

- A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

|  | NEW YORK, OCTOBER 3, 1891. | \$3.00 WEEKLY. |
| :---: | :---: | :---: |



A MAMMOTH GRAPPLE DREDGE AT WORE IN THE BAST RIVBR, NEAR TENTH STREET, NEW YORK.-[See page 214.]

## \%rientifit ghmericau.

ESTABLIBHED 1846.
MUNN \& CO., Editors and Proprietors published webkly at
No. 361 HIROADWAY, NEW YORK.
O. D. MUNN.
tERMS FOR THE NCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico..
One copy, six mont ha, for the U. S., Canada or Mexico One copy, six mont ha, for the U.S.. Canada or Mexico................ 150
One copy, one year.to any forelgn country belonging to Pootal Union. 400 Remit by postal or exprese money order, or by bank draft or cheokk.
MUNN $\&$ CO., 881 Broad was, corner of Yrauklin Street, New York.

 act Readers are apecially requested to notify the

NEW YORK, SATORDAY, OCTOBER 8, 1591

table of ountents of
SCIENTIFIC AMERICAN SUPPLEMENT
No. 822.
For the Week Ending october 8, 1891. 1. ANTHROPOLOGY - The Studg of Mankind - Arevien of Pro





V. GEOGRAPHY AND RXPLORATION-The Grand Fatito of









REAL AKD Imaginary spred of steak yacets. There seems to be ground for the fear that storie about steam yacht speed, like fisherwen's tales, will be come the synonym for exaggeration. There was good illustration of this recently. The Norwood, a tight lit the steam launch of ancommon speed, crosses the bow of and runs away from the Sandy Hook $t$ win sorew steamboat Monwouth, and is heralded fur and near with making extraordinary speed, variously estimated at between 24 and 25 miles an hour. Then the Vawoose, designed by a rival builder, does the sam for the Hudson River steamboat Mary Powell, and is credited with the same or even more speed than the Norwood. The builder of the Norwood informs the public that his craft, while on a trial trip on a Massachusetts river, made 30 miles an hour for two consecu tive hours before witnesses, whose names and confirmatory statement he appended. As to the Vamoose, it is declared in cold type that "The contract called fo a speed of 25 wiles per hour, and while in her two trial she did not quite reach this speed, her owner is confi dent that she can make between 26 and 27 miles an hour under favorable conditions."
Perhaps she can. Perhaps her rival can do the same or even better. We hope to see each of them realize the maximum that is expected. But, putting aside hopes and promises, let us set to work to discover just what each has done up to the present time in thes waters, and then we can put a peg in at that point and thus be able to determine hereafter just what im provement is made.
The steamboat Monmouth, which the Norwood out ran on the course between the Narrows and Sandy Hook, is not wach faster than the old Bt. Johu. When she has a strong ebb tide with her she makes the 2 wiles run frow New York to Sandy Hook in about 5 minutes, which, if we estimnte the speed of the curren at $21 / 2$ wiles an hour, gives a speed of something less than 20 wiles an hour for the Monmouth. Thns a craft whose engines could be worked up for a short spurt o
205 miles could readily overhaul and pass the Mon mouth if starting, as the Norwood did, close astern As to the 30 miles an hour during the trial trip in Massachusetts waters, the witnesses, there is reason to belleve, were altogether unused to waking tests fo speed and very much exaggerated what they though no doubt without any intent to deceive.
It is, indeed, curious how easily an inventor and hi boat. We deceive themselves as to the speed of a yacht once which was alleged to have uade 28 wiles an hour, and the best that could be forced out of her proved to be 15 miles an hour.
As to the alleged race between the Vamoose and the Hudson River steamboat Mary Powell, in which the former readily overhauled the bigger craft, we have former readily overhanled the bigger crait, we have
been informed by the Powell's master that she was no at that time racing, nor ever does engage in such con tests while on her regular trips with passengers aboard We are satisfied that this is really the case, and, more over, it is evjdent that with a boatload of passengers running from side to side, the craft meantime listed heavily to port or starboard, she could not wake even ordinary speed. Again, the Mary Powell, as is well known, has never, since rabuilding, been as speedy as forwerly, and it is not likely that she was making more than 18 or $181 / 2$ wiles an hour when the Vamoose came up. Hence to beat the Powell, loaded with freight and passengers while running her regular trip can scarcely be considered a remarkable feat for a steamer built by one of the cleveres
country with a special view of speed.
If the speed of these two boats is to be reckoned by what the inventor or owner says they can make or by circling harbor and river traffickers presumably speedy there is no limit to what the imagination may picture But if performance is that amount of actual work that can be sustained by statistics, neither the Norwood no Vamoose has yet shown much better speed than 20 or 21 statute wiles an hour.

## SHOP RULES.

The majority of shop rules, although intended to secure orderly conduct, efficient service and a har monious forwarding of the work in hand, quite as fre quently interfere with superintendence as assist it Rules often fail where they set forth facts and penal ties relating to common honesty, order, dinobedience and the willful, walicious, or accidental destruction of property, or relate to defects in work. The instance majority of cases, and arbitrarily to force the rules to fit such cases, or to force the cases to fit the rules, is much harder work than it would be if the manage ment were left free to decide for the right unhampered by any rules whatever. No business or body of men cau be inanaged by the blind application of set rules any wore than a fleet of ships can be steered by one rudder. Every craft obeys its helm, but yields ac cording to its peculiarities of build and motive power so every man can be ruled if his peculiarities be un
derstood and a reasonable allowance made for them If a concern could possibly have a full and complet
set of rules to meet every case and every variety of ault, and to cover every interest of the business, and be fair to every employe, these rules could not ezecut hemselves. They would not bea satisfactornequiva lent for an energatic superintendent or a faithful fore man. The responsibility of superintendence canno evaded by the printing of rules.
Here are two rules that indicate about all that need e said in a general way to the ewployes of any con cern, and that leave the management free to consider very case on its whole merits.

## Rules.

1. In consideration of the fact that each and all employes of this establishment are regularly paid sucb wages as have been mutually agreed upon as a fair quivalent for their full services within stated hours he management requires as full and as faithful a ren dering of the stated service from each of its employes as it renders to them the stated sums in payment herefor.
2. Every question that may arise between employes and overseers, or relating to work, discipline, order, honesty, and every other question affecting the estal lishment, will be decided on its merits by the officers, having in view the interests of the business.
These rules are not intended to serve ae exact pat erns for all shops, as special additional rules may be eeded for each particular business, but the above re sufficient to indicate that the necessary regula lions for a shop may be wade very few and brief, and to emphasize the fact that rules are good only as they are explicitly stated and energetically enforced.

## The Expence of Government

Some very interestiug statistics in regard to the government's account with the people are pablished by edward Atkinson in the current issue of the Forum. The total amount of the normal cost of the govern ment proper of the United States for the fiscal year end ing June 30, 1889, was $\$ 146,478,144$. These expenses included the entire cost of the civil service and of the wilitary establishment, including fortifications and iver and harbor improvements, and of the navy including appropriations for the construction of new vessels. This entire amoant, however, great though it is, is covered by the duties which were paid on liquors and tobacco. The amount of this revenue was $\$ 148,883$, 788 It will be seen, therefore, that were it not for the It will be seen, therefore, hat were it not for the war and its accompanying train of bardens, the en-
tire expenses of our goverument could be met by the tire expenses of our goverument
tares on liquor and tobacco alone.
The tables indicate that since 1871 the revenue from
The liquor and tobacco alone. his source has increased more in proportion than the crease of population.
The other items of expense and revenue for the year ending June 80, 1889, will also be of interest. The expenses are:

| Indian account. | 86,890,807 |
| :---: | :---: |
| Interest on public debt. | 41,001,484 |
| Arrears of pensions setlled | 21,44,349 |
| Carrect annual pensions. | 66,182,429 |
| Total. | 3133,518,460 |

The revenues are :
From duties (other than liquore and tobacco).... \$201,881,854
Swle of public lands, etc.... ....................
$\mathbf{2 2 , 1 7 0 . 5 5 8}$
Snddrien, internal laxes.
978.611

Nominal proat on purchase of allver ballion....... 10,165,284
To this should be added revenue on wibe
148,883,788
The entire expense of government during that year was $\$ 281,996,615.60$. The entire revenue amounted to $\$ 387,050,058.29$, and the surplus was $\$ 105,053,442.69$.
The changes of ratio of the national debt account to he pension account is very interesting.

| In 1871, the Interest on the pubilic debt | \$188576.505 |
| :---: | :---: |
| The pensions....................... | 34,443,894 |
| In 1891, the interest on the public debt was. | 38,009,234 |
| The ipensions for discal year ending June 80, 1891. | 121,415,961 |

Prevention of Yollour Tevor by
At a recent meeting of the Academy of Sciencee Paris, a paper was read on the preventiveinoculation f yellow fever by M. Dowingos Freire. The autho has incculated 10,881 persons with cultures of Micro coccus amaril. The wortality of those so vaccinated was 0.4 per cent, although the patients lived in dis tricts infected with yellow fever, while the death rate of the uninoculated during the same period was from 0 to 40 per cent. These results have led the govern ment of the Brazilian States to found an institute for the culture of the virus of yellow fever and ot her infec tions diseases, and to appoint M. Freire the director.

Utilization or Old Tin Cans.
According to W. L. Brockway's invention, waste tin plate, fruit cans, etc., are heated to $1,000^{\circ} \mathrm{Fab}$. in a furnace in which a reducing atmosphere is maintained It is clained that in about from three to seven minute he tin and solder are completely separated from the ron and fall to the bottom of the furnace, while the ron is left in such a condition that after cleaning, cold rolling, and annealing it is suitable for applications in which a tough high-class iron plate or foil is required.

## Öctober 3, 189I.]

## §ritutifir gmericam.

Comprehengive timbent TMmbor Teat Comprehensive timber tests have been inaugurated In the Forestry Division of the Department of Agrioultare, concernin
To define the objects of the work more in detail, some of the questions whioh it is expected ultimately to solve may be formulated as follows :
What are the essential working properties of our Various woods, and by what circumstances are they in-
fuenced ? fuenced?
What influence does seasoning of different degree have upon quality ?
How does age, rapidity of growth, time of felling, and after treatment change quality in different timbers? In what relation does structure stand to quality? How far is weight a criterion of strength?
What macroscopic or microscopic aids can be devised for determining quality from physical examination What difference is there in wood of different parts of he tree ?
How far do climatic and soil conditions influence quality?
In what respect does tapping for turpentine affect quality of pine timber?
It is also proposed to test, as opportunity is afforded, the influence of continued service upon the strength of structural material, as, for instance, of members in bridge construction of known length of service. This series of tests will give more definite information for the nse of inspectors of structures.
Besides ithese problems, many others will arise and be solved as the work progresses, and altogether a wealth of new knowledge regarding one of our most useful materials must result. It is proposed to publish results from time to time.
The collection of the test material is done by ex perts (Dr. Cbarles Mohr, of Mobile, Ala., for Southern perts (Dr. Charies Mohr, of Mobile, Ala., for Southern
timbers). The trees of each species are taken from a number of localities of different soil and climatic conditions. From each site five trees of each species are cut up into logs and disks, each piece being carefully marked, so as to indicate exactly its position in the tree; four trees are chosen as representative of the average growth, the fifth, or "sheck tree," the best developed specimen,of the site.
Disks of a few young trea,
Disks of a few young trees, as well as of limbwood, are also collected for biological study. The disk pieces are eight inches in height and contain the heart and sapwood of the tree from the north to the south side of the periphery. From fifty to seventy disk pieces and from ten to fifteen logs are thus collected for each species and site.
A full account of the conditions of soil, climate, aspect, weasurements; and determinable history of tree and forest growth in general accompanies the collection from each site.
The disks are sent, wrapped in heavy paper, to the Botanical Laboratory of the University of Michigan, at Ann Arbor (Mr. F. Roth in charge), to be studied as to their physical properties, their macroscopic and to their physical properties, their macroscopic and
wicroscopic structure, rate of growth, etc. Here are determined (a) the specific weight by a hygrometric determined (a) the specific weight by a hygrometrio
wethod; (b) the amount of water and the rate of its loss by drying in relation to shrinkage ; (c) the structural differences of the different pieces, especially as to the distribution of spring and summer wood, strong and weak cells, open vessels, medullary rays, etc.; (d)
the rate of growth and other biological facts which the rate of growth and other biological facts which
may lead to the finding of relation between physical appearance, conditions of growth, and mechanical properties.
The material thus studied is preserved for further examinations and tests as may appear desirable, the history of each piece being fully known and recorded.
The logs are shipped to the St. Louis Test Laboratory, in charge of Prof. J. B. Johnson. They are stenciled off for sawing and each stick marked with perfectlydidentified as to number of tree, and thereby its origin, and as to position in tree. After sawing to size, the test pieces are stacked to await the testing. size, the test pieces are stacked to a wait the testing.
One-half of every log will be tested green, the other One-half of every $\log$ will be tested green, the other
half after thorough seasoning. A determination is half after thorough seasoning. A determination is
made at the time of testing of the amount of water made at the time of testing of the amount of water
present in the test piece, since this appears greatly present in the test
to influence results.
From each tree there are cut two or three logs, from each log three or four sticks, two of standard size, the other one or two of larger size. Each standard stick is cut in two, and one end reserved for testing two years later after seasoning. The standard size for the sticks is 4 by 4 inches and 60 inches long for crossbreaking tests. There will, however, be made a special series of cross-breaking tests on a specially constructed beam testing machine, gauged to the Watertown testing machine, in which the full $\log$ length is utilized with a cross section of 6 by 12 up to 8 by 16 utilized with a cross section of 6 by 12 up to 8 by 16
inches, in order to establish the comparative value of beam tests to those ou the small test pieces. It is expected that, in the average, 50 tests will be made on each tree, besides 4 or 5 beam tests, or 250 tests for each tree, besides 4
each species and site.

All duecaution will be exercised to perfect and insure whic accuracy of methods, and besides the records, which are made directly in ink into permanent books, avoiding mistakes in copying, a series of photographs, exhibiting the character of the rupture, will asaist in the ultimate study of the material, which is also preserved.
Such work as this, if done as indicated, and well
done, will never need to be done over again. The results will become the standard the world over. The restrength and value of a given the world over. The will then no longer be a matter of opinion or even stick tion of established fact, and we opinion, but a question of established fact, and we will learn not only to apply our timbers to the use to which they are best adapted, but also what conditions produce required
qualities, thus directing the consumer of present supqualities, thus directing the consumer of
plies and the forest grower of the future.

