

CIIENTINFIC A $0:$

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

TRANSPORTATION OF GRAIS IN THE UNITED STATES.-THE ARMOUR RLEVATOR.-(See page 258.)

sixientifit esmmerical.

EETABLISHED 1945.

MUNN \& CO., Editors and Proprietors pUblished wrekly at

No. 361 BROADWAY, NEW YORK.
O. D. MONN. A. R. BBACH.

TERMS FOR THE SCIENTIFIC AMERICAN One copp, one year, for the U. S., Caneda or Mexico...
One copy, alx montha, for the U. S., Canade or Moxico.
Ono copy,one year,to any forden country bolonging to Pootal Union..... 1 190 Bemit by postal or exprees money order, or by benk draft or ohock.
MUNN \& CO, Jol Browd way, corner of Fraukllin Btreet, New York. The Selentific A merican supplement

Bulldiug Edition.

NEW YORK, SATURDAY. OCTOBER 24, 1991.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
INO. 825.
For the Woek Ending October 24, 1891.

1. ARBORICULTURE-Almond Culture.-How the almond troe is cultivated.-The treatment of its product, and resalte attalinable
from its cultivation..
 II. CIVIL ENGINEERINOLrations...

IIL. CIVIL ENGINEERING.-The Great Lyons Bridge between the
Hills of Fourvere and Croix Rounee.-A project for an
 trations...
 math, heating fank, etc.- 8 illustrations
The Frankfort Electricol Exhibition.-Dynamon shown at the The Kousmine Difuasion Battery.- An Ingenious ploying the bichromate solution much used in Rusela.
V. MECHANICAL ENGINEERING.-The Canses of Boiler Explo-
aions.-A most interesting graphio diagram of the causes of 1,079 alions.-A most interesting grap
boller explosions. -1 illustration. Wave Power Apparatua.--An ingento
the power of the wares. -1 llustration.
Whe power of the waves. -1 illustration..
VI. MILITARY TACTICS.-The Grand Maneuvers of the French Army.-Interesting engineering and tactical work done in the
ielc. -8 illuatrations.......................... il matural history

bow to $\begin{gathered}\text { ill them. }\end{gathered}$

Bome Dimculties in the Life of Aquation Insects... Prof. MiALL.- A Very graphic description of the Iffe history of the
aquatic insecta.-A Britiab Association addrese The Chimpanzee at Zoological Gardens.-By W. B...................

- A popuriar description of the lately deceased chlmpanzee of London Zoological Gardens. 2 Illust rations.
Vili. Photogra Ph Y.- Photographic Chemistry.-By Prof. R.
Meldola.-The first lecture of series delivered before the Lordon Society of Arta, with tables and formuls.
don Society of Arta, with tables and formuls.......................
Photography on \& Blact Ground.-Curlous examples of a novel photographic process with full detalla.- 8 lluastrations
1X. TECHNOLOG Y. - Sugar Making by the Difrasion Process........
periments on sugar difuasion processes in Loulsiane. periments on sugar difruslon processes in Louisiana.-. - 1 Illustra-
tions.. x. viticulture.-Culture of the Grapevine In France.-How grapes are arown in the wine-producing districts of France, witb
prening syatems deecribed. - illoseratiose...................

RELATIONS OF FOREIGN TRADE TO THE METRIC 8YETEM.
Several British consuls have recently warned their countrymen they were losing considerable trade in foreign countries owing to their persistent use of English weights and measures in their circulars and price lists, which were perfectly anintelligible to most of the foreign dealers, whereas their French. German, and other competitors used the metric system, which was amiliar to everybody, and naturally attracted custom. The consuls have declared that the British manufacturers are simply playing into the hands of their rivals by persisting in the use of figures which to wany foreign merchants are so many hieroglyphics.
These warnings apply equally well to the exporter of the United States, and for their further guidance we here subjoin an alphabetically arranged list of the principal foreign conntries in which the metric system is now used :
Algeria, Argentine Confederation, Anstria-Hungary Bohemia), Belgium, Brazil, Canary Islands, Chile, Colombia, Caba, Denmark, Ecuador, Egypt, France and colonies, Germany and colonies, Greece, Guatemala, Honduras, Iceland, Italy, Malaga, Manila, Merico, Mozambique, Netherlands, Norway. Paraguay, Peru, Portugal, Russia, Turkey, Spain and colonies, weden, Switzerland. Venezuela.
The use of the metric or decimal system was anthorzed by our laws many years ago, but the use has not yet been made compulsory, hence the majority of people cling to the old system and dislike to change, although the metric is more simple and easily under stood. Our coins and monetary calculations are based on the decimal or metric system. Ten mille make one cent, ten cents make one dime, ten dimes make one dollar, ten dollars make one eagle. This is plain and simple, everybody is familiar with it, and probably oothing could induce our people to go back to the old tyle of pounds, shillings, and pence, which formerly prevailed in this country, and is still current-in Engand. The extension of the decimal or metric system to our weights and measures is urgently needed and can be readily effected. Ten millimeters make one centimeter, ten centimeters make one decimeter, ten decinueters make one meter, and so on. This is far easier and simpler than to reckon measures as we now號 half yards make one rod, forty rods make one furlong. eight furlongs make one mile, and so on.
The metric system is so much more convenient saves so wuch time, and has now become so generally adopted throughout the world, that the United States ought no longer refuse to fall into line. A very little pressure would suffice to bring about the change. It would do the business, probably, if Congress were simply to pass a law requiring that estimates, contracts and bills, specifying weights or measures, when not made out metrically, must bear a revenue stamp of one dime. Rather than pay a smali tax, everybody would once use the decimal system, and the change would be as smooth as the system itself.

large cabting and large forgirg

The largest casting ever made in the United States was poured on the 13th of October, at the Bethlehem Iron Company's Works, Bethlehem, Penu.
The Hon. Secretary of the Navy, Benjamin F. Tracy, accompanied by Coinmodore Wm. M. Folger, U.S N., accompanied by Coinmodore Wm. M. Folger, U. 8 N .,
Chief of the Bureau of Ordnance, arrived in the city the evening of the 12th, and during the forenoon of the 13th, surrounded by the officials of the works, a well as the two naval lieutenants who look ont for the government's interests at this place, they proceeded to the forge building. The scene was a busy one; the ham and shriek and roar of machinery re-echoing througb the works. Locomotives darted back and forth, drawing trucks which carried huge ladles of white-hot, molten metal. The company assembled on the platform of the open-hearth furnaces 'to witness the pouring.
The mould had been prepared by digging a large pit and lining it with an iron bottom, to support the great and lining it with an iron bottom, to support the great
weight of the casting. The patterns had been placed weight of the casting. The patterns had been placed
and well packed with moulding sand, and, when they and well packed with moulding sand, and, when they
had been withdrawn, the mould was braced in every had been withdrawn, the mould was braced in every
conceivable direction by tie rods and braces. The top of the mould came just even with the floor of the building, and was thorougbly packed in with dirt, and all leveled off. Along this dirt floor were various troughs of iron, lined with composition.
At each end of the mould stood an immense ladle, containing over forty tons of molten metal. To one side was the railroad track, on which, by the aid of five locomotives, were drawn the twelve trucks, each truck carrying a ladle containing about nine tons of molten metal. When these twelve ladles were in place, in front of each could be seen a trough leading to the mould. On signal from Mr. John Fritz, the general manager, the two large forty-ton ladles were started, by side tapping, and two large streams of molten metal roared toward the mouth of the mould. A moment
and poured their tribute into their troughs, and thence into the mould.
The fourteen streams of bright metal, the ghowing tops of the ladles, and the showers on showers of sparks made a brilliant sight in the gloomy foundry. Not an accident occurred, not a moment's delay marred the proceeding, so well planned was the undertaking, so carefully had each item been looked after.
The finished casting will weigh about 830.000 lb ., or about one hundred and fifty tons. Of course much more metal than this was poured to allow for sinking heads, troughs, and overflows. This is the larges casting ever made in the United States and probably the largest in the world. It is to be a part of a machine which will be used in the manufacture of war materia for the United States. The casting will be left in it mould for a couple of weeks or until it is perfectly cooled.
The second event of great importance witnessed by the Hon. Secreta
thirteen inch gun
The compressed steel ingot had been bored to an internal diameter of abont ten inches, its externa diameter being about fifty inches. This ingot had been placed in the gas heating furnace and when taken out it of a good welding heat. A mandrel had been placed through it and each end of the mandre was supported by a chaid hanging from a hydraulic traveling crane. These cranes, moving foward, soon brought the ingot under the large No. 1 Whitwort forging press. The ram of the press descended slowly but with the force of many tons of hydraulic pressure and the hot steel of the ingot gave way and was pressed down. The ram lifted and the ingot was turned or rotated slightly. The pressure was again applied, and so, stroke after stroke, the steel was kneaded, and the ingot was gradually worked down to a long tube. This tube in the rough, when it left the press, was about twenty-six inches in external diamete and eleven inches in internal diameter, thus leaving walls about seven and a half inches in thickness. It is about forty-two feet long.
The ingot from which this tube was made was cast in the Whitworth fluid compression mould, which aids in producing a homogeneous steel, free from blow holes, pits, cracks, and seams.
This tube will be rough-machined and then annealed and oil-tempered several times. Then test bars will be taken from it to see if it has the proper plysical qualities, and chenical analyses made of specimens to determine the amount of carbon, silicon, sulphur phosphorus, and manganese it contains. After pase ing the tests made by the government inspectors, it will be sent to the gun factory at Washington, D. C. where, with a suitable jacket, hoops, breech plug, and mechanism, it will be assembled, forming the largest modern high-powered breech-loading built-up gan that this conntry has produced. The assembling of guns at the Washington gun factory was fully de scribed in the-Scikntific American for February 28, 1891.

The New Cunardere.
The new trans-A tlantic steamers which are to be built or the Cunard line are naturally attacting considera ble interest in shipping circles. It is reported that the Fairfield Company's yard is already being cleared fo the work on one of them, and that materials used in the early stages of construction are already prepared though the construction of the vessels will be pushed with all possible speed, they will not be ready for ser ice before the summer of 1893 . It is reported that the ships are not absolutely guaranteed to be five-day boats, but 21 knots an hour in the open sea is guaran teed by the builders, and if pushed hard it is probable that they will make a much better record. It is stated that the Fairfield Company, who are to build these boats, offered to give the Cunard Company vessels capable of an average of $221 / 2$ knots per hour, but as considerable space for the accommodation of first-class passengers would have to be sacrificed in order to ob tain this speed, the Cunard Company decided to be satistied with a little less speed and a better-paying boat. Provisions have been made in the design for the accommodation of 600 first-cluss passengers, nearly a third more than the Teutonic or Majestic.

White Cement.

White cement of the same character as Portland ernent is made by grinding together three parts o chalk and one of kaolin, burning at a red heat and rinding again. The cement made by this process gif as has shown a tensile strength only as the it has the hydraulic quality and other characteristics of Portland cement, and it is to be hoped that the manufacture may be eo improved as to increase the tensile strength to the point required for making artificial strength to the point required for making artificial
stone. If a white cement can be found for a matrix it stone. If a white cement can be found for a matrix it
will be easy to obtain agrregates of light color by will be easy to obtain aggregates of light color by
utilizing white sand, marble dust, white talc, and so on, suitable for unaking a concrete which could be used on, suitable for mak
in place of marble.

How Tollet soape aro Medo in Gormany. Owing to the different conditions of the oil market n Earope as compared to America, the raw inaterial or the soaps made there are somewhat differently regarded in Germany than here. Cocoanut oil and palmkernel oil largely predominate there, while woo fat, linseed oil, horse fat, and recovered greases are given special attention in connection with the many problems which consront the Gerinan manufacturer in regard to the proper procedure in the many soap which he makes on a small scala. For it must be anderstood that there the number of even comparatively large factories is exceedingly small when com pared to that of the very small factories that make their boiled soaps in batches of 8,000 to $4,000 \mathrm{lb}$. or less, in a kettle heated by an open fire, and with hardly as much as an indistinct resollection of having hear that in some parts of the world soap is crutched b machinery. Besides the difference in the raw mater als used mostly, and the small scale on which the Gerwan manufacturer generally operates, there is also the difference in climate as well as of usage and popu lar taste, which calls for one klnd of soap in one coun try and for other kinds elsewhere; so, for instance boiled-down soaps are used to a much greater extent n Europe than they are here, and again, as owing to their moist climate soaps dry less rapidly than they do bere, such kinds are greatly made as would prove almost insoluble in our climate after storing for some ime. Then, too, soft sosps are made in Germany incredible quantities.
But, to come to our subject of toilet soaps. It wil be seen from the following description by Dr. Bering. German soap mannfacturer, that in the matter of toilet soaps the difference between the countries is less narked, only that they make a much larger proportion of their toilet soaps by the cold process. In a detailed description of the process, Dr. Bering write the following, from which some of our readers can per haps gain a useful wrinkle or two
The soaps turned out by our perfumers are mad either directly or indirectly by remelting or by mill ing. In the two last named processes soda soaps are ased which must be free from odor and perfectly neu tral, must be easily melted on heating, and-in spite of greater solubility-must yield a more abundant and olid lather than the boiled soaps. [We presume the author meant to say "the ordinary boiled soaps" ince the remelted and the milled soaps are most gen rally boiled soaps.-Ed. A. S. J.]
In the first named process the fats are melted at the lowest possible temperature, not above $65^{\circ} \mathrm{R}$ and one-half of the lye to be used, at sp. gr. $1 \cdot 38$, is un in while stirring steadily; after one-half to one bour, according as the mass shows a.tendency to be come solid, the remaining lye is added, and when the nass appears to be perfectly homogeneous thronghout, the color and perfume are stirred in. Now the soap is run into rather strong wooden frames which are covered inside with linen oloths of a close texture, and anficiently large that the entire block of soap can be covered with them. The square forms consist of side pieces about $13 / 2$ to 2 feet long and 1 inch thick, and bottom of the same thickness. The side pieces are provided with pegs that fit exactiy into corresponding holes in the bottom and walls, so that they can be easily put up or taken apart. Iron braces restiog in notches on the side pieces give the frames the necessary strength to hold the batch of soap of say 1 cwt After framing the soap. the whole is covered with thick cloths in order to keep in the beat which develops As soon as the soap has become solid the cloths are removed, the soap is allowed to get cold, the side pieces are then taken off and the linen cloth is removed off. The soap is now ready for cutting and pressing, care being taken to warm the bars previonsly if they have become too bard, in order to avoid cracking. After pressing the cakes are trimmed in order to remove any unevennese on the edges.
The fats used are lard, tallow, cocoanut oil, palm oil, and less frequently almond oil. The lard and tallow must be previously purified, and especially the latter has to be freed of its disagreeable odor. In running the melted grease into the kettle it is passed through a cloth. The manner of adding the color depends on the nature of the latter, heavy, earthy, or metallic colors, such as umber or vermilion, being added only when the soap has acquired a thick conadded only when the soap has acquired a thick con-
sistency, while dissolved colors may be added while the soap is still thin. Very few colors only can be added soap is still thin. Very few colors only can be added before all the lye has been run in and saponification has begun. Aniline colore almost disappear at first ander the action of the alkali, but return after cooling. Marbling of the soap is done by stirring up the required color in melted cocoanut oil, ranning it into a fannel closed at the lower end by a finger, and letting the contents run over the soap as it is run in layers into the frame. When the frame is full a atick is drawn in fancy figures through the soap to distribute the color.
Practice is the best teacher, not only in the use of different fats, whether cocoanut oil alone, or with tallow or lard, or with both, is to be employed, but aleo

In deoiding whether sode lye alone shall be ueed or potash lye added to it. Those who work intelligently will soon find which will bring them to the result they desire.
The second procens, remelting, which is largely practiced in England, consists in finely chipping th tallow soap procured from the soap maker, welting it over a very slow fire while steadily stirriug, adding the perfume, mixing well, and fraining. If a soap smells too strongly of tallow it unay be puribed by melting it over a very slow fire or in a water bath, together with one-third its weight of water, preferably rose water and adding a small quantity of salt to separate the soap again ; run it through a sieve, as cloee as posaible, and let cool. Repeat if necessary.
In the matter of soap, of course, cheap qoods are always wanted and the demand was supplied by incor porating more and more water in the soap. Cocoannt oil soap is especially adapted for this purpose, not only taking up considerable water itself, but commu aicating the saine property to other fats. Such soap however, by the evaporation of the water, soon lose their shape and appearance.-Amer. Soap Jour.

Eorticulture Imduetrien.

Censas Bulletin, No. 109, contains a preliminary re port, prepared by Mr. J. H. Hale, special agent, under the direction of Mr. Mortimer Whitehead, special agen n charge of horticulture, upon the nursery industry of the United States, which has for the first time been màde a subject of census investigation. The material rom which these statistics are compiled was obtained direct from the nurserymen, upon schedules specially prepared for that purpose, and by personal visits of pecial agents to nursery establishments in all parts of the country. These figures are subject to revisio before publication in the final report.
From the tabulations in this bulletin it appears that there are in the United States 4,510 nurserien, valued at $\$ 41,978,835.80$ and occupying 172,806 acres of land, with an invested capital of $\$ 52,425,669.51$ and giving omployment to 45,65 ; men, 2,279 women, and 14,200 animals, using in the propagation and cultivation of animals, using in the propagation and cultivation of
trees and plants $\$ 090,606.04$ worth of implements. Of trees and plants $\$ 900,606.04$ worth of implements. Of
the acreage in nurseries, $95,025.42$ were found to be used the acreage in nurseries, $95,025 \cdot 42$ were found to
in growing trees, plants, shrubs, and vines of all ages ; and the figures based upon the best estimate of the aurserymen make the grand total of plants and tree $3,880,855,778$, of which $518,016,612$ are fruit trees, 685 , 303,396 grapevines and sunall fruits, and the balance nut. deciduons, and evergreen trees, hardy shrubs, and roses. The largest acreage is devoted to the production of apple trees, viz., 20,232•75 acres, numberng 240,570,666 young trees, giving an average of 11,890 per acre, while the plum, pear, and peach have, re pectively, 7.826.5. 6,854-25 and 3,357 acres, producing $88,494,367,77,233,402$, and $49,887,894$ young trees, or an verage of 11,307, 11,286, and 14,861 trees to the acre. Horticulture has been making wondrous strides this country during the last quarter of a century.
While most of the first trees and plants were of necessity brought from the mother country by the early settlers, their production from seeds and by budding, grafting, and layering was begun here early in th seventeenth century, as shown by many of the early colonial records.

