or air than the same area divided into small separate apertures. It is evident that a long, thin separate apertures. It is evident that a long, thin
opening will not carry the same annount of steam that a opening will not carry the same annount of steam that a wider and shorter opening will when of the same area;
or if two openings have the same area, the one which or if two openings have the same area, the one which
has the width and length more nearly the same will has the width and length more nearly the same will
carry the larger amount of steam in a given time and at a given pressure.
As locomotives are now built, only a fraction of the total weight is atilized at speeds above forty miles per hour. Hence an increased weight is not necessary to pull heavy trains at high speeds after they have at tained speed; also there is sufficient steam capacity in the ordinary locomotive to furnish the steam required o do heavy express work. The only means we have, then, of increasing the power of express locomotives at peed is to increase the mean effective pressure in the alinders. To do this there is no sarer way than to ncrease the outside lap and the travel of the valve : but it must be acknowledged that an increase in the length of the port has some good, effect on the admission line, and there is no good reason why the admission should not be made more perfect by the use of the Allen auxiliary port, provided it is made wide enough hrongh the bodysof the valve.-Railroad Gazette.

The Hoop Snake.

The Pittsbarg Leader reports the following as havng taken place at New Castle, Pa., October 21: Hon. Henry Edwards, ex-member of the Legislature, who esides at Moravia, this county, has received a severe shock from fright. C. H. Weekly and L. P. Little were building a fence near Mr. Edwards' home, when they were surprised to see the ex-member of the Legislature run down the road coinus hat, coat, and vest, and loudly calling for help. He was parsued by a mammoth hoop snake, which was running, or rather rolling, after him. The reptile had its tail in its mouth, and was rolling along hoop fashion. Lit tle and Weekly succeeded in killing it. The snake measured exactly ive feet nine inches in length, but its body was not much thicker than a man's finger. Near the end of the tail was a horn-like affair, which is said to be the eptile's means of defense. This horn was one and oneourth inches in length, and ite sting is certain death. The snake has been preserved in alcohol.
In the Scientific American for Noveinber 30, 1889, we gave an engraving and an interesting description of the hoop or milk sDake, by our valued contributor, Dr. Nicolas Pike. It will be seen from the information there given that the alleged rolling of the hoop snake is an optical illusion. The reptile does not roll and does not take its tail in its mouth. It progresses by loop movemente, somewhat like the measuring worm. The snake gathers itself np into large loops, and pushes itself forward, all with such amazing rapidty as to appear, to a frightened beholder, as if it actually rolled. The mind of man is very easily deceived by false impressions made throngh the eye. There are ther reptiles besides the milk snake that progress by the loop movement, for instance, the ball or pine snake, and also the queen snake.

A Uneful Plastor.

A plaster composed of one part of carbonate of lead in two parts of olive oil is considered in Holland to be n efficacious remedy for sprained joints. Dr. Duhamel has been trying its effect in Paris on a number of cases, most of which were sprains of the ankle, and it is said the patients were made to walk as soon us the plaster and retaining dressings had been applied.

RECRMTLY PATEMTED INVEMTIOMS,

Rallway Appliancos.

Car Door - John W. Crumbaugh and Loander C. Praver, Kanaeso City, Mo. This invenormerly patented by the same inventors, and consiste in pecallar means for adjusting and operating the doors in connection with the bridge. The door is made in wo sections hinged together, and a set of crank shafte connecte one of the sections to the car for a radialiy winging parallel motion, the doors when opened only he width of each donble car, while the swinging sections may be raised over a platform. There are no aliding connections at top or bottom, and no danger of betructions by mud or straw from the car door, while the action of the bridge is free in ite adjust
Rail Support. - Charles M. Dyer Cloverdale. Ind. According to this invention a acrew
rod is formed with a clamp engaging the base of the rod is formed with a clamp engaging the base of the
rail, a nut eugaging the screw rod, and a tie plate orn, the whole corn in which the nat which 18 simple and durable in conatruction and permits of coavenion and quickly ralaing or lowering the rail to keep the rack in proper alignment without distributing the
To Turn Nuts on Fish Plates. raymond Allen and Hagh Ross, Revelstoke, British Columbin, Canada, Δ machine for applying nute in operations on track irons is provided by this invention,
the machine being designed to be auickly and eocurely clamped to a rail joint, and need to simaltaneously ghten or loosen all the nats of a joint. The machine comprises a frame with adjustable jaws to be clamped o the track by a lever mechanism, the outer jaws belng connected by a croes bar having socketa, while a serice of transverse shafte are mounted in the frame and pro-
Hded with sockets at their inner ends, the shafts being rned by a gear mechanim. The machine to 20 wa dapted to the liftung as to the laying down of track all the nute of a joint beligg operated on at once.
Electric Block Signal Ststem. Juhn La Bart, New York City. A movable contac block is arranged adjacent to the track raila, a swinging emaphore, which is brought to a locked position, be relemsed by a saitable electric connection, while the ocomotive has contact brasbee forming terminals of connection with steam sapply, with other novel reatures. By thit ystom the signals are designed to be automatically perated by the moving traln, beling frat set to indicate danger and atterward sot for safory. While in case the the team is designed to be sutomatically shnt of to stop the train.

