
a WEEkLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, OC'OBER 17, 1891.	
	NEW YORK, OCIOBER 17,1891.	

BROADWAY AND SEVENTH AVENUE CABLE ROAD.
No other city of the same size is so unfavorably situated for the equable distribution of business places and residences as the city of New York. In this city, beginning at the lower part of Manhattan Island, the business element has grown northwardly, displacing the dwellings which have filled the upper portion of the island; while Long Island, New Jersey and Staten Island have received the overflow. The lateral travel from the long narrow island to Brooklyn and the adjoining cities of Long Island, to Jersey City and other places in New Jersey, is fairly well disposed of by the places in New Jersey, is fairly well disposed of by the
bridge and ferries, but the passenger traffic lengthwise
of the island has presented a problem which has not been completely solved either by the existing surface roads, the elevated roads, or the regular railways entering the upper part of the city.
It is but a few years since the old time omnibuses which coursed up and down Broad way were displaced by a horse railroad, which very speedily showed itself nadequate to fulfill the requirements. It was evident to residents, and even to visitors, that Broad way, being the principal thoroughfare, required better means of ransportation than the horse cars
Among all the available systems applicable to Broad-
way, the cable system was selected as being the best
and most practicable, since it provides larger and bet ter cars, a higher speed without noise or other nuisances, and gives to the traveling public the space formerly occupied by the horses. Furthermore, it renders the street more wholesome and cleanly.
At the present time Broadway, from one end to the other, is a scene of great activity, as the building of the duplex system of cable road is progressing with great rapidity, and, great as the inconvenience is, it is hoped and expected that the advantages secured will more than compensate. The road being built is $5 \cdot 17$ miles long, extending from the Battery to 59 th Street. At (Continued on page 246.)

THE BROADWAY CABLE RAILWAY, NEW YORK.

\$xientifir ghmeriau.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, for the U. S., Canada or Mexico...One copy, six months, for the U. S., Canada or Mexico. $\begin{array}{ll}\text { One copy, six months, for the U. S., Canada or Mexico................ } & 1 \\ \text { I } \\ \text { One copy, one year,to any foreign country belonging to Postal Union. } & 4\end{array}$ Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broad way, corner of Frauklin Street, New York.

THE SHIPS WE WANT NOT THE KIND WE ARE GETTING.
The statements made by Secretary Tracy respect ing the future necessities of the navy and the announcement that his forthcoming report will recommend that no more unarmored cruisers like those of the white squadron be constructed have aroused much interest among naval officers. The Secretary is reported as saying :
" We need three distinct classes of ships. First, battle ships such as the Massachusetts, Indiana, and Oregon will be when completed ; second, fleet commerce destroyers like the New York; and third, a large number of small thousand-ton vessels for police pur poses. Our battle ships can fight anything afloat There is nothing in the English, French, or Italian navies that they cannot fight. As a matter of fact, the number of vessels in any of the foregoing navies that could successfully oppose them are comparatively few With a dozen such vessels added to our monitors fo harbor defenses, we could in our own waters success fully withstand an attack from Great Britain herself. The New York is an armored cruiser. She is now building at Cramps' yard at Philadelphia at a cost to the government of $\$ 3,000,000$. Her purpose is to destroy an enemy's commerce. Four such ships dis tributed in various quarters would put an effectual stop to the depredation of as many fleets of ordinary cruisers. She will have, in many respects, a wider field of usefulness than any other ship yet designed for the navy."
Small cruisers for police purposes, the Secretary says can be quickly constructed. Their crews are small, they burn little fuel, and their cost, exclusive of armament, is only a trifle in excess of $\$ 300,000$ each. "For ordinary police purposes," said Secretary Tracy, " they will be quite as effective as any of the heavier cruisers. They carry eight 4 -inch rifles and a small subsidiary battery of rapid-fire guns. Where difficulties arise with small countries like Hayti, San Salvador, and Nicaragua, which have no navy, such vessels fill every requirement, while the expense of maintaining them afloat is trifling as compared with that of the larger ships. At this time, too, we could use them in China."
If the recommendations in Secretary of the Navy Tracy's forthcowing report are carried out, we are likely to expend a large sum of money on what we don't want and unnecessarily to postpone the building of the type of ship we shall be in most pressing need of when we need any. The great battleship of the Massachusetts type, in which he seems to repose so much confidence, would not, in all probability, have anything to battle with in case of war, unless the enemy should commit the folly of taking to the high seas to meet her. The best thing the enemy could do would be to leave her alone, for she could do no harm, unless coming up with something as slow and cumbersome as herself, in which case she would be only doing the enemy a service to sink it. And what would such enterprises avail if the enemy was plying his ocean trade unmolested? The purpose of deep-sea fighting heretofore was to prevent interference with commerce. But the most important commerce to-day is carried on in fast steamers, and in case of war would, in all probability, be confined to this character of craft, which, it may be said, is being more powerfully engined year by year. What hope would there be of intercepting it by such weighted-down and unwieldly warships as the coming Massachusetts, Indiana, and Oregon? As for depredations on an enemy's coast, the present superiority of the land gun over the marine target has ren dered such impracticable. Thus the Secretary's dec laration that these ships "can fight anything afloat," even if true, is without important significance.
Let us now consider the commerce destroyer New
York, now building at Cramps' yard, and of which the Secretary says: "Four such ships distributed in various quarters would put an effectual stop to the depredations of as many fleets of ordinary cruisers." Perhaps they could. But how about the enemy's fast merchant fleet; could they overhaul it? There are at least four werchant steamers at present in the Atlantic trade that, even with heavy cargoes, are good for $211 / 2$ knots, and which with lighter cargoes can undoubtedly do better than this. The guaranteed speed at sea of the new Cunard steamers, contracts for which are reported as having been given, recently, to the Fairfield Co., is to be 22 knots per hour. Each boat 12,000 tons. Will the New York be up to this? We hope so, but the experience with
serious doubt.
As to the "large number of small thousand ton craft with small batteries to do police duty and cost $\$ 300,000$ each," which the Secretary would build, it is clear that they would be too weak to fight and too slow to run away. It is evident that our most pressing need is a fleet of commerce destroyers, fast enough to overhaul the fleetest craft afloat. During the civil war three swift steamers, the Alabama, Georgia and Florida, were the means of driving our great merchant neet from the seas. These ships could coing we had afloat, and in order successfully to
play a similar role in a coming war, ships to do such work must have a like recommendation. The navy engineers, accounting for the lack of speed of those of our new ships that prowised to be so swift, declare it impossible to get maximum speed out of engines unless they are constantly kept up to it, that is to say, constantly driven at full speed; the stokering maintained at maximum efficiency, the engineers experienced in meeting obstacles and correcting defects.
If this is the case, and no one can deny the reasonableness of it, the answer is that the thing should be done. Ships of the commerce destroyer class should, like the swift passenger vessels, be kept driving away at full speed in time of peace, to be prepared to perform their proper service with precision if war should come. Those who read the orders as they come from the navy office are aware that ships are constantly being sent to call at foreign stations, and it is a fact that in all the regular squadrons, North Atlantic, South Atlantic, Pacific, European, and Asiatic, the regular order is cruising over an extended track. Thus a long cruising ground could readily be selected for such cralt as commerce destroyers, when they were not employed for emergency calls to far-away stations, and instead of burning 75 or 100 tons of coal per working day with two-thirds speed, they might be allowed 200 tons, or enough to drive them always at maximum peed.
Fast craft we want if we want any, and if the ouly means of keeping them fast is by constant pushing, let them be pushed for all that is in them.

ELECTRICAL TRANSMISSION OF 300 HORSE POWER.
If it is true, as cabled, that $300 \mathrm{~h} . \mathrm{p}$. gathered from the river Neckar is being delivered at the Frankfort exposition, 108 miles distant, in the form of electrical energy and with a loss of only 25 per cent, it is an event of uncommon importance and is likely to awaken as tuuch interest in other parts of the world as at the chief city on the Main. It is more likely that there is some exaggeration in this statement, and yet the presence of wany expert electricians and the rewarkable care and cunning with which the transmitting apparatus has been set up and operated leaves room for the hope that an important advance in the science of transwitting large parcels of power has been attaiued. We are told that the power is obtained from a turbine placed in the channel of the Neckar at Lauffen, driving a rotation current dynamo which con verts the energy into the form of a combination of alternat. ing currents. These currents are next transformed into current of high pressure and siuall strength. It is transmitted through three thin bare copper wires of no more than four mm. diameter. These are strung along ordinary telegraph poles. The line passes hrough Heilbronn, Jagstfeld, Eberbach, Erbach, Babenhausen, Hanau. At the exposition this current feeds 1,200 incandescent lights, runs a powerful rotation current motor, a number of swaller motors, a centrifugal pump supplying a waterfall 10 meters high and much other power-consuming apparatus.
We are not told how the operators have overcome the influence of that potent disturbance, the Foncault currents, which, from the time of Marcel Deprez's experiments at the railway shops of the Chemin de Fer du Nord in Paris down to the present time, have rendered futile all attempts at the econowical transmission of large parcels of electricity over a long line. One hundred miles is a long distance to transmit 300 h. p. less 25 per cent, and if actually accomplished, it leaves a strong hope that both the load and distance way be gradually increased till finally the prophesy Sir William Thomson uttered at Niagara will have been fulfilled and vast quantities of power gathered at the great falls will be transmitted in the shape of electrical energy to operate mills and workshops and railways hundreds of miles away.

A NEW EDISON ELECTRO-MOTOR.

Mr. Edison, if correctly reported, has constructed a novel electro-motor or made important improvements in the present type-he is not yet prepared to say which-and because of this discovery declares that electrical traction will drive out all other forms, at least for city passenger traffic. Moreover, he says that the Broad way and the Third Avenue car companie will soon have cause to regret their enormous expendiures for cable roads, for that his new system could be nstalled by simple and readily accomplished changes in the roadbed. This will prove as melancholy news to Broadway merchants as to the companies, for if true, the long-continued and, indeed, not yet expired term of inconvenience and confusion might have been voided.
Many who have watched the introduction and progress of the overhead trolley system were long since convinced that it would not prove a permanent form of traction. Too many parts of the apparatus are left exposed to the weather and other conditions un avorable to reliable working, and though important mprovements in economic apparatus are constantly veing inade, and running expenses have been declared by competent authority to be less per car mile than in
any other now in practical usage, it was easily seen that the peculiar adaptability of electricity for oper ating motors was being utilized to only a small ex tent.
A self-contained motor without attendant wires and poles or charged rails or mains is the want of the day. Perhaps this is what the new Edison motor will prove to be. As it is declared to be easily applicable to Broad way and the Third Avenue it cannot need such accompaniments, for no one knows better than Edison how impractical such a systew would be. As it would require but a slight and inexpensive change of the tracking, it evidently needs no pendent arms in a slot. Nor is it likely that so practical an inventor would resort to an exposed current transmitter with a metallic brush traversing it. Yet the fact that it will require a change in the tracking would seem to indicate that it is not to be operated by either a primary or secondary battery.
Whatever it may be, if it will run with speed and certainty in all weather, demanding neither poles nor overhanging wires, nor requiring an exposed conductor in the permanent way, it is urgently wanted and cannot come too soon.

Seed Farms of the United States.
According to Census Bulletin No. 111, the production of seeds as an industry has been for the first timemade a subject of census investigation. This report is prepared by Mr. J. H. Hale, special agent, under the direction of Mr. Mortimer Whitehead, special agent in charge of horticulture. The material from which these statistics are coupiled was obtained directly from the seed growers u pon schedules prepared for that purpose and by personal visits of special agents to seed farms and dealers in all parts of the country.
This investigation included only such farms as were devoted to seed growing as a business, and did not consider the large amount of field and garden seeds grown as side crops on thousands of farms, which would greatly swell the aggregate yield of seeds, but would not fairly estimate seed growing as a special industry. It will be noted that seed growing has been carried on as a business in this country for more than a century, but that only within the past thirty years has it assumed large proportions. More than one-half the total number of establishments reported were started between 1870 and 1890. This report shows that there with a total of 169,851 acres, devoted exclusively to seed growing, of which $96,5671 / 4$ acres were reported as producing seeds. Of these, 12,905 acres were devoted to beans, 1,268 to cabbage, 919 to beets, 10,219 to cucumbers, 71 to celery, 15,004 to sweet corn, 16,322 to field corn. 4,663 to squashes, 7,971 to peas, 5,149 to muskmelons, 662 to radishes, and 4,356 to tomatoes. The 596 seed farms reported represent a total value of farins, implewents, and buildings of $\$ 18,325,935.86$, and employed in the census year 13,500 men and 1,541 women. Two hundred and fifty-eight of these farms are in the North Atlantic divison, with an average of 185 acres per farm. In the North Central division there are 157 seed farms with an average of 555 acres per farm. The seed farms in Iowa and Nebraska average 695 acres, several being nearly 3,000 acres in extent.
Prior to 1850 all the seed farms of the country were in the few northeastern States of the Union, Connecticut and New York for more than half a century producing more seeds than all other States combined ; and while each has at present more seed farms than any other State, the general westward tendency of all that pertains to agriculture has stimulated seed growing on a very extensive scale in the central West and on the Pacific coast. There has of late been a feeling of depression among the growers generally, who, previous to 1883 , wade exceptionally fine profits out of the business, and were thus stimulated to establish more seed farms than could profitably find market for their pro-
ducts during the past few years. The general feeling ducts during the past few years. The general feeling of production be discovered whereby a greater yield may be secured at less cost of labor.

A Dog Lives Twenty-seven Days without Food
On the night of September 27, 1891, the janitor of Parker Hall, Manasquan, N.J., went into the ticket office to put away some old tickets, and was much startled at feeling something crawling about his feet. Upon investigation, it proved to be a dog, which was in an extremely emaciated condition, and barely able to crawl.
The janitor alone has the keys of the place, and he is positive that the office nad not been unlocked since September 1. As he could get in by no other way, the
dog must have been shut up for twenty-seven days dog must have been s
without food or water.

There were only some old tickets and a cigar box or t wo in the office, and these were chewed into bits by the famishing animal.
The janitor had been in the hall several times be tween the above dates, but heard no outcry, and was
greatly astonished when he found the office occupied. The dog was given a good drink of water and a loaf of bread, which latter was eagerly devoured, and at a subsequent date the dog was doing well, being ap-
parently little the worse for his fast.

Can we Make It Rain?

I am not going to maintain that we can never make t rain. But I do maintain two propositions. If we are going to make it rain, or produce any other result hitherto unattainable, we must employ adequate means. And if any proposed means or agency is already familiar to science, we may be able to decide beforehand whether it is adequate. Let us grant that out of thousand seemingly visionary projects one is really sound. Must we try the entire thousand to find the one? By no means. The chances are that nine hundred of them will involve no agency that is not already fully understood, and may, therefore, be set aside without even being tried. To this class belongs the project of producing rain by sound. As I write, the daily journals are announcing the brilliant success of experiments in this direction; yet I unhesitatingly maintain that sound cannot make rain, and propose to adduce all necessary proof of my thesis. The nature of sound is fully understood, and so are the conditions under which the aqueous vapor in the atmosphere may be condensed. Let us see how the case stands. A room of average size, at ordinary temperature and under usual conditions, contains about a quart of water in the form of invisible vapor. The whole atmosphere is impregnated with vapor in about the same proportion We must, however, distinguish between this invisible vapor and the clouds or other visible masses to which the same term is often applied. Clouds are not formed of true vapor, but consist of impalpable particles of liquid water floating or suspended in the air. But we all know that clouds do not always fall as rain. In order that rain may fall, the impalpable particles of water which form the cloud must collect into sensible drops large enough to fall to the earth.
Two steps are therefore necessary to the formation of rain; the transparent aqueous vapor in the air must be condensed into clouds, and the material of the clouds must agglomerate into raindrops. No physical fact is better established than that, under the conditions which prevail in the atmosphere, the aqueous vapor of the air cannot be condensed into clouds except by cooling. It is true that in our laboratories it can be condensed by compression. But, for reasons which I need not explain, condensation by courpression which I need not explain, condensation by courpression sults in the formation of clouds and rain may come in two ways. Rains which last for several hours or days are generally produced by the intermixture of currents of air of different temperatures. A current of cold air meeting a current of warm, woist air in its course may condense a considerable portion of the moisture as long as the currents continue to meet. In a ho spring day a mass of air which has been warmed by the sun, and moistened by evaporation near the surface of the earth, may rise up and cool by expansion near the freezing point. The resulting condensation of the moisture may then produce a shower or thunder
squall. But the formation of clouds in a clear sky without motion of the air or change in the tempera ture of the vapor is simply impossible. We know by abundant experiments that a mass of true aqueous vapor will never condense into clouds or drops so long as its temperature and the pressure of the air upon it remain unchanged. Now let us consider sound as an agent for changing the state of things in the air. It is one of the commonest and simplest agencies in the world, which we can experiment upon without diffi culty. It is purely mechanical in its action. When a bomb explodes, a certain quantity of gas, say five or six cubic yards, is suddenly produced. It pushes aside and compresses the surrounding air in all directions, and this motion and compression are transwitted from one portion of the air to another. The amount of motion diminishes as the square of the distance; simple calculation shows that at a quarter of a mile from the point of explosion it would not be one ten thousandth of an inch. The condensation is only momentary; it may last the hundredth or the thousandth of a second, according to the suddenness and violence of the explosion; then elasticity restores the
air to its original condition, and everything is just as air to its original condition, and everything is just as
it was before the explosion. A thousand detonations can produce no more effect upon the air, or upon the watery vapor in it, than a thousand rebounds of a small.

So far as the compression of the air could produce even a momentary effect, it would be to prevent rather than to cause condensation of its vapor, because it is productive of heat, which produces evaporation, not condensation. The popular notion that sound may produce rain is founded principally upon the supposed fact that great battles have been followed by heavy rains. This notion, I believe, is not contirmed by statistics; but, whether it is or not, we can say with con-
fidence that it was not the sound of the cannon that produced the rain. That sound as a physical factor is quite insignificant would be evidentwere it not for our fallacious way of measuring it. The human ear is an instrument of wonderful delicacy, and when its tympanum is agitated by a sound we call it a "concussion," when, in fact, all that takes place is a sudden motion back and forth of a tenth, a hundredth, or a thousandth of an inch, accompanied by a slight momentary condensation. After these motiont are completed the air is exactly in the same condition as it was before. It is neither hotter nor colder ; no current has been produced, no moisture added. It must, however, be added that the laws under which the im palpable particles of water in clouds agglomerate into drops of rain are not yet understood, and that opinions differ on this subject. Experiments to decide the question are needed, and it is to be hoped that the Weather Bureau will undertake them. For anything we know to the contrary, the agglomeration way be facilitated by smoke in the air. If it be really true that rains have been produced by great battles, we may say with confidence that they were produced by the smoke from the burning powder rising into the clouds and forming nuclei for the agglomeration into drops, and not by the were explosion.-Prof. Simon Newcomb, in the North American Review for October.

