a weekiy journal of practical inforvation, art, sclevce, mechanics, chemistry, and manufactures.

NEW YORK, OCTOBER 31, 1891.
\$3.00 A YEAR.

Elevator, viaduet and grounds and buildings of El Dorado
GIGANTIC PASSENGER ELEVATOR OF THE NORTH HUDSON COUNTY R.R, WEEHAWKEN, N. J., OPPOSITE NEW YORK.-[See page 279.]

Frientifit American.

EETABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
 No. 361 BROADWAY, NEW YORK.

O. D. MUNN.

TERME FOR THE SCIENTIFIC AMBRICAN. One copy, one year, for the U. S.. Cansde or Merico...
One copy, six months, for the U. S., Canade or Mexico.
 Remit by postal or axpreses money order, or by bank draft or cheok,
MUNN \& CO., 201 Broed Way, corner of Frouklin Street, Now York. The Brientifc A merican Supleen No

Bailding Edition.

Spanish Edition of the scientife American.

NEW YORK, SATDRDAY. OCTOBER 31, 1991.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
INO. 826.
For the Weok Ending october 81, 1891.
Price 10 conto. For aste by all nowedealero.

proarrss of irbiation.

On September 15, a notable gathering of notable men took place at Salt Lake City, being the first meeting of the Irrigation Congress. The membership com-
prised many eminent persons, chiefly from States west prised many eminent persons, chiefly from States west
of the Mississippi, their object in meeting being the of the Mississippi, their object in meeting being the
interchange of views and discassion of the beat interchange of Views and discassion of the best
methods of redeeming to useful parposes the millions methods of redeeming to useful parposes the millions
of acres of arid lands which now lie drear and abandoned in various sections of the great West.
Of the success of irrigation wherever it has been properly carried out, all the speakers bore enthusiastic testimony. The driest lands are made to blossom as the rose, and wherever the blessed water spreads there is soon found a contented, happy and prosperous people.
The place selected for the assembly was especially appropriate. Salt Lake City being the first and perhaps the noblest example to be found in the country of the wonderful results gained by irrigation. Here in the midst of verdure and the music of running water in every street the congress began its sessions. Among the speakers was Wilford Whodruff, President of the Mormons. He said :
" Fifty-one years ago the 24th of last July, I entered this valley with 143 emigrants, or in other words, pio neers. We were led by President Young, This conn try that we arrived upon was called the Great American Desert, and certainly as far as we could see it did not deviate from that in the least. We found a barren desert here. There was no mark of the Anglo-Saxon race, no mark of the white man-everything was ba ren, dry, and desert.

We pitched our camp a little distance to the eouth east from here about 11 o'clock in the day. We had a desire to try the soil to know what it could produce Of course all this company-nearly the whole of ne-
were born and raised in the New England States, Vermont, Maine, Massachusetts, Connecticut-had no ex perience in irrigation.
" You gentlemen come here to-day; you see the city, you go through the country. Here are a thonsand miles, I might say, through these monntains flled with cities, towns, villages, gardens, and orchards, and Whe produce of the earth that sustains the people met here to-day, this country would be as barren as we found it."
He was followed by President Cannon, one of the early settlers, who said: "I took my first lessons in irrigation when a boy, in 1848. I have had but comparatively little practical experience in the business
since then, but it has become very familiar to us. We have not had much time to theorize upon it, but praotically we have carried out this system throughout the length and breadth of our Territory.
" There is one point that I think of great importance, and I think it worthy the consideration of this body. We have refrained, I was going to say, religiously, from forming great corporations to take possession of the water; we have nut been tared for our water in Utah. own labor have taken the water out and have con tributed by their labor in forming dams and digging ditches to obtain the necessary supply for their acreage I think this is a very important feature in this Terri tory. We have not had to pay for our water; poor men could take land and obtain water by their own labor.
"Another feature of our system has been that we have had small holdings. When we settled this city, the lots were divided out ; each lot was an acre and a quarter. The lots were laid out in such a way that the front of one lot faced the side of another. It was designed to be a city of villas and to have plenty of room. You see the breadth of our streets and the amplitude of our lots; this was the original design. Then, next to our city, a tier of five-acre lots was laid ont, then a tier of ten-acre lota, then a tier of twentyacre lots. There were no lots laid ont of a larger ex tent than twenty acres. That there might be perfect fairness, we cast lote for these. The mechanice were expected to want five acres ; those who were in better condition it was thought would require ten acres, condition it was thought would require
while the farmers received twenty auree.
"My distinguished friend, Presiciant Woodruff. lived and sustained his family upon twenty acres of land, and I may say to his credit there is no better farmer in this country than he has been. He has been
noted throughout all our community for his indefatigable industry.
"We have kept from monopolizing the land and been willing to have it distributed in small holdings, so that every wan might have a foothold. I believe that I do not overstate the truth when I say that in no part of the United States is there a popalation lands and owning tory.

I believe also in the artesian system. I have been a believer in it always and for a great many years. I believe that we can get large supplies of water from
and I believe I have the honor of being the first person to own an artesian well in this valley or in all our valleys. I have sank a good many wells, and I find them very excellent. I have one now with which I water several acres-a well four hundred feet deep. I think when we get experienced well drivers in this country, we shall find that we can bring large supplies of water to the surface that will aid us in cultivating our lands; lor all that we have in this country is water.
"There is no part of Nevada which you travel through, no conntry, which looked any worse than this. valley did nor any more unlikely to be productve than this valley did when it was first settled: but industry and skill have changed this valley into fruitpol fields and orchards and there is no limit."
Many most excellent speeches followed, but our imited space prevents quotations therefrom. A great variety of resolutions were offered, some containing inancial projects for building dams and canals, others for the acquisition or leasing of arid lands, others callng apon the general government to issue millions of dollars' worth of bouds and bore the arid earthe for wells, and make the lands fit for people to live in. It was stated there are six handred and fifty millions of acres of arid lands still held by the general government, of which five hundred millions of acres require to be irrigated by artesian wells, no other source of water supply being available. When all the speeches had been made and all the resolntions discussed the following reasonable platform was agreed upon and the congress adjourned:
Resolved, That this congress is in favor of granting in trust to the States and Territories needful of irrigation, all lands now a part of the public domain within such States and Territories, exceptingimineral lands, for the parpose of developing irrigation to render the lands now arid fertile and capable of supporting a population.
THE IITRODUCTIOT OF REITDERR INTO ALASEA.
A very intaresting experiment in the introduction of eindeer into this conntry has been commenced. Dr. Sheldon Jackson, the government agent of education in,Alaska, has began the work. Daring the past season he imported sixteen reindeer from Siberia, which cost about $\$ 160$. Next year he proposes to establish a herd of reindeer in the neighborhood of Fort Clarence and expects to begin with 100 animals. Siberia has vast umbers of these animals, and in its climato and vegetation resembles greatly Alaska, so that there is no eason to doubt that they will thrive on the eastern ade of Behring Straits. The reindeer is nseful as a draught animal for sleds, as well as for its milk, its neat, its skin. From the econimical point of view the experiment is of the highest degree of interest and it is gratifying to see that the Federal Government recognizes the importance of the work.
Capt. M. A. Healy, of the revenue cutter Bear has reported to the Treasury Department, emphasizing the proposition as the most important question now beore the Territory of Alaska. The recent destruction of seals and sea lions has certainly had its effect upon the cood sapply question of the country and islands in the neighborhood of Behring Straita, and any distress brought abont by the destruction of seals may be alleiated by the introduction of the reindeer. In Iceand, where the reindeer was first introduced in 1870, it has increased greatly in number but is said to have relapsed into wildness and is now of little use to the inabitants. It is to be hoped that better fortune will ttend their introduction into Alaska, and that they will be treated as domestic animals, and not ahare the ate of the buffalo.

DESERTIONS FROL THE NEW HAVF

The difficulty experienced by the officers of the Benaington to prevent wholesale desertions among the orew while the ship is in port is not by any means a new one in our fieet. The new ships, with perhaps the single exception of the Chicago, seem to be lacking in accommodations for their crews. While in the old-time frigate or line-of-battle ship a crew of 700 , or even more, could be comfortably housed, with free circulation of air, it is impossible in the present type of steam vessels to find hammock room for one-third that number without huddling. Close quarters and foul air is now become the regnlar billet, and a single cruise is enough to dampen the ardor of the most enthusiastic sailor man.
The commander of the Bennington declares that, if the Brooklyn police do not increase their efforts to capture his deserters, he will not have men enongh to man his engines, not to mention his deck. Really, be ought to complain against the designer of the ship rather than against the police, for, under a strict interpretation of the navy regulations, it is doubtful if, the men's case being properly set forth, they should be punished for desertion. The regulations provide with painstaking particularity that a ship's crew must be properly honsed and fed.
So strict are these rules that it is made a part of the duty of the officer of the deck to taste the men's food before it is served, thus makjing sure of its wholesome-
aees, and the duty of the surgeon to examine the men's quarters and report in writing to the captain. In the old days the men did their four hours duty aloft and then retired to the comforts of the roomy gun deck with gan ports open on every hand. Now they haul at tackle and falls or toil before the furnaces and retire into a rat hole under the forward hatchee.
In port, with windlasses set and a draught of air below. life in the men's quarters is bearable, but on such a craise as the Bennington is about to set out upon, the nconvenience and dicoouforts are intolerable. Those who have inspected the quarters on the now ships will not think it strange that the men desert in gangs at the ramor of a long oruise.
It has been suggested that the designers of these shipe be made to take a cruise in them, thns getting practical evidence of their defects as to ventilation and iving room.
They have spent their time devising engines and batteries; now they should try and devise a means of batteries; now they should try and devise a
keeping men enough aboard to work them.

POSTITAN OF THE PLAERETS II TOVEICBER.

JUPITER

s evening star. He is still the leader of the starry hosts, but, befors the month closes, a powerful rival enters modestly into the field to conteat his supremacy. t is plain to every observing eye that our giant brother is departing. He no longer appears above the eastern hills soon after sanset, as he did when in oppoition, but is high up toward the meridian when his isht pierces the sky depths. He makes his transit at oroper the middle of the monk his transit at oclock in the middle of the month, sets soon after midnight, and holds his court in the western sky instead of the eastern. This brilliant planet is passing through the small groups of Aquarius. His retrograde or western movement ends on the 3d, when he becomes stationary, and then moves eastward, or in direct motion, until the end of the year.
The moon is in conjunction with Jupiter the day after the first quarter, on the 10 th , at 1 h .50 m. P. M., being $4^{\circ} 9^{\prime}$ south. Moon and planet will make a pleasing picture when it is dark enough for them to be visible on the evening of the 10th.
The right ascension of Jupiter on the 1st is 22 h . 1 m ., his declination is $9^{\circ} 48^{\prime}$ sonth, his diameter is 42'.8, and be is in the constellation Aquarine.
Jupiter sets on the 1st at 1 h .19 m. A. M. On the 30th, he sets at $11 \mathrm{~h} .81 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

NEPTUNB
is morning star until the 29th, and then becomes evenng star. He is in opposition with the sun on the 29th at $10 \mathrm{~h} . \mathrm{P} . \mathrm{M}$. This far-away planet then makes his gearest approach, for the sun, the earth and Neptune are in line, with the earth in the middle. Observers endowed with exceptional visual powers can see Neptune with the aid of an opera glass; but the number of such observers is small. He is, however, a beantiful object in a good telescope, appearing as a tiny disk of a delicate blue tint. He will be fond a hort distance north west of Aldebaran.
The right ascension of Neptune on the 1st is 4 h . 38 m ., his declination is $20^{\circ} 6^{\prime}$ north, his diameter is $2^{\circ} .6$, and he is in the constellation Taurus.
Neptane rises on the first at 6 h .25 m. P. M. On the 30 th , he sets at $6 \mathrm{~h} .56 \mathrm{~m} . \mathrm{A}$. M.

VENUS

is evening star. She sets an hour later than the sun at the close of the month, and keen-eyed observers may possibly find this charming star lingering in the glow of twilight, and giving a foretaste of the brilliancy of her appearance when farther away from the sun. She must be looked for 212° south of the sanset point on the 30th.
The one-day-old moon makes a close conjunction with Venus on the 2 d , at 2 h .82 m . P. M., being 18^{\prime} north, but planet and crescent are too near the sun to be visible.
The right ascension of Venus on the 1st is 15 h .7 m . her declination is $17^{\circ} 38^{\prime}$ south, her diameter is $10^{\circ} .2$ and she is in the constellation Libra
Venus sets on the 1st at $5 \mathrm{~h} .22 \mathrm{~m} . \mathrm{P}$. M. On the 80th, she sets at 5 h .32 m. P. M.

saturis

morning star. He is favorably situated for obeerva tion, rising nearly four hours before the sun at the commencement of the month, and six hours before the sun at its close. He rises about 2 o'clock on the midde of the month, and may then be seen coming up in the east, a little farther east and 12° farther south than the bright star Dembola.
The moon, two days after the last quarter, is in conjunction with Saturn on the 25 th at 8 h .50 m. A. M., being $2^{\circ} 40^{\prime}$ north.
The right ascension of Saturn on the 1st is 11 h .48 in., his declination is $3^{\circ} 20^{\prime}$ north, his diameter is $15^{\circ} .4$, and he is in the constellation Virgo.
Saturn rises on the 1st at 2 h .49 m . A. M. On the 80th, he rises at 1 h .6 m . A. M.

MARS
is morning star. He rises at the close of the month
about three honrs and a half before the san, and may be dimly discerned as a small ruddy star, 4° east and a little north of Spica An opera plees -ill certaind bring him into the field
The woon is in conjunction with Mars on the 27th t 11 h .58 m . A. M., being $2^{\circ} 8^{\prime}$ north
The right ascension of Mars on the ist is 18 h .26 m . his declination is $1^{\circ} 88^{\prime}$ south, his diameter is $4^{\prime} .2$, and he is in the constellation Virgo.
Mars rises on the 1st at $8 \mathrm{~h} .45 \mathrm{~m} . \mathrm{A}$. M. On the 80 th be rises at $3 \mathrm{~h} .24 \mathrm{~m} . \mathbf{A}$. M.

MERCURT

is evening star. There is nothing noteworthy in his course as he makes his way toward his greatest eastern elongation, setting later and increasing in diameter the distance widens between hlm and the san
The right ascension of Mercury on the 1st is 14 h 44 m ., his declination is $16^{\circ} 2^{\prime}$ nouth, his diameter is 4.6, and he is in the constellation Libra.

Mercury sets on the 1st at 4 h .58 m. P. M. On the 30 th , he sets at 5 h .24 m. P. M.

URANUS

is morning star. He is too near the sun to be visible His right ascension on the 1st is 14 h .1 m ., his de clination is $11^{\circ} 47^{\prime}$ south, his diameter is $8^{\circ} .4$, and he is in the constellation Virgo.
Uranus rises on the 1 st at 5 h .52 m. A. M. On th Tith, he rises at $4 \mathrm{~h} .6 \mathrm{~m} . \mathrm{A}$. M.
Mars, Saturn, and Uranus are morning stars at the close of the month. Mercury, Venus, Jupiter, and Neptane are evening stars.

Por an Eiffel Tower at Chicago

It is reported that arrangements have been about completed by which a tower higher than the Eiffel construction will be erected in close proximity to the World's Fair grounds at Chicago, to be finished by February 1, 1893. The designs contemplate a tower 440 feet in diameter at the base and 1,120 feet high having three circular platforins or landings, the first 200 feet from the ground and 250 feet in diameter, the second 400 feet from the ground and 150 feet in diameter and the third 1,000 feet from the ground and 60 feet in dianeter. Above the latter will be signal service
offices and departments for scientific investigation. offices and departments for scientific investigation
Around the outside of the first landing will be a grand colonnade filteen feet wide, and the numerous restan rants, kiosks and booths to be provided are designed to accommodate many thousands. An offer in writing has been made by a large iron firm to put up the tower in the time stated for the sum of $\$ 1,500,000$, which is ess than the cost of the Eiffel tower, the lower price being made because standard and merchantable size steel can be used in the American construction The promoters of this enterprise are said to embrace capitalists of Chicago, St. Louis, Cincinnati, Pittsburg and other places.

Wortd" Fair Items.

-The foundation work of the Administration Build ing is all finished, and the material for the iron work of the edifice itself is being received on the grounds. This building is constructed of material to last but $t w o$ years, and it will cost $\$ 050,000$, althongh it covers a space of but 250 feet square. It is designed to epresent in itself one of the noblest acbievements of modern architecture, and will occupy the most com building position on the exposition grounds. The andeach consists of lour pavtions, 1 feet square, on cach of he lour anglen 120 feet in lia, and and 260 feet high.
-Aside from the cost of the great exbibition buildlngs, which will not be far from $87,000,000$, the follow ing are among the sums which have been, or will be, spent in preparation of the exposition grounds: Grad ing and filling. $\$ 450,000$; landscape gardening, $\$ 323,500$ viaducts and bridges, $\$ 125,000$; piers, $\$ 70,000$; waterwas improvements, $\$ 225,000$; rail ways, $\$ 500,000$; steam plant 800,000; electric lighting, $\$ 1,500,000$; statuary, $\$ 100,000$ vases, lamps, etc., 850,000 ; lake front adornment 5200,000 ; water supply and sewerage, 8600,000 ; othe expenses, $\$ 1,000,000$; total, $\$ 5,943,500$.
-The great extent of the fair can hardly at presen be measured, but some idea of its immensity may be gathered from the fact that the space thus far se apart for exposition purposes is three times the are of the Paris exposition grounds, or abont the size of Central Park, New York, between 700 and 800 acres.

