

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

A FAST TRIO-THE TORPEDO BOAT CUSHING, THE NORWOOD, AND THE VAMOOSE.-[See page 220.]

צixutific glmerical.

EBTABLISHED 1846.

MUNN \& CO., Editors and Proprietors published werkly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BRACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Merico..
ne copy, Alx months, for the U. B., Canade or Mexioo One copy, alx monthe, for the U. B. Cansida or Mexico............... 1
One copy.one jear.to any forelgn country belongting to Pootal Unlon. 4 Remit by postal or exprese money order, or by bank draft or check.
MUNN \& CO.. 381 Broedwa, corner of Fraulilin Street, Now York.

NEW YORK, SATORDAY. OCTOBER 10,1 1801.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT No. 823.
For the wook Endilig october 10, 1891.
Pitce 10 conu. For rale by all nonerdacaler

 Tugin

THE BREAD OF THE TROPICS.

It is safe to say that in Jamaica alone, whence we derive nearly one-third of our banana supply, the waste amounts up into the hundreds of thousands of bunches each year, though less than one-tenth of the available banans land is yet under cultivation. Bunches that are undersized, or that contain a certain cast out by the buyers, and at many of the ports these may be had for the asking or at a purely nominal price. The writer has often seen such, and bunches that The writer has often seen such, and buaches that
were too far advanced in the ripening process to stand shipping, left on the wharf after a vessel's departure, with no one anxious to claim them, the sapply of rejected fruit being so far in excess of the needs of the mmediate commnnity, nearly all of whom were themelves banana producers.
Yet, as Von Humboldt has estimated, 88 lb . of wheat and 99 lb . of potatoes require the same space of ground as will produce 4.000 lb . of bananas, and three good sized bananas contain as much nutriment as a 14 oz . loaf of bread, so great is the ability of this "tree of Paradise," Musa paradisiaca, to extract the greatest anount of vitalizing waterial from ground and sun and rain. It has well been said that this whole tropical region is "the land where that rare old alchemist, the sun, packs earth's most delicate and fragrant sssences in most attractive shapes." And of the banana another author has written: "They really save nore labor than steam, giving the greatest amount of lood frow a given piece of ground with the least labor." This "bread of the tropics," however, while it will withstand so wuch handling as is required to get it to our northern markets, by means of our most perfect nethods of rapid freight delivery, a system at present impossible in any other country, is not sufficiantly inperishable to withstand a much longer series of shipments. At present the fine-flavored bananas are almost anknown in northern Europe; not because their excellence is unappreciated, but simply because the fruit is of necessity too long by the way to reach those countries in a marketable condition. So it comes that two lines of inventions having to do with banana culture are sorely needed in the West Indies, where with them the banana outpat would soon be doubled, and in tim wight easily be multiplied tenfold. These are a desic catiog procass and a floar or meal making procer The former is at present most in demand, and wher ever one travels in the banana-producing regions, frou Deinerara to British Honduras, from Colon to Samana Bay, the cry will be heard at every large plantation "Oh lif nome one wonld only invent and perfect a dry ing or preserving process that could be depended on. The man or men who can put before the banana rowers of the West Indies, who send over \$4,000,000 worth of this fruit to the United States each year, an system which will do for bananas what is now done or the fig, the grape, or the corinth, commonly know "dried currants;" or who can succeed in treatin now are, will find himself the possessor of a wiealth producing invention. And the paine may be safely pre dicted of any system which will succeed in putting into loced of a four ita in portion of the marvelo sustaining and nourishing powe thith marvelou sustaining and nourishing powers which make the banana the king among fruits. The improvements
which this century has seen, that lead up from the which this century has seen, that lead up from the
crude mandioca meal of the Brazilian native to the beantiful pearl tapioc. of commerce, have developed for the cassava, Mundhot utilissima, a foreign consump tion which now runs high into the millions of dollare annually. The same period has seen the crude black cacao of the Caribses and northern South America de velop into the chocolate, breakfast cocoa and broms of to-day, and now the tree Theobroma cacao vies with coffee in yielding nourishment and producing wealth in many conntries. So may it be with the banana, if inventive skill will but turn its attention in tha direction.

Sounde Focusod by shipe salle
The widespread sails of a ship, when rendered con cave by a gentle breeze, are most excellent conductor of sound. The celebrated Dr. Arnott relates the fol lowing circumstance as a practical proof of this asser-
tion: A ship was once sailing along the coast of Brazil, lar out of sight of land. Suddenly several of the crew while walking along the deck, noticed that when passing and repassing a particular spot they always hear with great distinctness the sound of bells chiming sweet music, as though being rang but a short dis tance away. Dumfounded by this phenomenon, they quickly communicated the discovery to their mates, but none of them were able to solve the enigma as to the origin of these seemingly mysterious sounds. Several months afterward, upon returning to Brazil, some of the listeners determined to satisfy their curiosity Accordingly, they mentioned the circamstance to the riends, and were informed that at the time when the counds were heard, the bells in the cathedral of San Salvador, on the coast, had been ringing to celebrate a
feast beld in honor of one of the saints. Their sound,
had traveled a distance of upward of 100 miles over the smooth water, and had been brought to a focus by the sails at the particular locality in which the swee sounds were first heard. This is but one of several instances of a similar kind, trustworthy anthorities claining that it has often happened under somewhat similar circumstances.

Memory as a Test or Age.

Memory is often a good test of age. When a person begins to find the recollection of current and recent work failing, and when he finds the recollection of events of the early part of his life acutely perceptible, and hy a kind of spontaneity recurrent, the evidence s certain that the mind of that person is aging. The fact is still further emphasized if, with the rememberance of past days, there is a sympathetic response calling forth a sentimental feeling either of pleasure or of pain. There probably is a physiological reason for these phenomena. In early life certain centers of the brain are filled with impressions and images which have become fixed, and for a time quiescent. They sleep. While they sleep other parts of the brain are charged with new impressions, which remain in activity, provoking the physical body into new and continued actions, and constituting the life of the individual as it is seen at work, nay, as it really is. But time goes on, and under the active life the brain centers receiving the later impressions tire, wear out, and for working parposes suspend function and die. Their suspension is not, however, the suspension of the whole of the cerebral organism. The parts first impressed and imprinted-the parts that carry the latent mpressiong-remain intact, and no longer oppressed and obscured by that which has accumalated upon them, begin once wore to live and display their activities. So aged people who forget the names of those who are staring them in the face, who forget the details of the last ride, or walk, or work, and who forget ongagements, letters, and hours of meals, remember with the freshness of youth the friends of their youth; the places, habits conversations, events that havelong ince passed, and have been so long in oblivion.
The study of memory in relation to age is full of pracical as well as of philosophical importance. It bears on the value of evidence of observed facts and phenomena at different stages of life. There are thousands of persons who could give no evidence worthy of credence respecting sayings and events of to-day, who could still give the most accurate and reliable evidence about sayings and events of fifty years ago: and, if sympathies change with memories, there is an explanation, clear enough, why with age likes and disikes should undergo the astonishing modifications we so often witness. I was called once to see a dying man who was advanced in life. He was muttering something strangely.

What is it he says ?" I asked. "I do not know, sir," replied the nurse, "but it's all about Monday, and see how curiously he moves his hands." I listened attentively, and soon caught the words, repeated many times: "Oh Jesn, Agnus Dei, qui tollis peccati mundi. Miserere nobis." I observed thereupon to my medical brother, whom I had been called to meet in consultation, "He," the patient, "is saying part of a Romish litany. He is a Roman Catholic." "Impossible! I bave known him for thirty years, and he has been a man of the freest thought, good in every way, but allied to no creed whatever, and opposed to the Roman Catholic faith." "That may be, but in his early life, I warrant you, he was brought up in that faith and learned its services." On inquiry my conjectures proved correct. In the first five years of life he was trained in the Catholic ceremonial, since which age the had come nader influences that had changed the whole enor of his thoughts.
The point I wish to make in concluding this opuscalum is, in the strictest sense, practical and medical. Whenever a patient who has passed the fifties, or is fairly into them, reports that current memory is fading and past memory is reviving, and when he reports also that his sympathies are running with his memories, his current sympathies declining, his old ones reawakening, he is in an indifferent condition. He requires immediate mental rest of those faculties that are becoming impairea, and is in want of pursuits and scenes that will bring new faculties into play. Fortunately we never use up a tithe of our brain surface. There is always ample uncharged surface to work upon oven late in life, and if the brain be not physically diseased, new memories may be called forth which open up new activities and cover in the old. Williain Harvey, in his latter days, took to mathematics, and for the first time followed them with ease, much to his quiet. I knew an aged man who took, under the rame circuinstances, to music, and became quite a fair violinist ; from all of which comes a lesson-

In eecond childishneess child life revive ;
Learn pomething new each day, and eo re-l
-Dr. B. W. Richardson, in the Asclepiad.
There are 208,749 railroad bridges in the United States, spanning 3,218 miles.

Opening of the Great Leland stanford, Jr., University.
The opening ceremonies of this great institution o learning took place at Palo Alto, Cal., on October 1. As an individual benefaction for useful purposes it is one of the noblest and most generous of any on record. The endowment reaches the munificent sum o twenty millions of dollars. On the day of the opening a stage had been arranged at the north end of the
quadrangle, and the spot had been decorated with evergreens and palms, with a background of American flags artistically arranged. On the rear wall hung a portrait in oil of Leland Stanford, Jr., in whose memory the university was erected. Seats had been arranged on the stage for distinguished guests. The seats in front were reserved for the students, and on the right of the stage were raised seats for the choir The great quadrangle was filled with people.
Every seat was taken and thousands were obliged to stand. The faculty of the Stanford University and professors from the universities at Berkeley and Santa professors from the universities at Berkeley and Santa

A little before noon the Senator and Mrs. Stanford ascended the platform, and as they came into view of ascended the platform, and as they came into view of
the audience there was enthusiastic cheering, while the audience there was enthusiastic cheering, while
the students for the first time expressed their college the students for the first time expressed their c
yell, "Wah hoo, wah hoo, L. S. J. U. Stanford."
After devotional exercises President David Starr Jordan, of the university, introduced Senator Stanford, who was greeted with prolonged applanse. Senator Stanford spoke at length, reviewing the progress of education and the founding of this university.
He was followed with addresses by Judges James MeMillan Shafter, one of the trustees of the university, Martin Kellogg, President of the University of California, and President Jordan.
Four hundred and forty students have been admitted to the various classes of the university, of whom ninety-five aregirls. The dormitories, as far as completed, will not accommodate more than 300 pupils, but as some of the boys have consented to share their quarters with others, 350 pupils can be accommodated. At present the others will find lodgings in the neighborhood. Fully 1,100 applications for admission to the
institution have been received, and examinations are institution have
Seven years ago Senator Leland Stanford lost by death his only son Leland Stanford, Jr. The university is erected as a memorial of the dead beloved. We take the following particulars from the New York Tribune:
The Leland Stanford, Jr., University has probably excited more interest in this country than any institution since the founding of Cornell University, over twenty years ago. It is one of those experiments in education which appeal to the popular imagination just as Cornell appealed to it, because it is an effort to endowment; it is the chief object in life of Senator Stanford, who has never yet turned back in any work which he undertook to carry to completion; it represents the thought and study of a singularly practical and broad-minded man for twenty years; it is the means by which he hopes to make his great fortune of direct benefit to the youth of California who have the ambition to take advantage of the manifold opportunities offered in this new Western land.
In founding the university and endowing it as few institutions in this country are endowed, Senator Stanford has had in view mainly the large class of boys and girls who desire to make their own way in life the moment they come out of school. While the higher education will not be neglected, the greatest attention will be given to those special studies that will enable pupils to do something for their own support as soon as they are graduated. For this purpose the schools sciences will be made the most perfect in the country. The collections already secured in botany, mineralogy and geology are among the most valuable in the world, and in other seiences collections and apparatus will be equally perfect in time. With a faculty thoroughly in earnest, good results ought to be accomplished in original work
The project of a university at Palo Alto, in the very heart of the rich Santa Clara Valley, was taken up by Senator Stanford as a distraction in the great grief of his life. He had made an imperial fortune by building the overland railroad in the face of public doubt and distrust ; he was preparing to train his son to assume much of the burden of the care and responsibility that great wealth brings with it, when Roman fever cut short the young man's career. The lad had
always shown the keenest interest in mechanies, and what was stranger still, though only seventeen at the time of his death, he had developed a plan for a great museum on this coast which should be free to the people and should be used to aid boys who were learning trades. He amused himself collecting curiosities and specimens of art work in many materials for this mu-
seum during the last few months he spent in Italy. seum during the last few months he spent in Italy.
When death ended this young life, so full of promise, When death ended this young life, so full of promise,
the parents were naturally inconsolable. Even their the parents were naturally inconsolable. Even their
great wealth seemed to add to the irony of fate, for of
what purpose.was it, since they had no one to inherit and use it wisely? It was while plunged in this first grief that the !thought came to Stanford to put intn practice the plans of his son and to make them bear directly upon the class of young people with whom the son had had the deepest sympathy. This idea made so profound an impression on him that it seemed like a vision from the other world, like a direct mes age from the dead. He threw off the lethargy of grief, and since that time he has devoted much of his time and energy to the development of his great educational scheme.
A special act was passed by the California legislature permitting the conveyance to trustees of property for the endowment of an educational institution. A board of trustees was appointed, of which Judge Lorenzo
Sawyer, who died recently, was chairman, and which included such representative men as Justice Stephen J. Field, Senator Stewart, Judge Deady, of Oregon Judge James McM. Shafter and Irving M. Scott, the builder of the cruisers Charleston and San Francisco. To these trustees, Senator Stanford and his wife conveyed by deed the fine estate of Palo Alto, comprising 7,300 acres, the Vina ranch in Tehama County of 55,000 acres, which includes the largest vineyard in the world; the Gridley ranch in Butte County of 21,000 acres, and other valuable property. The total endowment is
above $\$ 15,000,000$, and the revenue from the various properties is large. It was decided to erect the university buildings not far from the Senator's residence on the Palo Alto ranch. The site selected is about
three miles from Menlo Park, the most beantiful of the three miles from Menlo Park, the most beautiful of the collection of suburban homes of San Francisco millionaires. The site is an almost level bit of land just at the edge of the foothills on the east side of the rich Santa Clara Valley. It is the ideal place for a seat of railroad, and is in a district that is sheltered from winds, and is'especially suited to the growth of all trees and shrubs. One hundred acres were set apart for the university grounds.
The architecture of the buildings is as unique as the plan of the university. The prevailing style is an adaptation of the California missions, low buildings, with heavy walls and roofs of tile. The main group of fourteen buildings incloses a quadrangle 600 feet long by 250 feet wide. These buildings are mainly intended as class rooms. They are built of cream-colored sandstone, are 70 by 50 feet and the height from the ground to the roof tree is 60 feet. All the buildings open upon an 'arcade, with Moorish columns, which is 20 feet
wide and 18 feet high. This runs around the whole wide and 18 feet high. This runs around the whole quadran ${ }_{6} l e$ and permits on
The surface of the quadrangle is covered with a heavy coat of asphaltum pavement and the levels are so nicely adjusted that all water is drained off in a few minutes. Eight circular beds in this quadrangle are filled with semi-tropical trees and plants, which add greatly to the beauty of the scene. Midway on one side of the quadrangle is the main entiance, over which will be erected an imposing arch; on the opposite side is the museum building, four stories high, of pure Greek architecture. On the west side of the quadrangle will be built the memorial church, cruciform in shape and built of the same materials as the other structures. Even in its present unfinished eondition this quadrangle is worth traveling many miles to see. The perfect line of the arches in the arcade is some-
thing to which no words can do justice. Standing inside the quadrangle and looking out through any of the arches between the buildings, one has glimpses of deep green fields and of trees whose foliage is lightly touched by the afternoon wind. One seems to be looking out upon one of the hills of the Alhambra, and this old world air is strengthened by the mellow tone of the stonework and the tropical luxuriance of the fan palms. Photographs at best give only a faint idea of the charm of this arcade, which fills and satisfies the eye.
When one steps out of the arcade, he is at once brought back to the present by the spectacle on one side of the two large dormitory buildings and on the other of the tall stone chimneys, the boiler house and
machine shops. The boys' dormitory is built of sandstone, but the building for the girls is made of concrete. The boys' building is probably the finest structure of the kind on this coast. No expense was spared on it ; everything is genuine, even to the brass in the gutters that carry the water from the roof. Over $\$ 400,000$ was The main dining hall is the of beauty room in the building, and no hotel in New York has a finer apartment, so far as harmony of tones, light and outlook are concerned. The building is finished throughout in hard woods, and though'the furniture is plain, it is very handsome. Senator Stanford's idea is to have nothing that savors of luxury. On the same principle, the board furnished will be good but simple. Those who may come to the university under the idea that every
modern luxury will be furnished because the institumodern luxury will be furnished because the institu-
tion has a great endowment will be disappointed, as will those who fancy they can get along without solid
ork. Mrs. Stanford has provided each room in the reminder then wity is no bibleany creed, it is to be Christian in spirit, and religion will form a vital part of all instruction.
The girls' dormitory building has been built of conerete which harmonizes in color with the stone of the quadrangle near by. It was found necessary to use this artificial stone in order to complete the building for the opening. The museam, a huge four story building of perfect classical style, has been built within four months. The material is concrete, and it is said to be the largest building in the word made of this artificial stone. An enormous force of men has been at work on this building, and though it is practically finished, yet it will not be feasible to place the collections in the various rooms, lest they be injured by the damp walls. In this climate a building of concrete, rushed to completion, requires several months for the walls to become thoroughly dried. Senator and Mrs. Stanford have gathered a large number of rare and valuable articles for this museum. The nucleus of it is the collection by young Leland Stanford when in Italy. To this will be added the finest collection of copies of the old masters ever brought to this country, copies of the old masters ever brought to this country,
with an admirable representation of copies of the with an admirable representation of
masterpieces of modern European art.