Food before Sloop.

Many persons, though not actually sick, keep below par in streagth and general tone, and I aun of the opinion that fasting during the long interval between supper and breakfast, and especially the complete ouptiness of the stomach during sleep, adds greatly to the amount of emaciation, sleeplessness, and general weakness we so often meet
Physiology teaches that in the body in ere is a per petual disintegration of tissue, sleep.a h or waking; it is therefore logical to believe that the supply of nour ishment should be somewhat continuous, especially in those who are below par, if we would counteract their eunaciation and lowered degree of vitality; and as bodily exercise is suspended during sleep, with wear and tear correspondingly diminished, while digestion, as imilation, and nutritive activity continue as nsual, the food furnished during this period adds more than destroyed, and increased weight and improved cen ral vigor is the result
All beings except man are governed by natural in stinct, and every being with a stomach, except man eats before sleep, and even the human infant, guided by the same instinct, sucks frequently day and night, and if its stomach is empty for any prolonged period, cries long and loud.
Digestion requires no interval of rest, and if the mount of food during the t wenty-four hours is, in quantity and quality, not beyond the physiological limit, it makes no hurtful difference to the stomach how few or how short are the intervals between eat ing, but it does make a vast difference in the weak and emaciated one's welfare to bave a modicnm of food in the stomach during the time of sleep, that, instead of being consumed by bodily action, it may during the
interval improve the lowored syatem; and I an fully satisfied that were the weakly, the emaciated, and the sleepless to nightly take a light lunch or meal of simple, nutritions food before going to bed for a prolonged period, nine in ten of them would be thereby lifted nto a better standard of health.
In my specialty (nose and throat), I encounter cases that, in addition to local and constitutional treatment, need an increase of nutritions food. and I find that by directing a bowl of bread and milk, or a mag of beer and a few biscuits, or a saucer of oatmeal and cream before going to bed, for a few months, a sur prising increase in weight, strength, and general tone resulte; on the contrary, persons who are too stout or plethoric should follow an opposite course,-Dr. Wm. T. Cathell, in the Maryland Med. Jour.

Procese of Slalng Paper.

The advantage of using aluminate of soda for saponifying the rosin used for size, instead of soda ash or caustic sode is said to lie in the fact that in filling the paper its alumina serves the same purpose as the alumina of the alum generally nsed, rendering it practicable to dispense with alum entirely, and in the case of its use together with aluminate of soda giving an excess of alumina, which is a valuable addition to the pulp at this stage of its manufacture. The further advantage of using soluble salts of magnesia and cal cium instead of alum to decompose the rosin soap is that these salts are neutral, while alum is acid, that they are cheaper than alum, and in case of the mar nesia salts the precipitated magnesia is a valuable addition to the pulp.
A new method of precipitating alumina in the pulp in the beating engine is closely allied to this process and consists in adding aluminate of soda to the saponaceous solution of rosin mixed with pulp, together with the sulphate or chloride of magnesia, the chloride of calcinm or the sulphate of alumina used to precipitate the rosin from the soap and form with it the sizing compond. Where these substances are used in solution they should be added separately.
The sulphuric or bydrochloric acid of the above amed salts will combine with the soda resinate or soap, freeing the resin acids (pinic, abietic and sylvic), and also with the soda of the aluminate of soda, pre cipitating the alnmina; at the same time the magnesia lime or alumina of the sulphate or chloride used is precipitated, and thus an excess of alumina or mag nesium aluminate which serves as a filler, besides the size formed from the resin in the usual way, is secared.
The reactions incident to the process may be given as follows : $2 \mathrm{NaR}+2 \mathrm{NaAlO}_{2}+2 \mathrm{MrSO}_{4}=2 \mathrm{Na}_{3} \mathrm{SO}_{4}+$ $\mathrm{MgR}_{\mathbf{7}}+\mathrm{MgAl}_{2} \mathrm{O}_{4}$; and when aluminum sulphate i used, $12 \mathrm{NaR}+6 \mathrm{NaAlO}_{2}+3 \mathrm{Al} \mathrm{I}_{2}\left(\mathrm{SO}_{4}\right)_{2}+12 \mathrm{H}_{2} \mathrm{O}=$ $9 \mathrm{Na}_{3} \mathrm{SO}_{4}+4 \mathrm{AlR}_{2}+4 \mathrm{Al} \mathrm{I}_{3} \mathrm{O}_{3}+\left(12 \mathrm{H}_{2} \mathrm{O}\right)$.

Remedy for Phylloxera.

The introduction of American plants to replace those destroyed by parasites in French vineyards has not arrested the use of insecticides for the protection of French vines still attacked by Phylloxera, and for this purpose carbon bisulphide (either pure or dissolved in water), sulpho-carbonates, and submersion continue to be employed with more or less success. The carbon bisulphide is by far the more efficient. but is too vola tile and does not diffuse with sufficient rapidity. When however, it is mixed with vaseline, its volatility is re duced and its diffusibility is increased, the former proving advantageous in light and calcareous soils, the latter in heary soils, in accordance with theoretical considerations. The vaselined sulphide is applied in the same way as the ordinary sulphide, depositing some at the foot of the vine stock and spreading the rest over the surface ; this treatment is found to be effectual ; with it Phylloxera is no longer seen in the roots, vege tation is luxnriant, and numerons new rootlets indicate a decisive increase in vitality; the manuring on a test tract of land had not been altered for six years therefore the improvement was solely due to the insec ticide.-P. Cazeneuve.

A Now Local Ansenthetic

Dr. C. Redard, Clinical Professor at the Geneva School of Dentistry, speaks highly of chloride of ethy as a local anæsthetic. It is a colorless, mobile liquid, having a peculiar and pleasant odor and a sweetish burning taste. Its sp. gr. is 09214 . It is slightly soluble in water, but dissolves readily in alcohol. It is sent out for medicinal use in hermetically sealed glas tubes containing a little more than two drachms each When required for use the point of the tube is snipped off, and the warmth of the operator's hand is suf flcient to cause a very fine jet of the chloride to be pro jected on the part to be ansesthetized. Up to the pre sent its use has been confined to dentistry and as an external application in nearalgic affections, but there is little doubt that in a short time its value will be tested in general sargery. Its action is similar to that of methyl chloride.

TRANSPORTATION OF GRAIN IN THE UAITED states.

The immense grain crop of the present year has at racted much attention. It is beliesed that the sub ject of the transportation of the vast quantity of grain of all kinds will be of interest to our readers.
The Armour Elevator Co., of Chicago, Ill., one o whose elevators forms the subject of the illustrations accompanying the present article, is a representative company. They possess a number of these structures, with an aggregate storage capacity of nine millions of bushels of grain. In a working day fifteen hundred cars can be unloaded, and in an hour about 300,000 bushels can be loaded into cars or veasels. The different elevators are designated by letters extending up to F. They receive grain from the Chicago, Milwankee and St. Paul and the Chicago, Burlington and Quincy Railroads. An immense area of country is tributary to these lines, the first named representing 6,1164 miles and the last named 6,295 miles of road. Through these lines North and South Dakota, Minne sota, Wisconsin, Illinois, Indiana, Iowa, Nebraska sota, Wisconsin, Illinois, Indiana, Iowa, Nebraska,
Killsas, and Missouri are drained to the great center K :ansas, and Missouri are drained to the great center
of distribution where these elevators are situated. of distribution where these elevators are situated.
Even Texan grain reaches them en route to the East and to Europe.
An interesting shipment occurred in Augast last when the elevator illustrated in the cuts received a cargo of wheat by special train from the newly settled Oklahoma. This was the first shipment of wheat to the North from that region.
The salue company have a line of grain propellers plying on the lakes, and own 2,500 cars devoted to transporting grain. The elevator known as elevators A and B, receiving grain vators A and B , receiving grain
from the St . Paul road, is the frow the St. Paul road, is the
largest elevator in the world largest elevator in the world
under a single roof. Elevator under a single roof. Elevator
D and its annex belonging to D and its annex belonging to
ihe Armour Company surpass it in capacity, but are not a single unbroken structure. It is rated at a storage capacity of $2,500,000$ bushels, can unload 500 cars per day and deliver 100,000 bushels per hour to cars and boats. Cars enough to keep it at work for four days can be accommodated in the great yard annexed to it. The building proper is 550 feet long and 156 feet high. An engine of 1,200 horse power is employed in driving the elevating belts.
The general features of its construction are the following. It couprises a main building surmounted by what is termed the cupola. The wain driving engine is situated on about the ground level, at one end of the building. Along the top of the cupola a counter-shaft, the full length of the building, is carried. This is driven by the engine. 'The main belt is of India rubber and canvas. eight ply in thickness and sixty inches wide. This runs very nearly vertically from the engine driving pulley to the pulley on the countershaft, one hundred and fifty feet above it. All along the countershafts are the driviag pulleys for working the twenty-eight elevator belts. These belts are made also of India rubber belting, and carry steel buckets riveted at regular intervals along their outside face. As the belt travels up on one side it carries up full buck ets. At the top these pass over the driving pulley and are emptied as they turn over, and then they descend empty on the other side of the belt. From the point of delivery of the belt the grain passes by gravity through inclined chutes to the main body of the elevator, and is directed by one or the other of the chutes to any desired point. Fig. 7 shows a portion of an elevator belt, with the buckets on the ascending side of the belt.
The grain from the elevating belt falls into the wouth of a chute which rotates on a vertical axis, whose prolongation would pass through its receiving end or mouth. Thus, when swang around on its pivot, its receiving wouth remains unchanged in position. The open ends of a number of chutes leading to the garners corresponding to respective bins below are arranged in a circle around the revolving chute or "revolver." Each is numbered in accordance with the bin it leads to. The revolver can be swung so as to connect with any one of these. In this way one ele vator is made to feed a number of bins. The arrange
ment is shown in Fig. 2 and can also be seen in Fig. 3. went is shown in Fig. 2 and can also be seen in Fig. 3.
Below the chutes on the next floor are what are known as and have just been referred to as garners.

These are simply square bins holding 1,000 bushels each. Immediately under each is a platform scale with its bin of the samesize as the garner above it, and receiving grain from the garner, when desired. Here the grain is weighed. The garner, it will be seen, can receive grain during the operations of weighing and discharging the weighing bin, and when the latter is enptied can at once refill it. In Fig. 3 the garners enptied can at once refillit. In Fig. 3 the garners
and weighing bins are shown. In Fig. 6 one of the and weighing bins are shown. In Fig. 6 one of the
scales and weighing bins is illustrated. A hand hole is sales and weighing bins is illustrated. A hand hole is
provided for each weighing bin whence samples can be provided for each weighing bin whence
drawn. This is shown also in Fig. 6.
From each weighing bin the grain is delivered into he bins and pockets that complately fill most of the beight of the main building. These range in size from 500 to 7,000 bushels capacity, 80 as to suit every requirewent. Much of the grain received is simply graded and an equivalent weight of grain of the same grade is delivered when called for. Other grain is received to er received with its "identity preserved." In thi case, the specific prain and no other must be delivere n call. The great variety in size of bins adapts evator to this work.
The garners, weighing bins, and storage bius have sloping bottoms, so that no grain lodges in them. An inclination of six inches in a foot is aufficient to insure this.
Grain is weighed once when received and once when
Grain is weighed once when received and once when
elivered. Each weighing operation involves the ele-

loading a vessel with grain.

Some of the bins, termed, as has been just stated, cleaning bins, are equipped with winnowing fans for blowing out dust and chaff and with screens through which the grain bas to pasa. The latter remove the coarser particles. The winnowed and sifted grain then falls into the bin.
The bins all terminate some distance above the ground level. A train of cars has ample head room be low them. From the level of the pottoms of the bins to the weighing floor the entire area is devoted to the honeycomb of bins, except the few small tranks through which the elevator belts travel or through which grain descends into bins situated under other ones. A space at one end is also free for the great driving belt to travel in.
The elevator belts descend into hoppers below the ground surface into which grain to be elevated is deivered. At intervals along the platforms forming the bottom floor are trap doors giving access to these hoppers. Grain never remains there, but it is at once elevated.
One of the cuts, Fig. 5, show how it is delivered from cars into these elevator hoppers or chambers. What is known as a steam shovel is employed. This is a scraper about three feet square to which a rope is attached. The rope is attached to steam apparatus by which it is taken in at the proper time, as if on a windlass. The operative draws the shovel back into the car of grain and holds it nearly vertical and pressed down into the grain. The rope draws along the shovel with the grain in front of it and a number of bushels are delivered at each stroke. In this way a couple of men can very quickly empty a car. The movements of the sufficient rapidity to keep the men in active movement.
One of the features of this ele vator is the use of the electric light. It is equipped with some so arranged as to light the interior of cars, so that night work can be carried on. In the recent heavy grain deliveries it was found necessary to work day and night.
The portion of such elevators containing the bins is built without framing. Planks are laid flatwise upon each other and spiked through to the layer spiked through to the layer
below. In this way the outer below. In this way the outer
walls and the bin divisions are built up, giving immense strength and power to resist lateral thrust. A usual timber for the sides is 2×8 inch spruce, giving eight inch walls, and for the bins 2×6 inch is often employed. The Armour elevator contains over 8,000,000 feet of wood, and about $4,000 \mathrm{kegs}$ of nails were used in its construction. The main building is bricked in outside of the timber walls, and the roofs and cupola walls are covered with tin. It was erected between June, 1887,
vation of the grain from the lower floor, where the bins deliver it clear to the top of the building, for delivery through the revolver and fixed chute to the proper
scale. Transfer elevators are employed to effect the trans er of grain from one bin to another. These elevate it o that it can descend through inclined chutes in th desired direction. If the chute does not carry it! fa nough, one or more additional elevators and chute re called into requisition.
It is evident that a vast amount of complication is avolved in the perpetual filling and emptying of bins, ue to the receiving, delivery, and transfer of grain building. The receiver's offce is shown in Fig 1 this room the record is kept. It contains a large blackboard divided into squares. Each square denotes a bin and is numbered in accordance with the bin number. The numbers are the same as those painted on the mouths of the fixed chutes as shown in Fig. 2 of the cuts. Upon each square the accountant marks with colored chalk the contents of the particular bin, the bushels of grain, its kind, grade, ete. For different classes of grain different colored chalk is used.
Again the bins are divided into storage, cleaning and hese in bis. It is important to see at a glance how cordingly above the blackboard proper is a plan of the system of elevators and chutes, so that the proper course to be followed by grain under any given cirinstances is at once seen
One function of the elevator is the cleaning of grain.
nd Maral 1889 being put in named date. It cost about $\$ 600,000$.
The elevator described represents one of many similar structures situated in the principal cities of the United States and designed to handle the enormous grain crops of the Western States and Territories. This group of elevators, Fig. 4, represents but a fraction of Chicago's elevator capacity. To give some idea of the extent of the business in our cities, the following statement of number of elevators and their capacity forfsome leading cities will be of interest :

The elevator charges of course are subject to hange, but in general are based on the following services rendered : 1. Receiving, which includes a fixed period of storage, which may be twenty days. 2. Extra storage based on a minimum period, such as fifteen days. 3. Cleaning grain as described for the cleaning bins. 4. Transferring grain, as from cars to barge or vessel, or vice versa. The favorite position of elevators is on water, to ensble them to serve either cars or vessels as required.
The great crops are corn, wheat and oats. In the year 1890 the corn crop was $1,489,970,000$ bushels, at an verage of 20.7 bushels per acre; the wheat crop 399, 62,000 bushels, at an average of $11 \cdot 1$ bushels per acre and oats $523,621,000$, at an average of $19 \cdot 8$ bushels per
(Continued on page 261.)

To Remove Iron Ruat.

The engineer who is so unfortunate as to have a portion of his engine become rusted, or the more fortunate man who takes charge of an engine which has been neglected and is corered with rust, finds before him tedious job in cleaning and getting the metal to again present a polished surface. Rust, chemic ally considered, is an oride of iron when it ap pears on iron or steel, but the combination of oxygen and any other metal will form a rust, although in such cases it is usually given another name. The combination of oxygen with iron can only take place to an appreciable extent in the presence of moisture or hydrogen, and if extensive leaves little depressions in the metal when the rust is removed. This occurs from the fact that when the oxygen combines with the iron, that portion of the iron forming the combination is oosened or separated from the mase. There are wo ways in which rust may be removed from iron w wat wire and r steel. The first and moet common practice is by the use of some abrasive material, and the process is usually termed scouring. Another method is by chemical action, by the application of some chemical applied in solution, which has a high affinity for oxygen and which withdraws the oxygen, leaving the iron particles free.
One of the best compounds for such purposes is given by the Chronique Industrielle as follows: Potassium cyanide 15 grammes, soft soap 15 grammes, whiting 30 grammes, and sufficient water to form the ingredients into a paste. This is to be applied as a scouring. material and well rubbed over the rusted surface, after which it is to be thoroughly wiped off and a coating of oil opplied to stop lurther action. The active of on applied to stop further action. Thesen ere rialin this couposilon lo the potassin eyanide, which bas the strongest deoxidizing property of any substance with which we are acquainted; and further, it is one of the most poisonous substances known, the base being potassium, which is combined with cyanic acid, and cyanic acid is so poisonous that it is extremely dangerous to use in any manner unless partially neutralized by combination with some other substance, as in the present case.
Cyanic acid is of itself a gas, and in this condition it is extremely destructive to life, the inhalation of even a small quantity being sufficient to cause instantaneous death. When in solutiou in water the liquid is called bydrocyanic acid, a single drop of it, if taken intern ally or entering the system in ly or entering system in any manner, belhg sumient o cause death within the short space of two seconds of
No particular danger s to be apprehended from the ne of the composition given for removing rust, as the addition of soft soap, which is of equal weight with the cyanide of potassium, goes far to counteract the acridity of the cyanide. Then the further addition of whitin in double the awount of g in reduce the streneth ganide reduces the strength the compound so much that it is relieved of the greater part of its dangerous roperties.
If any one attempts to make use of this compound for scouring purposes, we would suggest that he do so only when the hands are free from abrasions of any kind, as if it should come in contact with any portion of the flesh where the skin is removed a very bad sore would probably be the result.-Stationary Engineer:

Corn Beer.