The Fahrenhoit Thormometor.
In a hote published in the Proceedings of the Cambridge Philosophical Society, Mr. A. Gamgee investi gates the principle according to which Fahrenheit con structed his thermometric scale.
The author remarks, in the first place, that althougb Fanrenheit's thermometer has for a long time been employed in England and America, and that its use therein is general, technical books have not, up to the present, given any accurate information as to the principles that presided in the establishment of it
rue givan the opinion, afterward adinitted by sev ral scientiste, that Fahrenheit divided bis scale from 82° to 812° into 180° in order to initate the division of the are of a quarter circle. This theory is based upon an incorrect supposition. viz, that. before Fahren heit, Newton had proposed as the basis of the scale the freezing and boiling points of water, the interval between these two points being divided into equal degrees.
Mr. Gamgee thinks that, in his Scala graduum cal ories, Newton advances nothing that Mr. Tait attributes to him, and, besides that, Fahrenheit fixed the basis of his scale and constructed a large number of thermometers long before Amautons discovered the act (confirmed and pointed out precisely by Fahrenheit) that the boiling poiut of water remains constant ander a constant pressure.
According to Mr. Gaingee, the first thermometers constructed by Fahrenheit were alcobol ones, and were closed and provided with a scale whose two points were fized. The zero of the scale, indicating the low. est temperature that it was possible to reach, was obtained by plunging the bulb of the instrument into a mixture of ice and salt, while the highest point of heat was determined by placing the thermometer under the armpit or in the mouth of a bealthy man. The interval between these two points was divided into twenty-four parts, each of which corresponded to well marsed diferences of temperature, and each of these divisions was divided into four. In his later alcohol and mercary thermometers, the twenty-four principal divisions were suppressed, and were replaced by ascale of 96°, from ice to human heat. The 32° of these ther. mometers was obtained by planging the bulb in melting ice.
Fahrenheit was ledito construct mercurial thernometers on making some researches upon the boiling point o! water. With mercury it became necessary to crease the scale above to 600°
The figure 212, the degree of heat necessary for the oiling of water at a mean atinospheric pressure, was result that experiment alone brought out.
Upon the whole, Mr. Gamgee thinks that Fabrenheit trok, as the basis of his thermonetric scale, the duodecinal scale, which he was accustomed to use.Revue Scientiflque.

Remarkable Teat of a Torpedo Boat.

An experiment was made at Plymouth, Eng., October 22, with a boom to check the rushes of torpedo boats. The boom was thickly studded with formidable steel spikes, together with a seven inch steel hawser tretched tant overhead as a balk.
Torpedo Lieutenant Sturdee, who had disapproved the plan, offered to prove the correctness of his assertion that the device would not afford the protection desired. He guaranteed that he would either jump or force the boom, and he finally obtained permission to make the attempt.
A swift torpedo boat was loaned the lientenant for the experiment. Upon this he built a wassive arched saperstructure extending from bow to stern, intended to raise and support the overbanging hawser. Four seamen volunteered to accempany the daring lienonant.
The lives of all concerned were specially insured for he benefit of their families by orders of the Admiralty, whose experts believed that the attempt of Lieutenant turdee meant almost certain death. The importance of the experiment as a means of making an actual test of the availability of this means of defense alone justified the risk in the eyes of the officials.
The boom having been adjusted across the mouth of the harbor, the torpedo boat started on its hazardous mission. The start was made half a mile away from the boom, and a high rate of speed was attained as the obstruction was neared. At the last moment the Lieutenant and his men rushed below and fastened down the hatches. An instant later the boat, running at a speed of nineteen knots, struck the boom.
The concussion was terrific, and all the occupants of the craft were thrown so violently against the sides of the boat that they were painfully braised. It seemed for a moment as though, the expectations of Lieut. Sturdee would be realized and the boat force its way through the boom. She jumped nearly clear, but beore she got through, the hawser caught ber and preesed her against the big spikes of the boom, which held her like a vise and tore her bottom badly. The boat at once began to make water.
The seamen worked at her some time before she could be got free. Then they started for the beach, but the boat foundered before reaching it, the crew being taken off by the boats from shore. There was much excitement ainong the spectators, and, though Lieut. Sturdee's views had been disproved, his bravery and that of his companions was highly praised.

THE great bulk of alcohol made in this country is produced at Peoria, Ill. It is made from corn. The price paid there for corn was, antil lately, $371 / 2$ cents per bushel, but it has now risen to 70 cents.

THE COITVEYANOE OF DIBPATCHES BY BEES. Let not our readers think of a hour on reading the title of this article. It is a question entirely of asking a new service of the bee-that insect so useful in the country; and it is desired, neither more nor less, to obtain, after it has contributed to increase the national tain, after it has contributed in time of peace, its aid in the common defeuse when the country shall be threatened. But, what! it will be said, you do not thiuk seriously of replacing the carrier pigeon, which travels immense distances in order to regain its cote, and with a speed equal to, and often greater than, that of our fast est trains, by an insect inca pable of guiding itself if the hand of man or the force of the wind carrie it to 00 or leagues from its hive sond leagues from its hive, and whose qualities of speed bear oo comparison with those of the winged messenger that is called upon to reuder so great services in time of war. .Do not be uneasy, for such is no our thought, and we do not believe, even, it is that of Mr Teynac, the distinguished bee master of the Gironde, who has conceived the idea of thi ingenions innovation. It is a question, for the inoment a question, for the moment and interesting soxperiments which are insu mient how ever, to permit of prejudging of the services that this new mode of transmitting corre spondence may render in th future. However this may be the results obtained up to the present by the author of this method are so remark able that we do not fear to lay them before our readers, being certain that they will think, as we do, that we have here the elements of a most interesting study Numerous experiments, not altogether new, have es tablished the fact irrefutably that, if a swarm of bee be inclosed in a bag and carried to a distance of less than two or three miles froun the hive and of less than two or thre miles froun the hive, and the bas few instants, will quickly take flight in the direction few instants, will quickly take flight in the direction
of the hive with that certainty of instinct with which of the hlve with that certainty of instinct with which nature seems to have endowed all animals to a greater or less degree. The most active ones will cover the distance within a length of time varying between twenty and twenty-five minutes, which correspond to a mean speed of seven miles per hour. It was starting from this fact that Mr. Tey nac conceived the idea of atilizing the instinct that leads the bee to its home fo making a messenger of it and that he constructed the uaterial represented in un engravings, and the use o which we shall explain.
Let us suppose that the owner of a swarm wishes to establish a system of corre spondence with a friend whose residence is 2 or $21 / 2$ miles dis tant from his own. He be gins by sending him a smal hive constructed as shown in Fig. 1, and well stocked with bees and with food for them At the end of a few days, the bees will be sufficiently ac customed to their new sar ronstings to allow experironndings to allow experi ments to be begun. A certain number of bees are taken from each hive and intro duced into a small shipping box (Fig. 2). The greater part of the top of this box is cov ered with wire gauze, which permits of the entrance of air to the prisoners. The bees are introduced through the orifice, 4, that may be seen to the left of the box, and which is afterward closed by |nent of such stations is neither difficult nor costly, the pivoting cover, 2. In this way, the sending may be easily done by mail. On reaching their destination, the bees are set free in a room in which a saucer containing a little honey has been arranged upon a table. The bee alights on the repast, and this is the moment that the operator wust take advantage of to glue to its thorax the previously prepared dispatch. As way be seen in Fig. 3, the extremity of the dispatch (here magnified ten times) is slit with a pair of scissors so as to form two flaps, which are covered with fish glue
and quickly applied to the bee held with pinchers. Care must be taken that the glue does not touch either the head or the wings of the insect, which, as soon as hive. is satiated, takes its flight and steers straight for its In fact, care has been taken to place before the en trance of each hive a small tin box having apertures in front of just sufficient size to allow of the passage of

Figs. 1 and 8.-HIVE AND 8HIPPING BOX
entirely open, is applied exactly against the entrance to the hive, so that, in order to enter or make their exit, all the bees are obliged to pass through these apertures. The little messeuger, hanpered by the protuberance that the dispatch forms upon its back, urn and is oblin vain efforts to pans to free it from arn, and ls obliged to wait forsome one to free it irom Here then, is the syitem Here, Then, is It will be ceen that the use of H Mr. Teynac. It will be seen that the use of it is as yet not very practical. The difficulty resides in the mall extent of the field of operations of the same warm, and this would, for transmission to a long distance, necessitate a multitude of intermediate stations
two or three miles apart. It is true that the establish. cabinet maker. are indigestible.

Fis. 8.-AAUCER OF HONEY PITCEERS, 8CI8SORS, DISPATCEES, GLUE POT, AND BEE WITH
DIBPATCH AFFIXED
ince there is no need, as with the other messengers, to trouble one's self with the question of feeding, but on the contrary, each station would be a source of revenue to its guardian. But, in most cases, for a be sieged city, the establishment of a station at a dis ance of two miles is so evident an impossibility that it is not necessary to dwell upon this point. Moreover elays so close together would occasion great losses of time. It remains to be seen whether in the immense
family of hymenoptera there may not be found a mes
senger which, through patient training and proper election, might be able to travel greater distances It is toward this point that the researches of $\mathrm{Mr}^{\text {r }}$ Teynac are being directed, and he is now experiment ing with the Bombus hirtorum, domesticated by him -Les Inventions Nouvelles.

English Walnute

Mr. P. L. Simmonds contributes to a recent issue of the Gardeners' Chronicle some interesting information about the so-called English walnuts, from which the fol lowing facts are gathered :
There are many varieties of these nuts, such as the oval round, double, large and swall fruited, early and late, tender thin-shelled and hard thick shelled. An almost huskless variety occurs in the north of China. The larger portion of the wainuts consumed in Eng land are of foreign growth and average in quantity about 250,000 bushels. The bulk of these come from France and Belgium, and small quanti ties from Germany, Holland and Italy.
Bordeaux is one of the larg est exporting ports in the world, perhaps the largest for walnuts ; and small quan tities are now sent from Chil to Europe. The culture of the so-called English walnut which, by the way, is not an English tree at all, but a na tive of the Orient and of cen tral and eastern Asia, from whence it was early introduced into Europe, is now dif fused over Italy, from the Alps to the valleys of Sicily It is thought, however, that the number of cultivated waluut trees in Italy is diminishing, as the demand for the timber is increasing, being in great demand by the

Persons with weak digestions will do well to bear in wind Mr. Simmonds' warning that walnuts, as long as the skin can be easily removed from them, are nutritious and healthy article of diet; but when they become dry, so that they cannot be easily peeled, they

Walnuts in the shell yield about one-third their weight of picked kernels, which are the crumpled cotyledons or seed leaves. In some northern districts particularly in Piedmont walnut trees have always been held in high estimation for the production of oil, which, wheu newly made, ha a very agreeable taste, and can be employed in cookery as well as in the preparation of varnish.
The walnut grows abund antly in Kashmir, Nepal and other parts of India, where the fruits are largely used It forms also an importan article of consumption in Ja pan, quantities being eaten in a raw state. They are also mach used for making a kind of confection, by cracking and removing the shell without harting the kernel, which is afterward coated with white sugar, thus making an at tractive and agreeable sweet neat.
The walnut also furnishe in Japan a bland oil, used for domestic purposes. In Chine it seems to be pressed for oil as in some years over 12,000 tons are exported from the port of Tientsin in the year The walnut is extensively cultivated in the Punjab among the Himalayas and in Afghanistan, a large annual
supply being brought to the plaine of India by the Kabuli and other traders from the hills. There are Kabali and other traders from the hills. There are
reveral well known forms of this nut met with, the soft-shelled kind of Kashmir and Chamba being considered the best.

Thr picturesque Awerican terw "monkey wrench," used to describe an adjustable wrench that seizes the nut on two sides, seems to be unknown in England. There the wrench is called a spanner, because it spans the nut.
improvement in the Manuracture of Uliramarino. R. W. E. MeIvor has found the following proportions of raw materials to yield excellent results : Sodinu sulphide, 42 lb ; ; sulphur, 20 lb ; kaolin (China clay), 110 lb .; soda (as carbonate), 106 lb .; or caustic soda, 40 lb . These quantities yield about 2 cwt . of ultramarine blue. The clay and soda are first roasted together at a red heat so as to effect partial duable decomposition, and the product is ground. "Sulphur liquor" is then made by dissolving flowers of sulphar in a solution of sulphide of sodinen to saturation. The ground material is then made into a thick paste with the sulphar liquor, the paste dried in an oveu, and the dried mass broken into small pieces is roasted without access of air in a closed earthenware retort first at 250° to $300^{\circ} \mathrm{C}$. for an hour, then at a red heat for eight hours, and finally just below dull redness in presence of a slow regulated current of air. The retort must be quite cold before being opened.
sugar.
The States now producing sugar and the raw mate rial from which they produce such sugar are as fol lows :

A PULVERIEING HARROW AND CULTIVATOR.
The improvement shown in the illustration is de signed to form a perfect pulverizer, doing the work o a harrow clod crusher and roller combined, while it prepares a perfect seed bed, deep, fine, smooth, and even as a floor, and cleans foul fields of weeds and vines so that they may be plowed under withou trouble, the plow not being required at all in many cases. The forward frame of the machine which carries the pulverizers, is connected by a pole with the axle of a wheeled carriage, and the frame has a series of inclined drag bars, adspting it, when the pulverizer blades are removed, to the smoothing of lawns, roadbeds, etc. The pulverto a bed trached to a bead stock, as shown in the small views, two upwardly extending studs of the stock passing through perforations in the drag bars, to which they are secured by pins or keys. One of the paired cutter blades crosses the path of the other, and presents an acute angle to the ground surface, designed to cut through it readily, and ride apon or cut off small roots, vines. stalks, or similar obstructions, or bury them in the soil, while the shape of the blades is such that the entire device will ride over a rigid obstacle. The edges of the blades are beveled on the outside, to render as they are drawn as they are drawn through the soil. Extending rearwardly from the wheeled carriage are rods carrying drags, by which the marks made by the wheels are covered. The wachine can be taken apart and put together, or changed from one combination to another, without the use of a tool or the exercise of any degree of mechanical skill. It is designed to be ine inesigned manufacture, and mot likely to get ont not order with set out of order with use, while it can be readily taken apart and packed, except the wheels, in a box about six feet long by ten inches square.
This improvement forms the subject of two patents issued to Mr. John P. L'Homedieu, of Setauket, Suf olk County, N. Y., to whom application may be made for further particulars.

l'homediev's cultivator and pulverizing attachignt for harrows

The Phymical Action of Odora

The direct action of odors on the nervons centers is a subject worthy of careful research and study. Goethe had a strong dislike to the odor of apples : Schiller liked the odor. Some persons are made absolutely ill insed the odor. Some persons are made absolutely ill
by the odor of onions that are being cooked; while other persons rather like it. The odor of the lily bas a most potent effect in many instances, and I believe there is no person on whoin it does not produce a sense of depression and nausea. I have known it cause positive faintness. I am myself always disagreeably affected by the odor of carbolic acid, and can never remain many minutes in a room where a trace of it prevails. In cases where the effect of an odor is instantaneous, it is fair to suppose that the impression made on the olfactory surface is transinitted direct to the olfactory center of the brain; but there mast also, in certain examples, be a further transmission to the sympathetic ranglia.
The central seat of the olfactory sense must be very ear to the central seat of menory, for it is noticeable that nothing recalls a past event like an odor. A little child was accidentally thrown ont of a pony-carriage in a country lane. Near the spot where the fall took place there was a manure heap, which gave forth the peculiar dry anmoniacal odor so often recognizable from such heaps-an odor distinctive yet nut altogether unpleasant. The child was stunned by the fall, and on recovering and returning to consciousness smelt this odor powerfully. Over fifty years have elapsed since that little mishap, and yet whenever the person referred to passes, in country lanes, a heap givink out the same odor, the whole scene of the accident recurs with every detail perfect, and sometimes with a recurrence of the giddiness and nausea which were experionced at the moment.
In some of the lower animals memory by odors is often singularly exhibited. In the dog the memory by odor seems a special part of the nature of the animal. The "scent" of the fox-hound and of the stag-hound is of this character. In the trained collie the remembrance of an object hidden, a stick, for instance, may be retained for three quarters of an hour, so perfectly that the animal will fetch the object at command. But If the object be coated with something giving an odor which the animal is familiar with, the time is infinitely more prolonged.
Some odors lead to sleep, like the odor from dried hops ; others lead to wakefulness, like the odor of dead flowers or leaves. Still others allow sleep but provoke the most terrible areams, like the odors arising rom a pillow in which feathers ure decomposing. Habit modifies the effects of odor. Merciless mokers langh at the "faddery" of women who mocome faint if a smoker charges the air they become faint if a smoker charges the air they bey carriage and are reedy to compere the abje way carriage, and are ready to compare the objec ion of a lady unaccustomed to the odor from the pipe or cigar with the carelessness on the matter shown by another lady who has become accustomed to the effect. But if a smoker gives up smoking and all contact with smoke for a few years, he is astounded at the unpleasantness of an air charged with sunoke when he is then inclosed in it. I was once summoned, professionally, to a youth who was temporarily poisoned by inhaling the atmosphere issuing out of a sunall window of a clubroom in which a number of men were smoking freely. They, in the body of the smoke, were not perceptibly affected. He, partly

- foot rents being bent upward and clamped to de children of different sizes. The handle bar extend around the front of the seat, forming a secure guard n the open air, was positively smitten to isintness by the em. poisoned current poisoned current rom the roou which lowed out of the window, and is still aflected whenever he comes within the cloud of a pipe.-Dr B. W. Richardson in the Asclepiad

To Remove Ruat.
To remove rust from iron or stee atensils the follow ng solution is ap plied by means of a plied by means of a brush, after having emoved any grease y rubbing with f lean dry cloth : 100 m. stannic chloride are dissolved in 1 liter of water; this solution is next child is not t د ride the seat may be easily removed and added to one containing 2.5 gm . tartaric acid diseolved the bicycle used in the ordinary way. By this method in 1 liter of water, and, finally, added 20 c.c. indigo so of attaching the seat, the child has a foot on each side of the fork, and has the saine swinging motion as the operator, the weight of both coming together apon the saddle, whereby the child fully partakes in the healthfulness of this form of exercise.

1 iter of water, and, baally, added at c.c. indigo so ing the solution to act for a few seconds, it is rubbed clean with first a moist cloth, later with a dry cloth ; to restore the polish, use is made of silver sand and jewelers' rouge.

Aorial Navigation.