Near the dormitory buildings are the cottages of the faculty. These are so arranged that additions may be made to the group at any time, and it is expected that by another. year the majority of the professor will be domiciled there, as well as many families o those who have children in the university. It is need less to point out what a center of refined society wil be formed at Palo Alto, should the present plans be carried out. No place of residence in California ha greater advantages in the way of climate, scenery and the advantages of proximity to the largest city on the coast, and none will have a society more congenial to cultured people. It is among Senator Stanford's designs to build a large number of cottages near the professors' quadrangle for the accommodation of those who may desire to make partial use of the university collections or to place their children in any of the schools. No arrangements have been made for prepaschools. No arrangements have been made for prepa-
ratory training, but already two young women, one ram Wellesley and the other from the Harvard Annex, from Wellesley and the other from the Harvard Annex,
have opened a preparatory school for girls in the old have opened a preparatory school for girls in the old
Coon mansion on the university grounds, and about a Coon mansion on the university grounds, and about a
mile from the quadrangle. These young ladies propose to take a post-graduate course and to pay their expenses by this school.
The applications for admission have already outrun the accommodations. Over 400 boys have applied. Sixty-two girls have been assigned rooms in the girls dormitory. Thirty-seven are from California, two from Honolulu, and the remainder from Coast States and the East. Besides these, forty pupils will come up every day from San Jose, returning in the evening. Senator Stanford has kindly arranged to give these students a ten-cent fare for the round trip, so that their traveling expenses will be light. Many students have been attracted from Eastern colleges. Professo Swayne brings fifteen of his class from the University of Indiana, and Professor Gale, of St. Louis, is also ex pected to fetch a number of his special students
Much of the success of the final arrangements is due to the great executive capacity and energy of Dr. Da vid Starr Jordan, the president. President Jordan is known to all Western teachers as the man who has made the University of Indiana what it is to-day. He is'a graduate of the Scientific Course of Cornell University, and has won higher honors in the scientific world than perhaps any other graduate of that university. He stands at the head of American ichthyologists, but he is not merely a scientifie specialist. He is a man of the broadest culture. He has much of ex-President Andrew D. White's faculty of stimulating students to study and research, and he is full of that hearty human nature and sympathy which go so far to establish esprit de corps among any large body of students.

Concert Music by Telephone.
I once spent a large share of the night with a telephone operator at Worcester, and know that there are many pleasant things connected with the business. Generally after 12 o'clock the calls are few and far be tween, coming chiefly from the newspapers and doctors. It is the custom of some of the operators to make the circuit of several places and tell funny stories.
The pleasantest part of it is when Worcester, Fal River, Boston, Springfield, Providence and New York are connected by the long distance wirt. Most of the boys of these places are musicians. The operator in Providence plays the banjo, the Worcester operator a harmonica, and generally the others sing. Some tune will be started by the players and the others will sing. To appreciate the effect, one must have a transmitter close to his ear. The music will sound as clear as though it were in the same room. It is a very hard thing for a person to believe unless he has heard it.Boston Evening Record.

A GRAVITY-OPERATED TIME ALARM.

The device shown in the accompanying illustration contains no actuatink springs, but depends solely fo on the post on which it is held. The post has on its front a graduation indicating hours and tuinutes and subdiviaions, and on one edge of the post are rack
teeth termin
ating some dis-
tance above a
gong or bell.
In a frame or casing fitted to slide vertically on the post a transverse ed to turn and slide, the shaft projecting beyond the front plate, where it is provided with a button On this shaft is a pinion meshing with the rack teeth of the post, from which the pinion is disongaged by pressing the button to slide the shaft inward, a spring normally pres sing the shaft outward, so that the pinion will be in mesh with the rack teeth. The shaft also carries a gear wheel meshing with a pinion on another shaft, to which is secured an escapenent wheel, adapted to be acted on by an ordinary escapement secured on a shaft rocking in suitable bearings. The escapement shaft is connected with a pendulum extending through the bottom of the casing. To set the alarm, the button on the front of the casing is pressed inward, to disengage the pinion on the main shaft from the rack teeth of the post, and the casing is raised the desired distance as indicated by the graduation, to allow for the time which must elapse before the alarm is to be sounded. When pressure is removed from the button the pinion engages the rack teeth, and, the pendulum being started, the casing commences to move down the post by its own weight, the movement, however, being gradual, on account of the action of the pendulum and the escapement. The mowent the pinion on the main shaft leaves the last tooth of the post the casing drops upon one end of a striker, causing the gong to be causing the gong to be sounded. This alarm is designed to be a very convenient one for photugraphers, chemists, dentists, school and music teachers, cooks, etc., as well as business men generally. It has been patented by Mr. B. E. Jones, room 8, No. 69 Dearborn Street, Chicago.

Twelve Years with

Ensilage.
In 1880 I built a 300 ton stone silo, in two compartwents, and. afterward a smaller one of wood. As a result of my experience, have reached the following conclusions :
That stone, for a permanent silo, where the conditions are such that the cost is not excessive, is the more econowical. That in a stone, cement-lined silo not a pound of ensilage need waste or deteriorate. That a covering of trash, closely packed deep enough to take up the mould, i. e., as deep as the air penetrates, is better than weighting. I discontinued weight.

REMAINS OF LGUANODONS AT BRUBSELS.
mains were found buried in an alluvial deposit left by the periodical river floods. We abridge the above from a very interesting paper in the Independance Belge, by M. Hector Chainaye. Our engraving is from a drawing by M. Cassiers.-The Graphic.

AN IMPROVED COUPLIMG

The extremely simple form of thill coupling shown in perspective and in horizontal section in the ac companying illustration is anti-rattling, and has neither springs nor washers ; the coupling may also be advantageously employed with pump rod connections,

sictirs thill couplivg.

and for many similar purposes where simple, efficient. and noiseless connections are desirable. It has been patented by Mr. Marcellus T. Smith, of Northport, N. Y. The thill iron has a circular rear end and a circular eye, the iron fitting a semicircular socket open at the top and for a portion of its bottom, the usual form of clip being made integral with or attached to the rear surface of the socket. The front wall of the socket has a beveled shoulder on its inner face on which the thill iron rests when in normal position, and in one of the outer side walls of the socket is a semicircular recess tapering outward toward the ront, the deepest portion of the recess being at the front end of the socket. An aligning recess is formed in the other outer side wall of the socket, the other recess being square in cross section, and both of them forming grooves or channels, through which, near their shallow ends, are elongated openings through which is passed the coupling pin, of a diameter to which is passed the coupling pin, of a diameter to
snugly fit the eye of the thill iron. The inner face of snugly fit the eye of the thill iron. The inner face of
one head of the pin is square in section and beveled to fit the inclination of the square channel in one of the outer sides of the socket, as shown in Fig. 2, the opposite threaded end of the pin receiving a nut whose inner face is convered to fit the circular groove or channel in the other When the thill iron is When the thill iron is placed in the socket and the nut is screwed well up to place in the circular channel, the eye of the thill iron is carried to a firm, positive, and non-rattling engagement with the wall of the socket chamber, and should the nut in time become slightly loosened, from wear or otherwise, it can be readily tightened to bring the thill iron into position where it will not have the slightest lateral play.

Common Turpentime and tine.

If a few drops of common turpentine in a test tube are covered with 5 parts ammonia of specific gravity 0 96, the turpentine forms a mil k|y emulsion and soon gelatinizes. Larch, otherwise known as Venice turpentine, remains apparently anaffected, but if constantly stirred up it becomes a solid, colorlers mase. - D. Hirschsohn.
\triangle DRIVING MECHANISI •OR VELOCIPEDES. A mechanism designed to be readily applied to any form of velocipede, to inpart a regular, positive and are concentric to the spindles that carry them. But powerful motion from the pedal shaft to the axle of this, while it is a help, is but a partial cure at best. the driving wbeels, is illustrated in the accompanying engraving. It has been patented by Messrs. Walter A. Evans and Thomas Cowan, of No. 267 Graham Street, Winnipeg, Canada. The driving street, Winnipeg, Canada. The driving shown in the small vection of which is shown in the swall view, is inclosed in a casing through the rear end of which
the driving axle of the machine passes, the driving axle of the machine passes,
while the pedal shaft is journaled in the while the pedal shaft is journaled in the
forward end of the casing. A worm on the pedal shaft meshes with a worm wheel on a vertical shaft in the casing, the pedal shaft turning fifteen times to impart one revolution to the worm wheel. The motion is thence transunitted, by spur wheels and pinions, as shown in the sectional view, the speed being constantly increased, to a short shaft journaled in a bracket in the casing, and which carries a bevel gear meshing with a bevel pinion through which motion is transmitted, through whicge mor is tranapurted, through a large spur gear, to a spur gear on the driving axle. The arrangement is such that the driving wheel will be turned about four and a half times, or practically so, for each revolution of the pedal shaft. A similar driving mechanism may, if desired, be employed in connection with mowers or binders, by placing the worm on the axle, when the drive wheels will act direct upon the worm wheel.

ONE EIND OF CAI.--Conduded. by A. d. pertz.
A machine to cut a cam of this character is a very simple one when made, but there are points in its construction that must be closely observed in the designing and closely observed in the designing, and Cams of this kind, if cut by the periCams of this kind, if cut by the peri-
phery of a cylindrical cutter, may do phery of a cylindrical cutter, may do well with cutters of one particular size, but will fail with either smaller or larger cutters. In one shop where a great many of this kind of cam are made, it is found well to finish them to a former by a single pointed tool. This is good practice for quality, but needs too much tool sharpening and tool setting. In another shop the cylindrical cutter is used, but when the size of the catter is materially redaced by resharpening, it is replaced This is practical in that particular place, pranse the worn cutters may place, because the worn cutters may be used for other work alter their sizes are so reduced that they no longer are fit to make good cams with on the machine. A fine engineer, now in Scotland, designed a machine to sequeutly change the centers of rotation in cutting this kind of cam, so that each are is cut while the cam is being turned on the theoretical center of that arc. This machine worked finely, but it wes necessarily elaborate in design, and bad such precise points of construction that points of construction that tool makers are scarce who are capable of getting all its points exactly correct. I have not seen a machine that can cut these cams of various sizes or of different centers of are without special formers for each size and each shape.
While these cams are very useful, they heretofore have been not so difficult to cut as difficult to keep precise to sizes and to uniform diameters in the same cam. The difficulty has not been from difficulty has not been from neglect in not having competent engineers to design, but in overcoming the effect of
differing sizes of cylindrical differing sizes of cylindrical cutters cutting with thei peripheries on an irregular rotating shape. As the cam turns from the smaller to the larger radius, a large cutter will meet the larger coming part sooner than a small one, and in descending the reverse of this is true. Of course

EVANS \& COWAN'S VELOCIPRDE.
 the cam.
what is suggested. The details of construction would vary in each shop to harmonize with the practice of sach shop.
In the sketcher, A is the cam in operation, mounted on the spindle, C. In Fig. 1, the cam and its arbor are cut in section to indicate their relative positions to the center, V, of the spindle, C. B is the lorner, its shape. D is the cutter, mounted on the spindle E This spindle must be ox the spindle, E. Th the actly squa centers of both these spindles must be cut by the same horizontal plane. The cutter. D. also must be exactly flat on its face, must be large ennugh to wore than cover the width being cut, and have teeth on its periphery as well as its face. This cutter, thus arranged, will not cut a shoulder against a hub that is perfectly mquare, and as this is, I believe, never necessary, it matters not. F is the headstock, adjusted by the screw and handle, J, and located by the stop, T. G is the pulley that drives the whole machine positively. H is shoe on the carrier, I. positis This shoe is of hard steel, and the plane on H that is in contact with the former, B, must be exactly perpendicular, or square to the center of the spindle, E , in all directions. The former, B, should also be of hard steel, ground to shape. It will be well if there be an oil cup fastened to the frame, K , and situated so Having given this problem some thought during my ${ }^{\text {|that this former will continually pass through the oil. }}$ experience, I herewith submit a sketch of a machine The carrier, I. is attached to the frame, K , by a comthat I believe will work, give accurate results, and won slide device, and through it the shoe, H, is held produce more cams than any other method yet tried. to the former, B, by a weight suspended from the cord, This machine, as sketched, indicates rather than L, which operates about the wheel, N, and is fastened designs wany of the details; but the general plan is to the stud, M. On the upper side of I is a slide, to which the headstock, F, is attached, so that the motions of I are all communicated to F, and thus the cutter, D, is always at the same distance from the shoe, H ; and because its cutting face is paraliel to the face of this shoe, H, it must, if the stop, T, be rightly set and the former be correct in shape, cut correct cams.
It will further be seen that the cutter, D, may be reduced by sharpening to any thickness, and the parallel effect with the face of H will not be impaired: and, further, that in adjustment, after sharpening the cutter, the only part to be moved will be the screw, T. By thus opposing the shoe, H, to the cutter, D, much lighter H, to the cuter, D, a mucb lighter weight is required to keep the contact against the former, B, than otherwise would be needed
The cam is held to its place on the spindle, C, by the T-nut, Q. which fits a screw on the end of the arbor within
R is a pinion on the end of spindle, E. It engages the intermediate gear, P, and it is long enough on its teeth to permit the headstock, F, to be adjusted without affecting the engagement with this gear, P . The worm gear, \mathbf{O}, rotates the spindle, C, being driven by a worm on the shaft, X. This shaft, X, is driven by the gear wheel, s, and connected to the spindle, E , by the intermediate, P , and the pinion, R.

Thus if the pulley, G, be driven by a belt, the cutter, D, will remove the metal on the cam, A, and the train of gears operated by the pinion, R , turns the shaft, X , and through the worm gear the spindle, C, which progressively brings the cam to be cut on the whole surface. The on the whole surface. The gears S and P are, by a mistake in drawing, made too
thick in Fig. 1. thick in Fig. 1.
While this machine has never been made, my experience with the problem convinces me that it will fill the bill.

The sun never sets on the soil of the United States. When it is 6 o'clock at Attoo Island, Alaska, it is $9: 36$ o'clock A. M. the next day on the eastern coast of Maine.

Dogemeration and Evolution.

Mr. B. G. Wells, writing for the Gentleman's Maga ine (London), says: Perhape no scientific teaching ha been exposed to a greater amonnt of popular mis conception than the doctrine of evolation. In the popular conception, life began with the amobsa, then came jelly fish, shell fish, and a miccellaneous mass of invertebrates; then real fishes and amphibia, reptiles, birda, mammals, and man, the last and first of crea tion. This is not the teaching of science. On the con trary, biology, along with advance, teaches retro resion as its essential complement. Isolated cases o degeneration have long been known. It is only recently that the enormous importance of degeneration us a plastic process in nature has been suspected and its ontire parity with evolution recognized. In fact, the path of life so frequently compared to a steady ascent an indication of an inevitable tendency to higher and better things, is distinctly repudiated by scientific ob servers. The sounder view is that living species have varied along divergent lines from intermediate forms and by no means necessarily in an upward direction
The best known and perhape the most graphic and typical illustration of the downward course is to be found in the division of the Tunicata. The untrained observer would probably class it near the oyster and the mussel, and a superficial study of its anatomy might even strengthen this opinion. As a matter of fact, however, these oreatures are far more closely re lated to the vertebrate, a fact exhibited in the detail of their development. It is a matter of common know ledge that living creatures in the course of their em bryonic development repeat, in a more or less blurred and abbreviated series, their generalized pedigree. For instance the developing chick or rabbit passes through fish-like stage, and the homan cotus wears an nide niable tail. In the case of these ascidians (the Tuni cata) the fertilized egg cell destined to become a fresh individual follows an entirely different course from that pursued by the mollusks, the dividingi and growing ovam exhibits phases resembling in the mosi remarkable way those of the lowliest among fishes,
the lancelot, or amphiozus. The method of divi the lancelot, or amphiozus. The method of divi-
sion, the formation of the primitive stomach and body cavity, and the origin of the inervous sys tem are identical, and a stage is attained in which the young organism displays-or simalates-verte brate characteristics. It has a notochord, or pri mouth, as do all vertebrated animals in their earlie stages, and the origin and position of its nervong ari is eseentially vertebrate. In these three independen series of structures the young ascidian differs from all invertebrate animals, and manifests its high descen from the vertebrates. It is an evident case of retro gression.
Like a tadpole, this anlmal has a well developed tail with which it propels iteelf vigorously through the water ; it has serviceable sense organs, and appears in this, its earlier stages, to be full of vigorous, enjoyable life; but scarcely is this stage attained before the animal undergoes a process of retrogression. It de velops suckers, by means of which it attaches itself to the rocks, its tail is absorbed, eye and ear atrophy, and the skin seoretes the coarse inorganic-looking "test; the transient glimpse of vivid animal life is forgotten and the creature settles down for life to a mere vege table existence. In some cases the degradation has been a strategic retrogression-the type "stoops to conquer." This is, perhaps, most manifest in the case of the higher vertebrate animals. It is one of the best known embryological facts that a bird or a mamma atarts in its development as if a fish were in the mak ing, and that later the organs get twisted and patched to fit a life out of water-nowhere organs built specially for this very special condition. There is nothing like this in the case of a fish. There the organs are from the first recognizable sketches of their adult forms, and they develop stralghtforwardly, but the highe types go a considerable distance toward the fish, and then turn round and complete their development in an entirely opposite direction. This turning is evidently precisely similar in nature, though not in effect, to the retrogression of the ascidian after ite pisciform or larval stage
If a zoological investigator could have visited th earth during the upper Silurian period, and with pro phetic eye could have singled ont the ancestors of man, he would bave found them, not among the dominant placoid fishes of the Silarian sea, but in the Dipnot or mud fish, swimming in the pluvial waters, of inert and caked over by the torrid mud. He would have found in conjunction with the purely primitive akull, arial skeleton, and fin possessed by these Silu rian mud fish a remarkable adaptation of the swim ming bladder to the needs of the waterless season. It would have andergone the minimum amount of alte ration to render it a lang, and blood vessels and other points of the anatomy would show correlated changes. Here we have the old story of degeneration over again; the mad fish had failed in the atruggle, they were less active and powerful than their rivals of the sea, and they had taken the second great road of
preservation-flight. Just as the ascidian has retired rom an open sea, too crowded and full of danger to nake life worth the trouble, so, in the older epoch, did the mud fish. They preferred dirt, discomfort and survival to a gallant fight and death. Very properly, then, they would be classed in our zoologist's scheme as a degenerate group. Bat some of them have risen in the world again ; they came out of the rivers, gave birth to the amphibia of the coal, which gave place presontly to the central group of reptiles, from which sprang divergently birds and mammals, and finally the last f the mad fish family, man-the heir of all the ages.