Horses, Mules, and Asses on Farms.

Census Bulletin 103, prepared by Mr. Mortimer Whitehead, special agent of the Census Office, gives statistics of horses, mules, and asses on farms of three or more acres, but not including this kind of stock on ranges, kept on holdings of less than three acres, or in cities and villages.
The figures of the tables show that in the States and Territories there were on hand June 1, 1890, 14,976,017 horses, 2,246.936 mules, and 49,109 asses; that in 1889 there were foaled $1,814,404$ horses, 157,105 mules, and 7,957 asses ; that there were sold in the same year $1,309,557$ horses, 329,995 mules, and 7,271 asses, and that there died from all causes 765,211 horses, mules, and asses during the same period.
Taking the whole country into consideration, the mule is not keeping pace with the horse as a farm ani mal ; but the mule grows in favor and use in several of the Southern States faster than the horse. One reason for the change in the Easteru, Northern. Central, and Western States is probably the falling off in the profits of agriculture during the past decade, causing the farmer to economize in many ways. The price of horses has held up better than of most classes of farm stock during the past ten years. A team of mares can do the farm work and raise a pair of colts each year so mares have taken the place of mules on tens o thousands of farms.
Still the breeding of mules is a great industry, found largely in Missouri, Kentucky, Tennessee, and Texas, with a considerable development in Kansas, California Illinois, Arkansas, Mississippi, Alabama, and North Carolina. Under the diversified system of agriculture rapidly spreading in the South the breeding of horse and mules is growing in favor, and cannot fail to add largely to the material wealth of that section.
The hardy little burro has advantages over both hors and mule, and in some sections count up into the thou sands, notably in New Mexico, California, and Colo rado. Census figures show that on the ranges of New Mexico, in 1890, there were 13,074 of these useful crea tures employed as pack animals for transportation.
The breeders of "jack stock" are mainly located in Tennessee, Kentucky, Illinois, Colorado, Missouri Texas, Louisiana, and Alabama.

The jack stock imported into this country comes mainly from Spain, France, Italy, and the islands of Malta and Majorca. The best animals sell as high as $\$ 2,000$ and $\$ 3,000$ each. In the Poiteau district o France, not larger than most of our counties, statistics show that in a single year 50,000 mares were bred to jacks, and the yearly export of young mules amounted in value to between two and three millions of dollars.

Cheap Reservoirs.

Mr. C. D. Durban says that the cheapest reservoir that a man can build on his land for retaining water for irrigation purposes is a tunnel run into a hill. An open reservoir in a cañon or other suitable place will lose one-third of its water during the summer from evaporation, while in a tunnel there is no loss. A small spring will supply a tunnel with sufficient water for many purposes. He has illustrated this in a prac tical manner. On his own land at Mesilla Valley he ran a tunnel thirty-five feet long into a hill, in so doing tapping a spring; this tunnel he dammed up, leaving a space thirty-five feet long and the size of the leaving a space thirty-five feet long and the size of the
tunnel, which is about five by six feet, to be filled with tunnel, which is about five by six feet, to be filled with
water. The water he carried to his house in pipes and water. The water he carried to his house in pipes and
we observed that it supplied his dwelling, another near by, his barn and drying house for raisins, as wel as irrigated quite a space devoted to flowers for a gar den. He says that the tunnel is the cheapest and best form, and that for each dollar expended one can obtain a space equal to twenty-five cubic feet.

THE SUABIAN HARVEST FESTIVAL

The Suabian harvest festivals take place in America during the latter part of September, and are similar to those held by the Suabians in Germany. Suabia, or the kingdom of Wurtewberg, lies in the southwest angle of the German empire and is a great agricultural country. About 100 years ago the king of Wurtemberg ordered a day in each year to be set aside for these estivals, and the 26th of September was chosen. Vegetables and fruits from all parts of the country are orought in and made into columns and arches, the diferent designs and colors made of the vegetables and ruits giving them a beautiful appearance. They also have numerous games, such as the hare hunt, climbing he pole, sack races, etc.
The Suabians in this country have formed themselves into mutual benefit societies, and also hold these festivals in the various parks in the large cities. Our ketches illustrate the Suabian harvest monuments as erected in Caledonia Park, Jersey City, N. J., in September last. The vegetable monuments erected were from 30 to 40 feet in height. A pole, ahout 8 nches in diameter, runs row the ground to the top and around this is built a ircular shaft. The bas f the monument is about 14 feet square, and is made into four steps, tapering ip to the top, where a box 6 feet square, made o heavy material is fastened The pole running through the circular shaft project down below the base abou 10 feet An 8 inch hol running through the top and bottom of the box through the base to the ground, through which the pole runs, keeps the shaf in position. The shaft is 2 feet in diameter at the top and 4 feet in diameter a the bottom, and the entir column is made of wood The designs are first laid out with chalk, and be ginning at the top, th vegetables are nailed on covering up the woodwork fom view, and giving the appearance of a solid vege table column. Six, eight and ten penny nails ar used to the number o three kegs, and twenty-fiv barrels of vegetables and fruits will barely cover on of these monument ons, pumpkins, and the arger vegetables being placed about the steps or base of the column. Th designs and colors ar beautiful to look at. The time consumed in nailing on the vegetables is about three days.
hese festivals last three r four days, there being each day numerous games, uch as climbing the pole the schoolmaster, sac races, and a hare hunt There is an old story in connection with the har hunt, which runs as fol ows: A simple Swab went
out into the woods one day, and, being very much criminal courts against the firms of the Berlin Accumu frightened by a strange animal, he ran back and told great story to his six companions about the animal he had seen. He described it as being something terrible, and greatly frightened them all. They finally decided to go out and see what it was, each one urging the other to go first. One of the number happened to have a big pair of boots on, and the others induced him to go first, providing him with a big spear. The animal, when found and killed, proved to be only a hare.
These monuments cost between $\$ 400$ and $\$ 500$ each After the festival is over the column is put up at auction to the hightest bidder, but the nails spoil most of the fruit, and the receipts from such a sale are usually only from $\$ 8$ to $\$ 10$

To remove rust stains from nickel plate, grease the rust stains with oil, and after a few days rub thoroughly with a cloth moistened with ammonia. If any spots still remain, remove them with dilute hydrochloric acid and polish with tripoli.
lator Company, Correns \& Co., De Khotinsky, Gelnhausen, and Gottfried Hagen, of Cologne on Rhine. These firms in turn combined together with a view to obtaining the right to employ Faure's patent without charge, and instituted a suit for the nullification of the rights secured by Faure's patent. This suit came on for decision before the Imperial Patent Office. All motions made by the petitioners for annulment, in order to obtain a postponement of the case, the institution of experiments, hearing of witnesses both in this country and abroad, were disallowed by the Imperial Patent Office, it being decided that sufficient material was already before the court on which to give a decision. The assertion advanced by counsel for the petitioner, Dr. Haberlain, patent attorney of Berlin, namely, that accumulators similar to those patented by Faure were already perfectly familiar to experts in consequence of published writings of Plante, Kirchhoff, De la Rive and Brush, and from a combination of publications of the published writings of Prof. Stock hardt and Dr. List, and the experiments of Dr. Aron

THE SUABIAN HARVEST FESTIVAL-MONUMENT OF VEGETABLES
of Berlin, previous the announcenent of Faure's following extract is taken from the Berlin patent, was shown by the counsel for the defendants, Borsen Courier of September 11: A case which for engineer and patent attorney Pieper, of Berlin, to be解 rical world came up for decision before the Nullity the alternative plea advanced by the plaintiffs, to the Department of the Imperial Patent Office. The Joint effect that the only point which could be held to be Stock Accumulator Company, of Hagen, in West- protected by the patent was a layer supplied by means phalia, is the holder of a license in respect of the pa. of a. brush in connection with partition walls, was tent granted in 1881 to Camille Faure for the produc. shown to be quite unsupported; it was, on the contion of accumulators. The extraordinary success at- trary, proved that neither the specification nor the tained by this industry, both in this country and claims of the patent contained anything which was not abroad, led last year to the conversion of the original capable of practical realization, proof being advanced company into a large joint stock undertaking, in in support of this view to the effect that over twenty which, among others, the Allegemeine Elektricitats millions worth of accumulators constructed onf Faure's Gesellschaft and the firm of Siemens \& Halske be- system are at this moment employed for purposes of came interested to a very considerable extent. On the lighting and transport, and attention being drawn other hand, this very success led, especially in Ger- to the fact that the only motive which could be sug. wany, to attempts at evasion of the rights patented gested for the desire of the petitioners to annul the by Faure, and the Accumulator Company found them- patent wust be to their wish to share in the advantages selves obliged to defend actions both in the civil and secured by it. Indeed, the circuinstance that they follow Faures abuve men tioned specification by applying the layer for the collection of electricity on the electrodes, proves conclusively that Faure had given clear and precise instructions for the production of accumulators. The fact that the form of the conductor employed for the reception of the active layer used to store the electricity was a new one did not in any way justify the petitioners in the previous application of such a layer of active material to plates other than those first of all employed by Faure in the case of unch active lay ers. The Imperial Patent Office admitted the force these arguments by of these arguments by defendant's counsel that the appeal lodged by the petitioners should be disallowed, thereby declaring the validity of Faure's 1881 patent to be unconditional.

Stopping Horses by
 Electricity.

A successful trial of topping a runaway team was witnessed by a large crowd on Michigan Aveue, Chicago, recently. The experiment was undertaken by Mr. Halson, of the Halson Electric Harness and Supply Company, of Chicago. After placing a set of his patent harness on a span of highspirited horses, he hitched hem to a new top buggy and connected the lines to wires running from ander the seat. He then took a seat in the buggy and gave the horses two slashing cuts with the whip. They immediately started down he street with every ap pearance of a genuine run away. Suddenly both ani als reared in the air danced frantically for a moment, throwing their
eads viciously, and came to a dead standstill.
Mr. Halson then jumped out and described the manner in which the horses were stopped. By means of a small battery and coil in the carriage, a system of wiring through the harness, and the pressure of a conveniently located button, a mild shock is given the horses from the bit. The strange sensation induces them to back away frow a seeming attack in front, and thereby causes them to immediately stop. The shock is not of sufficient strength to injure the animal in the ieast but it is enough to check any horse.-Electricity

New Cunard Steamers.
Referring to the progress of Clyde shipbuilders, The Engineer, London, states that the most important of recent orders is that reported to have been booked by the Fairfield Company, Govan, for the construction of two new steamers for the Cunard Company, to run beween New York and Liverpool. It is stated these be guaranter Such vessels, on a spurt, could probably make 24 knots.

A SIMPLE AND EFFICIENT GRAVITY HOIST. The apparatus shown in the illustration is especially adapted for use in sinking deep wells and shafte, and may be employed in elevating and disposing of material taken from mines, and for many similar uses. It has been patented by Mr. Williaw J. C. Doyle (box 874), Aspen, Col. The drums or windlasses of the apparatus are carried by two shafts geared together at their inner ends, each shaft carrying two drums, one of

doyles gravity hoisting apparatus.
which is larger than the other. On the smaller drums are wound the hoisting ropes, which pass over pulleys on a shaft in a suitably constructed frame, and are connected with the buckets traveling in the well or shaft, the arrangement being such that when one bucket descends the other one rises, and vice versa. On the larger drums are wound cables connected with cars traveling in opposite directions on inclined tracks, the cables and the hoisting ropes being so arranged, relatively to each other, that when an empty car is at the upper end of the incline a filled bucket will also be at the top of the shaft, in position to be conveniently emptied into the car, the downward travel of each filled car along the inclined road exerting a pull on one of the ropes on the large drums to cause a filled bucket to be raised, while at the same time an empty car is drawn up and an empty bucket let down. A brake band is provided for each shaft, operated by a lever conveniently arranged, and, that the two shafts may be readily disconnected, for lengthening or shortening the cables or other purposes, their inner bearings are fitted to slide, and are each connected by a link with a lever pivoted on the frame, by means of which the bearings may be moved to disengage the gear wheels. The construction is very simple, and the hoisting work is all the time under the control of the operator.

AN INEXPENSIVE PORTABLE FENCE

The fence shown in the accompanying illustration is designed to be staunch, durable, and of inexpensive

HARRIS' PORTABLE FENCE

construction, and capable of being quickly and easily set up on even or uneven ground. It has been patented by Mr. Charles E. Harris, of Brandon, Manitoba, Can ada. The post from which the fence sections are supported is secured to a block or plate attached to a bedbeam, beveled under at each end, and having end apertures in which a hook may be inserted for conveni ence in moving the beam over the ground. The block or plate on the bed-beam has near each end a series of slots and central apertures, each adapted to receive tongue on the lower end of a post of a rail section. The
body section and the bed-beam section of the post are connected by braces, and the top of the post has three or more triangularly arranged recesses, and is covered by a metal plate with apertures corresponding to the recesses, there being arranged upon the plate an angular cap mounted to swing horizontally. The fence sections may be made in any approved manner, but the end posts of each section have recesses in their upper
ends, and their lower ends are provided with integral or attached tongues. In erecting a fence, the tongue on the lower end of a section post is placed in one of the slots of the plate on the bed-beam nearest the wain post, and the upper end of the post is connected with
the top of the main post by a staple, the cap being first swung to one side, and when the staples have been forced down into place the cap is carried over them, preventing their withdrawal. If the ground is slanting or uneven, the end post of the section way be placed in one of the other slots of the bed-plate, and where another fence intersects the first one at an angle the end post of the diverging fence will be placed in one of the other apertures. It will be seen that a section of this fence can be easily removed to make an opening to an inclosure, while the whole fence can be quickly taken down and set up again.

Concrete Buildings

The members of the Technical Society of the Pacific Coast lately went to Palo Alto on the invitation of E . L. Ransome, who has nearly completed two large concrete buildings for the Leland Stanford, Jr., University. One of these is the girls' dormitory. The larger one is the museum building and is the finest piece of building concrete work yet done in this vicinity. The structure is absolutely fireproof, and intended also to be earthquake-proof. It is built on the system patented by Mr. Ransome, so as to be a homogeneous structure as to walls and parritions, there being no joints. Twisted iron rods ar used for additional strength where necessary. The ce ment is wixed in the Ransome patent mixer and ele vated to points where used. A large force of wen has been at work on this building for some time and it is now almost complete. Even the interior arches and ceilings are of concrete.
The stairways are made of concrete, and these will be covered with marble steps. The hallways will be finished in warble over the concrete. There is no wood anywhere in the building, the window frames, etc., being of metal. The exterior is furnished with a swooth coat of cement to resemble brownstone. The heavy columns of the entrances are, like the main structure, of concrete, and the statuary to surmount the building is moulded of the same material

There are two concrete buildings now and others are to follow. They were built by contract by Messrs. Ransome \& Cushing in an exceedingly short space of time. Stone buildings of equal dimensions would have taken three or four times longer to construct.

A PORTABLE HOIST FOR HEAVY ARTICLES.

A hoisting machine designed to travel on rails, for conveniently lifting heavy articles to and from cars, ships, warehouses, yards, etc., is shown in the accom panying illustration, and has been patented by Mr. Ed. Burns, Superintendent of the Berlin and Montello Granite Co., works at Montello, Wis. The machine is employed in handling all sizes of stone to and from the stone cutters, and is said to have proved its superiority to any kind of traveler hoist or previous means employed in this kind of work. Centrally on a platform car is a plate on which turns the base of the hoist, the base having a downwardly extendiug pivot passing through the plate and having a nut at its lower end abutting against the under side of the platform. On the base are lugs in which is pivoted the lower end of the boom, as shown also in one of the small views, the boom having, just in advance of its pivotal point, a short foot or bracket in which are journaled rollers adapted to travel on a circular track. The hoisting chain, passing over the pulley on the outer end of the boow, is wound or unwound frow a hoisting drum of any approved construc tion on the base of the hoist. On the under side of the under side of the
platform, near each end, are guideways adapted to support a beam, which may be drawn out to rest on blocks, the beam being extended to that side of the car on which the boom
projects, to prevent the car from upsetting or leaving the rails, when a heavy article is being lifted. One of the swall figures represents a special device to hold the car to the rails. It consists of an arm fastened by a key to the car timbers, the lower end of the arm being formed into a hook to engage one side of the head of the rail, the other side being engaged by a hook pivoted to the arm and locked in place by a wedge. The boom and hoisting drum can, with this improvement be readily turned in any direction, carrying the load with ease and perfect security, while the construction is simple and durable.

A BINDER FOR PAPERS, MAGAZINES, ETC.

This binder, which has been patented by Messrs. James Fitzpatrick and John Ring, is designed to provide a convenient means for removably securing papers, pamphlets, etc., within permanent covers, the device being of very simple and durable construction. The cover has a flexible back, centrally in which an auxiliary back is secured by means of rivets, the auxiliary back comprising two rigid side board sections and an intermediate section, united by any approved form of hinge. When the sides are of pasteboard or similar material, covered with canvas, the fabric may be continued from one side to the other thus forming a flexible intermediate portion. In each side of the auxiliary cover, at the ends, is a series of eye leted openings, through which cords are run longi

FITZPATRICK AND RING'S BINDER

tudinally across the inner face of each :side, the cords being simply looped upon the under face of the sides of the cover at both ends. Wire may be used instead of an ordinary cord if preferred, and attached to each strand or cord, at top and bottom, is a two-leaved tab, a sleeve uniting the leaves, whereby the tabs may be slid up and down on the cords, to accommodate pamphlets or papers of different lengths. The leave of the tabs are covered on their outer faces with muci lage or other adhesive, and the paper or pamphlet to be introduced into the binder is opened in the center and passed half way under one of the cords, when the tabs are cemented to the central leaves, the pape being thereby re-enforced at the top and bottom edges while the inserted publication is held in the position in which it is placed.
Further particulars with reference to this improve ment may be obtained of Mr John Cassidy, Nos. 221 to 225 Fulton Street, New York City.