The Direct Converalon of Heat into Eloctrictey.*
That electric currents can be developed by the direct application of heat to the junction of two different metals, which is the fundamental principle of the thermiopile, was discovered by Seebeck in the yea 1823. As regards the theory of the subject, Clausias
suggested in 1880 that "by the molecular motion, which aggested in 1880 that "by the molecular motion, which o the other; ; and Kohlransch's theory of 1875 is omewhat similar in assuming that the electric current is in some way connected with the flow of heat, and vice versa. The discoveries of later years, culminating in the researches of Hertz, prove, however, that the electric current is merely the result of a certain vibratory motion of the laminiferous ether, and, therefore in accordance with the principles of the conservation of energy, a certain definite quantity of heat can be converted into a certain definite quantity of electricity without either loss or gain of energy, and it is this meaning that is given to the subject of this paper, conversion by a dynamo machine being termed "inconversi"
Proceeding then to calculate the absolute efficiency of the ordinary means of producing the electric carrent by a steam-driven dynamo, the electrical energy developed is shown to be only 6.4 per cent of the energy existing in the coal burnt in the boiler; but even this low efficiency is eighteen times greater than the direct conversion of heat into electricity as farnished by a
Noe and Clamond thermo-battery, where the efficiency Noe and Clamond thermo-battery, where the efficiency works out at only 0.35 per cent of the mechanical equivalent of the gas burnt. If the high efficiency of the dynamo and steam engine in themselves, as manufactured at the present day, be considered, it is clear that not much greater results can be expected in that direction, and the author has for some years been experimenting in other directions, therefore, for the direct conversion of heat into electricity.
The principal idea acted on at first was the heating a certain metallic salt in a platinum crucible, which should form the positive pole of the element, and a carbon rod immersed in the molten substance the negative pole; this substance would part with its oxyen to the carbon, and then be reoxidized by contact with the air ; and with this form of apparatus, a wix ure of canstic soda and carbonate gave an electro
motive force varying between 0.475 and 0.4 volt, the motive force varying between 0.475 and 0.4 volt, the
"sodium blast " generated at the carbon point burning at the surface with its characteristic yellow flame, ac companied with slight explosions. For the similar potash salts the electro-motive force was between $0 \cdot 4$ and 0.31 voit, the flame being violet and the burning more violent, and forming a small display of fireworks. The adoption of lead oxide reaulted in a momentary high electro-motive force, and then a sudden collapse of the platinum crucible, owing to the metallic lead reduced falling to the bottom and eating through the platinum. The author was surprised also to find that at the junction of the platinum connection wire the rucible was also severely pitted, as the current had planation to offer therefor,
After these experiments, the results of which did not romise any simple solution of the problem, the author set himself to improve, if possible, the thermo-
battery, and for which purpose attention was directed o the following particulars

1. The adoption of durable materials.
2. That the electro-motive force and specific conduc ivity should be as high as possible.
3. Improvements in the form of the element.
4. Improvements in the application of the heat, i. e. higher efficiency in the production of the heat itself. Subsulphide of copper, in spite of its high electromotive force, gave, on account of high specific resistance, a weaker current than materials which gave only half its electro-motive force, and it was also found that by a species of dry electrolysis, granules of metallic copper were formed throughout the body of the mate rial, aad its use was, therefore, discarded. A form of battery is described, and which was exhibited at the meeting, consisting of tubes of nickel and a special

antimonial alloy, which was found to be very durable. This consisted of fifty elements in series natited in one casing, and gave an electro-motive force of 35 volts, and an internal resistance, when hot, of 0.4 ohm, with a consumption of $71 / 4$ cubic feet of gas per hour, and the absolute emciency is 1.08 per cent, or three times that of the existing thermo-batteries. Such a battery is almost exactly equivalent to two Bunsen elements. and though it is far below the dynamo in efficiency, still it may be suitable for varions suall installations and for experimental work, owing to complete absence of polarization, as the electro-inotive force does not fall on short direuit. The durability is enhanced by a regulator applied to the gas supply to prevent any aocidental overheating.
The anthor concludes by stating that he hopes to produce cells which are the outcome of still later reproduce celis which are the outcome of still later re-
searches, and in which the effeiency has been raised to over 5 per cent, and thus alwost capable of comoo over 5 per cent, and thus almost capable of com-
peting with the dynamo. The description of the construction is withbeld; but it is stated that one form is capable of continuonsly furnishing current for eight 16 candle power lamps at a consumption of 4.5 lb . of coke per hour. This success the author hopes still further to advance, and thereby exceed the effloiency of the dynamo system as a converter of heat into electrical energy.

## Resulte from sclentifl Eiten.

The American Meteorological Journal for July contains an article on Franklin's kite experiment, by A. Mcadie. After giving various details respecting Franklin's experiments the z.uthor describes similar experimants recently carried on at the Blue Hill Ob servatory, near Boston, the chief advance being that at every step the electrical potential of the atmosphere was measured by an electrometer. The kite was sent up on several days, and at a height of 1,000 feet sparks over $1 / 8$ inch in length were obtained; while abnormal movements of the stream of water from the electrometer during electrical disturbance always foretold when a flash of lightning was about to occur.-Cloud heights and velocities at Blue Hill Observatory, by H. H. and velocities at Blae Hill Observatory, by H. H.
Clayton. This paper contains the results of cloud obClayton. This paper contains the results of cloud ob-
servations made at Mr. A. L. Roteh's observatory during the last five years. The average heights of some
ins. ing the last five years. The average heights of soine
of the principal clouds were : nimbus 412 meters, cuinulus (base) $1,558 \mathrm{~m}$., false cirrus 6,500 m., cirrostratus uss (base) $1,558 \mathrm{~m}$., false cirrus $6,500 \mathrm{~m}$., cirrostratus
$9,652 \mathrm{~m}$., cirrus $10,185 \mathrm{~m}$. The cumulus is highest at Blue Hill during the middle of the day. The Upsala observations show that the base of the cumulus, as well as the cirrus, increases in height until evening, but neither of these conclusions apply to the obser vations at Blue Hill. The average velocity found for the cirrus ( 82 miles an hour) is twice as great as that found at Upsala.
The extreme velocity was found to be 183 miles an hour. A comparison between wind and cloud velocity shows that below 500 meters the wind velocity is less cloud velosity velocity. Above that, the excess of the decreases again till about 1,700 meters, after which it steadily increases. This decrease between 1,000 and 1,700 meters is very probably due to the fact that the clouds between 700 and 1,000 meters were mostly oberved during the morning, when the cumulus moves nost rapidly, and that the clouds between 1,000 and 1,700 meters were mostly observed during the after-
noon, when the cumulus moves slowest. - Meteorological kite-flying, by W. A. Eddy. This is an account of some experiments made at Bergen Point, N. J., to deermine the vertical extension of warm air currents by weans of self-recording thermometers carried by a kite string. Experiments showed that an altitude of 1,800 feet could be obtained by using one kite, and that many hundred feet could be added to the altitude by lifting the weight of slack string by fastening on larger kites. It is estimated that by this means an altitude of 4,000 feet was obtained. The minimum temperature at an altitude of about 1,500 feet, on February 14 last, was only 2 deg. lower than at on the surface.

## New style of Are Lamp.

M. Xavier Wertz, of New York, has produced a combination are and incandescent lamp which may develop into a successful article. The carbons are placed in an exhausted glass globe, and burn so slowly that no feeding is required. A short, thick, hollow carbon no feeding is required. A short, thick, hollow carbon is connected to a conductor, and inserted in a globe. solid core and round head, which rests upon the solid core and round head, which rests upon the
cylindrical carbon. The space between is filled with cylindrical carbon. The space between is filled with
an insulating layer of asbestos, which prevents any curan insulating layer of asbestos, which prevents any cur-
reut passing except at the upper sarface of the cylinreut passing except at the upper surface of the cylin-
drical carbon, where the two carbons touch. At this point of contact an arc is formed of sufficient size to produce a light of considerable power. The lamp is intended for high tension series working, and way be fitted with a cut-out and used on ordinary are lamp
circuits.

## SIMPLE TORY OF ELECTRIC MOTOR

A inotor adapted for the use of students and for experimental purposes, especially intended to be operated by static charges, and which may be used with a different number of combs, or have the electricity thrown upon one side of the main dibk only, is shown in perspective and vertical cross section in the accompanying iliustration. It has been patented by Messrs. John W. Davis and John B. Farrington, of No. 88 East Forty fifth Street, New York City. A dielectric disk mounted to revolve centrally in the frame, the shaft which it is secured having tapering ends pivoted in the inner socketed ends of screws, the screws being held in nuts sunk into the fraine, and the earings being insulated so that the eltricity on the bisg ing a the call be ber alt has a pulley on which a belt may b placed to run any light mechanism. At on ide of the frame is a strip carrying a sleeve encircling one end of the shaft, both strip and sleeve being of rubber or other insulating material, and on the sleeve is mounted a hub having arms extending from opposite sides and bent over the edges of the disk, the arms carrying metallic teeth forming combe, the ends of the teeth nearly touching the disk and serving to conduct the electricity to it. The hub is held in fixed position by a set screw, and has gange warks, by which the arms may be brought into a desired position. Electricity is supplied to the combs, the arms, and the hub by a contact strip resting on the hub and eecured to a suitably connected binding post. Arranged on opposite edges of the disk, early at right angles to the combs on the arms, are otner combs made in two parts, each part having an insulated shank mounted in the frame, these combs receiving the discharges from the disk, and their shanks being connected by a conducting bar on the side of the machine opposite that shown. The combs on the arms and those held by the frame are arranged in slightly different planes, to prevent the electricity in one comb neutralizing tha in the opposite comb, and thus holding the disk at a standstill. Contact is made with the horizontal combs by T-shaped conductors, the ends of the shanks of which are bent at right angles and piroted in binding posts, so they may be readily swung out of contac with the combs. With the binding posts on the end of the frame connected with the positive pole of a source of electric supply, and the post near the hab connected with the negative pole, the electricity will pass from the horizontal combs opon the disk, which will then be repelled and attracted by the combson the arms, thus causing the rotation of the shaft, the curren keeping it in motion. The arrangement and connec lion of the combs is such that a greater or less number of them way be thrown into a circuit, according to the experiment to be made. The electricity is preferably supplied by an electric machine, Leyden jar, or some similar source.

## AN EXTRACTOR FOR STUFPITG-BOX PACKITGS

The device shown in the illustration is designed to facilitate the extraction of worn-out packings from stuffing boxes without removing or injuring the rod

goodrich's paceime extractor.
or stem. It has been in practical use for many month past on the valve stem of an inverted vertical non condensing engine built by the Astoria (Oregon) Iron Works for a passenger propeller, and is highly spoken of as thoroughly efficient and labor saving. It con sists of a sectional bushing, one of the two sections having tongues in the line of longitadinal division fitting in corresponding grooves in the other section so that when the two sections are fitted togethe bushing is exteriorly threaded, to sorew into the bushing is exteriorly threaded, to screw into the
stuffing box, and has a square or hexaponal head for
the application of a tool, while in the head is an annular groove adapted to receive a ring to hold the bushing true. The lower end of the bushing has an inwardly projecting flange, which may be straight instead of beveled, as represented, it preferred, and a gland is adapted to pass into the upper end of the bushing to press the packing inwardly, the gland being pressed inward against the packing by a cap screwing on the outside of the stuffing box, as shown in the larger view. The head of the bushing may also be flanged, it desired, and the gland secured to the


DAVIS \& FARRINGTON'S RLECTRIC MOTOR
device is especially adapted to draw metallic packlng with facility, no matter how long it has been in use, and admits of the packing being made thinner, so that it will draw aronnd the rod better
Further particulars relative to this invention, or as to the manner of constructing the extractor, way be obtained of the patentee, Mr. Addison Goodrich, box 683, Astoria, Oregon.

## Diot

It is a settled fact that the average American eats oo much, and especially is this the case during the ong hot days of the summer season. In winter any excess of food may be stored up as a reserve supply, urnishing a protection, as it were, from the severity of winter's blasts. During this season most men are gormands and form gormandizing habits. When the ummer comes on, with its excessive heat, this extra upply of fuel is not called for, and yet your average Aluerican, never stopping to think that a change in diet wust be made to suit the change in surroundings, continues to stuff that "aching void" with pork, beef, beans, and all the rest of the heaviest, most nutritions oodstuffs. His gut is overloaded. Under the ener vating influence of the heat, and the consequent inacivity of the muscular system, the digestive tract loses its tone, its power of handling the immense quantities of stuff thrown into it, and as a result it is not long ere trange misgivings enter the mind of your gluttonons ndividual. The world seems to go wrong. All things eem out of joint. He eyes the bootblack, who looks up innocently with the business-like remark "Shine 9 " with a suspicious scowl. His gut is out of shape. Nine enths of the disturbences of the alimentary can . Ne due to injudicious feeding Now you who read pay ttention ! Your stomach is not a bag of rubber pay tretched to its preatest powe bag of rubber to be retcld the bould the sensation of complete satiety be taken a he index of the quitting point. Stop at the point of noderate satisfaction, and allow your stomach to re ame its datural condition of woderate dilatation. Under these conditions the gat will take up the food, andle it thoroughly, abstract all materials requisito or the healthy nutrition of the body, and you will go on your way rejoicing.-S. A. G., Texas Health Jour.

Black Flashes of Mightning.
The report of the British Association Committee on Meteorological Photography, read by Mr. A. W. Clayden before Section A, set forth, among other facts in elation to lightning: The so-called black flashes have of course been disposed of. The experiments described two years ago by the secretary to your committee howed that the appearance is due to reversal pro duced by some form of diffused light having fallen upon the plate. This conclusion has been subse quently conflimed by Mr. Shelford Bidwell, F.R.S. and again by Mr. Clayden in the photograph nam bered 2 B. This was taken at Bath in the early inorn ing hours of June 25. After the flash had passed, the plate was left exposed for a few minutes, in the hope he a second fash mighti huminate the same part of iew being brightly lit up by a flash which was itael hidden in the clouds. Where the consequent glare crossed the undeveloped image of the flash reverisal has occurred, while no reversal can be detectéa in the other portion. It will be noticed that this flash, like many others, shows a distinct ribbon-liks structure Jready bived occurrence of this pheuomenon bae
W. Marriott and Mr. Cowper Ranyard have attribated to a movement of the camera during the existence of the flash. Certainly many such photographs have been taken in caueras held in the hand or on no very fru hase. Moreover, Dr. Hoffert's photograph, No. B, shows this structure well in the successive brigh lashes. Nevertheless, it must be noted that in this last case the camera was in rapid motion, and yet the ribbon-like structure is hardly more pronounced than is in other pictures where any accidental movemen was presumably much less. Moreover, the photo graphs Nos 2 B and 8 B show this structure very plainly, though the camera was standing on pleady support and wovement durins the tash wes quite ont of the queution. Altornate hy was quite out of the question. Alternate hy poflection aro the back of the plate due to rellection in or in th lens. If either view were true, the dbrighter parts of the flash should show the ribbon form the best, whereas the contrary seems often to be the case. Again, if the former hypothesis were true, the position occupied by the re flected light could be ascertained by consider ing the direction of the incident light. Fact here disagrees with theory. The evidence at present obtainable therefore points to the con clusion that a bright lightning flash may often take the form of a long sinnous ribbon, whose sectional thickness is very different in turo di rections normal to each other. Some of th appearances noticed also indicate that the preater thickness througo indicate that the a given flash lies in one and the same direction, and the variations in its apparent direction are merely an effect of perspective. This structure must be carefully distinguished from another, in which several distinct flashes follow precisely similar paths side by side.

## New Dyes.

Three new shades of diamine blue have been recently introduced by Messrs. Leopold Cassells \& Co. Th diamine blue 2 B and 3 B give very pretty shades. These blues are not turned red by the action of alka lies, or hot pressiug, an advantage not shared by any other direct blue dye. A fast nentral violet $B$ is another new dye specially suited to cotton printing. Cotton can be dyed in the usual way on tannin and tartar emetic mordant. It will be found useful as a substitute for alizarine and methyl violet, especially for the deeper shades, as under these conditions the new violet does not develop a bronzy tinge.