AI ICPROVED HECE YOK

The yoke center for connecting the neck yoke with the pole of a vehicle, as shown in the accompanying Illustration, has been patented by Messrs. David H. Gotshall and Herbert Petit, of No. 507 Second Street, Astoria, Oregon. The yoke is of the nsual construcion, and in elbow lugs attached by bolts to its under ide are journaled the trunnions of a circular plate having a depending fiange, which extends around all he front side of the plate, and is doubled under at right angles to receive the head of a pole ring. The head may be readily slipped into a recess of the plate, and a neck between the body of the ring and the head comes opposite the bent portion of the flange, so that the ring may have all necessary movement. The ring is prevented from accidental removal by a pin extending through the plate and into the head of the ring, but here will be little strain on the pin, the lateral strain from the fiat head coming on the flange of the plate. The ring is lined with leather or other suitable mate rial to prevent wear and rattling. This yoke center is

GOTPBALL \& PETTT'8 MECE YOKP.

designed to be safe, durable, and inexpensive, moving reely in relation to the pole, while not permitting the yoke to pound thereon.

Modifeation of the German Patont Law
An amendment of the patent law of 1877 has been passed by the Reichstag, and went into force on the 1st of October. The chief point to be noticed in the new law is that the examination of patents with regard to novelty is not to be abolished. The new law does not decide what amount of invention is patentable, so that this question must be settled in each case by the Patent Office as heretofore. Publication, if made more than a handred years ago, is not to act in anticipation of a patent. Patents taken out in foreign countries are to act in anticipation against the inventor, and those claiming rights under him, only after a lapse of three months, and thus an extended period of time is allowed by the act for an application for a patent in Germany. If an invention is stolen from another peron, and an application for a patent has been made, the inventor is able not only to oppose the granting of a patent to the applicant, but to obtain a patent for his own application. The patent fees may be paid for the whole duration of a patent in advance, so that the apse of a patent through delay in the payment of fees nay be rendered impossible. If a patent on which the all fees have been paid should be afterward annalled, he fees will be returned to the patentee. An applicaion for the annulling of a patent shall not be made when the patent has been in existence more than five ears. For the determination of this point, however a period of three years is provided. The very high ees now payable for a German patent have not been diminished by the new act, but it is provided that such a lowering of the fees may be made by order of Federal Conncil. The important provision that a patent may be revoked after the expiration of three years if the patentee fails to carry out his invention in Germany to a suitable extent, or at least to do everyhing that he can to carry it out, remains in force, and hould be particularly noticed by foreigners. The organization of the Patent Office is to be so regulated by the new act that there may be greater security for proper and efficient examination of patents. Before an application is refused, the applicant is to have an pportunity of answering objections to the granting of a patent. If he should fail to obtain a patent, he may then support his claim by oral evidence. At the preliminary examination expert witnesses may be called,
and a statement of the various attempts which the
inventor had made may be presented. If the decision of a judge puts a new aspect on the case, the applicant is to have an opportunity of answering any objection raised. A proviso which is of great importance to chewical industries is that where proceedings are taken to patent a new material, every material of similar manufacture is regarded as included in the claim until proof to the contrary is shown. The damages payable for the infringement of a patent have been increased. The Patent Office, Berlin, was established at its new building in April last. This new office is in every respect suitable for its purpose, whereas the old one was too sinall. The public obtain a great advantage from the new arrangement, since the important tech nical library is now open to all persons from 9 A . M. to 9 P. M.

Lumber at Portland, Oregon.
The Oregonian, in speaking about the lambering interests of Portland and vicinity, says: The prin cipal forest tree indigenous to Oregon soil is the fir. For heavy frame work of all wooden structares, fo bridge timbers, and even for boat building, the fir is the best timber in the world. It has all the tenacity of fiber of the best oak, without the propensity to split of the latter, and its lasting properties, when exposed to all the severity of weather, are not equaled by any other available timber in the world. It has been found by actual experiment that a piece of fir timber, when submitted to a heavy strain, did not break as soon as a piece of well seasoned cak of the same dimensions. It is only within the last five years that the Union Pacific, one of the greatest of the transoon tinental lines, became convinced that fir was the safest, most economical, and strongest timber for wooden bridges that could be obtained in the United States, and Portland-cut fir is now regularly shipped by this company as far east as Omaha, for use in their new reconstructed bridges. Large quantities of this same wood are now ined by this company in the construc tion of cars for their line.
The average price at the Portland mills, for both rough and dressed lumber, is about $\$ 14$ per 1,000 feet. This price may vary a little at times, but long years of experience in this line has convinced the mill men of this city that lumber cut here cannot be sold profitably on an average for less than these figures.
The supply of logs for the local mills is now obtained from the banks of the Columbia Rivet and its tributaries north of Portland. Along the banks of the upper Willamette there is a supply of good timber, but this timber cannot reach Portland, owing to the obstructions to floating rafts in the falls of the Willamette, at Oregon City, twelve miles north of Portland. The large rafts of logs from the Columbia are now towed up to the Portland mills by steamers regalarly engaged in this traffic, at the rate of about 75 cents per 1,000.

Up to within a year past the Portland sawmills enjoyed a large aud steady sale of their product to all points on the Union and Northern Pacific between Portland and the Missouri River. Last season most of this trade was cat off from the Portland mills, owing to the scarcity of cars furnished by the railroad companies for the transportation of this lumber East. The lumbermen of Portland have a great cause for complaint against the transcontinental lines of roads out of Portland the present season, in the matter of discriminating freight rates on lumber in favor of the South, as against Portland. A delegation of the Portand lumbermen, headed by Mr. H. R. Duniway, one of the youngest but brightest men in this business in he Northwest, recently went East with a view of laying their complaint before the traffic managers. Chairnan Walker, of the Western Traffic Association, has called a meeting of the traffic managers of the different railroads in the association for this month, and it is the hope of the lumbermen of Portland that new rates will be made on the shipment of lamber which will be entirely satisfactory to the Portland mills.
In addition to the cutting of fir, cedar is sawed in small quantities by the local mills, and oak and ash are sawed, to a limited extent, by small mills in Portland. Along the low lands of the Columbia and Willamette Rivers are immense forests of cottonwood, wood that is specially valuable for box making and or the manufacture of wood pulp for paper making. This latter wood is now sent to Portland in considerable quantities for the purposes above named.
The sawing of lumber in Portland furnishes steady mployment to about 800 men, and yearly pays out in wages $\$ 600,000$. There is about $\$ 1,900,000$ invested in the saw mill plants of Portland, and the yearly sales of lumber made by these mills will approximate $\$ 2,500,000$.

THE tide tables for the Atlantic Coast of the United tates, together with 206 stations on the Atlantic Coast of British America, for the year 1892, published by the United States Coast and Goedetic Survey, are now ready for issue, and copies can be obtained for twentyfive cents at the agencies of the survey in this city, or by addressing the office at Washington.

Thought.

We do not fully understand or at least are not agreed as to the nature or character of normal mental ity. Two or three generations ago it was believed to consist in the activity of a soul or spirit, which was enthroned somewhere in the brain. No explanation of the modus operandi of such activity eventuating in thought, as independeut of the body, was apparently ever deemed ne
scientific inquiry
In more recent times, and especially since the microscope has revealed to us the wonderfully complex and highly organized texture of the brain; and modern physiological research has made known more perfectly the functions of many parts and organs of it, the old theory has been rejected, and a leap has been made to the other extreme. A theory has been accepted by some to the effect that the whole thought process consists simply in the molecular activity of this highly organized cell-structure of brain. The hypothesis that a soul or any special entity exists within the brain or elsewhere in the body is a snare and a delusion and without proof. As a working theory for elucidating the phenomena of mind it is worse than useless. Perceptions, memory, reason, judgment, al kinds or degres of mibrils and cells, which are composed of matter in its most highly organized form. Attention and will are only different forms of this same activity of nerve tissue as it becomes affected through external or internal impressions while under the influence of the blood. In the word
of one of its most vigorous advocates, "that which of one of its most vigorous advocates, "that which
thinks, reasons, wills; that which is consciousness in thinks, reasons, wills; that which is consciousness in
phenomenon-is the brain; not any suppositious en-phenomenon-is the brain ; not any suppositious en-
tity, of the existence of which we have no evidence tity, of the existence of which we have no evidence
whatever, and of the need of which as an hypothesis whatever, and of the
he is not conscious."
he is not conscious."
On the other hand, however, there are some who still feel conscious of the need of an additional element in any hypothesis which is assumed as a working basis for elucidating the physiology of the thought process They are unable to accept mere assertion for argument and much less for demonstration. They freely admit the dependence of mind upon the brain and nervous memory, reason, attention, and will, can be perfected and projected to other minds except by the agency of the brain; also that these several activities of the mind are defective and imperfect, weak or strong, mind are defective and imperfect, weak or strong,
largely in proportion as the brain is in a normal or largely in proportion as the brain is in a normal or abnormal condition. They also adinit that the hypothesis of molecular activity only has the merit of
simplicity, and if true ought soon to place us on vansimplicity, and if true ought soon to place us on van
tage ground in elucidating the phyorology of mind. tage ground in elucidating the phyolology of mind.
But, on the other hand, they cannot remain indifferent But, on the other hand, they cannot remain indifferent
to the fact that any hypothesis, to be accepted as to the fact that any hypothesis, to be accepted as
reasonable, must harmonize with and cover the phenomena to be explained. Now, does molecular activity, or the vibration of cells and fibrils upon each other, present any resemblance to thought? Such vibration presupposes and consists simply in movement. This movement may occur with the inconceivable rapidity of light, but, after all, it is only movement, and if there resnlts from or in connection with that move ment of the anatomical elements of brames necessary to add another element, which resides in the material affected by movement, to explain the phenomena presented. ${ }^{\bullet}$ This element must be akin, in its nature, to that which results, namely, thought. The nature of movement is simple and homogeneous in whatever realm of matter it may appear, and, so far as we know it becomes only motion : but thought, as it appears in reason, will, imagination and judgment, has no resemblance to mere motion. It may be attended by or be dependent upon it, but in its essence and qualities it is so unlike it that the two cannot be compared. Mere movement of cell, whether simple or complex in its constitution, therefore, becomes as unscientific as an explanation of thought as mere movement of spirit.
Such considerations are thought to require that, in the solution of the thought problem, another element must be added. This resides in the brain and nervous system, and in the processes of thought, reflection, memory, and judgment, there exists a correspondence or parallelism of action between the cell and this additional element. The one may act upon, or be acted upon by, the other through impressions from without and in this action and interaction, the quality and character of thought becomes modified, app disapproved, and in some measure changed
Such, then, in briefest words are the hypotheses which. have been advanced as explanatory of normal mentality. How far either of them may or may not be likely to meet with future demonstration, it is not my purpose to argue, even if it were a legitimate subject for such an occasion, but simply to call attention to the fact that neither of these hypotheses has yet been accepted by all ; and also that physiology has not yet vouchsafed to us any scientific demonstration on this matter.-Henry P. Stearns, M.D., address before the-Association of Medical Nuperintendents, etc.

THE PROPOSED RACE BETWEEN FAST STEAM YACHTS The trial of speed shortly to come off between the 80 fast steam yachts Vamoose and Norwood, over an 80 knot course in Long Island Sound, has attracted a large degree of public attention, particularly among all who are in any way interested in yachting. The qualities of the racers and is laid dhoroust from Fisher' Island to a point opposite the Larchmont Club house, near the western end of the Sound. Our first page il ustrations give a good idea of the general appearance f the two boats, accompanied with drawings of their nachinery, in which connection is also presented lew of the Cushing, our fast torpedo boat, which achtsmen generally had hoped would be a participant the race, but which the government officials could The Vamoose was built by the consent to.

The Vamoose was built by the Herreshoffs, of Bristol, R. I., for Mr. W. R. Hearst, of San Francisco, and her cost is said to have been $\$ 65,000$. She is 112 feet 6 inches long over all, and about 108 feet long on the water line, her extreme beam being 12 feet 4 inches and her greatest draught 4 feet 11 inches. Her bull consists of a steel frame, uncovered in the interior of the boat, and with an outer covering of two layers of pine, the inside one of which is seven-eighths inch thick white pine and the other five-eighths inch thick yellow pine, ther being nothing in her in the way of inish there are five cylinders, of the following diameters : one of $111 / 4$ inches, one of 16 inches, and three of $221 / 2$ inches each, the stroke, common, being 15 inches. The propeller shaft is $51 / 4$ inches in diameter. The condenser is of copper, and is 5 feet 3 inches long and 31 inches in diameter, | containing 498 feet of tubing, the circulating pump |
| :--- | containing 498 feet of tubing, the circulating pump

being worked by an independent little engine. The engine and its equipment weighs $121 / 2$ tons, and is de-

PROPELLER OF THE VAMOOSE.
signed to develop 800 horse power. The boiler is of the Thornycroft pattern, and is 8 feet 4 inches long and 8 feet 6 inches in diameter. It has three main drums and 8,500 feet of cold drawn steel tubing. Forced draught is afforded by a fan working up to 1,000 turns and is 36×21 inokestack is 8 feet high boat is lighted by electricity generated by a Riker motor. She has by electricity generated by a Riker motor. She has a It is 54 inches in diameter, and drops 21 inches below It is 54 inches in diameter, and drops 21 inches below
the lowest part of the keel. It is designed to be rethe lowest part of the keel. It is designed to be re-
volved 400 times a minute to propel the boat at full volved
speed.
The Norwood was built by C. D. Mosher, of Amesbury, Mass., for Norman L. Munro, of New York. She is only 63 feet 2 inches long over all, and about 60 feet long on the water line. She is 7 feet 2 inches beam amidships, and her greatest draught is 22 inches, her draught forward being only about 9 inches. A cross section of each boat at the midship section shows a nearly semicircular bottom. The hull is built of two thicknesses of mahogany on a strong oak frame, and has a steel keelson. The stern is cut away to make room for the propeller, which has three blades, and is 36 inches in diameter. It has a pitch of 7 feet 6 inches, and is designed to be driven at the rate of 500 turns a minute. The engine is of the triple expansion type, the cylinders being 9 inches, $141 / 2$ inches, and 22 inches in diameter respectively, and the stroke 9 inches. At velop 450 horse power. The boiler is somewhat of the Thornycroft type, but with important modifications. Thornyeroft type, but with important modifications.
It is 7 feet 4 inches long and 5 feet high, the working pressure being counted at 200 pounds and over. The condenser is 6 feet long and 18 inches in diameter. The smokestack rises 3 feet 9 inches above the top of
the boiler, and it is 18 inches in diameter. In cruising the boiler, and it is 18 inches in diameter. In craising
trim the boat is covered with an awning which may be inclosed with glass, but in racing order she is stripped to the hull.