To make a good sticky fly paper, mix by heat $31 / 2$ ounces raw linseed oil, 1 pound resin, and add $31 / 2$ ounces molasses. Apply to paper while warm.

bURNS' PORTABLE HOISTING machine.

DR. J. W. CLOWES' IMPROVEMENTS IN DENTISTRY. Our present engravings illustrate a notable improvement in the art of dentistry, of which Dr. J. W. Clowes, of 667 Fifth Avenue, New York City, is the author.
The object of the invention is to provide a simple and effective means by which missing teeth may be artificially restored, and broken, loose, and dilapidated natural teeth may be preserved from decay and helped to become mutually supporting to each other.
The invention consists in fillings inserted in cavities in approximate faces of contiguous teeth, said fillings resting directly upon the gums, and being formed of a single body of material connecting the teeth so that they mutually support each other. It also consists in fillings of plastic material inserted in cavities in approximate faces of the teeth and extending between and across the teeth and down upon and closely contacting with the gums.
The plastic material which the author has so far found to be best adapted for the purpose of his invention is the ordinary dental amalgam ; but he does not limit himself to this material, as any other suitable plastic material may be used which sufficiently hardens and solidifies after it is put in place.
Our engravings are taken from a recent case that occurred in Dr. Clowes' practice. Fig. 1 shows the condition of the patient's upper teeth prior to treatment. It will be noticed several of the most important teeth are gone, and the task Dr. Clowes sets for himself, in such cases, is to restore to the gums the missing den tures, the use of plates being avoided.
Cavities in the contigu ous teeth, shown at the lef in Fig. 2, are excavated and prepared for receiving fillings in the usual wa with undercuts and anchorages to insure a firm hold of the filling in th teeth, and the plastic ma terial, such as amalgam, is inserted in the teeth, so a to fill the cavities and the space between the teeth, which amalgam is also moulded upon the surface of the gum between the teeth, so as to press firmly thereon between the teeth and the plastic material of the filling is shaped to con form to the natural con tour of the teeth, but with out actual division of the filling material between the teeth, the filling when completed appearing as shown in dotted lines at the left of Fig. 2. When the material of the filling solidifies and hardens, the teeth will be rigidly connected and locked togeth-
er, so that they cannot spread apart, and the filling will be in close contact with the gums and will completely close the space between the teeth, so that food cannot enter between the teeth or between the filling and the gum. By this method of locking the teeth together, if before treatment one of the teeth should be loose, as is frequently the case, it becomes locked to the sound tooth and is held firmly in its proper place

When the natural teeth are absent between two decayed teeth, having cavities in adjacent places, as shown at the right in Fig. 2, the said cavities are prepared for receiving plastic fillings in the usual way and the fillings are inserted, and the body of plastic material of which the fillings are formed is extended in one body across the space between the two teeth and moulded and firmly pressed upon the face of the gum, connecting the teeth, as shown in Fig. 2, and forming a rigid body of waterial, which, in addition to this use as a support and connection for the teeth, may be used for the purpose of mastication, and this material may be moulded or carved in imitation of natural teeth, as shown by the dotted lines in Fig. 2. This body of ma terial is firmly locked to the teeth, and forms, not bridge, but a causeway between the said teeth.
In forming the fillings care is taken to mould them firmly upon the gums, so as to form a perfect contact therewith. The gum is thus made partly to support and to carry the prolongations of the fillings of the teeth, while the close contact of the teeth with the gum and the naturally elastic or expansive quality of the gum operate to exclude and expel particles of food or deleterious matter from between the gums and the plastic fillings that are kept in contact with the gums
In the example of three adjoining decayed teeth which it is desired to fill and lock firmly together, the cavities are excavated in the form of grooves extend ing through the teeth and the cavities are prepared in
the usual manner, and the plastic filling is inserted, so as to close the cavities and conform to the contour of the natural teeth, and the material of the flling is, as before described, moulded firmly upon the gum between the teeth and is made to close the spaces between the teeth and form a body of the filling material which extends continuously through the teeth and along and upon the gum between the teeth, thus locking the teeth firmly together. For the further strengthening of the teeth and to further assist in locking them together, a hooked bar, similar to that already described, is inserted in the outer teeth of the series, and the filling is pressed upon and around the bar as in the other case, which thus becomes inclosed within the filling and adds strength thereto, as before described. In the case of absent front teeth, grooves are made in the backs of the adjacent natural teeth, and a bar is inserted therein, extending from tooth to tooth. Artificial teeth, grooved at the back, are fitted to the bar, and the grooves are closed with the plastic filling, which thus incloses the bar and locks both the natural and the artificial teeth together in the firmest manner. This is illustrated in Fig. 3, which is an inverted interior view of the patient's mouth, after the entire work has been completed, the dark, shaded portions representing the improved fillings. Fig. 4 illustrates the external appearance of the patient's teeth after treatment by the Clowes method. The contrast between Fig. 1, which shows the original condition of the

Fig. 4.
DR. J. W. CLOWES' IMPROVEMENTS IN DENTISTRY.
us for such accommodation, by bearing enormous rops of fine, luscious fruit. These specimens are trained vine-like up the rafters, and the bearing shoot allowed freedom to festoon and hang down-a grand picture in green and purple. We find a kind of long spur-pruning answer well for them. Fertilizing the blooms is also necessary to secure a crop, and weshade lightly when in bloom (if planted in a sunny aspect) to prevent the reproductive organs from burning and drying up before fructification takes place. Moderate heat is suitable, and water rather sparingly until a full set is insured. when, if the soil is well drained, ample supplies of both liquid manure and clear water alter nately must be given them unstintingly to swell up heavy crops. Theonly insect pest that we find at al troublesome is thrip, fumigating being the antidote. To summarize the mode of culture : 1. Plant in light well drained soil. 2 Grow on in moderate heat 3 Confine the roots within reasonable limits 4 Fertiliz the blooms for a crop. By so doing, success is a cer tainty I believe. I may add that several American gentlemen who visited here last spring and other have commenced experimenting in cultivation of the edible passion flower out of doors in the Southern States and elsewhere, with a view of growing it for export, etc.-J. Rıberts, The Gardeners' Magazine.

Recent Tests of Nickel Steel Armor Plates.
Experiments made on October 12 at the Annapolis proving ground have again confirmed the superiority of nickel steel over ordi nary steel for armor plates The tests were made to de termine the value of nickel teel for a protective deck. The targets were made o two superposed $11 / 2$ inch plates, placed almost hori ontally presenting hori only 2° to the line angl A 6 inch rifle was used with a 100 lb . armor-pierc ing projectile
When fired at the target of ordinary steel, the tar get was perforated and the projectile, which was broken, passed through both plates and through two feet of wood and eight feet of earth composing the backing The velocity of the projec tile was 1,780 feet per second. When fired a the nickel steel target, the velocity of projectile wa 1,8i3 feet, but it glanced off he target without rup turing either plate but was itself m plate, but pieces. Its effect on the target was a small crack 5 inches long in one plat
patient's dentures, and Fig. 4, showing the completed ork, is very striking.
In discovering the peculiar use and application of amalgam, as herein set forth, a grand stride has been made in dental science. That any foreign substance could be pressed and immovably fixed without irrita tion upon so delicate a tissue as the human gum has heretofore been considered impossible and unworthy o professional consideration; but thorough and long continued tests have proved the practice to be highly beneficial and preservative. We may add that Dr Clowes is one of our ablest and most experienced den al practitioners, and that further information respect ing the subject we have presented may be obtained from him

The Edible Passion Flower
(Passiflora edulis)
Considering the merits of this excellent fruit, the ease with which it can be grown, its ornamental properties in leaf, flower, and fruit, its adaptability for planting in alwost any aspect-in sun or shade-and its freedom from insect pests, it is astonishing that it is not much more extensively cultivated for the sake of its fruit, which makes a valuable addition to a dessert. We have been for years growing it here for this purpose, and have it planted on the back walls of the ineries, which, in most instances, unfortunately re left unfurnished with anything either orna mental or useful-bare, glaring, whitewashed walls When planted in moderately light and not over rich, well-drained soil, with the roots confined within reasonable limits to check over-luxuriance of growth, we find that this passion flower thrives and crops well, even in such unfavorable positions; but our demand far exceeding the supply from these, we ave devoted, in addition, a house (an old pine stove)
and an indentation between 3 inches and 5 inches deep The demonstration of the superiority of nickel stee over ordinary steel for armor plate suggests that it may have other valuable uses in the arts. A wide field for metallurgical research is here afforded. In this connection it seews strange that the world ha waited so long for the discovery of the qualities o nickel steel to be made. For more than twenty year the open hearth steel process has been in successfu use, producing the purest known varieties of carbon steel, and during all this time it would have been an easy matter to make experiments on alloying this stee with other elements, and to determine the physica qualities of these alloys; yet it has been only within a year or so that such experiments have been seriously attempted. During these twenty years, millions o money have been spent in Europe in the manufacture of compound armor plate, viz., wrought iron with a teel face, all of which has now to be abandoned in iew of the superiority of nickel steel, while the much simpler method of making a steel plate with a simple alloy has remained undiscovered. Thetime is ripe for urther researches into the qualities of other alloys o teel. There are unliwited possibilities of the dis covery of valuable qualities in numerous alloys yet untried ; and it should be a matter neither of great diff culty nor of great expense for any open hearth stee orks to make the experiments which may result in such discoveries.-Eng. and Min. Jour.

A Stoker's Explanation of the Steam Engine.
" This 'ere furnace, gen'lmen, heats that 'ere water and that 'ere water is in this 'ere biler ; and that there pistern rod is moved up and down by the steam from his 'ere biler; and them 'ere pisterns acts upon them ods, which turns the axles of the paddles, and the paddles their selves in consequence."-From Pickwick Abroad, by G. W. M. Reynolds.

©orrespondence.

Alleged Power of Mental Impressions.

To the Editor of the Scientific American:
Being a constant reader of your journal, I wish to state that your item in issue of August 15, "Power of Mental Impressions," is totally wrong. The patient noted was anæsthetized by rapid inhalation. I am a dentist, and hundreds of times I have drawn teeth absolutely without pain, sowetimes by putting the inhaler to the mouth and sometimes simply directing the patient to breathe rapidly for one minute while the tooth is extracted.
More frequently I saturate a small bit of cotton or paper with a drop of cologne and direct the patient to breathe as rapidly as possible, when extraction is entirely without pain. Also applied to opening and extracting nerves in teeth for immediate filling.
The period of insensibility is usually very short, but many times a kind of spasmodic breathing is kept up for several minutes, requiring a command to cease breathing and wake up.

Ira G. Leek.
San Francisco, Cal.
[We are obliged to our correspondent for calling at tention to the above. It rewinds us that in the Screntific American Supplement, No. 275, is an interesting and valuable paper on "Rapid Breathing as a Pain Obtender," by Dr. W. G. A. Bonwill, in which the history of operation by the method is fully explained. The subject deserves the careful consideration of medical men.-ED]

Proposed Metric System.

We have never been enthusiasts over the French metric system, says the Travelers' Record. Its original unit is as purely arbitrary as the foot itself; and all its secondary units are so violently out of gear with everything existent that the enormous labor and loss of the change can hardly be made good by any service. It is possible to pay too high a price even for a decimal system with interchangeable parts. But a system is proposed (and detailed in the Chemical News) by a Danish engineer named Hanssen, which is so wonderfully simple and easy that we hope to see it speedily adopted through all the world except those committed by pride or interest to the French scheme; it has almost all the merits of the other system and almost none of its immense drawbacks. Nobody seems before to have noticed the very close approach to interchangeability between our principal units of weights and measures. Mr. Hanssen proposes to increase the inch and foot to $1 \cdot 000403$ times their present length, or about $\frac{1}{260 \%}$, less than $\frac{1}{200}$ of an inch to the foot, which for ordinary purposes is no change at all ; and the ounce, pound, and imperial gallon will need no change. A cubic foot contains 436,97178 grains of distilled water; the new cubic foot would contain 437,500 grains, or just 1,000 ounces avoirdupois. Sixteen cubic feet would equal exactly imperial 100 gallons, or one hektogallon, which will weigh just 1,000 pounds. The foot will be divided, like the meter, into decifoot, centifoot, willifoot; there will be hektogallon, dekagallon, gallon, decigallon, centigallon, milligallon; and so on with others. Of course governments must first agree on the basis; but it could quickly be made what the French metric system never will become-a really popular utility, displacing the old standards.

Ninety Miles an Hour by Rail.

Recently we gave accounts of three very remarkable runs. The Philadelphia \& Reading run was made with one of the class "D" 33 engines with four $681 / 2$ inch driving wheels, the total train load being about 169 tons. The fastest time made was $901 / 2$ miles per hour for about one mile, on a level immediately following a descending grade of 37 feet per mile. Thefast run on the New York Central, with a Schenectady engine, was more difficult, owing to the long time and distance from start to final stop. In that run 4361/3 miles was made in an actual running time of 425 winutes and 14 seconds, giving an average speed, excluding stops, of 61.56 wiles per hour.

The maximum speed between stations on the Central run is unknown. It is said that the fastest mile was made in 47 seconds, or at the rate of 76.6 miles per hour. It is to be regretted that in such cases as this, and the fast run on the Reading, a speed recorder was not used on the engine or one of the cars. An analysis of a diagram made by a recorder on these runs would have permitted an extremely satisfactory investigation to be made of the detail of the velocities and rates of acceleration and retardation. Such a diagram taken in connection with the profile of the road would solve one or two perplexing questions which inevitably arise when reports are made of fast runs. However, this wuch is certain : A speed of 90 wiles an hour has been attained, and the possibility of it is proved beyond question. This will settle once for all the argu ment of those who have heretofore held that speed above 70 wiles an hour were not only impracticable short distances at cver 70 miles an hour every day in
the year. While there are conditions which would pr vent the common adoption of a 90 -mile an hour speed,
yet it is possible to so improve the permanent way and yet it is possible to so improve the permanent way and
the coupled locomotive as to make such a speed per fectly feasible.
It will be noted that this fast time was made with ocomotives having parallel rods, and as this is essentially a feature of American locomotives, it would appear that our engines are well adapted for high speeds, and we shall not be compelled to resort in the future to single pairs of drivers with the necessary loss of traction. Our locomotives stand to-day as the most powerful in the world, as the most economical under equal conditions, and last, but not least, capable of making the highest maximum and average speed. These two nstances of high velocities were not with light train oads; the loads were not equal to our heavy passenger traffic loads, but compared to English and foreign train loads for high speed they are certainly not to be termed "light loads." The New York Central train weighed about 230 tons; the Reading train weighed about 169 tons.
During the past two years we have reviewed at different times some of the necessary changes that must be made in locomotives to adapt them for extremely high speed. Of all of these changes the most important ones are in the counterbalances and reciprocating parts, the steam ports and valve travel, and the ar rangement of the exhaust. Radical changes are probably unnecessary, but decided modifications must be made to adapt the average locomotive for fast runs.
It is well understood what will have to be done with the reciprocating parts, and a great improvement is noticeable in the most recent designs. The pistons are now made of less than one-half their former weight, and of cast steel or wrought iron. The reduction in the crosshead is not as great, but a further reduction is at hand. The main rods, which largely affect the counterbalancing, have been reduced one-half in several instances. The parallel rods, which do not affect the accuracy of the counterbalancing, and hence produce no detrimental effect on the track when counterbalanced, have been supposed to be one of the limitations of speed, but the rapid introduction of solid ends and "I" sections, as well as the use of an extremely fine grade of steel having a high tensile strength and great ductility, have so improved the strength, and at the same time decreased the strain by reason of a decrease in weight, that the limit of safety in increasing speed, as determined by side rods, has been raised considerably. If 60 miles an hour was a safe speed with the parallel rods of five years ago, then 90 miles an hour is a safe speed with the most improved form and
kind of rod. The reciprocating parts of our best engines to-day, when perfectly balanced, have less detrimental effect upon the roadbed than the best singledriver engines. Hence, so far as counterbalancing is concerned, we may consider that the best locomotive designs in this country are such as to remove the limit of speed to a point above the highest practicable speed with permanent way as it is.
The other two necessary changes in design to adapt the present locomotives to high speed have not received the attention they should have. It is only now that we can say that any efforts which prowise success have
been made to determine what is the proper form of an been made to determine what is the proper form of an exhaust pipe and sinokestack to give the least back sociation facts which will assist in a solution of the problem but we expect the most conclusive results from the ex perimental work being carried on by two railroad companies with old engines jacked up in the shop, on which a large variety of exhaust apparatus will be tried. Within another year one will probably know how to construct a locowotive blast apparatus so as to give approximately the least back pressure to the cyl inders.
It is the mean effective pressure on the piston at high speeds that must be increased before we can hope to haul heavy trains at a higher rate of speed than is now common. This average pressure on the pistons is to be increased by decreasing the back pressure, as jus shown, and further by so increasing the opening of the team ports at short cut-offs, and prolonging the period of exhaust, that the wire drawing at admission and the loss by compression shall be materially re duced. There are those who have proposed, and will continue to propose, radical changes in the valve mo tion, such as a substitution of a new gear in place of the Stephenson link. While in a general way this is to be encouraged, yet the most advisable and desirable thing to do is to improve the plain " D "valve and the Stephenson link as much as it can be improved before we give it up. This gear we know all about in ervice. It is reliable and positive, and gives little o no trouble. There is no substitute yet proposed which does not promise trouble frow the start when operated at high speed. As we have before shown in the Railroad Gazette, there are ways of increasing the por opening at short cut-offs and prolonging the period.o exhaust which are perfectly practicable, and are being used with good success on several roads, notably the

Reading, where the high speed was made which has ualled forth these comments. The engine which made this fast time had the following dimensions of ports, outside lap, and valve travel: Cylinders, $181 / 2$ inches in diameter by 22 inches stroke; steam ports, $11 / 4$ inches by $163 / 4$ inches; exhaust ports, $163 / 4$ by $31 / 4$ inches; travel of valve, 7 inches; outside lap, $11 / 2$ inches; inside lap, zero ; diameter of drivers, $681 / 2$ inches ; weight ou drivers, 64,400 pounds; weight on truck, 31,800 pounds; total weight, 96,200 pounde.
Undoubtedly, the area of port opening was much nore than common with this engine at short cut-offs, and was 25 or 30 per cent greater ther with the ordinary engines used on express trains. The indicator cards which we have seen from this class of locomotives have the least compression and the best admission line of any that have been put before us. The engines were built in 1886, and have been operated since that time with perfect success with these foregoing dimensions of valve and valve travel. Hence the feasibility of the arrangement is proved beyond question.Railroad Gazette.