To the Editor of the Scientifio Amerioan:

In the September number of the Century Magasine is an interesting article on the Possibility of Mechauical Flight, by Prof. Langley of Smithsonian Institution, and states that the areater the veloclty acquired in translating matter in a horizontal direction supported by a plane of alight inalination, the greater weight it will carry and that there will be an increasing economy will poarry
Or to use his own worde, it requires less and lese power to maintain this horizontal poosition, the faster it goes.
Then, again, the more speed is increased, the less will be the power required to support and advance it. So there will be an increasing economy of power with each higher speed, up to some remote liwit not yet attained in experiment. This is in startling contrast to all that we are most familiar with in land and water ransportation, where every one knows the direct reerse to be the ordinary case.
Prof. Langley is correct, but we have one instance in mechanics that proves this theory, and that is an engine drawing a train of cars on the level railway, for it tekes less power to keep up the required speed after etting into motion. And corresponds with Newton's ad Law of Motion, that a constant force produces a aniform acceleration of velocity in any direction.
Or in other words, let any force with an intensity capable of moving any mass or body, be it ever so slow, be constantly applied, there will be a uniform acceleration, as when a sphere or rolling stock allowed oroll down an incline plane or railway of 1 ft : fall in 6 ft . length, it will pass through the space of 1 ft . in st sec., 3 ft. in 20 sec., and so on, increasing at the aniform rate of 2 ft . per second and in one-half minute or 80 seconds it will be moving at the rate of 69 ft , per ecund. The sir is no denser in the same altitude to natter moring in a horizontal direction than in the perpendicular fall.
One horse power has capacity of raising 550 pounds 1 ft . high in one second; let it'be constant, the velocity will increase 8 ft . per second toward the zenith.
Again, let gravity be 1 unit, and a force with an intensity repreeenting $1 \frac{1}{10}$ units act at an angle of 45° above the horizon ; under Newton's 2d Law of Motion, it will move in a direct horizontal liue of 16 ft . in the 1st second, 48 ft . in the 2 d second, 80 ft . in the 8 d , fulalling the law of falling bodies, or falling in a horizon tal direction.
Keokak, Iowa, October 16, 1891.

```
The Albatrome.
```

At one of the meetiugs of the Wellington Philosophical Society in 1885, Sir Walter Buller, F.R.S., exhibited a series of the so-called wandering albatross, and expreseed his belief that there were two species ander the common name of Diomedea exulans, one of them being highly variable in plumage and the other distinguished by its larger size and by the constancy of its white head and neck. But, although that was bis conviction, he did not feel justified in setting up the new species and giving it a distinctive name until he could produce incontestable evidence of its existence. From a paper read by him before the same Society in February last, and published in the new volume of the Transactions of the New Zealand Institute, we learn, says Nature, that he had lately had an opportunity of examining sixteen beautiful specimens of both sezes and of all ages, and that as the result of his study of these specimens he had no hesitation in peaking of a new species. "It is undoubtedly," he asy, "the noblest member of this group, both as to ize and beanty, and I have therefore named it Diomedea regia." He exhibited before the Wellington Solety a series of both species, and in the course of some remarks on them stated that they keep quite apart from one another on their breeding grounds, and do not commingle "except when sailing and soaring ver the mighty deep, where a community of interest and a common pursuit bring many members of this great family together.'
In the paper in which he deals with the species called by him Diomedea regia, Sir Walter Buller refers to a remarkable characteristic of the wandering albatross -a characteristic which has been carefully studied by r. Harris. At a certain time of the year, between February and June-Mr. Harris cannot exactly say hen-the old birds leave their young and go to sea and do not return until October, when they arrive in large numbers. During their absence the young. birds never leave the breeding ground. Immediately after the return of the old birds, each pair goes to its old nest, and, after a little fondling of the young one, furns it out, and prepares the nest for the next brood. The deserted young ones are in good condition, and very lively, frequently being seen off their nests exerising their wings; and. when the old birds come back, a young bird will often remain ontside the nest and nibble at the head of the old one, until the eathers between the beak and the eye are removed, and the skin made quite sore. The soung birds do not go far frow land until the following year, when they
accompany the old ones to sea. When the young are left in the nest at the close of the breeding season they are $s 0$ immensely fat that Bir Walcer Buller thinks they can subsist for monthe without food o any kind. Captain Fairchild has described to Sir Walter from personal observation the coming home of the wandering albatross, and the peremptory manne in which the young bird in quit the nest, so as to make room for its successor

Anthophasy.
 A writer in La Nature, quoting from Ovid,

amat foros repatatu Amare puellae,"

says that it is well to-day to modify this aphorism and to say: "Those who love flowers are friends of good living." It appears, in fact, that in France as well as in England a true crusade is going on at present for the introduction of a ccrtain number of flowers int our regular list of foods.
It was some London botanists who conceived this eccentric idea of rendering us anthophagists, s wor which may be translated "eaters of flowers."
If the learned Englishmen succeed in their enterprise we shall very soon see the edible flowers of the phos (Caligonum polygonoides), of the mahwah (Bassio latifolia), of the Dillenia pertagynia, etc., appear upon our tables and trinmphantly take their place alongside of the violets, jasmins, and rose petals tha we have long been receiving from Italy in the form o
In fact, in spite of our English neighbors, who woul ke for once to obtain the reputation of being in lators, flowers have been daily eaten by everybod for a long time.
Anthophagy is assuredly oue of the commonest o practices; but ordinarily we are anthophagists with out knowing it. The experimental proof of this asser tion is soon and easily found. Thus, for example when we eat the artichoke with pepperuance, we ar eating the immature flower heads of the plant, and when we partake of a common cauliflower with butter esnce we are eating flowers.
The cabbages, like the artichoke, are plants of man possibilities.
See, in fact, what we owe to the Brassica olerace alone-the common cabbage-which the housewif daily puts into the soup pot.
In a wild state, the Brassica oleracea is a rare plant at least in France, where it is scarcely ever met with except in the inaccessible parts of the chalky shores of Cape Gris-Nez. In order to develop at its ease, it re quires sea air, saline spray, and phosphate of lime But when man comes to take it under his protection then, according to the mode of culture applied to it, it furnishes the common cabbage, the turnip cabbage the caulifiower, Brussels spronts, etc., according as the eaves, root, or flowers of the plant have been more ee pecially developed. This latter is especially the case of the cauliflower and Brussels sprouts. The canli flower, in fact, is nothing but the plant's inflorescenc which has not reached its complete development, while Brussels sprouts are buds that have not reached per ect maturity. To add again to the list of Brassicas, there is the brocoli, a maritime and wild (or nearly so variety of the Brassica oleracea, and the inflorescence of which, less tufted than that of the common cauli flower, is likewise edible and just as delicate.
In Holland, as weil as in Brittany, the brocoli is cul ivated apon a large scale in the polders (as the large pasturages on alluvial soil that has been reclained from the sea are called in the Netherlands), and, in order to secure for it an existence approaching as neary as possible its normal conditions of grow th, the peas ants furish it with a manure that is both uin organic ; that is, the star-fishes that they gather by the cartload upon the beaches. Let us add, further, that the crop of brocoli inflorescences is placed in casks that have contained the generous wines of Fravce (Bur gundy or Bordeaux). This gives it a particularly fine and agreeable aroma, and it is afterward shipped to England, whence we see it finally return to our tables in the form of pickles in vinegar or of chow-chow. So nuch for the simple cabbage
As for the artichoke, the Cynara scolymus of botan As, that shares, with several other of its near relatives, the property of having a fleshy and succulent floral re eptacis. These flower-vegetables of which we hav ust spoken are in general use as food. Along with them, it is well to mention a number of others, which although not so well known, are none the less valuable Thus, for example, the sea kale (Crambe maritima), a cear relative of the cabbage, belonging, like it, to the great family of Cruciferm, and which grows naturally and in great abundance at the seaside, in the shingle, upon our Channel coast, produces an inflorescence that is particularly esteemed by connoisseurs. It is a vege table of which the culture will doubtless be carried on egularly some day.
The most diverse families of plants furnish species having edible flowers. The delicately perfumed freshly expanded flowers of the yellow pond-lily

Nymphaca lutra) are employed in the east of France in the masufacture of certain preserves that possess an xquisite flavor. The white and odoriferous racemes of Kubinia pseudacacia, dipped in batter are used in ome countries for making fritters that are no less savory than those made of sliced apples or peaches. The flowers of the Judas tree (Cercis siliquastrum), too, re sometimes made into fritters with butter, or are mixed with salads, and the flower buds are pickled in vinegar. The flowers of the American species (C. can-
adensis) are nsed in salads and pickles in Canada. The flowers of the nasturtium and borage are used as an addition to salads. We use the flower buds of the caper bush, preserved in vinegar, in certain sances. The cloves, $s 0$ much used for flavoring, are merely the unexpanded flower-buds of the clove tree, dried in the nn.
The flowers of Abutilon esenlentum are used as a a ned by the natives in their carries. The flowers of the pumpkin vine are cooked and eaten y some of the tribes of North A merican Indians. This ist is far from being complete, and we hope to add to it at some future time.

The Original Cable Road to be Improved
The Clay Street Hill Railroad Company, San Francisco, has run its last car up through Chinatown, over the Clay Street hill, and with it the oldest cable oad in the world is now a thing of the past. No unasual ceremonies attended the final trip, beyond the breaking of a bottle of champagne over the grip and a ormal declaration that the business of the pioneer cable road was finished, but after the car and dummy bad been turned into the round house many of the fficers and men, some of whom had been with the oad since its construction was begun, over twentyive years ago, gathered together and exchanged bits history concerning the early days of the famous ine. Deep regret was expressed by all that it had become necessary to dismantle the road and reconstruct it, that it might be adequate to handle the growing traffic.
Up in the loft of the old engine honse, corner of Leavenworth and Clay Streets, are stored parts of the Grst dummies which astonished the people of San Francisco, together with the original grip car. This is indeed a primitive aflair, consisting of a low platform on small car wheels and supporting the grip. A ough railing surrounds it, while the brakes consisted of steel levers, which were pressed against the four wheels. Five wen were necessary to run the dummy, one operating the grip and each of the remaining four tanding with a steel lever in his band ready to lock he wheels should the grip break. The trailer was a common "bobtail" horse car, and the trial trip of the first cable train, as thus constituted, forms a most interesting chapter of street rail way history.
Early in the '70s, A. 8. Hallidie, now president of the California Wire Works, of San Francisco, conceived the idea of propelling street cars by means of an endthe idea of propeling street cars by means of an end-
less, traveling, underground cable. The scheme was at first considered chimerical, but finally three men of weans-Joseph Britton, H. L. Davis; and James Moffit -took the matter up. Then came the almost interninable task of working out the mechanical details of the idea, but it was finally completed, and on August 18, 1878, hundreds of San Franciscans olimbed up Clay Street hill to watch the trial trip. As the gripman who was to take the car over the road looked down the teep decline his courage failed, and Mr. Hallidio took the grip. At a given signal the car started off moothly amid sbouts from thousands of throats. The rip was made without a hitch and the innovation was ronounced a success. Soon the line from Kearney preet to Van Ness A venue was equipped with cable reet to Van Ness Avenil the equipped with cable the night of September 9, the road has been in operation, using continuously the same engine and the same roadbed. Arthur $\mathbf{8}$. Chase enjoys the distinction of baving collected the first fare, he being the first cable car conductor, and Timothy Phalon was the first gripman. Mr. Chase is now in the furniture business in San Francisco, and Mr. Phalon, after a long service, resigned and is now a factory watchman.
The Western Electrician says: It is probable that the ow historic train, with its first conductor and gripWorld's Fair

ur Walrue-Eating Cltizen

Mr. Ivan Petroff, the United States special census gent, has been engaged in taking the census of the atives of Nunivak Island, in Behring Sea, in $60^{\circ} \mathrm{N}$. lat. He found the population to consist of over 600 natives. It was previously supposed that over 300 people occupied the island. There are no white men there, and the natives live in a most primitive style. Their only food is the flesh of the walrus, and their only wealth consists of ivory obtained from the tusks of that animal. There are few land otter, bat, apart

(Sarrespondence.

To the Editor of the Scientiflc American:

In' my list of non-venomous serpents appearing in the Soientific Amerigan, issue of October 10, 1891, No. 19 is given as Kirkland's snake, Regina kirklandi. It should read Kirtland's snake, \boldsymbol{R}. kirtlandi. This little snake has been placed in a new genus, Tropidoclonium, which is unnecessary, and certainly not euphonious. As to the largest, or rather longest, species of snakes inhabiting the United States, Prof. Robert Ridgway, the ornithologist, says that in 1854, in the State of Missouri, Dr. Hoy captured a pilot snake, Coluber obsoletus, which measured eleven feet in length, and that his (Prof. Ridgway's) father killed one of the same species measuring nine feet eight inches.
C. Few Seriss.

The steam Yacht Mascot.

To the Editor of the Scientific American:
I built the Mascot in 1881, and put into it a Colt disk engine, made at the Colt's Patent Firearms Company, Hartford, Conn., and have run it every year during the yachting season, this season closing up the 10th. In 1888 I broke a crank pin, the first and only accident or break of any kind that has happened since the engine was put in motion. Not a dollar's expense for any purpose connected with the engine. Not a moment's delay in all these years for repairs of any kind to the engine. The engine has been managed this season by the son of my former engineer, and is the first engine he ever had charge of. The yacht has made, I think, better time this season than ever before. The Mascot is 65 ft . long and $10_{18}^{\circ} \mathrm{ft}$. beam, and being finished inside with mahogany and ten mahogany doors, 600 pounds plate glass in windows and doors, and 400 pounds sash weights, and 500 pounds brass rail, 6,500 pounds boiler, engine 4,500 pounds, two marble washstands, and two Sand's water closets, make the Mascot an unusually dands water chosets, wake the mascot an unusually an hour with ten or fifty passengers. She has done an hour with ten or fifty passengers. She hae done
this this season with fifty on board. The engine is a this this spason with fifty on board. The engine is a
six-cylinder one, each cylinder being 7 inches diameter six-cylinder one, each cylinder being 7 inches diameter
and 6 inches stroke, driving a 44 inch wheel, 6 foot and 6 inches stroke, driving a 44 inch wheel, 6 foot
pitch, 220 revolutions. George S. Whaver. pitch, 220 revolutions. George S. We
Keuka Lake, Branchport, N. Y., Oct., 1891.

Rain Making.

To the Editor of the Scientiflc American:
The whole country, and, in fact, the whole civilized The whole country, and, in fact, the whole civilized
world, has been greatly interested in the recent world, bas been greatly interested in the recent
attempts to coax or drive moisture from the Texas skies. It is of some interest to inquire whether science can favor any such attempts, and also to bring together some of the reports that have been sent out regarding the experiments. It has been thought that a miring of air strata of different temperatures would produce rain, but a short computation will show how impossible it is to obtain precipitation by mixture. A cabic foot of saturated air at 50° contains 4.09 grains moisture, and at $60^{\circ}, 5 \cdot 79$ grains; mixing the two we have two cubic feet at 55°, containing 9.85 grains; but two cubic feet at 55° will hold 9.72 grains, and we must allow for the liberation of latent heat, so that there allow for the liberation of
would be no moisture to precipitate, even under those would be no moisture to precipitate, even under those
favorable conditions which can occur but rarely in favorable conditions which can occur but rarely in
natare. This is the old Hattonian theory of rain, nature. This is the old Hattonian theory of rain,
which was abandoned by meteorologists a good many which was
years ago.
In the early part of 1889, the present writer made a few experiments on the formation of rain in dust-free air. These consisted, for the most part, in forcing air into a glass jar and suddenly releasing the pressure, thereby causing quite an explosion or sudden rush of particles in the jar. It was found entirely practicable to form mist in perfectly dust-free air, and it was suggested that possibly the sudden bombardment of the molecules might cause a mechanical aggregation of the mist without the intervention of dust particles as nuclei. (Science, June 21, 1889.)
Prof. John Aitken, of Edinbargh, Scotland, had taken rather strong ground that the presence of dust was needful in order that mist or cloud might form, and in a correspondence with him he writes as follows: "I must however remark, and I have pointed it out in one of my papers, that it is possible to produce condensation in dust-fres air. It is done by drawing out the air puinp very rapidly and accompanying the process with a shock. Condensation then takes place for the same reason that water cooled below 32° immediately solidifies when treated in the same way." "Now it is not so much the amount as the speed of expansion and consequent rush of air that produces this 'spontancous' form of condensation." I had suggested that poszibly his failure to obtain mist was due to not making the expansion rapid enough to prevent the beat frow outside reaching the air. He says farther, "I have no theory with regard to shocks; I merely stated the fact that shocks tend to assist in producing the
spontaneous form of condensation." It seems as though these experiments and Prof. Aitken's sugges
tions have an important bearing apon the question of the production of rain by concussions of the atmosphere, and they may serve to explain a few of the sphere, and they may
recent results in Texas.
While it would be unsafe to say, with our present knowledge, that vapor molecules may be made to combine by concussion, yet it is very certain that they may be combined without the intervention of solid dust particles. It is easy to see, however, that if any such effect is to take place it must be at once, and not after an interval of even fifteen minutes after the explosion. With the ordinary theories of rain formation in mind, there seems to be no possible way in which a concussion of the atmosphere, extending with some force to a distance of perhaps 2,000 feet, can produce even a sprinkle except immediately, nor can the concussion be considered as effective at a distance greater than a mile or two. It eeems plain that such explosions cannot give mist suddenly and also after an interval, so that it should be decided to accept one or interval, other as the direct result, and not either, as the case may happen to be.
Turning now to the experiments, we find that it was decided to make the first attempts in a region o undoubted dryness, in order that there might be no doubt thrown upon the results. Now while western Texas, the place chosen, in most seasons of the year has a very dry climate, it is far otherwise in its rainy season, which extends from the uiddle of Jane to the niddle of September. The dates of natural rainfall in ows : A exas during these experiments were as fol 28, 29, and 80 . That is to say, during this interval of twenty-two days there were sixteen on which we would have anticipated a natural rain, as shown by the have anticipated a natural rain, as shown by the actual rain which fell over widely extended regions. whole truth in this case, for there are very few stations in this region, and it might well be that rain fell on ther days not noted above.
The first explosions, on August 9, were very few in number, and a rain occurred the next day, bat the experimenters decided that this rain was not caused by them. It would seem that this is a most important point in this connection; if this first rain was simply a coincidence, it would require strong proof to show that all other rainfalls in this rainy time were not the same. Again, on the 18th there were more preliminary explosions followed by rain. It was then declared that all arrangements had been completed for the final and decisive tests on the 20 th . On the 21 st it was announced : "The circumstance of the 20 th seemed to
favor the experimenters, yet nothing has been improved." \&This was certainly a singular admisrion on the part of those so deeply interested.
In a report on these experiments the following expressions occar: "Wherever there has been moisture in the air and they have reached it, rain has followed the explosions. This was to be expected, because no one can produce anything without having material to work upon. After each explosion so far made under proper conditions, there has followed rain." On the other hand, it has been insisted all along that there had been a great drouth in this part of Texas, and the very object of going to this dry region was to try and coax rain to go or fall there. It is gratifying to learn that the attempt has not been made to produce rain in a dry atmosphere, for such an attempt must have inevitably failed.
A most significant fact has also come to light in connection with the later EI Paso trials. It had been announced that no rain had fallen at this point for several weeks, but, unfortunately for the experiments,
on the very morning, just before the explosions, there on the very morning, just before the explosions, there
was a rain at this point. Notwithstanding these favorable conditions of the atmosphere, a most thorough and long-continued bombardment of the atmosphere produced no rain whatever, and the attempt had to be abandoned. It seems quite plain that, from the reports of the experimenters themselves, viewed in a proper light and with a knowledge of the natural rains in this region during this time, we must think the results have shown the entire impotence of man to bring about any rainfall except, a few sprinkles just at the wowent and point of the explosion. Certainly the results prove incontestably that money cannot be spent
profitably in any such attempts by crude and gross profitably in any such attempts by crude and gross
explosions to produce precipitation.
There is no doubt that there is here a most intensely interesting field for research, and it is to be hoped that the present agitation will lead to a few scientific experi ments on the condition of the clonds at the time of rain formation and on the condensation of moistare. Such experiments would be invaluable in setting a rest a good many doubtful questions. H. A. HAZEN October 9, 1891.