The Handels Museum of July 2 states that a new brewery product, namely, beer made from maize, is being manufactured and consumed in increasing quantities in France. The cost of production is said to be nuch below that of beer ade from barley, notwith aade frow barle, tanding that the beer itself in no way inferior to the tter.
The new beverage is not the result of any improved process, but is made by malting naize, of which it is a pure product, and not (as is done in
pome districts) the result of mixing maize meal with the worts of barley malt. Owing to the high price of malt, brewers have for a long time been driven to use unmalted cereals for brewing purposes. Experiments have been made with wheat, maize, rice, potato meal,

washing and extracting mill-sectional view.
maize sirup, etc.; in such cases there was an insufficient development of the saccharin principle, and, owing to a lack of soluble nitrogenous bodies, fermentation did not proceed satisfactorily. Hence the beer became spoiled by a second fermentation, and further there was a lack of albuminous matter and phosphates, which constitute the nutritive properties of beer These defects are all said to be remedied by using waize malt.

THE CASTAATOB AND LARA FIBER CRUBHING WA8HING AND EXTRACTING THLL

AI IMPROVED FIBER TREATING MILL.
Messrs. Gabriel Castaños and Guadalupe Lopez de Lara, two Mexican engineers, have invented and introduced the fiber crushing, washing, and extracting will own in the accompanying illustrations, which has already been successfully ewployed in Mexico in the treatment of the maguey plant, whose fiber is an excellent substitute for hemp, and from the fermented juice of which is made a sort of brandy called mezcal. For the proper treatment of this plant, the dextrine juices of which are converted into glucose during the preliminary operations, it is necessary to thoroughly disintegrate and separate the fiber, at, the same time washing it efficiently, to extract all the juice containing glucose, and the methods of doing this work heretofore employed by Mexican manufacturers have been most rudimentary and imperfect. The will we illustrate is said to satisfy all the conditions we illustrato is said to satisfy an the conditions of a good machine, giving sure and satisfactory results, and it is claimed that it may be advantageously employed for the extraction of the juice of all kinds of fruits, for oil and the separation of the fiber, in the manufacture of sugar from beets, and in all industries connected with the treatment of pulpy or fibrous materials.
The annular bed plate of the mill has a central depressed basin, with a perforated cover or strainer. The juice, running into this basin as the mill is operated, is conducted by a pipe to a receiver at one side, and there is a central slepe fixed in the basin affording a journal box for a vertical shaft connected by bevel gears with a horizontal driving shaft The vertical shaft carries at its upper ing a three-armed upider-like frawe, each aruper end a hes aren spid which has depending hangers, the hanger at the inner end of each arm being ecunected with a collar fitting on the vertical shaft, and the hargers having boxes which receive the journals of conical rollers, rolling upon and rotating around the axis of the bed plate. Fixed to the vertical shaft immediately below the spider is an arm with depending brackets carrying a cone-shaped brush, the ends of the bristles just reaching the bed plate and the bristles being preferably of wire, although the construction of the brush may be modified to adapt the uachine to the treatment of different substances. The brush is hung in the machine with the base of the cone outward, and its axis is at an angle to the arm on which it is hung, so that as it revolves is forces the material gradually forces the material gradually toward the tate The auge of the bed plate. The augle of inclination of the brush can, however, be easily changed, to. more the fresh material more or less rapidly to the outside. With the brush at its greatest inclination twenty-five revolutions are required to rewove the material from the bed plate, and during this operation it will be pressed upon an equal number of times by each of the revolving conical rollers the renolving conical being thus seventy-five time being thas seventy-hve times repeated on all portions of the material. A longer period of treatment may be obtained by changing the inclination of the brush, which may be so arranged as to move the material only in a circle, where it will be kept continuously under the rollers as long as may be desired, and will not be moved toward the outside at all until a change outside at all until a change The revolution of purpose. The revolution of the brush is effected by means of a vertical shaft having a pinion on its lower end meshing with teeth on the upper end of the sleeve in the central basin, a beveled pinion on the upper end of this shaft meshing with another pinion on a horizontal shaft on the brushsupporting arm, at the onter end of which is a short verti cal shaft with bevel rear connecting with the outer end of the brush shaft so that as the brush-supporting urus swings around, the brush shaft will be revolved. The material. cut in pieces of the desired size, is delivered frow the hopper to the central portion of the bed plate, and water is supplied as may be necessary,
either cold or hot, according to the character of the aber. Maguey juice is very heavy, having about the consistency of sirup, and it is necessary to sapply water to thin the juice so that it will flow readily, the juice also being wore easily extracted when the mate rial is thoroughly wet. Simple appliances or accesso ries can be readily added to keep the temperature of the machine, or its bed plate and rollers, compara tively high, should this be deemed advantageous in the treatinent of some kinds of material. The water supply pipe is connected with a circular pipe mounted on the spider, as fully shown in one of the views, and extending laterally fron this pipe are bent branches having at their outer ends suitable jets which spray the water apon the bed plate near the rollers. The sapply pipe is bent inwardly above the hopper, so that its axis will align with the central shaft, and it may revolve with the hopper on which it rests. A trough extends around the outer edge of the bed, in which travels a fork supported frow a bracket on the outer end of the brash-supporting arm, and at one point in the trongh is a suituble opening for the dis charge of residuan, the fork pushing along the mate rial forced outward by the brash, after the jaices have been thoroughly extracted, and a barrow or other suitable receptacle being placed under the opening to receive it.
These millis are being manafactured by Messrs. Robert Deeley \& Co., of New York City, and further particulars may be ubtained by addressing Messrs. Fred'k Probst \& Co., No. 51 Broad Street, New York City, or Mr. Gabriel Castaños, Apartado de Correo 48, Guadalajara, Jalesco, Merico.

Experiments in Sericulture in Germany.

One of the reasons why the propagation of the silk worm (Bombyx mori) north of the Alps has gradually decreased to almost nothing is the want of suitable food for it, as the white mulberry tree, whose leave furnish the best nourishment for the worm, does not well grow in the climate of Central Europe. Repeste experlments have been wude, therefore, in Germany to feed the silk worm with other than mulberry leaves, but most of them proved failures. It seems, however that renewed experiments, which were undertaken at Munich, have been fairly successfal, and as the climate of the Middle and Eastern States is about the same as that of Central and South Germany, it may be of interest to American sericulturists to communicate the report of the Augsburg Allgemeine Zeitung of a lecture delivered on the subject at the centennial celebration of the Manich Veterinary Academy by Professor C. O. Harz, as follows
By preliminary experiments with various races of the mulberry silk worm it had been ascertained as early as 1885 that the worm may be compelled by hunger to eat the blossoms and leaves of several in digenous plants, especially of those of dandelion and salsify (Scorzonera hispanica) and that it can for some time subsist upon them, especially if mixed with mal berry leaves, and that several worms which had for four weeks kept alive on this food, although with very little growth, when afterward fed with mulberry leaves alone, produced normal cocoons nevertheless. Another experiment was made in 1888 with the yellow Milan worms and leaves of salsify for food, which, however, had again to be replaced by mulberry leaves toward the close of the feeding period, with the result that out of 1280 worms, 14 cocooned. The cocoons of these worms were lighter, the threads spun by them thinner and weaker, than those of the original Milanese, but from most of them well formed moths were obtained, which produced 389 eggs. In the following year (1887) 357 little worms issued frow these 389 eggs, which were now fed with salsify leaves alone, giving 27 cocoons, from which 26 moths were developed, which laid 1646 eggs. The thread of this generation, which had been exclusively fed with salsify leaves, was de cidedly stronger than that of the preceding one, which had still partly been fed with mulberry leaves. In 1888 nearly all the 1646 eggs hatched, the first 1140 were again raised on scorzonera leaves alone, and yielded 338 normal cocoons, whose thread was in strength nearly equal to the original Milanese silk. It broke by a weight of 5 grammes, while the normal thread resists a weight up to 6 grammes. Moths were obtained from nearly all the cocoons, and laid 18,000 eggs. A bout 9,000 of these eggs were in 1889 again hatched in the incubator at $25^{\circ} \mathrm{C}$. and the 3,700 worms issued in the first three days were taken to be raised. Although the cold and damp weather and scarcity of food acted unfavorably, Dr. Harz obtained after 33 days 755 cocoons, whose easily reeled thread was in length and strength equal to that of an average crop. The fact was achieved, therefore, by four years' culture from generation to generation, to render the true silk worm, Bombyy mori, so far accustomed to exclusively subsist on the leaves of salsify as to multiply and yield a cocoon fiber which is nearly equal to ply and yield a cocoon fiber which is nearly equal to
that obtained by mulberry food. The cocoons prothat obtained by mulberry food. The cocoons pro-
duced in the fifth year, 1889, on the whole left little to wish as regards size and weight; the largest one
weighed 1.39 grammes, the silk thread attained a
length of nearly 800 meters, its diameter is exactly length of neariy 800 meters, its diameter is exactiy
that of the original Milanese ailk thread, it has the same tensile strength as the latter, breaking only at a same tensile strength as the latter, breaking only at a
load of $5-6$ grammes. The gloss of the fiber is exactly that of the normal thread of the wulberry worm. The latest season (1880) of the culture of this new race of silk worms, as Dr. Harz states, again resulted in satisfactory progress; 84.2 per cent of the worms exclusively fed scorzonera leaves yielded nornal coocons; while the heaviest of the preceding year weighed 1.39 grammes, those of this year weighed 1.88 gramines; their thread was in gloss or tensile strength completely equal to the ordinary silk from nulberry leaves; the lifetime of the worms was 30 to 47 days. With mulberry food the worm of Bombyx nori required in the past century in Central Europe 40-50 days, while they now used only 29-33 days for he absorption of nourishment.
The cultivation of the new food plant salsify (Scoronera hispanica) presents various advantages ove that of the mulberry tree. The salsify plant can in the garden as well as in the open field rapidly be grown to any extent ; it grows in all Europe in mountainous regions as well as in low lands; if sowed in May, a fair crop of leaves is already obtained in autumn, but an abundant yield in the spring of the next year: late frosts scarcely affect it, while with ns (in Bavaria) the mulberry tree yields abundant crops of leaves only after 10 to 20 years. The frequent rains of the spring and earlier summer seasons render the feeding with mulberry leaves very troublesonne; wet food causes disease among the worms, which die n great numbers; stale leaves they. like not to eat. This trouble is almost entirely overcome in feeding with salsify leaves; a movable awning is constructed
at a small expense from boards and sack cloth (or

WABHING AND EXTRACTITG MILL-PLAN FIEW.
other material) beneath which the required quantity f food can be kept dry. Besides, when not used for sericulture, the roots of scorzonera yield food for man and the leaves for domestic animals.
On the other hand, the leaves of evergreen buckthorn are recommended as food for silk worms. This discovery was made by an American lady, who employed her leisure hours in raising silk worms and, when the uncommonly mild weather of the winter beore last caused the worms to appear before the mulberry and Osage orange tree had produced any leaves, ried the buckthorn leaves with good success. When fterward one-half of the worms were fed with Osage range leaves, and the other continued on buckthorn, the surprising result was that the latter yielded larger cocoons of finer threads than the former.
some Telescopes in tho United Stater.
Dr. Wm. H. Knight gives in a recent number of the Sidereal Messenger a list of over one handred telesopes, with names of owners, uakers, etc. The list acludes only those instru
The twelve large
The twelve largest refracting telescopes are those of be Lick Observatory with an aperture of 36 inches, Yale University 28, U. S. Naval 26, Leander McCormick 26, Princeton 23, Denver 20, Smithsonian 20, Dearborn $18 \cdot 5$, Carleton College $16 \cdot 2$, Warner 16, W Washburn $15 \cdot 5$, and Harvard 15.
The largest reflecting telescopes are those of Harvard College, 28 inches, and Rev. Dr. John Peate, 22 Dr. Peate, who is an amateur maker, is now finishing up a $301 / 2$ inch silver-on-glass mirror, which will be presented o the Allegheny College at Meadville. When mounted t will be the largest reflecting telescope in this counry. There are numerous reflectors made by Brashear rom 9 to 12 inches in diameter.
The Clarks are now grinding an object glass of 40 nches for a telescope to be mounted in an observatory et to be built upon Monnt Wilson in Southern Caliornia.
Though the Lick Observatory possesses the largest
telescope at present, Harvard College has the best equipped observatory for general astronomical work in America, and one of the best in the world.
In foreign countries the largest refractors are those at Pulkowa, near St. Petersburg, 80 inches, Nice $29 \cdot 75$, Vienna 26•75, Gateshead, near London, 25, and Paris 286.

The largest reflectors are those of Lord Rosse, in Ireland, 72 inches, Melbourne 48, Paris 47, Mr. Comnon's, in England, $87 \cdot 5$, another of Lord Rosse 86 Toulouse 82.4, Marseilles 81.5, Greenwich 28, and Cambridge 24.

Castor 011 and Malt Extract.

Castor oil has for many years been regarded as one of the wost generally useful aperients, but its employment has been considerably limited on acconnt of its nauseous flavor. As many experiments have been made with a view of obviating this difficulty, the idea suggested itself of employing extract of malt as a vehi cle, since the extract has been found so useful in mask ing the taste of cod liver oil and other medicines of a nauseating character which are objected to by so many people.
The specimens presented are composed of nearly equal quantities of oil and extract of malt. They have been submitted to many therapeutists, and a general opinion has been expressed that the nanseous flavor of the oil is very little or not at all perceptible, and that no disagreeable taste is left in the month after the administration.
One advantage in the emplosment of extract of malt for disguising the flavor of castor oil is that the extract is itself a mild aperient in large doses and may be found a valuable aid in connection with the castor oil The rationale is readily seen. The gam in the Mistara olei ricini tends to canse early decomposition of the preparation, whereas the pseudo-solntion of castor oil in malt extract appears to keep perfectly for an inde finite period. It will be observed that the mixture is light and clear. I am not yet able to say whether the oil is actually dissolved in the extract; I hesitate to call it a solution, but the chief evidence in favor is that, as I show it, it is translucent, and upon adding to water the mixture becomes turbid and forms an to water the mixture becomes
emulsion. The combination is I believe well adapted emulsion. The combination is I believe well adapted
for giving to children and fastidious persons, and thas assists in making the oll available to patients hitherto unable to take it
For preparing the mixture the mortar should be first warmed and the extract of malt triturated in it until it beconses somewhat liquefied. The castor oil should then be added gradually during continuous tritara tion.-S. M. Burroughs in paper read before British Pharmacentical Conference : after Chem. and Drug.

Fig Wine.

Figs are largely employed, especially in Algeria, for the production of fictitions wine. For this purpose figs from Asia Minor are preferred on account of their relative cheapness and richness in sugar. When the fruit is treated with a suitable quantity of tepid water acidifled with tartaric acid, fermentation rapidly com mences, resulting in the production of a vinous liquid of about 8° alcobolic strength, and so inexpensive that it defles all competition of genuine grape wine, Alge rian or otherwise. Fig wine cannot be distinguished either by taste or the ordinary methods of analysis from genuine grape wine, especially when it is mixed with a proportion of the latter. The detection of fig wine, however, is rendered comparatively easy by the fact that it contains mannitol. In order to separate the inannitol, 100 c . c. of fig wine are evaporated to a sirup which is allowed to stand in a cool place for 24 hours. At the end of this time the residue will have solidified, well defined groups of crystals being formed. The crystals are washed with cold alcohol of 85 per cent strength in order to remove impurities. The residue is mixed with animal charcoal and extracted with boiling 85 per cent alcohol and filtered. The al coholic solution yields on evaporation a crystalline mass of mannitol which may be recognized by its physical and chemical properties. Certain white wines from the Gironde district, as well as raisin and some other wines, contain mannitol, but only to the extent of a few decigrammes per liter; while fig wine contains from 6 to 8 grammes per liter. By a deter. mination of the mannitol it is possible to detect an adulteration of normal Algerian wine with one-half or even one-fourth of fig wine.-P. Carles.

Steam Wagons.

The owners of the San Bernardino County, Cal., iron mines, near Haslett, propose to haul ore from the mines to the railroad with steam traction engines.
The steamers were built by J. B. Osborne to haul ore 100 miles across the Mojave desert. Each engine hauls two trail wagons. The engines have $20 \mathrm{H} . \mathrm{P}$. boilers. Auxiliary engines are placed in the trail wagons, which are connected with the forward boilers by steam pipes.
It is expected each set of wagons will make a trip every two days, hauling twenty tons of ore.

TRANEPORTATION OF GRANT III THE UIIFRD gTATES.
 (Continued from page 858.

acre. Rye with $27,140,000$ bushels and barley with $58,800,000$ complete the great grain crops giving a gra total of $2,498,793,000$ bushels from 189,589,286 acres.
Much of this is exported either as grain or as flour We will take 1890 as before. Of wheat as grain, 49, 271,580 bushels were exported, representing about one eighth of the crop. This is supplemented by an ex portation in the same year of 11,819,450 barrels of wheat flour. Of corn $86,817,220$ bushels and of oats 12 , 207,359 bushels were exported. There were smalle exports of rye and barley and of rye filour, while 14, 725, 268 lb . of bread exported represent a quantity of flou of different grades.
The total exports reduced to a bushel basis covering flour and meal and ail cereals was $203,220,344$ bushele, which is less than one tenth of the crop.
Thus it is evident that America, while fond of con idering herself the world's granary, is far busier feed ing herself thau in feeding others.
These exports are of domestic produce, but there was an export also of foreign grain, aggrepating 654,225 bushels. While thus pouring out her surplus products, America also imported 11,795,548 bushels of grain, in cluding $9,875,407$ bushels of barley alone.
The business done in exports at the different seaports is interesting. Reducing flour and meal of all kinds to the bushel standard, we have for the following porte in 1890 :

What is altimately done with the grain received at any given city is not easily determined, except in the case of seaboard cities. In the case of New York, $128,018,070$ bushels, on the basis of the last table, were received, indicating that a little over one-half the re ceipts was exported to foreign countries from this cenceip
At seven Atlantic seaboard ports, 280,149,420 bushel were received, an excess of about $77,000,000$ bushele over the total exports.
The year 1890 by no means represents a good crop The comparison with other years is given here.