Table of Seconds per Mile at Various Speeds in Miles per Hour.
When traveling by rail it is often convenient to know, when one wishes to determine the speed of the train, just how many seconds are taken to go one mile at any speed in miles per hour. The accompanying table gives the number of seconds required to go one mile at any speed in miles per hour from 1 to 100 . In using this table one may take the time required to travel from one mile post to the next, and then look in the table for the speed in miles per hour corresponding to the number of seconds.
table of seconds per mile at given miles per HoUR.

$\begin{gathered} \text { Miles } \\ \text { per hour. } \end{gathered}$	Seconds per mile.	$\begin{gathered} \text { Miles } \\ \text { per hour. } \end{gathered}$	Seconds per mile.	$\begin{gathered} \text { Miles } \\ \text { per hour. } \end{gathered}$	Seconds per mile.
	3,600		106 103		
	1.200	36...	100		
			${ }_{95}^{97}$		
		39	95 92		
		40			
	450	4	87.8		
	400	${ }^{43}$	817		
11	${ }_{32 \%}$		81.8		
12.......	300		80		
			... ${ }^{76}{ }^{76}$		
			$\cdots{ }^{. .}{ }^{7}{ }_{7}^{75} 5$		${ }_{43}{ }^{4} 9$
		54.	.. ${ }^{665}{ }^{\text {F }}$		
			65.5		
		5	.. ${ }^{62} 1$		
			.. ${ }^{61}$		
28		61			
29		62	${ }_{5}^{58} \cdot 1$		
		64.			
		65.			
			. $54 \cdot 5$	$5 \left\lvert\, \begin{aligned} & 990 . \end{aligned}\right.$	$\begin{aligned} & \because 36-4 \\ & \because 36 \end{aligned}$

Almost every one knows the following rule, which gives the result with sufficient accuracy for ordinary gurposes : The number of rails passed in 20 seconds equals the number of miles per hour. If all rails were 30 feet long, we should add about $21 / 4$ per cent to the speed in miles per hour as given by this rule, but a there are some short rails, the result will be very close without correction. Up to pretty high speeds, say to 60 miles an hour, one can ordinarily count the click of the joints.-Railroad Gazette.

Lead and zinc.
A valuable report upon the lead and zinc industries of this country, by Charles Kirchhoff, is contained in Census Bulletin No. 80. According to this report the totals are as follows for the respective ores :

LEAD ORE.

LEAD ORE.	Shorttons.
Colorado.	70,788
Miszouri.	... 44,482
Idaho....	... 23,172
Utah...	. 16,675
Montana	.. 10,183
New Mexico.	4,764
Kansas..	. 3,617
Arizona.	. 3,158
ZINC ORE.	
Missouri	.. 93,131
New Jersey and \'ennsylvania.	. 63,339
Kansas...	... 39,575
Wisconsin.	... 24,832
Virginia and Tennessee	
Iowa.	450

AT the little village of Wellsburg, N. Y., six miles below Elmira, on the Erie road, gas has been discov ered issuing from a well which was originally put down o secure good water. A stream of gas was flowing from the pipe sunk in the ground which an expert says would illuminate the whole county. . The citizens of the village are enthusiastic.

BROADWAY AND SEVENTH AVENUE CABLE ROAD. (C'ontinued from first page.) Houston Street there will be a cable loop, which will extend to the Battery and back, a distance of $4: 24$ miles, and another extending to a sheave pit between 36 th and 37 th Streets and back to the power station, a distance of 3.86 miles. There will be another pow will 37 th Street, and north to a sheave pit at 59th Street, returning to the power station, a total disStreet, returning to the power station, a total dis-
tance of 2.24 wiles. The power required to drive this amount of cable will be about 2,000 horse power, but the wachinery will be able to exert three times that awount of power in case of an emergency. The strain on each cable when in use will average about 12,000 pounds.
The construction of the road was shown in one of its stages in our issue of May 16, 1891. In our present issue we give illustrations of the work as it appears at Franklin Street and Broadway opposite the offices of the Scientific American As will be seen by reference to the engraving, the track is set upon cast iron yokes, which also hold the slot rails and encircle the ends of the sections of the sheet steel cable conduit. The yokes are $271 / 2$ inches high to top of lugs and 23 inches to rail seat, and weigh about 550 pounds each. The distance between the yokes is 4 feet 6 inches. They rest upon separate foundations of concrete, which are 45 inches long, 18 inches wide, and 6 inches deep. The conduit in which the cable runs is formed of sheet steel sections, with a backing of concrete. The pits in which the carrier sheaves are located are 42 inches deep and $311 / 2$ feet apart. The slot rail is formed of two like but oppositely arranged Z-shaped parts, leaving between them a groove, through which the grip extends from the car down into the conduit, where it engages the cable. The slot rails are braced at frequent intervals by wrought iron rods passing through the tram rails and through the slot rails. The entire construction is designed to be permanent, and everything relating to it is carefully and thoroughly done. In fact, this road is intended to be a wasterpiece of its kind.
In carrying forward this great work, much of the labor has been periormed at night by means of arti ficial light. Modern appliances have been used wherever they tend to facilitate the construction. For example, a steam concrete mixer, mounted upon wheels, so that it may be moved along the track as required, is used for preparing the concrete used in the foundations, and in filling in around the conduits. It not only does the work of a great number of men, but itdnes it wore thoroughly and evenly. The materials are shoveled into are shov of the one end of the machine, a n d thoroughly prepared concrete is delivered at the opposite end.
The concrete mixer is simply a heavy iron cylinder, containing a shaft carrying a series of wings or vanes, arranged spirally. These wings form, practically, an endless screw, which stirs the ingredients thoroughly while the necessary amount of water is added. At the same time it propels the concrete toward the discharge end of the machine, where it is delivered ready for use. The mixer is driven by a 6 h. p. vertical steam engine, mounted on the s a we platform. The capacity of the mixer is 150 cubic yards per day of ten hours. The holes for
the bolts which connect the manhole curbs to the slot and tram rails are punched in the rails by means of hydraulic punches, which are supported on a car, so that they can be moved along the track as required. These simple machines readily punch 1 inch holes in the $1 / 2$ inch web of the slot rail, requiring the applica r tion of hand power for about half a minute only.

PORTABLE HYDRAULIC PUNCH

The difficulties encountered in preparing the excava-ling tions for the road were enormous. Some of the ob- die.
structions at Fulton Street were described in our issue The following practical hints on this subject are of May 16. Another example occurs at Broadway and from an address by Mr. Samuel Edwards before the 14th Street. These are not by any means the only Illinois Horticultural Society places where obstructions of this kind are met. Something of the same nature is found at almost every block Water and gas mains have to be moved, sometimes laterally and sometimes by dropping them down below laterally and sometimes by dropping them down below

Deciduous trees, the roots of which have become dry in transit, can in many instances be saved by burying entire tree in moist earth for a few days.
The prolific cause of loss is the failure to properly pack and firm soil among the roots of the newly set

POWER CONCRETE MIXER-CAPACITY, 15 CUBIC YARDS PER HOUR.
trees. Fine dirt should be packed in by hand and all roots covered several inches with it. Pour on a pail or two of water to wash dirt into all possible crevices. After ground settles fill in again, tramp and pound dirt firmly about the roots. Leave the surface soil loose, mulch with prairie hay, straw or other coarse litter to depth of six inches, extending a foot beyond ends of roots.

Neglect to mulch or frequent stirring surface soil kills many trees, especially if they are daily deluged by water. In a season of protracted drought, watering may be necessary. Dig a hole near the tree, water bountifully, then return the earth after water settles.
Wrap bodies of new-set trees with burlaps of any cheap waterial to shade from hot sun. In a hot summer, if this is not done, bark is often killed in spots on south or southwest side.

WILLIAM FERREL.

The National Academy of Sciences has met with erious losses since its April meeting in Washington. Its deliberations had scarcely terminated when the news of the death of John Le Conte, who for so many years filled the chair of physics in the University of California, was announced. Also in the last days of April Joseph Leidy, the distinguished biologist and president of the Philadelphia Academy of Natural Sciences, passed away. The long illness of Julius G. Hilgard, who from 1845 till 1885 was connected with the U. S. Coast Survey in many capacities, including that of superintendent, terminated fatally on May 8 , and now the Academy wourns the loss of William Ferrel, who has long been one of its most eminent memrel, w
bers.
Wilit
Wiliiam Ferrel was born of humble parentage in Bedford (now Fulton) County, Pa., on January 29, 1817. The facilities for education were inferior in those days and were confined mostly to winter schools in log cabins. But such as they were, young Ferrel made the most of them until, at the age of fourteen, he " had wastered everything taught then in the schools of the country, and so my school education ended."* Meanwhile, at the age of twelve, he removed with his parents into Berkeley County, now West Virginia, which, though only fifteen miles from his birthplace, was entirely across the State of Maryland, as at that point it was only two wiles wide. Here he continued to aid his parents in the work on the farm, but did not neglect his books, for he continued to read and study everything that came into his hands, which, however, were very few.
Of his early fondness für science he has left a distinct account, and he says, "On the morning of July 29, 183:, as I was going to the field to work, I observed that the sun was eclipsed. I was not aware that there was to be an eclipse, and I had never read or thought on anything pertaining to astronomy." The eclipse excited an interest in such matters, and he at once began to study its cause. The only available text books on the subject were a copy of Adaiu's Geography, with an appendix containing various problems to be solved by means of globes, and a series of almanacs extend ing back for several years. From the latter he studied the motions of the sun and moon, and discovered that, although the motions of the moon are very irregular, they repeat themselves somewhat in each cycle of 15 revolutious of the moon and about 42 degrees, and that counting from any previous conjunction or opposition of the sun and moon, there is another conjunction or opposition occurring very nearly at the end of the time of the preceding cycle. Hence, by reckoning frow some previous conjunction or opposition, he knew approximately the place of the moon at the end of the cycle, and so very nearly at the time of any new or full woon or time of any eclipse.
By similar means he determined the sun's place, and by applying the information he worked out he was able to predict future eclipses, so that at the age of sixteen he ventured to predict and put upon record the times and other circumstances of three eclipses for the year 1832. Concerning which he writes, "the greatest error in the times, according to the next almanac, when it appeared, was only nine minutes."
A year later he tried to procure a trigonometry, but on making inquiry for one was given a treatise on surveying, which he studied "mostly during winter evenings, by the light of a dim candle or the blaze of light wood, and mastered it very nearly all in about three months."

He was successful in obtaining a few other text books on mathematics, which he carefully studied until, at the age of twenty-two, having made a little money by teaching, and having the promise of some aid from his father, he entered Marshall, now Marshall and Franklin, College. For two years he continued at college, but at the close of 1841 , no longer willing to burden his friends with the expense of his education, he left, and tanght in Virginia. After several years' experience in this occupation, he entered Bethany College, and was graduated there in 1844.
Resuming his vocation as a teacher, he settled in Liberty, Mo., near where Kansas City now is, and also devoted much of his time to study, especially in the higher branches of mathematics. From Liberty he went to Nashville, Tenn., where he taught for several years in a commercial college, and at the same time studied the works of Newton, La Place, and such books as Maury's "Physical Geography of the Sea" and Mrs. Sommerville's "Physical Geography."
He had now acquired a sufficient fund of knowledge to impart his ideas to others, and in 1856 he published in the Nashville Journal of Medicine and Surgery a popular essay on the "Winds and Currents of the Ocean," and later contributed to Dr. Benjamin A. Gould's Astronomical Journal, then issued in Cawbridge, Mass. These led to his acquaintance with men of science, and early in 1857 he received an appointment as assistant in the office of the Am+rican Ephemeris and Nautical Almanac. then published in Cam-
bridge, under the supervision of Professor Joseph Winlock. This place he held for ten years.
When Benjawin Peirce was called to succeed Alexander Dallas Bache as superintendent of the United States Coast Survey in 1867, he invited Professor Ferrel to accept an appointment in that service, with special charge of the consideration and discussion of tidal relations. In the annual report of the survey for 1874 there was published his "Tidal Researches," and subsequently in the annual volumes appeared contributions on this specialty by him. During his connection with the Coast Survey he invented a maxima and minima tide-predicting machine, which was constructed at a cost of $\$ 2,500$, of which a full description is given in Appendix 10 of the "Report of the United States Coast and Geodetic Survey" for the year 1883.
In 1882 he was invited to accept an office in the United States Signal Service as professor of meteorology, which place he then continued to hold until October, 1886, when he resigned, to devote his entire attention to his private researches. While in the Signal Service he prepared a volume of 440 pages, entitled "On the Recent Advances in Meteorology," which is used as a text book in signal service schools and as a hand book in the office of the chief signal officer. It is said to be " a work of rare ability, and for a good while to come will be the chief authority at Washington in theoretical meteorology."
His leisure after retiring from government service was spent in the preparation of "A Popular Treatise on the Winds," which was published in New York during 1889. It is a volume of some 500 pages, and

tHE LATE WILLIAM FERREL.
added materially to his reputation. A reviewer, in writing of him, says: "It places the author in company with Professor Peirce and a few others in this country on the plane still occupied by La Place in France and Europe."
There is not space in which to refer to the theorie and newly discovered laws of Professor Ferrel in regard to the winds, tides and currents of the ocean. Such discussion belongs more properly to more strictly technical journals than this, but we are sure that the progress which he has inaugurated in the science of enduring and substantial.
His professional papers are more than fifty in num ber, and include, besides those published in the official reports of the departments with which he was connected, special contributions to the American Jour nal of Science, Van Nostrand's Engineering Magazine, Science and similar journals, and also to the transac tions of various scientific bodies of which he was a member.

Among the more important titles of his papers are
"Motions of Fluids and Solids Relative to the Earth's Surface" (1859); "Determinations of the Moon's Mass from Tidal Observations" (1871); "Converging Series expressing the Ratio between the Diameter and the Circumference of a Circle" (1871); "Meteorological Researches. Part I. On the Mechanics and the General Motions of the Atwosphere" (1877); Part II. "On Cy clones, Tornadoes, and Waterspouts" (1880); Part III. $"$ On Barometric Hypsometry and the Reduction of
the Barometer to Sea Level" (1882); and "Temperature of the Atmosphere and the Earth's Surface" (1884).
Besides the degree of A. M., he had received the honorary conferment of that of doctor of philosophy He was an honorary member of the Austrian, English,
fellow of the American Academy of Arts and Sciences In 1868 he was chosen to the National Academy o Sciences, and as at that time the membership was restricted to fifty persons, the honor was a most valu able one.
Professor Ferrel was never married, and made his howe with relatives and friends in Kansas City, Mo., and there, at the ripe age of seventy-four, on Septem ber 18,1891 , he passed away.
M. B.

The Clark University, Worcester, Mass.
One of the leading courses of study is that of original research relating to psychology. Moreover, this university is presided over by one of our own members as president, and another as trustee. It has a Psychological Journal of its own, which certainly is an honor to its founder, to ourselves, and to our specialty in this country. Here then, within our own ranks, there exist the very means by which we may anticipate a larger measure of progress in psychology, and incidentally also in psychlatry, than would be probable if sought in almost any other way.
Here can be trained a class of students for original investigation and experimental research in accordance with the strict requirements of science. Here are already, or hereafter are likely to be, gathered the requisite means of such research, in the way of special journals and books from the centers of the medical world; also laboratories, experimental and chemical, with their various needful appliances, together with facilities for ascertaining the physiological effects o drugs.

Already there are established scholarships by means of which a higher attainment in all that may conduce toward a more differentiated knowledge of comparative and human anatomy and physiology may be had. Pathological research may also be prosecuted under conditions which can be had only in thoroughly conditions which can be had only in thoroughly
equipped laboratorios; studies relating to those physiological changes which occur in the sensory system during the different seasons of the year, day and night, morning, noon, and evening; tests in the capacity of endurance in motor and psychic centers of the brain; the length of time required by different portions of the nervous and muscular systems to energize and to expend their store of energy; the rapidity of movement in the nervous system attending the physiomovement in the nervous system attending the physio-
logical elements of sight, hearing, and general sensalogical elements of sight, hearing, and general sensa-
tion; the periods requisite for peripheral irritations to pass through the afferent nerves to the sensory gang lia, thence to the cortex, and again through the effer ent nerves, eventuating in motion or speech; a study of the anatomical arrangements of all the organs of the special senses, and their co-ordinating activities in connection with sensation, ideation, and motion; in short, all those physiological activities which are associated in the formation and exhibition of thought.
I hardly need to suggest that the stimulus of such investigations, such a library, laboratories, instru ments, and opportunities for study, will tend greatly to enlarge the boundaries of our specialty beyond our present vision. It will lift the status and broaden the culture of our association.
It indicates the possibility of passing beyond the routine of that care and anxiety which ever attends the practical management of the insane into a higher sphere of research relating to the nature and treatment of their maladies. Here may be gathered those who, by virtue of their special attainments, may be able to sift the chaff from the wheat, and sit in judgwent upon the merits of the work and its results which may be prosecuted by teachers and students in the labora tories. Is it too much to anticipate that in the future such study and experiment will reflect rays of light upon the physiological activities of the brain and nervous system, which will render more clear and definite the indications for scientific treatment?
May we not also anticipate that at no distant date there will be discovered in chemical laboratories some remedy which will act with increased efficiency in modif ying and restoring nerve energy ? $-H$. P. Stearins, M.D.

Eruptive Geysers.
Bunsen has explained the periodical eruption of geysers in such a satisfactory manner that doubt is no longer possible. A cavern filled with water lies deep in the earth, under the geyser, and the water in this cavern is heated by the earth's internal heat far above 212°, since there is a heavy hydrostatic pressure upon it arising from the weight of water in the passage or natural standpipe that leads from the subterranean chamber to the surface of the earth. After a certain time the temperature of the water below rises, so that steam is given off in spite of the pressure, and the column in the exit tube is gradually forced upward. The release of pressure and the disturbance of the water then cause the contents of the subterranean chamber to flash into steam and expel the contents of the exit pipe violently. These eruptions may also be provoked by throwing stones or clods of turf into the basin of the geyser. The water in the cavern below is disturbed by this means.

Some Electrical Words.