Table Customs of our Ancestor*,

A thousand years ago, when the dinner was ready to e served, the first thing brought into the great hall was the tabie. Movable trestles were brought, on were placed boards, and all were carried away gain at the close of the meal. Upon this was laid the ablecloth, which in some of the old pictures is repre ented as having a bandsome embroidered boraer There is an old Latin riddle of the eighth century in which the table says: "I feed people with many kinds of food. First I am a quadruped, and adorned with andsome clothing ; then I am robbed of my apparel nd lose my legs also." The food of the Anglo-Saxon was largely bread. This is hinted in the fact that a omestic was called a " loaf-eater," and the lady of the ouse was called a "loaf-giver." The bread was baked n round, flat cakes, which the superstition of the cook marked with a cross, to preserve them from the perils of the fire. Milk, butter and cheese were also aten. The principal meat was bacon, as the acorns of the oak forests, which then covered a large part of England, supported numerous droves of swine. Our anglo-Saxon forefathers were not only hearty eaters but unfortunately deep drinkers. The drinking horns were at first literally horns and so must be immediatey emptied when filled; later when the primitive horn had been replaced by a glass cup, it retained a tradiion of its rude predecessor in its shape, for it had a laring top while tapering toward the baee, so that it, oo, had to be emptied that it, urnished with a spoon, while his knife he alwass war ried in his belt; as for fors, who en in when nature had given man ten fingers ? But you wil lways presented himself to each of water and a towe always presented himself to each guest before dinner was served and after it was ended. Roasted meat was served on the spit or rod on which it was cooked, and the guest cut or tore off a piece to suit himself. Boiled meat was laid on the cakes of bread, or later on thick slices of bread called "trenchers," from a Norman word meaning " to cut," as these were to carve the meat on, thus preserving the tablecloth from the knife. At first the trencher was eaten or thrown upon the stone floor for the dogs which crouched at their master's feet. At a later date it was put in a basket and given to the poor who gathered at the manor gate. During the latter part of the middle ages, the most conspicuous object on the table was the salt cellar. This was generally of silver in the form of a ship. It was placed in the center of the long table, at which the household gathered, my lord and lady, their family and guests, being at one end and their retainers and servants at the other. So one's position in regard to the salt was a test of rank-the gentlefolks sitting "above the salt" and the yeomanry below folks sitting "above the salt" and the yeomanry below
it. In the houses of the great nobles dinner was served it. In the houses of the great nobles dinner was served
with much ceremony. At the hour a stately proceswith much ceremony. At the hour a stately proces
sion entered the hall. First came several musicians sion entered the hall. First came several musicians,
followed by the steward bearing his rod of office, and then came a long line of servants carrying different dishes. Some idea of the variety and profusion may be gained from the provision made by King Henry III. for his household at Christmas, 1254. This included thirty-one oxen, one hundred pigs, three hundred and fifty-six fowls, twenty-nine hares, fiftynine rabbits, nine pheasants, fifty-six partridges, sixtyeight woodcocks, thirty-nine plovers, and three thousand eggs. Many of our favorite dishes have descended to us from the middle ages. Macaroons have served as dessert since the days of Chaucer. Our favorite . Our favorite winter breakfast, gridde cakes, has come down to us from the far-away Britons of Wales, while the boys jellizs since the time of Edward II., more than five jellizs since the tim
hundred years ago.

A Remarkable Ferryboat.

One of the most extraordinary boats on the American lakes is a passenger car transfer ferryboat operated in the Straits of Mackinae by the Duluth, South Shore, and Atlantic Railroad. It has an enormous capacity for carrying cars, but its peculiarities are its strength, its shape, and the number of its steam engines. It carries twenty-four steam engines for the performance of the various requirements of its daily business. The bull of the boat is as solid as the walls of an old-time block house. The bow rises from the water so as to hang or slant over it as if it were a ham-mer-and that is what it was built to be. The boat is an ice breaker, intended to keep a channel open in the straits during the winter, or to make one when is pushed into the massive ice that forms in that cold region. The big boat advances toward the ice and region. The big boat advalife lifts hard the ice and shoving her nose upon its edge, lifts herself upon it. Then a screw propeller under the overhanging bow performs its work of sucking the water from under the ice to enable the boat's weight to crush it down the more easily. Thus the destructive monster makes her
way steadily through the worst ice of the semi-polar winters of that region, climbing up on the ice, crushing it down, scattering it on each side, and making no more of it than if it were so much slush.-lion Age.

THE PELTON WATER WHEEL AND MOTOR The Pelton water wheel, which is illustrated in the accompanying engraving, has attracted considerable attention as an efficient motor for generating electric light currents and for use in counection with mining and manufacturing interests. Where any considerable head can be obtained, the amount of water required to run the motor is not very great. This motor is nanufactured by the Pelton Water Wheel Co., with main offices at 121 Main Street, San Francisco, Cal. and with a branch office at 143 Liberty Street, New York.
The Pelton Water Wheel Company have recently placed upon the market a series of small wheels, in closed in cases, or frames, of neat and substantial de sign, and, for convenience, they are called motors. These are adapted to light services, and possess in the same proportionate degree the power of the larger wheels. They afford very cheap and reliable power wherever water power is available.
The motor shown in the illustration herewith is a Pelton No. 2, having a 12 in. diameter wheel. As will be observed, its shaft is connected directly with that of a T. \& H. dynamo, the coupling being provided with proper insulation. The motor is supplied by water under a sufficient head to afford a working pressare of 140 lb . per. sq. in., which is the proper amount to furaish a speed of 1350 revs. per minute ; this in turn is transmitted to the dynaino and affords the desired speed of same. The capacity of the combination is from 55 to 65 incandescent lamps of 16 c . p. each. Where the head of water and other conditions do no permit attaching the motor to the shaft, as above in dicated, it can be connected by a belt direct without any ntermediate gear.
As will be seen, the above forms a most simple and effec tive combination, the motor and dynamo being placed on one sulid base plate, and it is an illustration of the conve aience and adaptability of these wotors to almost every ariety of service.
These small wheels have been adopted by many pro uinent electric light compa nies throughout the country on account of their high eff ciency and general reliability Where free water is available the expense of running any kind of wachinery is very little, the first cost being the main consideration.
The enormous waste of power in the uuutilized water courses all over the country is beginning to attract gene ral attention, especially as energy can be made available by a variety of means so simple and inexpensive, one of which we have here illustrated.

Rallways in the Holy land

The Turkish governuent, having decided on the construction of a railway proceeding from Ismidt or Samsun to Bagdad, has invited the administration of the Anatolian Railway and Baron Macar, who received the concession for the Samsun-Sivas line, to a confer once in order to consider the best means of attaining its object. The Minister of Publie Works has a num ber of applications for concessions on hand at present. Among them is one from Mehmed Assim Effendi, for the building of a tramway line from Janina to Hano poulo This tramway would be worked partly by ani mal traction and partly by steam. Another project is that of Ibrikdarzade Djemil Bey for the construction of a t-annway at Broussa.
The Cairo Geographical Society has issued a pamph iet, prepared by Loutfy Bey, of Cairo, with a map in French and Arabic, advocating a railway between Ismailieh and Gaza. The pamphlet contains an interesting summary of various concessions in Syria. It is worthy of note that these enterprises are entirely in the hands of Orientals. Youssef Effendi Navon, of Jerusalem, undertakes three lines radiating from that city to Jaffa, Gaza, and Nablous (Samaria); total, 150 miles. Youssef Effendi Elias, late chief engineer to the government of the Lebanon, proposes not only to unite Dainascus with Acre and Haifa, and improve the barbors of the Mediterranean termini, but to put steamers on the Sea of Tiberias; total, 200 miles Youssef Effendi Moutran, charged with the harbor works at Beyrout, has obtained the right to construct a stean tramway into the Hauran- 50 miles. Hassan Effendi Baiohom, also of Beyrout, contracts for the section between Damascus and its port- 60 miles. The
syndicate for the Damascus-Aleppo syatem of over 400
miles is in the hands of Messrs. Sola, Ralli \& Co., well known Levantine names. Loutfy Bey proposes to devote himself to completing the Syro-Egyptian link of 150 miles. This would bring Jerusalem within seven hours of the Suez Canal.

The Sun Cooling orf. T PRop. Alexander wincerlin hlid.

We are not driven to the necessity of summoning exaggerated and imaginary agencies to the destruction of the earth. There are hostile powers reserved for the final conflict that will not be content with directing toward us merely "Quaker guns."
The sun, we say, affords us thirty-nine fortieths of all the warmth which we enjoy, and we feel quite unconcerned about the alleged slow cooling of the earth. To the sun we owe the numberless activities of the organic and inorganic worlds, and we feel quite independent of the waning temperature of this dying ember which we call the earth
The amonnt of heat dispensed by our solar orb is truly something the contemplation of which overpowers the imagination. The rays which fall apon a ommon burning glass, converged to a focus, speedily gnite a piece of wood. The heat which is received by a space of ten yards square is sufficient, as Ericsson states, to drive a nine horse power engine. The amount of heat which falls upon half a Swedish square wile is sufficient to actuate 64,800 engines, each of 100 horse power. The total annount of heat received annually
by the earth would melt a layer of ice one hundred
heat generated could only supply the expenditure for the space of one hundred and eighty-three years.
There exists, nevertheless, a means of recuperation to the solar energy. It is not an exhaustless resource, but it prolongs materially the period of the sun' activity. Though no comet has been known to fall into sun, it is now generally admitted that cosmical matter is raining down upon the sun from every direc tion.
Besides the planetary and cometary bodies which revolve about the san, it is now demonstrated that the interplanetary spaces are occupied by smaller massea of watter, from the size of a meteorite to particles of cosmical dust. These all are flowing about the sun in a circling stream, but forever approaching nearer and pearer, until they are gradually drawn into the solar fires. The showers of meteoric hail which pelt our earth at certain periods of the year are merely cosmical bodies that have been diverted from their path in cer tain parts of her orbit. That faint cone of light which streams upward from the setting or the rising snn, near the time of the equinores, is but a zone of planetary dust illuminated by the sun's rays-a shower of matte descending upon the solar orb, and rendered visible to us, like the rain sent down from a summer cloud and projected upon the clear heavens beyond.
Arrested motion becomes heat. The blacksmith's hammer warms the cold iron. A meteorite falling through the earth's atmosphere develops $s 0$ much fric tion as to generate heat sufficient to dissipate the bod into as to generate heat sufficient to dissipate the body
One of these cosmical bodies falling upon the sun must, by the concue sion, produce abont 7,000 times as much heat as would be generated by an equa mass of coal. It is thus that the enormously high tem perature of our sun is main tained.
But the very mention of this source of recuperation of exhausted solar energy nug gests a limit to the procese For how many ages can the cosmical matter within the limits of the solar system be rained down upou the sun without complete ex lianstion? The space inclosed by the or bit of Neptune is not infinite The supply of cosmical mat ter is but a finite quantity Tiwe enough will drain the bounds of the solar system of all its wandering particles of planetary dust. What then will be the fate of the sun?
The conviction cannot be resisted that the processes going forward before our eyes aim directly at the final extinction of the solar fire Helmholtz says: "The inexorable laws of mechanics show that the store of beat

THE PELTON WATER WHEEL AND MOTOR

 eet thick. As the solar heat is radiated equally in al f heat from the sun is 2300 willions of times the whole amount which reaches our earth.Such an enormous expenditure of heat is sufficient Such an enormous expenditure of heat is sufficient
to reduce the temperature of the sun two and one fifth degrees annually. During the haman period of 6,000 years, the teinperature would have been reduced more than 19,000 degrees. At such a rate of cooling it is obvious that the sun wust speedily cease to warm our planet sufficiently to sustain vegetable and animal life. But it is certain that the sun's high temperature has been maintained during almost countless ages anterior o the commencement of the human era. Those titanic reptiles which could luxuriate only under tropical warmth flourished a hundred thousand years before the world was prepared for man ; and those rank, onmbrageous ferns, whose forms we trace upon the roofhales of a coal mine, existed before the reptile horde nd purified the air for their respiration.
What unseen cause has perpetuated, for a million of years, those solar fires? Kepler asserted that the rumament is as full of comets as the sea is of fishes, and Newton conjectured that these comets are the uel carriers of the sun. Alas! we orlly know that the wandering comet, though flying in tantalizing proxiwity to the sun, but accelerates its speed and hurries onward, as virtue hastens past the vortex of ruin. Is it a chemical action which maintains the solar heat? The most efficient chemical action for this purpose is combustion. Now, if the sun were a solid mass of coal, its combustion would only suffice for the brief space forty-six centuries to replenish the solar system with ts vivifying influence. Is it the effect of the sun's otation on his axis? Such rotation could generate no heat without the resistance of another body. Even if that other body were present, a calculation based upon
in the san must be finally exhausted." What a conception overshadows and overpowers the wind! We are forced to contamplate the slow waning of that beneficent orb whose vivid light and cheering warmth animate and vivify the circuit of the solar system For ages past unbounded gifts have been wasted through all the expanding fields of space-wasted, I say, since less than half a billionth of his rays have fallen upou our planet. The treasury of life and motion from age to age is running lower and lower The great sun which, stricken with the pangs of dis solution, has bravely looked down with steady and undimmed eye upon our earth ever since organization first bloomed upon it, is nevertheless a dying existence. The pelting rain of cosmical matter descending upon his surface can only retard, for a limited time, the en croachments of the mortal rigors, as friction may perpetuate, for a few brief moments, the vital warmth of a dying man.-Methodist Magazine.

Lake Bonnoville.

According to the monograph by J. R. Gilbert, published by the United States Geological Survey-the paper being chiefly geological, but having an important bear ing upon the secular changes in climate-Lake Bonne ville was the ancestor of the great Salt Lake of Utah which has frequently altered its level, even in recent years. At the time of the glacial epoch its level was about 800 meters higher, and it occupied about ton times its present area. The cause of the drying up of a large part of the former area is found in the prevailing winds, which, on their way from the Pacific and in ing winds, which, on their way from the Pacinc and in much of their moisture, and pass over this region as drying winds.

A solution of bichloride of neercury is about the best matarial for taking indelible ink out of linen.

washing sugar with alconol

The ad vantages derived from the washing of suga by alcohol, under the procesees heretofore practioed have been attended with the serious drawback that this method was very expensive, owing to the quantity of alcohol used. In the apparatus shown in the accompanying illnatration, which has been patented by Mr. Ramon F. Cordero, of Rubio, Venezuela, the aloo hol used for washing a charge of sugar is retained and made to circulate within the apparatus to wash sucmading charges, with but little or no waste of the alco hol, the operations of washing the hol, the operations of wastigg the he arar and liming or condensing he alcobl belug kept up in $s u c$ eession. the washing of a charge of sugar going on simultaneonsly with the separation of the alcohol from the molasses washed out of a pre oeding charge.
The sugar to be washed, in commencing work with the apparutua is placed in the cone thaped vessel shown at the left in the picture being pressed down and covered with canvas, over which is placed a piece of wire oloth to uniformly distribate the alcohol, after which the cover is screwed on. IThe alcohol, preferably of about ${ }^{38^{\circ}}$, is then supplied through a cock in the top of the second of two horizontally arranged vessels just above, the connections being opened for its discharge over the sugar, to percolate through it. Just below the colate through it. Just below the sugar cone is a glass section in the
discharge tube, through which |the discharge tube, through which the
progress made in washing out the progress made in washing out the molasses may be observed, and as it commences a cock is gradually opened in a pipe lead-|than to track and wire these roads, furnish them with ing to the lower large horizontal tank, the opening of this cock aud of the one supplying the alcohol being so regulated that the molasses will be washed out of the sugar with the alcohol and delivered into the large tank without making the sugar run. When it is seen through the glass section of the discharge tube that the alcohol passing contains no more molasses, the two cocks are closed, and a cock admitting air into the top of the sugar cone is opened, as is also another cock in a pipe leading to a pump, whereby either hot or cold air may be drawn throngh the washed sugar until no smell of alcohol can be detected, there being in the diecharge pipe of the pump a small orifice or odor de tector at which any smell will be readily perceptible.
The air thus charged with alcohol extracted by the pump is passed through two washers, where the alco hol is left in the water, the air escaping from a cock at the top of the second washer, while the alcohol and water are discharged into the tank into which the molasses had been previously washed from the sugar The sugar may now be taken from the cone and a fresh charge put in, and mean while the molasses diluted by alcohol and water in the large tank is passed to a boiler where heat may be applied, the boiler being surmounted by a chest con nected with a trapping chamber an uptake from which leads to the top offthe first of a pair of 'stills. The boiler has a cock for the die charge of molasses and all impuri ties and one for the escape of air ies, boiler is icharged, torether the boller is icharged, together with a gauge for ascertaining th condition of the charge at any time. he stil water outside the coils throng suitable pipe connections, through which also the boiler is supplied, and water may be admitted to the coils themselves when required The coil of the first still is connect ed at its lower end by a trapped pipe with the trapping chamber for sending back alcohol of low grade, and this still is also connect ed by cocks at different points in its height with a pipe leading to the upper end of the worm of the second still, to allow alcohol of a high grade to pass over. From the latter still the alcohol passes to the receiver, the air escape pipe at the top of which affording the channel through which the apparatus is first charged with alcohol in commencing operations. A valved pipe leads from the bottom of the receiver to another receptacle having a valved connection with the sugar-washing cone, while a curved air pipe, having a cock at its highest point, provides for the passage of air between the two receptacles. Steam or other heat may be used in working the apparatus, which is designed to effect a great saving of labor as well as produce larger returns, because of the insolubility of the sugar in the alcohol and the
better quality of the sugar obtained. Further particu lars relative to this invention may be obtained by ad dressing Mr. Diego Parra, P. O. box 8389, New York City.

Electric Roads for Farmorn.