Mochanical Appliances

Loom Harness. - William A. Grānt Paterson, N. J. This invention relates more particuariy to a loom employed in the ADer grades of fancy eavives, the irroguliar tension placod on the warp threade by the harness now ased. The invention provides donble ecale harness, by the arrangement of two shafte
either in front or rear of the jacquard or Agure harnese, elther in front or rear of the jacquard or Agure harness, and wheu the deaiga is to appear, the jacquard lifts the coupling and the palr of threads therein are raised, the threads belng connected with the eyes of the two different independent heddies. The improvement designed to be adaptable to many varieties of weaving, and feclititating the masing of more perfoct the part there will not be so many stope of the loom to plek ap

Pipe Wrench. - John Ryan, New York City. This wrench is made in four pleces, a body bar with attached handle and guide strap, an adjaeting bar carrying the upper jaw, an adjusting nut traveling
on the toothed surface of the adjuating barr and ating on the toothed surface of the adjusting bar and atiling
within a recess in the body bar, and a laterally movable spring-controlled lower jaw supported by the body
bar. The wrench is simple in constraction, and is designed to be durable and economic, the varions parto being readily separated and any one part daplicated if necessary.

Agricultural.

Hay Rake. - Nathan H. Miller, Rushville, Obio. This rake is denignod to be operated by a
driver seated on an animal pulling the rake over the field, or the rake may be actuated by the operator following in the rear, the windrow being formed on the pulling of a lever, and the rake antomatically returning clase of rakes whose toothed heads revolve in forwardly extended arms to which the dranght animal is attached, the improvement covering improved means for rotating the toothed head or rake shaft. This rake is designed to be simple and darable in constraction, con taining but fow parts, which are not liable to get out

meollancous.

Gunboat Turret.-William H. Avey, Columbus, Ky. In this tarret the common platform is adapted for vertical adjustment, and is held to revolv with the tarret or shield proper. The apper part of the ceotral shaft extunding down tno bela to rotate with partment, and driven by sultable power. The common sapporting fioor its inside the turret, with the body or which it may be connected for both to rotate together. In operation, when the foor is lowered the canion io Arot drawn inward, and can be sighted if deairod, and
It and the foor raised to the deaired height, when It and the foor raibed withe dealred heigat, when ject through a port hole in the turret and clope it.

Fender for Vegsels.-Jacobus T. Koch, Ameterdam, Holland. This invention pro vides different forms of improved fonderr for the bown and sides of vessels, by means of which the injurions
effects of collisions may be materially losened. These eifecte of collisions may be materially loseened. Theee
fenders have the common featare of being elastic, and endera have the common feature of being elastic, and secured, whereby body io given to the latter, and the offect of a blow will be distribated over a large sarface The fenders are secured in
guys and suspension ropes

Salt Pan.-Alvin T. Dora, Hutchin con, Kansas. This is an improved device for evaporat ing salt brine, the pan having a dat bottom with in clined sildoe at ove end and the remaining portion of the
bottom being formed into a eeries of trough, in the bottom being formed into a eerles of trongha, in the
bottoms of which screw conveyers are operated to carry the salt to the dat portion of the bottom of the pan from whence it is carried by a belt provided with the packing room. By thle conotruction the salt beting constantly raked from the bottom of the pan, Which is provided with a large heating surface, while the brine in so continuonoly atirred that the accumula-
tion of salt and the formation of acalos on the pan bottom are preventod.
Float Gold Collector. - Robert Elinott, Panilina, Iowa. This is an apparatas for col-
lecting and saving float gold in which purpose pootes are set on opposito sidea of the stream to carry guide rode on which slide other mde provided with hooks, to which by means of linke is at rached a sieve formed of boltang cloth or other sultable material, the sieve extending transersely acrose the sides of the sieve are adjasted vartically on rods as deeired, and the sieve can be resdily hauled in, in the form of a bag,
gold washed out.
Chalk Line Holder and Plummet - Robert C. Huxtable, Dartmoath, N. S., Canada. The
body of chis device is of rubber or other gexible ma lerial, with apiral grooves around it on which the lin may be wound, the line paseing throngh the body by eyeletod holes in each end, while the central space of
the body is mainly alled with chalk. The device is of convenient thape io be beld in the hund and one end weighted. When ueed for making a chalk line, the line is drat drawu throagh the device, to be properly chalked, and is then used in the ordinary way, br when aned for a plammet the body ls moved to one en or the line, and then forms the we
Frice Clamp.-Hugo Loether, Fre donia Kansas. This is a device especially adapted fo to be held in pooition by wire, the clamp consiging in a shank with two claws at each end, bent oppositel ontward and then carvod inward, with their ends far
enough apart to admit the wiren. The length of the enoogh apart to admit the wires. The length of the clampe determines the distance apart of the pickets, the
device acting in the donble capacty of a clamp and a device acting in the donble cappcity of a clamp and a
gaige. By this meanis a fence may be quickily and ence machine is not required.
Hose and other Couplinet. - Isaao 3t. Clair Goldman, Los Angelee, Cal. This conpling in its end and providection haviag a semicircular recen a semicircular head Atuing in the receseed section, with waeher to form a thght joint, and provided with a rigic hook engaping the lip of the female rection, with
means for locking the two sections topether. The device is of almple and drinto quickly applied to secarely fusten the and lo dealgned for use on hoee, rods, etc.
Washing Machine.-Hedry Church, Warkoton, South Dakota. This invention providee cylindrical clothes holding and washing chamber, com in a sads box. The sections of the clothes cyilinder ar secured together by a peeculiar form of safety latch, and secured to the head walle of the cylinder are speced olats, with wider Nats two on which the clothes will rab as the cylinder is torned The machine is designed to be simple, compect, and
thoroughly emiclent, having novel features to expedite