A very fair idea of the rise and progress of a science may be gathered from a study of the techuical terims which have been used from time to time to explain the various phenowena or for the purpose of setting forth new theories. Should any one be disposed to make such an attewpt in regard to electricity, he will find the material ready to his hand in the recently issued part (E-Every) of the "New English Dictionary on Historical Principles," a monumental work now in course of publication by the Oxford University Press. As there may be some who are unacquainted with this modern "Johnson." it is perhaps necessary to say that it is based, as the title sets forth, on strictly "historical principles." It is true that the definitions are generally in the editor's own words, but they are little more than a summing up of the evidence furnished by quotations from authors of acknowledged repute, and as full references are always given, the reader can verify them for himself and obtain further information if he wishes for it.
The word "electricity" and the various compounds under "electro" occupy more than ten closely printed columus of swall type, enough to more than fill an entire number of the Electrical Engineer. We do not advocate any radical reform in scientific nomenclature, but it is curious to observe what a vast superstructure has been built upona foundation which is, logically speaking, utterly insecure. Every text book tells us that "electric" is derived from a Greek word signifying "auber," that substance when rubbed developing electricity. But who thinks of amber in connection with the electrical science of the present day? The modern Latin word seems to have been first used by Gilbert, in 1600, in his treatise "De Magnete," and the earliest instance of its use in English is in Sir Thomas Browne's "Vulgar Errours" (1646). For "electrical" there is an earlier authority in Carpenter's "Geography Delineated "(1635). The editor notices the some what arbitrary uses of the words "electric " and "elec trical," which are precisely synonywous, although we should not expect to be asked, "Have you bought any electric books lately ?" nor do we usually speak of the "electrical light."
Proceeding in alphabetical order we come upon "electricalness," a word we never met with before. The only authority for it is Bailey's Dictionary (1736), but we doubt if the word was ever actually used. We were rather surprised to learn that "electrician" dates as far back as 1751, when we find Franklin saying in the Philosophical Transactions, "I have not heard that any of your European electricians have been able to . . . do it "-words which somehow or other have a familiar sound, as if we had heard them only the other day. "Electricity" is a long article, the earliest quotation being again from Sir Thomas Browne's "Vulgar Errours" (1646). The Philosophical Transactions furnish many examples, and the editor poiuts out that the term "electric fluid" survives in popular language, and that "positive" and "negative," which we also inherit frow Franklin's theory, are still in scientific use.

Electric light," in its modern restricted sense, makes its first appearance in :1843, as the heading of a paragraph in the Mechanic's Magazine, "Electric Light a Substitute for Gas." The Daily News is re sponsible for "a beaatiful electric-lighted clock." We
come next upon the uncouth word "electricolowy," come next upon the uncouth word "electricology,"
which is the title of a work on electricity, written in 1746 by one R. Turner. Bennet, a well known electrician of the last century, is credited with a proposa for "an electrico-meteorological diary." "Electrify" seems to be Franklin's word, and dates from 1747.
The compounds of "electro" number about a hundred, and although we are not disposed to set up as purists, we cannot avoid the observation that many of them are nothing better than base coin. This re mark, however, must not be understood as attributing blame to the editor for retaining them. This is no
"Dictionnaire de l'Academie" which is to serve as a standard of propriety of language, but it includes everything, whether good, bad or indifferent. Faraday's words are generally referred to their original source, and we should have thou ${ }^{\text {h }}$ ht that "electrolysis" was due to him, but Todd's "Cyclopædia of Ana tomy " is the earliest authority given. The word is said to have two meanings: (1) chemical decomposition by galvanic action, and (2) the name of a branch of science. This seems to us to be unnecessary. The word "electromagnet" ouly goes back to 1831, which is the date of a paper in Silliman's Journal. "Elec tro-magnetic" dates from 1823, and "electro-magnetism" from 1823. We have to note some deficiencies here, and ©ersted's papers in the Annals of Philoso phy for October and November, 1820, would have fur nished an earlier quotation for "electro-magnetic," while Faraday's "Historical Sketch of Electro-:uag netism" in the Annals for September, 1821, shows that the word is at least seven yearsolder than stated in the dictionary. It might also have been worth noting that "electro-magnet" meant originally a solen "fluating battery."

As the dictionary takes account of words only, some confusion occasionally arises by reason of the same word being used to denote different things. For instance, under "Electrometer" we have a reference to Lane's apparatus known by this name described in the Philosophical Transactions for 1766, where the contriver suggests that his instrument "may not improperly be called an electrometer." Under the same heading there are other quotations which obviously refer to "electroscopes," as we now call them, such as Bennet's gold leaf electroscope. One has to bear this change of nawe in mind to account for the fact that no authority earlier than 1324 has been found for the word "electroscope."
Under "electro-wotive" our contemporary the Engineer is quoted in support of the use of this word as a substantive, in the sense of a losomotive engine worked by electricity. This is very sad, and should be rigorously put down along with "electrolier," though we have endured "gaselier" for so long that we fear this last abortion cannot be refused admission into our vocabulary.
The striking character of electrical phenomena seems to have taken firm hold on the popular imagination, and we find accuidingly that the technical terms of the science have been largely adopted by general writers in a figurative or metaphorical sense. As early as 1752 Lord Chesterfield writes to his son " You will not be so agreeably electrified as you were at Manheim." Coleridge (1793) has these lines:

The electric flash that from the melting eye
Daris the fond question or the soft reply.
The editors do not often "drop into poetry," or they might have given Cierk Maxwell's poetical rendering of Faraday's discovery. It is so good that it will al ways bear quotation :

Around the magnet Faraday
Is sure that Volta's lightnings play ;
He takes a lessou from the heart.
'Tis when we meet, 'tis when we
Breaks forth th' electric fire !
Here is a striking quotation from Carlyle's "Sarior Resartus:" "Wait a little till the entire nation is in an electric state; till your whole vital electricity
is cut into two isolated portions of Positive and Negative; of Money and Hunger." Max Muller speaks of "t the electric light of Comparative Philology."
We have by no means exhausted the interest of this part of the dictionary ; and those who are in the habit of occasionally thinking of the words they use daily, as they sometimes scrutinize the image and superscription of a current coin, will find much that is suggestive. As we have already remarked, theories now discarded have left their mark on the language of to-day, and it is more than probable that the words we now invent, and which we think are altogether admirable, will in turn becowe meaningless.-Elec. Engineer, London.

The Pressure of Gas in Coal.

Cool in the bituminous mine seams is always more or less subjected to bleeding. This is well known to the practical miner; he is constantly observing the sweating of the coal, accowpanied with a hissing sound. The sweating undoubtedly is produced by the pressure of the gas stored up in miniature cavities and fissures of the seam.
The pressure of the gas is a subject of increasing interest; it has been found in some cases to be nearly equal to the pressure of the steam in the boilers of steauships. Pressures of 200 pounds and upward have been found to be common in deep seams newly opened out. What is interesting about the matter is the co relationship of the pressure of the gas to the pressure due to a vertical column of water, measured from the seam to the drainage level of the rocks overlying the eam.
To make this clear, let us suppose a seam to be 250 athoms from the surface; again, let us suppose the drainage level is about 50 fathoms from the surface. Now by these data we may, with considerable accuracy calculate the pressure of the gas stored up in the cavities of the seam.
Suppose the seam has not been wrought, but has been pierced by a bore hole. If a long iron tube was inserted in this bore hole and made gas tight, that is to say, made to fit the hole so closely by some system of packing that no gas could escape, and a pressure cauge was screwed on the upper end of this pipe and allowed sufficient time for gas to accumulate in the bore hole, the pressure ultimately observed might first be calculated as follows: Vertical height of water be ing 200 fathoms, then-

$\frac{200 \times 6 \times 625}{144}=520$ pounds pressure on the square inch

This calculation might, however, have been made by a simpler process, which we highly recommend : a quare inch column of water having a vertical length or rise of 6 feet weighs nearly 2.6 pounds, therefore $200 \times 2 \cdot 6=520$. or is equal to a pressure of 520 pounds on the square inch, as before.
Often, as faults and dislocations, water and gas are
met with in unusual quantities. Sometimes on cuttin
a fault, gas is given off, generally at the bottom of the seam, and this gas often consists of sulphureted hy drogen. Water is often wet with at faults, and it generally comes off at the fault at the top of the seam and after the water has expended itself, it is followed by gas, which also consists of sulphureted hydrogen. Now, why gas should be found at the bottom of the seam and water at the top of the sean is a matter full of interest. Water is sometimes given off at the bot tom of the seam, and when that is the case, the reason why requires observation and investigation.
Now when water is given off at the bottom of the seam, some cavity in the neigbborhood of the fault contains gas at a high pressure, but is situated above another cavity filled with water, so that while the gas is pressing on the water, water flows frow the bottom of the seam, through some vent or parting in the fault ; but as water is heavier than gas, if the water and gas are found in one cavity in the bottom stratum of rock communicating with the fault or fissure, then gas ouly is given off, and sometimes at a high pressure. But it will be noticed that after a while the gas is all spent off, and the air in the neighborhood of the fault resumes it normal condition. The gasis expelled by the operation of Boyle's law ; it exists in this bottom cavity at a pressure considerably above that of the atmosphere, and if the pressure of the gas in the cavity was three times that of the atmosphere, on that pressure being removed it would expand into three times its original volume, or every cubic foot in the cavity would expand into three cubic feet, two of which would be expelled. When the water is given off at a fault at the top of he seam, we may certainly expect this water to be fol lowed by gas, because, being lighter than water, it is pent up at a high pressure above it, and the high pres sure of the gas causes a rapid or violent outflow of water. Now as the gas cannotsink in the water, being lighter, if the bottom of the cavity communicates with the fault, then no gas will spend off until the water has all been expelled.
These facts correspond with every-day experience, and happy is the man that takes a pleasurable in terest in these matters, because it is out of such obser vations that knowledge and experience are matured, and men are made useful and profitable to themselves and others.-American Gas Light Journal.

The Manufacture of Caustic Soda and Chlorine

An improvement which has recently been introduced in the production of chlorine gas and caustic soda elec rolytically exhibits the following essential features.
The vessel in which the electrolysis takes place i made either of iron or of carbon ; in the latter case it i jacketed with an adherent coating of electrolytically deposited copper. This vessel forms the cathode.
The anode consists of a cylinder made of any suitable metal and coated with a layer of carbon; this cylinder is placed in the center of the vessel which forms the cathode.
Between the two electrodes there is a porous dia phragm consisting of a number of V-shaped troughs made of porcelain; these are built up inside each other, and the intermediate spaces are packed with asbestos fiber or powdered steatite. This curious dia phragm is a special feature of the apparatus, and it is stated that it offers much less resistance than does the usual form of porous earthenware. Another advan tage claimed for this arrangement is that it prevents the diffusion of the chlorine evolved in the anode section into the caustic soda formed in the cathod section.
The electrolyzing vessels may be arranged together in series or used separately.
The raw material is brine. This is supplied from separate tanks to the anode and cathode of the firs vessel when a number are arranged in series, and the brine gravitating along the entire series through the respective sections of the cells flows ultimately into separate catch vessels from whence it is delivered back into the respective tanks.
This circulation is maintained until the solutions are sufficiently decowposed.
The chlorine escapes from the electrolyzing vessel through an outlet pipe, in a porcelain cover, which latter seals the vessel.
There is another combination in which an oblong vessel is divided, by a number of parallel plates (rep resenting the poles) and diaphragms, into anode and cathode sections, through which the respective liquids circulate; but in this arrangement the cathodes ar not coated with a layer of carbon.

The Wheeler Condenser and Engrineering Company has recently filed articles of incorporation with the Sec retary of State at Trenton, N. J. The company ha bought out the entire plant and business of the Col wel Iron Works, of Carteret, N. J., which is one of the argest concerns in this country manufacturing vacuum pans and special machinery for sugar refineries, sal works, condensed milk factories, etc. The Wheeler Company will continue to manufacture Wheeler's pat ent surface condensers and other of his specialties.

RECENTLY PATENTED INVENTIONS

Railway Appliance

Draw Bar and Spring.-Ferdinan Canda, New York City. This invention provide pring casing permanently attached to the car timber with a removahle bottom plate, while a mortised tail bolt is adapted to receive the pulling strain and a for ower with key guides prevents the tail bolt from turn
ng. The casing is designed to have the greatest in. The casing is designed to have the greatest po st anchorage to the draught timbers, while being easily accessible for the renewal of springs, followers, etc parts connected with the draught rigging, as called f by the heavy tonnage cars now used on the variou

Spike.-John S. Van Leer and John T. Redmon, Sedalia, Mo. This spike is especially
designed for securing rails on ties, and has its shank quare near the head, from which there is a laterall projecting wedge-shaped flange, there being a boss on
the head directly above the shank, which is triangula below the square portion, each side of the triangula part being longitudinally grooved to afford channels nd intervening ribs, all sides being sloped to form riangular point coincident with the axis of the shank This spike is designed to be economically made and eal the puncture formed by its insertion in the wood, while it is readily guided to drive in a straigh
Dumping Car.-Christian Schmalzrid Donaldsonville, La. Tilting cars which dump the may be made of improved construction by means is invention which cousits in araising bans ar body in connection with a truck on the wheel frame fhich it rests when not to be tilted. Special mean re provided for raising and lowering the car body an or tilting it laterally to dump when needed. The in provement, although applicable to hauling and dump ng coal and other materials, is more especially designe nd dumping it quickly on a suitable carrier.

Electrical

Insulator. - Frank A. Ross, Living 3ton, Montana. This insulator is threaded internally wer und whorting pin, and has a water shed at its transversely slotted part to receive a the wire. At the ortom of the transverse slot the insulator is concaved or corrugated to antagonize a screw having a simila he insulator for clamping the wire on its corrugate surface. With this device the use of binding wires will be avoided, and the conductor may be securely clamp
without injury to the insulation or the wire itself. without injury to the insulation or the wire itself.

Agricultural.

Cultivator.-Parrott M. Hardy and Thomas R. Boyd, Edwards' Mill, N. C. The frame of this machine has a series of offsets, with inclined faces being secured to the inclined faces and cultivator teet located in the recesses, while there is a fastening device
for securing the cultivator teeth and blades adjustably for securing the cultivator teeth and blades adjustably to the frame. The implenent is designed to be conveniently adjusted laterally to work upon rows of diferent widths, while the harrow teeth and cultivat vertically to and from the ground.
Grain and Cockle Separator. Thomas F. Gray, Monroeville, Ohio. This is a simple acture, in which a vibrating frame is mounted in the main frame, and parallel inclined rollers are mounted in the vibrating frame, an endless belt provided with pockets passing around the rollers, and the belt being operated by the vibration of the frame, which is effected
by a cam on the drive shaft. The machine also provides means whereby the cockle and wheat kernels are provided therefor.

Mechanical Appliances

 Reamer. - Williau W. McGregory, Pasadena, Cal. This invention relates to drilling tool which expands the hole made by the drill ing tool to facilitate the lowering of the well pipes or casing. Two opposed reaming blades are pivoted on a head, below which they extend, and a lingitudinalplate spring is secured on the inner side of each blade. the springs being bowed inward into contact with each other and holding the blades normally apart at their the same manner as the drilling tools.
Sectional Core. - Marshall J. Hughes, New York City. This is a core for the foundation of stereotypes, electrotypes, printers' furniture,
etc., and is formed of sections of varying width, to re place type metal with cast iron or other cheap materia which will support the cast and give it the required rigidity and strength. The invention provides aper-
tured core sections of hard metal with apertured eectured core sections of hard metal with apertured sections of soft material disposed intermediate of the hard
sections, whereby the cast may be separated into secsections, whereby the cast may be separated into sec-
tions without trouble, in combination with a core support adapted to enter the apertured sections.
Shoe Turning Machine.-Jason H. Edgerly, Chicago. A hollow form adapted to approximately fit inside the heel of a shoe, and bear upon
the sole near its edges, is secured to a slide, by which it is held in position on a audtable work tical movement from above down into the form. When the shoe is placed, bottom up, upon the form, and the plunger is moved downward by pressing on the treadle,
the sole is pressed down within the form, and the the sole is pressed down within the form, and the
operator completes the operation of turning by lifting the edges of the upper by hand.
axle Gauge. - Henry F. C. Feus held to side This pauge of sets having equidistont crews projecting from three sides, and a thumb screw sime fourth side adapted to imp to accurately test a axle to indicate whether it is properly turned and the wheels properly set, and it may also be used as traight edge and rule
Cigar Bunching Machine. - Bern ard Wertheimer, Carlsruhe, Germany. This machin has a plurality of parallel independent bunching apron arranged side by side and secured at one to independ ith rollers, in combination with a orm plate provide With a series of transverse forms or moulds. There an
other novel features, and the machine is speciall adapted to ro.l the wrappers upon the fillers and auto matically deliver the completed cigar into a form While not entirely making a cigar, the machine designed to greatly facilitate the work, forming the dietributed sath cally.
Wrench. - Albert Cincade, Jersey ity, N.J. This invention is for an improvement ogs for locking a pivoted head or block that carries urned. The improvement rlate to the conect to be and combination of the pivoted block and the jaws and he means for adjusting the latter, the construction being such that either of the jaws may be quickly carried into engagement with the block or disengaged herefrom to convert the wrench into a right or left hand ratchet wrench, according to the charact
Combination Wrench Tool.-Aaron . Haunty, Pott's Grove, Pa. This invention provides wrench, a pipe wrench, a hammer, a tack puller, and a screw driver, while special means of adjustment are
applied to the wrench portion of the tool, forming an applied to the wrench portion of the tool, forming an
implement adapted for service in a great variety of work.

Miscellaneous.