This use of electric roads for farms is destined, says the Electrical Engineer, to be enormous. At the presed hiphwe the state of the vast majority of ou frightful tax upon production. But nothing is easie

CORDERO'S APPARATUS FOR WASHING SUGAR WITH ALCOHOL
viding walls of which are of different heights, the wall separating the first and second pans being lower than that dividing the second from the third. The pans are connected to discharge one into the other in succession by rising and falling or adjustable tubes, operated by handles, the third pan of the series discharging. when its tube is adjusted for the purpoee, into the evaporating pan, which has interior walls forming a evaporating pan, which has interior walls forming a
return passage to cause a circulation of the juices return passage to cause a circulation of the juices
along one side and then back along the other along one side and then back along the other
side until the outlet pipe is reached, by turning a cock in which the concentrated juices are run into another recepjuices are run the another receptacle. From thence they may be discharged through a cock into a teache or pan heated by a furnace, there being a revoluble tube having a nozzle at its outer end communicating with the interior of the pan, so that by turning the nozzle end downward the contents will be run into the erystallizing pan of the apparatus. The outlet pipe of the evaporating pan has an extension through which water may be passed when required, and a tube leads from the bottom of each of the scumming pans for the discharge of impurities and the water with which the pans are cleaned into a receptacle provided therefor, while recpre side of the first of the scumat one sans is a chute or plane over ming pans is a chute or plane over which the dregs scooped from the pan are passed to a receiver from which a pipe leads to the same receptacle. The furnace upon which the scumming pans and the evaporating pan rest has an interior flue than to track and wire these roads, furnish them with \mid beneath and corresponding to the return passage of notor trucks upon which the farm wagons can be run the evaporating.pan, the products of combustion being fully loaded, and then turn on the current at stated intervals from the power house in the nearest town or at the nearest water power. These electric roads will continue running through winter and spring months when the ordinary dirt roads are utterly impassable and when the multitudes of draught horses kept by the farmers are simply eating their heads off in idleness. In 1880 there were $2,000,000$ such horses on American farms. The bare possibility of getting promptly to market will stimulate the farmer to cultivate crops that now he dare not dream of. More ver, the speed made will effect a most tremendous economy in the farmer's time.

AN IMPROVED SUGAR MAKING APPARATUS, The apparatus shown in the illustration has an ex tensive heating surface, providing for the necessary concentration of the juice by using only cane refuse or conducted through this flue to the chimney, whereby the heat may be fully utilized.
In commencing operations, the evaporating pan is supplied with sufficient water to keep it from burning until the juices are delivered to it, the juices being allowed to flow into the scumming pans until their level reaches that of the outlet end of the last of the adjustable tubes, which is set to the height of the division between the first and second scumming pans, when the admission of more juice is shat off, and fire is started in the furnace under the pans, into which had been previously placed the materials used for defecation. The scum rising to the surface is then removed by means of a colander or large ladle, and more juice is admitted, the graduating cock over the first pan allowing only so much of the juice as the evaporating pan is capable of concentrating at a time to flow into the first pan, and from thence in succes-
sion to the two other pans and to the evaporating sion to the two other pans and to the evaporating
pan. By the time the juice arrives
pan. By the time the juice arrives
at the outlet end of the passages of the evaporating pan it will have been converted into molasses, in which state it is delivered to the next pan or teache, and is passed from thence to the crystallizing pan, where it is stirred, to cause it to lose the greater portion of its heat until it reaches the proper consistency to be put in moulds. The apparatus may be run night The apparatus day, the feed being regulated and day, the feed being regulated
to furnish a continuous stream, affording known or given quantiaffording known or given quantities of molasses to the final con-
centrating pan. When the mills centrating pan. When the mills
are not at work, the whole appaare not at work, the whole appa-
ratus can readily be thoroughly ratus can readily be thoroughly
cleaned, water being passed cleaned, water being
through for the purpose.
For further particulars in reference to this invention, address Mr . Diego Parra, P. O. box 3339, New York City.

Corset Burning at a Revival.
In our paper for September 19 but little labor to afford an improved quality of pro. last we quoted a report from the New York World of duct, from the succssive cleaning of the juices in the the alleged proceedings at a meeting of the Free Meduct, from the successive cleaning of the juices in the
several pans, and the removal of the scum, before the juices are passed to the evaporating pan. The improvement has been patented by Mr. Ramon F.Cordero f Rubio, Venezuela.
The saccharine juices, as they come from the mill, re conducted to the receptacles shown at the top of the picture to the left, from which, in order to keep up a continuous action, they are alternately passed
into a lower receptacle, the flow into which is regulated into a lower receptacle, the flow into which is regulated foat. From the latter receptacle the juices are passed in properly regulated quantities into the first of n series of scumming or cleaning pans, the adjacent di-
he alleged proceedings at a meeting of the Free Me thodists at Sydenham, Canada, when, under the ex hortation of the preacher, women were said to have burned their corsets on the spot. Our confience in , An esteemed correspondent, Mr. J. E. Bristol, writes us
that the World report was a fabrication from beginthat the World report was a fabrication from begin-
ning to end. No such meeting or proceedings ever took place.

To remove a wart, cover the skin around the wart with lard, apply over the surface of the growth one or two drops of strong hydrochloric or nitric acid; then keep the part covered up until the scab separates.

Gorrespondence.

To the Edilor of the Scientific American.

In a recent discussion against the existence of Gulf Stream," the statement was made as an arg ment that steawships from England to New York practically against the current, made as good time a roin New York to England. Is such the case, and so, what reason can be advanced for the fact?

Gulf Stream."
[By a glance upon a chart of the movements of the Gulf Stream and other ocean currents, it will be seen that the paths of the ocean steamers are only partially with or against the Gulf Stream in their trips east of west. The northern limit of the Gulf Stream swing over a space of 4 to 5 degrees off the coast of New foundiand and proportionately along the eastern coast of the United States, pivoting npon the narrow ohan al between Florida and the Bahainas.
The Greenland current sets to the south and west, between the coast and the edge of the Gulf Stream while the Gulf Stream sets to the northeast betwee Newfoundland and the west coast of England.
When the east or west passage is made in the spring or suinmer months, the curreuts encountered are about equally divided-the eastern half of the trip being in a current setting northeast to north-northeast, and th westeru half in a current setting from south to sonth west. The northern drift of the Gulf Stream durin the latter half of the year will probably show a differ ence in favor of the eastern trip by the continuons set of the current to the eastward, owing to the norther position of the Gulf Stream. Thus the equal east and west trips of steamers the past season cannot be an argument against the existence of the Gulf Stream its existence is well established by a thorough invasti gation of its phenomena and rate of motion during the past hundred years. It was a philosophical questio in Dr. Franklin's time.-Ed.]

Jet Propulition.

To the Editor of the Scientific American:
I promised some time ago to give you my ideas on hydraulic propulsion, and as I am fully protected hav no hesitation in doing so. It appears from the correspondence you have published on the subject, because the screw is worked on the stern of a vessel (the only available place for it), the jet should be there also.
I place the discharge on the bottom, a little aft o midships, where the resistance will be found the strongest. To add to the resistance, the projection of discharge pipe below the hull (not round in shape) has tendency, and, in fact, would form an eddy, if the discharge would permit; but to still further increase th resistance, I use four double-acting pumps, two on each side. One has a vertical the other a horizonta discharge, one opening immediately over the other, at a right angle. The two discharges, coming in contact will form a curve line, causing the vertical to aid in the propulsion, at all events forming a strong backing By placing the pumps below the draught line, I get the pressure of the water to help them in filling quick Another advantage in this arrangement: the friction is reduced to a very small figure. Again, vessels have to be driven astern as well as ahead-a point none o your correspondents seem to touch on. To effect this, I throw the discharge of both pumps through the same pipe, running forward ; this would partake somewhat of the form of a jet, although on an extensive scale and as the body in motion is ueeting the resistance, i ought to check the headway very quickly. The pumps shonld have valve area to correspond with the open ing of discharge. A large volume of water discharge at a high velocity is iny theory; the larger the body, the larger the resistance. There should be no tronble the larger the resty a minute in getting alty strokes a minute, making two hundred lor the lour; bow, by the stroke. In the screw system is very apparent; by reversing on set of pumps, the others working ahead, a vessel should turn in very small bounds. In case of an accident to one set of pumps, the other set can be used, and if al should get disabled, there is no screw to drag through the water. This is a brief outline of my plan, which no doubt can be improved on. To enter into all the details would take up too much space in your valuable paper

Chas. S. Irwin.
513 North 11th St., St. Joseph, Mo.

Manual Power Stern Wheel Vemele

The Conmissioner of Chinese Customs at Lappa near Macao, in his last report mentions a change in the method of navigating the waterways of the Canton province. Only a few years ago the first jank pro pelled by a stern wheel, worked on the treadmill or Chinese chain pump system, wade its appearance a Canton. Experiments were then made to test the rela tive economy both in time and working expenses of such a vessel compared with one propelled in the usua way by sail. The superiority of the former in bot respects having been clearly demonstrated, the stern
wheel has come gradually to be fitted to most of the regular trading junks plying on the inland waterways, and these boats are now met with everywhere in the province.

THE BTANDARD GADEE FOR THE M. C. B. COUPLER.

The announcement of the executive committee in elation to ganges and limits for the standard M. C. B. atomatic coupler is as follows :
The committee has carefully reconsidered the whole question since the discusedon on its report to the con-

Fir. 1.-DOTTED LINE IS ETATDARD GAJGE.
vention in June, and in view of this discussion and th action of the convention upon its report, the com mittee believes that it is the desire of the ussociation o have it act ander the instructions of the convention 1890 , and to make arrangenents whereby all par les interested may be able to procure sets of gauges o that all sets will be alike, which can be used to de termine whether any and all new couplers of this typ re near enough to the standard contour established by the association to insure proper coupling with on nother, in so far as it can be insured by close adher once to the standard contour, and also to establis imits of variation for such of the standard rectilinear neasurements of the coupler, only, as will promot

Fig. 2.-COUPLER GAUGRG
the interchangeability of couplers in place upon cars The committee therefore announces the ganges shown a Figs. 1 and 8 for the contour line and thickness of nuckle, respectively, with the limits of variatio mits for the standard rectilinear measnrements, a given is the table with Fig. 3.
The pange for new couplers shown in Fig. 1 is an ounced in lien of the gange propored in the com dittee's report to the association, because it provide eans for gauging the contour lines. excepting the hickness of the knuckle, at points throughout th whole essential extent of the stendard form of contour and it controls the variation in both directions frou the standard, whereas the gang proposed in the report was only a minimum gange for a portion of the standard contour, and ite use would involve nuwerou ments at difieren boights for the maximum varialimite The gauglig lor bo the variation allowed with this gange on Fig. 1 are the same a those recommended in the report at the same pointe, and the ad ditional point in the back of the knuckle is allowed to vary the same as was recommended at th guard arm
The gange for new knuckles shown in Fig. 8, is announced a a proper gange for knuckles, al lowing one-sixteenth inch varia tion each way from the standard dimensions of 3 inches, instead of one-sixteenth inch one way only, as recommended In the report, because it is thought desirable to allow partly of the necessary taper in cast knuckles.
The limits shown in table with Fig. 8 are announced proper limits of variation for the standard recti near measurements, which are the same as the limits distance, A of in the report, except that the standar llowach A, of a
the cross section, D, is allowed to vary one-sixteenth inch each way from the standard measurement of 5 inches instead of oniy eleven-sixteenths inch oue way as recommended in the report. The executive committee considers it inexpedient to announce limits of varia tion for dimensions which are not standard, but which were mentioned in the report, because the convention ordered that a committoe be appointed to report next June on any new standard measurements and limits which may be desirable in connection with the coupler. It is also considered undesirable to provide any epecific measuring instrument for the limits of ectilinear measurement given in table with Fig. 8, as these distances may be measnred in numerous ways by whatever means are best available.
The executive committee has made arrangements with the Pratt \& Whitney Co., of Hartford, Conn., to furnish ganges as shown in Figs. 1 and 2, so that very set farnished will be like every other set and proved by master gauges provided and held by the Pratt \& Whitney Company for that purpose, a duplicate set of whioh master ganges will be filed in the office of the secretary of the association for nse in settling any questions in dispute abont the accuracy of suges. The frames of the cenges will be made of the ang . Anality of gray the est quality of gray iron, with plain lettering, as hardened tool steel.

Water Gan.

When steam is passed through incandescent carbonceous fuel maintained at 550° to 750° Cent., a gas is produced which consists mainly of hydrogen and carbonic acid, with only small quantities of carbonic oxide. When the fuel is maintained at a higher temperature, the proportion of carbonic oxide increases until, at a temperature of $1,000^{\circ}$, the resulting gas consists of a mixture of about 40 per cent of carbonic oxide and 50 per cent of hydrogen, with only aboat 5 per cent of carbonic acid. This is known as watergas, and its use is often objected to on account of the poisonous properties of the carbonic oxide contained. The main object of an improvement introduced by Messrs. J. C. Reissig and J. Landin is to produce a cas containing but little carbonic oxide, and to increase its calorific power by removing the carbonic acid from the combustible gases. The process consists in passing steam (preferably superheated) or water through fuel contained in externally heated retorts, or in water cas generators, maintained at 555° to 750° Cent. The resnlting ges, consisting of hydrogen and carbonic acid in the proportion of 2 to 1 , is cooled and freed from sulphur impurities in the usual way. It is reed from sulphur pharith it is ng carbonates of alkali or alkaline parthe preferably ong carbo bonate (potash). These substances readily absorb (esponate (potash). These substances readily absorb (especially under pressure) the carhonic acid, forming
bicarbonates, from which the carbonic acid is easily bicarbonates, from which the carbonic acid is easily removed by the action of a moderate vacuum, espe-
cially if aided by heat. The remaining gas consirts principally of hydrogen, and ready for use, while the olutions are again available for unlimited repetition of the absorbing operations, etc.

Hints for Merchants Trading with China.

At the recent Congress of Orientalists, Profeseor Schegel delivered an address conveying some useful hints on European comwerce with Eastern countries, and gave some exanples of the mistakes made by merchants in sending out poods to China and Java. One nstance he gave was the following
The Chinese are in the habit of boiling their rice in lat iron boilers. These are very thin, and they burn brough very quickly. Soume English firins thought it would be a very good thing to inake these boilers in Engiand and send them to China. Accordingly a ship ond was sent to Hong Kong, and were cheaper and tronger than the native boilers; but fiter a few han dred had been sold, the Chinese would buy no more They refused to give any reason to the merchants, but the professor asked some of them, and they said to him, "Their boilers are much too expensive." Hesaid "Oh, but they are cheaper." They said, "Oh, yes, but to boil them we have to nse so much fuel. Thes are too thick, and before we can get our rice boiled we have to spend more in the way of fuel than it would cost to renew our boilers every few months." Another nerchant sent out some magnetic horseshoes stamped with the Chinese dragon, but for this very reason the Chinese would have none of them. Merchants did not aficiently stady the prejudices of the people with whom they wished to trade. The Chinese were very particnlar about lacky and unlucky colors. They iked English sewing needles, but would not bay man of them because they were wrapped up in black pape black being an anlucky color. Annthermen developed a very good trade in printed Chisese calendark, and that trade continued good until he commenced print ng his calendars on green paper, when his trade closed He woudered why until he discovered that green wa an unlucky color.

NON-VENOMOUS SNAKES.-II.

by c. frw shrse.