## A FOLDABLE CLOTHES DRIER

The improved device shown in the illustration is adapted for use indoors and out, and can be compactly stored in a sinall space when not in use, and quickly expanded for service. It has been patented by Mr. James W. McCandless, of Cañon City, Col. A tubular standard or rod has at its upper end a revoluble capplate in which are pivoted a number of galvanized spring wire rods. Sliding loosely on the standard be low the cap is a runner in which other spring wire rods are pivoted, each of the lower wires being connected with one of the upper wires through interlocking eyes, while the outer ends of the connected wires are united by a series of double links. The ranner has an annu. lar groove, in which is loosely mounted a collar from which depends a handle. When the drier is to be used indoors the standard is preferably mounted on a tripod bat when used out of doors it may be attached to a


Mocandless' clothes DRIER.
ared post, and in this case, when the drier is made of arge size, the handle is connected to a lever fulcrumed on the post, ee shown in the figure at the left in the ilustraben, the figure at the right being a partial seetion when the drier is folded. The drier is extended by drawing down upon the handle, which causes the connected wires to spread in the same manner as the ibs of an umbrella, and the drier is held in open posiion by a hook on the ferrule. The frame is readily revolved upon the atandard, so that there is no neces. sity of walking around the device when placing clothee upon or removiug them from it.

## The millikwoeds.

Milkweeds are of six or seven kinds, eays F. B. Sanborn, in the Boston Advertiser. The ordinary oue (Asclepias cornuta), or silk weed, is very conmon everywhere, but varies greatly both in the color of its flowers and the shape of its leaves. During the last centary the coma of the seeds of this plant was used for wick yarn. Dr. Manasseh Cutler (1783) writes: "The candles will burn equally free and afford a clearer light than those of made of cotton wicks. They will not require so frequent snuffing, and the smoke of the snuff is less offensive." In 1838 a patent waf granted to Miss Gerrish, of Salem, for a'process by which the fiber of this milk weed was to be ased for the manafeoture of various kinds of thread, cloth, etc. Bat the manufactured product never got fairly into the market, any more than Dr. Cutler's milkweed candles did and now cotton and electricity have got the start of thein and of bayberry tallow, which was also a product of New England.

## Mineral Wax in Oregon.

We were shown recently, by Mr. Melville Attwood, some specimens of a peculiar ozocerite from a recently discovered deposit in Southern Oregon. The mineral has a very different appearance from that found in Utah. It burns very freely, with a dense smoke but no odor. If the deposit is of any extent, the discorery is an important one, since it is found in only one other locality in this conntry. The Utah ozocerite began to come into the market in 1888, and the markosit is now producing deposit is now producing about

## This

is mineral wax, or ozo cerite, in its refined form is used for nearly all the purposes to which ordinary beeswax is applicable. It possesses nearly all the properties of beeswax except stickiness; but in cases where that quality is desirable, it is only necessary to wax the mineral with ordinary beeswax. Crude ozocerite, like other hydrocarbon compounds, is used to a considerable extent as an insulator for electrical wires. Ozocerite belongs to the series of hydrocarbon compounds which include marsh cas, which include marsh gas, petroleum, and paraffine, it being very similar in appearance to the latter. It is colorless to white when pure. It occurs leek-green, yellow, and brown.
This Oregon mineral wax is a yellowish-white. Its specifle gravity is very small, it being exceptionally light for its bulk. From appearance it is a purer article than that produced in Utah.
We import large quantities of this material from

Galicia, Austris, the amount, according to census inches high pressure, 141/4 inchesintermediate pressure, reports in 1889 , being $1,078,725$ pounds. There are thirty-five companies at work in Galicia, where they have been mining the substance since 1862 . They had a monopoly in the product until 1888, when the Utah deposit began to be worked. If there is much of the substance in Oregon it will be worth attention, as the demand for it is on the increase.-Min. anci Sci as the
Press.

Monosulphide of Potassium as an Insecticide. The following is a resumé of the essay written by M. Dubois upon the value and efficacy of the monosulphides of potassium or sodium as insecticides. It is employed in the form of a solution, the strength of which varies from $10^{\circ}$ to $35^{\circ} \mathrm{B}$., according to whether it is to be employed for destroying the eggs of the insects or the insects themselves.
Experiments made specially upon "acridenes" show that the hatching of the eggs is prevented by sprinkling them lightly with a solution of monosulphide of potassium of $10^{\prime}$ B. The fully developed insects are likewise destroyed by a similar treatment, none being capable of resisting it, not even the vigorous horn beetle, in spite of its thick shell.
These experiments would, therefore, tend to show that these insect pests, which devastate the crops in Algeria, can be exterminated by the simple and eco-
$281 / 2$ inches low pressure, with 18 inches stroke of piston. The condenser forms part of the framing of the engine and contains 600 square feet of cooling sur face. Air and circulating pump 8 inches steam, 10 inches air and 10 inches water. The propeller wheel is of the Bevis patent. The vessel is fitted with a steel center board 21 feet long, 6 feet $73 / 4$ inches wide, hung with the Burgess hook. The smoke stack is tele scopic, which, together with the center board, are worked from the top of the bouse. In her trial trip under steam only, she made a speed of $103-10$ knots without any forcing. Revolutions of engine, 208 per minute. Steam pressure at engine, 180 pounds per square inch.
For the photograph from which our illustration is ton.

If all true science is based on facts, the fact remains that no animal has ever formed what we mean by a language ; and we are fully justified, therefore, in hold and with Bunsen and Humboldt, as against Darwin and Prof. Romanes, that there is a specific difference between the human animal and all other animals, and
that that difference consists in language as the outward manifestation of what the Greeks meant by ward manifestation of
logos.-F. Max Muller.
nomical process which this method affords, since for those plants which require potash it would simultane ously act as an excellent manure.

## THE AUCILIARY CENTER BOARD GTBAY YACHT WILD DUCE. <br> The designs for the yacht shown in the illuatration

 were made by the late Edward Burgess. Our view represents the yacht under sail alone, and she has been proved to work well to windward, tacking within ten points. She was built for Hon. John M. Forbes, at the Atlantic Iron Works, East Boston.Her length on the water line is 125 feet, and from the outside of sten to ontside of rail, aft, 154 feet 6 inches; beam moulded, 23 feet 6 inches; depth from upper side of deck beam to top of keel, 12 feet 6 inches ; upper side of deck beam to top of keel, 12 foet 6 inches ;
draught 7 feet 6 inches. She is two masted, schooner rigged. The general specifications for engine, boiler, and screw were made by Miers Coryell, of New York. and screw were made by Miers Coryell, of New York.
The hull is built of mild steel to Lloyd's rules. Deck house and lower finish of cabins and staterooms of mahogany. Ceilings of cabins are flnished ivory white. The power consists of two Belleville boilers farnished with separator and automatic pump. The engines were designed by James T. Boyd, engineer of the Atlantic Works, and are of the triple expansion type, 10

tHE bURGESS CERTER BOARD STEAM YACHT WILD DUCK.

The Nature of solution.
Some interesting experiments have been made recently, by Messrs. Wanklyn and Johnatone, upon the phenomenon of solution, from which they have deduced some facts which, if substantiated by further investigation, will be as useful as they are interenting. Taking the solution of sugar in water as a starting point, the accuracy of the statement that the volume of a solution of sugar is equal to the sum of the volumes of the water and sugar was first established Hence each gramme of sugar entering into 100 c. c. o solution raises the weight of the solution in a defnite proportion.
This coefficient of increment has been experiment ally determined, having the value of 0.871 gramme displacing 0.629 gramme of water. Moreover, this coefficient is practically constant for all degress of concentration. Experiments made on various other bodies, such as chloride, bromide, and iodide of sodium harium chloride, etc., confirm this statement, indicat ing that solution is simple and regular in its action, unless interfered with by chemical change.
It has also been observed that solution is often at tended by expansion or contraction, and that the coefficiont of increment determined by experiment does not, in some cases, agree exactly with that calculated. This fact is looked upon by the investigators in the following way : When a gramiue of a salt enters into solution in the 100 c . c., instead of an equal volume of water being displaced and overflowing as it were, there is a chemical combination between the salt and the water, a con densation or absorption of part of the water tating of part of the water taniog place, represented by the diference bented by dierimental and the theo perimental and the theoretical increment. Experiments were made upon various nitrates and sul phates, the condensation phenomenon being observed in all cases, but in a varying degree.
The [results obtained in these experiments led to the conclusion that this property of condensation constituted a definite phy sico-chemical function. Experiments were then made upon varions salts all containing the same base, with the result that it would seem that this function not only existed function toet oaly existed, but that it bore an atomic relation to the substance dissolved, so that the variation in condensation the base contained in the salts employed. The ex periments made on sodium and potassium salts, some of which have been published in detail, seem to substantiate this hypothesis, and the investigators contemplate altimately es
tablishing a complete volumetric relationship.

## Fuel from Coal Dust

Instead of using pitch to cement coal dust together to form briquettes, Buckland \& Myers employ sub stances of a glutinous or farinaceous character, such as are obtained from wheat, barley, rye, or other cereal vegetables, 5 per cent to 95 per cent of coal dust be ed by hand and sets in a short time, so that moulding under pressure is unnecessary, though the use of noulds may be adopted to aid rapid manufacture. It is claimed that the product burns with less smoke than the ordinary briquettes, and is more economical in use Ashes or refuse matter from coal fires, with or without fresh coal, may also be utilized.

Honey in the Goddess' Head.
The St. Louis Republican says : Officer Musgrove, of the capitol police at Austin, Texas, lately ascended to the dome of the granite capitol at that city to inspect the swarm of bees which had settled in the nostrils of the statue of the Goddess of Liberty. The figure is seventeen feet high and surmounts the dome, which is over 300 feet high. Officer Musgrove says there are probably several barrels of honey in the bronze head of the goddess.

Artifelal Rain.
The artificial production of rain is just now a topic of wuch.interest. The government experiments carried on by Gen. Dyrenforth, at Midland, bave not at all satisfied the public mind that rain bateres aroused an interest which is intently waiting for further developinents.
waiting for further developments. land, during the time of experimenting, are conflicting. land, during the time of experimenting, are conflicting.
Mr. Dyrenforth stated to a reporter, when on his way to Washington, that the grestest success had attended his work; that Midland had had no grass Irain for three years before his advent to that arid district, while during his brief stay three copions grass rains had fallen. He describes one experiment as follows: "At three o'clock one afternoon a balloon was sent up about one mile and a quarter and then exploded by means of electricity. There were but few fleecy clouds in sight, the air was very dry, and the barometer deballoon had disappeared in a peal of thunder, kites were set flying, and attached to the tails was dynamite. This was exploded when the kites were high in the air; and then a great quantity of powder, which was scattered over the ground for about two miles, was set
off by electricity. This made a noise like a succession off by electricity. This made a noise like a succession
of batteries of artillery. The smoke rose in the air of batteries of artillery. The smoke rose in the air
about 200 feet and drifted toward the expert's headquarters. Before it reached there, bowever, it was driven to the earth by a torrent of rain."
This testimony is rapturous, bat over against it we are forced to put the testimony of some native ranchmen and visiting reporters, who, from some unfortunate cause, failed to discover any relation of cause und effect between the noise and the rainfall. They say that late in summer is their rainy season, that more where the experiments were madt ; and W. T. Foster where the experiments were made; and W. T. Foster
is so unfeeling as to intimate that they chose his is so unfeeling as to intimate that they chose his
storm day to make the experiment. But Senator Stanstorm day to make the experiment. But Senator Stan-
ford comes to the rescue of the rain makers with his ford comes to the rescue of the raing necessary in the conassurance that the daily blion of the Southern Pacific Railroad through the desert region was attended by daily storms where such phenowena had hitherto been unknown.
With these scanty but interesting data before us, we
wust stop and wait for more light. But meantime we must stop and wait for more light. But meantime we
may take a look at the theoretical side of the quesmay take a look at the theoretical side of the ques
tion.
Science has never known a method to condense a vapor except by supersaturation. This may be effected, heretofore been considered a factor in producing condensation. Shall the time come when the chemist will find it advantageous to hire the boy with the tin whis tle to stand over his Liebig condenser to hasten the precipitation of the vapor? Can the distillers of the future throw aside their spiral condensers and attac instead a village school building to their plant?
But if theory is opposed to the new process, they
claim that facts substantiate it. Have not great batclaim that facts substantiate it. Have not great batthes been followed almost invariably by rainfall? Per-
haps so. We were not there to see. But history is so uncharitable as to tell us that in ancient times, before gunpowder was known, the same was true. And this suggests another cause for the subsequent rain-
fall.
Every one has noticed that when water passes frow
the liquid to the solid condition, the process begins about some foreign substance. Little sticks and straws projecting into the water are first girdled with a fringe of ice. It has been observed by some scientists that the saine is true of water in passing from vapor to liquid. This affords a rational explanation why rainfall follows a battle. Think of the volume of smoke and dust sent up in the atmosphere during an all day's engagement between two powerful armies. Each winute particle of cartion or sulphur or dust, too small
for detection in the rain, forms a nucleus upon which for detection in the rain, forms a nucleus upon which
the molecules of aqueous vapor cluster very like a swarm of bees settle on a limb.
The eruption of volcanoes is almost always attended with heavy rainfall, and during an eruption the quantity of ashes and cinders huried thousands of feet into the heavens is inconceivable. They have been
known to fall hundreds of miles from the place of known to fall hundreds of miles from the place of
eraption. During the great ernption of Tomboro, in 1815, enough cinders were ejected to cover the whole of Texas two feet deep, and the most violent rainstorms succeeded it. Of course, those who wish to will be lieve that the noise of ernption produced the rainfall, but it seems more rational to attribute it to the volume of sylid matter thrown into the atmosphere. They put stress also on the fact that during a storm the rain fall is greater immediately after the thunder claps.
This is true, but it has no bearing on the question at hand. During the storm the swall rain drops are buoyed up by ascending currents of air, and the thunder jars the atmosphere so that a number of these
sinall drops are jostled together, and being collectively sinall drops are jostled together, and being collectively
too heavy to be buoyed up, they fall to the earth. $-A$. J. James, B.S., Teacher of Scienos in Dallas High School.