The Artificial Production or Rain
To the Editor of the Scientiflc American:
Here in Central Nebraska, during the season of thunderstorms, we often see the cominencemen
thunder showers and sometimes even of a oyclone.
A thanderstorm always begins to develop here with
a sultry, close atmosphere and a low barometer, and generally in the afternoon.
The sky will show a few scattered, fleecy clouds, which begin to draw together into a single mass, parts of which mass slowly roll and tumble upon each other.
Very soon a clap of thunder is heard, and at the same time the rain begins to fall. Am quite sure that I have heard the thunder before we could see the rain, but usually we can see the rain before the thunder is heard Perhaps there were very light flashes in the cloud, the report of which could not be heard before the first fall of rain.
Might it not be that the particles of aqueous vapor were differently electrifled, and thus caused to attract each other, in this manner forming a drop of sufficient weight to fall?

Here our heary thunderstorms nearly always come from the north west and north, and are preceded almost invariably by a hard wind for a day or two from the south. This sonth wind always blows up dust, which sometimes extends a mile high. The dust, of course, is very fine, at least that which extends very high up, and it wight easily be that this dust, being silicious and hot and dry, might be electrified from friction and thus attract particles of vapor differently electrified, in this way causing an accumulation of cloud and a fall of rain.
It is a fact well known that a static discharge will settle dust. This it can only do by disturbing the electric equilibrium of the particles, causing them to adhere, forming a particle heavy enough to fall through the air.
It seems to me that sudden showers are caused by electrical disturbances, even though the disturbances be not great enough to cause lightning flashes.
Perhaps it may some day be demonstrated that the cansing of rain is one of the natural uses of electricity. Paluer, Neb., October 7, 1891.

Aluminum Air ships of the Future

To the Editor of the Scientific American:
I think it was about 1843 that aluminum was discovored, and for some years the process of separating it ron the clay near the earth's surface was very tedious and quite costly, it being sold at about $\$ 12$ per pound, and for many years French chemists held a monopoly of its product.
At length Yankee genius took hold of the business, and in a few years reduced the price to about $\$ 1$ per pound, and it being three times lighter than steel and nearly as strong, and no doubt it will still be cheapened, and it has been hinted by some to even five cents per pound, and we dare not dispute this. Be this as t may, we can but hope, and I really expect, that an air ship will yet be constructed principally of this wonderful metal, with buoyant and propelling wheels similar to those of an ocean steamer, driven by electric power, possibly carried in a storage battery, or produced by the air ship itself.
The balloon, so far, has proved a very dangerous weans of flying in the air, as well as a very expensive

Possibly, some Yankee or French ${ }^{\circ}$ genius may discover a simple method of separating the 20 per cent of oxygen from the atmosphere, which is a supporter of beat, which will assist greatly in solving this difficult problem. Some aerial wizard will spring up, like Edison of Menlo Park, and then accomplishment is certain. At our 1876 centennial an electric light was produced as a mere curiosity. I then did not inagine that I would live to see cities and dwellings illuminated as they now are; but so it is. In my boyhood there was no railroad, no. electric telegraph. No steamer had crossed the ocean. Talking with each other by telephone was scarcely thought of. Professor Morse, who, in 1842 I think it was, sent the first message rom Washington to Baltimore, lived to stand in Central Park, New York, in front of the bronze statue placed there, and send a message under the ocean and around the globe, and I had the pleasure of being pre sent when this was done ; and now, no doubt, a man will soon be able to stand in New York City and talk with a man in London by telephone.
We truly live in the age of possibilities and proba bilities. One scientific discovery aids another. And an aerial ship is more probable to-day than a steam ship was two hundred years ago. J. E. Emerson.

Wool Grease Lubricants.

The soap formed by treating wool grease with alka line lye is dissolved in water and filtered. To this a solution of alum or other alumina salt is added, where by a brown precipitate is formed, which is called "aluminam lanolate." With this substance, when dried, lubricating oils of any viscosity may be produced by dissolving it in any flaid mineral oil. If dissolved in a sinall quantity of mineral oil, a gelatinons sub stance is obtained which way with advantage be mixed with India rubber or gatta percha. Solvents for India rubber are said to be also solvents for "alu minum lanolate." In textile iudustrips this substance may also be used as a scouring agent. $-\boldsymbol{R}$. Krause.

ROMAN AMPHITHEATER AT WEEHAWEEN, N. J. of Thomson Cove crushed stode, making it a good This new amphitheater, situated on the heights of ground to throw off water.
the west bank of the Hadson River, opposite the city of New York, is the first of its kind ever built in this country. The design is taken from the old style Roman amphitheater. The structure is 445 feet in length and 350 feet In width, and is divided into three sections, a grand stand, arena, and stage. The front, or main part of this structure, is built in a half circle, the rest of the inclosure being square. The half moon section, which contains the grand stand, is 30 feet in height, the walls being one foot in thickness above the lower arches, and 350 feet in diaweter. The structure is of wood and covered with cement, which gives it the appearance of stone. The apper arches are.inclosed, and there are 25 arches in each tier. The apper feet in thickness, and these with 49 inner columns are the upright supports for the grand stand. They are made of 12 by 12 inch timber and bozed around to the required size. Curran's plaster slabs, made of wood fiber and plaster of Paris, are tacked on, and the fiber and plaster of Paris, are tacked on, and the
whole column is then covered with $11 / 2$ inches of

The stage is 140 feet in width and 830 feet in length t stands 5 feet above the arena at the lower fron portion, rising gradually up to 12 feet in height frow the ground at the rear. From the gateway at each ide of the stage there is a passage way 10 feet in de of the stage thore is a passage way 10 feet in width around and outside of the entire stage. To reach the top of the stage from the rear, three passage
ways have been built, one on each side and one in the ways have been buit, one on each side and one in the
center. The side passages are about 8 feet in width aud the center one is 20 feet. There are also twenty apartments built under the rear of the stage, each room being 30 feet in length and 12 feet in height. The separating partitions are sheets of corrugated iron, and the rooms are divided off equally among the per ormers, ten for the males and ten for the females. Adjoining the rooms is a corrugated iron hallway, about 4 feet in width, running on the inside the ful ength of the stage. The scenery is shifted about by means of cars running on 5 $/ 1 /$ foot tracks. These cars er 6 feet 9 inches in width and 8 feet 3 inches in length, and the car itself is about 3 feet in height and
engine, where we have simply to turn on the gas ooch and rely upon the ingenuity and skill of those who manufacture the gas to make it of such quality as to give equally satisfactory resalts in the motor cylinder, whether used for a short or longer period. But when we come to the oil engine, we meet with a different state of things as regards sapply of the working agent. The oil must be taken direct from its cistern, thorough y onin y mired with the right proportion of air, and passed into the eylinder ready for ignition, at the rate, in some engines, of four separate charges per second, so that anless the arrangement for dealing with these heavy oils is correct and works with precision, the tendency to clog in the cylinder and working parte is very great. In fact, to use a homely example, the engine is like a strong-looking man with a poor constitution and suffering from pulmonary troubles; it will run well for a short time, and then, getting choked up, refuses to work. The sphere of usefulness of the oil engine is rapidly extending, becanse it is found reliable and steady at work, with decided economy of fuel. The only real obection that can be urged is the smell from oil, and this way be reduced by ventilation.

THE ROMAN STYLE AMPHITHEATER, WEEHAWKEN, N. J., OPPOSITE THE CITY OF NEW YORK.
cement and roughed up in imitation of stone The made of heavy timber. Four upright pieces about 15 arches are 14 feet in height, and the columns $71 / 2$ feet apart. A space of $\mathbf{6 0}$ feet in width ranning under the full width of the grand stand is fitted up with booths for those desiring to eat or drink.
Between the two rows of the center inner columns leading from the grand stand are thirteen exits, each 4 feet 6 inches in width. The front stairway to the grand stand is 25 ft . in width, and projects out from the main structure about 47 feet. The two side entrances are 8 ft .6 inches in width and about the same height as the front entrance. The grand stand is 130 feet in width from front to rear, and its lower portion is 7 feet above ithe arena, rising thence gradually up to within 3 feet of the top of the amphitheater at the rear. It is built in thirty-five steps, each 8 inches in height and 2 feet 6 inches in width, and covered with painted canvas. The stand is fitted up with 5,000 polo chairs screwed down solidly to the flooring. There are also eighty private boxes. These, with the polo chairs, make the seating capacity about 6.000 . Around the top of the amphitheater wall are electric lights, which, with numerous calcium lighte, furnish light for the spectators to see the performance on the stage.
The arena ia 165 feet in width and 350 feet in length. It is prepared ground, on which was first placed 3 inches of sugar house ashes, over which was spread 2 inches
feet in height, of 2 by 4 timber, are tastened to the ends of the car and cross braced. The piece of scenery to be shifted is fastened to this framework to keep it in an upright position, and at the bottom the piece is fastened to the car by means of wrought iron straps. These straps are about 2 feet in length, 2 inches in width and $1 / 6$ inch in thickness, and they are hook shaped at the bottom. The piece of scenery rests in his hook and is bolted to the side of the car.
The performers number about 1,000 , with quite a umber of animals, such as horses, donkeys, oxen, and an elephant. The costames are taken from those supposed to have been used in the time of King Solomon. The amphitheater and fitting out of the grand stand with stage and scevery cost $\$ 75,000$.

Petroleum Enginem。*

When considering oil engines, the fact should not be orgotten that we have an entirely different condition f things from steam or gas motors, because the engine has to gasify the oil for its own use. For instance, a steam engine that will run for a day with good results may be expected to ran in a similar manner for a long period. The boiler is relied on to supply dry steam at the desired pressure. The same may be said of the gas

* Professor William Robinson, M.E.E., Aesoc. M. Inst, C. E., University College, Nottingham,

What has undoubtedly to be arrived at in tne construction of oil engines is to get economy of oil and the best mechanical results without clogging of the work ing parts, so that in the hands of the user the engine way run without attention or frequent cleaning and repairs. Clogging is prevented in some engines by thoroughly mixing the oil vapor with a large porpor tion of clean atmospheric air, so as always to form an explosive mirture, which gives complete combustion and a clean exhaust. It must be pointed out, however, that during the compression of the charge before is that during the the the walls of the cylinder, etc., and, condensing on them, never gets burned. This oil forms, in its heated state, a most excellent lubricant for the piston, thereby dispensing with the need of a more costly oil, and regulating the same without any attention. The per fect state of the piston surface after being months at work affords ample evidence of the advantage cained by this method of self-lubrication with a minimum of trouble.

The American Pomological Society, at its recent annual meeting in Washington, decided to make an exhibit classified by State and county associations, and also by individuals; and it appointed a World's Fair committee of six to confer with the Horticultural De partment, and to perfect arrangements.

higantic pasgenger blevator of the mobth

 HUDSOR COUMTY RAILWAY. A passenger on one of the ferryboats leading to or from the upper portion of New York, or upon one o the numerous vessels passing ap and down the Hudson, will notice on the Jersey shore, adjoining the West Shore Railroad station at Weehawken, a tal tower, commanicating by a viaduct with the bluff, a ew hundred feet distant. The tower is the passenger elevator of the North Hudson County Railway, and this, together with the viaduct communicating with the railway, will save the people living in Weehawken, Guttenberg, the town of Union, and the residents of the northern portion of Hudson County generally, the laborious ascent of the blaff by stage or on foot. The regular trains of the railmay are to ran out on the viaduct to the elevator landing so that there will be a direct transfer of passengers from the elevator cars to the trains. This great work adjoins the grounds of El Dorado-the magnificent spectacular sumnie show-and affords accommodation to the thousands who flock to this place of amusement in the summer eason. Our view, by the way, shows the situation of the Roman amphitheater described and illustrated on nother pageThe wrought iron work for the tower and viaduct is farnished by the Passaic Rolling Mills, and the elevator machinery and cars are supplied by Otis Brothers, of elevator fame, from deaigns furnished by Thomas E. Brown. Jr., engineer, under the specifications furnished by Mr. Edward A. Trapp, engineer of the North Hudon County Railroad Company.
The tower has a base of 45 feet 6 inches by 60 feet, measuring from the center of the columns; the top of the tower is 45 feet by 61 . In the construction of the viaduct and tower, 2,000 tons of steel were used. The ower reaches to a height of 197 feet above the water level, and the lift of the elevators is 148 feet. There are three independent elevator cars, each 21 feet 6 inches, 12 feet 6 inches, and 10 feet high. Each car is uspended in a steel frame formed of angle and chanel iron; the cables, eight in number, are attached to these frames, as are also the safety devices. Each car is provided with eight seven-eighths inch crucible steel cables, six of which are attached to the hoisting machinery and two to the counterbalance weights.
The hydraulic elevator cylinders are 88 inches in diameter and 2 inches thick, provided with fianges 50 nches in diameter, and made in sections of 9 feet in length. The pistons of the hydraulic cylinders are each provided with 2 steel rods $41 / 4$ inches in diameter and 35 feet long. The pistons are geared by means of cables and sheaves in such a manner as to cause the car to move six feet for every foot of the travel of the piston. Each piston is provided with an automatic topping device, which arrests the wotion of the car independently of the conductor when the car has eached the end of its travel.
The car slides on wooden gaide strips 6×8 inches, formed of three sections of yellow pine, and each car carries a safety device consisting of three pairs of cuters upon each side of the car, arranged to bite into the wooden guide when the car attains a speed above the normal. The arrangement of these cutters is shown in the annexed diagram. The lower outters are serrated, producing grooves in the wood, and the apper cutters, which are straight, cut off the grooved arface as the car descends, the resistance of these wo sets of cutters being sufficient to arrest the car very quickly, but not so suddenly as to cause any hock
In the test of this safety device a car with a load of 36,000 pounds was released. The safety device arrested the motion of the car during a descent of $27 / 8$ inches. In another test, where the car was given a 12 inch headway, it was arrested by the safety device before it had fallen 19 inches.
The hydraulic pistons are operated by the combined action of the gravity of water and pressure exerted apon the column of water by an air cushion in the tank at the top of the tower. This tank is cylindrieal in form, 78 inches in diameter and 40 feet long. It is crade of half inch steel, and has a capacity of 10,000 gallons.
There is an auxiliary tank at the base of the tower, having a capacity of 1,200 gallons, which is 42 inches o diameter and 15 feet long. The auriliary tank is ittle more than a huge air chamber. The riser which conveys the water to and from the tank above is 15 aches in diameter. Two Worthington compound puinping engines supply water under pressure to these tanks. The high and low pressure steam cylinders are respectively 16 and 29 inches in diameter; the water cylinders are 12 inches in diameter, and the stroke is 18 inches. These pumping engines each have a capacity of 1,000 gallons a minute. As there is generally a leakage of air from tanks and pipes, generally a leakage of air irom tanks and pipes, pump to maintain the air required for the cushion in pump to maintain the air required for the cushion in the tanks. The bollers which supply these pumps are hree in number, of the type known as the " Scotch " ooiler. They are, in fact, like the boilers used on the cean steamships, except as to size. They are each 9
feet in diameter and 12 feet long, made of $1 t$ inc steel, with 88 inch corrugated steel furnaces. Of the hree boilers mentioned, one is a reserve.
The prassure maintained in the upper tank is 100 pounds per square inch ; this, added to the pressure due to the height of the colunn of water, makes a total of about 186 pounds of pressure per square inch exerted on the hydraulic pistons.
Each elevator has a capacity of 20,000 pounds raised 200 feet per minute; each car will carry 185 passen gers, or a total of 400 passengers for each trip of the three cars. The average is 100 passengers per minute,

not likely to be taken just yet. However light the new shield or armor might be, it would either increase the soldier's burden or necessitate the omission of some other part of his equipment, already reduced to the arroweat limits compatible with sustenance and a proper supply of ammunition. Extra weight would result in slower marching, an alternative not to be thought of in these days of rapid evolutions.

Premerving Autumn Leaven.