Map OR Chart Stand. - Henty E Hayes, Brooklyn, N. Y. This is an adjustable stand in which a vertical rod is sapported in the socket of bock beld on a low wire tripod, there being on the rod an adjustable sleeve having inclined socket projection Clamping bark, in which may be placed charts or mape are supported by these projecting arms, and the mapi or charts may be readily raised or lowered by the adjustment of the sleeve on the vertical rod. The device an to be pecked in amall apece.
Glove.-William J. Fanshawe, Brook yn, N. Y. This glove bas eyeletted apertures in its leading outward therefrom and carrying an attaching dikice for connection with a pocket book, parse, or the ilke, whereby the parse may be securely held an
ocked in the gloved hand, while allowing of conven. ient access to it.
Drawrr
Drawer Pullu-Jumes Preston, New York City. This iuvention relates to cablonet hardware the favention providing a simple, cheap and darable
post for handles, constiting of a wire threaded at ite aner end and bent at its onter end to form an eye and the eye. Posts thus made are inexpensive, and bein ormed of wrought metal, are atronger and more durable
VEGBTA BL Cuat poots.
Vegrtable Cutter and SifcerMathlas Blamer, Sbelby, Wis. The body of this ma and partially closed top, eocared on standards project
knives which may be adjasted to cot elther a thick of if deatred, the machine being operated may be remove an being adapted to either slice or mince vere
fruit in a convenient and expeditions manner.
Lamp Chimney attachment. - Mary . French, Monmoath, Ill. This device consiats of pear shape, the lower oxtremities of the aide memberi being corazed on thoir onter tacees and provided with dowuwardly extending hooks near their device is capable of being clamped to and supportud o the top of a lamp chimney, being eapocially adapted fo maintaining a carligag ion or the equivaient in an ap of the lamp, and oit ine lamp calmay over the iam ith the chimney.
Tonic Remedy. - Charles Schmidt and Aline R. Ledet, Brrmingham, Ala. This ia a toni ina, or debillty of the stomac he bowele. It is composed of cinchone bark, wid cherry bark, mammee nut sbelle or frait, rhubarb,
oxide of iron, sherry wine, and other ingrediente, in xide of iron, sherry wine, and other ingrediente, in
cortaln proportiona, and prepared in the manner de-

Water Closet, etc.-Anne G. Chad oourne, Roxbury, Mass. This Invention provides an improvement applicable to water closeta, commodes, ion thereof. The improvement consists in a nove construction of both the bowl and eeast, designed
promote cleanlinese without the necessity of constan prom
care.

Notr.-Copies of any of the above patents will be arnishod by Mann \& Co., for 2 cents each. Pleaso ond name of
of this paper.

HEW BOOKS AED PUBLICATIOIS

Die Elektrische Kraytubertragune UND IHRE AMvendong IN DER
Praxis. By 'Eduard Japing and J.
Zacharias. 6i illustrations. Third
Edition. Vienna: A. Hartleben's
Vdition.
The third edition of "Electrical Power Transmis lon "us completely changud from the arret two editione, ears relative to such tranemiselion. The introdnctor haptor treatso on tranamisesion and power in genera) ent:" the maln port to "generation the electric caf Transforming the Eloctric Corrent into Power. The oook is admirably written and refers to the latest im
provements and experiments, giving fall data as to 0710, coita
a Handbook of Industrial Organic
Ph.D. Philadelphia: J. B. Lippin-
cott Co. 1891 . Pp. 519 . Price $\$ 5$.
The application of chemistry to the arte and manu actures is the anbject treated by Dr. Sadtler. He diHdes hie work into chapters treating of Petroleum and Minoral Oil Indastry, Fats and Fatty Oile, Eseential ills and Resins, Cane Sagar, Starch, Fermentation In duatrics, Milk Industries, Textile Fibers, Animal
Tiseuee, Destractive Distilation, Artiscial Coloring Matter, Natural Dye Colors, and Bleaching. Dyelng and Textile Printing. This extenelve range of topics in treated quite at length with namerons illastrations. The standpoint taken is not exclasively the preparation and manafacture, but includee the anay yole of the proincts,
microecopic characteristice, etc. The work will, we elieve, be found to ill a real place in technical litera core. Fach chapter has a bibliographical index, in reasing greatly the value and use of the work
Ghemistry of the Carbon Compounds OR ORGANIC Chicmistrix. By Pro
fessor Victor von Richter. Author-
ized translation by Edgar F. Smith
Philadelphia: P. Blakiston, Son \&
Co. 1891. Pp. 1040. Price (cloth) $\$ 2$. It is not too mach to say that a real want iss at haot of organic chemiatry is comprieed in to coope and is treated in considerable fallneess. The great advantage of having the full matter contained in a single volume
with a single index 1, obvious, and is doably accoptawith a single index 1 obvious, and is doably accepta-o-indexed chemletriee, bound up ta separate volume De excollent system appears, that of giving the pre aration of componnds. It will be noticed that the ditle page gives a definition of organic chemistry, eomething long wanted, and we fear
the light of the name in question.
Dynamo Construction. By John W. Urquart. New York: D. Van Nos-
trand Co. 1891. Pp. xvi, 353 . Price \%8.
The eabjectn treated in this work embrace frame and compounding, the magnetic circalt and elements of ynamo calculation. Numerons illaztratione are elliployed to elacidate the text. The practical aspect of the subject is preserved by the production of examples leading commercial dynamos and motors of different diferent conntries. The introdaction, kiving the his-
tory of the invention and development of the modern dynamo, ts especially iuteresting.
An Introdection to the Mathemati
CAL THEORY OF ELECTRICITY AND
MAGNETISM. By W.T. Entage, M.A.
Oxford: Clarendon Preas. 1891. Mac-
Miflan \& Co., New York. Publishers.
millan \& Co., New York.
Pp. viii, 288. Price $\$ 1.90$.
The tlute of this book must serve as its review, as
owing to its nature it cannot be adequately treated in wing to its nature it cannot be adequately treated in
here columas. The work in compried in three parts.
he irst treading of electrontatic elecirlicity, the second
magnetiom, and the third of dyamio olegtricity
lectro-magnetic measurements, etc. While matheratical in its basis, the reading text is amplified so that ormaise and abstract statements form really a small
proportion of the contents. It is well worthy commendation to our readers.