## Evaporating Apples for Proil.

All fruit growers, and more especially of the apple, know that much of their fruit is unfit for market, Now either wormy, specked, scabby, knotty, or small. and placed npon the warket at rewunerative prices. It is not necessary to have a large establishment to accomplish this result. There are driers with their accomplish this result. There are driers with their capacities ranging from one to
apples per day up to thousands.
pples per day up to thousands.
The work can be done just as
The work can be done just as well and as cheaply on a ten bushel machine as in any of the large factories, and my experience has been that they are the
least expensive. Often it will pay to evaporate the least expensive. Often it will pay to evaporate the
whole crop. I have often realized more for culls than whole crop. I have of
for the shipping fruit.
One hand can run a ten bushel drier, with twentyive cents worth of fuel, and make fifty pounds of white fruit per day, which, at ten cents per pound. about the average price, would net four dollars and seventy-five cents, making nearly fifty cents a bushel, including the day's work, and, at this year's prices, would be over seventy cents, and if the waste is dried almost a dollar.
Again, one important point thus gained is calling ont your shipping fruit, making it grade fancy, and thereby obtain the highest market price for it.
Market only the best, evaporate the rest. Thus you would avoid the breaking down the markets for the green fruit. This is always done by inferior stock being ran on the market, and never by good choice ruit. We can, at nearly all times, see apples quoted on the market at 75 cents to $\$ 1.25$ per barrel. These epresent loss to the grower. All of this kind should eever go on the market, but in the evaporator. The world is your market for evaporated fruit; you have nearly four barrels of apples in a fifty-pound box that can be shlpped just as safely to Alaska, China, or India as to St. Louis, and you need be in no hurry to market it. Next spring is as good as this fall, and often better prices are obtained.
When properly packed, and with proper storage, it can be kept for years as fresh and sweet as when first prepared, except a little loss in color, but even this may be overcome by cold storage.
If prices are as low as they were two years ago, when it was worth only from four to six cents a pound, and the waste and chop less than one cent, it can safely be kept over until there is a shortage ike the present, when fifteen cents can be obtained or the white fruit, and four to five cents for chop and waste. The chop is apples sliced just as they are without any paring or coring, and dried; in this the small and knotty apples that cannot be pared are used. The work is done quite rapidly with a machine made for the purpose. Forty or filty bushels can be sliced in an hour by two hands.
One bushel of apples will make ten pounds of chop. One bushel of apples will make ten po
which is now worth four cents a pound.
which is now worth four cents a pound.
The waste is the skins, cores, and trimmings from white fruit, which needs no other preparation only to put it in the evaporator, dry it and pack it in sacks or barrels ready for shipment. It is used for making jellies, and usually brings about one-half cent more than the chop. Most of the chop is, I understand, shipped to Europe and there manufactured into fine wines and sent back to this country, and sold at from one to five dollars a bottle. The price is, therefore, reatly influenced and governed by the grape orop in he old country. Many thousands of tons are manuactured each year. Everything can be used, nothing wasted.
A delegate said: " I think still more can be done than the gentleman says. I. evaporated some 1,400 pounds of fruit, which sold for ten cents per pound. made use of every part of the fruit, except the wormy part. Vinegar was made of the waste. I sold ome ten or twelve barrels at twenty cents per gallon, $\$ 9.60$ per barrel of forty-eight gallons.
"I picked ont the choicest to ship and evaporated the culls and seconds, which would have danaged the whole lot if shipped together. The vinegar apples wade nearly as much money as any. I netted $\$ 85$, using a cider mill that cost $\$ 15$. We use a pear corer and slicer to prepare the apples for drying. Wife and two little girls did the work, apples and wood being brought to the house for them.
" Sowe of the apples kept a year and a half were as white and good as when first put np. No trouble to keep them five years. We used about a tablespoon of olphur to a half bushel. When dry, we put the fruit ight into flour barrels, and headed it up tight. Some kept eighteen months are as nice and fresh as when
first put up. They are better to cook than fresh fruit, first put up. They are better to cook than fresh fru
as they don't require sugar, while fresh fruit does.
" We pack them hot, right from the trays. If they stand open, the miller will get into them. Turn them rom the tray into the barrel, and keep them perfectly close. Just as soon as a barrel was fall, I headed them up."-J. B. Durand, before Missouri Hort. Soc.

THis most powerful gans of American and foreign make can carry from nine to twelve miles.

A writer is quoted as objecting to the practice of gathering apples for keeping "as soon as the pips begin to turn brown." He says apples gathered at this stage "do not keep as well, or average of so good quality." Certainly they do not. An apple makes a noticeable portion of its growth-often as much as one-fourth-while ite seeds are coloring. But, on the other hand, the keeping of late-ripening apples is greatly hand, the keeping of late-ripening apples is greatly
lengthened by gathering them as soon as the seeds are lengthened by gathering them as soon as the seeds are
fully colored. Dp to that time the fruit improves on fully colored. Up to that time the fruit improves on
the tree. After that it deteriorates, so far as keeping is concerned, and, with some varieties, it deteriorates rapidly, so that winter fruit soon becomes fall fruit.
The art of handling fruit for keeping is very imper fectly understood, both as regards principles and practice. The season of many of our fruits is capable of being much lengthened in the hands of growers and dealers who are willing to learn and make use of the principles involved. In the first place, so far as Nature's purpose is concerned, the external covering of the true fruit-that is, the seed-exists primarily for the sake of the seed itself, and only secondarily for its envelopes, which are the parts that give it its chief envelopes, which are the parts that guive its chief
vaiue for human use. As soon as the fruit and its seeds vaiue for human use. As soon as the fruit and its seeds
are ripe the fleshy exterior part begins to decay, and are ripe the feshy exterior part begins to decay, and
what we call ripening or maturing are only primary what we call ripening or maturing are only primary
stages of that process, which is to release the seed, so stages of that process, which is to
that it may grow into a new plant.
After the fruit is carefully gathered, the whole ques tion of keeping resolves itself into a question of tem perature, but with due attention also to moisture Pears, apples, and grapes require a low and uniform temperature, and proper protection from fungous at tacks. Aside from the latter danger, which may be favored by dampness, a saturated atmosphere is not objectionable ; but care must be taken not to allow cold fruit to be taken into a warm atmosphere, producing that deposit of visible moisture upon its surface which is erroneously called sweating. In such cases it is not so much the moisture itself that harms the fruit as it is the mouldiness which is apt to ensue. the iruit as it is the mouldiness which is apt to ensue. Apples can be well preserved in very damp cellars if
these points are kept in view. In fact, a cellar with a these points are kept in view. In fact, a cellar with a
spring in it is thought by many fruit growers to be specially favorable to the perfect keeping of apples. In Russia it is a custom to preserve apples fresh in cold water ; and the late Charles Gibb, of Abbotsford, Quebec, once told me of some very fine Famense apples which he found on sale in April, and which, he was told, had been part of the cargo of a canal boat that had sunk and been frozen in and had just been raised. The Fameuse can rarely be kept in air muich beyond the flrst of February.
The temperature of a fruit cellar is best when kept as near to the congealing temperature of the fruit as possible. It is not safe to freeze so watery a fruit as the grape; but apples and pears can be frozen without injury, if blowly thawed again in the dark. I am not quite sure of the latter condition being essential, as I have had apples that had been slowly frozen, and as slowly thawed, in a light cellar, come out of the trial appaiently uninjured.
But, unquestionably, an even temperature, near to freezing, is the best. Even this, however, is of small avail toward good keeping if the fruit does not go into its cold storage in perfect order and at the right stage of its existence. That stage is reached, in apples and pears, as soon as the seeds are fully colored. Fruit designed for long keeping should be gathered early in the day or in cloudy weather. A barrel of sun-heated apples, even if put at once into a cool cellar, has lost greatly in keeping quality. If fruit must be gathered in the heat of a sunny day, let it be in baskets, which are to be kept under airy cover until they are well cooled before they are placed in the cellar.
For the best results, gathering and assorting ought o be simultaneous; but in a large orchard, when care ful hands are scarce, this is not possible, and the best alternative is a large and airy sorting shed, where the
work can be deliberately done by skilled bands. I prefer round-bottomed half-bushel baskets, with drop handles, for use in gathering and assorting. It takes a good many of them in a busy time, but in the end they are economical. They are easily handled, and will not be slung around, as bushel baskets with side handles are sure to be, to the great injury of their contents. The small baskets can be put down into the barrel and emptied without bruising their contents in the least. Hand barrows for two men are much better han wheelbarrows. A stone boat answers well on mooth, level ground.
As an evidence of the value of careful attention to all the points above referred to, I may be allowed to say that our chief winter apple in Northern New England is the Wealthy. Observink all these rules, I find that I have not the least difflculty in keeping it firm, fresh, and free from decay up to April, while less care-
ful neighbors (and growers generally) decry it as merely ful neighbors (and growers generally) decry it as merely a fall apple. By similar care the Gravenstein, grown winter in prime order.-T. H. Hoskins, Garden and Horest.

## Sorrespondence.

## How to Get Rid of Engliuh sparmow

C. T. says: We are simply overrun with the irrepressible sparrow in our foundry, causing the moulders a large amount of annoyance, by dropping of filth and nesting material from the beams into the moulds. Can you recommend some way we can drive them from the building, or some suitable poison we can mix with their food? Also can a mirror be repaired where the quicksilver has been scratched pretty badly in shipment?
Reply by Prof. C: V. Riley.-"I would suggest as a method of ridding your buildings of the English sparrow, that you destroy us many as possible by shooting them. An energetic boy can accomplish a good deal in this direction in a short time. They can be destroyed more easily, however, by giving them poisoned food. Wheat or other substances which they will eat readily may be poisoned, and will thus destroy the birds in large nambers; and if care be taken, this method will probably drive them from the premises the present year. Two or three pounds of arsenic to the bushel of wheat, or one ounce of strychnine to the bushel of wheat, will answer the purpose. The arsenic is in some respects preferable, as it acts more slowly, and is not likely to give the cunning birds such ready clew to the danger. Six or seven poisoned kernels will kill a single sparrow, so that the quantity of grain to be used can be estimated approximately by observing the number of sparrows which it is desired to destroy. Th easiest way of applying the arsenic is to first wet th grain thoroughly with strongly sweetened water and then to sprinkle the arsenic dry over the grain. In this way the arsenic adheres wore fully, and at the same time the sweetened water neutralizes the taste of the poison and makes the grain more attractive to the birds. To be most successfal in this mode of destroying the birds, they should be accustomed for a few days to the spreading of the grain by baiting in a given ocality a certain amount of grain that has not bee poisoned. This kind of strategy is almost essential in dealing with birds as cunning and quick to learn as the English sparrow."
There is no way to repair a scratched mirror and make it perfect, except by resilvering the entire mir ror. A patch of silver may be put on, but it will show as a patch.

## An Improved system or Block S

A new block system for running trains on single track has been devised by Mr. Thos. Fitzgerald, superintendent of B. \& O. R.R. The idea was reached by hin after long and careful study, and it is the first of the kiud in the country. It is now being successfully operated on the Metropolitan Branch B. \& O. R. R., or that part of the road where single track is used.
It is well known that in railroading a block is a sec tion of track between $t$ wo telegraph and signal stations. The block signals are absolute or permissive.
An absolute block is where a red signal is displayed, and a permissive block is where a green or white signa is displayed.
One stretch of the road from Garthersburg to Washington Junction (about 20 miles) embraces seven block statione.
Normally the signul displayed at these blocks is red, and only changed to white or green to permit trains to pass in accordance with the rules.
All trains in opposite directions and all passenger trains following in the same direction are run under absolute block, and no permissive signal is displayed (ercept white when block is clear).
The operators in their respective single track block sections are instructed to have fa full understanding with each other before moving trains over their block. It being distinctly understood that no train is allowed to enter a block unless the operator is absolutely certain that there is no train on the block running in opposite direction. In this instance, Mr. Fitzgerald displays considerable forethought. An exainple of running trains in accordance with the above paragraph is hereinbelow given.
Example: When train No. 2, engine 835, east bound, arrives at Washington Junction, the operator calls by telegraph the operator at Tuscarora (the next block), and asks for last engine or train passing his station west bound. If train No. 5 , engine 887, was last west bound at Tuscarora, the operator thereat so reports, giving time it passed; and then, if traiu No. 5 has arrived at Washington Junction, and the operator has record of it, he will instruct operator at Tuscarora to hold all west bound trains following No. 5, engine 887, until No. 2, engine 835, arrives. If Tuscarora gives Washington Junction permission to allow No. 2 to come into this block, he at once displays his west
bound red signal, and keeps it displayed until No. 2 reaches Tuscarora.
As soon as No. $\bar{z}$ enters the block at Washington Junction, Tuscarora is advised accordingly. Tuscarora immediately gets permission from Dickersons
(the next block east) fora clear track for No. 2 in the same manner that Washington Junction secured a lear track from Tuscarora, and each succeeding block does the same.
A telegraph operator's form, made up of letters and agures, to facilitate gaining the above information between the operators is ingeniously devised.
Provision is also made for construction or work trains. They are required to be at telegraph stations to weet or be passed by trains.
If the telegraph line should fail and the block cannot be ascertained to be, clear for an approaching train, the approaching train is stopped and notified in writing, the operator then displays the green (permissive) signal and the train proceeds cautionsly to the uext block station, as per its schedule rights and rain orders.
This block system is in the hands of telegraph operators exclusively. They are required to keep themselves thoroughly posted in regard to movement of trains. They keep a copy of train orders sent to all rains that meet at their respective stations and acknowledge their nnderstanding to the train dispatcher's offlee.
The rules governing this single track block system do not relieve trainmen from observing all rules in regard to protection of their trains, and the instant any train stops or comes down to very slow speed between block stations, a flaginan goes back at full speed to protect his train.

## Manufacture of Tin Plates.

The form of tin plate known as "roofing plate" is now made in Philadelphia, by taking inported steel plate of proper quality and coating it with a misture of tin and lead. A mill near Front and Laurel Sireets is turning out every day a score or more of boxes of the American roofing plate thus prepared. This mill has been in operation just two wontha, and, with the exception of a plant at Pittsburg, it is the only one n Pennsylvania. At the close of two months' operations the proprietors of the manufactory maintain that they can produce a first class article of roofing tin plates as cheaply as they can be made in England or Wales, plus the duty of $\$ 44$ per ton. In other words, the consumer can purchase American roofing plate of a good grade for as suall a price as he can get the British article and pay the duty thereon of 21-5 cents, to be collected after July 1, 1891.
So far, this mill has not attempted to produce bright tin, which is used for the manufacture of tinware. However, the firm has completed plans for the duplication of its present plant, and still other additions are anticipated. N. \& G. Taylor Co., large manufacturers of tin plate in Great Britain, and extensive inporters, are making an earnest test to determine definitely whether or not they can hereafter make their plates at howe instead of $\mathbf{3 , 0 0 0}$ miles away.
Tin plate is made of sheets of iron or steel coated with pure tin or a mixture of tin and lead. When the sheets are covered with pure tin the product is called "bright" tin, and when the coating is a mixture of tin and lead the product is called "roofing" tin. The value of both kinds depends entirely upon the quality of iron or steel used, the manner in which the tin plates are made and the quality and quantity of the coating. In making cheap tin plate, Bessemer steel is omployed, and is coated by a cheap process, acid being used as a flux, and the plates finally rolled to squeeze all the coatiog possible off the steel, leaving only enough to cover the base. The flux is the wash put on the steel plates to make the coating stick fast to it or, as the Welsh say, to make it "bite."
There are mills in England where rolls are used which spread the coating of tin so thinly upon the steel plates that one pound of the tin is made to cover 100 square feet of plate. This, of course, is a low grade article. As the steel costs but 4 cents a pound and pig tin costs 21 cents a pound, there is a general desire on the part of manufacturers to put as little tin on the plates as possible.
A first rate grade of "bright" tin contains about 10 pounds of pure tin to 100 square feet of plate. This is put on Siemens-Martin steel. An average of $61 / 2$ pounds of tin to 100 square feet of plate makes a good article. As lead costs but 41/2 cents a pound, it is usually mixed in liberal quantities with the tin to make the coating metal. To be sure, lead alone will not adhere to irun or steel, and a little tin is absolutely necessary.
Tin plates are usually made in two sizes, 14 by 20 inches and 20 by 28 inches. They are packed in boxes containing 112 plates. A box of the best quality of bright tin, of the 14 by 20 inches size, sells for $\$ 11$. A fair grade sells for from $\$ 6.50$ to $\$ 7$. The steel before it is coated is cut to thickuesses. One size is 14-1000 of an inch and the other $12-1000$. The first is called the I $X$, and the second the I $C$ brand
On July 1 the new tariff duty of $2 \mathbf{2 - 1 0}$ cents a pound, or $\$ 44$ a tou, went into effect.
The process of making roofing at the new mill of N . \& G. Taylor Company, near Front and Laurel Streets, an interesting one. The company buys its steel plates in England. The manner of converting them
into tin is this, there being sirteen distinct steps in the process :