 Year.
1880
11881
1888
1883
1884
1885

What the production and acreage of the present year will be cannot be yet definitely stated. It is cer tain that it will be very large. One very curious thing to notice in the last table is the almost anbroken inrease of acreage, with attendant fluctuations in crops Thus 1887 shows an increase in acreage of about $11,000,000$ acres over 1883, but with a very slight inrease in production
The fluctuation in yield per acre is shown in the fol owing table for the same years. This fluctuation is a the root of the above difference in proportion of area cultivated to crop produced.

Enguch and American High spood Periormancea. Concerning the rapid railway trips lately made in this country, our London contemporary Engineering remarks :

There has been a train ran in America which has eclipsed the best examples ever yet seen in any part of the world. We pride ourselves on having the finest express service in existence, and no doubt we have, if it be considered as a whole, but our best performances are now equaled in America, and our very finest run, which ouly a few years ago excited the greatest enthusiasm, has been surpassed. It will be remembered during the race to Edinburgh that on August 18, 1888, the West Coast train ran from London to Edinburgh ($4001 / 4$ miles) in 7 hours 38 minates, and on the following day the East Coast train covered its distance (3021/2 miles) in 7 hours 32 minutes. Again, on the 81st of the month the East Coast did the distence in 7 honrs 28^{3} winutes. The feat thos performed was $3921 / 2$ miles in $4163 /$ minutes of running time subtracting the 261 $4163 / 4$ minutes of runcing time, subtracting the $261 / 2$ minutes or luncb at York, The speed, excluding stop-
minutes at minutes at Ferry Hill. The speed, excluding stop-
pages, was 56 '5 miles an hour all the way. Including pages, was 56 ' 5 miles an hour all the way. Including
all the stoppages, except the $261 / 6$ minutes for luncheon, all the stoppages, except the $261 / \frac{1}{2}$ minutes for luncheon,
it was 56 miles an hour. This was certainly the best run ever made up to that date, but it was not an example of a regular service. The race only lasted about a fortnight, and ever since 8 hours has been the standard time for the journey on both routes, which gives an inclusiva speed of 50 miles and a running average of $531 / 2$ miles on the longer route. Omitting the luncheon time, the average speed, including all other stops, is 58 wiles an hour, or $400 \frac{1}{4}$ miles in 460 minutes.

Qarrespondence.

Oheap shoos wantol

To the Editor of the Sctentific American.

Will not some philanthropic genius invent a cheap summer shoe, fit for human beings to wear and leapag the foot in its natural position, with freedou for aatural expansion in all directions? Hints might be gathered both from the sandals worn at the birth of the Christian era and the moccasins worn by the mmerican Indians, neither of which would cramp the toee or elevate the heel, and one of which would give ree ventilation, which the modern shoe prevents.
R. 8 .

Oanting Bullets for Ready Idomatifoation.

the Eailor of the Scientiflc American.

I have invented an improvement in bullets, the idea bing to insert a plug of harder metal to dezignate and oliceman was to discharge his revolver at a burglar and he night being too dark for recognition, were the burg ar to escape with one of the marked bullets in his body, t would serve as an identification. Much speculation now spent as to size of bullets, etc., when taken from wounded criminals. The cartridge men think it would hardly pay to wake special bullets, although the novlty is admitted. I think the idea is too good to lie dormant, and am willing to contribate it to the public through either of your papers, of which I am a subscriber.
The idea would be for the police in each city to hav distinguishing mark, such as the following:,+ , Δ, and others
Springfield, M

Gro. H. Irkland.
Springfield, Mass., Sept. 18, 1891.
Interenting Discovery at Woliville, N. s.

To the Editor of the Scientiflc American:

At the head of Minas Basin, a few feet above tide water, some very interesting remains have lately been found on the premises of Mr. W. C. Archibald, of the town. The place in question has been a small hill of sand as far back as any of our residents can remember but within the last twelve years Mr. Archibald has removed about sir feet of soil, and in doing so came to traces of building. Recently he has had the place thoroughly dug over, and the following remains have come to light.
1st. A floor of hewn boards, probably heunlock, charred on upper side
2d. Rough bricks or irregular pieces of clay reddened nd hardened by fire.
3d. Charcoal, or charred wood, and sticks which may have been wattles.
4th. Iron implements, as wrought nails, file, knife, and portions of vessels.
5th. Copper coin and gun guard
6th. Small pieces of crockery, a bowl of clay pipe wo inches high, and several stems.
There was evidently a small house bere at some remote period, which was burned down and the site of which has since been covered by six feet of sand. The land surrounding this is alluvial, but it is not easy to account for this evidence, or to say whether the remains belong to the Acadian or Norse period.
A. E. Coldwell

Acadia College, Wolfville, N. S., Oct. 1, 1891

$$
-1_{0}^{0}
$$

 entramc. It has a well laid roadbed and easy grad iants. The curves are very bad as far as Albany, but American rolling stock is built to follow a sinuou chere, and winds its way with comparative ease. If Ame should be a notable increase of railway speed in bere, and our expect to see further ill further de creased.

Floral Callfornia.

The Orcutt Seed and Plant Company, San Diego California, have issued an interesting descriptive list of Californian trees and flowers. The writer thinks that there is perbaps no country in the world where the early-spring flowers so change the face of the earth from a desolate waste to a beautiful garden as on the Pacific coast-hills, mesas, monntains and valleys, and the arid plains of the desert, alike quickly responding to the vivifying rain. "California," he say, "has probably already furnished to the horticalturist a preater variety of beautiful flowers and stately trees than any other State in the Union. Yet many others are awaiting the appreciation of man, or wasting thei weetness on the desert air."

Goting Fid of Fleat

A correspondent of the Washington Star, who has been studying the subject of getting rid of fleas, gives this as the result of his investigations: If those who are troubled with this insect will place the common adhesive fly paper on the floors of the rooms infested, with a small piece of fresh meat in the center of each sheet, they will find that the fleas will jump toward the meat and adhere to the paper. I completely rid a badly infested house in two nights by this means.

The Lacquer Tree in Lacquer Tr
Germany.
On his return from Japan, sixteen years ago, says Nature, Prof. Rein. the well known authority on Japanese art and industry, planted in the Botanical Garden at Frankfort some specimens of the lacquer tree (Rhus vernicifera), from which the Japanese obtain the juice employed in the prodaction of their femous lacaner work According acquer wirk. According to the Tires, there are oow at Frankfort thirtyour healthy specimens of the lacquer tree, 30 feet high and 2 feet in girth a yard from the ground; and the young trees. which have sprung from the original tree's seed, are in flourishing condition. It seens to be proved, therefore, that the lacquer tree ose, capabio Ep being cultivated in Earope, and it only remalns to be seen whether the juice is affect od by the changed conditions. The Times says that, to ascertain this, Prufessor Rein has tapped the Frankfort trees, and bas sent some of the juice to Japan, where it will be used by Japanese artists in lacquer work, who will report on its fitdess for lacquering. In the meantime some of the most aminent German nost enise Gerwan chemples of the juice take samples of the juice taken from the trees at Frankfort, and samples of the juice sent from Japan; and should their reports and the reports from Japan be lavorable, it is probable that the tree will be largely planted in the public parks and other places in Germany. In course of time a skilled worker in lacquer will be brought over from Japan to teach a selected number of workmen the nuin of lacquoring the and in thiu way it is hoped and in this way it is hoped that a new art and craft may be introduced into Europe. Professor Rein has been conferring with the authorities at Kew as to the results of his experiment.
It would not be a bad idea for our Department of Agricultare to introduce the lacquer tree.

ACORRESPONDENT sends us the following account of a kaolin deposit recently discovered in Marion Co., Ala., which is said to be very heavy covered in most places by a layer of earth not ex ceedine 4 or 6 feet in thickness. It is in two mound or high hills on eitherside of the large branch of Bear of the larke branch or Bear Creek, which by prope damming will afford ready means for trausportation to the nearest railway station, 12 miles northeast, namely, Bear Creek. Th specimens of the mineral are said to be remarkable for their purity, lack of srady or gritty particles, and absence of any veins or stains of iron, which would deteriorate the value and usefulness of the clay. The deposit seems to be of great depth.

CORTELL UNIVERSITY-THE NEW CHEMICAL LABORATORY.

CORNELL UNIVERSITY-PRINCIPAL FLOOR PLANS OF THE NEW CHEMICAL LABORATORY.

THE NEW CHEMICAL LA BORATORY OF CORMEL URIVERSITY.
The growth of Cornell University and the supe rior facilities which it offer for the instruction of stu dents are exemplified in the new chemical lavora tory lately completed, of which we now present 8 few illustrations, plans, and particulars.
The building was de signed by C. Francis Osborne, assistant professor of architecture at the uniof architecture at the form
versity. It is in the versity. It is in the form
of an irregular paralleloof an irregular parallelo
gram, 186 feet in length, 50 gram, 186 feet in length, 50
feet wide in the main porfeet wide in the main por-
tion and 70 feet in the tion and 70 feet in the wings. The edifice is con structed of red brick, with trimmings of Medina sand stone ; the roof is of gray slate. Slow-burning con struction was employed throughout Across th main part of the buildin main part of then dividing each thoor into three nearly equal parts run two flue walls, 3 fee in thickness, inarked F F in the plans. These con tain a great number of separate air flues leading from the hoods.
The Qualitative Labora tory contains 88 work tab les, arranged in six double rows. Each table is provided with three drawers and three cupboards be low, so that by suitable arrangement of workin hours three students may occupy one desk, making it possible to accommo date, in all, 264 students in this laboractory. There is a circular porcelain sink between every two adjoin ing tables; the waste pipes from these descend verti cally through the floor and discharge into troughs on the ceiling of the sub-base ment below.
Hoods or fame closets with sliding glass sashes, extend nearly the whole length of the flue wall on the east side of the room Several of these hoods are devoted exclusively to the use of hydrogen sulphide, the gas being conveyed by pipes from the sub-base ment, where it is made in large, self-regulating gene rators.
There is a weighing room provided with balances for the use of certain stu dents, who, during part of the year, carry on quanti tative work in the quali tative laboratory. Beyond these roous is situated the chemical laboratory of the United States Agricul tural Experiment Station completely equipped for the various kinds of analy ses bere performed, espe cially the estimation of fat and of nitrogen by the Kjeldahl method
Oxygen and Hydrogen -There gases are obtained by the electrolysis of water in twelve pairs of glass cells with electrodes of lead, placed in a trough of water. The current is brought into the building frow the electric laboratory, where it is generated by a Siemens dynamo driven by the water power of the falls in the gorge below the university. This
dynamo is one of those used at night to light the campus. The current employed for electrolysis is of 5 amperes at 75 volts, and is sufficient to yield about three cubic feet of hydrogen per hour. The tanks for storage of gas have a capacity of fifty cubic feet each From these tanks pipes extend to all the laboratories and lecture rooms of the building, furnishing an abun dant supply of pure gas for chemical work, combus tion analysis, and the projection of lantern views on the screen for the illustration of lectures. A similar complete apparatus is in operation in the physical laboratory, and is connected by pipes with nearly all the lecture rooms of the university.
Organic and Applied Chemistry Laboratories.These rooms have twenty-four slate-topped tables, provided with abundant hood space, pumps for vacuum distillation, and many other conveniences. Adjoining is a room for combustion analysis, a special laboratory for advanced work, a small photographic emulsion room, etc.
Quantitative Laboratory.-There are here 88 tables, ome of which are so divided that two students can occupy the same place at different hours, while each
tains ten balances. The reading room contains the chemical library of the university, numbering about 1,000 volumes, and including bound sets of all the important oreign chemical journals from their first issues. All these books are accessible to students during the work ing hours of the day
East wing of the first floor is chiefly occupied by the aboratories of iron analysis, the sanitary laboratory, the optical room, and the smaller lecture room. The tables in the sanitary laboratory (and distilling room) are covered with lead. The optical room is equipped or spectroscopic and polariscopic work, the use of the microscope and micro-photography. The small lecture oom contains eighty seats.
The Introductory Laboratory is 46 by 66 feet, and contains 88 working tables. Each table contains, however, three separate.drawers with cupboards below, so that three students may work at different times at the same place, making the total capacity of the room 264. During the past year this number has been very closely approached. The room extends up into the
gable of the roof, the heavy beams and trusses supporting whicb are wholly exposed. By this method of
the whole of the second floor of the east wing. The ceiling of the room is formed by the roof of the building , the beams and trusses being exposed; the hall is therefore about forty feet in height in the center. It contains 352 seats, with arm rests. The plan of the room is such that no student is placed at a greater distance than forty feet from the lecture table, and the experiments performed are plainly visible to all The acoustic properties of the hall are exceptionally good, probably owing to its shape, and the effect o the roof trusses in breaking up the sound waves,
Back of the lecture table are blackboards, hung with weights in such a manner that they can be easily raised and lowered, and behind these is a fume closet or hood, which opens also into the adjoining preparation room. The building is heated throughout by steam. The cost of the building, furniture and fixtures was about eighty thousand dollars.
Instruction in the laboratory is given by Dr. G. C Caldwell, Professor of Analytical and Agricultural Chemistry; Dr. Spencer P. Newbury, Acting Professor of General, Organic, and Applied Chemistry; Louis M Dennis, Assistant Professor of Analytical Chemistry

THE NEW CHEMICAL LABORATORY, CORNELL UNIVERSITY-VIEW IN THE QUALITATIVE LABORATORY.

has his own independent locker. The reinaining|construction a pleasing architectural effect and greatly tables are intended to be occupied by one student increased air space are secured. only ; the room is thus capable of accommodating 100 students. The table in the middle of the room is provided with twelve inclosed cases, each containing a simple form or rheostat and the other arrangements nc cessary for carrying on two or three electrolytic determinations at once, with currents varying in strength, at the pleasure of the operator, from one-tenth up to ten c. c. of oxy-hydrogen gas per minute, as usually measured. Some of the other conveniences for quanticative work provided in this room are a stean drying closet of new construction, the temperature of which can be controlled at will up to 105° or above, a number of constant level water baths, kept constantly boiling, in a part of the hoods, heating places in the other hoods and at each student's table, and a suction pump for every student. Distilled water is prepared in a special condensing apparatus in the attic, and is stored in a large tank lined with block tin; from this tank the water is conveyed by block tin pipes to every working room. Air blast is abundantly provided in every room where it is needed from a large reservoir in the adjoining physical laboratory, kept full by an air painp constantly running.
The Balance Room of the quantitative laboratory con-

There is a "rostrum" or raised platform, with a completely equipped demonstration table and blackboard, from which the instructor gives announcements or explanations to the students, and which is so placed as to be plainly visible from all parts of the room. A slate slab for special experiments extends along the west side of the laboratory. In the corners are cases of drawers containing the various chemicals peeded by the students.
The Museum, fifty feet in length, contains the collection of general and applied chemistry, consisting of several thousand specimens, displayed in glass cases, consisting chiefly of the materials and products of chemical industry. Many of the most interesting of these were collected at the Paris Exposition of 1889. The sulphuric acid and alkali industry, the manufacture of glass, porcelain, cement. illuminating gas, and gunpowder, the refining of petroleum, and the processes of photography, are illustrated with especial fullness. . The organic collection contains specimens of all the typical compounds of carbon, a large part of which were prepared by students in the organic laboratory.
The Large Lecture Hall is 52 by 66 feet, and occupies
and Dr. W. R. Orndorff, Assistant Professor of Organic Chemistry. The instructing force also includee six instructors and assistants in the various laboratories.

Parainne in Diphtheria.

Mr. A. M. Sydney-Turner, Surgeon to the Gloncester County Infirmary, informs the Lancet, in reply to inquiries, that he has treated thirty cases of diphtheria (children and adults) with parafine, and has had the satisfaction of seeing every one recover. His plan is to ask for the ordinary paraffine used in lamps, and, having scraped off the diphtheritic patch, to apply the paraffine every hour to the throat (internally) with a large camel's hair brush. As a rule, the throat gets well in from twenty-four to forty-eight hours, and with improvement in the throat the paraffine is applied less irequently, but he continnes its use for two or three days after the complete disappearance of the patches. He speaks definitely as to the therapeutic effects, but is unable to state what the chemical action of paraffine on the diphtheritic membrane is; probably the hydrocarbons in the liquid exert some powerful influence on the membrane.

Thrre are sixty miles of snow sheds on the Central Pacific Railroad.
"Bich" "Biah" on Birdie.
"Bish" says that " birds having long legs have to have a iong neck."
"How's that, Bish?"
"Why, you see, if they didn't have a long neck, they couldn't drink withont sitting down."
"Well, Bish, some birds have long neoks and short legs. How is that 9 "
"You'll find these things are all calculated ont. These birds having long necks have use for them. You are thinking about the swan. Well, he likes a bit now and then from the bottom of the water, and his long neek is to enable him to satisfy this taste; besides, long necked birds feed on food of a poor quality, so that to get any enjoyment out of eating, they have to bave a long neck to enable them to taste it long enough to make it enjoyable.
"How about sDipes?"
"Snipes! well, some of them haven't a very long neck, to be sure, but they have what amounts to the same thiug-a long bill-and they are rigged so that they can tip up to make up for the rest. Now," said Bish, fall of the long neck idea, "the ostrich has the Bish, full of the long neck idea, "the ostrich has the
longest legs of any bird I know. Look at his neck! It easily reaches to the ground. Doesn't this provemy It easily reaches to the ground. Doesn't this provemy
position? And his legs are strong enough to hold up position? And his legs are strong enough to hold up
an elephant. Speaking of the elephant," continued Bish, " he isn't a long necked bird, I mean animal. He hasn't any neck at all, and he is so heavy that he can't sit down every time he wants a drink or a mouthful of hay. See how these things are calculated out for him. Could anything be handier than his trunk?"
"How about snakes, Bish 9 "
"All neck. They can reach anywhere for food or drink. Returning to birds," said Bish, "did it ever ocur to you that birds that roost can't fall over back ward?"
"No, indeed. How do you explain that?"
"Wo, indeed. How do you explain that ?" "We that when see, their begin to lean over backward, their claws tighten like a pair of pipe tongs. I tell you," said Bish, " these things are all calculated out."