In the genus Pityophis, containing the pine or bal shakes, are perhaps found the largest or greatest in length of the serpents of the United States. The diamond rattlesnakes of the South are, however, far greater in circumference or bulk. The prairie bull snake of the West frequently attains the length of 8 feet, and according to Dr. Holbrook, our Eastern species has been known to measure 9 feet. From 5 to 7 feet are the ordinary dimensions of pine snakes taken in New Jersey. Woodsmen declare that these snakes at certain times and seasons "bellow like a bull," and hence they are called "buil snakes." I have never had proofs of this, and look upon it with doubt as their throats contain no vocal organs, and in cap tivity they are al ways silent.
12. Pine snake, bull snake, Pityophis melanoleucus. Color above, white or pale brown, with a vertebral series of oblong black spots, or brown spots bordered anteriorly and posteriorly with black. These generally widen into bands toward the tail. Below the dorsal ow of spots, a second series, sometimes more, of black ish or brown irregular spots and streaks. Beneath pale cream color, with a row of dark spots on each side near where the plates join the seales. These spots occupy portions of two abdominal plates and are generally opposite each other, and at intervals of three to five plates, becoming irregular and finally lost on the tail Sometimes a few intermediate spots on the abdomen Head with small black spots, a frontal bar, and a band back of the eyes. Often the ground color of the body is brown, and the spots are not clearly marked, being ore less blended into the ground color. Body ong and robust, neck not much contracted, ail one-seventh of total length, and ending in a horny point. Usually 29 rows of dorsal calee, carinated (keeled) above, and smooth on the sides. Found in the pine barrens of New Jersey, and parts of the Blue Mountains of Pennsylvania, south to Florida.
13. Swift garter snake, Eutconia saurita. Form very slender, tail long and tapering, about one-third of the total length. Ground color brown to olive black, with three narrow, sharply defined, yellow lines, one vertebral and two lateral, the former margined on each side with a narrow black line. Between the scales blackish, but showing little white streaks when the skin is stretched. Sometimes a series of lateral spots. Beneath light olive green, throat and lips yellowish white. The brown of the head posteriorly white. The brown of the head posteriorly and the white of the upper lips sharply divided by a narrow black line. A pair of small light colored occipital spots (rarely wanting), 19 rows of carinated scales. Average length about 32 inches. Found from
Maine to Florida and Texas, Kansas, and Maine to
Wisconsin.
14. Common garter snake, Eutania sirtais. Form rather robust when full grown. Tail about one-fifth the total length. Color olive brown or gray to greenish black ; a vertical and two lateral pale lines. Two rows of alternating black spots on the sides. Sometimes the lines are scarcely visible. For full description and history see Scien tific American for August 16, 1890. In variety obscura, the dorsal stripe and spots are scarcely visible on the dark ground color, while the lateral stripe blends into the color of the abdomen. In variety ordinata, the three stripes are not well marked, espe cially the two lateral, but the six alternating rows of dark spots are conspicuous. In variety dorsalis, the dorsal stripe is yellowish white, broad, sharply defined orsal stripe is yellowish white, broad, sharply denned and margined with black
above each lateral stripe.
15. Storer's brown snake, Storeria occipitomaculata Color above, bright brown to grayish brown; some times slate color ; generally a paler vertebral line from the back of the head to near the end of the tail, which is bordered on each side by a narrow brown line. A yellowish spot behind the occipital plates, and below this another spot on each side. At times the body is uniform in color. No black bar across the angle of the mouth nor under the eye, as in De Kay's snake. Beneath generally salmon red in life, grayish white in alcohol. Lower jaw and throat whitish, minutely flecked with dusky dots. Fifteen rows of carinated cales. Length from 9 to 12 inches. Found from Canada to Florida and Texas, west to Wisconsin.
16. De Kay's brown snake, Storeria De Kayi. Colo above yellowish brown, with a light-colored dorsal stripe, bordered on each side by a row of small dark spots, the first spot forming a curved bloteh on each side of the neck. Sometimes these spots are scarcely visible. A black bar from the occipitals across the angle of the mouth; a swall black spot or line below the eye. Beneath yellowish white, with one or two dark dots on each plate, toward the outer edge. These dots are at times wanting. Occasionally a specimen is seen in which the two rows of dorsal spots are united, thus forming short bands across the back, scareely
vieible posteriorly. Seventeen rows of carinated scales. Length of adult from $91 / 2$ to $121 /$ inches. Found from
Canada to Florida and Texas, and west to Michigan Canada to Florida and Texas, and west to Miehigan and Wisconsin.
17. Striped water snake, Regina leberis. Color above olive brown to chestnut brown, with three narrow dark longitudinal lines, one dorsal and two lateral. A wider light line or stripe on each side one half scale above the abdominal plates. These lines are well marked in the young, but sometimes nearly disappearing in old individuals. Beneath pale yellow, with four dark longitudinal liues, formed by four spota on each plate. The two external are the larger, and nclude the dark lower half of the first row of scales Nineteen rows of carinated scales, the outer row nearly mooth. A verage length 22 inches. Young at birth nches Found from New York to Georgia and Te nehes. Found west to $\mathrm{W}^{\text {it }}$ is ander partly sabmerged stones along ereeks and ivers.
18. Rough water snake, Regina rigida. Color olive brown above, with two dark brown longitudinal bands along the back. The edges of the outer row of scales and abdominal plates margined with brown. Beneath dull yellow, with two central rows of dark brown spots, dearer together anteriorly. Nineteen rows of strongly carinated scales, the outer row smooth. Length from 15 to 22 inches. Found from Pennsylvania to Georgia. Some consider this a variety of the preceding, but to we it appears to be a well marked species. Apparently rare snake in Pennsylvania.
19. Kirkland's snake, Regina Kirklandi. Color bove reddish brown, with four or three rows of alter-
at twilight, or on cloudy days, and moonlight nights bave heard that large bass have been seen to fearessly attack and devour young water snakes when: foot and less in length. "Copper-belly." variety Erythrogaster. Color aniform biuish-black to rusty black above, lighter on the sides, often with a dull blue lateral band. Beneath dull coppery yellow. At times the front edge of each abdominal plate is bluish. No distinct spots on the abdomen. Faint dorsal spots in young specimens. Found in the great lakes and their rivers. Have not met with it in Pennsylvania or New Jersey. Frequent South. Variety fasciatus, banded water snake. Above uniform dark brown in adult; lighter in younger individuals, with black patches on the back; a row of about thirty red spote on each side ; obsolete in old animals. Upper jaw white, tinged with red. A dark band from the eye to the corner of the mouth. Beneath reddish-white, Perhaps not found north of Virginia ; common South. 21. Holbrook's water snake, Tropidonotus taxispilotus. Color reddish-brown, with three rows of subquadrangular dark spots ; the ground color between the spots about the same width as the spots. Beneath yellowish, clouded with dark brown. Head rather small, with the snout somewhat pointed. Twenty-nino to thirty-one rows of carinated scales. Specimens in United States Natural Museum labeled from New York and Georgetown, D. C. (\%) A Southern species. Serpents bolonging to the following genus, Heterodon, can be easily identified by their up-curved, shovel-like snouts, and the manner in which they flatten themelves and blow when approached.
22. Spreading snake, hog nosed snake, Heterodon latyrhinus Color vellowish gray or brown, to red dish brown, with about 25 dark brown or black spots along the back, from the head to above the vent, and about 10 half rings on the tail. The spaces between the dorsal spots are generally lighter, and the spots themselves edged with whitish. A series of dark lateral spots ; one spot opposite to each light dorsal space. Beneath these several series of smaller spots, indistinct or absent. Throat yellowish; abdomen more or less pale olive or yellowish, clouded posteriorly with darker olive brown or slate color. A dark bar runs from eye to eye, anteriorly across the head ; another posteriorly, often broken into spots. Two dark bands run from the occipital region down the neck, often with a spot between them, and another from the eye backward. In maritime specimens the head is often uniform brown, and they are duller and graver in coloration than the inland specimens. The little linear plate which rune up the entral part of the plate whind the rostral plate, called the azygos, is not surrounded by a border of small scales, as in the smaller hog snake of the South, H. simus, but is in contact with the frontal plates. Generally 25 rows of carinated scales, the first row smooth. Length when full grown about 2 feet.
ater snares-t. sipedon-adult and young at birth
nating subcircular black spots. Beneath uniform red-
dish yellow, with a row of small black spots dish yellow, with a row of small black spots on each
side. Head rather convex, glossy deep brown to the side. Head rather convex, glossy deep brown to the edge of upper labials. Tail short, about one-fifth the
total length. Nineteen rows of carinated scales. total length. Nineteen rows of carinated scales. A New Jersey and Pennsylvania, west to Michigan This also appears to be rare in this State; only a few specimens are reported from Delaware County.
20. Common water snake, Tropidonotus sipedon. Color brown above, with large transverse darker brown blotches margined with black anteriorly, gene rally breaking up into three series of spots posteriorly These spots are separated on the dorsal region by nar row whitish bands or spaces, which widen on the side and merge into brownish red patches. Beneath pale yellowish-brown, with two or more rows of irregular semicircular, or angular brown spots, edged with darker
brown or black ; generally darker posteriorly and more brown or black; generally darker posteriorly and more
or less confluent beneath the tail. Sometimes sprinkled or less confluent beneath the tail. Sometimes sprinkled with dusky dots. Often in old snakes the body above becomes uniform dull brown in color, and the spots nearly disappear. In some localities they are nearly uniform blackish-brown above, spotted on the flanks and abdomen ; stoutly and firmly built; twenty-three rows of strongly keeled dorsal scales. Length of aduit rom 3 to nearly 5 feet. Found from Canada to Florida and west to Nebraska and Arkansas. Common in quently make their homes in partly submerged piles of rocks or embankments full of crevices. They wil catch and swallow any species of fish they are able to master. I saw a large catfish, armed with its usua sharp spines, taken from the stomach of one, and was informed that a large pike was removed from another Have known of a well stocked goldfish pond that was completely cleaned out in a few weeks by one or more of these snakes. Eels and frogs also furnish a part their bill of fare, while the young snakes take kindly
to tadpoles. The old snakes do much of their fishing

Found from Massachusetts to Florida and Texas, and west to Minnesota. Along the coast it feeds almost
entirely upon toads. Black hog nosed snake, "black viper," variety niger. Black or dark olive brown above; beneath slate color, fading into white on the chin and edge of the upper labials. Length from two to three feet. Found from Pennsylvania to Florida and Texas and Illinois. A truly formidable-looking snake. It flattens its neck and head, blows violently, and throws itself into rigid contortions when confronted, and will strike wickedly at an object placed within its reach. It has large, somewhat fang-like teeth, and is often considered venomous, but it is, however, perfectly harmless, as it does not possess poison glands with which to secrete venom.

Maximum Locomotive speed.

Most experienced railroad men feel that the possibilities of steam practice are nearly reached, and that much greater speed is not practicable. A maximum of ninety miles an hour, with a running speed of sixty to seventy, is all that can be hoped for under the very best conditions. The limitations are numerous, and are well known to all engineers. The maximum speed of which a locomotive is capable has not been mateially increased in a number of years. The schedule time has been shortened, principally by reducing gradients, straightening curves, filling up ravines and replacing wooden structures by permanent ones of iron or stone; by the use of heavy rails, safer switches, improved methods of signaling, the interlocking switch and signal system, the abolition of level crossings; in fact, by improvements in detail and management which permit a higher speed on a more extended section of oad because of greater safety and the greater degree of confidence inspired in the engine driver.

To obtain a dark finish on oak and ash, inclose in a box or closet with some saucers or plates of strong ammonia. The fumes will darken the wood.

EEMETLIT PATEMTED LNEETTIONB.

Rallway Appliancom.

Oar Couphing. - Samuel A. Cloud, Lenni, Pa. Thto is a simple form of automatic coapling end an annalarly grooved cyllindrical head, with apring. supported segments arranged in the grooves, adiapted for engagement by Internal shoolders of the drawheed,
pasber bare belng movable againet the segmenca by pasber bare belng movable againet the segmenca by
means of a lever, to force the ceqments into the groovee of the link for disengaging it. The outer edges of the ppring-sapported eegments are beveled, and readily piring-sapported ecapments are bevelec, and readily
eititer the cylindrical bore of the drawhemd, where they are forced outward by their springs to engage the aboulders and affect the coupling.
Car Axhe Boxes. - John Donnelly, London, England. This invention relates to a method of manufacturing axle boxes from sheet metal plates by ancceselve stamping. pressing and bending operations, thg the horn plate grooves out of the solid metal. The blank is subjected to the succesolve action of dies to form the horn plate grooves and the projections and
depreselon for the reception of the box lid apparten. depresalon for the reception of the box lid apparten-
ances, the blank then being bent into box-like form ances, the blank then being bent into box-like form
and its meeting edges welded together. All of the tools and ites meeting edges welded together. All of the toois
for formiog the shell and liner are preferably poperated

Mechanical Appliances.

Warp Linking Machine. - William A. Denn, Philadelphin, Pa. This is a machine for looping and donble-looping or linking warpe. providing
tberefor a needle which will operate as well with amall as large warpe, automatically producing the linke The machine has a reciprocating diecributing horn below which is a stallonary trip bar with inwardiy
carved etripping Angers in front of it, the linking carved stripping angers in front of it, the linking below the path of the distributing horn and above the
trip bar and stripping Ingers. Each needle has a hook trip bar and atripping fingers. Each needle has a hook a
one end, a concavod sarface between the center and the hook, and a retuining plate pivoted at one end beneath the concaved sarface and the hook and capable of folding over one or the other.
Windmill Regulator.-Edward B. Whison, Central Clty. Neb. The device provided by
this invention is more eapecially sdapted for ase with windmilis used for pamping water, antomatically concrolling the mill, to set it in operation when the water in the tank gets low and stop it when the tank is full.
A foat in the tauk is connectod with one arm of a bell crank lever whoee other arm is connected by the ald of simple intermediate devices with a clatch for throwing the wheel into and out of the wind. The regulator may
be operated by hand when the windmill to to be naed for otber parposes than alling a tank.
Hoisting Machine. - James Arthar, Jersey City. N. J. This fo a power hoisting machine to
be applied to the ordinary hand holet, and has a pair shapts, one Axed and the other movable, each carrying a grooved sheave for gripping the rope, while the shaft
have pulleys to recive driviog belte, the movable shaf having a pivoted hanger and lever for moving it to having a pivoted hanger and lever for moving it to
cauce the sheaves to bite the rope. The awiveler cance the sheaves to bite the rope. The eswiveler
hanger box to novel constraction. allowing the movable shaft to move without binding, and there is an
interchangrable arrangement of the hangers and Interchangrable arrangement of the hangers and
lever, whereby one or the other of the hangere and lever, whereby one or the other of the hangers and
ahafts may be made movable, and by which the operatahafts may be made movable, and by which the operat-
ing lever may be arranged to be lifted or depressed ing lever mas be arranged to be lirted or depressed
from either side of the machine to adapt it for uee in any locality.
Ratchet Brack. - Henty C. Fraser, Charleston, 8. C. This brace is made with two sleeves In which the tool shank lo adjastably held, a ratchet
wheel being carried by each eleeve, while a U-shaped handle arm has its cnds mounted to turn on the sleeve and has pawle engazing the ratchet wheels. The ar-
rangement is such that the brace can be conveniently rangement is such that the brace can be conveniently
shifted on the shank of the tool, permitting the use of shirted on the shank of the cool, permitting the use of While a large parchase power is obtuined, the con-
atruction ta simple and darable, and the tool is easy to struction to simple and durable, and the tool is easy to
Centrifugal Governor.-Henty 1 Berger and Edouard Noel, Abbeville, La. This inven-
tion provides an improvement on a former patented in tion provides an improvement on a former patented in-
vention of the same inventors. A pulley is secured on the main driving shaft, and a calve eccentric is mounted on au arm pivotally connected with the palley and econd arm is pivotally connected with the first arm beyond the shaft and carries a serond eccentric
monted loosely on the main driving shaft, while a weighted and spring-pressed lever is pivoted ont he palley and plvotally connected with the second eccen-
tric to control its movement. This governor in designed cric to control to movement. This governor in designe being aimple and durable in construction.

Agricultural.

Hand Planter. - Seth Hackett, Bronson, Mich. This is a device which may be operat ed by one hand, and has a standard with a handle at it apper end and a blade at its lower end, the hopper being perforation to feed grain through a downwardly tapering delivery chute. A feed disk within the hopper is operated by a link rod extending to a pivotally con-
nected lever which is also connected with a fulcrum foot that rests on the gronnd, the clliting of the standard opening the blades in the ground to allow the grain to
pace ciprocating band planters, and is of few and simple

Pruning Implamint. - Andrea Boech, Prairie du Chien, and Frederick Boach, Merrill
Wi.. Thif invention primarily provides a eocket apo a handie into which a number of proning and trimming

Implemento may be oxpeditloualy inserted and securaly clamped in poostion, eo that the implementer ma be readiy and ellecively asod high ap on troes whlle mente aloo have apecial formo of ahanks adapted to a neealy and securely Into the socket and be clampen
therein, all of he impletrienta being secured in the samed manner, and being quickly and conveniently remored Corn Harvester. - John Bardill Grant Fork, Ill. The body of this machine conesiste of threo-wheeled platform having rearward linclidod atters at oppoaite sldees of the center of its forwan odge, there boung stalk-roceeving comparimente at the
front portion of the platform and spacee for the orward tot the rear. As the implement io drav stalks in their path, the stalke falling into the com-
partments and forming themeelves into two independent stacks which may be readily removed by the oper Oors, who are effectanlly protected from danger of ca ung by
ralle.
Plow.-Carl W. Larsen, Medical Lake Whehington, Pivoted to the plow boam is a knife ex plow, while there is an adjueding bar to which is at tached a apring plate, and a chain connection between the plate and the knife. The attachment is dealgnod for ase in working groand where roots, stones, atc., are
numerous, and may be readily carried out of the was numerous, and may be readily carriod out of the way
when the plow is ased as a etabble plow.
Werd Mashing Implement. - James W. Hamniett. Eureka, West Va. This is a machine rume adapted to bo drawn over the rrume adapted to bo drawn over the ground, and having down weede, buehes, briers, etc., to render the ground arm before planting, and aleo for setting bromecnat need
into the groand. into the groand.

Mifiscollancous.