1. The sheets of steel are cut into perfect sizes by a squaring wachine.
2. From the squaring machine the steel is put into a pickling box. This pickle contains a good deal of sulphuric acid, and is applied for the purpose of removing rust.
3. Then the plates are lifted with swing tonge from the pickling box into a trough of water, where they are thoroughly washed.
4. The next is another water bath.
5. Then they are scoured with sand to remove the last particle of rust, and to wake the plates bright ana mooth.
6. A short distance away over a hot furnace are arranged six pots, the first of which contains boiling palim oil. Into this the steel plates are inmersed.
7. The second vat contains the mixture of lead and tin metal, which is kept at the boiling point, and here the plates get another bath.
8. A second pot of metal comes next, in which the plates remain but a few minutes.
9. The plates are then laid on a tin-covered table and both aides are vigorously brushed with a heavy brush. This is to remove any little blisters that may have been formed before the coating gets cold.
10. A pot of metal similar to the other mistures is next, and into this the hot plates are swung.
11. The plates are put in a vat of boiling oil.
12. Then they are dumped into a pot of metal once nore and for the last time.
13. One by one they go to a bin of sawdust and are 13. One by one they
rabbed on both sides.
14. Alongside of this is a bin of bran, and here a boy gain rubs the sides of the plate.
15. The plates then go to a boy who lays them on a heep skin and rubs both sides thoroughly. This is the final touch, so far as the making of the tin is concerned.
16. The plates go from the sheep skins to the stamping machine. Then they are packed into boxes and are ready for shipinent.
From the time a plate leaves the water bath until it is stamped not more than twenty minutes elapse. The pickling, sand rubbing and washing processes do not equire everything. The mills are run in "sets." Each "set" consists of the vats, pots, etc., mentioned above. To work them properly seven men and six boys are omployed. Such a force can turn out forty boxes of in plates a day. This is the capacity of the Taylor tin plat

Several new steel plate mills are being built in this country, when it is expected the factories that make Arnerican tin will be able to purchase the black sheets at a more advantageous price.-Phil. Record.

## Bleaching of Wax.

When beeswax is exposed in thin layers to the air and to direct sunlight it is quickly rendered colorless, but in the dark, in presence of a free supply of air, oxygen, or ozone, no decolorization whatever is effected, oven after a long time. In presence of smolight oxygen, and especially ozone, destroys the color very rapdly, but the presence of oxygen is not absolutely necessary. When the wax is exposed to sunlight $i / n$ sacuo, or in an atmosphere of carbonic anhydride, it is bleached, but much more slowly than in the presence of air.
The composition of the unbleached wax differs coniderably from that of wax which has been bleached by exposure to air and sunlight. The latter contains a slightly larger percentage of free acids, but a large proportion of the unsaturated acids of the oleic series and of the unsaturated hydrocarbons in the crude wax bave disappeared. This fact shows that in the bleaching process not only does the coloring matter suffer total combustion, but the unsaturated acids and the unsaturated hydrocarbons are converted into saturated compounds by the fixation of oxygen. This is also the case with other fatty substances, such as suet, and the reason why the addition of 1 to 5 per cent of suet to beeswax causes decolorization to proceed more quickly is because the suet, in its oxidation or combustion, aids the destruction of the coloring matters. The addition of a suall quantity of other oxidizable substances, such as essence of terebenthene, also hastens the action, so that it would seem that the destruction of the coloring uatter is due to the formation of ozone by the oxidation of the added substance.-A. and P. Buisine.

## Bemody for Ivy Polsoning.

Dr. James J. Levick, of Philadelphia, writes to the Medical News: "In a case of poisoning of the hands from Hhus toxicodendron-poison oak-recently under wy care, which had reached the vesicular stage and was attended with much swelling and burning, the happiest results promptly foilowed the free dusting of the powder of aristol on the affected parts. The change was almost magical, so sudden and so prompt was the relief afforded. Might not this powder, applied in the early stage of the disease, do much toward preventing the ulceration and pitting of variola?"

## DEEP WATER DREDGING AROUND HEW YORE

 Superior as are the natural waterways by which New York is surrounded, the channels of the North and East Rivers affording in general sufficient depth to accominodate vessels of the deepest draught, there are still a fow places, especially in the East River where the government is engaged in rewoving shoals or reefs, to give a safe depth in all parts. In the Scientific American of August 1 we illustrated and described the progress of operations in the removal of Diamond Reef, between the lower end of New York City and Brooklyn and on the first page of this iseue he illo page of this issue was been in prors which has been in progress for everal weeks for the removal of a shell reef in the East River near the foot of Tenth Street.At the commencement of he work there was here only a general depth of seven or eight feet, the bottom consisting of sand, gravel, and clay with many large bowlders. The pile of broten propelter pile of broken propelier blades, achors, chains, torn wetal shealhing from he bottoms of vessels, etc., brought op by the grapple, and shown in one of the views, gives a good idea of the necessity of un-
dertaking the work. Eigh-
teen of these broken propeller blades were found around one of the bowlders removed.
The scow or float on which the dredging machinery is mounted is 120 feet long and 44 feet wide by 15 feet deep. In addition to the anchors by which it is held in position, a heavy beam passing down through a suitable opening in the hull is dropped into such en gacement as can be effected with the bottom, to hold the scow more steadily in a fired position. The boom is pivoted to swing freely, and is sixty feet long. The grapples when fully open have a spread of fifteen feet, and their total weight is fourteen tons. As they close together the fiugers fit between each other a short distance, until stopped by a web-like portion against which they abut. The grapples are operated by 19/4 inch steel wire ropes, one from each side, the grappling power being three times that of the pull on the rope, rom the winding of the rope on a swaller dram within the fraine above the jaws. The ropes are connected with a friction drum operated by the engine on the cow the wood-faced friction clutches nsed being of The the wizk of reat grapple by presing with the hand and foot on a
at each side of him, as shown in one of the views.
This grapple dredge is adapted to hoist a maximum
ond uf seventy tons, lifting ordinarily twenty to thirty ons. One of the bowlders removed in the present work weighed twenty-six tons. The stone taken out $s$ paid for by the ton, and the other material by the yard. The government has two ther dredges of a similas -ind now at work near Hell Gate the government dredges, as well as the one shown, bein bailt by Mr. R. G. Packard, of Atlantic Dredging Company he Atlantic Dredging Company Now York, who are dom, he work on thin reel. Thes redge are adapted to operate und scoop or a shovel as readily as a grapple, the change from one to the other being wade in a ew hours. After the removal of the bowlders, in the work now in progress, there will be an in definite quantity of sand, gravel and clay to be removed by the hovel before it will be certain how inuch blasting of solid'rock how inuch blasting of solid.roc rill be necessary. The project ing edze of a ledge broken of $y$ the grapple had a surface easurement on one side o even to twelve feet, and weigh d about nine tons.
In the view on this page we epresent one of the method employed for determining and xactly locating the inequalitie of the bottom. The rods or tub ing with which the vertica easurement is made are held by gaide ropes, and slide freely


HYGIRNIC HORSES
advance the distance comprised between two teeth,ite extremity, engaging with another tooth, prevents the system from moving backward in the rocking motion in the opposite direction, but if this result fails, the horse simply retarns to the starting point.
It is thought that owing to this little artifice the sport will assume some interest, and that people will soon be, if they are not already, betting heavily on these singular racers. -Les Nouvelles Inven tions.

## A Chameleon spider.

M. E. Heckel, of Mar seilles, has, says Nature recently described an in teresting case of mimicry which may be frequently seen in the south of France. The minic is a spider. Thomisus onustus, which is often found in the flowers of Convolvulus arvensis, where it hides itself for the purpose of snaring two Diptera, Nomioides minutissimus and Melithreptus origani on which it feeds Con volvulus is abundent, and three principal color varia tions are wal color varia is a white form, a pink.one with deep pink spots, and a light pink form with a slight greenishness on the external wall offthe corolla Each of these forms is and by hand, between the vessel and the observers. particularly visited by one of three varieties of The skill and thoroughness with which the work is gin done are hig

## HYGIENIC HORSES

Every one knows of the rocking horses which for some years past have constituted one of the great attractions of country festivals. The Paris Garden has for some days past been offering a new source of amusement based upon the same principle, but in which the horses, instead of remaining in place, roll upon rails, thus adding a new element of success tc the combination, since, owing to this improvement. one can have the treat of a true horse race that has nothing in common, as regards rapidity, with the races of Longchamps, but in which it is the wost skillful that will triumph. The detail figured in the right hand corner of the engraving shows how the system operates. One of the rails is formed of a flat iron, and he corresponding wheels have channels which fit into it perfectly. The other rail, on the contrary, is $V$. shaped, and the wheels that engage with it are simply rollers. As a consequence of the rocking motion of the horse on the support, B, the carriage rolls to a certain extent upon rails, carrying along the ratchet C, which slides along a rack, D, placed between the rails.

## If the impetus has been sufficient to make the ratchet

Thomisus. The variety which visits the greenish orm has a green hue, and keeps on the greener part of the corolla : that which lives in the white form is white with a faint blue cross on the abdowen and oun blue at the end of the legs; the variety which some blue at the end of the lise variety which parts of the abdom and it the prowinen to live on Dahlia versicolor, the pink turns to red; and if it lives in a yellow flower-Antirrhinum majus for instance-it becomes yellow. At first Prof. Heckel supposed the three varieties of Thomisus to be per manent, but he discovered accidentally that any one of these peculiarly colored spiders, when transferred to a differently colored flower, assumes the hue of the atter in the course of a few days; and when the pink, white, green, and yellow varieties are confined to gether in a box, they all become nearly white.

Jamach, the wild Animal Collector, Dead.
Lond on, like every great metropolis, is full of curions characters, who from time to time come to the surface and become known from their eccentricities or from the accidentally curious course of their lives. Mr. Jamach, who has recently died, is one of the latter class. He was born about 1815, and has for years been known as one of the greatest collectors of wild animals and various natural history curiosities in the St. George Street, Loudon, has been famous for generations The number and variety of specimens thatjwere found there side by side from extremely opposite parts of the world was astonishing. One of his choicest acquisitions is a pair of dwar cattle from Nepaul, India. They belong to the same order as the sacred Brahmin cattle, which have been dwarfed by the process of selection after centuries of careful breeding. They were only 25 inches in height. They are perfectly formed cattle, the bull being a dun, and the cow soft brown in color. Mr. Ja mach, besides his collection of animals, rare birds, parrots, etc. has some valuable artistic and ethnographic specimens, such as Japanese and Chinese vases bronzes, and masks. Many of them are covered with dust and have not been disturbed or touched for years. There is a Burmese Buddha five feet high, and a mapnificent figure of Vishnu. Besides these there are Aztec and Mexican relics and magnificent carved ivory fgures frou Ceylon. The whole forms a veritable curiosity shop.

## ¥̌ixutifir American.

## LOCOMOTIVE RXPLOSIOR

At Orster Bay, Long Island, on September 9, the boiler of a 46 ton passenger locomotive exploded, kill. ing the engineer and fireman and one brakeman. The body of the engineer was thrown two hundred feet away to the south of the track, while that of the fireman was thrown a hundred and fifty feet to the north and the borly of the brakeman was thrown over and twenty feet to the rear of the train, which consisted of brakeman was on the tender, and the entender, and the engineer and the fire than were in the cab, the train standing at the depot just ready to start when the explosion oceurred. The crown sheet of the firebox, with a portion of the cab, shown in our engraving, were thrown about a hundred and fifty feet away, while the frame and remains of the locomotive were left in a nearly vertical position, its front portion being partially forced into the ground. This pecuground. This pecu-
liar position of the liar position of the locomotive was illustrated in the Scientific American of Sept. 26. The explosion was evidently in
the water chamber the water chamber
over the firebox, but
over the firebox, but its cause is unexplained, although it is reported that the dead engineer had said the riveting in the crown sheet and some of the outer plates of the fire box was defective. The locomotive was built in 188 and had been overhauled a few months ago.

## THEITWIN SCREW ETEAMER VIRGINIA

This is the name of a new and beautiful steamship lately built by the Globe Iron Works Co., Cleveland, Ohio, for the Goodrich Transportation Co. The Ma rine Review says she is the trimmest, neatest, handsomest and most elegantly appointed passenger steam ship built on any inland water, and the finest ship ties that lice sions about her
mould are all conmonld are all con tained in the fact that her per cent of fullness or co efflcient is 0.61 full, $0 \cdot 15$ less than any large steamer on the lakes, and equal to the fin-est-lined ocean steamship. The dimensions of the hull are 278 feet over all, 260 feet keel, 38 feet beam and 25 leet deep Built of high test Bual ; the stanch ions are dropforged steel. The lorged steel. The water bothom is divided into six sections, three on each side, and contains a tank that will hold 4,500 gallons of fresh water. The $h$ all is divided into six watertight bulkheads, in addition to the collieion and stuffing box bulkheads. If by any poseible force the boat could be cut squarely in $t$ wo, both ends would float.
The Virginia's twin screws will be turned by two sets of inverted triple expansion engines, each with cylinders 20,32 , aud 52 inches by 36 inches stroke. Steam will be furnished these engines by two double-ended boilers, 13 feet in diameter by 21 feet 2 inches long. having 12 furnaces and being equal to four 18 -foot boilers. Steam fans can be used to produce an induced rather than forced draft, the same faus running regularly for the


## THE NEW LAKE STEAMER VIRGINIA-TWIN SCREWS.

ing a solution of lime or other alkaline compound, which serves to prevent oxidation and acts as a flux. The sheet iron is then placed in a dilute solution of ainc chloride containing on the average 20 pounds of aralic acid and 10 pounds of sodium sulphite per ton iron treated. These quantities depend, howiever pon the quality of the inetal. After this immersion to drain are passed through meltod lead and awed o drain. A very closely adherent coating is obtained y this procese.