Painted Papkr.-Uusized paper is coated with an aqueous solution of dextrin. When this coat is dry a layer of siccative oil paint is applied; and the sheet so obtained inay be used for packing purposes, to reuder fabrics impermeable to water, etc.

IIPPLE HOLDER.

As shown in the accompanying cat, this bolder is double ended and holds two sizes of nipples $1 / 2$ inch and * inch. They are insde in varions sizes running from 8/8 inch to 4 inches, and can be used in a machine or a vise. These holders are so arranged that when the thread is cut, the nipple can be removed by simply starting back the wedge. This loosens the inver part

IIPPLE HOLDER.
of the holder and allows the nipple to be easily raken out with the fingers. The sectional view shown in lower cut clearly shows the operation of the wedge Formerly the nipple was driven in so firmly that after the thread was cut, wrench or tongs had to be used, which often broke or damaged the nipple. Tbese holders are made by the Armstrong Manufacturing Company, of Bridseport, Conn.

Chicago Fair Items.

Mr. James Dredge, editor of Engineering, London, and Sir Henry Trueman Wood, the Royal Commissioners for Great Britain and Ireland to Cbicago's World's Fair, passed through New York last week homeward bound.
They had been to Chicago and selected a site for a building suitable for the British exhibits. The commissioners express their belief that our exposition will be the grandeat that any nation has had and that their manufacturers will be well represented, notwithstanding their aversion to our tariff.

Mr. Steppani, of Berlin, wants to build a Moorish castle on the World's Fair groands, and proposes to spend $\$ 500,000$ on it. He exbibited a structure of this kind at Paris, but its cost was much less. The plans have been submitted to the Committee on Ways and Means, and if they are adopted visitors will certainly be dazzled by the Oriental magnificence of Mr. Steppani's palace. The building, it is proposed, shall be 200×200 feet, one story high, and constructed of brick in the Moorish style. Mirrors will make of the interior a place of brilliant and many times maltiplied refleoa place of brilliant and many times maltiplied refleo-
tions. Indeed, one will be likely to lose himself in the tions. Indeed, one wili be likely to lose himself in the
maze of beveled and prismatic glass, for it is intended maze of beveled and prismatic glass, for it is
that a feature of the castle shall be a labyrinth where the illusions are to be so perfect that on entering one will think he is advancing to an endless series of colonnades.

Good Eyoulght of Indians.

Dr. L. Webster Fox is of opinion that savage races possess the perception of color to a greater degree than do civilized races. In a lecture lately delivered before the Franklin Institute, Philadelphia, he stated that he had just concluded an examination of 250 Indian children, of whom 100 were boys. Had he selected 100 dren, of whom 100 were boys. Had he selected 100 white hoys from various parts of the United States, he
would have found at least five of them color blind ; would have found at least five of them color blind;
among the Indian boys he did not discover a single case of color blindness. Some years ago he examined 250 Iudian boys, and found two color blind, a very low percentage when compared with the whites. Among the Indian girls he did not find any. Considering that only t wo females in every 1,000 among whites are color blind, he does not think it surprising that he did not find any examples among the Indian girls.

RECERTLY PATEITED INVETTIOAB.
 Rallway Appliancea.

Electric Ratlroad. - Ita Robbins Shemeld, Ala. This invenulon providee a special con atraction and arrangement of parts for roade which for the sapply of the current to the motor on the car Spring-actated drams, in boxes a proper distance apart beneath the roadbed, each carry a given length
of conducting wire connected at one end to a carrier to be drawn along by the car, and connected at the othe end to the main conductor, laid the fall length of the line, the carrier being disconnected from the car when
its section of wire ls unwound, when it is drawn beck and wound ap on the drum by the spring, the car a the same time entering apon anot
Snow Removing Apparatus.-James F. Seery, Klingsbridge. N. Y. This apparatas for clearIng railway tracks and rosdbeds of snow is monnted
on a platform car, and consists of rotary brushes arranged to sweep the snow upon heated pipes or into a heated chamber, the snow that is plled on the pipes
being carrted along by auxillary brushes and distributed over lower pipes, or thrown againat pipes lorated above tho lower coils. The snow io thas converted into
heated water, which is delivered apon the roadbed in manner dealigned to dispoee of any snow which ma have been left by the bruehes
Car Coupling.-Jerewiah W. Kirḅy Great Falls, Montana. This coupler is of the "hoo and catch" class, and is designed to be slmple and tlon. The drawhend has longitudinal recesese in it apper face, separated by a partition, and a transveree rock shaft carries lifting arms resting in the recesses, a coapling book being plivoted at the rear end of one of the recesses and a catch bar arranged in the other
recees. The coupling hooks have beveled heads the cara will be anomatically conpled as the come together.

Mochanical Appliances.

Blast Furnace Bell and Hopper - Benjamin F. Conner, Columbia, Pa. This is an imsdapted to evenly diatribute the charging matorial in the farnace, or to throw porions of it to the center
ouly or to the walls as desired. An upper or outer bell closes the mouth of the hopper, and this bell has central opening closed by a lower or inner bell,
counterbalanced beam above the hopper supporting in counterbalanced beam above the hopper supporting the
outer bell, while a lever convected with the inner bell is connected with the pieton of a steam cylinder, a adjastable arm on the piston rod being adapted to en gage the beam, the mechanism supporting and opera.

Drum Shifter for Hoists. - Jeffer son U. Elwood, mcKeesporth Pa. This device is adapted to slide the hoisting drum on the maln driviof shaft of a holictige machine, oo engage the drum with friction pulley or other device or rorating it. It conone of which engages the drum while the other has ping extending from its face and engaged by cam grooves in the face of a collar moonted to tarn. The device is ample and durable, does not weaken the shaft in an way, and permits the operator to shift the collar elthe palley.

Miscellancous.

Fruit Picker.-John H. Woodward, Rochester, N. Y. This is a simple and convenlen device derigned espocially to facilltate the picking of
graper, by means of which the clustere may be readi) separated from the vine, and will not be dropped, but will be held until they can be deposited in a eultable
receptacle. It consiats of a handled bar having pointed end, a spring. preseed knife eliding on the upper side of the bar and a piat orming a atem clamp adapted to operate in anison with the knife.
Pneumatic Game Board.-Edwin L. designed to be beld in one hand in playing is practicall designed to be beld in one hand in playing. is practically sion, the level surface of the board sloping apward to the edge of the depreseion. Around the center are shallow capped depressions, adapted to form resting
places for a light ball of cork or other material ased in places for a ingt ball of cork or other material ased
playing the xame these depressions being connected by cbannels cut to form a track. In each of the depreesions is a perforation extending obliquely down
ward through the board, and the ball is propelled by a ward through the board, and the ball is propelled by a
jet of air from a simple form of bulb or other jet blower, jet of air from a simple form of bulb or other jet blower,
the game requiring that the force of the jet thall be just sofficient to move the ball from
Pneumatic Billiard Table.-This lo another patented invenilon of the same inventor pristing of capped depressions formed in its surface while the balls, of cork or similar material, colored at may be deeired, are propelled by air jets from a jee
blower. The blower is formed with a emall nozzle adapted to at in one of a eeries of apertures formed in the cushion wall around the board, and the game con
sista in propelling the balle to obtain the higheat num sista in propelling the bails to obtain the highent nats
ber of pockets with a certain number of nir pafti.
Metal Lathing.-Charles H. Curtis, Niles, Ohio. This lathing is constracted of sheet met having a series of openings ranning laterally and ob-
liquely through it, leaving oppogitely arrangerd hoods on reverse siden of the sheet, whereby a larke body o mortar connects the outer sarface portion of the planter
with the clinching portion, and but a small portion with the clinching portion, and but a small portion
will pess through and fall behlod the lath. The construction is designed to give special sifing reversed,
lath, on account of the corrugations belng whilit the lath has superior locking qualities and is
easily bandled without cutting the hande, a sheet being
dapted for patting on in any positlon, having no ap or
down, right or left, or front or back. The inventor han ceeociated himself with the Niles Iron and Steel Rooning ddition to their itne of rooing, corrugated and v D
Dumping Wagon. - Thomas Hill, Jersey City. N. J. Two patents have been granted thil nventor for improved dumping wagons. In one of
heree wagons, on each of the side pleces of the wagon rame is secured a supporting rail of novel shape, the higher central level portion in which are two recessen or sockets. On each eide of the body of the wagon are two strape, each carrying a soller which rests and ridee
on the rull, their pooition being such that, when the on the rall, their poittion being such that, when te a
body is at reat on a level, the forward rollers will be at cody lo at reat on a level, the forward roliers willa, while
the botiom of the front incline of the side ruile, the other rollers will reat in the sockets on the higher ovel of the rail, but when the body is pusbed back the ollers roll up and become seatod in the sorkets of the contral higber portion of the alde ralla, whereby the wagon body is tiltud rearward. According to the co he wagon enrvee downwend at its back end and ach side is a plate or rall forming a track, baving projection or slop at the rear end of its curved or in clined portion. On each aide of the wagon body, omewhat nearer the front than the rear, do a strap which fis pivoted a roller carrier or carriage the obich is pivoted a roller carrier or carriage, the rollere anning apon the sider ralls and carrying the body,
which is uilted for damping by being pnehed beckward iill the rollers are arrested by the otop at the lower be
and of the carved or inclined portions of the ralla.
Platform Wagon. - This improve or, for a wagon moro eqpecially edapted for carring heavy roode, the object boing to lesseen the cost of conarruction of such wayons, while making them lighter and better Aitted to withotand the roughest apage. The nain frame of the platform consists of two independat sections of angle iron, one or which, having op Ides, and the other forms the back, which is bolted to he under side of the former. There io boarding in and between the flanges of the angle iron sections orming the front and sides, and re-enforcing stripe
within the channel between the boarding and the upper range.
Display Stand.-Ernest A. G. Kurth, New York City. This atand can be readily taken
apart and packed in a small pace, and quickly built ap. and is preferably adapted for the display of toys other smali articles, being aleo suit rnamental center plece for a table. In the center of a
arcular hace a polished brass disk is located, spanned y a yoke, and in apertures arranged in a circle aroun he base are Inserted rods attached at their upper end a central connecting sleeve, and forming a cage-ilike pivot point of which turns on the polished dlek. The Shafl extends above the cage, where it has a hub with
pertures in which are inserted carved arms adapted to ecelve arucles for display, and the shaft also carrie Pan wheel adapted to be rotated by currento of warm
ar ancending from lighted cundes held in light rod ir macending from: lighted cund les held in light rod
rackets on the sides of the care, whercby a portion of be kept constantly revolviog.
Knife Guard. - Charles S. Wright or the uee of retail dealers in cutting cheese. A circular plate or table, of sufflicieut size to hold the cheese, is vate is tecured an inverted U.shaped frame, adapte extend centrally over the cheese. This frame is entrally connected with a bent and elotted knife guard pot by which it is secured to the base. When the cheese is in position on the central plate it may be easily brought into position wout a silice of any desired size, nd when the cut is made the knife is guided at both ends to cat evenly throngh the
will be no crumbling or waste.
Cane Juice Strainer. - Walter C. Hazilp, Bruely Landing, La. This strainer may be perated by hand or power to effectually separace
ragments of sugar cane and other refuee from the cane juice as it dowe from the crashing rolle of a sugar mill. It consists ereentially of an oblong juice-receiving box, on which is monnted a main strainer frame
apertured at one side for the diecharge of surplus juice reciprocating rake being actuated in the strainer, hile a screen frame receives the overfow, and there it
another screen frame lower down in the box Wire Stretcher. - John W.
W. Peter son, Slater, Iowa. This is a aimple and inexpensive
device for atrectching barbed or other wire, and facillate the proper fastening of the wire to the fence poste clamp and a fixed head at the other end, a lever and a hook sliding on the bar, with another clamp working oppositely to that of the fixed head. and other noved
eatures, whereby the wire may be quickly and eatares, whereby the wire may be quickly and
horoughly stretched and held for atrachment to the Cigar Box Trimmina Machine. Henry Leiman. New York City. Iu this machine saw
hafts are jonrnaled in upper and lower adjuatable brackete, the saws mounted on the eshafts having lateral and vertical inclinations, in combination with a gaage operation of trimming cigar boxes will be almost compietely antomatic, the mechanism of such machines
seing so
implifided that the services of two anekilled aborers will be all the help required, their work being ofeed the boxes to the machine, from which the bins pesees having all of its projecting edges made luab with tis top, botiom and eides.
Nors.-Coples of any of the above patents will be send name of the patentee, title of invention, and date of this paper.

 thomences muts be roccioed at pubicicat ion offce as earily
For Belo-One is F. P. double orlinder, double dram triotion horizontal holating engline, with boller and as
tures. New. Addrese W. P. Davia Roohester, N. Y. Patent Dealark. Street \& Fishburn, Dalina, Torse, Prewses \& Diee. Ferracuto Meah. Co.. Bridgetin, N. J.
 The price of the Brown \& 8 Sharpo No. 3 Universil Cut-
 The Improved Hydraullo Jaoke, Punohes, and Tab "How to Koep Bollers Clean." Send your addreas for
tree 98 p. book. Jan. C. Hotchkies, 112 Liberty St, N. \mathbf{Y}. Scrow machinee, milling manhinee, and drill presees. Centrifugal Pumpo for papor and puip mille. Irrigating Rubber Belt ino, all olsea, THX per cent trom reegular ust,
All hbnds of rubber goode at low prices. John W. Buck All hinds of rubber coode at low
log. 156 South 8 streeb. Now Tork.
Wanted-A coppper recuum pan, 6 to 8 foet diameter
Addreas, stiving full partioulars and loweet prico, Cash box Tra, New Yort.
For salo-All rights for tested stalrs difmbing whee chair for people who cannot walk. Patent allowed.
Addrees J. B. Braj, Waverly, N. Y. Gulld \& Gartioon, Brookiyn, N. \&
Y_{n} manufacture stean pampa, reaum pumpa, vecuam
acla blowers, alter prose pumpa, eta.
spult Pulleys at Low pricees, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Bhafting Works, Drinker She, Philedelphia, Pm
For Salo-Wrought tron Aume racks, cest iron palleyt from 6 to 80 inches tin diamoter, rears, all 2 cents pe
pound. Cotion looms, 815 ; tin roping cans, ilers, 10 cento ceach. Other supplies obeap. Mill burt
ourcular. Baltio Mlll estate, Baitic, Cu.
Magio Lantarns and stereoptloons of all prices. Viewn
Illustrating every subjeot for public exhibitiona, eta. ${ }^{1} 4$ Also Lanterns for home amasement. 2200 page catalogue
free MaAllister, Opticten, 49 Nassau St ., N. Y.

HINTS TO CORRESPONDENTS.