Rogressive Examination of Loco motive Enginerers and Firkmen
By John A. Hill. New York: John A. Hill, Publisher. 1891. Pp. 97. Price 50 cento.
Mr. Hill is a member of the Brotherhood of Loco motive Rngineers, etc., and writes this work from the
plane of a graduate of the footboard. It is excellently written. The plan followed is to give several examina lons in question and answer from foar different de grees of progress, following each by a short-lectare on he ethics as well as practice of the engine ranner' work. It is all so well and graphically pat as to form ood reading for those who never expect to set foot o ood writing by a locomotive engineer.
The Nature and Source of Elec TRICITY, AND ITS APPLICATION TO By Scott A. Smith. Providence,
Thisatractively printed and pretilly bound book is soued by the Gorham Manufacturing Co., and is a convenlent littue manaal on the titnlar sabject.
$\underset{47 \text { illustrations. }}{\text { Dir }}$ Baden J. H. Klinger. ben, Publisher
The book is intended for archiltecte, ballders, etc., to assist in the proper conatraction of pablic bathing eo
Elektro-Metallurgir. Die Gewinnung der Metalle anter Vermittlung
deselektrischen Stromes By Dr. W.
Worchers. Borchers. With 19 illustratio
Harold Bruhn, Brunswick. 1891 .
In this booix Dr. Borchers admirably treats the sevaral procesees for redaclng metals by means of the elec metale, euch as alkali metals, alkaline earth metals, magnesium, barium, calcium, strontinm, and metallic earths. The mecond part treats on the heavy metals,
Including zinc, nickel, cobalt, copper, lead, silver, gold, including zinc, nickel,
antimony and platinam.

SCIENTIFIC AMERICAN

BUILDING EDITION

NOVEMBER NUMBER.-(No. 78.)

table of Contents.
Colored plate of a very attractive cottage erected at
Abbary Park, N. J. Cost $\$ 2,500$. Perspective elevation flar plane, etc.
2. Flegant plate in colors showing a residence in the Colonial atyle of architectare, recently erected New York. Floor plane, two perapective eleva tions, and interior view.
A cottage at Plainfeld, N. J. An excellent design, Plans and perspective. Cost 86,500 complete.
Mesers. Roesiter \& Wright, architecte, New York. neat cottage at New Dorp, Staten Ibland. N. Y Cost $\$ 3.800$ complete. Plane and perspective.
A handsome cottage at Rochelle Purk, N. Y.. erected anor plana.
6. Plans and elevation of an attractive dwelling at Asbary Park, N. J. Cost $\$ 4,800$ completo.
A model cottage at Chester Hill, Mt. Vernon. N. Y.
Floor plans and perspective view. Cost $\$ 4,000$ Floor plat
complete.
8. Perrpective and plans of a cottage at Fordham
Heights, N. \mathbf{Y}. Coot $\$ 5,800$ complete.
o. A cotunge recontly erected at Asbury Park, N. J. tive:
 Ragg.
Paul.

1. Perspective and ground plan for a memorial church. Accepted design for the completion of the South
Kensington museam, Aehton Webb, architect. on museam, Aehton Webb, archit ccellaneous contents: Clover honey.-Fire pre-
cautions in buildiag.-What taste with a little money may accomplish.- Wroaght iron gate, il lastrated.-Plan designing.-Simple precaations
against ire and rats. - Floor palinting.-The bricks.-Architecture in relation to hygiene. Fireproof buildings.-Some novel effects in paper hangings, illuasrated.-An improved woodwork-
ing machine, illustrated, - An improved meing machine, illustrated. - An improved meing machine, illustrated.-An improved swing cat off saw, illustrater. - The Byrkit-Hall illustrated.-An improved dumb waiter, illascred:
The Scientiac American architects and Builders ${ }_{25}$ cents. Forty monthly. 8.50 a year. Single copiea, two handred ordinary book pages ; forming. practicaly, a large and splendid Magizinz or ArceirsoTURE, richly adorned with elegant plates in colors and
with Ane engravinge, illustrating the most interesting exumpley of
The Falliness, Richnese, Cheapness, and Convenience of this work have won for it the Laraser Cricolaniong any Arebitectural pablication in the world. Sold by newedealers.

MunN \& CO.. Publizhera.

2Business and Personal.

For Sale-One No. 2 second-hand Brown \& 8harpe millIng mechine. Used but
P. Davis, Rochester. N. Y.
Preases \& Dlea. Ferracuto inch. Co., Bridgeton, N. For best hotating engine. J. 8. Mundy, Newark, N. J. Best is in. Shapera, $82 / \mathrm{L}$. Am. Tool Co., Cleveland, 0 The Improved Hydraullo Jacka, Punchea, anu Tube
Expanderi. R. Dudgeon, 24 Columbla Bt., New Yort. "How to Keer Bollers Clean." send your sddrees for
 Scale removed and prevented in bollers; for each 50
horse, 16 oents a week. Pittaburgh (Pa.) Boller Boallo resolvent $\mathbf{C o}$.
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumpe, vacuum pumpe, racuum ald
acid blowera, alter prese pumpa, eto.
 Garvin Machine Co., Laight and Canal Sta., N. Y.
Split Pulleye at Low pricees, and of amme strength and appearanoe no Whole Pulleys. Yocom \& Son's Shattung
Works Drinker St.. Philedelphia Pr. The price of the Brown \& Sharpe No. 1 Universal Mill-
Ing Mechine without Overhanging Arm is esen. Price of the Machlne With Overhanging Arm, 1486. Provious
pricees, 8550 and $\$ 685$. Brown \& Sharpe Mig. Co., Providence, R. I.
Maglo Lanterns and Stereopticons of all prioos. Viewn
Illuatrating every subject for publio exhibrions etc. er A prostable buciness jor a man wotth maull capital.