Torroatrial Magnotiom and Radiant sunilght.
Prof. Frank H. Bigelow contributes a note to the American Journal of Science for September, on the cause of the variations of the magnetic needle. He finds, frow a discussion of wagnetic observations nade at thirteen stations during the month of June, 1883, that " the permanent magnetic condition of the earth
purpose of ventilating the fire hold. The engines make 180 revolutions while driving the boat 18 milee an hour the starboard wheel being turued to the right and the port wheel to the left, in opposite directions. Each stateroom has four berths, two of which can be pulled out into the cabin. The latter are hung with curtains


LOCOMOTIVE EXPLOSION-APPEARANCE OF CROWN SHEET AND PART OF FIREBOX. may be principally due to the orbital motion of the earth through the radiant field of sunlight. The rotation of the earth on its axis causes a modification of the direction of the axis of polarization, by diminishing the angle between the two axes, and as the result of the annual motion may cause it to rotate in a secular period about the axis of figure, or if the magnetization h as already become set in the body of the earth, may cause a succession of secular waves to sweep over it from east to west, as is shown to be the case in the history of the isogonic lines and the long-period deflections of $t$ he needie." This interneedle." This interesting identification of the magnetic and light action of solar radiants is in harmony with the results of the investigations of Maxwell and
cabin will illuminate the same. The vibration experienced on most steamers will be eliminated by transverse frames of the bulkheads, which will give the main deck a high degree of stiffness.
The Virginia will leave Chicago at 9 o'clock each morning and, including the stop at Racine, will make the ran to Milwankee in five hours. Each of the Virinia's auxiliary engines will be fitted with a reducing valve, instead of having, as most steamers bave, only one reducing valve for all anxiliary engines.

Coating Mitals with Lead.
To coat sheet iron with lead (Horgan's process) it is
freed from scale by means of hot dilute sulphuric acid,
treed from scale by means of hot dilute sulphario
ashed with water, and transferred to a vat contain
 Hertz. And Prof. Bigelow believes that, by the appliation of similar considerations to Mercury, we will be ble to satisfactorily account for the outstanding moion of this planet's perihelion.

Pletures in sulphur.
In demonstrating that sulphur melted at about 115 degrees can be cooled in paper, the author happened to use a lithographed card, of which the edges were turned np. Upon taking away the card he discovered that the lithographed characters were clearly and distinctly impressed upon the cooled surface of the sulphor, and remained after hard friction and washing By repeated experiments he has been able to washing. fine results, removing the paper each time by a very washing and rubbing process. He finds that sulphor will receive in. pressions from and reproduce faithfully characters or designs in ordinary graphita crayon, colored crayons, writing ink, typographical inks, china ink, lithographic inks -colored or un-colored-and others. Heremarks, too, that it will reproduce it will reproduce exactitude geoexactitude geographical maps.Chal les Lepierra Bull. Soc. Chim.

## spouting Wells

 n Wachingtom. Near North Yaquinna, Wash., a company recently secured a large body of arid land on Moxee, and inmediately began theiwork of boring. Angast 15, flowing water was struck at 400 feet, which has increaned in flow from the rate of 80.000 gallons to 250,000 gallons per diem, and is increasing As the work went on, per diem, and is increabing. As he 33 went on, water was sent throngh an 8 inch pipe ss feet in the dreds of thousands of acres of arid lands will be rereds ol thounal Washing through a sjstem of artesian wh cen which artesian wells, which would otherwise be without valueexcept for cattle range.

## Nacural hiliotory Notes.

Coloration of the Plat Pishes.-Whoover has seen flat fishes alive, or even dead, but not divested of their skin, must bave remarked the notable difference existing between the color of the dorsal surface, exposed to the water, and the ventral surface, which in the living animal faces the bottom. While the dorsal surface is wore or less colored, the ventral surface remains white. What is the meaning of this? The Weismann school. rather more Darwinian than Darwin himself, Insists upon attributing the fact to natural selection. And this school, aceording to which the environment acts npon the living being, ascribes it to a physical influ-ence-to the fact that the ventral surface naturally receives much less light than the dorsal. In truth, one with it. Froin the standpoint of the latter the coloration of the ventral surface seeus indifferent, and, if it is not, it is permissible to think that it would be more advantageous to the fish to have this surface gray, like the dorsal, than white, that is to say, conspicuous Mr. Cunningham, of the Maritime Biological Association, of Plymonth, has recently studied the phenomenon, and does not conceal his sympathy for the theory of the action of the environment. He experimented with young flounders (Pleuronectus flexus), whose eye had not left the ventral surface. The pigment of the latter had already disappeared in great part. The animal was already lying on this side, and, on the dorsal, the pigmentation was pronounced. Mr. Cun ninghan made the following experiment.
Darkening the cover and sides of a glass vessel, he placed the latter, containing some young flounders, upon a support, and beneath it arranged a mirror that reflected solar light upon the bottom, so that the dorsal surface was exposed to darkness and the ventral to light : he reversed the normal conditions. The water was copiously renewad, and the flish had all the food that they needed. Other fishes were placed in a
simaller vessel which was normally lighted. The sinaller vessel which was normally lighted. The
resolts were as follows : Out of the thirteen fishes that results were as follows: Out of the thirteen fishes that
received light from beneath, only three remained like received light from beneath, only three remained like
the ones that received light normally. The others exhibited a varying quantity of pigmentary cells and chromatophores. Under thees conditions, it really seems as if the absence of piginent in the animals in normal conditions is due to the difference of circumstances, and that light is the agent that determines the development of the pigmentary cells. It cannot be the only one, however, for pigments exist in
dwelling in the darkness of great depths.
Change of Habits in $\Delta$ nimals. - It has been suggested in some scientific quarters that the necessities of various creatures to employ different means to exercise
their functions may have an important influence their fonctions may have an important infuence
eventually in modifying the structure of the oreature eventually in modifying the structure of the oreature
itself, and thus induce variation leading to new species itself, and thus induce variation leading
in time. In the Old World the English sparrow builds in hoies in old rains, in wheat or hay stacks, or anywhere but in trees. When introduced to America, where no such opportunites are afforded, it makes its nests in trees. Not having been accustomed to building in such places, the nests are of the rudest possible churacter, and compare as would the pottery of the ancient American Indian with the beantiful ware of our Trenton potteries with the artistic nests of other birds. No doubt with experience these nests will improve in character, and possibly the birds themselves will vary from the foreign type, when that time comes. A number of creatures show wonderful powers of adaptation to suit circumstances. Thus in Boston Harbor, the sea urchin, during the process of spawning. has a habit of covering itself with seaweed, which is packed down tightly above it as if to avoid observation. In Tampa Bay, Professor Willcox has observed that the sea urchins, having the same desire to avoid observation at that time, are also covered-but not with seaweed. Empty shells abound on that coast, and this creature uses the shells for this parpose. Habits, once acquired, become in a measure hereditary -changing only when dire necessity compels; and with the forced change of habit some modification of structural character is not impossible.
Multiplication of Ophioglossum.-It results from the observation of Mr. G. Poirault that the adder's tongue fern (Ophioglosstm) is never reproduced from its spores, but that it is propagated exclusively by buds that form on its roots.
Effect of Cold upon Animals.-In a paper read to the French Academy of Sciences, M. Colin discusses the action of cold on animals. The rabbit endures considerable cold. Adults have lived in ordinary hutches suepended from the branch of a tree or standing on a heap of snow, and their temperature has only been lowered about one degree in five or six days, when the outside temperature varied from 10 deg . to 15 deg. C. Other individuals have lived in perfect health for two months in cubical hutches, completely open on one side, when the temperature ranged from 10 deg. to 25 deg. Sheep and pigs are also able to live through severe weather, but the dog and horse are killed by it.
Pliny and the Ants of North America.-In Pliny we
find the following passage in regard to a certain species of ant : "Among the northern Indians called Dowdes, there are certain ants that extract gold from the mines. . . . This metal, which they extract in winter, the Indians rob them of in summer, while the ants are hidden in their tunnels because of the heat." This passage having struck us by its clearness, says Mr. Vercoutre (in Revue Scientifique), we have been led to ascertain whether the assertions of Pliny are accurate, and, if so, what were the ants that he had heard spoken of. Now, we have found that there ex ists a particular species of ant that engages in this sort of mining, and that it is the Pogonomyrmes occidentalis, studied bs Rev. Mr. McCook.
These ants, in fact, after they have finished the hillock that serves as a dome to their galleries, cover the whole with a sort of mosaic work formed of fragments of rock, fossils, ores, etc., which they obtain through a regular mining operation at a considerable distance beneath the surface of the earth. As in the country where these ants are met with it happens that the subsoil is often an auriferons deposit, it will be conceived that the roofing of the ant hills is frequently composed of spangles of gold, which, washed by the ralns of winter, are in the fine season easily recognized and collected by the aborigines, who thus evidently profit by the labors of the ants.
The fact mentioned by Pliny is therefore absolutely exact ; but, what is very curious is that but a single species of ant (the one mentioned above) engages in this peculiar labor and that this ant is found only in North America (Colorado, New Mexico, etc.) Hence the dilemma: Either Pogonomyrmex occidentalis, in the time of Pliny, inhabited the Indies proper called (Hindostan), from whence it has entirely disap peared since that epoch, since it is very certain that
is not found there at present; or else it always inhab ited North Awerica sulely, and then Pliny's narrative too precise to have been manufactured out of whole too precise to have been manufactured out of whole
cloth, would necessarily have been derived from cloth, would necessarily have been derivad from
travelers that had already visited America at that re mote epoch.
The first hypothesis seems to us inacceptable, for although it is true that certain species of ants (such a Atta septentrionalis) seem to be on the road to de generacy, it can be asserted that ants are in nowise creatures whose species can totally disappear from a must admit the second hypothesis (which would make the "northern Indians" vaguely mentioned by Pliny to be "North Americans"), we must see therein a very unexpected argument, which we offer in support of the opinion that the ancients were acquainted with certain parts of America.

## The Analymis of shoo Blacking.

BI DR J. Pixettr
Victor Holbling was the first to publish a detailed method for the analysis of shoe blacking. In the ollowing a vimpler method is described.
About 5 grins. of the blacking are weighed out into 200 cb . C. graduated separating funnel, about 100 cb. c. of water added, and a mixture of equal parts of ether and light petroleum then poured in, nearly up to the top graduation mark. The stopper is then inserted, the whole well shaken up and allowed to stand. Twenty-five cb. c. of the upper ethereal layer, contain ing the fat in solution, are: removed by a pipette, al owed to ran slowly through a dry filter into a weighed basin, the filter washed with a little ether, the liquid vaporated, and the fat weighed.
An aliquot portion of the lower aqueons solution is then run off, filtered, and titrated with to normal canstic and phenol phthalin, to determine the free acid. This is always pbosphoric acid, free or con tained in acid phosphates, and not, as Holbling states, free sulpharic acid. The neutral solation thus obtained is evaporated to dryness in an unweighed platinum basin, dried, weighed, ignited, and again weighed. The loss is due to invert sugar and extractive matter A second aliquot portion of the aqueous solution is nentralized with the calculated amount of to normal soda, evaporated in the water bath until the smell o ther has disappeared, filtered, made up to 25 cb . c. and treated with Fehling's solution for the determina ion of invert sugar.
By subtracting the invert sugar from the number previously obtained, the amount of extractive marte ascertained.
In this way four constituents have been determined in one portion of the substance. Water and ash ar then determined in separate portions, and the differ ence between substances lound, and 100 taken as car bon. The detailed analysis of the ash is conducted in the same mauner as a phosphate analysis ; Glaser's method as modified by Jones may be advantageously ased for determining the lime.
Recently, blackings free from acid have been pu upon the market, in which, instead of bone black, a carbonaceous shale is employed. Osnabruck shale contains 21.52 per cent of bituminous matter chemically combined with water. The carbonizing of the molasses
is then omitted. The crude materials of acid for black-
ing are, therefore, fat, molasses, and black shale Whether cane sugar or potato sugar molasses has been employed, can be told by means of the polarimeter The cane sugar can either be directly determined by this instrument or by gravimetric analysis after inversion. In many cases a preservative is added to this acid-free blacking, especially if it show any tendency to become mouldy.
Below are analyses of specimens of both classes :

|  | ${ }_{\text {A }}$ cidid. | Acid-free |
| :---: | :---: | :---: |
| Water. |  | 18.28 |
| Fat... | $5 \cdot 58$ | 8.48 |
| Free acid | 108 |  |
| Invert sugar......., | 2014 |  |
| Cane sugar....... | - | 28.25 |
| Extract ..... . | 840 | 10.81 |
| Carbon............ | 788 | ) 9.40 |
| Chemically combined | - |  |
| $\mathrm{P}_{3} \mathrm{O}_{3}$ |  |  |
| $\mathrm{SO}_{3}$ | 76 |  |
| CaO. | 88 |  |
| $\mathrm{Na}_{2} \mathrm{O}$ | $5 \cdot 61$ |  |
| Ignited enh of shale. |  | $80 \cdot 50$ |
|  | $100 \cdot 0$ | $100 \cdot 00$ |

From this the amounts of crude materials may be calculated in round numbers as :

| Bone black. | 130 | - |
| :---: | :---: | :---: |
| Molaeees. | 680 | 63.5 |
| Sulphuric acid. | 12.0 | - |
| Soda (calc.) | 45 | - |
| Fat....................................... | 85 | $8 \cdot 5$ |
| Black shale (20 per cent loee on ignition)..... | - | 340 |
|  | 1000 | 1000 |

> Trad

## Nitrate or Nitrite of soda.

In the matter of the protest of the Merchants' Despatch Transportation Company against the decision of the collector of customs at New York as to the rate and umount of duties chargeable on certain nitrate of soda, imported per Obdam, August 1st, 1890, the following is the opinion by General Appraiser Somerlowing
ville:
The
The local appraiser returns the merchandise as nitrite of soda. It was invoiced ander this name, and was imported Augnst 1, 1890.
It was classified by the collector as a "chemical alt," and assessed at 25 per cent ad valorem, under paragraph 92 of the Tariff Act of March, 1883, which evies this rate of duty on "all chemical compounds and salts, by whatever name known, not specially numerated or provided for in this act."
The protestants claim that it is exeinpt from duty, under paragraph 630, which puts on the free list "nitrate oí soda, or cubic nitrate."
A sample of the merchandise has been subjected, by direction of the board, to a chemical analysis by Dr. Baker, a competent government chemist, and we make the following finding of facts as to the nature of the article, based upon this analysis and on the papers

## the cause:

1. We find the merchandise to be nitrite of soda, and ot nitrate of soda, alike by chemical analysis and both popular and commercial designation.
Sodium nitrite, NaNO, is composed as follows :

## 

Sodium nitrate, $\mathrm{NaNO}_{2}$, is composed of :

|  | Per cent. |
| :---: | :---: |
| Sodiam or natriam. | 27.0 |
| Nitrogen. | 16 |
| Oxygen. | $56 \cdot 46$ |
|  | 10000 |

2. Both of these substances are chemical salts, but they are essentially different in chemical composition and the uses to which they are adapted.
The article was therefore properly classified nuder paragraph 92 of said Tariff Act of 1888, and is not free, as claimed, under paragraph 630. The collector's decision is affirmed.

## Miccellaneous Notem.

The Combination of Hydrogen and Oxtgen.According to Krause and Meser, a mixture of hydrogen and oxygen undergoes gradual combination at $305^{\circ} \mathrm{C}$. in presence of mercury, but not in its absence until the temperature rises above $448^{\circ} \mathrm{C}$. Carbonle oxide and oxygen combine readily on simple heating to $448^{\circ} \mathrm{C}$., bat do not explode unless the temperature s raised to $578^{\circ}$, or between that and $606^{\circ}$.