(3497) W. F. E. asks: Can a practica and temporary ntorer or preeerver of power be made
ith compreeed air? If so, is there any limit to the With compreseed air ? if so, is there any limit to thit
amount of force that can be thas stored and used again amonnt of force that can be thas stored and ased again
at will : Are there any succosefull working appliances if not practical, why A Aloo are there any practica means of storing for a short tume great quaututies o means of storing for a short ine great quandies of
mechanically developed electricity ? A. Air under pres
sure can be etored for future ueve aud is ueed in thie way sure can be etored for future use aud is used in this way
for mine haulage. It is limited to the size of storage tunks. Electricity is also, practically speakine, store Hlustrated in Scientific Amirican and Supplement
(3498) F. J. S. asks : What pressure will inch tron? What hore power and what aize propelle will a boat Ive feet by twelve require to make a speed of foar miles an hour? At what opeed ehonld ascrew
propeller (12 inch) be ran for the best resulte : A. Small engines shoold have 22 cubic inches of cylinde not leas thun 14 square feet of heatung eurs should hav power. Your boiler should be good for 100 pound steam pressare. The boat requires 2 horse power en-
gine and boller. 12 lich screw shonld run 300 revolu-
(3499) S. A. K. asks: Can you tell in L. You can soften robber by heat and then it can b pressed into shape. It cannot be melted and hardene the Mavipulation of India Rabber," $\$ 1$ by mail.
(3500) J. A. S.-For violin varnish. Diseolve 12 parts sandarac gam. 6 parts ebellac, 6 parts meotic, 3 parts elemi in 150 parcu 95 per cent alcohol, in Venice topented in a water baith. Then ade o part Venice tarpentine. Sirs and allow the contente to set
the In the corked bottle. Then pour off the clear varnibh for ase.
(3501) W.
(3501) W. P. asks : Can you inform we where I can tind a magnetic needie for fading gold o probable cost of one P A. There is no needle or other device for Anding gold and silver. The ordinary dipplig magnetic needle is nsed to to
ore in the groond near the sariace.
(3502) F. F. B. asks what the lanndry people nee'to give the collars, shirts, etc., the glose that
is on them. A. 1. Starch, 1 ounce: parafine, about 3 is on them. A. 1. Starch, 1 ounce: parafine, aboat
drachms ; white sagar, cablespoonful; table ealt, table
apponful; wator q. a. Rub up the starch with coft water
into a thick smooth paste. Add nearly or quite a pint of boilling wator, with the allt and angar dimolved in it and having dropped in the paramu, boil for at least haif an hoar, stirring to prevent barning. Strain the etarch
and uee whlle hot. Sufmclent bluing may be added to
the water, previous to the bolling, to overcome the the water, previoue to the bolling, to overcome the
yellowioh caat of the starch, if necessary. Spermaceti may be ased in place of paramm. Slarcbed llinen can only be properly gnisbed by hard pressure applied to he iron. 2. Gloceed shirt bonome.-Take i a a cee of and poor on a pint or more of water, and then, baving covered it, let it atand all night. In the morning. pour
it carefully from the dregs into a clean bottle, cork and seep it for ase. A teaspoonful of gum water stirred in pint of starch, madg in the reacal way, will give to
 nothing
washed.
(3503) G. B. asks bow to color leather lack. A. Patent leather black.-Mix rogether 3 polverized indigo, 8 ounces dissolved gum arabic, onces brown sagar aud \nless ounce glue, disoolved in 1 pint water; heat the whole to boil over a slow are, then remove and stir until cool, and roll into balls. 2.
Vinegar black. This is the most simple and useful Vine gar black. -This is the most simple and useful
colorng liquid for the trimming shop for blacking coloring liquid for the trimming shop for blacking
leather straps. To make the simpleet, and withour doubt the best, procare elavinge from an iron tarner and cover them with pure cider vinegar. heat ap and set aside for a week or two, then heat again and set in
a cool place for two weeke, pour or the vinegar, allow cool place for two weeks, pour off the vinegar, allow
it to stand for a few days, drain off and cork up in bottles. This will keep a long time, aud while producing 402 onnces bruised gallnnts and $17 \cdot 5$ onnces green artelelle are bolled in $38 \cdot 2 \mathrm{x}$ ounces rain water; when the nixture has boiled one hour; the llquor is etrained brongh a cloth; the leather to be colored is arst stained with the solation of Iron alings, common salt and vine sar, as given onder purple, before the above decoction
applied.- From "Scientiac American Cyclopedia of Rereipta, Notes and Queries." In prees.
(3504) A. J. B. asks for a harmless hair ye. A. The following is a recelpt for halr dyes taken
rom the "Sclentiac American Cyclo, cdia of Receipts. Noles and Querice." In press. Walnut skine beaten to a palp, 4 onnces ; rectised alcohol, 16 ounces. For a black dye the following is excellent. Iron sulphato,
10 grains ; glycerin, 1 oance: water, 1 pint. The hair 10 grains ; glycerin, 1 oance: water, 1 pint. The halr
muat be thoroughly washed with this, dried and braehed once dally for three days, then the following shonld be
applied on a small tooth comb, bot it should not be lowed to toach the skin if the other preparation hae done so, as a temporary stain would result. Gallic acid, 4 grains ; tannic acid, 4 grains ; water $11 /$ oonces.
After the application of the arrat preparation the hair should be allowed to dry, and then be brushed. Sabsequently both formulas may be used once dally, at an
interval of an hour or so, antil a black color is pru(3505) E. K. asks for the general method of tanning fur skins. A. Atter conting off the useles. water, take away the fatty part from the inalde, efter bich soak the skins in tepld water for two hoors. Mix equal parts of borax, saltpeter, and Glauber aalco (sulphate of soda) in the proportion of about $1 / 3$ ounce of each. for each skin, with water q. s. to make a thin paste. Spread witt a brusb over the inside of the skin, applying more on the thicker parts than on the tuinner.
Doable the skin Logether, aesh side inward, and place in a cool place. After standing twenty-four houre Da a cool place. After standing twenty-rour houn
wash the skin clean, and apply the following mixture in the eame manner as before: 1 ounce sal soda, mistlounce orax, 2 ounces hard white soap, melted slowly toget her without being allowed to boil: fold together again and put in a warm place 24 hours. After this diesolve
ounces alum, 7 ounces ralt, $13 /$ ounces saleratur, in $^{\text {out }}$. ufficient hot rain water to saturate the ekin; when cool nough not to ecald the hande, soak' the skin in it fo 12 hours, wring out and hang up to dry. When dry,
repeat the sonking and drying 2 or 3 times, till the skin repeat the sonking and drying 2 or 3 times, till the skin
is sufficiently soft. Lantly, smootn the inside with fine is suficiently soft. Lantly, smootn the inside with ine
sad paper and pumice stone.-From "Scientice and paper and pomice otone.-From "Scientinc
American Cyclopedia of Receipto, Notes and Querles." prexs: ready December 1, 1891
(3506) A. L. N. writes : Please inform ee through your valuable paper the difference between open and closed circuits, also the difference in battery
or open and closed circuits: A. In an open circuit he carrent flows over the wire only when the circuit is closed temporarily, as in riuging a bell or in operating
a telegraph sounder, whereas in a closed circult the a telegraph sounder, whereas in a closed circult the
current fows contlouously over the wire except in the intervals produced in the regular signaling or telegraphing. For an open circult, a battery which will
not deteriorate under the conditions of ure te employed, graphing.
not deteriorate under the conditions of ure is employed,
sach as the Leclanche and many of its modincalions. ach as the Leclanche and many of its modincalions
For a closed circait a battery is employed which will maintain a continuous current so long as the batery is
supplied with materials and kept in order. The gravity pplied with materials and kedt in order. The gravity battery
clas.
$(3507$
(3507) J. F. C. asks: fiive a practical eceipt for keeping beef from spoillng for a long time
warm weather, without drying it. A. Canning and on warm weather, without drying it. A. Canning and
cold storage are the only means of prenerving meat that we can recommend. The use of preservatives, such
as salicylic acid, sulphiten, boric acid, ptc., is to be deprecated. The'short article you refer to is not very ac-
(3508) C. M. H. asks : 1. Give rule for obtaining any desired speed with and without counter
haft. A. Rules for speed.-Multiply the diameter of he driving pulley by its speed and divide the product by the diameter of the driven pulley for its epeed, o
he required epeed for the diameter. If a counter shaf is used, proceed in the same manner for its epeed, and use its driving polley as above for the annal speed, or ired speed by gears. A. For gearing use the principle ss above stated, bat measure the gears by the namber