EFSend for new and complete catalogue of selentina and other Books for sale by Mung

还

hints to correspondents.
Namon and Addrease mage sccompany all letera

(3601) M. S. writes: 1. I wish to ran a Sor 6 candle incandescent lamp for from ive minutes to 1 have four 5×8 cellos, each contalining two carbons $0 \times$ $118 \times 1 /$ Inch and porous cap 6×24 in which io placed
 Iated water inside. How many such cello are needed to
 I are any more eriec n this battery consamed while the
not. Is the zinc un circait is open, of to there any local action when the battery is not in a.e, . . The section in the Faller bat
tery is very silight when the circalt ts open. 4. How long will this battery light the lamp continuooasly, and what proportions of chromic and salphuric actdo with water are most effective A. A. The battery will probe
bly operate continnouely for a week. It will require about 10 per cont each of the chromic and salpharic
 tery tolight a gasi jet without the help of a colll? If not, how amall a coil can I uee and llaht a jet 50 to 75 feet
from battery? What sizo wire and how much by welght shall I use to make the coll, and how much and what size tron wire will I need for the corer A. A. coill
will be needed to llyht the ges, Mate will be needed to likht the ges. Make a park coll by loog, 10 or 12 layers of No. 18 wire. Use No. 16 iron wire for the core. 7. Would the batery be too power-
ful for a bell at 73 feet? If so, couldn't I nee German silver wire in the circalt to the bell? If the idea in
 Yon can nee a bell having a suitably
without employng german tilver wire.
(3602) E. N. A.-1. For a fall descrip tion of luminons paints we refer you to our supple
uRNT, Nos. 220, 240, 497, and 889.2 . For parior
 melted etearine. Then dip in following mixture and dry:

Perfame by dipplag in a solution of benzolc acld. 8 operation can only be carried on in a emall way. 4.
We can sapply Root'e "i. B. C. of Bee Cultare " for \$1.25. Cook'e "Manual of the Aplary" for \$1.50, Langstroth on the "Honey Bee," $\$ 8$.
(3603) H. W. S. writes: In paper of October 10. 1801, In Notes and Queries column, No.
a4t6, W. F. V. askn how to straighten lance wood a4tb, W. K. V. askn how to straighten lance wood
which is bent or crooked. Heat it in gas aname or otherwise, until abont too hot to handie comrortahly, then it will be soft and pliable, eoza
and will matay pal. I have done it eo.
(3604) A. C. asks if it would be danger ons to connect the exhanat plpe of a gas motor with the sewer. A. Yes, it would be dangerona, sa gae some-
imes pacees throagh into the sever and cancee explo ion. Connection with chimney also resalis sometime
(3605) G. W. S. writes: 1. I wish to make an induction coll iike that describod in "Experi montal science." Woald it not be better to ase insu lated wire for the sccondary coll instead of the bare
wire as given! A. You conld use cotton-covered wire or the eecondery inatead of bare wire. It is mineter wound, although it is a little more expenalive. 2. How nuch doable cotcon-covered wire should be woand on be secondary coil to make the machine as effiective an posed ble \& A. Use about one-third more wire than the
mount mentioned in the articlo referred to. \&. Why is it necceeary to leave a space of one-eighth. loch pear wire was used ! Thsill be required ir insolat avold the poesibility of the bare wire alipping down be Ween the heads and the paper used to separate the
coils. \& In Agaring the tin foll surfice, are both eidee
and coils. L. In Agaring the tin foll sarface, are both side
(3606) H. W. L. asks the best way to protect nickel plating on a bicycle, pat away for the inter, from rasting. Are the preparations like ontirust, etc. , Rood for thie porpose withoat tarnishing the
surfece after removal in the spring \& By anowertng yon will have the gratitude of all wheolmen, as this queation ow presents iteelf to them. A. In patting away a bi ycle for the winter, every part should be thoroughly cleaned from dirt, the ranning parts duly oiled and the bright parts wiped with a mixture of vacoline and paramne, 2 parts vaceline. Yi, part paramine. to which and atirting. Apply warm by wipling all the nicke parta, and wrapplag them in paper which hat been coated on one side by the mixture, very thin, which and seddie should also be nicely covered with wrappln paper to keep off dust, which injures the japan by long
contact.
(3607) W. V. L. asks (1) how to mak ppe metal or the composition of same. A. Typ logether. You can readily procure old type from an printer at a low price, thue saving the trouhle of mak ing the alloy. 2. If it is adrisable to use the same fo making the cylinder or dram on the phonograph de cribed in Suppisinint, No. 183, in place of the plac nograph cyllinder referred to. 8. How many 6 by cellis of gravity battery are required to ran the Gramme motor described in scumritio Ayxrican, No. 7838
Or please recommend some cheap battery to run the above motor for aboat 10 hours continually. A. The gravity battery lo not adapted to running the motor
Use 6 or 8 cells of large planging or bichromato bet
\qquad ${ }_{(3608)}$ G. A. H. asks : 1. Would you or field work in tio open air with rongh neage fo measaring small currents accurately ? A. We think Thompeon marine galvanometer would anower your
purpoce. 2. Can the resistance of the earth to the peoage of small carrents be mesared the rame no a wir graph line aeling the earth as a return? A. Yon can ncaeare the recistance of the earth by eatablishing circuit with the earth as retnrn, afterward deducting
the resistance of the metallic condactor ased. 3 Would there be any measarable difierence between sam 100 feet and 800 feet distance of such return? A. With proper ground connections we think the resiotance win
be found to be practically nothing. 4. Suppoee a car rent to be generated in the earth by an anderground atream of water fowing swiftly, would such a current be continuons or alternating? A. It will undonbtedly
be coutinuous. s. Is it necessary in order to transform be continuons. 5. Ie it necessary in order to transform
a current to a higher or lower potential that it be an atcrnating current instead of a continuous corrent that is to anay, it is primene courrent heing ared to drive the motor, the meondary current beling taken from the dyamo.
(3609) F. A. M. asks how to clean sea and sumilar shells and make them look nice. A. Dark
colored organic matter on the outer sarface te atrat re noved by making a thick mixture of one part bleach ing powder to two parts water and moaking the she (herein. On removing waeh and ecrab it. Thick in edged hammer or some similar tool, and then the ahell muet be dipped in boillug dilate mariatic acid. For atrong heary shelle use 1 acid to 8 of water; for delicato helle use 1 part acid to 10 af water. Dip the ebell for socond only, wash and in anive, if aot onough, give
 hell. For local not to let the acid slay lots an (8610) J. H. D. asks what will make a owing hold gold brald to silk ribbon. A. The ro extensively ofed cements for cloth. is the gutta percha tissue cement. It consists of a thin leaf or sheet of gatta perchan, "which may he parchased at small cost of any to be jolted , se gitue. Whe two pie pleced tetmen the parts and a hot fiat iron is then applied to the and the weight of the Iron presses the parts together. On cooling, the cloths will be foand strongly cementod orgether. For attaching togetber edge lininge, alling covering, joiniog and patching of germents it. Fo equering, joining and patching of garments it is
equaled. It asves the drudgery of cowing, and in the compler mending often enables the housewife to sc complish in a maperior manner, in Ave minates,
that would require as many houra by the needle.
(3611) C. T. H. writes: I am using a motor to run my polishing and turning lathe. The
the sits on a table; the motor io in a compartment unnach too high for turning. I have a residuance in the reait, bat it only cuts down the power, redacing the Speed rery little. I have thought of a brake, also of ailt the cave. Can you kindily help me ort of my dim culty, eo that I can rnn my lathe furt or elow at pleas. re ? A. We think your beat way of regulating the notor is by means of a connternhaft and cone palleya, by meane of plain conoe and a shifting bell.
(8612) J. B. R. asks what size to make a alloon that would Hift about thrse hundred pounds. A. It depende on the material and equipment. Make
it of 40,001 to 00,000 cublic feet capecty. 2. How many abic feet of gas a cylinder ten feet long and for
(8818) P. C. E. asks the elements and olotion which when need as an ink will disappear after