Paper from Corn Husks.-Corn husks boiled in caustic soda are being utilized for the manufacture of paper. The cooking process results in the formation of a spongy, glatinous paste, which is subjected to heavy pressure so as to eliminate the gluten, the fiber remaining being made into paper in the ordinary way.

Pennyroyal Oil.-The principal constituent of pennyroyal oil, according to Pleissner (Andalen), is pulegone, a ketone, isomeric with camphor ( $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ ). n ethereal solution it is converted by sodium into In ethereal
menthol.

## ORE KIND OF CAM <br> ay A. d. pentr. <br> (Continued from page 201.)

The elements of this cam are : That it shall fit with in the four sides of a square or rhombus and that it shall touch each of these four sides, at some point, at all positions. Of course, then, every point of contact is perpendicular to another point of contact on the opposite side of the inscribing parallelogram. These elements are well indicated in the preceding article on the practical applications of this cam.
The outlines of this cam (Fig. 1) are the abutting arcs FG, H H', and I I', and together they mast aggregate exactly $860^{\circ}$ of arc. These ares are those of the sectors A D B', B D A', C E'A, C'E B', BEC, and A'E'C'. These sectors equal four right angles of course. The inscribed portions of the secants $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are equal in length, and it is the intersection of these lines which determines the centers from which the arcs that constitute the outline of this cam are described. The whole difficulty in designing cams of this character lies in locating these points.
To design a cam of this kind that shall give the longest arc of rest possible under the circumstances is very simple, Fig. 2.
Having found the size of the shaft on which it is proposed to mount this cam, draw the circle $A$ to represent it : then, if it be practical to have the hub $G$, the cam can be made as thin at $B$ as strength will perinit of; $1 / 8$ the diameter of the shaft $A$ will do. Describe a circle concentric to. $D$, to represent this thickness $B$. Now the throw as $C$ being known, then $1 / 8 \mathrm{~A}+\mathrm{B}+\mathrm{C}$ is the radius D H. Describe the arc K L $90^{\circ}$ long or more, and then through one end of this arc and through the center $D$ draw the secant $E$ F. Next from $L$ as a center, and with the radius $L M$, describe the arc $N$, touching the arc $I$ at $M$, and cutting the arc $H$ at $K$. Then with the same radius and from $K$ as a center describe the are $J$, tonching the are $I$, and ending in L. This completes a cam having the greatest rest possible with the dimensions given. No greater rest is possible without reducing the proportion of $C$ to the radius $D \mathbf{H}$, or elongating $D \mathbf{H}$ without elongating C. The angle of rest in any cam of this kind cannot each $180^{\circ}$.
The corners, $K$ and $L_{\text {, }}$, in this last construction being angles, are not desirable, because they soon are worn off, resulting in lost motion and noire. This angle becomes sharper as the proportion of C to D H increases, and as this proportion increases, the motion

It being desired to make a cam of this character to throw as C, and to have a radius as D A, the designer, if he desires the greatest possible rest, produces the arcs $A$ and $B$, and froin the points, $G^{\prime}$ and $F^{\prime}$, describe the ares $N^{\prime}$ and $O^{\prime}$, which by contact and together with the arcs $B$ and $A$ describe the full cam. It he desires to have no rest at all, he describes the circle, $J$, from the center, E , which circle has the same size as the cam, A $N^{\prime} B$, and $O^{\prime}$, and will fill the same parallel

spaces as that cam. Bnt if he derires a rest, but less rest than the extreme, he shortens the arc, $A$, to the intermediate length, $H I$, and from $C^{\prime} C^{\prime}$ as cen ters describes the arcs. $G$ and $F$, and $N$ and $O$, connect ing the arc, $\mathbf{A}$, with the arc, $B$. Each of these figures will fill the same square or rhombus and operate one as well as the other, but in different times. It is evi dent, because the circle, $J$, is described frow $E$, which point $E$ bisects the combined radii of the are $B$,保 E bisects the combined radh of the arc, $B$, and he arc A, that no cam can be described which has an further froin the are $A$ than the point $E$ and $D$ further from the arc, A, than the point, E, and not be D. Again, because the chord, G' F', equals the radii of $A$ and $B$ combined, no are can be described that has its center on the arc, $A$, beyond the points, $G^{\prime}$ and $F^{\prime}$. Therefore in this cain all centers of arce except] the center, [D, shall lie between the point, $E$ ad the points $G^{\prime}$ and $F$, as $C$.
In this Fig. 4 it is shown how every cam nay have its centers properly located, whether the angle of rest
rest, locate it on the arc, B C, and draw the lines, H I and $J$ K, through $A$, equidistant in angle from the ine, G F. Now we know that the centers we seek are on the lines, H I and J K, that the one on H I is as ar from the arc. $B \mathbf{G}$, as it is from the line, $L$ M. and the one on $J K$ is as far from the arc, G C, as rom the lide, N O. Again, that these centers are as ar from the arc, $K$ I, as they are respectively from the lines, N $O$ and $L$ M. To simplify the problem, we rew the arc, 8 T intermediate through the center $A$ bet K I and BC. Then when A, etweon the arce, K I an B I K Kin that These centers are as far on $H$ I and $J \mathrm{~K}$, from the arc, S T, as they are perpendicularly from the line, G F. Now, if we draw the tangents, X Y, we know, because we know the centers we seek are a distance from the fine, G F, equal to their distance from the arc, 8 T, that they are on the line, $V W$, drawn perpendicular to the ine, G F, and intersecting G F at $Z$, as far from the point $X$ as the intersection, $U$, of the tangent, $X Y$, is from that point, $X$. Now, therefore, if the centers we seek be on the lines, H I and J K, and also on the line, V W, then they shall be at the intersections $D$ and $E$ where V W crosses H I and J K.
From the points, $D$ and $E$, therefore, it is possible to draw the arcs, V H, J W, V K, and W I, which completes the cam.

## orexin.

Dr. John Gordon reports in the Lancet on his results in the use of hydrochlorate of orexin, as an appetizer. From these he concludes that, in the loss of appetite concurrant with tubercular disease, orexin is a valuable stimulant. The power of stimulating absorption of the products of digestion claimed for it seems to be nerited, for under its use, as a rule, the tongue becomes less furred, and constipation relieved. It is worthy of receiviug an unbiast d trial in suitable cases. t uay be given, he says, either well diluted in water or made into pill form with any of the ordinary excipients, and can also be given between thin slices of brend and butter or in the form of wafers. The of rat a trial the drag was given in small doses and simply dissolved n water. Little or no objection was offered by the children to its administration.

## shikimic Acld.

Shikimic acid is the name of a new non-poisonous acid found in the llicium religiosthn. It bas been (alated by Mr. J. F. Eyiman, who describes it as a


Fiq.

f a cam like this approaches the character of a blow The arc, $H$, in a cam where the arcs, $J$ and $N$, are struck from K and L, or points on the are, H, cannot be shorter than $60^{\circ}$
To overcome this effect of a blow, and at the same time to preserve the amount of throw in proportion to the size of a cam, it is necessary to sacrifice a part of the rest arc, and it always is desirable to reduce this arc as much as practical, for mechanical economy.
This are is reducible to $0^{\circ}$. When it is so reduced, this cam becomes an eccentric cylinder. In reducing this are at all in any case below $60^{\circ}$ of angle, the cor ners, K and L, become ares of circles, Fig. 8.
be large or small. I believe this rule to be new, and while it is here indicated by lines, the distances and localities are easily reducible by mathematics. The centers here formed are those of the eccentric arcs The center of the concentric ares requires no calcuation to locate it.
The radii, A F, and A G, being known, describe the arcs, K I, and B C. Then through the center, A and bisecting B C, draw the line, G F , and bisect it at $P$. Then parallel to $G F$ make the perpendiculars, L , and N O, each a distance from G F equal to the ength, P G; thas making the length of the line, Q R, the position of one or two hydroxyl groups requires equal to that of G F. Now knowing the desired are of further confirmation.
he hydroxytetrahydrobenzene mono-earboxylic acid bur
crystalline powder consisting of fine needles, which melt at $184^{\circ} \mathrm{C}$. and have a specific gravity of 1599 at $14^{\circ}$ C. It is soluble in water (about 18 parts in 100), but almost insoluble in absolute alcohol, ether, chloroform, and benzene. It decolorizes potassium perwangate in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and decomposes carbonates. Its probable formula is $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{6}$ and is monobasic. Heated with hydrochloric acid, it decomposes, giving hydroxybenzoic acid. Judging from the nature of its decompositions it is thought to be a trithe position of one or two hydroxyl groups requires

REOENTLY PATEMTED INVENTIORB. Rallway Appliancea.
Block Signals. - Henry C. Horst mana, Naperville. III. According to this invention the block ayotem io arranged in anch a manner that a train
entering a block cauecs a dieplay of visible sigoals entring a block cavees a dieplay of visible signals
thronghout the block and the direction of the train is thronghoat the block and the direction of the train is andicales at the side of the track, is a conducting rail on whiteh a locomotive contact wheel rung, and a signaling 1pparatas carried in the cab, in circalt with the contret "heel and one of the track rails, a novel form of circatt braker being employed, with other special features, by which engineers in different trains can elgnal to eact other, or slgnals will be automatically given by the
ecopping of a train or a train breaking in two, or belle will rigg when the line is out of order.
Insulator for Trolley Wires.Ciarence LL Gerrard, Columbas, Neb. This improveailwars, affording a cheap and stmple insulator deoigned to prevent rain, snow, sleet, etc., forming a connection with the gronnd. The Inonlating block, of
porcelain, glass, or similar material, has two Indeporcelain, glass, or similar material, has two Inde-
pondent apertures, in one of which is held a rod or bolt peodent apertures, in one of which is held a rod or boit
adapted for attachment to the sustaining wire, while in the other apertare is held a trolley wire supporting rod, adaptod for ready engagement with the trolley wire. The involating material between the apertures is decigned to prevent a connection being formed between the two rode in their respecive bores.

## Mechanical Appliances.

Bolt Threading Machine. - Emil Habper, New York City. The drive shaft of this mala a allding trip rod provided with a screw-cutting die geerr allding on the ta bular shaft and a shifting ohaft beding located beneath it, while a latch lever engaged by
the trip rod engages the shifting shaft and a clutch the trip rod engages the shifting shaft and a clutch mechaniom connected therewith carried by the tabuiar
shaft. Other novel features are included. the oil dripping from bearings being conducted to a receiving reed asingle attendant, to prodace threaded bolis in quantities equal to those tarned out by a number of machines

Knizting Machine Stop Motion. Clark. E. Sharp, Lowell. Kansac. Thla is an antomatic atop motion in which a vertically sliding thread gutde hae beinw it a tripping mechanism adapted to throw and a connection extending down from the sllding gulde to the lever. The improvement ls especially
deaigned to prevent large knots, imperfectly twisted yarn, and bunches of loose material on the bobbin, from pasengg into the knitung machine, thus overloadlong or choking up the needles and causing breakage
and delay.
'Stone Cuttrers’ Gadge. - David J. Doane, Vlanal Raven, Me. The gange rod of this device han a lateral right-angled llmb and ls graduated as a ind a lag bent in the same direction from the end pordions of a apacing bar, the leg and lug having aligning appertares, and a set screw paseing through the spacing
bar between the leg and lug. The improvement afforde a simple and convenient tool for gauging the depth of a projecting shoulder, besd, or other member that is in
progress of formation on a slab or block of stone, and also to determine the parallelism of such members or of the sides of the block or slab operated on.

- Shert Metal Gauge. - Herman V. Bernhardt, Brooklyn, N. Y. This is a micrometerłnserument for measuring and callipering metal, wire and
other articles, of simple construction, self-registering. and esoily manipaiated, being designed to meapure pooitlvely and with the greatest accuracy, whille the modt minate measarementa can be quickly read with-
out further calculation. The invention consists of a cerow rod adapted to actuate a toothed wheel operating a dial wheel, a pointer being aliso actuated from the
cerew rod, while there is $n$ axed dial on which the pointer indicates on a graduation repreeenting suh-
divisions of the graduation of the dial divisions of the gradaalion of the dial wheel.
Slate Pencil Machine. - Douglass
R Sateriee, New York City. This is a simple and R. Satterise, New York City. This is a simple and
compact unachine for making slate pencile from soapcompact machine for making slate pencile from soasp-
otone or slate, forming polygonally shaped pencilis from otrips of trame plate has radially adjosuable siding blorks on which spladles carrying cuting wheels are roctetably sapported, while a central sieeve on the frame
plate receives the catting blank and gaides it to the plate receives the catting blank and gaides it to the
cotulug wheels. A drum on the sleeve has a toothed pinion on its onter end meshing with the feeding gearing for the pencil blanks. The machine can be made a proportionate number of catter dioks being used in


## Agricultural.

Cord Planter. - Oner A. Berio, Stargis, Ky. This invention provides an Improved tion, arranged to drop the reed in hille any desired
distance apart. Connected with the frame and drive distance apart. Connected with the frame and drive whecele of the planter is a runner having a valved apont
leading down from the seed box, the valve by means of which the soed is dropped at longer or shorter intervale
being connected by levers and sprocket wheels with the being connecied by levers and sprocket wheels with the
drifing axle, and this connection being adjustable accoriding to the diotance the corn is to be planted apart. The mechaniom may be thrown in or oat of operation

Churn. - John Sampeon, Waitsburg, Weahington. This is a charn of the rocking type,
deotgned to be ceaily operated by hand or foot power. deolknod to be casily operated by hand or foot power.
The rockere are secured together by apacing bark, con-
nected by apiral eppringe to the beve board, to caunes the
force of the springes to draw in opposto directions when the charn is rocked. A collapsible fording dasher is employed, composed of two framoes, each formed of vertical and horisootal interiocking connecting rode, the daeber being readily removable, so that all the parts can bo eanily cleasod, whie affording a saperior means breaking the batter globalea.