 pecked with paivertived hemanitie or tron anvil ocalee.,
and recarbonited by the esame proceen, bot pecked to charred bone duat or boot varinge.
(8509) G. E. E. says : In crushing coke Por furnaco mort there it a groat deal of watet that pane to barra on a Rrate, ase it chokes and will not allow
 way to ticle blis Ane foel together in lapme or bricke, so that I can burn it in a stove or farnace with draught
not blat ! A. You will and in Scrextiric Americar Surplement, No. Se0, deecription and iltastration of a machine for compreseing coal refuse into bricks or nascline A machane sach as it neeod in making hard
ball
preseed brick would anower the parpose for the moft pressed brick woald anower the parpose for the noft
Illicois coal dask. A slight aprinkling of coal tar and
(3510) C. K. asks : 1. How far is it possible to hear thander ander favorable circumetances?
A. Thander in seldom beard over 12 milies, anlens under very favorable conditions, when 15 miles is a probable
limit. At this distance there would be as lapee of 72 econds between the fash and the thander. 2. Does a ballet fall at the instant it leaves the barrel, or does it
rise before it begins to fall p. The fall of a bullet is controlled by gravity, and it commences its downward curve at the instant of leaving the gun. The line of
sight is not parallel with the bore, which gives the appearance of rising, which it does as referred to the line
(3511) 'T. T. E. asks: Will air getting into a mmall water service plpe prevent the water from
nowing through It when the fall is at least 100 feet? The owner of my cothage claims it as a reason for my
water supply stopping. Isay I think if there was more Water supply stopping. I say I think if there was more
air, that we should get more water. The waier is caught from the epring In a large barrel and then con-
vejed through x inch lead pipes to several cottages reyed through x inch lead pipes to several cottages
then in smail tanke with an overflow pipe. I am then in email canke with an overfiow pipe. I am
on the bigheot grourd and am the arst to be shat oft.
A. Air in the pipe is probably not your trouble. The A. Air in the pipe is probably not your trouble. The
sniply pipe from the barrel ts too small, so that when the water is ranning in the lower hoase tanks it
the preesure at your honse, and stope the fow.
(3513) W. R. P. writes: Please give receipt for a varnish to be need on gnn stockiks. A. Use
shellice varaish aud rub to a ane anish with French (8513) J. C. R. writes : We have a 50 horwe power engine which we wiob to increase to a 00
borse power. The cylinder is 12×18 and is making 180 revolations per minate. How fast will it have to ran
to gain the'desired power (10 horse power)f A. In the to gain the'desired power (10 horse power)) A. In the abeence of fall information conceraing your plant, we
can only advise an increace of steam prepeara about 15 per cent, which will increace the speed to 200 revolu-
tions and to the required power if the boiler will not bear the increace in preeeure and is large enough for additional sapply, a change in the cat-ofl would be in
order. Not knowing anything of the make of yonr order. Not knowing anything of the make of yonr
boiler and engine, we advise that you addrese the
makers as to the safest way of increaing ita power.
(3514) L. F. writes : Will you kindly answer the following questions: 1. What to bisalphuret of tin ? An old Olmstead's Nataral Pbllosophy states
that it is superior to amalgam for exciting the rnbbers of a friction electric machine. I have inquired for it at several wholealle and retail drug storee, bat they know of no nach sabstance. Has it any other name ? A. It is a componod of one atom of in with two atoms of
salphur. Its formala ite $\mathrm{Sn} \mathrm{S}_{\mathbf{y}}$. It is sometimes called salphur. Its formala is $\mathrm{Sn} \mathrm{S}_{\mathrm{y}}$. It is sometimes called
mosaic gold. It may be made by heatiog a mixture of 12 parts tin, 6 mercary, 6 sal ammoniac and 7 of fowers
of sulphur. It is sometimes need as a substitute for gold powder. 2. At what collegiate inatututions in the gold powser. is Ath doctrine of evolution tanght? A.
Unted States is
The doctuine is treatod in the leading colleges, avd in The doctuine is created in the leadit.
their biological courses quite fully.
(3515) R. B. W. asks : 1. What are the calts used in gold, sllver, nickel and copper plating?
A. In gold plating, the cyanide of gold, produced from A. In gold plating, the cyanide of gold, produced from
chloride; in silver plating, cyaniae of eilver, produced chloride; in silver plating, cyanide of eilver, produced
from chloride; Jin nickel piating, dobule enliphate of sil. ver snd ammonia; in copper plating, cyanide of copper,
and in electrotyping. solphate of copper. 2. What and in electrotyping, salphate of copper. 2. What
kinds of anodes are used ? A. Anndes of pare gold, silver, nickel and copper. A. Can you inform me of
eome practical volume on plating : A. We refer jou some practical volume on plating : A. We refer you also Uraphart's "Electro-Plating," price sp. 4. What nobject ? A. We refer you to Suppiemikit, Noo. 310 add 180. 5. In what numbers of the Supplexent can I And descriptlons of various kinds of batterien : A. For information on battreries we efer you to Suppliz-
uENT, Nos. 157, 158, 150, and 782. (3516) J. W. K. says: Have you any articles on construction of shallow wells ? Want to
make a well for irrigation. Dietance to water, 10 feet. The water is in gravel and eand. Can more water be taken from the ground by driven or open wells? A.
The open well when properly constructed will give the most water, but the driven well system is the cheapest for obianing a large supply. By driving a number on
tabea some distance apart and connecting all together below front linee, a oingl: pamp will operate the whole
 eil for small and large water sapply.
(3517) F. B. W.-There is no process Whereby cast iron can be toaghened or made more lant-
ing for car brake shoes. By partial chilling or by con-
(3518) N. B. D. says: I want some tuaterial of which to make monide so that I can cast stereothing in which I can make an impreseion of the type. Plaster of Paris cracks and sticks in the typen and I
have no facillities for uaing stereotypers' paper. What
can yon suggesty. A. We call to mind nothing better
than paper or plastar. The latior will not crack if pro-
(3519) F. M. K. writes : Please give receipt for proserving wood from the eflecto of the weather and san and rain, so su not to crack or aboorb molature.
A. Use raw linseed oil for wood that is exposed to the weith boiled oll.
(8520) L. A. V. writes : A solid iron cyl nder apoay rone on a soldd iron track at each end. cogred band driven on each end of the cylinder runs in in cogzed track, the band being about an inch greatet diameter of cylinder, and the cogred track being cor reapondingly lower than the face of the fron track on
which the cylinder rolle. Bince patting on the cog they cause the cylinder to creep about 2 Inches ic mov$\operatorname{lng} 82$ inchee. Cogs work clore. Now can this be re-
medied by dressing out the cogs on both band and track so they woald work looee? A. You cannot stop the creeping by dressing the cogs. The cog band is to
large; its pitch line should be of the eame diameter a large: its pitch line sboula be of the eame diameter
the cylinder, and the rack raieed so that ito pitch line ihall bo level with the bed plate face. The pitch line it a little larger than the conter line of the teeth, so that
(3521) J. W. H. says : I write to ask the composition of the material of rubber streete that are being put down in Berlin. Almo if it woald be saitable
materiad for a race course for troting horsee, and wha
and it woald cost per square yard i A. Wo have no in Pormation as to the detail or composition used in the
Berlin streeco. Rubber is a very expenitive material for mich compoce cost abont 20 cents per ponnd, or, if on inch thick, would cost abont $\$ 8$ per square yard. As to
ralue for a race course, experiment wonld be necesvalue for a race
sary to determine.
(3522) E. P. and F. W. asks for a dress ing to fremben up patent leather whin it has become
dull. A. Use common vaseline. Allow the vaselune to main on the shoe for half an ho
(3523) G. H. asks : 1. When steaming wood for heuding, can there be anything pnt into the
water that will make the wood more pliable ? A. We water that will make the wood more pliable q A. We
think of nothing better than the steam. 2. Io there anything that will take ont atains and make the wood
whiter A. Chloride of lime, also oxalic acid for stalns. oxalic acid lo a poison.
(3524) D. C. G. writes : I wish to make lead harder without losing any of its weight or ductility, Can I fase together 1 part copper to 20 parts lead:
How much heat would be required to melt the compoition ? Woald remelting change the nature of the netal alloys ! A. You can make an alloy as proposed
A small portion of copper will be taken up by lead whill also make it a liftele to the lead at a red hent. Ti aleo harden, but makee it lese ductile. The composion named will melt at 800° Fah.
(3525) R. A. J. writes : I wish to build a mall water motor abont nine inches in diameter.
Have water pres ure of 85 pounde and in using a threewisteentha inch jet it reduces the pressure to twenty pounds. Is the jet too large f How many bucket should I put in sach wheel, and about what size should
they be ? Will this motor give me sufficient power to run a eewing machine ? A You lose power by friction in the plpe; pipe shoald be larger; if not posesble, the
jet may be a litue smaller. If the motor is well made, jet may be a litule smaller. If the motor is well made,
you can drive a sewing machine with it. You will re-
(3526) N. L. D. asks: What is the hard est composition which will adhere to wood Armly? anppose cement woald be the proper word to ase. I
there any way of aning iron nlings, mixing with any sub will make a surface as hard as sheet iron? A. Iron alings 3 parta, gronnd white lead and red oxide of iron paint 1 part each, and enough bolled linseed oil to
make a stif patty. Drive it tuto the hole or crack. It (8527) W. Wa D.
(3527) W. F. D. asks : What start or Itme allowance do you give a 14 foot sail boat over a
20 foot sail boat in a ave mile race? A. The time allowance used by one of the New York yacht clubs for
racing is ae follows: Rnle.-Time allowed in minutee racing io an follows: Rnle.-Time allowed in minntes square roots of the lengtho of the boats in feet, on the
water line and in favor of the smaller boat. In your case the longer boat equals $\sqrt{\overline{2}}=4.472$
shorter bont $\sqrt{14}=3.741$ shorter bont $\overline{\overline{14}}=3 \cdot 741$
minates per mile
0.781
$\begin{array}{ll}\text { minates per mile } \\ \text { conrse in miles } & 5781 \\ & \end{array}$
Time allowance 3 - $-\overline{55}$
3 minntes $30 \cdot 3$ second
(3528) L. S. C. says : I would like to kow if there is any sabetance to put into a dip of acia water and blue vitriol that will make iron goods have a
red color. A. The scale must be removed from the port water 4 parta, then dip in s astorated bct solutio of sulphate of copper, or they may be tumbled in anw
dust wet with the sulphate. This will give them a thin
(3529) F. P. B. asks : How wuch water will a $\%$ inch pipe carry per hoar 2,000 feet long with
250 feet of head? A. If the pipe is in good order, it 250 feet of head : A. If the pipe
should deliver 120 gallona per hoar.
(3580) W. A. R. says : 1. Please inforin me of come quick and cheap drier for palint. We nee boiled oil, turpentine aud oxide of iron. Would like some other roceipt for making a cheap red paint. A. Use
litharge, one-sixth the bulk of the iron oxide, as $: ~ d r i e r . ~$ The cheapest red paint is Pricce's metallic paint, compoeed moesty of oride o: Iron. Mix with boiled oil and
turpentine. Requires no drier flor outaide work. Io
an excellent paint for iron work. 2. What is the horse
power of an enxine 10 inches by 12 inchee, 150 revolu power of an enkine 10 Inches by 12 inches, 150 revolu
uons at 00 pounds presare? A. Your engine it 3
A. indicated, eeanming that the con-ot
(3531) G. W. C. writes: 1. Please tell me the compoition of cellulold and the process of
manafacturing it? A. You will and a description of cellulold and its manufacture in Scientipio A Merioar Supplexinkt, No. 227. 2. What is the beet Inx for welding cast steel? A. Use boinax with 10 per cent eal
mmoniac, pulverized, for welding steel. \& What he bent to clean old palnt from a carriage, so that it nay be painted again and look like it wan painted on lowpipe las arch es need by peintery and plambern Or you may rub down the old paint with pumice atone ad water.
(3532) T. J. W. writes: Can you give ould stand a water preseare of 40 lb .? What I am after in something strong enongh so that you conld taper one ond and
hollow out the other, so as to have it all uniform size and make a smooth job. A. The job you propose is nd make a smooth job. A. The job you proppoping
immealt. You might try the experiment of wrapping
wo or three folds of guts percha tiese around the tapered part, put the parts together and apply heat, pressing the parts together when the perchas is well ooftened, clamp them and remove the beth. This woald cement the parts, and if well done, the joint might
stand. The heat need not exceed 2000 F. Perbape ho water within and withoat might be used as heatiog
(3538) M. B. R. asks: Can you inforin ne if there is anything on the market which will re paper : A. Canstic soda, or some hydrocarbon such a arpentine or benzine, would be the only sabstances we would suggest for ordinary type writing. Hydrocarbone ould be leart ikely to nur 1 W.
(3534) H. B. W. writes : 1. What would you advilee me to do to become a civll or mechanical en
ineer? A. Study hard. 2. ls a college edacation ne ereary to become a good engineer ! A. In general, yes. 3. Hnw mnch could be made at elther of the
bove professions per year by a arst class man ? A rom $\$ 2,000$ to $\$ 10,000$.
(3535) L. A. F. writes : I] desire to become an expert electrician. I have a good grammar
chool educatiou. Can you inform m. of a achool
and where I can learn the practical part as well as the theory of electricity ? A. You might write Cornell Univerpity. Ihaca, N. Y.; Stevens Institute of Technology. Hoboren, New Jersey; Renseelaer Polytechnic Institute,
Troy, N. Y.; Mass. Institate of Technology, Boston Tass.
(3536) J. P. writes: 1. As we have in this city a hydrant pressare of 80 pounds to the inch, oches dinmeter fed by a one luch pipo. What form of mocor will give me the greatex amount of power;, what would be the horse power of sach a motor with the size of wheel and feed pipe given above, and where can I
get a description of or directions for making soch? A. get a description of or directions for making soch? A.
The value of your proposed motor would be sbont The value of your proposed motor would be aboun
three horee power. You cannot do better than to look over the illatrated dencription of the impact wheele in Scientific Amirican Supplement, No. 454. 2. What power will be required to work a small pressare pump hrowing a continual stream through $\mathbf{a} \%$ inch plpe a
preseure of 400 pounds to the inch? Where can I and preseare of for praking such a pump of elmple con struction: What books have you whicb treat of which would be suitable for an amatear who wishes to stady the sabject? A. It will require about 0 h . p. to ran your pamps. See Scientiptc Americhn Supple-
invt, Nos. 788, 789, 791. 782, 789, 799, 805, for a complete series of illastrated articles on hydraalics or the power of water. We can also mail you "The Practical
(3537) A. B. M. writes: In Fownes Watte) Chemistry, p. 414, I read: "Ferric salte are gall nuts strikes a deep bluish black with the moot dillate solutions of ferric salts." shoald not ferric be rerrone in the above" As I onderstand it, "green
vitriol " in ferrons sulphate, and that certanly strikes a deep bluish black with tannin. A. Fownes' chemistry correct. The dark color prodaced by "green vitriol "
nd gall nat Infusion is due to some of the bane beling oxidized, which almost always occors when the belt in question is dieeolved in water exposed to the alr.
(3538) J. M. S.-The paper is a chemical Scientipto American Suppliementr, No. 421, "How to Make Blae Prints." You can only keep grapes to best advantage in a cold room, at an low temperature as
(3539) G. M. T. asks: How is the velocity of a bullet, as it leaves the gan or in any part jectile from cannon or rifie is mesasured by an electrical auparatun, one of which is illastrated and described in
Scientiric Aurnican Suppurest,
(3540) L. J. M. - A photophone is an instrument for tranamitting speech by means of a beam
of light. You spatik agal net a thin mirror, casaing it ocused upon electrined selenlum, which is sensitive to the light vibrations; and when a telephone is connected with sacb selenium, sounde are heard.
(3541) J. F. B. asks how to cleanse and whiten the bones of smsll animale. A. 1. The carators In Parie, have found that spirits of turpentine is very fifcacious in removing the disagresable odor and fatty manations of bones or ivory, while it leaves them
beauturnly bleached. The articles shonid be exposed in the faid for three or four days in the ean, or a little longer if in the shade. They shoald reat npon atripe
of zinc, so as to be a fraction of an tich above the
bottom of the giaes vesell employed. The turpentipe
acta as an oridising agent, and the product of the com. actas as an oridising agent, and the product of the com-
boaction io an acld liquor which sinke to the bottom. and etrongly alleccke the ivory or bone if allowed to conch it. 2. Make a thick paste of common whiting in wark. Bruyh well oat with plenty of clean water. Dry gently near the Are. Finish with a clean dry bard brash, adding one or two drops (not more) of eweet oil. Take a piece of fresh lime, alake it by aprinkling it
with water, then mix into a paete, which apply by with water, then mix into a paete, which apply by
means of a soft bruab, brushing well into the intertices of the carving or skeleton; next set by in a warm place till perfectly dry, after which take another soft brush and remove the lime. Should it still remain discolored, repeat the process, but be carcful neither to
make it too wet nor too hot in drying off, or probably make it 100 wet nor too hot in drying off, or probably
the article might come to pieces, being most likely the article might come to pieces, being most likely
glued or cementod together. If it would stadd ateeping in lime water for twenty-four hoars, and afterward bohling in strong alam water for aboat an hour and then dred, It wonld tarn out white and clean. Rubbing
with oride of tin (putty powder) and a chamols leather with oxide of tin (potty powder) and a chamols leather
will reatore a ane gloes afterward. - From "Scientiac will restore a ano glose afterward.-From "Scientiac
American Cyclopedia of Recelpts, Notes and Queries." press.
(2542) C. A. asks for a remedy for exceesive perspiration. A. The following receipt is from
the "Scientinc American Cyclopedia of Receipts, Notes Carbolic acld, 1 part; burnt alum, 4 arus starch, 200 parts; Fresch chalk, 50 parts; ol kemon, 2 parts; make a Ine powder, to be appllod to
the handin and feet; or to be sprinkled inside of the
(3543) E. R. writes : Lately cooling aparatus have been made for asing over again the conThe arrangement conaists of a structure 15 mm . to 20 m . ng, 7 m . to 8 m . high, and 1.5 m . wide at the bottom多 wide at the top, and has 10 compartments, one black thorn) like the Sallene hedges. The condensation water. which hase a temperature of 20 to 28 R ., is broaght in and trickles down throngh the thorns and is
caught in a receptacle. The water is cooled to a temcaught in a receptacle. The water is cooled to a tem-
perature below that of the atmorphere. When the temperatare below that of the atmonphere. When the tem-
peratare of the atmosphere was $13 \mathrm{R} .=16 \cdot 2 \mathrm{c} \mathrm{C} .=81 \%$ F., I found the water cooled to 10 R . On the warmest which han trickled through to not more than 18 R .,
the water being $8 \mathrm{R} .=10 \mathrm{C} .=18 \mathrm{~F}$. cooler than the atmosphere. The structures are set up in the open alr. whont any roof, and exposed to the san. Why doce the water become so mucb cooler than the atmoaphere?
A. The water is cooled by evaporation from the large sarface made by trickling over the brash.
(3544) J. L. W. asks how to give a optical instruments is produced by dipping in a solution of chloride of platinum. To make this, take 2 parts hydrochloric acid, 1 part nitric acid, mix in a glase boutle end pat in as mach platinnm foll as the
acid will diseolve when placed in a warm sand beth, or to hasten the solution, heat to nearly the boiling point of the acids. Ono-balf ounce nentric and 1 oz. hydrochloric acid will absorb aboat 30 grains platinum, but surplas of platinum. Dip the article or brash in the chloride. 2. Optical and philoeophical Instruments made in France often have all their brass surfaces of a ane dead black color, very permanent and dificult to
imitate. The following, obtained from a foreign sounce, to the process need by the French artieseing source, olrong solation of nitrate of silver in one dish, and of nitrate of copper in another. Mix the two tozether
and plange the brase Into it. Remove and heat the and plonge the brase Into it. Remove and heat the
brass evenly antil the required degree of dead blackbrass evenly antll the required degree of dead black-
ness lo obtained. - From the "Scientinc American yclopedia of Receiptr, Notes and Queries.
(3545) W. S. asks : Is a vessel made of galvanized iron saitable for keeping water for drink-
ing: A. This is a somewhat debated question. If pt clean and if the water was pure and not allowed stand long in the veseel, we should coneider it asfe, bat as neglect might resalt in making the water
poisonous, we should recommend the nee of tin in preference. Solable componds of zinc are poieonous.
FFr a note on the sabject we refer ypu to our Scppus. For a note on
$\mathbf{x E N T}, \mathrm{No} .807$.
(3546) W. B. K. writes : Please give me receipt for bicycle enamel and tell me how to polish
ickel and enamel. A. Use japan varnieh on your bicycle. It should be heated in an oven to be dried Polish nickel with chalk. Also sec ,Query 5548 . Rub
(3547) D. W. says: Kindly inform me of a powder or paste for cleaning and polishing copper and brase. A. Tripoli, or rottenstone, mixed with a solution of oxilic acid in water makes a very good pol-
tehing material. The addition of a little glycerine will beep it soft as a peete. Also see Query 3548.
(3548) J. A. L. T. asks: 1. Give a recelpt for cleaning mica that has been ased for lights and smoke. A. Use hydrochloric acid with stiff brush. dissolve it touches the iron of the stove, it will begin to keroeene oil applied with a rak just moistened with it. 2. The composition of a subatance which te ased for polishing metal surfaces, such as plated table ware. which is now in ase, and which has the odor of bitter almonds and which odor it is said camnot be got rid of.
A. Oxalic acid, 1 part; iron peroxide, 15 parta; A. Oxalic acid, 1 part; iron peroxide, 15 parta;
powdered rotten stone. 20 parts: palm oill, 60 partu: petrolatum, 4 parts. Pulverize the oxalic acid and add ronge and rotten stone, mixing thoroughly, and sift to ronge and rotten stone, mixing thoroaghy, and all and
remove all grit; then add gradually the palm cil
petroletnm petrolatam, incorporating thoronghly. Add oll of
mytbane or oll of lavender to sult. By subetututing red ashes from stove coal, an inferlor imitation of the fore-
going peate will be produced. The original article is noing paste will be produced. The original article
known as putz pomade.- From "Scientifc American Cyclopedia of Roceipts, Notes and Querics." In prean.
（3549）E．W．M．writes ：We have several jarge pluage latteries for running a motor，and after ettle in the bottom，and we find that it is very hand to remove without breaking the glass jar．Will you please give ne a giod way to clean the salts out with－ out brenking the jar？A．By alliug your cellis with water and inverting them in a vessel of water，the aalte
（3550）C．H．C．writes：1．I have 14 ft ． biler，of in．sheh，sixty 8 in．ques， \mathcal{M} in．alameter moke stack，ac ft．high，rockiag grais 01 hi，wide by 37 In ．deep to bridge wall；engine 10 by 12 ，speed 180 ． The draught seems defective，combustion $1 m p e r f o c t$,
consumption of faet，mostly shavings（come soft coal）， xcessive，and very，hard Aring，boiler new．Can you tell me whercin lies the tronble or defect，and sugrest remedy：A．Yoar boller and engine appear to be well balanced as to power，bat the smoke stack is to mall for barning sbavingg，and probably the are chamber is too small and not arranged for barniog upplement，No．ort，for illustrated lecture on boller uruaces for various kinds of fuel．2．Name one or two est works，in plain，simple language，on construction， etting，management，or aring modern steam bollers， with price．Several I have are too English and too igebraic for the simple mind of my engineer．A．＂Usa mailed；also＂Steam Making or Boller Practice，＂by Smith，$\$ 2.50$ mailed．
（3551）E．S．asks：How to make a ement which will mend broken minerala，etc．A． 1 wite sugar， 1 oz．；gum arablc， $1 / 4 \mathrm{oz}$ ．Diseolve the gum in a litule hut water，and the sugar and starch，and oil untul the starch is cooked．－From the new＂Scien－ Queries．＂In
（3552）H．A．A．asks ：1．In making the ＂Simple Klectric Motor，＂described on page 407，＂Ex Sour pieces of wire for the armature core，the ends not being joined？A．It is immateral how many pieces of wre you use in the constraction of the core of your armatare．2．Would not No． 20 or 22 wire do for wind－ ing the armatare？A．Yes；provided you ase a car at adapted to snch wadig．3．It he brush－bolding iak is made so that the brashes may be placed in dir ifferent speed？A．Yes；but this method of regulat－ gha motor is not ecunomical．
（3553）A．M．asks what platinum silver is：Is it platinized silver！A．Platinum silver is
（3554）F．D．asks for a receipt for making a paste for bill proting and paper hangting of rell me where I can gat the prepared paste or the naterials for making same．A．All ordinary peate will reeze when subjected to a freezing temperatare．Make our paete of good lour mixed smoothly with cold water wo a thin creamy consistency．Cook over a wale bath until in thickens，but remove it from the water dd from five to ten per cent of alcohol．Also twenty drops of oil of cloves to every galion of paste．The alcohol preveuts freezing，and the oil of cloves pre vents it from souring．
（3555）W．F．B．asks if there is any ouch thing as soluble beeswax，and if so，the formula or making it．If not，could you tell me how I conld prepare beeswax，so that I coald use it with a small can be diseolved in turpentine，and the axed and volatile oils．It dissolves in 35 parts of ether and 11 parts of chloroform．The last solution woald be suit－ ble for your purpose．
（3556）Librarian asks if there is an rticle which will restore the color to faded black book covers．I have heard that ether is useful，but hesitath o nuse it or anything else，except on authority．A． The agent to use，if any can be saccessfally employed， ron salt in water might be of use but any sich ap plication would tend to impair the fuieh of the leather We should advise the ase of nothing except book－ binder＇s varnish，which might be blackened by the ad－
dition of nigrosine or aniline black．
（3557）F．I．W．asks if there is any preparation or Auid that I can print or write with that ny preparation thal I can nse to make a very dellcate or Invisible line with，and on being moistened will show up very plain？A．Write with an aqueone eolu－
Lion of tannin，using a gold or quill pen．Develop by moistening the writing with a weak solation of by phate of iron．The writing when developed will be pearly black．
（3559）J．H．S．writes ：I desire to know whether a cellar can be so constructed an to keep on built，but will not keep out water，though well cemented A．A cellar can be conetracted so as to be waterproof， walls built thereon laid in cement，and the exterior of the wall covered with cement．This makee，practically watertight basin．The cement used must be the besi Portiand cement one part，clean sharp sand one part Arter a cellar is built it ts not so easy to make it water－ proof．sin li call be done．Cover the exterior of the Wall with the above cement，ditto the bottom，and
work the cement in under the bottom of the wall， If these directions are followed，you will sacceed．Bat if cheap materials are used and the work badly done you will be sare to fail．A drain pat aroand the oat－ side of the wall or even inside below the cellar noo may be emcien niverrying oft the water，if you ca （3559）
acnum will the best piston air pump obtain？ Within a very smal！fraction of an inch of a perfect
vacuum，as measared by a mercurial gange．2．What
kind of air pump is ased to make the vacaum in in－ candescent lamps？A．A piston air pamp driven by power is often used for the irst exhanastion followed by mercarial pamp．3．How long does it take to make he vacaum？A．No exact time can be given；it de pends on the relative size of the lamp or lamps and pumpa．4．Ie there any difference between an al
pump and a vacuam pamp？If so，what？A．No What motive power is generally used in large eatablish mente，to work racaum pampop A．The descent of mercary．a．Does salt diseolve more rapidly in cold hann in warm water！A．No．7．What is the ratio o relative brightness ased in claseifying stars into thei different magaitudes ？A．The relation of the brilliancy
of a atar of a cortain magnitnde and that of the magi－ tude immediately preceding has been varionsly deter mined from 0.346 to 0.464 ．Zollner（1865）from magul tudes 1 to 6 gives $0 \cdot 388$ ，and Rosen（1880）from magni tudes 5 to 9.5 gives 0.308 ．For an excellent and fally illastrated treatise on mercarial air pampe，
you to our SUPPLEMENT，Nos． $620,630,631$ ．
（3560）H．W．B．asks：1．What is the E．M．F．orthe small dyamo describod in SUPPLixMEN No．161，when provided with the drum armatare de
geribed in Suppliment，No． 590 ：Also what fraction of a horne power is required to drive it？A．The E．M．
F．of the dynamo referred to if 12 volts．We do not know that the current from the armature described in Supplixiznt，No．509，has been measured，bal it is con siderably higher than that of the armatnre described in Supplinuswr．No．161．2．What is the E．M．F．of the
machine described on page 499 of＂．Rxperimeutal Sclence，＂when wound with finer wire and need as dynamo i Also what fraction of a horse power is re quired to drive it ？A．It would be imposeible to tell what the R．M．F．would be without knowing wha changes have been made．The difference of one size he wire makes a gruat difierence in the E．M．F．Abo （3561）H．B．M．writes：1．Will you tannin can be mendered alorless aqueous sotuion its chemical properties？A．Use the purest tannic acid and pure water．If this is not satisfactory，aydtate with ether，and on standing the etber will rise to the surface carrying mach of the coloring matter with It．Draw of the lower solation for ase．2．Also the same inquiry scraped briet cryale of ferrone eulphele coppera）in water，covered with a thin layer of olive oil．This will aive a deariy coloriesa eolation．In neither care min （35 © ）W．IL，absolutely coloriess solation，
（3562）W．L．V．says：One candle is 8 reet in height and 1 foot in diameter．Another candle is 8 inches in height and 1 inch in diameter．Their
wicks are proportlonate．Will they both burn the same dme，or will the larger one burn the longer time？Give reason with answer．Io the focal distance of a lens in creased or diminished by the density of the atmo
sphere A ．The small candie contains $61 / \mathrm{cu}$ cubic inches The large cendle containulio．848 cabic Inchee，and would require 1.785 wicks of the size of the small candle to consnme it in the same time．The focus of a lens va－ res with the density of the atmosphere，bat too smal
（3563）J．E．B．asks whether the arim re to motor described in Suppliexint，No．641，has wire required！A．An armatnre with 8 coile will work wire required？A．An armature with 8 coils willjwork，
but as a rule the more coils used，the better．The size of the wire depends on the current used．For a battery current such as te recommended，No． 18 wire will
（3564）E．J．B．asks（1）how to cove sood pulleys for making polishing and emery wheel ．The beet plan for making an emery wheel wilh which contalins no oil．The leather can be fastened with glae aod shce pegs．After the glae becomes dry sandpaper．It should then be coated with the bes white alue and immediately rolled in the emery，whic hould be warm．When the wheel is dry，brush of he surplas emery．2．Also how to make a straigh agnet，same as magnet used in Bell teephone recelver ．Harden a bar of steel at the ende，draw it to a pur tent io pasesing．
（8505）F．S．asks for a receipt for manu cipts：a ．Diseolve 1 part lacuic acld and give two r e in δ parts of water．o．Melt together 1 pound olive in， 1 pound of tallow，and 8 ounces resin．While the aase is sill fuld，but has cooled a little，add with con－
 （3568）
（3566）W．S．M．asks：How many guns did the Monitor ase in the eng
mac A．Two 11 Inch gans．
（3567）F．D．S．writes ：I want to pamp per minute．Would like to know how mnch power will neceanary，end the best kind of pump to nes？A You will need a pamp indicating 123 boree power，and onld require two water cylunders each 6 feet in diame－ er，and 8 feet stroke，if single acting．
（3568）Dr．A．D．asks the quantity in weight or in bulk of carbonate of ammonia used to oonld pound of floar．A．Abont one teappoonfal is not generally need
（3569）R．G．asks：Why do engineers nultiply the square of the diameter of cylinder by the If the steam pump will draw water 38 feet at sea level， ow far will it araw when the elevation is 8.000 feet bove sea level，and how much shonld the suction be bortened for every 500 feet from 8000 to 18,000 H．B A．The equare of the diameter in inches multiplied by 885 eqnals the area of the cyinder in square inches． At 9,000 feet， 22 feet．At 10,000 feet， 21 feet．At 11,000