Dyeithe Woven Fabrics. - George Moriot, Paterson, N. J. In the dyeing apparatus pro vided by this invention the trame to be placed in the
vat has brackets projecting from its apper side rails vat has brackets projecting from lts upper side rails,
with two series of rollers mounted between the apper and lower side rallis, rollers mounted bet ween the apper apper rollers, and adjuotable tightening rollers in th taken of the fabric, which is made to travel casily and amoothly and without undue strelching, while it lis conveniently pesesed in its entire width through the dyeing
liquid, to evenly saturate the abers and insare perfect work without any strate
Watch Case Back. - Paul Stucker Brookly, N. Y. Ths tovenion provilea, as an im proved arlele of manufacture, a back having an alwachod plate cat in intaglio with the cut sarfaces illlo and adjacent to the plate, the thicknese of the rived netal Agures corresponding malily to that of the plate, It is also provided that the back may be of very thin metal and yet be atrong and siff and
WATCH MAKER'S TWEEZERS.-Olavas Kolstad, Plemsant Eill, Mo. The jaws of these tweezer are fiattened on their inner and rounded on their outer face of ine of the faws to recelve the pin to be the inne ace of one of the jawe to receive the pin to be grasped, over both members to prevent them from apringing too apar.
Hearth, Ash Pan and Finder. Emily C. Stewart, Birmingham, Ale. This is a combi nation portable device for open alreplaces, the fender
serving also as the handle of the pan. It consiste of a sceplacle covered at its forward end, to form n hearth and open at its rear end to receive the ashes as they accamulate, while a combined folding handio and fender
are pivoted to the top of the receplacle. The combination device forms but a single article, and when the asb receptacle becomes alled the handie and fender are tarned up to form a bandle by which the pan can be
readily removed and the ashes taken care of without readily removed and the ashes taken care of withou

Infusing Coffere or Tea. - Ladwig and Augast Chronik, Brookiyn. N. Y. This is a simple apparatus for antomatically performing the operation making tea or coriee. A boller is hang apon a connterbalanced lever controlling a lamp extinguisher othl sumficient steam is generatod to casise the water to low throgigh a pipe having a roee jet, by means of
which the boilling water is directed apon the groond which the boilling water to directed upon the gronnd
coffee or tea previously placed in a receptacle provided coflee or tea previously placed in a receptacle provided he lamp, and the racaum resalting when the steam it in the boiler, ready for use.
Balance Scale.--Richard M. Shaffer Baltimore, Md. This invention is deeigned to diappense with the nee of detached weights as cnatomary in the dvantages of weighing by weights instead of eprings. This is effected mainly by placing one of the pans of he balance at a lower level than the other and providing a series of weights connected with a series of palls or adjasting handles, by moving one or several of which any body placed in the other pan, the palls belng each plainly marked with the weighta they represent.
Show. Cask Alarm. - Rudolph C. Kruechke, Daiath, Man. The show case provided by noor, and the trays have spring clips for bolding the
articles shown, the spring clips being connected elecarticles shown, the spring clips being connected elec-
trically and beld open by the articles, while the tray Leelf is farniched with contact points bearing on the netallic atripe on its fioor, the stripe being in the cir-
cuit of a battery in which is Incladed an electric alarm .
circuit, giving an alarm, of if the article is removed when the tray is out of the
when the tray is pot back
Bulkhead. - George J. Cook, New Orleans, La. This invention provides a construction deetignod to be strong, simple and darabie for the prolection of levees on partly into the ne pilural are driven into the driven behind the plices foro the natural soll, braces ex cending apward from the posts to the plices. A cover
 piles and extends into the natural coil a suitable dia
tance below the bace of the levee, and at suitable interrance below the bace of the levoe, and at suitable inter vale a pipe or pipes to pascod throanh the lovee and th io
covering or sheathing for the furnishing of water to arm lands adjacent to the levee, each pipe having collar secared to the shoathing to prevent leakugu. The baikhead is preferably one to two feet abovo high water V, and buo for
Vehicles Brake. - Alfred L. Hagen,
Franklin, and Frank E. Dyer, Mount Desert, Mo. Thle brake is designed more espectally for roed wagons and
ther vehicles. The front end of the vehicle body it ther vehicles. The front end of the vehicle body it itted to silde on the king boit, and a chain or rope con octed with an arm on the ordinary brake mechanism rear axle, a rod being connected with a chain on the other wheel and aleo with the rear axle. the invention also including other novel features. The brake is inconded to be entirely antomatic in its action, the shoes
beling applied with more or lese force according to the being applied with more or lese force according to the laken of the team.
Weight for Horses' Hoofs.-George R. King, Dallas, Texas. This is a toe or side weight angagting a shoo, a plate belng hinged to the weight adjecent to the stad, and a spring supported on the plate to bear on the stud and maintain the weight in place. The weight may be applied to any part of the
hoof, elther at the toe or sidea, and to dealgned to hoof, elther at the toe or aldea, and is designed to
adjast iteelf to the inclination of the hoor, being selpdjast iteelf to the inclination of the hoof, being selplocking and etrectively heid agains
Bedstead Fastening. - Heary R. Robbins, Baltimore, Ma. This Improved fastener Inhe head or foot board, the end eection boing compoeed of a latch plate having a handle projecting through a Not in the face plate whereby the latch plate may be
ret to uniatched position. The latch plate has notches et to unlatched position. The latch plate has notches In its front edges for the bearing roll, and on its rear
odges bas runner-like lage, the bearing roll and the edges bas runner-llke loge, the bearing roll and the
face plate being atted over the intch plate. The device ts very simple, and forms a secure and eaclly manipalated fastening.
Bed Drafer Attachment.-Leonia Mabee, Paris, Texas. a bed drawer, according to this improvement, ts arranged to shide beneath the neual ordinary bedstead, and proanding the capacity of the tion of four persons instead of two. The bedstead has an opening in its side in which the drawer slides, and and adapted to fold parallel against the alde ralle of the and adapted
bed drawer.

Toy or Puzzle. - Philip J. Hogan, Neganuee, Mich. This is what may be atyled a "push
or " pazzele, a box which may be held in the hand having its bottom marked in differently colored sec. dous, while or the bottom beneath a glase cover ar several variously marked cabes, each side of each of
which repreents different values, the cabee being which represents direrent
moved and tossed to direrent poeitions and changee of face on the field by the movement of the box, the les for pornbinations incesesting gamee, a chart el beliag provided for ase in connection with the box.
Game Apparatus.-Albert Cromwell, Pbiladelphia, Pa. A circular game board with thanged odge and concaved center has pins sapporting tags aronnd its edges, and the top of the board is divided
into diferently colored sections. To play on the board into diferently colored sectione. To play on the board
a top is used having facets on ite sides numbered to a top ts ased having facets on ite sides numbered to
correspond with the eections of the board, and a circular marker is ased in connection with the top, the marke aplinde of the top. The game may be played by four persons when the board is divided into eight parts,
chips being used by the players, and the holder of the tag cotresponding to the space on which the marker strikes ater the top has been span "takes the pot."
Nors.-Copies of any of the above patents will be farnished hy Mann \& Co., for 25 cente each. Please
send name of the pactontee, title of invention, and date send name of
of this paper.

HEW BOOKS AND PUBLICATIONS.
Primary Batteribs. By Henry S. Car hart.
1891.
Pp. 198. . Price $\$ 1.50$.
The aubject of the constraction of primary batteries subject, are excellently treated in this work, which ma be said to have a larger scope as coming from an American sonrce. The grouping of the cellis is not very thoronghly treated, but we notice with pleasnre tha the gronping of botteries for the quickest action and in
trodaction of the cime constant is developed, something usually omitted.
Screws and Screw Making. With
chapter on the milling machine. Brichapter on
tannia Com tannia Company. Colchester.
land. Pp. vii, 208.
Price $\$ 1.25$.
This work claims to be the largeat volume de voted
entirely to screws and screw making, and consiets largely of the contents of committee reports and tabalations on ecrew systems of different nations,with illus,
trations of machines for making screws, and exhanstive tables. One very neeful chapter ts devoted to arith metical rules for calculating wheele for catting ecrews

Transition Curve Field Book. By Conway R. Howard. New York
John Wiley \& Sons. 1891 . Pp. 109. Price $\$ 1.50$
The object of this work is to fornish a practical method of determining a carvo in ralliond surveying,
for connecting circalar carves with tangente. The book will have to speak for iteelf, and it will, no donbt be very asefal to raliroad engineers.

a Treatise upon Wire. its Mandeac TURE AND UsEs. Embracing com- prehensive descriptions of the conprehensive descriptions of the constructions and applications of Wire ropes. By Jucknall Smith. Offces of $\begin{aligned} & \text { Engineering London }\end{aligned}$ John Wiley \& Songineerring, New York. 1891. Po

 Pp. xxiii, 347. Price $\$ 8$.The manafacture of the different kinds of wire used
in the arta, for the transmiselon of power, for structural parposes, elc., its transportation by rall, and all the most interesing details of wire engiveering. are treated in this elegant work. The illastrations, paper, and type are beyond all criticiem, suggesting an abeolute odition de hucos. The sabject is treated, not at all from
an Knglish standpoint, but American practice is given an Rnglish standpoint, but American practice le given
fall prominence.
Catalogut of Minkrals and Syno NyMs. By T.
John Wiley \&
Equston. New York:
Sons. 1891. Pp. 877. John
Price $\$ 2.50$.
The present catalogue was commenced in the year 1807 and contains, it te claimed, several thonsand more
paree than any other beretofore pablished. The indezes of sisteen leading works on mineralogy have been atilized to make the catalogue, as far as posaible.
a complete table of mineralogical synonyms in differa complete table
ent lingquages.
Reports on the Observations of the TOTAL ECLIPSE OF THE SUNF, December 21, 22,1889 ; and of the total
eclipse of the woon, July 22,1888 ; to
eclipse of the woon, July 22,1888 ; to
which is added a catalogue of the
library published by Lick Obeervalibrary published by Lick Obe
tory. Sacramento, Cal. 1891.
Several reports of the Lick Observatury are here boand together with some vory beuatifal allver printa
of eclipees, together with other illastrations. In is an interesting work and shows what the Lick Obeervatory to now dolng.

SCIENTIFIC AMERICAN
BUILDING EDITION october number.-(No. 72.)

TABLE OF CONTENTS.

1. Hegant plate in colors of a colonial residence recently erected at Fordham Helgite, N. Y. Two complete $\$ 9,000$. Memers. Walgrove \& Crails, of New York, architectu.
2. Handsome colored plate of a realdence at Wees
Brooklyn, N. Y. Yeropective view, floor plane Broo. Coot $\$ 8,000$
etc.
3. A very pratty cottage costing 88.000 , erected at
Springteld, Mass. Floor plann, elevations, etc. Bpringileld, Mass. Floor plana, elevations, etc. bematiful modern residence at Bridgeport, Conn.
erected at a cost of $\$ 7,500$ complete. Plans and erected at a cost of
4. A sabnrban cotiage at Fordham Heights, N. Y cost
plane.
5. View of the new Lacas Bailding, Pulledelphia, Pa . is G. Hale, architect.
6. A dwelling at Longwood, Mass. Coot 8 sass com-
plete. Floor plans, perspective elevation
7. A villa recently erected at Rochelle Park, N. Y. Cost $\$ 7,800$ complete. Plans and perspective. Carriage house and stable of excellent deetign,
erected at" Belle Haven," Greenwich, Conn.
Estimated cost $\$ 8,200$. Ground plans and perEstmated cos.
spective view.
8. A cottage in Rosalle Coart, Chicaqo. Retimated
cost $\$ 8,600$. Perspective and two foor plana. row of Philadelphia houses ranging in cost from $\$ 7,500$ to $\$ 5,800$ each. Perspective and plang. carriage honse at Newark, N. J. Cost $\$ 8.800$ iew of the Masonic Temple being erected a
Chicago. A twenty story building. Mesers. Chicago. A twenty story bailding. Mesers,
Burnham \& Rooh, architects. A magniAcent Burnham
structure.
structare
A dwelling at Newark, N. J., recently completed at 15. Half page engraving of a gateway at Newport, R. I B. Miscellaneous contents: Proportion in architectare. -Improved hand circular rip saw, illastrated.-
Improved band reeaw, illuetrated. - Improved Improved band reeaw, illustrated. - Improved
hot water heater, illastrated.-Porches, windows, stalrs.--Cook's luminous level tube, llastrated.-
Fox's barb wire post, illustrated. - The Sykee Fox's barb wire post, ullustrated. The sykei
metallic rooflog.-The "Florida "steam and bo

The Scientiac American Architocts and Builders sdition is isened monthly. 82.50 a year. Single copiea 20 cents. Forty large quarto pages, equal to aboat two handred ordinary book pages : forming, practl-
cally, a large and splendid Masexine or Azcritso TORE, richly adorned with elegant plates in colore and with Ane engravinge, illinstrating the most interveting
evamplee of Modern Architectural Construction and allied subjects.
The Fullnese, Richnese, Cheapnees, and Convenience of this work have won for it the Larezer creconumiom
of any Architectural pabication in the world. Sold by all newwicalers.
nun
MUNN \& 201 Bromadmas, Now York.
$\frac{\text { October 10，189I．］}}{\text { 2Business and Personal．}}$

The charve for Ineertion under tmis head io One Dollar a unn

 The change for Insertion under this head is one Dollar a linefor each msertion；about eioht words to a lines．Adver
tiemenis must be riocel tisements must be recolved at pubication ofice as earty ai
Thurday morning to appear in the following week＇s

For Sale－New and second hand latbes，planers＇drille shapers，ensines，and bollern，belting，pulleys，and shaft
Ing．List sent free．W．P．Davis，Rocheoter，N．Y． Grindertonee，all kinde The Clev＇d 8 tone Con，Clev＇d， Patent Dealers．Street \＆Flshberr，Dallas，Texnes． Presees \＆Dien．Ferracute Mach．Con，Bridgeton，N． For best bolsting engine．J．8．Mundy，Newark，N．J． For best Erindstones．Cleveland Stone CO．，Cler＇a， O Billings＇Patent Breech－loeding Single Barrel Bhot nord，Conn． The Improved Hydranlic Jaokk，Punches，and Tube Money provided to manuffacture patented articles of Screw meohines，milling mechines，and drill presees． ＂How to Keep Bollers Cleen．＂Send your addrees for free 88 p．book．Jas．C．Hotchidies， 112 Liberty 8 tr，N．Y． Centrifugal Pumps for paper and palp milms．Irrigatimge
and sand pumpling plants．Irvin Van Wie，Syraccese，N．Y． Rubber Belt ing，all sizes， $7 \% 1 \%$ per cent from regular hist，
All kinds of rabber All kinds of rabber goods at low
lej． 156 South Street，New York：
Split Pulleys at Low prioes，and of same etrength and
appearance as whole Pulle， appearance as Whole Pulleys．Yooom \＆Son＇s Shafting
Work，Drinker Sten Phllacelphta，Pk Works，Drinter Blo，Philadelphia，Pa
Guilld $\&$ Gerrison，Brooklyn，N．P．，menufacture steam
pumpe，vacuum pumpe，vacuum apparatue，air pumpe pumps，vacuum pumpe，racuum app
actid blowera，alter press pumpe，etc．
The beat book for electrictians and beginners in eleo－
trictity is＂Khrperiment trictty is＂Experimental Sclence，＂by Geo．M．Hopkins． cresend for new and complete catalogue of solentinc and other Books Yor sale by Mun．
New York．Free on application．

等

hints to corrbspondents． Na mes and A ddrese must sccompang，all letters，
or no attention will be pald thereto．This io for our
information and not for publication．

 some answers require not a littlear research mand that
thongh we endeavor ro reply
or an all eithber by litte

 Scionntife A merican supploments referred
to may be bad at the omice Price
Booke cente referred to promptiy supplied on receipt of
ninnee． $\begin{aligned} & \text { prits sent for examination should be distinctly } \\ & \text { marked or labeled．}\end{aligned}$
．
（3435）M．O．B．asks ：After a fire stream of wator has reached its natural height，how much higher nozzie of boee be brought 100 feet higher than the water level，will that be any advantage in forcing water gine at base of bailding？Give the difference beteen the nozzle being 100 feet high and nozzle placed base of building．A．With 70 lb ．Are pump pressure， you can throw a three－quarter atream a litule over 10
feet high，while the hydroatatic helght due to the above preseare is 181 feet，so that you coald with the hoee ex tended to that height still throw a stream 80 or 40 fee
higher，the friction of the hose making the difference higher，the friction of the hooe makjng the dufference
between the bydrostatic height and the jet height．
（3436）L．W．B．asks ：What process to ase to bronze a gan，and bring out the colors on a Damascus barrel，without rastlng．And for polishing，
which is the beet，beeswax or a lacquer．fi lacquer wha kind ！A．The browning of gan barrels cannot be don without rusticg．You can blue stain by arst cleaning and polishing，and wipe with a solation of one pari protochloride of antimony，one part nitric acid，two parts hydrochloric acid，then rab the surface with a plecer is produced．Then warm and rub the barrel with
coll parampor beeswax，or
with a littie copal on a rap．
（3437）F．H．V．asks ：1．Does the density lens？I shoald think an the atmosphere focus of it would approach more nearly the density of the len and lessen the refractive power of it，thereby increasin the focal distance of the lens．Is this correct？ A ．The density of the atmosphere does affect the focal distanc have an instantaneooss shatter，which has itse slide so badly that it prevents the shutter from working What cau I do to prevent the slide from warping？A． Dress the slide a little thinner，so that it will ran lnose，
（3438）L．F．S．says ：On a plantation or sugar that I have charge of as engineer they ar asing water from a bayou in which there io a quantity bollers．It forms a foam that prevents as from knowing the level of water．Can yon glve me any receipt to atop sen the amnont of vegetable matter in the coilers by ex cesive blowing off．Otherwise altration will be in
order，by the construction of an artiacial ailter bed of
eand；or if the soil tis sandy at
at system of driven welle attached to the pu．
you cleaner wator than the open atream．
（3439）J．D．L．asks how to find the required voltage and amperage for a motor of a certaln
hores power．A ． 48 ande horse power．A． 718 watto constitute an electrical
horse power．A volt maltiplied into an ampere to a one horse power watt， 20 that，ior example， 1 ampere
maltiplied into 746 rolts will atre you a mailiphied intiled into 746 or 8 volts multipliod into 878 amperes $m 1 \mathrm{H}$ ．P；or 878 amperes maltiplied lato 2 volts $=1 \mathrm{H}$. P．and 50 on Any other given namber of volte which maltiplied inio a given number of amperes will produce $740=1$ electri cal horse power．For sach calculationa，we rofer
to the＂Arithmetic of Electricity＂ 81 by mail．
（3440）R．writes：Please give the com and grevels of concrete，a．g．，how much cement，mand and gravol？A．Beat Portiand cement， 1 part；clea （8441）H．D．P．asks bow the face an head are propared for making s plater cast of the and and head with nose and ears attached．A．Castins from life is very napleasant for the person operated upon，and especially when the face le moalded，the
pain is considerable．The face is arst greased woll with raseline，the eyeleshes and eyebrows boing well baried in pomade or clay and the emall hairs well emoothe
down．Whiskers，etc，should be clay．Quille are inserted in the nostrils for reapiration． Then when tho patient is lying in a recumbent poation， the placter is lald on．The patient most not move or
langh or speak antil the plaster is set．The plaster it laugh or speak until the plaster is set．The plaster is mixed with warm water，at the plaster cote bettor than rith cold water．When the cast is suflclently set，it
removed．This is the painful part of the operation hand can be done by thrusting it in a baeln of plaater then placing it on a towel in deared position．As the plaster neta，lay 8 atrong thread on the wet plaster alone may be lald from the wrist to the thamb．The objec of these threads in to matre divisions in the moald，and plaster over the hand to be withdrawn．Now lay on the It is nearly set（atill soft and wet），take the ends of the threade，and by ferking them sharply through the plas Cor，seccions are made in the monal．In a few minutes the plastor is hard and the monld may be burat asun－ leased．Fractares which will probably occur in thit parts of the mould mast be cemented carefally In thei places after they are dry by a colution of sbellac in alcobol．Limbe and even the entire figure can bo moolded in this manner．Professional moniders shoula