A few absolutely perfect leaves are better than thi scores of common ones that we are tempted to collect. The leaves of the hard maple are always gorgeons in bue and delicate in outline. Those that wear the deepest tints of crimson or yellow are best for our pur pose. Oak leaves are shiny and firm, and easily preserved. Nature has always been prodigal to the beech tree, scattering on her boughs the richest, brightest colore. The sumac glows with vivid crimson, and a clear amber shines through the dainty larch and hestnut leaves. Then there are the dull chocolate and mottled red of the blackberry vines, while the poplar and aspen shine out with a silvery white, all peckled over with touches of green. Gather these wild wood beauties, says Good Housekeeping, with as much care as would be bestowed upan a bouquet of parden blossoms, and hasten home with them before they begin to dry and carl. Upon reaching home let the first care be to have two hot irons ready. Cover the kitchen table with three or four layers of news papers, over which fasten smoothly a suft cotton cloth. Have at hand a lump of beeswax, and a similar package of resin. Now smooth ont a lea with the havd, rub the beeswax lightly over the iron, etting the hot, smooth surface plide quickly over the eaf, first on the upper and then on the lower side pressing a little more firmly a third and fourth time, until the leaf is thoroughly dry. The glowing colors will be firmly fixed, and will never fade, unless exposed to the sunshine. Having treated all the leaves in a similar manner, they are ready for the resin, or " the finishing process." With a moderately hot iron, which must be lightly and rapidly rubbed over the bag of resin, go over every leaf, first on the upper and then on the lower side. This gives them a brilliant, hard, clossy finish that makes them almost indestructible. Many persons complain that the glossy appearance is onnatural. While this is true, to some extent, yet the protection given by the coat of resin could be obtained in no other way. To preserve small branches, and boughs with leaves, one mast proceed in the same manner, pressing the limbs and twigs with the iron until dry, being careful to avoid the point where the leaf is attached, as too much heat just there will cause it to drop off instantly. To achieve perfect success, be it to drop off instantly. To achieve perfect success, be
sure to take the leaves when freshly gathered. When sure to take the leaves when freshly gathered. When the work has been finished, spread a number of news-
papers upon the floor of some anased room, and there place the treasures. Give them plenty of space, so that they will not touch, or stick to each other. Cover hem entirely with more papers, and let them remain n this cool, dark seclusion antil ready to decorate the rooms, or otherwise use thein as things of beauty and joy. Reserve a few of the brightest and more perfect ecimens for the holiday times, when they will come out of their darkness 80 beautifal that they who see them will have no longing for summer flowers, but will revel in the unfading glories of the autamn leaves. Popular Gaıdening.

Pathologicel Anetomy of Ineantiy
Luys (Jour. de Med. de Paris, March 1) calla attention to an alteration that he has found in the brains of patients who had for many years been in an excited condition, viz., the hypertrophy of certain special regions of the paracentral lobules. The paracentral lobe is, as is well known, the point of confluence of the psycho-motor convolution of the cortex and one of the special regions where the psycho-motor innervations are specially accumulated. This hypertrophy therefore indicates a focus of continued excitation absorbing to itself the vitality of the other cerebral regions, which are found more or less notably atrophied. In the extreme cases of excitement, with dementia, in which this condition was observed, he claims the subjects are completely absorbed in the hallucination or delusion connected with this hypertrophied region of delusion connected with this hypertrophied region of
the brain. The hypertrophy is usually symmetrical in the two heinispheres, but he presented the brain of a patient in whom there was a visceral hallucination that she was inhabited by a tape worm, which completely possessed her, that it became almost her sole dea. She dwelt constantly upon the coming and going of this parasite in her internal organs. Aside from this idea, when she could be induced to speak of other matters, ahe was perfectly lucid in her mind. The brain of this patient exhibited very marked hypertrophy of the paracentral lobe in one hemisphere, that of the other remaining perfectly normal. M. Luys exthe other remaining perfectly normal. M. Luys ex-
plains by this anatomical arrangement the patient's plains by this anatomical arrangement the patient's
clearness of wind coeristing with the delnsion-she clearness of wind coexisting with the delnsion-she
was insane with one hemisphere of her brain and was insane with one hemisphere of her brain
rational with the other. $-A m$. Jour. of Insanity.

The Ascent and Discoveries on Mount st. Klias.
Last year it will be remembered that Prof. Isaac C. Russell, nuder the auspices of the National Geographica Society, with a corps of assistants, attempted to reach the summit of Mount St. Elias, Alaska. The exploring party, after many hardships and perilous ad ventures were obliged to ebandon their efforts to reach th summit of the monntain, because of the approach of winter. Last spring Prof. Russell, taking with him J. H. Crumback, Thomas P. Stamy, Thomas White, Neil MoCarty, and Will C. Moore-men who had done considerable exploriug in Olympia-and Frank G Warner, of Hartford, Conn., started again with the ex pectation of scaling the St. Elias mountain and reaching its summit. The first four had accompanied the previous expedition.
Some apprehension has been felt latterly about the safety of the exploring party, it not having been heard from 'for several months, but tidings of their safety and arrival at Seattle are hailed with great rejoicing by the friends of the explorers. A telegram froin Seattle to our daily papers gives a synopsis of Prof. Rassell's experiences and discoveries in his effort to reach the suminit of St. Elias. We are inde
York Sun for the following account :]

When the party reached ley Bay and attempted to land, they met their first mishap. It was on June 16, and the waves were so high that one boat was swamped, and Moore, with Lieut. Robinson and four members of the Bear's crew, were drowned. With the exception of this mishap, all has gone well, and every one has been in good health. Some of the provisions and instruments went down with the ill-fated boat, but most of them were washed ashore later. The surf was so high that it took three days to make a landing. Having reached the shore, the party started for the northern side of Mount St. Elias. One day's marching brought them to the snow line. For two months following they spent their time in the snow and ice, and for at least thirty nights they slept in the snow.
The rest of the time they found beds on the rocks of glacial moraines. Their clothing was woolen, and they were often drenched to the skin and slept without change of garments. Yet, in spite of all that, they never caught cold. Their food was carried in fiftypound cases. An oil stove was used above the line o vegetation.
The first six weeks were spent in crossing the glaciers on the mountain's northern side, which offers the only possible route for ascent. Their highest camp was pitched 8,000 feet above the sea level, and they waited twelve days, hoping for an opportunity to reach the summit. They made several attempts, but each time were driven back by the snow. On one occasion they reached a point 14,500 feet above sea level but, after twenty hours of incessant climbing, they had to take refuge again in camp atterly exhansted. At one time a storm came down when Prof. Russel was alone on the highest point, and for four days he was cut off from the rest of the party.
From their high elevation a grand view to the north was obt ained over a country upon which human eye has never rested. They could take in a sweep of 300 wiles from Mount Fairweather, 150 miles sontheast to a point 150 miles northeast. T
"It is a scene of ntter desolation," said Prof. Russell; 'a stretch of snow fields, glaciers, and ice, broken only by ice-capped peaks. The general altitude of the now fields is some 800 fent above the sea level, and the mountains, which are innumerable, break through to an altitude of $10,000,12,000$, or even 14,000 feet. One of thew, a singular table-topped peak fifty miles to the north, was named Bear Mountain, in honor of th government cutter which took us to Icy Bay."
Prof. Russell named several other peaks, but has not yet been able definitely to locate them on map. H made surveys to ascertain the height of Mount St. Elias from a three-mile:base line at Icy Bay. He took angles to all the peaks in sight, and he placed the beight of St. Elias at between 18,000 and 19,000 feet. He has not yet reduced his calculations so as to give the exact figares.
Considerable time was given to the study of the gla ciers, one of the main objects of the trip. Many ob servations were taken of the great Mataspina glacier which covers thousands of square miles southeast of St. Elias, between Icy Bay and Yakutat Bay. The St Elias glaciers are much larger than any in Switzerland Indeed, this one alone is larger than all the Alpine glaciers put together. The latter flow down through gorges till they reach the snow line, where they melt. Some of the St. Elias glaciers separate into smaller ones, but the great Mataspina glacier is made up by the confluence of four big glaciers and many smalle ones. They flow into it as water into a lake. These glacial streams unite into a vast plain of ice, hard, firm, and clear as ever found in glacier. The Mata spina glacier partly melts on the plain and partly breaking through to the coast and falls into the ocean The thickness of the ice is estimated at from 1,500 to 8,000 feet.

A belt along the coast of from five to eight miles in
width is covered with the moraine of broken and decomposed rooks, and the soil is ground out by glacial action. The outer three or four miles along the coast is overgrown with dense vegetation in which are found rees three feet in diameter. Thqugh the soil is not more than two or three feet thick, there is plenty of moisture to furnish plant life of all kinds.
The party went inland thirty or forty miles, and returned by the same ronte. When they reached Icy Bay again they marched east 150 miles along the shore o Disenchantment Bay. This they explored and ound to ran thirty miles further than it is laid down n the maps. After stretching inland it turns, and the head is very near the ocean.
The government steamer Pinta took them to Sitka where they took the City of Topeka for this city. Prof. Russell says the region is full of interest for scienific men, and work will undoubtedly be continued here. He does not know whether he will go again. He will remain in this city for a week or two, and then tart for Washington.

Aetion of Metale, salts, Acide, and oxidising
Agents on India-Rubber.
The method adopted was to take a flne sheet of ndia-rubber spread on paper and vulcanized by th cold process with a mizture of chloride of sulphar and carbon bisulphide, and to examine the action on this the various substances; on breaking the paper the fine sheet of caoutchouc was left free, so that it tretching properties could be examined.
Action of Metals. - The various metals whose action was studied were used in the form of filings sprinkled on the rubber. The whole was then kept at a tem perature of $60^{\circ} \mathrm{C}$. for ten days. Copper was found to have by far the most injurious action. Platinum, palladiam, aluminam, and lead have a very slight action, but magnesium, zinc, cadmium, cobalt, nickel, iron, chro mium, tin, arsenic, antimony, bismuit, silver, and gold have none.
Action of Metallic Salts and Oxides.-Saturated solutions were made in water and painted on smal pieces of the rubber, or in the case of insoluble sub stances pastes were made with water and painted on the whole being then allowed to dry. The heating was subsequeutly carried out as before. The follow ing compounds of copper entirely destroyed the rub ber : Sulphate, chloride, nitrate, ferro-cyanide, oxide sulphide, also arsenic iodide, silver nitrate, strontiuu chlorate, vanadium chloride, manganese orides. bismuth chloride. The following had an injurious effect Ferrous nitrate, sodiun nitrate, uranium nitrate, am monium vanadate. The following had very little uction : Lead chromate, ferrous sulphate, zinc acetate zinc chloride, tin perchloride: while the behavior of about sirty salts having no action whatever was ex amined
Exceedingly small quantities of copper salts are in jurious to rabber, and it was found that wherever the cloth used in making proofed-cloths contaíned even traces of copper, the rubber became gradually hard ened and destroyed. With reference to the use of the various blacks the authors point out that manganese oxides should not be present, but they assert that logwood chrome blacks may be used with impunity.
Action of Acids.-Very dilute solutions of hydro chloric, sulphuric, ohrowic, citric, or tartaric acid are tated not to be prejudicial, but nitric acid rapidly at tacks rubber. A solution of sulphuric acid contain ng about 10 per cent of $\mathrm{H}_{2} \mathrm{SO}_{4}$ destroys the propertie f the rubber.
Action of Hydrogen Peroxide. -Since ozone rapidly Itacke India-rubber, and in view of the fact that chromic acid has only slight action, samples of rubber were placed in both acid and alkaline solutions of hy drogen peroxide for a month. Such treat ment has no ppreciable injurious action.-W. Thomson and B. Lewis, Proc. Manchester Lit. and Phil. Soc.

Sewage Experimente at Frankforton-Maln.
The experiments here recorded have been carried out during the past three years, at the Frankfort works, under the supervision of a commission consistug of Dr. Spiess, Mr. Lindley, Dr. Libbertz. and B. Lepaius. Certain of the results obtained have been slready published, and an account of the work is there given. In all eight series of experiments have been conducted, with five different systems of clarification The various processes investigated were as follows
(a.) Precipitation of sulphate of alumina and lime Beries I. to III.
(b) Precipitation with lime alone. Series IV.
(c.) Simple deposition, without chemicals. Series V (d.) Precipitation with sulphate of iron and lime. Series VI. and VII
(e.) Precipitation with phosphoric acid and lime. Series VIII.
The volume of sewage deait with was about 30,000 cubic meters ($6,600,000$ gallons) per diem, and upward of 1,000 complete and comprehensive analyses were ried out.
In its mean composition the Frankfort sewage,
thnagh considerable fluctuations were observed, does
not differ materially from that of other towns, London Paris, Dantzig, Berlin, and Breslan, with which it is contrasted in a special table. By means of a set of graphic diagrams are shown the results of the various purification processes, as evidenced by the chargcter of the effinent as compared with the raw sewase and the author sums np the general effect of the different modes of treatment In all cases the ters were far more efficiently dealt with inpended mat solution, and the appearance of the sewage water, as soluted by the eye alone, was greatly improved.
tese
In dealing with the amount of organic matter present, special consideration is given to the phosphoric acid treatment, and a graphic diagram is appended to show the proportion of the phosphates removed at each different stage of the process, and carried off in the effluent. From this it appears that though all the added phosphoric acid is expended in enriching the sludge, the amount of phosphoric acid present in the deposit from nntreated sewage is nearly twice as great as is that in the sludge from the phosphate process. The figures.in milligramines per liter are as follows :

Phosphoric Acid Originally Present.

Phosphoric Acid After Treatment.

Hence, instead of securing a sludge valuable for agriculture, unore than twice the quantity of the phosphoric acid employed for the precipitation is carried away in the effluent, viz., $88 \cdot 2$ milligrammes per liter, of which about half is in suspension and half in solution. The author points out that from this point of view it would be better not to treat the sewage with phosphate of lime at all, but to clarify it by simple deposition, and then to add the phosphate to the sludge.
In conclasion, it is stated that the experiments have demonstrated that the effect of chemical precipitation is not 80 greatly superior to the purification obtained by simple deposition in tanks as to warrant the adoption of any of the above processes in preference to simple mechanical treatment. This, of conrse, does not hold good for sewage treatment generally, but it applies only to the conditions prevalent in the present applies only to the conditions prevalent in the present
works. It is proved, however, that in every case works. It is proved, however, that in every case where tanks approaching the dimensions of those at
Frankfort are available, more especially where the Frankfort are available, more especially where the
length of the tanks is equally great, it is possible to length of the tanks is equally great, it is possible to
obtain, by purely mechanical ueans, results comparng favorably with the clarification attained elsewhere in tanks of smaller size only by means of chemical treatment, and therefore at a greater cost.

The Glacial Period.

Before the Technical Society of the Pacific Coast, San Francisco, Marsden Manson, engineer of the harbor commission, lately advanced a theory to account for the formation of the glacial period.
As a basis for his theory, he laid down this general aw, as he called it: A terrestrial sphere, in passing rom under the influence of interplanetary heat to the influence of solar heat, wust experience a glacial period, becanse of the remarkable properties unde different degrees of heat and cold possessed by water The earth was once a ball of fire. As it began to cool, a crust formed, and the air around the earth began to be cooled. This caused the aqueous vapor in the air to form water. But the internal heat of the planet was atill intense, and an immense radiation of heat and a corresponding condensation of vapor arising from the seas went on constantly. Solar heat had not yet penetrated the cold atmosphere between the sun and the earth. As the heat of the earth decreased, the condensation of vapor surrounding the earth as fog and cloud increased, until layer after layer of confog and cloud increased, antil layer after layer of con-
densed vapor surrounded the planet. Successive ice shells were formed, and as the earth grew colder thes shells were formed, and as the earth grew colder thes ice shells came nearer the earth, and finally shrunk
down to it. Then the glacial period was on the earth. down to it. Then the glacial period was on the earth.
But the heat of the planet now ceasing to affect its But the heat of the planet now ceasing to affect its
crust, there was no more vaporizing going on. All was ice and snow ; the wists and vapors were cleared away. Then the san had a good chance, and it was not loug before his rays pierced through the ether to the ice-bound earth. The ice begran to melt, and the glacial period began to decline. When it was over, the earth's crust had passed under the influence of solar heat, and the seasons began.

THE plumber who deliberately puts imperfect work in the hidden parts of a house, and thus exposes a family to disease and death, is as much a criminal as any burglar or murderer. He knows that the diffusion of poisonous gases destroys health and imperils life and when he deliberately leaves hidden vents in plumbing for sewer gas to carry its deadly fumes into hones, he is a criminal and shnuld be treated and punished as a criwinul.-Sanitary News.

Iron oro.
Census Bulletin 113, in relation to iron ore, prepared by Mr. John Birkinbine, special agent, under the supervision of Dr. David T. Day, special agent in charge of the Division of Mines and Mining of the Cansus Office, shows the quantity of iron ore produced in the United States during the year 1889 to be $14,518.041$ long tons, valued at $\$ 33,354,978$, an average of $\$ 2.30$ per ton. The total product reported in 1880 of $\$ 2.3 Q$ per ton. The total product reported in
was $7,120,362$ long tons, valued at $\$ 28,156,957$. Of the was $7,120,362$ long tons, valued at $\$ 23,156,957$. Of the
twenty-six States and two Territories producing iron twenty-six States and two Territories producing iron
ore in 1889 the four leading ones are as follows : Michiore in 1889 the four leading ones are as follows: Michi-
gan, $5,856,169$ tons ; Alabaina, $1,570,319$ tons ; Peunsylvania, $1,560,234$ tons; and New York, 1,247,537 tons, aggregating $10,234,259$ tons, or $70 \cdot 49$ per cent of the total product. The number of employes engaged in mining iron ore was 87,707, who were paid in wages $\$ 13.880,108$. The capital invested was $\$ 109,766,199$, distributed as follows: Land, $\$ 78,474,881$; buildings. fixtures, etc., $\$ 7,673,520$; tools, implements, etc.. $\$ 8,045,545$; cash and stock on hand, $\$ 15,572,253$. The report shows a remarkable increase in production and activity. The average wages paid to laborc. 3 in 1889 was $\$ 1.29$ per day ; to boys, 62 cents.
In the total cost of producing iron ore Alabama is the only State which averages less than $\$ 1$ per ton viz., 82 cents. Next in order of low cost come Texas, $\$ 1.05$; Tennessee, $\$ 1.08$; Pennsylvania, $\$ 1.10$; Georgia and North Carolina, \$1.14. In Colorado, for reasons before given, the cost of producing one long ton of ore, \$3.49, is greater than in any other State.
Probably in no country has the transportation of iron ore assumed such proportions as in the United States.