Solar Camera. - Frank T. Wilson, Sillwater, Minn. The frame which supports this solar amera is to be fitted to a door or window or a suitable jecting lenses, there is a fixed inclined mirror for directing the sun's rays into the projecting apparatus, and an adjustable mirror mounted on a revoluble support and adapted to receive the light from the sun and reflect it upon the fixed mirror. The revoluble mirror may be readily turned and adjusted to any desired
angle, and the entire camera is conveniently adjustable. Protractor and Bevel.-George E. Allen, Hartford, Conn. This is a combination impleready adjustment for measuring angles, bevels, etc. and a slotted bar is fitted to slide on the pointer, and be secured with it on the !protractor. The bar can be moved inward or outward as desired and is held in xed position by a thumb screw.
Liquid Measuring Device.-George M. Bellasis, Lakefield, Canada. A scale beam adapted o support a vessel is, according to this invention,
fivoted on a post, and a weight sliding on the post is supported on an arm or tongue of the scale beam, while daucet discharging into the vessel, so that when the faucet discharging into the vessel, so that when the scale beam is actuated and its arm or tongue is disconnected from the weight, when the latter actuates the device to turn off the faucet. By this means all over-
flow and loss of liquid is prevented, while only the ount of liquid is passe Envelope Book.-Marcellus M. Hitt, Sheftield, Ala. This book is more especially designed are to be collected, as for church purposes, etc. The envelopes are detachable from stubs held in the book, the envelopes having mouths at their inner ends, on stubs from which the envelopes are detached remain in the book, and are inscribed with the record of the par-
ticulars of each envelope, as the name of the donor, ticulars of each envelope, as the name of the
amount subscribed, object of contribution, etc. Sewing Machine Spool Rack. Eduard Kolber, New York City. This is a frame sup porting a rack, designed to hold a number of spools an
guide the thread of any of them to the proper mechanism of the machine on or near which the rack is employed, the rack being simple and durable in coustruc tion and securely locking the several spools in place The frame of the device is adapted to be readily fastened to the arm of a sewiug machine, to a table, or in other
Window. - Valentine Schirmer, Nos. 334 and 836 West Fifty-sixth Street, New York City designed to afford means to open the window by designed to afrord means to open the window by able the sash to slide vertically and independently, a usual, the swinging adjustment being provided to facilitate the cleansing of each side of the upper and
lower sash in a safe and convenient manner. The imlower sash in a safe and convenient manner. The im-
provement may be readily applied to any window of the ordinary description where the sash is counter balanced by weights and suspended with ropes or cords.
The construction is simple and practical, and involves no loss of light or air windows being really made more thoroughly air tight by the employment of this im-

Cheese Cover. - Strother J. Lynn, Hope, Kansas. This is a double cover, the inner casing while the compartment between the inner and outer casings is designed to afford a channel for ample ventilation, having many openings at the top. The inne casing is also provided with many top and side aper-
tures, too small to prevent the entrance of insects, and
in the side wall of the inner casing is a small pocket to
receive a wet sponge and thus supply a proper degree ofeive a wet sponge and thus supply a proper degree
of moisture. The ventilation and protection afforded by the casing is designed to prevent mould and kee帾
House Door Letter Box. - Henr . Day, Elyria, Oho. Combined with a frame to which a door is hinged are latch levers and a sliding trip bar pivotally connected with the levers, with oth novel features, forming a box of simple and durab construction which can be easily opened by the pos man and locked after the mall has been placed in it downward movement of the trip bar, and on the frot of the box a name plate may be placed, while a pape he box, aud when not required may be practicall did.
Extension Ladder. - George Albee, susquehanna, Pa. The movable part of this ladder dapted to be ralsed or lowered by means of a lifting ope. The fixed and movable parts are provided with nation with one or more weighted catches adapted to engage the rungs of the ladder, a latch being pivoted o the catch to close its hook, when desired, to allow the movable part of the ladder to descend without e gagement of the catch.
Ventilator for Mattresses. George H. Hildreth, Cincinnati, Ohıo. This device consists of a perforated rubber tube having a metallic top nd a perforated cover, the tube being designed for in t the points where mattreses atress from opposite sid ventilators being held in place by the twine ued in ufting the mattress. The tubes, being flexible, do not interfere in any way with the efficiency of the mattress, while the
interior.
Ice Cutting Machine. - Thomas F. ynch, Philadelphia, Pa. A frame carrying a motor no main driving shatt has vertically sliding racks in which a saw shaft io ing and lowering of the saws without interfering wion or more eaws placed at a distance apart according to the width of the cakes of ice to be cut. The machine is designed to be easily operated to cut ice from the surface of ponds, lakes, etc., for storage, rapidly divid-

Harness Fly Net Clip. - Lyman Rosenberger, Harleysville, Pa. This ie a simple device or clamping a fly net to a harness, and is made in two and having at the other extremity an inturned clip, and detachable latch section, made of a single piece of pring metal. The clip can be conveniently and easil

Breast Strap Slide. - James A. Macrae, Regina, Canada. This slide consists of a hollow case having opposite side openings, with a snap hook projecting from one side and a keeper rigidly
secured to the opposite side. The improvement forms a simple, durable and efficient device by which the breast strap of a har
of a neck yoke
Saddle Jack. - Eugene E. Bateman, Marquez, Texas. A frame is mounted to turn on a pivoted arm having transversely extending brackets clamping plates are adjustably and detachably connected, with other novel features, forming a jack which is simple and durable in construction, and which can readily adjusted to hold the saddle tree in any desired position
upon it.
Adjustable Singletree.-Sosthenes Moeschler, Riceville, Va. This invention consists of a pair of rods pivoter pivotal bolt with the outer ends to an adjustable bar, thus forming a single
tree which may be lengthened or shortened to suit the Truck. - Williaw H. Gohring, Bing
to and ta mton, N. Y This hand truck for movin reight or baggage, etc., and is designed for use ordinarily as a two-wheeled truck, but it is so constructed that, when a heavy or a large load is to be
carried, another axle and pair of wheels may be swung into position, converting the truck into a four-wheeled handle by which it may be drawn
Dinner Pail.-Robert Dickinson, Sr Millgrove, N. Y. This pail is of shect metal, and is divided into several compartments adapted to hold a variety of liquid and solid food, while it is also pro-
vided with a lamp and appliances whereby the liquid and solid food may be simultaneously heated. The device also affords a drinking cup and a platter to ea and the whole bei
Hair Pin Exhibitor. - Louis D Nessler, New York City. This is a box having an in strips of coarse nove which, at different distances, two the prongs of the pins dropping easily through the netting, so that the pins may be readily arranged in rows one above
display them.
Game Apparatus.-Albert Cromwell, Philadelphia, Pa. The game board provided by this around its outer edge, while upon the board are placed concentric rows of pins in shallow sockets. A top having facets on its sides is used in playing the game,
the player holding the board with one hand and with the other spinning the top, at the same time tilting the board to guide the top from a central
through the rows of pins and back again.
Note.-Copies of any of the above patents will be send name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS Handbuch der Photographie fur AMATEURE UND Touristen. Vod
G. Pizzighelli. II. Edition. Volune pages and 531 illustrations. 1891.
Halle a. S.: Wilhelu Kuapp Pub. lisher.
The first volume of this handsomely illustrated handbook for amateurs and tourists treats in an exhaustive manner in six chapters, shjectivea, camerag, selection of objectives and cameras, stercoscopic apparatus,
apparatus for enlarging and reducing, and magnesium

ablightaparat

Die Photographischen Objective, FUNG By Dr J. M. Eder Director of the School for Photography and Reproduction, etc., in Vienna. 273 pages,
197 woodcuts and 3 plates. 1891 . Halle a. S.: Wilhelm Knapp Publisher. Price $\$ 2$.
This publication forms the fourth number of Vol. I. of Handbook of Photography by the same author. This
number contains three plates with fine portraits of Dr. Steinheil, Voigtlander and oseph Petzval. The book is divided in 16 chapters, and treats objectives in a very systematic and exhaustive manner, sh'wing the author's thorough knowledge of the various forms and conand objectives furnishes very interesting reading for he student.

1. The chapters in their order treat on photographic
2. History of camera and objectives
3. The lensless camera.
4. The single lens as a photographic objective
5. Aplanatic, euryscopic, rectilinear, and similar sym netric aplanatic lenses
6. The anti-planatic objectives.
7. Portrait objectives according
.
8. Petzval's orthoscope, Sutton's water lens, sphere
lens, pantoscope, periscope, etc.
9. Combination objectives.
10. Mirror objejectives.
11. Mirrors and prisms for inverting pictares
12. Diaphragms
13. Fastening of the objectives.
14. Calculating the time for exposure from the nature of the lens and the subject.

SCIENTIFIC AMERICAN

BUILDING EDITION

OCTOBER NUMBER.-(No. 72.)
TABLE OF CONTENTS.
Elegant plate in colors of a colonial residence recently erected at Fordham Heights, N.Y. Two complete $\$ 9,000$. Messrs. Walgrove \& Crails, of New York, architects.

Brookly Brooklyn, N. Y.
etc. Cost $\$ 3,000$
A very pretty cottage costing $\$ 3,600$, erected at Springfield, Mass. Floor plans, elevations, etc. beautiful modern residence at Bridgeport, Conn.
erected at a cost of $\$ 7,500$ complete. Plans and erected at a cost of
5. A subnrban cottage at Fordham Heights, N. Y Cost complete $\$ 6,000$. Perspective and floo plans.
iew of the new Lucas Building, Philadelphia, Pa Mr. Willis G. Hale, architect.
A dwelling at Longwood, Mass. Cost $\$ 6,423$ com A villa recently erected at Rochell Patc. A villa recently erected at Rochelle Park, N. Y
Cost $\$ 7,800$ complete. Plans and perspective. Carriage house and stable of excellent design, erected at "Belle Haven," Greenwich, Conn
Estimated cost $\$ 2,200$. Ground plans and per spective view.
cottage in Rosalie Court, Chicago. Estimated
cost $\$ 3,600$. Perspective and two floor plans. row of Philadelphia houses ranging in cost from $\$ 7,500$ to $\$ 5,800$ each. Perspective and plans. carriage house at Newark, N. J.
complete. Plans and perspective.
iew of the Masonic Temple being erectel a
Chicago. A twenty story building. Messrs Burnham \& Root, architects. A magnificen structure.
A dwelling at Newark, N. J., recently completed a
a cost of $\$ 9,000$. Floor plans and a cost of $\delta 9,000$. Floor plans and perspective. 6. Miscellaneous contents: Proportion in architecture -Improved hand circular rip saw, illustrated.Improved band resaw, illustrated. - Improved stairs.--Cook's luminous level tube, ilinstrated.Fox's barb wire post, illustrate -The Syk metallic roofing.-The "Florida" steam and ho water heaters.
The Scientific American Architects and Builder ddition is issued monthly. $\$ 2.50$ a year. Single copies wo hundred ordinary book pages ; forming, practi Cully, a large and splendid Magazine of Architec TURE, richly adorned with elegant plates in colors and with fine engravinge, illnstrating the most interesting allied subjects.
The Fullness, Richnese, Cheapness, and Convenience of this work have won for it the Lareest Circulation
of any Architectaral publication in the world. Sold b of any Architectural publication in the world. Sold by
all newsdealers. Architectur.
sdealers.
$\mathbf{M U}$

MUNN \& CO.. PUBLishers,

ƏBusiness and Personal.

 The charge for Insertion under inis head is one Doluar a linefor each insertion : about eight worrds to a line. Adver-
 1 wish te buy second hand thes paners , Twis te buy second hand lathes, planers, drills, shap
ers. engines. boilers, nd machinery Must in in hood
order. Will pay cash. W. P. Davis, Rochester. N. Acme engine, 1 to 5 H. P. See adv. next issue. Patent Dealers. Street \& Fishburn, Dallas, Texas. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J.
Valuat:e patents for sale by Thos. F. Gray, Monroe Valuat:e patents for sale by Thoo
ville, obio. See page 249 , this issue.
Steam Hammers. Improved Hydraulic Jacks. and Tube
Expanders. Re Screw machines, milling machines, and drill preeses.
The Garvin Mach. Co.. Liaikht and Canal Sts. New York Drop Forgings. Bronze Forfings. Usward of 3,000.
different articles. Billings \& Spencer Co.. Hartord, Conn. Centrifural Pumps. Capacits. 100 to 40,000 gals. pe minute. All sizes in stock. Irvin Van Wie, Syracuse, N.Y
 For the original Bogardus Universal Eccentric Mill,
 Splendid manufacturing plant. Nine buildings. Com-
plete mach inery for Engines, Cars, Stoves, Agricultural

The price of the Brown $\&$ Strarpe No. 1 universal mill-
ing machine without overthaning arm. is \$\$8.
 prices, $\$ 5 \overline{0} 0$ and $\$ 5 i$
 New York. Free on application.

hints to Correspondents.
Names and Address muest accompany. all letters,
or no attention will be paid thereto. This is for our