（8448）G ．
planta G．E．H．asks how to preserv ollowing answer is from the new＂Scientinc Amer can Cyclopedia of Recelpta，Notes and Qaeries．＂ commended by R．Hegler in the Dourtsche Botan，rech plantes as they consiste in duating salicylic acid on th with a brash when the flowera are dry．Rod colors in particilar are well preserved to this agent．Anothe method of applying the same preeervadive is to uee a 20 ation of 1 part of salicylic acid in 14 of alcohol by and piech above paper or collon wool sonked in and placeld yove and bolow the fiowers．Powdered land，in the Gardeners＇Chronich，recommends an an mprovement in the method of using salpharous acid or preserving the color，that in the case of delicate vowera they might be placed looeely between sheeta of vegetable parchment betore immer．
（8443）H．G．A．asks ：What is the cor－ rect atomic weight of orygen ？Is it 8 or 16 when given an a table in which hydrogen is 18 Is atomic welght water is 1 bydrogen to 8 oxygen，shoald oxygen mot be represented as 8 ；I ind some tablea give hydrogen 1 oxygen 8．while othere give hydrogen 1．oxygen 16. Where oxygen is given 2 se 16，should hydrogen not be olume of oxygen．By Avogadro＇s law hye mon to olume of oxygen．By Avogadro＇s law the molecules
nd thefr constituent atoms are sapposed to occopy the ame volume when in the greeous atate．Hence a mole cale of water is supposed to contain 2 atoms of hydro en and 1 atom of oxygen．This gives the basis for ydrogen 1 to oxygen 16 by weight．The relative velghts differ， 28 you indicate，in old and new system diference in the old and new system formalas．
（3444）J．J．H．writes：Having many calis for covering wood，iron，or atoel palleys and band cement powerfal enough to canse paper to properly ad－ here to the face of the wheel，when subjected to the proper load and speed．I want something that will casee the paper to keep its place on face of palley or
wheel under all circumstances and conditions heel ander all circumstances and conditions of weather，somechlog 1 could feel safe in recommending and the process for making it，or conld yon in any way inform me where I coald get itp shonld feel very thankfal for any Information leading to the diecovery of the cement I want，A．See Noteen and
8813, Augaet 8 ，1891，papering a palley．
（3445）F．G．H．asks how to etch silver A．The following answer is from the new＂Scienticic Anorican Cyclopedia of Recelpts，Notes and Queries． pres． ． ooped oil varnish and mastic，heat antil the war welted，iliter，and apply with a brush and heat until rarnieh stope emoking．Cover every portion of the ell vor carefally with the ground，scratch the design with elching needie，then etch with the following solu on： 16 parts nitric acia（sp．Kr．1．40）le added to 10 100 parts of water．Mix the two solations and elch．
（8446）W．E．V．asks ：How can araighten pleces of bent＇or crooked lancewood，ont of which I wish to make a niohing rod ：Aloo I have some out？A．Stears the baod and ollghty bend in 1 take it ant？A．Steare the wood and allighly bend in opposite
ilfection from the natural bend and dry．It ta cheaper to bay freah parafine than to free what you have from rreace．Or you can try bolling in solution of canatic

TO INVENTORS．

 cente at home and abroed，eanblo ns to underitand the aws and prectice on both coutinenta，and to pomeoes um ynopes of the patent laws of the Onited States and all coreleg countries may be had on application，and persione chroed，are invited to write to thas oflce for prices Which are low，It ncoordance with the times and our ex－
 MUNN \＆CO．
waf，New York．

INDEX OF INVENTIONS

or which Lettore Patont of the United statos were Granted

Soptember 29，1891，
AND EAOH BEARINE THAT DATE．
［See noto at end of list about coples of these patenta．］

w

 Rall way suwface cattle gaurd, J. Haini.......

Tobaco wouttig Rohrer. machine, G. Le c̈lia

TRADE MARKS.

2んDvertisements.

$T \underline{\text { The }} \boldsymbol{S}$ SUBLICATIONS FOR 1891.

COMBINED RATES.
The Scientific American and Supplement -- -
The eseintifice American and Architects and Bulld
ers Eatition, -
The scientific American, Supplement, and Archi-
tects and Builders Edition,
This incluces postage, which we pay. Remit by postal
or express money order, or draft to order of

AUGUST BELMONT \& CO., New York LEE, HIGGINSON \& CO., Boston.

Subscription for

 \$3,000,0007 per cent Comulative Preferred Stock. SHARES, 850 EACH

WESTIMGHOUSE

Electric \& Manufacturing Co
NO. 120 BROADWAY, NEW YORK.
DIRECTORS:
 Applical Boston Stock Exchanges. ork and Boston Stock Exchanges.
The proceedings taken by the Com issue of Preferred Stock have been submitted to coun-
sel, and they advise us that the reorganization and thls sel, and they advise us that the reorganiz.
issuue of Preferred Stock are valld in law.
issue of Preferred stock are valid in law.
The business of the Westinghouse Electric and Manu
facturing Company has grown to its present large profacturing Company has krown to
portions in about flive years. Its growth has been no
only rapid, but continuous, and has fully kept pace with only rapid, but continuous, and has fully kept pace wit
the remarkable development of the electrical industry Sales are as follows:

12 m

12 m
12 mo
12 mo
12 m
f
f
b
f
f
f
t
t
t
 months, to 31st December, 1880.......
.
The Company manufactures its apparatus at three
fully-equipped factories located, respectively at Pitts-
burg, Penn Newark, N. J., and New York City, whlch
burg. Penn., Newark, N. J., and New York City, which
furnish exceptionally complete facilities for the manufact
tus.
Th
ity a
has has more than one thousand patents work, although it The Company will conpetition.
mechanical and engineering ablilty of its founder, Mr Westinghouse.
We have made
We have made an estimate of the assets of the com-
bined Companies, and our examination has led ns te believethat, after making liberal deductions for all foreseen contingencles, the assets of the reorganized Com-
pany will furnish ample security for the total issue of value of the patents at all, and that the working capital
will be fully sufficient to conduct the business on an economical basis, the saving in the interest account
alone being sufficlent to pay full dividends on this issue.
Sbject to certain reservations cetalled in the pro-
ins spectus, the examination of the accountants shows an
average proftit of $\$ 443,140.52$ per annum for the periods considered.
We invite subscriptlons to the above-men
ferred Stock AT PA R, payable as follows:
10 PER CENT. ON APPLICATION.
30 PER CENT. ON ALLOTMENT.
30 PER CENT, ON 2D NOVEMBER 30 PER CENT, ON 2D NOVEMBER.
30 PER CENT, ON 23D NOVEMBER.
Subscribers have the option of paying in full for
the stock allotted to them, pated paymen
per annum.
The right is reserved to refect or reduce any subscrip-
Tons and to make allotments of less than the amount applied for. In allotment, preference will be given, so
far as practicable, to those stockholders assenting to the recent plan of reorganization and to employees and
dealers in the Company's manufactures. The failure on the part of the subscriber to pay any
installment when due shall operate as a forfelture of all previous payments.
The subscription list will open simultane-
ously at 10 o'clock A. M. on Wednesday, the 14th day of October, 1891, and close at AUGUST BELMONT \& CO.,

23 Nassau St., New York.
LEE, HIGGINSON \& CO.,
44 State St., Boston.
Coples of the Plan of Reorganization, the prospectus,
with full details and forms of application, can be obWained at the offices above mentioned.
The subcription for the entire
Preferred stock above offered has been guar

 Motors and Dynamos,
 Appliances.
Keystone Electric

STEEL TYPE FOR TYPEWRITERS
 New Yorkstereacil whs,

AGENS wd tor How IMandon

 THE WORLD AND GLEN CAMERA
 PROGRESS OF THE ART OF MIN-

We do not refer to science in the abstract, but to our new book by Mr. Geo. M. Hopkins, having the above
This book has proved itself to be the most popular scientific book ever printed. Every scientific person, and any person desiring to become scien tific, should have it. It will pay to look over the illustrated table of contents, which we send gratis. 740 pages, over 680 first-class illustra pages, over 680 first-cla
tions. Price by mail, $\$ 4$
Munn \& Co., 361 Broadway, N. Y

Shepard's New \$60 Screw-Cutting Foot Lath
 Foow-Cutting Foot Lath
 payment. for catalogue of ootits
sen for
for Amateurs or Atisans. Adress H. AL SHEPARD. $134 \begin{gathered}\text { East } \\ \text { EAT } \\ \text { Cincinnatreet } \\ \text { Cind }\end{gathered}$
VOLNEY W. MASON \& CU. PRICTION PULLETS CLDTCHES and ELEVATORS
 WANTPT
A frrst-class Blacksmith and Wrought iron Worker-

1E FNESS \& HEAD NOISES CURED
Scientific Book Catalogue IEEEENTLY PUBLISHED.

 HOW TO MAKE DYNAMO ELECTRIC

 "STANDARD" EMERY WHEL DRESSER

Cutters supplied to ft any make of handle. If you do
not wish to buy complete tool, send
the with name of
we send catter to
Our Awist Drill ToOL CO., Cleveland, Ohio.

a

 After being on the Market Five Years The "ACME" sill Leads! Sizes One. TWo. Three, and Four Horse Power. Arranged for either NATURAL GAKerosene Oil fire, as orderedion No extra insuranee reaured an account of the oildre.
Send for catalogue kiving full particulars and prices.

The
Remington Standard

 the experien ne gained during the FTTERN
 Wyckoff, Seamans \& Benedict 327 Broadwav, New York.
ICE and REFRIGERATING MACHINES
The Pictet Artificial Ice Company (Limited), Room 6, Coal \& Iron Exchange, New York. Ruvit iveriviluprn
 HARRISON CONVEYOR! $\underset{\text { Hading Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&\&. }}{\substack{\text { Hand } \\ \text { send tor }}}$

ts many times greater than that or any simimilirculation jounnal
is man publishec. It toos into all the state
now now published. It foes into all the states and Trerrito-
ries, and is read in all the princlpal libraries and reading rooms of the worla. Δ business man wants something more than to see his advertsememin in ma printed news vertises is the scirirxuricion Ambric AX. And do not let tee advertising apent infuence you to substitute some
other paper for the ScIENTIIT AMERICAN, when se lecting a list of publications in which you decide it is for
your interest to advertise This s s frequently do the reason that the agent gets a larger commission from the papers having a mmall circulation than is allowed on the Scirntipic Ambrican.
For rates see top of find
For rates see top of first column of this page or ad -
aress

 INVENTIONS PRACTICALLY DRIT Mast,

OIARRIE'ES WARP DYEINGAND SIZING MACHINES, OWER WRINGERS FOR HOSIERY AND DRYINGANDVENTLLATINGEANS,

CEO. P. CLARK,

MAGICLANTERNS

CANDE EPTICONS SCHOOLS\&PUBLIC STEREOP YOOR ENTERTAINMENTS - Muien 2 Co Useful Books?
 permits the transminiss. Our post office department

OTTO GAS ENGINES
33,000 sOLD.
Engines and Pumps Combined For COAL GAS

SCHLEICHER, SCHUMM \& CO. HICAGO,

CFITCRES

ARTESIAN

 OILS AND FATS-SOME PRACTICAL

LITTLE WONDERS

THE PREMIER CAMERA

IS THE BEST IN MARKET．

 simple of Manipulation．Plates or Films are used． PRICE \＄18．00． Send for Catalogue and copy of Modern Photography We make all kinds of Cameras． ROCHESTIER OPTICAL COMPANY，

WHy

RUBBFR EMGTINE

The MONARCH and MALTESE CROSS RED STRIP and MOHAWK brande of RUBEER BELTING
THE GUTTA PERCHA AND RUBBER MFG．CO． Para Building， 35 Warren St．，Now York
snn Yrancleco．
Portiand，Oregon． \qquad

THE HANDY

SIEMENS＇＊CABLES．
 SUBMARINE，
 TELEGRAPH， UNDERGROUND，＊$+\quad$＊TELEPHONE，

 INTERIOR，＊ELECTRICLICHT．SIEMENS \＆HALSKE by THE EDISON GENERAL ELECTRIC CO． heir SCHENECTADY wORKS．

Cable and Wire Department，Edison General Electric Company，

ASBESTOS SECTIONAL PIPE COVERING

A Non－Conducting Covering for Steam and Hot Water Pipes，etc． ASEESTOS．BOIIFR COVEIRINGS Wh are prepared to take contracts fon applying Steam Pipe and Botler Conerinos in any part of the United Statan
H．W．Johne Aobeates milibonrd，Sheathlige，Bailiding Felta，Firo－Proof Painta，Liquid 87 Malden Lane，Now York．Paints，Asbestos RooAna，etc．Chicago，Philad．lphia，boston．

POROUS EARTHENWARE．－BY

Leland，Faulconer \＆i Norton Co．，Detroit，Mich

Malleable
 THOMAS DEVLIN \＆CO

COMPLETE BTOCK OF
Double Brace，Self－Oting，Adjusta ble Ball and Socket Hangers， Pillow Blocks，Post Hangers，Etc．

EDISON GENERAL ELEOTRIO OO， SCHENECTADY，N． \mathbf{y} ．
ELECTRIC POWER APPARATUS， FOR EVERY VARIETY OF MEOHANIOAL WORK．
SAFE，SURE，RELIABLE． ESTIMATES FURNISHED．SEND FOR CATALOGUES THOMSON－HOUSTON MOTOR CO．， 620 ATLANTIC AVENUE，BOSTON，MASS．

GRAVESELEVATORS

95 MILK ST．，BOSTON，MASS．
This Cowpany owns the Letters Patent ranted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877．No．186．787．
The transmission of Sueech by all known Torms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish ed by it or its licensees responsible for such anawful use．and all the consequence oof，and liable to suit therefor．

BALL．AUTOMATICIC

 THE BALLENGTEE FA． エエエモ
Scievilicic Merich

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World
Only 83.00 a Year，Including Postage．
Weekly－ 52 Numbers a Year．
This widely circulated and splendialy illustrated paper is published weekly．Every number contains six－ original engravings of new inventions and discoveries， representing Engineering Works，Steam Machinerry． New Inventions，Novelties in Mechanics，Manufactures，
Chemistry，Electricity，Telegraphy，Photography，Archi－ tecture，Agriculture，Horticulture，Natural History， etc．Complete list of patents each week． Terms of Subscription．－One copy of the Scirs－
TTFIC AMRRICAN will be sent for one year－${ }^{2}$ ne numbers－ postage prepaid，to any subscriber in the United States， Canada，or Mexicoio on reecipt of three dollars by the
publishers；six months， 81.50 ；three months， 81.00 publishers；six months，81．50；three months， 81.00 ．
Clubs．－Special rates for several names，and to Post Cubsters．－Wrecial frates for particulars．
The safest way
To remit is by Postal Order．Draft，or Express．Money Order．Money carefully placed instde of envelopes，securely sealed，and correctly addressed，
seldom goes astray，but is at the sender＇s risk．Address all letters and make all orders，drafts，etc．，payable to

MUNN \＆CO．， 361 Broadway，New York．
§cientific simerican \＄upplement
This is a separate and distinct publication from THE overy number containing sixteen large pages full of en－ gravingas many of which are taken from foretign papera， and accompanied with tranolated descriptlona．THE
SCTENTITIC AMERICAN BUPPLEM ENT IS published week－
 sents the most recent papers by erinent writers in ail
the princt pal departments of Sclence and the Usefal rts，embradna Blology．Geology，Mineralory．Natural History，Geopraply．Arohsology，Astronomy Chemio－
try，Klectricty，Light，Heat，Mechanical Enntineering． Steam and Rallway Enpineering，Mining，Bhip Buildinge，
Marine Englneering，Photography，Technologr．Mann－ facturing Induatilea，Banitary Engineering，Agriculture． Horticulture，Domestic Economy，Blograpby，Medicine． otc．A vast amount of fresh and valuable information obtanable in no other publication
The most important Enotncerting \boldsymbol{H} orks，Mechanitems，
and Manciactures at bome and abroad are Illuatrated and decifibed In the SUPPLEMENT．
Price for the BUPPLEMENT
Price for the SUPPlisment for the Unitiod States and Candal 8500 a year；or one copy of tee 8cikntitic Ak－
ERICAN and one copy of the SUPPLEMENT，both malled for one year for 87.00 ．Single coptes， 10 centa．Addreses and remit by postal order，exprese money order，or check， MUNN \＆CO．， 361 Broadway，New York， Publishers scientific anmricar．
Zuilding Edition．
THi scientific absracan．Architectst AND Single coples， 25 cents．Forty large quarto pariee，equa to about two bundred ordinary book pages：forming a arge and splendid Mafazine of Architectura，richly engraingiss：l llustrating the most interesting examples of modern architectural construction and alled subjects． A special feature is the presentation in each number dences，city and country，including those of very mod－ erate cost as well as the more expensive．Drawings tn
perspective and in color are given，together with full Plans，Specifications，Sheets of Details，Estimates，etc．
The eleganee and cheappess of this magniffeent work Arehitectural publication in the Circulation of any MUNN \＆CO．．Publishers 361 Broadway，New York．

PRINTING INKS