certaln length of time (abont a day). A. Use dillate inctare of todine. 2. Aleo an invisible ink which will ppear when warmed. A. Solation of chloride of cobalt, dilate sulpharic acld, lemon or onion juice, and manny other subatances. \& A way of malking lettera no
a coin by means of an acid. A. Cout with wax, cut the coin by means of an acid. A. Cont with wax, cut the atters chrongh the wax so as to expose the metal and
drop on nitric acid. This will act on all ordinary coing acept rold ones. For the latter mix thres parto hy rochloric with one part nitric acil. 4. Describe the contents of the long cylinder on the platform of an alectric car. A. We presume you allude to the reliat-
nce box, for controlling the power of the motor, which noe box, for controiling the power of
(8614) J. A. asks: 1. How can poison odetectod in mushrooms ? A. There is no way of la the only certain way. 2. How is a cylinder on an Edicon phooograph was. 2. How is a chlinacted? Does sound rexister on a cylinder of wax the same an on tirfoil? A. For construction of the Edison phonograph we refer you to our Sorplisixnt, Non. a32 and 706. The compootion nent. One cylinder can repeat a tune or words a great m ber of Ulime
(3615) B. F. W. asks : How much does on shrink to the foot 9 Does the olzo change the brink more or lese then an Inch round bar? What per ent does Iron wate or lowe in working? What monnt of carbon does mechine steel contain? What book would you rec:mmend to read on this sabject ?
A. Iron ceatinga shrink abont $1 / 6$ inch to 1 foot, which . Iron castinge shrink about $1 /$ inch to 1 foot, which Cy the neaal allowance for plaln work. Cylina, from
ne-tenth to one-twelfth linch to 1 foot, sccording to ive. There in very it a 11 inch and 2 inch bar. The wastage in foandry work is from 2 to 5 per cent. Mechinery steel contains rom $1 /$ to 1 per cent carbon. See our book catalogre for
(3616) L. C. M. says : 1. Will you pleas firma a mach intersested reader of your valuable paper hrough its columne or otherwise) what quantity of ater will how throagh 8,000 feet of one inch pipe hit a 6 foot head, there being no eharp cnrve or alate here it paceos to the interior of a gac engine ? Your 1 inch pipe 8,000 feet long with 6 feet head will diliver 1^{18} gallons per minuto. Hiectric wires for gai agires may be insulatod by inclosing in porceinin or lues thimbles to be held in piace by a stumna box acked with asbestos. 2. A Chinaman says : In China packing it in tea, after which the tea is again boxed and a private mark placod upon the box, and by this mark Chinamen underutand that the tea bas been ased there any means of subetantiating such teetimony? Shall be glad to hear toetimony as to the Chinees
(3617)
(3617) D. D. W. asks for a receipt for rakling cotion, etc., waterprocf, by patiog it in a $80-$
ation of alum and lead acetate. A. Dineolve as ounds alam in 10 gallons of water and $2 \times$ pounde lend In 10 gallone of water. Heat may be applied to accelcrate the solation; mix the two solutions and eoak the oth thereln; or irrat soakk the goods in ove, the than
in the other. In the latter procees noe half the quanity of lead acetate and immerve in the alum Arst,
(3618) C. M. E.-1. The mould on the leaves sent is mycelinm of a fangus belonging to the
order Perisporiacoi. We have neen recommended the apraying of the leaves with a solation of sulphate of copper to deatroy the fangua. 2. Dast yoar rose bashes with Insoct powder (Pypelhivmm).
(3619) S. J. S. writes : I wish to connect boil with my telephone so as to get the calle in anith room. Have made a relay that worke perfectianche cell, but when introduced into the recit of the telephone it shows no sign of magnetiom.
Tave tried winding with 29 and 16 wire Connections Have tried winding with \&2 and 16 wire. Connections out paseing throngh the relay. Is not a telephone corrent etrong enough, or can yon suggeat the reason olay,or ineert a mag A. Yell. The alternating carren the telephone call does not work well with an ordi nary relay.
(8020) H. T. C. asks : 1. In a medium iscid Induction coll, what shoald be the ratio between the anzes of the wires in the primary and eecondary
coile, and what kird of a core shoald it have? A. The atio of the primary and secondary in an indaction coll depende apon the kind of current you deeire to have. For the constraction of colle we refer yoa to our Sur HEMERTT, Nos. 100 and 500 . 2. It is stated in an ele mentary fhemletry that if a carrent of oxygen be
peeved through a solution of ammonia gan, NH_{3}, the re pacesed through a solution of ammonia gan, NH_{3}, the re-
bulting mixtare will barn. Please aive the chemical reA. The Idee lo that enough ammoniacal N the hydrogen barning to water and the nitrogen going
oII free, thas: $\& \mathrm{NH}_{3}+80=8 \mathrm{H}_{3} \mathrm{O}+2 \mathrm{NN}$. \& . Io there any
pulid insolable in alcohol, if so, what kindy A. The majority of pants are Insoluble in alcohol. Such as whice lead with linseed oil is insoru ble in alcohol. (3621) S. A. D. asks if there is any acid bast will act on lead or aterootype, and which will not toach boeswax. A. Nitric acld and water equal parte
readily attecks lead. Nitric and bydrochloric acide equal parts dilluted with an equal part of water atiach: equal parto diluted with an equal part of water atlach:
procclion agninat these acias.
(3622) T. L. arks for any substance that ill remove the sheet gutta perchs from cloth withont carbon or chloroform. The danger will be that the gatta percha will, as it diseolvee, be eoaked op by the
cloth ard prodnce a spot. Never uee biealphide of carcloth ard prodace a spot. Never use bisalphide of carbon near a light, as it is hig
is aleo very objectionable
(3623) L. R. C. writes : I have a large carbon battery plate (6×10) which is broken; can vou all me a method by which the pieces may be anited. and used in a bichrounate plange battery? A. You can
repair your broken carbon plate by naing a cement made of four and molasees, Atter the cement in applied, the parto should the clamped toguther and the whole should be eubjected to a red heat, the carbon being embedded in powdered carton in an alr tight box. Wo thtnk you will and it hese oxpensil
chase a new plate than to reparr the old one.
(8024) F. W. B.-The powder sent is potasoinm nitrate. Mirsed with sulpharic acid for a deof fumes. We can eupply Curhert on "Primary Batteries " for $\$ 1.50$.
(3625) G. I. H. asks if there is a rule for anding the radius of a circle when the are and its chord (versed sine), are given. A. The square of the chord of half the arc is foand by the rule of the "sqnare of the bypotenease," by adding the aquares of the
versed oine and of half the chord together. The radius is equal to the square of the chord of half the arc divided by twice the versed sine.