Bo may he had at the oftice. Price 10 cents each.
minereren to promply sent for examination suphould be distinctly
(3447) D. E. S. asks: 1. I have com
menced to build the electric motor described in SUP pLement. No. 641, and is the wire of the armature core
16 or 18: A. It is immaterial whether you use No. 16 or No. 18 iron wire in the core of your armature. Prob
ably you would find No. 18 or 20 easier to wind. 2 Is all copper wire magnet? A. Magnet wire is coppe
wire wourd with ove or two wrappings of cotton o silk. 3. Will it make any difference if the wire in the armature core is in more than one piece? If not
must the ends be abutted or fastened together? A. I you refer to the armature core, it will make no difference
whether the cores of the wire are abutted or fastened whether the cores of the wire are abutted or fastened
together. 4. Is the wire on the field magnets copper or iron, covered or bare ? A. It is magnet wire. (See answer to No. 2.). 5. What does a one horse power a buggy? Are there any other mall engines made that a buggy? Are there any other sman edo no know the
would be beter adapted. A. We do
exact weight of a Shipman one horse power engine, but we think it must weigh about 150 pounds. It might
possibly be adapted to running buggies. We do not possibly be adapted to running buygies. We do no
know of any regularly made engines for this purpose but probably one could be designed that would be bet
ter adapted to running carriagee. 6. Would the above motor be practical to get the power from a dynamo? And how should it be arranged? A. These motors
are succesfully used for running dynamos. The are sume is driven by a belt from the fly wheel of the engine. 7 . How can I make a positive jet black writing
ink that will show as soon as written and not dry for a couplelof hours, and that will take a good copy by simply
rubbing a sheet of dry tissue paper over the writing rubbing a sheet of dry tissue paper over the writing
with the fingers? A. It is almost imposible to find an ink which fulfills ally your conditions, but the following from the new "Scientific American Cyclopedia of
Receipts, Notes and Queries") (in press) gives a copy without the use of a press: Nigrosine (aniline black) C. P. fine, 10 onz; glacose "A," "112 oz.; hot water. $13 / 4$
pints; glycerine, $11 / 4$ oz. Dissolve the nigrosine by trituration in the hot water, then add the other ingredi-
ents and stran through a piece of silk. If too thick when cold, dilute with water. In preparing this ink, it is imperative that the water should be qumte hot until
all the dye has been taken up by the water. δ. If fair question, how are you able to so correctly auswer the 1,001 questions asked every month? A. We employ
a corps of writers who are able to answer many of the a corps of writers who are able to answer many of the
questions offhand, while other queries requrre $\begin{aligned} & \text { great } \\ & \text { deal of reeearch and sometimes intrcate calculations }\end{aligned}$ and experiments. The "scientific American Cyclopedia of Receipts, Notes and Queries," now in press, is designed to meet the wants of those who seek in-
formation of this kiid. It is a digest of notes and queries published in the Scientific American, and (3448) W. J. M. asks : 1. What would the voltage of a single cell of the dry copper-zinc bat4.ry described in query 3271 on page 123 of the isue of
August 22, , 1891, be, if the bloting paper was 2×3 inchess A. The E.M.F. of the battery referred to is is
about 1 volt $\stackrel{\text { De }}{ }$ Does the size or thickness of the about 1 volt 2. Does the size or thickness of the
plates affect the strength of the current? Also, is it ne pessary 4) put each element in a aeparate jar, or could
put a number of elements together in an air tight box
A. The current is dependent upon the size of the plates A. The current is dependent upon the size of the plates,
It would be better to put the elements in separate cells but undoubtedly you could get very good results from number of elements arranged in the form of a pile. ${ }^{3}$.
How many 24 volt 32 cande powder lamps could I ligh with 30 elements connected in series, the lamps bein arranged in paralle
adapted to running electric lamps, in fact it would be practically imposible to use it for this purpose, on a
count of the great resistance of the battery. 4. Wh count or he ereat resistance of the battery. 4. Wha
is the amperage of a single cell of this battery? A. Probably from one-fourth to one-eighth of an ampere. 5. What is the voltage and amperage of a single cell of
Daniell battery? Also, does the size affect the E.M.F. and could I put the bluestone in the bottom of the cell nstead of having a pocket? A. About one-third of an
mpere. The size of a Daniell battery has no effect upor mpere. . F size on a aninell battery has no effect upon
the E. T. The only effect of putting the bluestone in the bottom of the jar around the porous cell would batery giving 30 volts at 20 amperes, cound 1 light five
4 volt lamps arranged in parallel, if each lamp reauires amperes? If not, why? A. If your battery will yiel a 20 ampere current having an E. M. F. of 30 volts, with
he 24 volt lamps in circuit, you can undoubtedly run he 1 vort lamps in circuit, you can undoubtedy rux
he lamps, but the resistance of your lamps will cuu
own your current so as to render this anp ticable. 7. Which is the best way to connect up the should be wound on eac many pounds of No. 12 wire shooll be woind on each
leg of field magnet A. For ar lighting connect up
the s light dynamo as a series machine: for incandescent hie slight dynamo as a series machine: for incandescen
lighting it would be better to arrange it as a slunt maighting it would e be better to arrange it as a a shant ma
chine. It will require about 17 pounds of No. 12 wire fo he field magnet. 8. Would a medical coil made as fol of how to make one? A piece of $1 / 2$ inch iron pipe 7 in long. On this at each end are fited two pieces of wood
1 inch thick to confine the wire. Then four layers o No. 23 cotton-covered magnet wire is put on for the primary coil. Then 17 layers of No. 30 cotton-covered
wire for the secondary. When the winding is inished wire for the eecondary. When the winding 18 inished
abrass tube is fitted on the coil. The inside of the iro ipe is filled with No. 18 iron wire. I would like to kno a current of from2 2 to 4 volts were used, whether this
vould make a good coil. Also would you feel the curent stronger if a person had hold of handes than from
vol rent sirn bere wire
A. Your proposed induction coil
would be defective, frit on account of using the gas would be defective, frrt on account of using the gas
pipe as a portion of the core. The core should be ipe as a portion of the core. The core eholild be
iomed entirely of soft iron wire to insure a rapid maz etization and demagnetization. Your primary wire i of four layers of No. 23. Two cells of bichromate bat tery should give you a strong current. Handles are
more effective as they give a greater surface for the more effective, as they give a greater surface for the
distribution of the current. 9 . What is the best wire se on an outdoor electric bell line? A. Commo telegraph or telephone wire will answer it supported
upon insulators, or you can use office wire or any of
the the various insulated wires in the market. 10. What in
he price of the Edison dynamo described in Scirvxifr American of July 25, 1891? A. For prices we must refer you to the Edison General Manufacturing Com
puny, Broad Street, N. Y. I1. Is the electric light lin ire that is used out doors iron or copper? A. Elec vic light wires are generally made of copper.
(3449) W. M. writes : 1. I have made a Faradic instrument with battery to operate it, and have made the connections as I have been instructed from a
work on induction coils, that is, I have conrected a wire from inde pillar carrying the platinum screw to the attery, then one end of the primary wire to the pillar, wire to the battery. The battery I use is the bichro wate of potash. The solution I have made as follows ccording to instructions: To 1 pint of water 2 ounces of finely powdered bichromate of potash; this I have Soiled when cold. I added to this 1 ounce of sulphu dic acid when it was cold; the instructions claimed a carbons. I have tried the battery on the machine nd for about 15 'minutes it kept up a very powerful and teady shock; then it gradually decreased in power til last there was no perceptible shock. Thinking tha it ought to maintain its power for a longer time than
hat, I would ask you to be kind enough to tell me that, I would ask you to be kind enough to tell m
where the trouble lies? A. Your battery solution Lo weak, and probably your zincs are not thorough
malgamated. Make a solution as follows : Mase malgamated. Make a solution as follows : Make water; to this add one-fifth its bulk of commercial sul huric acid. It is well also to add a small percentage the solution boils at the the the zincs amalgamate r Move them and amalgamate them by sprinkling on ttle mercury ard spreading it around by means of
rush or swab. 2. Give me a receipt for a cheap soluwush or swab. 2. Give me a receppt for a cheap solu-
tion, dip or process for blackiny or bluing brass work, something that will hold gcod for some length of time A. Lustrous black on brass.-Mix equal parts of copper Aalphate and sodium carbonate; these solutione must aper and dissolve immediately in an excess of amonia. Dilute the solution with water and add a smal
oantity of plumbago, 20 to 50 grains, depend quantity of poumbago, 20 to 50 grains, depending on the
amount of solution used, then heat to $100{ }^{\circ}$ Fuh. The must be thoroughly cleaned a nd dr butil they are black. Wash wew solution as no dry in sawdust. Prepare
wanted for immediate use.
(3450) W. D. K. asks how impression ax is made. A. Temper paratine wav with olive oil
osuit conditions. Mix a liitle whiting with it while ot--From "Scientific American Cyclopedia of Re
(3451) W. P. H. asks : 1. From what and how is oxygen made for commercial purposes, also
hydrogen 9 A. Oxygen is made by heating a mixture of hydrogen ? A. Oxygen is made by heating a mixture of
chlorate of potassium and binoxide of manganese. chlorate of potassium and binoxide of manganese. B
Brin's process, which has been introduced in Englan on the large scale, it is made with barium oxide as
ase from the air. See our Surpumenevt, No 623 Please refer meto engravings and details of construc
on the magic lantern, such as Hepworth's "Book of
the Lantern," price $\$ 2$. "The Magic Lantern, tis Conthe Lantern," price $\$ 2$. "The Magic Lantern, its Con-
struction and Management." price $\$ 1$ by mail postuaid. struction
An annul.
Science,"
(3452) B. A. W. asks how insects, lowers, etc., and their elements may be preserved so as
o look as if they were in their natural state the specimens on a bed of fine dry sand in a vessel having sufficient depth to extend above the specimens.
Carefully sift fine sand over the objects until they Carefully sift fine sand over the objects until they are
compietely buried. Set the vessel in a warm dry place completely buried. Set the vessel 1 a a warm dry place,
and allow it to remain there until the objects are thornd alow to remain there until the objects are thor-
oughly dry. Remove the sand carefully, and where aghly dry. Remove the sand carefuily, and wher
gloss is no objection, the articles may be dipped in lost
meted parafifine which is just warm enouigh to limpid.
(3453) F. J. F. writes: Can you give me receipt or process for bluing over a gun barrel where
has been scratched ? A. The barrel should be has been scratched? A. The barrel should be re
olished with the finest flour emery cloth, and evenly heuted until the blue color is produced, then cooled in
water, dried, and varnisted or oiled. It is a defficuly ob for an amateur. We recommend you to employ ansmith.
(3454) E. E. asks: What are the ap proximate composition and the properties of the prinion? A. Alumina is the fire-resisting element. Fir bricks are made of clay, hydrosilicate of alumina, co Waat is the most suitable uon-conducting material for covering pipes, boilcrs, etc., to prevent loss of heat . Magnesin felting and boiler covering
(3455) W. asks: Will whitewood boards hrink lengthwise? For example. A counter is mad and bolted. There is now a crack between them about
inch wide. Did the boards shrink? A. The sof oods shriuk slighty end wise in seasoning.
(3456) J. D. writes : I am making small ynamo, described in SUPPLEMENT, No. 161, and would
ke to know if I could shellac the bore of the fie magnet also the outvide of armature (Siemens) to pre ent rusting. Would it detract from the power of the ynamo bo doing ? A. There is no objection shellac
namo.
(3457) W. C. W. asks : Has copper or rass ever been hardened and at what time and by wh bation or nations, and have they by euch hardenin nean tempering, in the ordinary sense of the word, teel is tempered. A. Pure copper cannot be hardene wie steel. The hard copper tools of the ancients were made of an alloy of copper and tin. Such tools can be
made now that will cut stone or wood. The proportion is 72 parts copper, 28 parts tin. It must be cast in the hape required and ground sharp. It cannot be hard by tempering
(3458) R. H. S. asks for directions for naking "P. and B. electrical compound" for coating roof, applied with a brush the same as ordinary paint. The following has been recommended Stockerrel r 10 parts, rosin 10 parts, zutta percha 30 parts. Co pitchanswers very wo. Soe next query.
(3459) R. H. S. asks (1) how to make a arnish for the inside of a wooden battery cell tha
would not be affected by acid or alkali. A. For thi urpose nd ground pumice stone wth a little boiled linseed oil 1s recommended. Melt it in with a hot iron. 2. Please aid to be used for the inner cell or porous cup of a sul huric acid battery is nitrate of potassium.
(3460) G. V. asks as to the correctness Co.'s briet history of the United States, latest edition. This book says that the waters rushed down the valley at the rate of $21 / \mathrm{m}$ mles in one minute. A. This
ate is somewhat conjectural, and we cannot find ally satisfactory bosis for an opinion
(3461) J. F. D. asks whether there ar ny chemicals that will resemble fire after dark. Try a solution of common phosphorus in olive oil, o
Balmain's luminous paint, deecribed in\} our SUPPLE ments, and sold by large dealers in paints.
(3462) N. W. writes: I want to get some instructions to repair mercural barometers. Can
you put me on track of any work published for that you put me on track of any work published for that
business? A. Read "How to make a Barometer," in Scientific American Supplement, No. 309, illus-
(3463) A. U. asks: Will you be kind nough to inform me how to prepare barrels in order to ne well of water 72 ft deep, 8 ft . Yave; the a eand coming in with the stream of water gives me a grea deal of trouble. Could you advise me how to overcome it? A. The method of preparing barrels for pure spirtit
is practiced by our rectifiers is to steam the barrels b lacing them bung down over a small steam pipe pro ecting into the barrel. Contunve this for an hour o ill the barrel with clean water in which a talf pound of eal soda is diseolved. Soak for 2 or 3 hours and thoroughly wash out with fresh water.-The only remedy for sand coming into your well that can be np.
plied easily is to drive several pipes of larye size med easily is to drive seevar pipes of poing of drive well pipes, down to ower stratum, leaving their tops below the low wate
arfaoe. This will relieve the pressure that lifts the arfacoe. This will relieve the preesure that lif
and and tend to increase the flow of the well.
(3464) F. V. Y. writes: Will you please publish an article in your Scientific American or
Supplement on the construction of a transit strong nough to see the rings of Saturn, or if you have pub lished such, will you please tell me what in, and send
construction in Scientific American Supplement,
Nos. $581,582,583$, and eyepieces for telescopes in Nos. 581, 582, 583 , and eyepieces for telescopes in
Scientific American Supplement, No. 399.10 cents each. You will also find the transit illustrated and its mailed.
(3465) A. C. O. asks: How can abso, ained for the purpose of aerating cessi vely through hot and cold tubes and thusexposing it to great extremes of temperature? A. Pump the air
in small streams through a perforated plate, immereed in solution of permangunate of potassium. The other nethod you give would answer excellently if the air
(3466) "Argentum Purificatum" asks 1. Is there a better way of reclaiming the silver from photographic clippings than burning the clippiugs, rucible, using carbonte od and carber, crucible, using carbonate soda and carbonate potash
(2 to 1) as a flux? A. The method you describe is the urest and simplest. 2. How much nitrate silver can be
produced from 1 oz. pure silver ? A. About one and produced from 1
one half ounces.
(3467) H. S. writes: I have imported glass filter for the household, and would like to know whether its efficiency is thoroughly reliable. A. No filter is thoroughly reliable. If properly used and
cleaned, a good filter will do good, but cannot be epended on in all cases, as many injurious ingred
(3468) F. A. F. asks for some ingredients he could mix with wax to harden it for use, to
make perfectly firm. A. Try paraffin or lead oleate plaster)
(3469) E. H. K. asks how to waterproof boots. The followirg methods are from the new
"Scientific American Cyclopedia of Receipts, Notes and Queries." A. A coat of gum copal varnish applied antil the pores are filled and the surface shines. Or try the following mixture: 100 oz. best white wax; 6 oz.
Burgurdy pitch; 8 oz. ground nut oil; 5 oz. iron sul. Burgurdy pitch; 8 oz. ground
(3470) J. S. W. writes : 1. I have 4 oz. of No. 36 copper wire, and want to make an induction
coil. What number wire shall I use for the primary oin. What number wire shall I use for the primary of No. 18 wire for your primary coil. 2. How long should I make the core, and how large should the heads
be? A. Make the core about 3 inches long and $3 / 8$ inch in diameter; the heads misht be $1 \$$ inches in diameter.
How is carbon made, such as used in battries? For directions for making carbons see Scientifi American, vol. 60, page 307. Also consult "Experi-
mental Science." 4. Why is it that electric conduits re notused in New York for the cars? Is it because it s against the law or too expensive? A. Electrical con duits are not in use in New York City. It seems a diminlt
problem to apply them successfully. 5. How is it that n induction coil has as many as 50,010 volte and ooes not kill a man, when a dynamo of 1.000 is enough
to kill a man? A. A current from an induction coil has an exceedıngly low amperage or quanity; still we
do not think it safe to take a shock from a large nducn
(3471) G. M. B. asks for a receipt for acid, and the caseine thus formed is thoroughly washed in water and dissolved in a cold saturated solution of borax. The clear solution thus formed is superior to
gum arabic; for porcelain, mix with finely powdered quicklıme. Apply to the ware immediately. Bind up with cord and expose to gentle heat.-From "Scientitc
American Cyclopedia of Receipts, Notes and In press.)
(3472) A. K. B. asks : 1. What chemicals Collodion, a nitrate of silver bath, sulphate of iron, acetic acid and cyanide of potassium. We refer you to camera be constructed for taking tintypes without a lens? Can the aperture be a small pin hole instead? A.
Yes; but it will take too long. The plate would spoil. It must be exposed while wet. You may be able to obann sensitized dry ferrotype plates from E. \& H. T Anthony \& Co., 591 Broadway, New York. But they
will not give as satisfactory results as by the wet plate
(3473) E. H. asks how to take fatty ains out of bones. A. Much may be renoved by aking in naphtha. As a final bleach, mix 1 part oiling water, and soak the bones therein, after it has huric acid.
(3474) F. G. C. asks : 1. What will take each stains out of white table napkins without injur oxalic acid, Wash out thoroughly, It is well follow Javelle water with a weak solution of sulphuroin acid. 2. What is the sperific gravity of erbium, caesium, ttrium, and glucinum? A. Caesium, $1 \cdot 88$; glucinum (3475) A. C. D. asks for a receipt for aking a polish for cleaning glass, composed of whit ing, etc., formed into a ball. A. Mix the whiting with or med the bells of pure whiting by hydraulic
(3476) J. C. M. asks : 1. Will a tube of hard tubber hold mercury for any length of time? A
It will hold it for an indefinite period. There is a possibility of its contaminating the mercury, but if its nner surface is polished, it will not do so. 2. What ther materials, besides iron, could be used for the
purpose? A. Nothing is superior to glass. Platinum also will answer, as it only amalgamates under special
(3477) H. W. asks what natural gas con
gas be used for the same parpose as natural gas？I am
trying to find out if I can use coal gas for welding iron trying to find out if I can use coal gas for welding iron
on a small scale．A．Natural gas contains hydrogen， nitrogen，marsh gas and other hydrocarbons，carbo monoxide，etc．Coal gas is inferior to it for welding
because it contains too high a percentage of carbon can be used with a hot blast with some success．Water gas made by passing steam through white hot coal is （3478）E．D．H．asks ： 1 ．What is the best formula for making dry hop yeast？What is the hes
mode of drying it？If dried by heat，about what should the temperature be？A．Mix $31 / 2$ ounces of hops with 15 quarts hot water and $33 / 4$ pounds rye flour．When it of beer yeast，and allow it an perature only add $\not 2$ pin over night add $73 / 4$ pounds of corn or barley meal，knea into dough，and roll out to a thick ness of $1 / 2$ inch．Cut this into small cakes and dry in a warm room or in th sun，turning from time to time．To use，a piece 18
soaked in warm water left to stand 12 hours in a warm place，when it is ready for use．2．Is there any cold ai process by which it can be dried by evaporation？A a lump of quicklime is placed．The yeast must o course be in its own proper receptacle，and not in con tact with the lime．
（3479）L．S．says：We send inclosed two worms found in a piece of plush．Would you kindly
tell me what they are and whether they are liable to tell me what they are and whether they are liable to
injure goods？The darker worm was found in a sub stance resembling silk and which adhered pretty firml to the plush．A．Reply by Prof．C．V．Riley．－One of the larve forwarded had transformed to pupa in transit， but the other is still active．It is the larva of a beetle
of the family Cleridæ and the genus Corynetis．This of the family Cleridæ and the genus Corynetis．This
family of beetles is，as a rule，carnivorous or preda－ ceous in the early stages．It is therefore probeb．e tha the larve were attracted to the goods by the presence of
other larvæ，the latter probably of some of the com other larve，the latter probably of some of the com－
mon＂clothes moths．＂I hope to rear the imago and should much like to have other specimens．If it turns out，as seems probable，that this larva will prey upon
the various clothes moths that so trouble the house the various clothes moths that so trouble the house－
keeper，it is well to know the fact，as possibly it may be encouraged and utilized to advantage．On the other hand，one of the species of the genus，namely，Coryneti rufipes，is known to be injurious to preserved meat and has been found particularly bad in hams．An account of its in juries has been published by me in my Sixit Report on the Insects of Missouri，page 96．The
species sent by your correspondent is smaller，yet all the species of the genus in the larva state，so far a and the presumption is that in this case the two spec mens had left some such matter and got on the plush accidentally，or they may have fed on the exuvie of the clothes moths．The substance resembling silk may have been the cocoon of the clothes moth larvx or else a cocoon made by the Corynetis larva itself，prepara
tory to pupation．
（3480）W．R．B．asks how to make beef iron and wine．A．Liebig＇s extract of beef $1 / 2$ ounce of orange $1 / 2$ fluid ounce，distilled water $1 \ngtr$ fluid ounces， sherry wine sufficient to make 16 fluid ounces．Dissolve the ammonio citrate of iron in the water，dissolve the extract of beef in the sherry wine，add the spirit of
orange and mix the solutions．－Beef，iron，and wine fo oda fountains：Beef，iron，and wine 1 ounce，vanilla sirup 3 ounces．－For dispensing：For 2 quarts，concen trated extract of beef， 2 ounces；pyrophosphate iron， $1 / 2$
grain．Disoolve in $1 / 2$ pint boiling water．Add tincture aracos， 2 ounces－tincture orange peel， 2 ounces；sir up， $121 / 2$ ounces；alcohol， $121 / 2$ ounces ；solution citrate of ammonia， 2 ounces；sherry wine， 23 ounces．The
information given ahove is taken from＂The Scientific information given ahove is taken from＂The Scientific American
In press．
（3481）G．L．B．asks how to make blu ing for laundry use．A．1．Dissolve good cotton blue
（aniline blue 6 B）in cold water．2．Dissolve fine Prus sian or Berlin blue with $1 / 8$ part of oxalic acid in water or use ferrocyanide of potassium（1－12 part）in place of
oxalic acid． 3 A disinfective laundry blue．- Mix to ether 16 parts of Prussian blue， 2 parts of carbolic acid part of bora，and 1 part of gum arabic into a stif dough．Roll it out into balls as large as hazel nuts and coat them with gelatin or gum，to prevent the car－ olic acid from escaping．4．Water is parts：dissolv in this $11 / 2$ parts indigo carmine，add $3 / 4$ part gum arabic Notes and Queries．＂In press．
（3482）K．F．asks：1．What will cement coloring the ivory or injuring the triangle and without coloring the ivory or injuring the triangle and that will
set in 48 hours or less？A．Mastic varnish 1 part isinglass 2 parts．Dissolve the isinglass in as little water as possible with a little alcohol，and mix with the varnish．The latter is prepared by making a strong solution of gum mastic in alcohol and benzine． 2. What is the best book on sarveying，more especially with the transit A．We recommend and can supply Johnson＇s＂Theory and Practice of Surveying，＂price $\$ 3.50$ by mail，also Gillespie＇s＂Practical Treatise on
Surveying，＂price $\$ 3.50$ ．3．What is the best book on mining surveying？A．We recommend Brough＇s ＂Mine Surveying，＂price $\$ 2.50$ mailed．
（3483）H．G．J．asks：What is the ve ocity of light andof the electric current？A．The ve－ gives the velocity of static electricity as 288,000 miles per second，which is greater than that of light．Current electricity，where it meets with no resistance，has about the same velocity as light．The velocity of electricity on an iron wire is variously estimated at from 18,400 to
62,100 miles per second，and on a copper wire 111,780 62,100 miles per second，and on a copper wire 111,780
miles per second．The nature of the conductor and its environment has an influence on the velocity．
（3484）C．A．W．asks：Which travels the faster－light or electricity y Please state also the
（3485）I．E．asks：1．Is alumina manu
factured in the United States anywhere．If so，where