feet， 20 feet．At ig， 00 feet， $19 y$ feet．At 18,000 feet

 （3570）J．W．M．writes ：I would like to have you give a receipt for a paste for sticking labelaon to tin．I have tried a number of receipts，but they are all a failure excepting I nse an alkali or acia，either of which will injure colored labels．．What I want is a lue，cement，or paste that will stick paper colored abels to highly politohed tin and nickel．A．To 2 table poonfuls of the beat lioar add a tablespoonfal of rown sugar and a few drope corrosive sublimate，the tio getiing lampy，tull of the right thicknese．To pro－ vent monldinees aid a few drope of come cesential oil， oil of cloves．
（3571）A．V．S．writes：A young stu ent of mechanical engineering woald like to know a ew of the most common cnuses of boiler explosions，
and if any other gas than steam is ever the canse of ex posions，and if there is always an explosive increase or tereating and yoment of explosion．A．You will and ions，their cange and remedy，in scisurito Anest an SUPPLEMENT，Nos．463，456，581，with illastra
（3572）R．M．asks ：Please give me a reparatlon ard and not be easily washed off？A．Use zinc white or white lead，rubbei ap wing gum water to the prope （3573）J．M．B．asks whether land will become enriched or impoverithed if kept bare of vege
ation．A．Land becomes impoverished and leached of the necessary constitnents to vegelable growth by eing kept bare of vegetation．The soluble elements vegetation，carbonic actid，ammonia，phosphoric acid， potaeh，soda，sulphuric and hydrochloric acids，forming part of the c nssituents of vegetable hre，are kept in cir fed soil becomes barren frow exhaustlon from leaching sit will aleo from overcropping，withont artificial re toration of the elements withdrawn，which are necee （3574）P．W．asks ：What is the best reparation to cover wood，wo prevear hors manur rom roting it ？A．Two coats of hot coal tar pat o when the wood is dry

TO ITVENTORs．

An experience of forty years，and the preparation of Are than one hundred thousand applications for pa aws and practice on both contlients，and to poseeses um－ qualed facillites for procuring patents everywhere．A orelgn of the patent iaws of the Unitod states and al ontemplating the securing of patents，elther at homeo broad，are invited to write to this omice for prices hich are low，in accordance with the times and our ex consive facilities for conducting the buainess．Addreea
MONN $\&$ Co．，omice SCIENTIIC AMERICAN，\＄ol Broma MONN \＆CO．，
way，Now Yort．

INDEX OF INVENTIONS

United statem were Gramed

October 18， 1891
and each bearing that date

	Soare-all or alarm, mechanical, LL Lowle. Scraper. dirt, Bmith \& Hoplind Sereen H . B. sackett. 	- XVDvertisemerts.	
bber hoider. Nertider \qquad	acnetic separator. necheniam P Dioh nd tenelon device, 8. \mathbf{G}.	Inaide Page, each incertion .- 75 conte a line Back Page, onch facertion -. . - $\$ 1.00$ a live	
antary and proteoting, Melt			
	st		
ols. veblole Theol A. A. Minor draulio motor, W. H. Radiöok	8heet metal vescels, manuficiure oi.j. j. Shelf, fower pot, Goebei \& G̈rịin. 8hoo upper stretching meohina, i......	rome	
drocarbon burnerz governur for, J. C. B. Bhel. cream treeser, R W. Whitehurut maching T. B. Butker......		USE ADAMANT WALL PLASTER It is Hard, Denae, and Ade	2 mon cloth. A rchitectural Iron and Siteel, nnd its applicato in the construction or buildings. Puily liluatrated with engravings frum original desikns. 8vo, cloth. By Wm.
(r)................... 11.197	8		
Jeoly see Peeszing jack: Sole maohlae Jack, 461.372 Joint. Exace Plpe Roint. Ruiii joint.	Signaligg apparatus. $\dot{\text { trectric. E. E. G. Mettler }}$ signaling owtoh and oircuit, J. 8mothinf irons, electric heating core for, W.		tical kulde to the projection tud delineutlun orpinbect met utit in the practice of the enkineer, machintist, and pulldinf constructor, elc.; by practicai draughtanaen.
Entting machine, olroular, w. H. \& G. W. Mayo	moothing irons, electric heating core for, W, Soda fountain, electric. w. Mitchèi	0.	Arithmotic of Eleciricity, By T. O'Conor 8loane. A.M. h. h. Ph.D. This wurk k ives electric calculations
ng machine needle, G. H. Adams. sheet metal, W. A. Turner r, extension, I. H. Odom 路			
	8peotracle bridge, McBride \& Fisher. 8pindles on apindle ralla, locking bar for, $\underset{\text { s. A. }}{ }$. Jents.		as to the nmateur. 159 1.00 Cleaning and iewerage of cliles. Adapted rem the German, by permissionof nuthor, J. M. Goodell, aseo
Lamps, fuse box for eleotric, Holmes \& Gale. Lamps, wick ralser for central draught, E. Biack: man			
or impme, igniturg dev			
			ve
	-		book of reference for coiliery manayers and for the nse of coal mining st udents prepuring for arst-clars, certin- catea. By Cateb Pamely. Mem. N. Kng. and \&. W. Inst.
	tocking, \mathbf{W}. \mathbf{H}. Hew 7 8tone sawling machlinery, C. K. Wiear Stone worklng apparatus, W. L. Kann	LEARN WATCHMAZING, ota. of WT. F.A. Wroodocock Write for terms and particulars.	
	${ }_{8}$ 8tore servioe apparatus, H. D. B. Wliliams........ 401,898 Stove boards, manufacture of, J. J. 8weeney..................................058 Stovepipe, J. Tocin	ADAPTATION OF STONEWARE TO Chemical Apparatus.-By W. P. Rix. A description of	exampies of leadirk rnglish, American, and cintinenta)
			Dynnmic Electrictis. The Klementa of Dynamic
	Tanning, R. W. Turner.		ensive treatise on the princtples of practical y, in the author's well-known. ciear, unmathe-
			Electricity simelined.
	Turashers, band cutter and feeder		
${ }_{46}^{46}$			
Marbie moulung and disbing machinery yom- 6 di,04			why two intes of alrerent metuo mmerid
			w a bundie of copper wire, rotated by a steam engine. n be the agent in lighting our stretts; to tell whit the what
			Soin
	trap.		
		ng. Engines	
			175 illustrations. By Edward Trevert. 12mo. clnth York, 1891
		UNITED STATES IRON LANDING	
Nowspaper holder, W. C. Roberte Numberlig beed, Consecutivert. F. Geary......... 461 , 408			Operation of Dyymmos, Motors, Lampa Indicutori, atd neasurink lnstruments: also a full explanation or the electricul terms used in the work. includin
			Electer
	Valve		Etectroplat
	Veitcle Velocip	ZUCKER \& LEVETT CHEMIGAL CO.	electro-muetallurgy. 61 illustrations. B. 208 pages. 12 mo , cloth, London, 1891. Electroplating. A Practical Handboor....
			This work is meeting with a deservedly large is the best book ever pub ished on the subject.
			House ${ }_{\text {Hene }}$
			intionuction and tabour
			Iron. The Chemical Anuls
	Wat		
ipeea nippie for counecting iron			Landscape Garde
	Wries on poles, device for itrotabing hesvilit:		
Plow C. Hartsell Pole tip vehlole, H. P. Richards Pole, rehicle, H. 1. Kingsiey.			
Portorioe box add			
Printing device for registering mail boxee, Morton.			
Pa	TRADE MARKS. T		
,	Car		
RRan			
Railiw			
Rantiva		The escoesuifo American and A	all ita branches. embracing
Raimeat	On, Hoorrierer, .		emb
	Pullo lig ${ }^{\text {cod }}$		Toxder
Reyulatior. Bee Watch reexulator. Whindill regu-	aimil		Ill 11.10 utrated 1891
40,97			lephones: Their Con ctical manuul of the titl
Rivet and riv Holiting chair			and the gux Treatise up
Roor trucure.	T		
			${ }^{\text {8ro. clouh By }}$ J. Bucknall smith. 1.80 ndion
			Ye. exmplifed by the ruln
			N6 Any of the above books promptil sent
and			

OVER 16 TONS

"Experimental

 Science"SOLD.
We do not refer to science in the abstract, but to our new book by Mr. Geo. M. Hopkins, having the above title.
This book has proved itself to be the most popular scientific book ever printed. Every scientific person, and any person desiring to become scien look over the illustrated table of contents, which we send gratis. 740 pages, over 680 first-class illustra tions. Price by mail, \$4.
Munn \& Co., 361 Broadway, N.Y. 1 Gripat Alvertising Mediim. The Architeots and Builders Edition
of the Soientifio Amerioan. (Established 1885)

 Ware, Doors, Sash, Blinds, Paints, and in fect ell goods
which enter into or are used in the construction and

[In press, to be lsoued about December 1, 1801.]
\rightarrow Ghe Scientific Rmerican $*$ Gyclopedia•

\rightarrow of Receipts,

 NOTES AND QUERIES.$$
650 \text { pages. Price } 85 .
$$

This splendid work contains a careful compilation of the most useful receipts and Heplies given
in the Notes and Queries of correspondents as published in the Sclentific American during nearly half a century past; together with many valuable and important additions. Over Twelve Thousand selected receipts are here collected; nearly every branch of the use-
ful arts being represented. it is by far the moot comprehensive volume of the kind ever placed before the public.
The work may be regarded as the product of the studies and practical experience of the ablest chemists and workers in all parts of the world,
the information given being of the highest value arranged and condensed in conctise form, convenient for ready use.
Almost every inquiry that can be thought of, relating to formule used in the various manufacturing industries, will here be found answered. Instructions for working many diferent pro-
cesses in the arts are given. How to make and prepare many different articles and goods is set forth.
Those who are engaged in any branch of industry probably will find in this book much that is of practical value in their respective callings. Those who are in search of independent businees sale of useful articles, will find in it hundreds of most excellent suggestions.

MUNN a CO., Publishers,
Scientific American Office,
361 Broadway, New York DEAFNESS A HEAD MOLSSS CURED

AMERICAN INSTITUTE FAIR.

DAIMLER MOTOR CO, GAB HINGINTME, BAIMLER MOTOR LAUNCHES, i^{18} to mionion ${ }^{1020} 20$
 Those Motors are now op oxhibicion at the Ame
'STANDARD" EMFAYZL DRESSER STEEL TYPE FOR TYPEWRITERS

PURE TEXPERED COPPER

After being on the Market Five Years The "A CMAE Still Leads!
 rocescter machine tool worrs. brown's Race, Rochester, N. y.
ICE and REFRIGERATING MACHINES
The Piotet Artifioial loe Company (Limited), Room 6, Coal \& Irow Exchange, New York.

The value of the scrientific Aniricican as an adver-
ts many timee greater than that of any stmiliar journal
now pablishea. It goes into all the states and Terito
riea, and is read in all the princt pal ubraries and reading
 paper. He wants cdrculation. This he has when he ad
vertises in the ScizNuric the edvertising seent infieence you to substitute some
other paper for the sciENTIIC AMRBICAN whan lecting a list of pubiliontions in which you deetde it is for your incerest to adverlise gets lis feruentiy done fo the papers haring a small droculation than is allowed on the scientimic AMirrican.
For rates see top of dirst column of
drees MUNN \& CO., Publishern. 361 Broadway, Now York.

OTTO GAS ENGINES

Engines and Pumps Combined.
For COAL GAS
CAROLINE SCHLEICHER, SCHUMM \& CO chicagu.

GILADEIPHIA,
ELECTRICAL EVAPORATION of sam Crookes, F.R.B. At description by the autho
ef some recent oxperiments made by him upon the
evapotion of different substances under the infuen

HARRISON CONVEYOR!

OIL WELI 8UPPLY CO

THE MISSISSIPPI RIVER-A PAPER

 CATES ROCK \& ORE BREAKER
 Het producod mora ballast patad

INVENTIONS PRACTICALLY DEVFLUPPD

OTAREREME
WARP DYENNHAND SIZINGMACHINRE POWER WRINGERSPOR HOSIERY AND DRYING AND VRNTLATING FANS, CEO. P. CLARK,

Useful Books!

Manutacturers. Arriculturists. Chemists. Enpineers. Me-
chanics. Builders, men of lisure, and Drotessional

 tothem. Address.
MUNN \& CO., 361 Rroadway, Kow York.

〇TET丁 OIEE,

ARTESIAN

 HAS

MORE MONEY IS MADE

$\$ 10.00$ to $\$ 50.00$ Kitate

.

?
.a JOEN BARNES CO.. 19 me Raby Bt.c Rockford, m
CRYSTALLIZATION. - A LECTVURE

\%ain
AUTOCOPYIST

Phopertisements.

omplete stock of
Double Brace, Self-Oiling, Adju,
ble Ball and Socket Hangers,
Pillow Blocks, Post
Hangers, Etc.

EDISON GENERAL ELEOTRIO OO., sChenectady, N . \mathbf{X}.

STEVENS PATENT
(Q) SPRING SCREW THREAD CALIPERS
Ideal, No. 64.

poir

A NEW EDITION OF The Scigationc Amancan Rafarines Bools

 copyrights.
The book tontains tables for calculating the horse
wer of seam ensines, and other intoration usefil
varied. The matter crowder betwen the cores.

MEINTN e 00 .
Publishers of Scientific American,
361 Breat

ALUMINUM A Pocket Rule made of this wonderful

volney w. Mason \& co. FRICTION PULLEYS CLUTCHES and ELEVATORS

RATENTS!

 MUNN \& CO., Solicitors of Patents,

ELECTRIC POWER APPARATUS, FOR EVERY VARIETY OF MECHANIOAL WORK.
SAFE, SURE, RELIABLE, estimates furished.
THOMSON-HOUSTON MOTOR CO., 620 ATLANTIC AVENUE, BOSTON, MASS.

ELECTRRIC POWER|The

Remington Standard Typewriter

THE OTHER FELLOW' S SSSER

A BONUS.

NEW KODAKS
POROUS EARTHENW ARE.-BY

LEADING ENGINEERING WORKS

Wegrave
 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186.787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company
by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such aby thereof, and liable to suit therefor.

 GEAR CUTTING
 SCIENTIIIC AM MERICAN

The Most Popular Scientific Paper in the World
Only 83.00 a Year, Including Postage
Weekly-52 Number
This widely circulated and splendialy illustrated paper is published weekly. Every number contains six-
teen pages of useful information and a large number of cen pages of useful information and a large number of
original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Invent Chemistry, Electricity, Telecraphy, Photography, Architecture, Agriculture, Horticulture, Natural History
ete. Complete list of patents each week etc. Complete list of patents each week
Terms of Subscription.-One co
Terms or subscription, -One copy of the ScIeN-
TETC AMERICAN will be sent for one year- 52 numberspostage prepaid, wo any subscriber in the United States,
Canada, or Mexico, on receit of three dollars by Canada, or Mexico, on reecipt of three dollars by
pubbishers; six months, 81.50; three months, 81.00. Clubs.-Special rates for several names, and to Post
Masters. Write for particulars. Masters. Write for particulars.
The safest way to remit is oy Postal Order, Draft, or The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, seldom opes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to
MUNN \& CO., 361 Broadway, New York.

\$rieutific Americat \$upplement

This is a separate and distinct publication from THE SCEENTIFIC AMERICAN, but is uniform therewith in size,
every number containing sixteen large pages full of engravings, many of which are taken from foreign papers, and accompanied with translated descriptions. The
Screntric Ambrian supplement is published weekIy, and includes a very wide range of contents. It pre-
sents the most recent papers by eminent writers in all sents the most recent papers by eminent writers in all
the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy. Natural History, Geography, Archroology, Astronomy Chemis-
try, Electricity, Light, Heat, Mechanical Engineering, try, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Engineering, Mining, Ship Building. Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engitineering, Agriculture.
Horticulture, Domestle Economy, Biography, Medicine, Horticulture, Domestlc Economy, Biography, Medicine,
etc. A vast amount of fresh and valuable information obtainable in no other publication.
The most important Engineering Works, Mechanisms,
and Mancfactures at home and abroad are illustrated and Mancfactures at home and abroad are illustrated
and described in the SUPPLEMENT. Price for the Supplement for the United States and
Canada, 8.00 a year; or one copy of the ScIentific AMERICAN and one copy of the SUPPLEMENT, both malled
for one year for 87.00 . Single copies, 10 cents. Address and for one year for 87.00 . single coples, 10 cents. Address and
remit by postal order, express money order, or check, MUNN \& CO., 361 Broadway, New York, Publishers scientific American.
ghuilding Cedition.
The scientipic American Architects' and Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming a large and splendid Magazine of Architecture, richly
adorned with elegant plates in colors, and with other fine adorned with elegant plates in colors, and with other ine
engravings; llustrating the most interesting examples of modern architectural construction and allied subjects. A special feature is the presentation in each number
of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspeetive and in color are given, together with foll Plans, Specifications, Sheets of Details, Estimates, etc. Hae elegance and cheapness of this magnificent work
have fon for it the Largest Circulation of any Architectural publication in the world. Sold by all newsdealers. 8.50 a year. Remit to

MUNN \& CO., Publishers,
361 Broadway, New York.

PRINTING INKS