To get facilities for cheaply handling Lake Superior ores the railroads which penetrate the various districts have constructed expensive terminal facilities, generally consisting of one or more docks, with the railroad tracks elevated from thirty-five to forty-seven and one-half feet above the water level, the sides of the docks being fitted with pockets, into which the ore from the cars is dumped by means of drop bot toms. From these pockets the ore is loaded into vessels by iron chutes, which are let down into the vessel's bold. In this manner the ore is never handled from the time it leaves the mine until it is shoveled into buckets when the vessel is being discharged at lower lake ports, and no manual labor is necessary other than poking the ore with poles from the cars into the bin and from the bin into the chutes, and in som
is required.
The total investment for docks especially built and equipped for handling and shipping iron ore approximated $\$ 4,000,000$ in the year 1889. The largest of the receiving ore docks is at Fairport, Ohio, which has a frontage one mile in length, with room for stocking ore extending back 180 to 350 feet in width. The two docks at Cleveland are one-half mile in length, with a storage capacity of 350 feet wide. The capacity of the three docks named will reach from $1,000,000$ to $1,500,000$ long tons each, as the ore is stored from 25 to 50 feet in height.
The ore from the Lake Superior region, when loaded into cars, occupies from 10 to 16 cubic feet for one long ton.

The machinery equipment of the various docks differs greatly, but five general types may be mentioned : (1) swing-boom derricks, operated eitber with engines placed on them or driven by wire rope from engines at a distance, the mast being either stationary or carried on trolleys; the iron buckets being lowered into the holds of vessels, where the navvies shovel the ore into them, the steam machinery raising the buckets and swinging the boom to the point where the ore is to be deposited; (2) a similar arrangement of swing boom derricks, which discharge into hoppers and from these into tram cars, which carry the ore from the ore dock to stock piles located at a considerable distance buckets and discharges them into tram cars, that run to the stock pile or dump into pockets and thence into cars; (4) aprons which project over the holds of ves sels; the backets traveling up the incline of this apparatus are dumped into tram cars, which run by gravity, discharge, and return automaticalls; (5) booms or aprons upon which the buckets are carried, and continue their journey either over cables or on trussed bridges, the buckets dumping automatically at the point desired and returning to the hold without detaching from the wachinery.
These dock equipinents have been put up at great $\$ 800,000$, and by them it has been possible to handle quantities of ore which could not be moved in any other way, while the cost of such handling has been reduced to a minimum. The expense of shoveling the
ore into buckets in the holds of vessels varies from 10 to 15 cents per long ton, while with the improved apparatus at some of the docks this ore is lifted from the cost, including the labor, wear and tear, interest, and fuel account, of from three-fourths to one and one-half cents per ton. With twenty-one men in the hold of a vessel carrying 2,000 long tons of iron ore, the entire cargo has been stocked in seventeen hours. Other instances are mentioned where with twenty-eight men 2,200 long tons were similarly handled in fifteen hours and $\mathbf{2} .100$ long tons were handled by eighteen men in eventeen hours. In using these improved apparatus in loading from stock piles to railroad cars it is not an-
common to have a gang of men shoveling into buckets common to have a gang of men shoveling into buckets and load the ore on cars at the rate of eight or nine tons per man per hour.

AN ICPROVED SCREW SAFETY CAR BRAKR.
The accompanying illustration represents this improvement as applied to a four-wheel electric motor car, giving all the space between the wheels for motors. It is a patented invention of Messrs. A. B. Pool and J. J. Beals, of Boston, Mass., and affords a new departure from the old system of dead leverage, substituting herefor a live spring pressure. A right and left screw with traveling nuts thereon is hung to the car as shown, to which is attached two half elliptic springs at either end of the nuts, the springs having friction rolls at their ends and being piroted to the nuts so as to confor:u to any position of the brake beams. Opposite the springs are placed sab-beaws, to which draught rods are attached connecting with the brake beams. Sprocket wheels are placed at the center of the screws and are connected with corresponding wheels hung to he car by chain belts, the wheels having a shaft conaection geared to the operating rod, by the working of which the springs are spread and a perfect

POOL \& BEALS' SCREW SAFETY CAR BRAKE.
quality of pressure is obtained npon all the wheels. Either end is worked independent of the other, or both together if need be, the proper application of the brake not only doing away with flat wheels, but overcoming the momentum of the car in the shortest possible time. This device is designed to be simple, durable and inexpensive, and when once adjusted will remain in position until the shoes are worn out, requiring no pawl or ratchet to hold it. It can be set at a certain pressure on a down grade, and will so remain without any attention of the motor man, and the power can be pplied to or taken off the car by the same handle and at the same time that the brake is operated, but little power being required to do the work. The inventors have perfected this system for application not only to any kind of street car, but, by a simple method of air pressure, to steam trains as well. It is expected that he system will soon be given a practical demonstra Fon on the West End Railway, Boston.
Forfarther information relative to this improvement daress the inventors, No. 16 Hanover Street, Boston Mass.

The Uses or Peat.

The Handels Musertm publishes an extract from an article by Dr. Leo Pribyl, who maintains that peat is a valuable raw material, the uses of which, except as uel and litter, are as yet very linited. The fiber is unsurpassed as a packing material for use in the case of breakable merchandise, being much superior to straw, hay, etc., owing to its greater elasticity and drynera, In the case of consigninents consisting of liquids, it possesses the advantage of being peculiarly adapted
for absorbing any of the contents which may have escaped through breakage, and thus preventing damage which might result to other consignments through damp. In the shape of dust and litter it is especially adapted for preserving perishable articles. Meat when packed in it will keep fresh for weeks, and will eventu ally dry up, the moisture being absorbed by the peat In this way fresh sea fish has been sent from Trieste to Copenhagen, and has reached its destination in perfect condition. Peat is also successfully used for preserving
resh appearance for months, and, owing to the bigh prices of this fruit in spring and summer, would amply repay the trifing expense incurred by the use of peat dust. Experiments have shown equally satisfactory results in the case of pears, apples, plums, etc., as also in the case of cabbage, turnips, and potatoes, peat packing having the advantage, not observable with other packing materials, of preventing tha sprouting of potatoes in spring. The question as to the best method of preserving eggs for the winter iwonths is an method of preserving eggs for the winter iwonths is an
important one, aud still remains without any satisfactory answer. Possibly the preservative qualities of peat might here again be illustrated, and a satisfactory solation of this important question be arrived at.
It has been found a drawback in the use of artificial saline manure that in wet weather it forms itself into hard lumps, which cannot be scattered by the manurespreading machines, a difficulty which way be obviated by the use of a swall quantity ($2 \cdot 5$ per cent has been found to be sufficient in the case of kainite) of peat dust with the manuring salt.
As a substitute for ashes and straw in flling up the partition walls of cellars and ice houses, broken peat is roost suitable, as the effect of inoisture on the ashes or straw is such as to render their immediate removal a necessary condition for the continued use of such places. Ice has been preserved for eight days in a coment barrel when covered with dry peat litter. Two pieces of ice were exposed to the sun's rays in Braunsch weig; one of them was covered with wood shavings and the other with a layar of equal depth of peat litter. The former had thawed in 72 hours, when it was found that the latter was still almost entire. From this it is seen that peat is a bad conductor of heat, and is consequently well adapted for isolating purposes.
Peat dust has been recommended as an excellent ingredient for use in the manafacture of light, porous bricks, being mixed with the clay previously to baking Bricks of this kind are much sought after in certain branches of architecture. But still further industecture. But still further indus-
trial uses are found for peat. The trial uses are Cound for peat. The
peat bogs of Northeru Germany peat bogs of Northern Germany
and of Sweden are being worked and of Sweden are being worked
by joint stock companies, with a by joint stock companies, with a
view to obtaining the elastic fiber, which, when free from dust, is used for weaving into carpets and other textile fabrics. Considerable capital is invested in these undertakings in Oldenburg and Sweden. The paper industry, too, in the mannfacture of peat,cellulose, has shown a decided preference for this tender and pliant fiber, so that it may be pliant fiber, so that it may be
justly said that at the present justly said that at the present
time the supply of good peat is time the supply of good peat is inadequate to meet the demand,
considering the varied uses of this considerin
anpretentious raw material.
The chemical industry is using peat in the manufac ure of charcoal, peat coke, peat gas, etc., thus converting a cheap raw material into a valuable industrial product. Boghead naphtha, tar, solar oil, parafine, acetic acid, and gas have been produced from peat, and it has even been used in tanning. It has been for years used in Gerınany for absorbing waste liquids and refuse in factories, and in this way has furnished large quantities of valuable manure in certain districts.
An enameration of the manifold uses of peat will prove that this raw material, which has hitherto been considered of little importance, and which nature has provided in such abundance, even if it be in many districts partially distributed, is destined not only to beneft agriculture by its valuable properties and chemical composition, but to lay the foundation of a flourishing and widespread industry. A new era has been entered upou in the sanitation of towns by using peat, and it is to be hoped that advantage will be taken of the undoubted benefit arising from its use, both as regards the health of urbav populations and the promotion of agricultural interests by the supply of large quantities of manure. In this way extensive aud unproductive tracts of bog land would be converted into valuable properties, and a flourishing industry would provide work and wages for thousands of hands.-Jour. Soc. Chein. Industry.

A patented process for obtaining cellulose and oxalic acid from the vegetable fibers contained in wood, which is the invention of M. Liefchutz, consists in reacting on wood with dilate nitric acid, in the presence of sulphuric aeid, separating the intermediate product from the acid liquor, which contains in solution the oxalic acid formed, and subjecting the intermediate product to a further treatinent to remove the remaining incrusting matters from the cellalose. As to the acid liquor, it is set aside and subsequently treated in a process for recovering the oxalic acid. The oxalic acid dissolved in the weak nitric acid can be obtained direct in the crystalline form, by repeatedly using the separated acid liquors for the treatment of fresh wood. -Bull. Fab. Papier.
becemtay patimitd minemions.

Rallway Appliancee

Car Coupling.-Henry C. Bugg and Edward B. Loomis, Memphis, Tvan. Combined with the drambead and coaplling pin of the oridinare typo to a crank rod monnted acrose the end of the car, and
having a forwardly projecting bent arm, the onter end having a forwardy projecting bent arme, the onter end
of which is connected to the plin, while a spring catch on the car engazes the crank arm when it is ralned.
This forms a simple lifter for the pin, to be operated This forms a simple lifter for the pin, to be operated
from etther side of the car, while another transverse from elther side of the car, while another cransverse in a lifting plate beneath the drawhead, the plate beice drawhead, the whole forming a simple device to facilltate the coupling of cars without endangering the asfety of the tralnmen.
Car Coupling. - Hamlin G. Russell, Lincoln, III. (deceased, David Gilleenpie, Lewio J. Sims,
and Lydia A. Rasell, excentors). The drawhead of this device is piroted in a housing, to which are secured eprings engaging the drawhead, which has a book-like extension or nose on one side, while a coapling hook is
pivoted in the oppofite side, a spring escured to hook engaging the drawhead. The device ts deeigned to be of simple and darable. constraction, capabie of an
antomatic coupling action, and of being quickly and arematic coupling action, and of being quickiy and
readily uncoapled from the top or sides of the car while the connection made is a yielding adjnstable one, the pprings performing the donble fanctions of draw
and boffer springs. Car Coupling.-William H. Violett, Grand Janction, Col. The drawhend of this coopling
may be of the ordinary form, the device permitulng antomatic coupling and the uncoapling of the cars withont the brakeman going between them, while there is aleo an auxilisery pin support which doees not operate except when the pin is ralsed withoat withdrawing the Hok This provision is made for cases where it is
desirable to eo adjast the conpling pine of a train the desirable to so adjust the conpling pine of a train that,
when the cars are bumped or pushed together, they when the cars are bumped or puehed together, the
will hecome ancoapled when the engine palls out.
Ventilating Cars.- Albert Minnick, Colton, Cal. This invention is more particularly dceigned to provide means for ventllating cars uned for
transporting fruits, vegetables, meats, sish, etc., the Improvement consisting in the pecaliar constructlon and arrangement of sllding doors moving over open-
ings in the eud of the car. Both inner and outer doors are provided for the oppeninga, to prevent the contents of the car from freezing when the weather is cold, and
the arrangement to such as to prevent all choking of the parts by cinders and gripping and binding from wet weather, while both the inver and onter doors can be quickly and easily adjusted as deeired.
Car Truck. - Ferdinand E. Canda; New York City. Instead of the body of the car being
carried from the center of the truck bolaters, as here carried from the center of the truck bolsters, as here-
tofore, this invention providee for having the car body suspended by an improved form of stirrape carried by the car truck and struts attached to the car bolster.
The truck is swiveled on a king bolt, bat no part of The truck is owiveled on a king boit, bat no part of
the weight of the car or lts load is carried in the center of the truck, the entire load betigg carried on the four slde bearings or stirraps of each track. The construction is such that the trucks adjust themselves readlly to the curves of the road aud the irregularities of the track,
at the same time acting as equalizers to the body and at the same time acting as equalizers to the body
avolding shocks common to the ordinary trucks.
Spike.-Charles D. Walcott, Rassia, Herklmer County, N. Y. This is a special form of
epike designed to hold a rail armiy in place to give greater resistance to lateral preasure and vertical greater resistance to hateral pressure and verical
vibratory motion, while being easily made. The body
of the spike is roand in crose section, but on one side vibratory motion, while being easily made. The ody
of the ppike is roand in crose section, but on one side
are two projecting ribe, opposite which is a third rib, are two projecting ribe, opposite which is a third rib,
preveuting the spike from torning as it is driven. The head has a lip of the ordinary form of the standard rall same side as the llp of the head.

Mechanical Appliancea.

Jack for Repairing Machines. George W. Cronse, Lexington, N. C. Thie jack consints of two screw rods arranged in line with each other and mounted to turn in heads held adjustably on a table or beach, one of the screw rods having a dixed
clamp adapted to engage one end of the bed plate or the other end of the part being repaired is held by clamp turning loosely on the second screw rod. This
jack is very stmple in construction and is more esJack is very slmple in construction and is more es-
pecialily deaigned for conveniently examining, taking apart, cleaning and repairing sewing machines and
Pegaing Jack. - George Dorwart Philadelphia, Pa. This invention covers a novel con
straction and comblnation of parts to faclitite slraction and comblnation of parts to faclitate the
lastening of the boots or shoes on the jack, and bring log the work into the most convenient position for th operator, while it aiso has an extensible the plece to enable the shnes to be clamped armly in poittion with
out injuring them, the toe piece adjuasting itself to th out injuring them, the toe piece adjuasting itself to the various movements of the shoe wafle the work is going
on in such manner as to prevent the uppers from on in such manner as to prevent
being scraped or otherwiee injurud.
Screw Press. - Theodore J. Ashby and Archibald D. Melton, Sebree, Ky. This invention
relutes to that claen of preseee in which the planger in carried upon a ecrew shaft, providing therefor novel combination and arrangement of parts, consti-
tuting a simple, cheap. and efficient mechanism for reciprocating the plunger.
SAW SET. - Jacob P. Beck, Lock Haven, Pa. This is a slmple device which may be ased to ret any kind of saw, and can be operated with great
rapldity. It has parsliel jaws with projecting teeth. tnrved arms being axed to each jaw and pivoted to
gether. while lateral levers are plyoted to the opponite ende of the arms, the levere having their inner end
pivoted together and thelr onter ends provided with piroted together and thelr onter ents provided with
handies. Pawle extending parallel with the sidees
the jawe correct the alignment of the toeth of the The jaws correct the alignmont of the tooth of the en Throat Prece for Safs.-Thomas B. Deninton, Pera, Ind. This is an Improvement for accoll and band or jigger saws for catting out orna
and nental or bracket work, sawing out the renters of sem ing machine tables, etc. It ie a yielding throat plece
standing not lower than or a little above the top of the saw table, and capable of remaining as close to the working gaw ae if the hatter were still; when depreseed to a level with the top of the saw table by the welght of
the plicee being eawed, it will have. an automasic backward aud fo
of the asw.

Agricultural.

Suley Culitivator.-John F. Taylor West Park, N. Y. This contivator is more especially designed for the caltivation of graperines, being
adapted to effectually break the groand close to and between the vines and the posts. It has laterally winging anxiliary cultivator framee plvoted at their lorward ende to the outer sides of the main frame,
which has pivoted swinging levers connected by link with the swinging framea, whereby the toeth or plow may be quickily add conveniently adjusted to or from
the main frame and will be armily held to both the outer and the inner poeltiona.

Miscellaneous.

Cartridge Loader. - Willis E.
phillipe, sagaache, Col. This is a simple and rapldily perated machine, comprising a box having compartnents below which is an apertared slide, in comblna
con with an operating lever adaptrd to engage opposito uon with an operating lever adaptrd to engage opposite and other novel featares. The machine is deslgned to deliver a required charge of powder and shot into a ohell, and also insert the wads between the powder and
shot and over the ehot. The cartridge to completely shot and over the ohot. The cartridge is completely loaded by two strokes of the lever, there belng one thin wad and two thick wads platin
Orinance Brake.-Johannes Krone Esesen, Germany. This is. an improved form of hy
dranlic brake, of simple and designed to offer a aniform resistance on the ordnanc on recoil, while it permits of withdrawing the faid, on
the fring of the ordnance, at the beck end of the the fring of the ordnance, at the back end of the cylinder. The recoll of the piece of ordnance it reop carriage, and works with a axed cylinder a movable piston and with a ixed on a movable cyllinder, the cylinder to change the area of the pasanage or escape cilinder to change the area of the pasagage or escape
ment connecting one side of the piston with the other. Ship's Pump. - Albert H. Lowell, Woodford's, Me. This invention provides a pamF ship, being antomatic in itts action, as the vessel pitchen ore and aft, whille it can aleo be readily set to operate Then the vessel has a side roll only. The sucker rod attached to a ball centrally seated in a cylindrical socket, and depending centrally frome the ball it a pendulam rod carrying at its lower end a weight, the
pendulam being set in motion by the rncking of the reseel, and than operating the arms and sacker rods. Spring buffer plates are arranged to prevent the to
Pipe Joint-Patrict
Pipe Joint.-Patrick Brown, Pbila delphia, Pa. This invention provides a joint for steam,
water, oll and other plpes, which will allow for the free expansion or contraction of the pipes, and for their axial rotation withont strain upon the joint. The en gaging end of one pipe bas an enlarred screw-threaded
chamber and a concave seat, while the other pipe hat chamber and a concave seat, while the other pipe hac
an outer fange to At within the chamber, a washer bact of the fiange atting the concave seat, and a throns
packing back of the waeher, and a nut inclooing the washer and packing has a screw thread engiontrg the screw thread on the chambered portion of the adjacen plpe, an inner back flange belog construcled to hag the
Lumber Piling Machine. - Howard Daniele, Greenville, S. C. This is a machine for piling lomber on cars preparatory to belng dried in a kiln
or otherwise, and has a main frame adapted to recelv ar car, and on which travels a verticaliy movable frame car, and on which travels a vericaly movable rrain
with supports to recelve the lnmber, with a raking
device to rake the boards of the eapports and place them on the car, spacing stripe being placed between the different layers. The machive can be regulated to
sit the capacity of a mill, and is so conatructed so to suit the capacity of a mill, and is so conatructed as to
quickly and evenly pile the lamber, depoeiting the quickly and evenly pile the lamber, depoeiting the quiring the attendance of a single operator.
Mechanical Alarm.-Laban Lewis. Canadensia, Pas. This is a device which automatically inght, for scartng pereons and animals avay from aelde, gardens. honses, etc. It consists of a wheel monnted to turn and provided with a series of barrels arranged in a circle and adapted to receive cartridges,
while a hammer actuated by clock work fres the while a hammer actuated by clock work fires the
cartridges successively at such periods as have been revioualy determined apon, and for which the ap
StaND FOR
(ercer, 8t. John'e TYPR Cases. - Robert Mercer, 8t. John's, Newfoundland. This is a foldable readily adjasted to any deeired angle or ipclination and the stand iteelf raied or lowered to sult compo altors reated or atavding, or workmen of different
heights. It has plvoted folding legs and a vertically adnatable rail cairied by one of the legs, while a frame ivoted to the rear leg reste oo the rall of the front lea,
the npper face of the frame having inclined planea, The etand has no offsets likely to interfere with a com-
and the constructio
NEWSPAPER HOLDER - William C Roberta, savealito On. A device composed pro-
Oerably of wire, in comblination with a suitable support provided by this invention, the bolder portion heing of such shape that it may be styled a hand. A hooked arm or brace projects ontward from the sapport desired, the whole forming a almple and readily adjustable device to hold a newspaper or book in position for reading when a pereon may bave both hande occupiod Rerd Organ. - William E. Leighton West Pembroke. Me. Combined with is eeries of reei chambers, each having an apper and lower row of reed ach series of cells, and horizontal keys or levers along which the lower ends of the valve stems are adjastable. By this improvement the reed cells are fally covered by the reed valves to prevent leakage of wind, and the reed lible space.