Company，Philadelphia．It is a dyernsy chemical． 22 ould gas be compressed in tank and carried any dis he tanks empty themselves through the engine with out any pressure above atmospheric pressure $?$ A．Yes ．Where could I get a cheap work on the use of gas or its manufacture？A．We can supply you with work on this subject such as＂A Tr atise on the Manufac ture of Illuminating and Heating Gas，＂＂by Burn＂，price
$\$ 1.50$ ，also Richard＇s＂Practical Treatise on the Manu facture and Distribution of Coal Gas，＂price \＄12 by mail post paid．
（3486）J．C．writes：1．In speaking of imes that of the armature，do you mean all the wir on armature or only half between the brushes，or as sorne say only a quarter of the armature wire 18 taken
as the resistance of armature when comparing it with fields．A．The resistance of the armature is mean This is one quarter of the resistance of the total length
of wire on the armature，for the reason that the current oes through the two halves of the wire in para curren reducing the length of the conductor one－half，and a the same time doubling its sectional area，thus reducing the resistance as above stated．2．Does the same resist
（3487）R．N．asks：During an argu ent in this city a few days ago as to the compone parts of glass，one party asserted that glass could b manufactured from straw．Immediately a bet was
made that he was mistaken，and the parties to the made that he was mistaken，and the parties to the or decision．A．The ashes of straw might be fused
（3488）F．F．writes：Can you tell me of glue or cement，for the purpose of attaching cloth or resist 1400 Fah．of heat，also dry quiekly？What is th best method of using same？A．We know of nothin better than the sheet gutta percha used by tailors fo he purpose you mention．It answers to all the quali－ ties you call for except the heat．It softens under hea In use place a sheet of the percha between the two sur aces of fabric to be joined，and press the same with vided the heat is maintained long enough to penetro the fabric and melt the percha．
（3489）E．G．H．asks（1）for some pre arations that will render cane pole fireproof．I refer to he＂fiehing pole＂grown in the South．In working the
naterial I have considerable waste and propose to make pipes，for smoking tobacco in，so want to＂get on to＂ treatment not expensive，that will admit of using then in that way．Would like a c．emical that they could be oaked in，and that would not give off any unpleasant hate of he used in laundry for marking clothes，that will not quire to be（the goods）prepared in any way before o fter marking，but be ready to go into the wash．A．F nk formulæ in general we refer you to our Supplement o．157．3．Can you give me an idea of some preparatio or bleaching，in laundry work，better than chlorite o rk in．Tor mal blea 9，vol．61：SUPPLEmENT，No． 577.
（3490）G．－A machine that will always ceep itself in motion without exterior aid，and without rd offered
（3491）M．S．P．asks：What can I coat in battery cells with to make them acid proof？A
（3492）E．B．C．asks ：1．Where can I obtann paramidophenol to be used for a developer as
described in your paper of August 29 ？A．From the Yor．2．How much does it cost？A．$\$ 8$ per ounce，
In what proportione should I use it in develop－ ing？A．In the proportions given in Scientific
AMERICAN．4．Is it poisonous，and if so，what forms good antidote for it ？A．Yes，to take internally Antidote，a strong emetic．5．Is hydroquinone poiso
ous，and if so，what is a good antidote？A．Yes Antidote，a strong emetic．6．What is the formula of H_{2} ）OH．7．How much did the Philadelphia cost A．$\$ 1,350,000$ ． 8 ．What is her type ？A．See Scientific american，vol．61，Nos． 6 and 11，for illustrations of her．9．Is there any good book published exclusively
on the new American navy？And if so，how much does it cost $\%$ A．Consult the back numbers of the Sci－ 10．I have a ronm，size 25×30 feet，in which there is fireplace that is 6 feet long，and whenever a fire is lighted it will always smoke unless a window is opened， stops smoking．Now，how can I fix it so that I ca have the windows all shut，and have the fire not to smoke？A．Conduct a special air flue under the floor the aperture at the grate closed with a register．This will supply a constant current of air when the room is closed．11．How much about per night would it cost to run a lime light in a Marcy sciopticon，for say about wo hours at a time ？A．The cost for gas will be about $\$ 3.50$ ，for lime 10 cents．12．Would it be safe to use
a lime light，and what good book can I get on the sub－ lime light，and what good book can I get on the sub－ ject，and how much does it cost 9 A．It will be safe to cylinders．We refer you to the＂Book of the by T．C．Hepworth，which we can send by mail．Price
（3493）J．M．L．writes：I have a well about 105 feet d ep．When the well digger got down some 85 feet，the solid rock was struck．Then a hol soapstone 15 feet，water was found in either slate or that stuck to the drill．The water rose within 3 feet of the top of the rock．I hav．a windmill which pumps
the water out faster thanit comes in，although two men the water out faster than it comes in，although two men
say that they can hear the water rabhing through the
bottom of the well．I waut to know what I ought to have done to increase the supply of water．I have bee
told if I drop into the hole 2 pounds of quicksilver，it will cause the water to come in more freely．I am tol of a man in Quincy who wanted to dry up his well；he was told to put quicksilver in it；he did so，but it had is cellar and he had no relief until he connected with he sewer．Can you give me any information if the uicksilver will have the desired effect 9 I have built water from pond，and I want to keep it supplied wit quicksilver yarn．Drill the hole deeper to get more
（3494）R．W．S．asks：1．If a rifle ball be fred perpendicularly into the air，what velocity will it have when it returns to the earth 92 ．If at close range it penerrate 5 inches into a piece of wood，how far will perpendicular shom piece of wood after falling depend pon the initial．The greater difference with the great height that the ball reaches before returning．Th friction of the air retarding the velocity both ways．We
cannot give definite figures on account of the uncer tainty of muzzle velocity and height of projection， well as relative densities of bullet and air．An elongated and globular ball having different frictional exponents． Under all circumstances the return will have a greatly essened
（3495）E．P．G．says ：Kindly inform me trough the inquiries column in your paper what he cheapest way of dressing the surface of a grindstone which has worn unevenly，to produce an even and tru urface again？It is not valuable enough to warrant pur hasing a diamond tool，and I am not in or near a town rred for this one occasion．A．Nail or fasten a block across the frame as close as posib the en resting on the block，and the edge agairst the stone；by olling the gas pipe back and forth along the face o （3496）P．W．K．asks ：Will it make ans ifference which way you jump（while in a car moving the rate or 60 miles per hour），ellher againat or win he motion of the train？By the diferencel meandir erence in distance jumped，measuring form a cfertan which way you jump；the distance jumped will be the ame，as you are moving with the same motion as the

TO INVENTORS．

An experience of forty years，and the preparation of nore than one hundred thousand applications for pa－
ents at home and abroad，enable us to understand th laws and practice on both continents，and to possess un－ equaled facilities for procuring patents everywhere．
synopsis of the patent laws of the United States and all foreign countries may be had on application，and persons contemplating the securing of patents，either at home or abroad，are invited to write to this office for prices， Which are low，in accorance with the times and our ex MUNN \＆CO．，office Scientific American， 361 Broad－ way，New York．

INDEX OF INVENTIONS For which Letters Patent of the United States were Granted

October 6， 1891.
AND EACH BEARING THAT DATE．
［See noteatend of list about copies of these patents．］

Axied，bali bearing for venicle，Miller \＆Griswo．
Bag holder，W．G．Adams．
Baking machine，three－cornered，Baron \＆

g，T．F．Mark

E

460,911
460,222
460,4046,640
460,690
40.690

ror, metal, F. Netenegold
Sad iron, G. Hertel.
Safe, W. H: Reynid.
and converer

Saw machine, swinh, E .F. . Aute.i.ieti:
Scaffold horse, G Kaut. K.............

Shos, etc. composition of matter for soles
Brawn Back

Son maitinat Ruypieied

ftoial, M. Maurer.

straw stacker, A. A. Russeil.

Tonss, roofing, H. Beirwirth, Jr...

Trolley
Troiley
warras
Trecta
G
Treck G. L. chàaborn

460,646
460,629
460.575
460,655

SPECIAL NOTICE!

Fine Taps, Dies, Reamers, etc.

 Steam! Steam!

Quality Higher, Price Lower. 2-Horse Eureka Boiler and Engine, - \$145

B. W. PAYNE \& SONS,

ELMIRA, N. Y

GVANTPD,

To make, by our special machinery, square
or V threaded steel nuts, six to ten times diameter. Send sketches of wants.

RAND DRILL CO.,

23 Park Place, New York.

[n press, to be issued about December 1, 1891.]
\rightarrow The Scientific Hmericanß byclopediaく
\rightarrow of Receipts,
NOTES AND QUERIES.

650 pages. Price $\$ 5$.

This splendid work contains a careful compila-
tion of the most useful Receipts and Replies given in the Notes and Queries of correspondents as published in the Scientific American during
nearly half a century past; together with many valuable and important additions.
are here collected; nearly every branch of the use fumprehensive volente. It is by far the most before the public.
The work may be regarded as the product of the studies and practical experience of the ablest chemists and workers in all parts of the world;
the information given being of the highest value, arranged and condensed in concise form, convenient for ready use.
Almost every inquiry that can be thought
relating to formule used in the various manufacturing industries, will here be found answered. Instructions for working many different processes in the arts are given. How to make and
prepare many different articles and goods is set forth.
Those who are engaged in any branch of industry probably will find in this book much that is of practical value in their respective callings.
Those who are in search of independent business or employment, relating to the manufacture and sale of useful articles, will find in it bundreds

MUNN \& CO., Publisher
361 Broadway, Ne,

LEARN WATCHMARINGG etc. of W. F.A. Woodeocs Write to terma and part iculars. Wionaia Mina.

STEEL TYPE FOR TYPEWRITERS
 ufactured by, speveitit cos, etre... wan-
ew York StencilWks, 100 Nassaust.

RECEIVER'S SALE.
Axe Patents, etc., at Public Auction.

PATENTS GRANTED RY THE
To (izize

Pativis granted by the giv-
 patentighanted by the do-

THE WORLD AND GLEN CAMERA

Founded bu Mathew Carey， 1785. HENRY CAREY BAIRD \＆CO． Industrial Publinhers，Booksellers，and Importers $\mathbf{8 1 0}$ Walnut St．．Philadelphia，Pa．．U．S．A． OF Our new and Revised Catalogue of Practical and Sclentific Books， 86 pages，8vo，and our other Catalogue and Circulars．the whole covering every branch of Sci ence applied to the Arts，sent onee and free of postage to any ond any part of the world who will furnish his addres．	

OVER 16 TONS

—OF－

＂Experimental

Science＂
SOLD．
We do not refer to science in the abstract，but to our new book by Mr． Geo．M．Hopkins，having the above
This book has proved itself to be the most popular scientific book ever printed．Every scientific person，and any person desiring to become scien－ tific，should have it．It will pay to
look over the illustrated table of con－ tents，which we send gratis． 740 pages，over 680 first－class illustra－ tions．Price by mail，$\$ 4$ ．
Munn \＆Co．， 361 Broadway，N．Y．
OCt．ENGINEERING MagazINE．

 MODER TYPES OF GOLD AND SIVEER．RANTESE：
 a solution of the block
 Edithorial Ilep＇s．Indes to Engineering Press．Popular M．Gisellany
 Sample copy， 10 cents．Mention the sci．A merican．
The Engineering Magazine Co．，World Building，N．Y．

HARPER＇S
 PERIODICALS

harper＇s magazine，One Year harper＇s weekly，One Year－ harper＇s bazar，One Year HARPER＇S YOUNG PEOPLE，One Year－ 2.00

ロFs Postage free to all subscribers in the United States，Canada，and Mexico．

The volumes of the Weeriy and Ba－ zar begin with the first numbers for January，the volumes of the Young People with the first number for No－ vember，and the volumes of the MAGA－ zINE with the numbers for June and December of each year．

Booksellers and Postmasters usually receive Subscriptions．Subscriptions sent direct to the publishers should be accom－ panied by Post Office Money Order or scriptions will begin with the current scription
Number．

 Address
HARPER \＆BROTHERS，

 NEW YORK．AMachine Shop and Laboratory heir mechanical troubles．Will send a primer that is itself a help．

DEAFNESS R HEAD NOISES CURED

AMERICAN INSTITUTE FAIR．

 DAIMLER MOTOR CO．， GAE TRINGIMTME， DAIMLER MOTOR LAUNCHES，$\left\{\begin{array}{c}18 \text { to } 35 \text { feet，} 1 \text { to } 10 \\ \text { horse power．} \\ \text { No }\end{array}\right.$ Office， 111 East Fourteenth Street，New York，

p

Printing

FREE SITES TO SUBSTANTIAL MANUFACTURING ENTERPRISES

Fon SA LEE，or to manufacture on rogalty，patent No．

ROCK BREAKERS AND ORE CRUSHERS

PURETEMPERED COPPER

TO BUSINESS MEN
tising medium cannot be overestimated．Its circulation
is many times greater than that of any similar journal
 m pre than to see his advertisementin in a prints something news－
paper．He wants circulation．This he has when he ad－
vertises in the St the advertising agent influence you to substitute some
other paper for the SCIENTIFIC AMERICAN，when se－ lecting a list of publications in which you decide it is for
your interest to advertise．This is frequently done for the reason that the agent gets a larger commission from
the papers having a small circulation than is allowed on
 the Scirntific Ambrican．
for rates see top of frit

361 Broadway，New York．

The Sebastian－May Co．驾

$\$ 60$

 ARTIFICIAL INCUBATION．－A DE－

 Waterwill run from it pure and clean．It coversdouble timeslonger．Fqually y ieffiltorany yiron work．Sendfor
oirculars．J OB．D IXON CRUC1BLE Co．，Jersey City，N．J．
Scientific Book Catalogue IEEENTLY PUBLISHED．

NO SKIT工FD FNGINFHRE The Shipman Automatic Steam Engine STATIONARY AND MARINE． Petroleum，Kerosene Oil，and Natural Gas Fuel
4，6，and ，Single．
For Elevating Water，Creameries，and all Manufacturing Purposes．
SHIPMAN ENGINE CO． 210 Summer St BOSTON mpAW ROAT ROTG FRO IDEANDIDEALAUTOMATIC ENGINES． Manufactured by HARRISBURG FOUNDRY AND MACHINE WORKS，Harrisburg，Pa．，U．S．A．

OIL WELL SUPPRLY CO．

GATES ROCK \＆ORE BREAKER

 INVENTIONS PRACTICALLT DEVELUPED

OTAFREXS WARP DYEINGL WASAERS， POWER WRINGERS FOR HOSIERY AND DRYING AND VENTLATING FANS， CEO．P．CLARK，

Useful Books！

CFIT ${ }^{2}$ FRE．

ARTESIAN

OILS AND FATSS－SOME PRACTICAL

LITTLE HERCULES DRILL CHUCK

CHANDLER \＆TAYLOR CO＇S

DESCRIPTIVE PRICE LIST AND SAMLLES SENT FRER H. W. JHHMS MFG. CO., 87 Maiden Lane, N.Y. BORAX. SOURCES AND APPLICA

 NEW KODAKS

Transparent
THE EASTMAN COMPANY,

$\underset{\text { OHELL }}{\text { SHE }}$ FLOWERS, DESCRIPTION

 FRATENTS!

 MUNN \& CO., Solicitors of Patents,

PELTON WATER WHEEL

ward. Wrads of 2 foeet and app-

POPE MFG. CO., 77 Franklin Street, BoSTON.

FREE OF CHARGE!

COROUS EARTHENW ARE.-BY

Mincrane

g5 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use. and all the consequences thereof, and liable to suit therefor

TANITEEmery,
Emery Wheels,
Emery Emery Wheels,
Emery Whetstones Grinding Machines,
Knife Sharpeners, Knife Sharpeners
Knife Grinders.
The Tanite Co., Knife Grinders.
The Tanite
Stroudsburg, Pa.
Washington St., NEW York

SCIENIIETX MERCAM

ESTA BLISHED 1846 The Most Popular Scientific Paper in the World

This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixoriginal engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Flectricity, Telegraphy, Photography. Archi-
tecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week.
Terms of Subscription. One copy of the Sciev tific American will be sent for me yearpostage prepaid, to any subscriber in the United States,
Canada, or Mexico, on receipt of three dollarss by the Canada, or Mexico. on receipt of three dollars by the
publishers; six months, 81.50 ; three mont hs, \&1.00.
Clul).-Special rates for several names, and to Post Clubs.-Special rates for several names, and to Post
Masters. Write for particulars. The safest way to remit is by Postal Order, Draft, or of envelopes, securely sealed, and correctly addressed, seldom coes astray, but is at the sender's risk. Address
all letters and make all orders, MUNN \& CO., 361 Broadway, New York. Scientific Sumericuti Supjlement

This is a separate and distinct publication from THE every number containing sixteen large pages full of engravings, many of which are taken from foreign papers,
and accompanied with translated descriptions. THE Scientific American Suppiement is pubin ly, and includes a very wide range of contents. It pre-
sents the most recent papers by eminent writers in all the principal depariments of Science and the Useful
Arts, embracing Biology, Geology, Mineralogy, Natural Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archæology, A stronomy Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building,
Marine Engineering, Photography, Technology, ManuMarine Engineering, Photography, Technology, Manu
facturing Industries, Sanitary Engineering, Agriculture facturing Industries, Sanitary Engineering, Agriculure,
Horticulture, Domestic Economy. Biography, Medicine
etc. A vast amount of fresh and valuable information obtainable in no other publication.
The most important Enginecring Works, Mechanisms, and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the Supplement for the United States and
Canada, $\$ 5.00$ a year: or one copy of the Scientific AmCanada, 8.00 a year; or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPILMENT, both mailed ERICAN and one coly of the SUPPLEMENT, both mailed
for one yearfor 7.00 . Single copies, 10 cents. Address and remit by postal order, express money order, or check,

Publishers Scientific American
Gunilding Édition.
The Scientific Amehican Architects' and BUtilders' Edition is issued monthly. \$2.50 a year.
Single copies, 25 cents. Forty large quarto pages, equal to about two bundred ordinary book pages; forming large and splendid Magazine of Architecture, richly
adorned with elegant plates in colors, and with other fine engravings: illustrating the most interesting examples of modern architectural construction and allied subjects. A special feature is the presentation in each numbe dences, city and country, including those of very mod
erate cost as well as the more expensive. Drawings in perspective and in color are given, together with full
Plans, Specifications, Sheets of Details, Estimates etc The elegance and cheapness of this magnificent wor have won for it the Largest Circulatioi: of any
Architectural publication in the world. Sold by all newsealers. $\$ 2.50 \mathrm{a}$ year. Remit to

MUNN \& CO., Publishers
361 Broadway, New York.
PRINTING INKE