TO IFVENTORS

An oxperitence of forty yoark, and the proparation of more than one hundrod thousend applications for paInwa and practioe on both continenta, and to poseese unequaled faclitles for procuring patents everywhere.
synopais of the patent laws of the United States and all forelfn countries may be had on application, and persons contemplating the eccuring of patenta, either at home or abroed, are invited to write to this omoe for priceas.
Whlch are low, in acoordance with the times and our extenadre fecllities for condacting the businese. Addrex MUNN \& Con omice BCIENTITIC AMIRICAN, zil Broed-
War. Now Yort. way. Now Yort.

INDEX OF INVENTIONS

For which Letcers Patent of she
Unitod staton were Granied
October 27, 1891,
AND EACH BEARING THAT DATE.
ISee note at ond of list about coptes of thece patenta. 1

§cientific Americar.
[November 7, 1891

 LANGBEIN．－A Conplete Tgities on the Comprising Ereotiro－Pleating Mnd Alvinoplastic Opera－
 Dr．Georgpartment of the Art From the Geing ase of

 KENRY CAREY BAIRD \＆CO． 810 Walnut st．，Philadelphia，Pa．，U．s．A．

OVER 16 TONS

－OF－
＂Experimental Science＂

SOLD．
We do not refer to science in the abstract，but to our new book by Mr． Geo．M．Hopkins，having the abuve title．
This book has proved itself to be the most popular scientific book ever printed．Every scientific person，and any person desiring to become scien－ tific，should have it．It will pay to look over the illustrated table of con－ tents，which we send gratis． 740 pages，over 680 first－cla
tions．Price by mail，$\$ 4$ ．
Munn \＆Co．， 861 Broadway，N．Y
［In prese，to be isened about December 1，1890．］
\rightarrow Ghe Scientific Hmerican \leqslant
Gyclopedia
\rightarrow of Receipts,
NOTES AND QUERIES.

$$
\Theta 50 \text { pages. Price } 85 .
$$

This splendid work contains a careful compila－ tion of the most useful Receipts and replies given in the Notes and Queries of correspondents as
published in the Scientific American during pubished in the scientinc American during valuable and important additions．
Over Twelve Thousand selected receipts are here collected；nearly every branch of the use－ ful arts belng represented．It is by far the most comprehensive v
before the public．
studies and practicgarded as the product of the chemists and workers in all parts of the world； the information given being of the highest value， arranged and condensed in concise form，conven－
fent for ready use． Almost every inquiry that can be thought of，
relating to formulæ used in the various mand relating to formulæ used in the various manufac
turing industries，will here be found answered． Instructions for working many different pro
cesses in the arts are given．How to make and prepare many different articles and goods is set
forth． Those who are engaged in any branch of industr practical value in their respective callings． Those who are in search of independent busine or employment，relating to the manufacture and
sate of useful articles，will find in it hundreds of sale of useful articles，will
most excellent suggestions．

> MUNN \& co., Publishers,

Sciéntific American Office，

atAfter being on the Market Five Years The＂ACME＂Still Leads！
 rocesster machine tool woris．bromis race，rocesster，N．Y．

W．F．\＆JOHN BARNES CO． 1090 Ruby Street，Rockford，III． ART FROM A SCHOOLMASTER＇S

VOLNEY W．Mason de Cu． FRICTION POLLEYS CLDTCHES and ELEVATORS

DETFNSS \＆HEAD NOISES CURED

Patented Articie or Patented Mechinery Hardmaro Line proferrea．

The Best Foundation for Plaster

PLAYS
STEEL TYPE FOR TYPEWRITERS

＂STANDARD＂EMERIIL BRESSER

PURE TENPERED COPPER

BIT

 HARRISON CONVEYOR！ Handiting Grala，Coal，Sand，Clay，Tala B．rit，Cinders，OTres，Seeds，\＆ch

＂3 Monthe on Trial＂For
 3

ROPE BRIDGES AND THEIR MILI

EMAAMTE

FRIGTEME

> Ro

Write to the
мエェய
Thy Dex
TO BUSINESS MEN
The value of the SCIENTiFic American as an adver－
tising medtum cannot be overestimated．Its ctrculation is many times greater than that of any similiar journal
ow published．It goes into all the States and Territo ries，and is read in all the principal libraries and reading
rooms of the world．A busincess man wants something more than to see his advertisement in a printed news－
paper．He wants circulation．This he has when he ad－ vertises in the Scientific Ambrican．And do not let other paper for the scientific American，when se－ lecting a list of publications in which you decide it is for
your interest to advertise．This is frequently dine your interest to advertise．This is rrequentily done for
the reson that the agent gets a larger commission from
the papers having a small circulation than is allowed on the SCIENTIFIC AMIERICAN
For rates see top of firt

For rates see top of first column of this page or ad dress MUNN \＆CO．，Publishers， $\mathbf{3 6 1}$ Broadway，New York．

ICE and REFRIGERATING MACHINES

HERMANN VON HELMHOLTZ．－－BY

QATES ROCK \＆ORE BREAKER

INVENTIONS PracicallI DEVELOPED
 ARCHTECTURAL ENGINEERING－

OTAAREPE

WARP DYENGDNDEVERTDMACHERS．
 DREING AND RENTLATINGANS CEO．P．PLintirk，
 The Cuobman chncik co．．．Hartirora，Conn． Useful Books！

 EYESIGHT：ITS CARE DURING IN－

 ＂OTTO＂ ENCINES． 1－3to 100 onorsepoper
Can be used in citiea Can be used tn cititee
or in country inde－
pendent of gas works pr gas machine
No Boiler． Danger．
No Enzinee 33,000 SOLD．
TTO GAS ENGINE WORKS，PHHLADELPHIA．

RAILWAY \＆STEAM FITTERS SUPPLIES Rue＇s Little Giant Injector．
sCREW JACKs，sturtevant blowers，so． JOHN S．URQUHART． 46 Cortlandt St．，N． \mathbf{x} DEVELOPMENT OF ELECTRIO

Motors \& Dynamos, $\underset{\substack{\text { sod } \\ \text { she } \\ \text { churr }}}{\substack{\text { pot }}}$

B BOSTON GEAR WORKS, Min HEADQUARTERSE FOR GEARS.

power. Prices from
THE BACKUS WATER \triangle OTOR CO., Newark, N. J.
FAST AND FUGITIVE DYES, BY

FROM ONE OF THE FOREMOST ENGINEERING FIRMS IN THE WORLD. "After seven years with Thomson-Houston machinery, one hundred motors and about
twentydynamos, we have had the highest satisfaction and no difficulty whatever. In no single case have we had an armature to replace, and the cost of maintainance is prect.cally no nothing.
You wril make no mistake by adopting their system. We adopt them ourselves, because by
俍

AMERICAN INSTITUTE FAIR.

DAIMLER MOTOR CO., CAS HITGGINHE, DAIMIER MOTOR LAUNCHES 18 to 3 feet 1 to 10 .
 Office, 111 East Fourteenth Street, New York.

PATENT JACKET KETTLES