WAT

Watch Jewel Holder. - Frank R Canningham, Ware, Mass. This is a simple tool for ceaned, and consists of a bar of wood wored beine versely and slotted at one end to form eprng jaws, strap extending from one jaw to the other and being
cocnected with an eccentric lover for drawing the jaws

Rubier Shof. - James A. Brittain, ceadville, Col. Thite shoo is patented as an improvec article of manufacture, and has, around the upper edge
ithe nanal foot opening, a continuoue or endiese of the asnal root opening, a continnoas or endiess
netal apring embedded within the material. The spring serves to stifien and strengthen this part of the aboe, insuring a close yet elastic it, preventing the
tearing of the rubber down the sides of the shoe, and cearing of the rubber down the sides of the shoe, and
doing away with the neceesity of asing the ordinary teel shank.
Collar and Necktie Holder. George F. Carruthers, Winniper, Canada. This is a at the back for retaining the collar and necktie in proper position. It consitats of a base plate having a stud at its apper end and asafety pin at its lower end, while there is a curved apring tongue between the stud and the safety pin, the tongue being atrack ap from the - Handle Bar
handle Bar for Bicycles. - Wil liam J. Matern, Bloomington, 111 . Oddinarily the that the vibrations tire the hands and arms in riding over rough roads. This invention providen a bandle bar which will yield vertically, and not jolt the hands
and arms, and when Ilfted noon by the hands, and arme, and when lifted apon by the hands, as is rually done by the nder In yoing ap hill, will be ae
igid as the ordinary bar. This improved handle bar is gidd as the ordinary bar. This improved havale bar pring clamped to its upper side.
Rolling Chair and Child's Car-Ragr--Albert Bndolph New Yort This. The combination devica in which two leg frames on whecle
are pivoted to spread or fold, while a back frame is are plvoted to spread or fold, while a back frame
ivoted between and held adjustably on one leg frame, seat framo being pivoted to the back frame, a foo est hinged to the front of the reat frame, and a prop
rame is provided. The improvement is dealgned to afiord a compact, light, strong, and shapely conatruclon, which may be quickly converted into a child's
arriage or a rolling chair for an invalid, and be folded emall opace when not in use.
Nors.-Coples of any of the above patents will be arnisbed by Munn a Co., for 25 cents each. Please eend name of the
of this paper.

NEW BOOKS AND PUBLICATIONS.

a Mandal of the Steam Engine. F engineers and technical schools. Adand theory. By Robert \mathbf{H}. Thurston. New York: John Wiley. 1891. Pp. Xx, 871. Price $\$ 7.50$.
Profeseor Tharston's idea of an advanced consse in ongineering is certainly a very high one, as is evidenced
by the magnitude of the Arst volume now under review. it is enough to say that the structure, philoeophy and hermodynamics of the steam engine in practice and the ideal one are
and formalz.
A Course of Exprriments in PhysiCal MRasurement. Part IV. By
Harold Whitiug, Ph.D. Boston $: ~ D . ~ D . ~$ Harol
C. He
1226.
This volume brings to a close Dr. Whiting's exccllent work, the preceding portions of which we have already
reviewed in these colamns. The fourth part is dereviewed in these colamns. The fourth part is de-
signed for the teacher, and contains appendices and ex amplas for his use. Thus the Arst chapter given notes on of the instruments, Dr. Whiting's principlen appearing in directing a practical working system, rather than minate care of the instruments. Studente' note books, report forms of experiments, an exhanstive list of experimenta, with statement of apparatus reqaired for
each one, the doctrine of averages and of each one, the doctrine of averages and of probable
errors, are among the salient topice. In many reepects this will appear the best volume of the series. Its index, of nearis 83 pages in extenth is a feature worthy of endation
M.D. Primbr. By Sarah E. Post,
P1.

This work treats of the technique of managge and its written as a primer for nurese. The text is elucidatod by photoplates and engravings illastrative of the different processes of massage. A series of questions on the
text closes the work, making it convenient for nse in

Phybiography. By J. Spencer, B. Bc.
F.C.s. London:
Percival \& Co.

In its brief compaes thle work covers a wide range of subjects, from matter and $1 t e$ properties, throngh me-
chanics, phyics, geolony, meteorology, to geodetic chanics, phanics, geology, meteorology. to geodetic
science. It is designed for une by a specifild department of the Engilish edncational oystem, and although cast for so deinite a borizon, shonld meet with come

P

Hillipg Newspaper Rate Book. The
John F. Phillips Advertising Co
John F. Phillips Advertising
New York,
N. Y.
1891.
Pp. 180.
The principal papers of the United State ana Cavada are deeeribed eeriailm under the cities of thelr pabli-
cation. The data sliven inclndes day of publication cation. The data given includes day of publication.
date of establishment, sobseription price, circulation. size, width of colamn, length of colamn, rates for advertieers and addrees. All these particulars and similar ones as folly as posestble are given for the different jonrnals. It is obviousiy a convenient manual for the publisher and advertiser.
The Sextant and other Reflecting
MATHEMATICAL INSTRUMENTS. By
F. R. Brainard U. S. Navy. New
York: D. Vau Nostrand Company.
York: D. Vau Nostrand Company.
1891. Pp. 120. Price 50 cents. To engineering stadents preparing for hydrographic work, as well as to those interested in navigation, this
little manual will, we believe, be thoronghly accertabe. With its limitations as to accuracy, the sextant tills a field which for many years to come it will probably
hold against all comern, and a mannal devoted to it and alliod instraments is very welcome.
How to BECOME AN ENGINEER. By
George W. Plyinpton Am. Soc. C.E.
New York: D. Van Nostrand Com-
pany. 1891. Pp. 218. Price 50 cents.
The question anewered in thle work is very frequently proponaded by young hapirants, and Professor Plymp-
ton has done real service in producing this convenient ton has done real service in producing this convenient
manal. His own long conrse of trathing in preparing yoang men in the profession gives him a pecallar anthority in the filid of the book. He shows what is re-
quired here and abrood, and gives a thoronghly practi-
cal view of the dificalties to be overcome before succal view of the di
ceess is attained.

SCIENTIFIC AMERICAN

buILDING EDITION.
OCTORER NUMBERR.-(NO. 72.)
TABLE OF CONTENTS.

1. Klegant plate in colors of a colonial residence recently erected at Ford ham Heights, N. Y. Two perspective elevations, foor pians, etc. Coet
complete 89,000 . Mesers. Walgrove \& Crails, of
New York, architects. New York, architects.
2. Handsome colored plate of a residence at Weat
Brooklyn, N. Y. Yerspective view, floor plana, Brooklyn, N. Y.
etc. Coot $\$ 3,000$
3. A very pretty cottage costing $\$ 3,000$, erected at Springteld, Mass. Floor plank, elevations, etc. beantiful modern residence at Bridgeport, Conn..
erected at a coet of $\$ 7,500$ complete. Plans and erected at a coet of
perapective elevation.
4. A subnrban cottage at Fordham Helghts, N. Y.
Cont complete $£ 6,000$. Perapective and plans.
Vlew of the new Lucas Building, Pbiladelphia, Pa. Mr. Willis G. Hale, architect
dieling at Longwood, Mase. Coot $\$ 8.423$ comvilla recently erected pective elevation, etc. Hila recently erected at Rochelle Park, N.
Coat $\$ 7,800$ complete. Plans and perspective.
5. Carriage honse and stable of oxcellent deeign,
erected at "Belle Haven," Greenwich, Conn. Estimated cost s\%,200. Ground plans and per spective
6. A cottage in Rosalie Coart, Chicago. Retimated
coot $\$ 3,600$. Perapective and two A row of Philadelphia houses ranging in cost from A row of Philadelphia honses ranging in cost from
87,500 to $\$ 5,800$ each. Perspective and plans. 12. A carriage honse at Newark, N. J. Cost $\$ 3.300$
7. View of the Masonic Temple being erectell a
Chicago. A twenty story building. Mesers Chicago. A twenty story bailding. Mesers.
Barnham \& Root, architects. A magnificen structare.
8. A dwelling at Newark, N. J., recently completed at 80,00 . Floor plane and perspectivo. 16. Miscellaneous contents: Pro Improved band reesaw, illinstrated. - Improved hot water heater, illustrated.-Porchee, windows stairs.--Cook's laminons level trabe, illastrated.-
Fax's barb wire poots. Illustrated. The Sykes water heaters.
The Scientifc American Architects and Bailder cilition is issued monthly. 8.50 a year 2s cents. Forty large quarto pares, equal to about
two handred ordinary book pages : forming, practically, a large and aplendid Magaznez or Architzc TVRE, richly adorned with elegant plates in colors and
with ane engravinge, illistrating the most intereating examples of
allied subjects.
The Fullness, Richnese, Cheapness, and Convenience
of this work have won for it the Larasse Crrownamio of thle work have won for it the Larazer Crrocuatron ll newsiealers.

MUNN \& CO.. PUBLEAEBA,

جBusiness and Xersonal.
 isements must be recceived at pubticat ion oflce as earty a
Thuraday morning to appear in the following week's isoue.
 nococeterer. $\mathrm{N} . \mathrm{Y}$.
Acme engine, 1 to S H. P. Bee adv. nort fenue. Presees \& Dies. Ferrecute Mech. Con. Bridgeeon, N. J. Steam Hammers. Improved Hydraullc Jecke, and Tabe
Expandera. R. Duageon, $\boldsymbol{\mu}$ Columbla 8t., New York. Scrow machinee, milling machlnea, and drill preveea, Will sell for $250,01 \times 88$ phctographic outat, 8×10 ex-
tension, nearly new; cost, 8100 . D. M. Wylle, Batumore. Centrifugal Pumpe for paper and pulp mille. Irrigating
and sand pumping planta. Irvin Van Wie, Byracuse, N. Y Iron, Bteel, Copper, and Bronse Drop Forsings of
overy deectiption. Bulings \& Bpencer Cu, Hartora, every
Conn.
For the original Bogandus Universel Rocentric Mill,
-oot and Power Preaee, Vrilia, Bhears, etco, addreese J. 8. \& G. F. Bimpeon, 28 to 38 rodney St., Brooklyn, N. Y.
scale removed and prevented in bollers; for each 50 Scele removed and provented in boilers; for each 50
horse, rom oents a week. Pittoburgh (Pa.) Boller Bcale

Price of the Brown \& Sharpe No. 1 Universal Mulling
Mechine, \&son. With Overhanging Arm, Rosk Price of he No. 3 Univerand Cuverar and Reamer Grinder. 2000 Prerions pricos, 8550, , 5855 , and $\$ 280$. Brown \& Sharpe
Me. Co., Providences R L ter Send for new and complete catalugue of solentise
and other Books for sale by Munn $\&$ Co... on Brosd way. ew Yort. Free on application.

虎解

hints to correspondents.
Names and Addrese must accompany. All letters,

 Minnce.
marala ent for examination should be distinctiy
mar labeled.
(3575) I. M. B. asks for a red and black copy ing ink. A. led copying ink.-Diseolve 50 parte water withont the ald of heat; add 2 parta chromate of potaseaium and set astide. After twenty-four houre add potasalum and sel aside. Alver iwenty-foar horte oxalic acid, 20 parts oxalate of ammoninm and 40 parts aulphato of aluminnm for twenty-four hours. Now raise it once to bollafter cooling fill into bottles and cork. After a forte night decant. This ink is red in thin layera, writes red gives excellent copies in brownish color, and turns blackish brown upon the paper. Black copying ink.1. The quality required of a col ying ink io that it shall afford one or more coples of the written matter by ap-
plying dry or damped paper to its surface, and aubject. ing it to more or less pressure. The beast kinds of copying ink are usually prepared by adding a little alum to an extract of logwood of 109 B., 1 ivers sp. gr.,
ar to a decoction of the same, and then to improve its or to a decoction of the same, and then to improve ite
couying power some sagar aud glycerine or table salt couying power some sugar aud glycerine or table salt is added. Such inks have a vilotet tint, are parple when copies taken from them are at first very pale, and only slowly da:ken. 2. Mix about 8 pints jet black writing ink and 1 prit. glycerine. Thisift nsed on glased paper,
will not dry for hours, and will yield oue or two fair, will not dry for hours, and will yield oue or two fair,
neat. dry copies, by simple prosesure of the hand in any neat, dry copies. by simple pressure of the hand in any
good letter copy book. The writing should not be exzood letter copy book. The writing should not be ex
cessively noe, nor the stroked aneven or heavy. To prevent setting off, the leaves after copying should be removed by blotiling paper. The coples and the origi-
nals are neater than when water is used. From "Scientilc American Cyclopedia of Receipts, Notes and
Queries." In press.
(3576) D. W. asks if the statement is true 28 to the frequent falliog of Caynga Lalse to such
an extent as 50 feet. A. We referred the matter to an an extent as 50 feet. A. We referred the natter to an
estermed correspondent who resides near Lake Cayuga, esteemed correspondis reply is as follows: So far as those who have ved, for years, ace are aware, there is no fonndation for the story reported by the paper from which the slit, is taken. Many boases on the border of the like are at the water's edge and none has yet been known
to be swamped. The city of Ithaca is on the bottom to be swamped. The city of Ithaca is on the bottom
lands at its head, and, in the times of apring fresheta, is on a level, in many parts, with the surface of the hend of the lake ; It has never suffered the fate of Atlantis, and no anprehensions are felt for the immediate
fature. The lake is deep (485 feet) and cold, and this fature. The lake is deep (485 feet) and cold, and this
fact may account for its retention of ite prey, as stated, fact may account for its retention of ite prey, as stated,
if that be a fach, which we doubt. No living inhabiIt that be a fact, which wee doubt. No living linabl of such marvels as are described, and that institation bas a coustant altitude of four hondred feet above Caynan's waters. The emall rise and fall nctually occurring in either Cayyga or Seneca Lake is slmply that due the greater or less magnitude of the
times of fresiete and in times of drouth.
(3577) J. R. H. asks for the best method of keeping cider sweet and drinkabie. A. The follow-
tog to from the ".Sclentiac American Cyclopedia of Ro-
coipts, Notes and Queries." In presa. A para, swoe
cider io only obtainable from clean, sound fralt, and the frult should therefore be carefully examinod an wiped before grinding. Add $1 / 1$ to $\$ / 1$ of an ounce calcium suiphite to each gallon of cider in the cank,
arat mixing the powder in abont a quart of the cider. arat mixing the powder in abont a quart of the cider,
then pouring it beck into the cack, and giving the latte a thorough ebaling. After standing bniged several daye to allow the sulphite to exert ito full action, the cider may be botlod ofl. The sulpnite of calcium (which should not be miotaken for the sulphate of cal cinm) is a comniercial article, cooting aboot 20 to 25 conte
a poond. The sulphite will preesrve the sweetrees of the cider, but unlese care to raken not to add too mach, it will impart a slight salpharone trato to the cider. The bottles and corks need aboald be perfoctly clean, and
(3578) A. W. writes : I would like to gqire in regard to the ase of copper in the valleys of a roor, instead of tur. Iam bailding a house and an dioposed to have something more darable than tin in
the valleyw, but some persons enggest to me that the water from a copper peof wonld be anwholesome and
when anat for drinking. Now I can't imagine what there in In the water or alr that will form a poisonous com
pound, and therefore wioh to availl myeelf of your anpound, and therefore wiah to avall myself of your su-
perior knowledge and experience. I expect also to perior knowlenge and experience. I expect also to
place a tank of about 20 barrels capacity in the atuc. gard wo lead, and woald like your and cooking. A. Avoid the use of copper and of lead in connection with drinking water. Salte of both
metals are formed, which are solable in water and are motals are formed, which are soluble in water and are poisonoua. Liet your copper valley plates be tinned
The metal lining of your water tank aloo should be
(3579) A. S. R. writes: Please tell me (3579) A. S. R. Writes : Please tell ine
the formala for a good paste for mounting photographo that will keep withoat souring.

Water ... Gelatine.

Soak gelatine in the water, add the arrowroot, which has been thoroughly mixed with a small quantity of the water, and boil foor or five minutes. After coolling (3580) G. A. S. asks: How shall I prevent frost from gathering on my outalde office window?
The house is new and well made. The windows are tight. The room is 10 feet square. It is inghted by two large 4 light windows. The outolde windows ar what I can't understand. While the north window will remain almort entirely free from frost the winter
throagh, the east window is almost as uniformly co ered with frost \mathbf{A}. Not being able to inspect the loca details of leakage through the double windows, we ca only asume that the dry westerly and northerly winde
of winter prese againat the westerly and northerly side of the boase. The leakage of the cold dry air in on this side prevente excens of moisture between the window glasces, and consenquenty they are free from frout, while for the east window the heakage of the warm
molst air is outward, filling the space between the gineses with molitare, which on contact with the cold
(3581) N. C. H. asks:
(3581) N. C. H. asks: Will you please can cheese for a number of repars quantity of Amer this year, so as to keep it in ite natural copadition ! A Cheese should be kept in a dry cool room in boxes. chrough the winter, at as to allow of drylng. In the
spring and summer the cheeses should be rubbed at spring and summer the cheeses should be rabbed at
leand nnce a month with soft clean talliw, asouming dia boxes daring dry cold weather, when (8582) F. H. C. writes : I have a sail whoee height in 14 feet ou mash, 20 feet on boom and reet on gaf. The jib is 16 by $8 y$. Also topeail con tains 6 square yards light sheeting. The maineall and hibare 8 ounce dack. Pleases atato what proportion
had better take to drawing. I would like to know how to restore checked varnish on a mandolifu? It does not poel onf, just cracks. Please name the best oil for keepwill be rigbt if you balld the icusting. A. Your natile inch to 1 foot from the drawing in Supplement, No Q24. You can only revarnish the mandolin. You can
not remove the cracks without scraping the old varnis

(3583) H. R. K. asks the speed at which 3. S. Her., and I Inch X inch U. S. 8. Hex., $1 / 1$ lnch U papers or books where the eubject is treated, so that cuagehardening. A. You will find nome valuable?ex perimente in punching iron in scisntipio Amrican
Suppliguser, No. 68 . The apoed for ponching nute is Supplinxint, No. 68. The apoed for panching nate it booke on the sabject.
(8584) C. A. H. writes : There in a span say 500 feet over which a wire is placed, Pastened a
both sides of the span. This is suppoeed to be straigh Now if a welght of say 10 pounds is Lang at the center cansing a deffection of two feet. what will be the strain on each or both napporto? I should like to know
how this is worked oot approximately. A. The as follows: $\frac{250}{2} \frac{\text { feet }}{\text { feet }}=125$, which is the tangent of the greater angle. The rangent of $15010,603 \%$. Tue which for $8093 z^{\prime}=12077 \times 10=\frac{12 \pi 2 \cdot 8}{2}=018$ ponde.
(8585) P. H. J. asks how to fill a crack what mixp of the oven of a cook stove. That is what mixture to uase, that can be applied, and which
will withatand heat A A. A rood coment for stove
cracksis made by miting in crackg 18 made by mixing into stifi patis with water
Wood ashes........... 10 parts.
Wood ashee.
Clay
Clay
$10{ }^{\circ}$
(8588) W. B. D. askn : Is there any way of machinitat' We knuw of no euitable means of proventing perapira-
ion. Can only recommend wipling and olling the (858
(3587) E. B. D. writes: 1. About two or three yearr ago I saw an article, I believe in th diefrific A ikaican, which explained how one could determine the pointe of compen by mesno of a watch polnt on the circumference of the dial (the polat de pending upon the 'umel. and the diamoter serome the from north to cooth. Will you kindly explain in you Notes and Querits column how this can be done? A When the hoar hand of the watch to pointed to the ean, the soath will be on a radial line of the dial half way only approximate for our latitude. 2. Plemen glve direc

(8588) A. M. B. asks for receipts for bleck writing ink. A. 1. An exceedlogly ine ink is said oo produced by the following recipe: 11 parts galls, 2 parts green virriol, one-seventh part indigo solution an is io tors of water. Wring ozecnicd with this ink may may be rendered vielble again by chemical means. 2 Arnold's Writing Flaid.-Thie writing fuld ise a mix ture of salphate of indigo and ordinary lak. It flow reely from the pen and at last becomes very black. Anilline Black Iuk.-Concentrated eolntion of
(3589) G. J. E. writes: Can you tel ne of a preparation that is inexpensive for staining
tone any deaired colort That will not wash of We have seen samples of white marble tiles stalned in ornamental tigures and polished.
talning is done with anilline colors.
(8590) H. C. K. asks what to mix or ase with a potter's clay on cellar bottom whille rolling it
cement 1 part to 2 parte clay. Portiand orize the che clay dry
dic and mix thoroughly with the coment, then wet with water Just enongh to make the mixture spread, and rol
(8591) L. W. B. asks for thatch comor con. A. The following is one of the beet receipu for compesition mated in preparing the well known U. and P. matches and does not require a separate rubber r propared surface:

Potassium chlorate.... Manganese, bleck oxid Potaselum
 Potaselum bic
 Antimony oxysulphide...................... 20

Theso nobotrances are antrit powdered separately and b. water, to form a thick, smooth paste ; with ith paste the dry wood applintera are tipped, and after abou
ighteen hours' expoeare to the alr in a drying room ghteen hours expoeare to the air in a drying room
ept at about 80° Fah., the matches are ready for box ing. To render the matches non-abeorbent of moistir Waterproof, they are momentarily dipped into

Sbelisc, bost whito...
Alcohol, or wood naphtha... 1 qt. digented tomether in a clowed veseel for several day
with occuaional agitation, then etrained throagh Anc inen cloth. Use red lead to color
(3592) N. S. F. asks: 1. In construc non of Mr. Hopkins' telescope, in what respect is meniscus better than a double or plano-convex lens?
A. The meniscus lens gives a fatcer field than the convex. 2 I thought of using a "cosmorama" lens, anch to in cold for about $81.50 ; 8$ to 4 in . diameter, 48 to 80
n. focus. Woald donble conver or planoconver be a. Rocus Woald donble conver or plano-convex be
beent A a plano-convex lens will be preferable, bat Deither of them would be very emicient an a telescope objective. 3. How wonld a 4 in. by 00 in. tolescope With such a lens compare as an aetronomical with an
rdinary apygines with $1 \times$ in. objective? A. We think hat an ordinary spyginee with opood achromatic linch and a halp objective would be preferable. 4. What for above mientioned lena? A. For information on celeatial eyepieces, we refer yon to an article on
Telescopes for Amatears " in Suppliment, No. 252. . How woold a doable concave eje lens answer with such an objective: A. A doable concave eye lene
would answer very well with a common plana-conver would answer very well with a common plano-cunvex
or meniecus lens as an eyepieco, as it has necesearily very low power, bat with a good telencope objective It 18 of no value. 6. Could the eyeplece of an ordinary spyglese ve separated, and either the eye or field combination of the two lenses be used as a celeatial? A.
(8593) L. W. asks how to make a reparation which applied to leather will dry quick and
leave a hard coating and elastic? A. Dissolve sheliac In a menrated eolution of borax and water. The solu recessary to allow the ingredients to stand for severa dnys, occasionally shaking them. When the shellac is
entirely diseolved, add ane bone black ontil the blacking has sufficient body to cover well. If the blacking (3594) G. W. W. asks: Can you inform me through your Notes and Queries column of a
method of determining the diaplacement of omall eail onts from drawings or plans of same? Also whether ton, and rule for same. A. There are rules for computing the displacement from the drawings. In genThe drawing, and below this line compute each croese coction as many as lald out on the drawing. Add all will give a mean. if in incbee, shorid be divided by

144 for fret; maldply the mean area in equare feet by the length on the walter line in freel, which equinle the divide by 2000 for net toos. The actual wetight of the boat subtracted from the displacement given the toncompated by approximating the actaal weikht of the material in the boat and the required tonnage to the (3595) F. R. C. eays: A considerable body of eolder, composed of lead and tin, rather morhoars together, yields up a yellowish power which riser to the rarface. What is this powder? can it be reduced to metallic atate again? If eo, how? A. The
yollow powder is the oxide of lead, with a poeelble mixture of the oride of tin. It can be reduced to the metallic state by mixing with palverizod charcoal. plactag in a crucible and beaung to a red heat; stir the mase and pour off the lead.
(8596) E. D. C. asks: Can you refer us a receipt for making type-writing ribbons that will
opy? A. Melt vaceline on a water bach or slow fre. andy incorporate by conotant atirring no much lamp black or powdered drop bleck ${ }^{\text {as }}$ it will take ap with-
out becoming granular. If the fat remaliag in uxces, the print is liablo to have a greacy oatline: if the color is in excese, the print will not be clear. Remove the mixture from the ifre, and while it is cooling mix equal parts of petrolenm, benzine and rectifed oil of turpentine, in which disoolve the fatty ink, introducrd in
small portions by constant agitation. The volatile small portione by constant agitation. The volatile
colvents shoald be in such quantity that the gaid ink colvents shoold be in such quanoitty that the faid ink
is of the coneistence of fresh oil paint. One secret of accese lies in the proper application of the ink to the ribbon. Apply the ink, after axitation, by meane of a
soft brash, and rub it well into the futuratices of the soft brash, and rub it well into the fueratices of the nibbon with a tooth brush. Herdly any lnk thonid re-
main visible on the surface. For colored inks use main visible on the surface. For colored inks uce
Prumian blae, red lead, etc., and especiaily the a niline colors.

Anlline bleck
Pure alcobol............
. $.15^{1 / 202}$
Diseolve the aniline black in the alcohol, and add the
(3597) J. S. L. aske : How much of the force that is expended in starting a piaton and crows. head from one end to the center of the cylinder, io given out again in stopping the same from the center to
the other end of the cylinder? A. All the force put the other ond of the cylinder? A. All the force put
into the piston is civen oat in stopping, seve the pricion.
(3598) T. T. says: I wish to know whether in looking at any particular object from $21 / / 8$
millee up to 4 miles on a clear day, what kind of a
giaes is the beet in the the apy glues! Are Imported feld and spy gieeene, elso binoralar telescopes better than ones made in this conntry? In looking at any particalar object, 25 milen distant, can a person see as plainly with the beat binoccular telescope as he could with the best apy glace?
A. Binoculare are inade for the convenlence of light A. Binoculars are inade for the convenlence of light
and perapective and for more eract judgment of dit and perspective and for more exact jodgment of dit-
tance. They aro used for milltary and other special parposes, and not of great power. For their size they
should define as well as the best spy glase or more should define as well as the best spy glase or more
properly telescopes of their size. The binocular field properly teleecopes of their size. The binocular dield
glasees are mostly imported and are considered dirst glasees are mostly imported and are considered arst
clase. If you want fine defnition and power for die.
tant tant ohjecto, the larger teleecopes of from
length are the best suited for the purpose.
(3599) F. C. P. asks : 1. I have a brass tabe 1x Inch diameter, 9 or 10 inches long; if I at a piece or wood on each end, can I wind tit for an indnc-
tion coil, or would it be better to atart winding ois a very thin cylinder of wood and all the brass tube with soft iron wires for a helix (I think that is the name of
the inner rod). What eize wire to ase on the inner the inner rod. What eize wire to ase on the inner
winding, and how many layers, aliso on the oatoside What size wire, and must I pat any insolation between the other? A. A brase tube will not answer as a fonn. dation for an induction coll, becanse it will absorb the energy which should peece into the secondary wires.
Better ase wood or rubber for the spool. Use for the Better ase wood or rubber for the spool. Use for the
primary wire 2 layers of No. 16 magnet wire. For the 2. How do I get high amperage on this coil ? A. What you gaip in volugge you loee in amperage in an indus-
tion coil. If you secure a high amperage, you muat extion coil. If you secare a hilgh amperage, you mast expect a low voltage. 3. Must I insulate each layer of
wire, or will the cotton covering do f A. It is well to put a thicknese of paper between the layers. 4. Have winding formation on indaction coils we refer you to Supplemisxr, No. 229. 5. If I make a camera of wood and use
a pin bole lens, must it be set at an angle to the face of a pin hole lens, must it be set at an angle to the face of
the plate or perfectly square ; \mathbf{A}. The aurface in which the plate or perfectly square \& A. The surface in which
the pinhole is made should be parallel with the plate. both mod ad bellowe? A. For instruction on making camera bellows we refer you to SUPPLismismy, No. wis. The only Supplexents we have on cameraa are No.
746, machine camera, panotamic camera, No. ton , photh6, machine camera, panora.
tographic gun, Noo. $332,336$.

Enquiries to be Anawored.
The following enquiries have been sent in by some of sar subscribers, and doubless others of our readers will enquiry shonld head the reply.
(3600) J. S. writes: Will you please give the following problem to your readero, requesulng
an arithmetical or algebraic nolation of it? A. B add C are points on a stralght line and ten miles apart: m in at A and n at B; n starts at 7 A. M. to go to C and P. M.; m starts after n at 7 A. M., caichen him and trins buck, reaching B at is P. M., having aleo traveled
just ten hours. Where was n when m caught himl jast ten hoars. Where was n when m caught himl

OVER 16 TONS

"Experimental

Science"

SOLD.
We do not refer to science in the abstract, but to our new book by Mr Geo. M. Hopkins, having the abuv
title. the most popular scientific book ever printed. Every scientific person, and any person desiring to become scien tific, should have it. It will pay to
look over the illustrated table of contents, which we send gratis. 74° pages, over 680 first-class illustrations. Price by mail, \$4.
Munn \& Co., 361 Broadway, N.Y.

\rightarrow The Scientific Fmerican Gyclopediaく
$\rightarrow 0$ Receipts,
NOTES AND QUERIES. 650 pages. Price $\mathbf{s 5}$.
This splendid work contains a careful compila-
tion of the most useful Receipts and Replies given tion of the most useful Receipts and Replies given
in the Notes and Queries of correspondents as in the Notes and Queries of correspondents as
published in the Scientific American during
nearly half a century past; together with many valuable and ímportant additions.
Over Twelve Thousand selected receipts are here collected; nearly every branch of the useful arts being represented. It is by far the most comprehensive vo
before the public.

The work may b

studies and practical experience of the ablest chemists and workers in all parts of the world;
the information given being of the highest value arranged and cond
ient for ready use.
Almost every inqu
relating to formulæ used in the various manufac turing industries, will here be found answered. Instructions for working many different pro-
cesses in the arts are given. How to make and prepare many different articles and goods is set forth.
Those who are engaged in any branch of industry
probably will find in this book much that is of practical value in their respective callings.
Those who are in search of independent business
or employment, relating to the manufacture and or employment, relating to the manufacture and
sale of useful articles, will find in it hundreds of sale of useful articles, will
most excellent suggestions.

```
        MUNN & CO., Publishers,
```

 Scientific American Office
 DEAF NESS. A HEAD MOISS CURED SOME APPLICATIONS OF PHOTO

JKMnIs UPRIGHT COSHIONED
POWER HAMMER.

A SCHOOLMASTER'

free sites TO SUBSTANTIAL MANUFACTURING ENTERPRISES

 LAN DUENTLPMOENTER main

AIR BRUSH

ROCK BREAKERS AND ORE CRUSHERS

TO BUSINESS MEN
The value of the Scientipic American as an adver-
ising medium cannot be overestimated. Its circulatio is many times greater than that of any similiar journa now published. It goes into all the States and Territo-
ries, and is read in all the principal libraries and reading
rooms of the world. A business man wants something
more than to see his advertisement in a printed news-
paper. He wants circulation. This he has when he ad vertises in the SCIENTIFIC AMERICAN. And do not let
the advertising agent infuence you to substitute some other paper for the SCIENTIFIC AMERICAN, when se
lecting a list of publications in which you decide it is lecting a list of publications in which you decide it is for
your interest to advertise. This is frequently done for the reason that the agent gets a larger commission from the papers having a small circulation than is allowed on
the Scientific Ambrican. For rates see top of first co
dress MUNN \& CO., Publishers.
361 Broadway, New York.
2nd acce MACHINERY

Scientific Book Catalogue RECENTLY PUBLISHED. givorks on more than fifty different subjects.' Will be

THE MODERN ICE YACHT. MY

 $\$ 60$

Steam! Steam!
Quality Higher, Price Lower. 2-Horse Eureka Boiler and Engine,

OIL WELL SUPPLY CO.

INVENTIONS Practically DEVELOPED
 ARCHITECTURAL ENGINEERING-

CTARRE'S

 Power wrighaes for hoiter and
 CEO. P.
CHUCKS.
Useful Books!
Uswaywaraviaw

 MUNN \& CO.. 361 Brondway, New York.

ARTESIAN

 THIES' PROCESS OF TREATING

INTEREIEDIN ELEGTRIGITY?

Dfovertisements.
Inside Page, each insertion $\ldots 75$ cents a line
Back Page, each insertion -.-. 81.00 a line

 Halgerns IIID Couplilles
complete stock of Double Brace, Self-Oiling, Adjustable Ball and Socket Hangers, Pillow Blocks, Post Hangers, Etc.
 EDISON GENERAL ELEOTRIO 00 .

mexstome
RECORDING PRESSURE GAUGE

ELECTRIC LOCOMOTIVES.
FOR UNDERGROUND HAULAGE.
ELECTRICAL MINING APPARATUS OF EVERY DESCRIPTION send for illustrated catalogue m 2 .
THOMSON-VAN DEPOELE ELECTRIC MINING COMPANY 620 ATLANTIC AVENUE, BOSTON, MASS.

$\overline{\text { VENTILATION OF RAILWAY TUN }}$

NIPPLE HOLDER
 See Illustrated notices in
ADJUSTABLE STOCKS AND DIES, universally acknowledged to be Pring Minstro Send for 1892 IHystrated Catalogue and Price List.
ARMSTRONG MFG. CO., Bridgeport, Conn. ' + CABLES. SUBMARINE,

UNDERCROUND,

 INTERIOR,
* + TELEPHONE,

TELECRAPH,

ELECTRIC LICHT.

Manufactlured under authority of at their SCHENECTADY WORKS.

Cable and Wire Department, Edison General Electric Company,
edison building, broad St., new york.
 STATIONARY and PORTABLE. All Sizes.
Dwarfs in Size, but
Giants in Strength.

LEADING ENGINEERING WORKS

COROUS EARTHENNW A R E. - BY