## Miscellancous.

MaEING SODA with Strontium Salrs.-George H. Gray, Denver, Col. This patent is lor a pencess of producing strontiom carbonate from
strontiam anlphate by treating it with magnealum car bronctom sulphate by treating it with magnesium car
bonate in the preeence of water, or water holding in solution carbon dioxide or an aikalline salt, the operation being so conducted that a continual regeneration
of the reagents is effectod, avoiding the introduction of of the reagents is effected, avoiding the introduction of
extraneous imparities and obviating uxceesive wasta In the applicalion of the procese to the manufactare of canstic soda, strontium sulphato is formed and causic decnnting or altering, the last portions being removed by washing the precipitate.
Jeweler's Forcers.-David Mendel on, Kureka, Utah Ter. Thene forcepe consist of two forming an axis on which they ewing, a pair of hinged arme having their outer ende reduced and pivoted in the ends of the screw bolts, forming an axis on which the formed for 1 formed for holding two parts of articles to be
soldered or otherwise operated upon, and it ts aloo adapted for use by plambers, gunsmiths, dentists, and Scriber-William Potter, New Yor City. Thise.-Wiliam pivoted a turn table, a ecriber arma betng capable of lateral movement apon the turn table, while a tracing
anger or point is adjustably attached to the arm, and a anger or point is adjustably attached to the arm, and a
tranofer pencil or point io also adjustable upon the arm. transfer pencil or point io also adjustable apon the arm.
The Instrument is of simple and darable construction, The instrument is of simple and darable construction, and designed to accurately and expeditiousily scribe or
outline any object, whether highly ornamental, futed or plain.
Coin Separator.-Andrew C. Bolton, Brookiyn, N. Y. In a anitable casing are coln-receiv-
ing compartmenta in each of which is a counterbalance platform adapted to be tilted by the pasmage of a coin of proper weight and remain in normal condition for the
passage of lighter coins. The casing is preferably in passage of lighter colns. The casing is preferably in
the form of a building with a central vertical slot open. ine form of a building with a central vertical slot opening in a chimney-.ike projection of the roor peak, an
the internal arrangement is such that coln of different denominations placod in the opening will be reliably distributed to different compartments of the structure Letter or Bill File. - Charles T. aoewey. St. Paul, Mino. Combined with a bed plat pins are hook rods pivoted in the brarings and having an eccentric between them, a apring pivoted in the bed
plate engaging the eccentric of the hook rods to hold them engaged with or disengaged from the ined rod. The device is simple and inexpensive, and is not liab to tear the papers or docnments nled by it, holding
them all securely while allowing any one of them to be quickly and easily removed at pleasure.
Agitator. - Frances F. Wood, New York City. This io a simple and convenient device for agitating sterilized milk held in bottles, the agitator to be inserted into an ordinary bottle and operated to
quickly cause the ingredients to be thoroughly mingled. A revoln ble spindle carrying loops at ita lower end ha a downwardy and ontwanaly bent support, wide pro-
jecting lags on its inner side to at a bottle neck. The loopa are of spring metal, so they may be flattened pass through the neck of the bottle.
Drying Reel for Fish Lines. Fretcher M. Abbott. Wellesley, Maes. An elongated
frame bar is adapted to adapted for attachment to a stable object, to comblina thon with a skeleton line-drying reel having two sec-
tlons of different lengths adapted to be ppread at right angles or folded toward' each other. The lines are which elso affords a convenient sapporting reel for dry line or a nuw live previous to reeling on the fishin dry hee or a
reoper.
Ditching Machine.-Edwin M. Reese, Santa Paula, Cal. This machine in adapted to work,
gravel, dirt, snow, or noder water, and has a rotatin and continnously oscillating cutting wheel by means of which a ditch can be cat very deep with the eame sized wheel by moving the machine several tlmes over the
gronnd, and lowering the wheel for each cat. Its roame man tavel on rails or on the gronnd, and carrie an engine driving a shaft monnted to turn, a loopely hanging arm being guided by the shaft, which also
actuates a cutting wheel turning in the arm, the latern actuates a cutting wheel turning in the arm, the latera
motion of the latter cansing a catting wider than the width of the wheel. The looeened earth is taken ap by the bucketa of
Stovepipe Holder. - William H. schuster, Fountain City. Wlis. This is a hanger havin the pipe and permit to ready removal when desired and the etationary portion of the hanger and the hinged or opening and cloenng portion of the band, having a
hook at its upper end, are connectod by a clasp carried hook at lta upper end, are connectod by a clasp carrie
by the hanger, which has notches or corrugations a different pointa, for the engagement of the hookvof the
opening section of the band. The hanger is adjustable and extensible to adapt it to plpes of difierent sizes, to be beld at varying heighte.
Range Watrr Heater, - Henty C. sternhoin. Unfon, N. J. plied to ordinary rangee for atilizing the waste beatt to
beat water to circuiate in pipee and radiators. It con

panagese through it from the are pot to the chimney
with means, as a shied in the are pot and damper in the caning, for mending the beat through or around the cading. The arrangement is anch that the beat may be
 8 H OE Holder and Remover. Jomeph Donauer, Duluth. Minn. This is a device whereby the ahose can be pot on or off by the wearer
without bending the body. It consists of an upright without bending the body. It consists of an uprigh
prame having handie barg adapted to be grasped by the rrame having handie bars adapled to be grasped by the
hands, while near its bane is an open portion haviog gaiter, which is thus held open to recelive the foot of the wearer. Boote jacks are secared at a convenien
eight on the outer faces of the Bide of the frame.
BABY J UMPER. - Clarence L. Barnhar
Fint. Mich. This is a apring actuated device of simple
and durable construction. The crib is supported by piral spring, dependent from the bent avpporvod aper en of an apright secured to a readily movable bese monnted on caatera, and by the application of

Fire Escape.-Carl G. Grunz, Grand sland. Neb. This escape is designed to be easily erected close to a building. and to be quickly ralied
nd lowered to be of the desired height. It consiats of an endless fexible ladder arranged apon varioas drume sufported by a base placed near the wall of a building.
rollers of the frame work being made to run ap on the walls ontil the ladder is brought withla reach from the windows of the building. The weight of a person step ping from the windows on the ladder canses it to ome gradually to the ground, its sndden descent nnde the weight of many occupants belpe prevented by
Grip Testing Machiste. - Theobald E. J. Scbaibly, Brooklyn, N. Y. In this machine, to test the atrength of one's grip, the handlo levers an
anlocked and the machine placad in position for oper ation by a coln dropped in a slot. The handle levera nastend of moving in the are of a circle, move an equa distance at both ends, forming a more eccurate thest, While the machine is so made that the main levers can-
not be operated by pushing or palling. but only by not be operated by pusbing or palling. but only by
being armly gripped and forcod together. The mabeing Armly gripped and forcod together. The ma-
chinevis also made to operate wihout aprings except the main registoring apringa, and can therefore bo W
Wash Boiler Handle.-Willard a Smith, Glendale, N. Y. This handle is composed of a ngle plate of metal cat and bent to form the hand
proper and the fat side plates at its ends, the portion the plate forming the handle proper beling bent to form hollow rounded hand hold, and the atat side platea being bent to an angle therewith and abatted aatwise is aleo generally applicable to wooden and sheet meta esself, rach as meabures, baskelo, palis, caua, elc.
Pocket Book Clasp. - Daniel M. Read, New York City. Two patenis have been grante the guseet and pocket at their intersection will be strengthened and prevented from tearing out. By the Arst, one member of the pocket book frame has a
downwardly projected lip, lag or extension to clamp downwardly projected lip. lag or extension to clamp
the gueset when it connects with the framed pocket,
there belng apertares in the frame adjacent to the lipa in which rivets may be ased. The other patent provides for a clamp consisting of an angle plate having one toothed member, the vertical member being adapt-
ed to clamp the guseet at its junction with the framed ed to clamp the guseet at its janction with the framed pocket and the horizontal member adapted in engage
with the wall of the pocket. The device may be quickly with the wall of the pocket. The device many be and usee Notr.-Coples of any of the above patenta will be Nors.-Copies of any or for 25 cente each. Please
furnlshed by Mann \& Co., tite of name of
of this paper.

## HEW BOOKS AND PUBLCATIONE

ONOGRAPH ON Flatoring Extracts WITH EsSENCES, SIRUPS, AND Col
ORINGS. Also foriunlas for their pre orings. Also formulas for their pre
paration. With appendix intended paration. With appendix By engep
for the nse of druggistg. By Joseph
Harrop, ${ }^{\text {Ph. G. Columbus. O.: Har }}$ rop \& Co. London C. E., Snow-
hill Buildings. 1891. Pp. 161. Price $\$ 2$.
The present work covers the feld of aavoring ex tracts for consumption in beveragee. It includes great namber of formulas, all worked ont in apotheca ha. The book is interleaved for notes, and containa tore satiefactory index.
The Modern Lighthouse Service. ington: Government Printing Office ington: Gover
1890. Pp. 137.
This is a government pablication and is really a very
nteresting monograph apon Its snbject. It maken the woot interesting reading poesible, and its nameroos lastratione, tables of data, and historical allucione ive a graphic pres.
Beeson's Sailor's Handbook and InLAND MARINE GUIDE. Edition o
1891. Complete alphabetical lists 0 o all the American steam and sail ves-
sels on the North western Lakes. Published by Harvey C. Beeson, late
Marine Clerk, Port of Detroit, Mich. The SLide Rols. By Willian Cox. Keuffel \& Esser Co. New York. Pp
B0. Price 50 cents.
80. Price 50 cents.
haf Polar Planimeter. a manual. Polar Planimeter.
y William Cox. Kenfel manual.
O. Esser
O. New York. Pp. 20 . Price 20

Finsbiry Trechinical Manuals. Practical ro 1 in organic chemistry. Prac
Frederic.
Billiam Streatfield: with
 For the uee of English technical atndente, the leaders For the uee of Rngilish technical studente, the leaders e producing annually a great number of books calcant mannal horizoa of hat special work. The present manasl really details a series of experiments in orhe stadent to go step by step through a series of operawons. The work is certainly a neefal one and offers -

RWTAINing Walls for Earti. Including the theory of earth pressure as developed from the ellipse of
stress. With an appendir presenting the theory of Professor Weyranch. tion. revised and enlarged. New
York:John Wiley \& Sons. 1891. Pp. Yiii, 136. Price \$1.25.
The title of this book explalns its contents, which are are by retalning walli. The theories are very elabor. tely explained, and the work will be fonnd a valaa-

Telfphones. Their construction and fitting. A practical treatise on the
fitting up and mainteuance of telephonew and the auriliary apparatus.
By F. C. Allsop. E. $\&$ F. N. Spon. London. New
191. Price $\$ 2$.
From tha preface, the book under revtew would seem onopoly in England. The writer states that a vist neld for development in the direction of private lines is now open, and the work requisite for the constraction of ench lliese is
tone, in all $1: s$ details.

Electricity And its Recent ApplicaTions. By Edward Trevert. Lynn, Mass. : Bubier Publishing
1891. Pp. 346. Price $\$ 2$.
The practical ield of electricity is the one espectally aphy, motors, dynamos, etc., form the enbject matter ad are popalarly treated and lllastrated. An illasrated dictionary of technical terms ende the. volume.
Boilrr Tests. By George H. Barrus.
Boston. 1891. Pp. 280 . The resulte of 137 evaporative teste of 71 steam exhaustive work. It is one which mast be of great ralue to all engineers having to do with stean power. becessen it dietalle the practical work of many yeare personally condacted by the anthor. Illaetratione and
tables ar? given wherever required to explain the subtables
ject.
a Practical Handbook of ElectroPlating. By Edward Trevert. If-
lastrated.
1891. Bubier Publishing Company. Ly
Price 50 cents.

## Enough electro-plating for amatour's ure mas be eaid

筑 ent work. Battory and dynamo plating are treated.The small size of the work axcusce the abmence of to.

Practical Treatige on ter incanDESCENT LAMP. By J. E. Randall.
1891. D. Van Nostrand Company. 1891. D. Van Nostrand Company.
New York. Pp. 88. Price 50 cents. The history and the mannfacture of the incandeacent Lamp is the sabject of this llute manam, which is a
convenient compilation of the present practice of incandescent lightung.
Elfectrical Transmission Handbook.
With twenty-two illuatrations and With twenty-two illustrations and
twenty-seven tables. By F. B. Badt.
First edition. Electrician Publish ing Company. Chicago, Ill. 1891.
Pp. vii, 97 . Price 81 . Pp. vii, 97. Price $\$ 1$.
The general aspect of this book will seem famillar to manuals. The present one seems an excellent little work, and its standard is high enough for commercial ur colamns of Dr. Sloane's analogy between the min $r$ 's inch and the ampere.
The Mhtal Worker Essays on House HEATING BY Steam, Hot Water,
and Hot dir. With introduction AND TABULAR Comparisons. Ar-
ranged by A. O. Kittredge. New ranged by A. O. Kittredge.
York David Williams. 1891.
288. Price $\$ 2.50$. The prize escays in a competition organized by oar
notemporary. Thu Metal Worker, are bere repro. antemporary, Tha Netal Worker, are here repro-
daced, illuatrated and covering steam heating, hot water circulating and hot air systems of heating, cover the ground very completely. Eight eseays winuing first
and second prizes in each competition are. included, ith illastrations and specifications.

BIBLIOTHEQUE DES CoNNAIBSANCES Utiles. Aime Witz. La machine a
vapeur. Paris: Librairie J. B. Bailvapeur. Paris: Librairie J.
liere et Fils. 1891 . Pp. 324.
The popular presentation of the prevent aspect of the atram engine is the subject of the above work, as
can be deduced from the opening sentenco of the prosace, viz.: "In writing this book, the anthor parpoece to be clear and precife, bat avoids belng learped." It
is suflient to say that the subject seems axcelienty is suffcieat to say that the subject reems exceliently
covered, with the latest details of pracice, and we. bolieve the author will be found, in the true sence of the
word, to be "loarned."


## HINTS TO CORRESPONDENTS.

Names and Add ress mant accompang all leters
information and not tor pubbication.


 personul rather than general interest cannot
expected without remnuneration.
 price
Minerals ent for examination should be distinctly
(3414) L. C. says: Please describe the distribution of light roond a continuous current arc
lamp? How would you proced to determine the illuminating power of such an arc in any given direc How is it calculated? A. The light of an arc lamp is
distributed nearly evenly, except in the shadows of the carbons. The light of a candele is distributed in the same way. When yor compare an arc lamp with
candie, the value of the arc light would be biven in candle power. Spherical candie power refers to
(3415) W. M. B.-Sprinkle around th dried leaves or pennyroya, or
nyroyal for driving away feas.
(3416) C. B. asks about a pair of perma nenu mide ${ }^{\text {inch }}$ wide, Ifinch thick; they are ande from best Ameri can tool steel and tempered so they will scratch plases
and I had them magnetized on a 300 incandescent elecuri light dynamo, and they will not pick up a good sized sfeel or magnetization? A. The difificalty with you magnets probably arises from having the temper too high: the magnet thould be tempered only at the ends and the temper should be about the same as that of
cold chisel, that is to eay, it should be hardened and drawn down to a purple,
(3417) W. F. D. asks: How can I keep copper wire from turning a dark bue arter clean-
ing it : A. Try adding a ittle carbonate of ammonia (218) W. H. W. ake Will soa (3418) W. H. W. asks: Will you pleas harden and temper circular saws, the eame as the sam. ples Inclosed and larger, say up to 1 1s inches, and oblige constant reader? The way $I$ harden them is between two cast iron plates with a little oil on the surface, and
temper them on a hollow spindle with the end turned down so as to fit the hole in the saws; mside of the espin the saws I keep tarning them untill the required color is obtained, then I lay them on a flat plate with a litile oil on it. Even when I get them fat in hardening, they
will po oat of true in tempering, same as the samples will go ont of true in tempering, same as the samples
inclosed. One of them is true enongh, ont the other is very much ont. By answering the above yoi oblize a carefully dipped plumb edgewise. If they draw or Warp, ase a smooth hard hammer on a hard steel block
or anvil. Carefully hammer the parts that draw so as to miake the saw flat. If the center bulgee, hammer around the edges. If the edges warp, hammer the cen-
ter to reiieve the strain. The suss will bear the hammering after drawing the temper.
(3419) A. J. B. asks: What constitutes tts original power is perpetaal motioni. My reason for asking you is this: I have a water motor that when set in motion drives the water wheel, and the same water is conveyed back to the orignal starting point,
independent of the wate wheel, the only los being
by evapopation, which can be overcone by a small feed


( 3420 ) A. H. M. says : Please
(3420) A. H. M. says : Please give me a good formula for a fixing bath to prevent blisters on
best grades of albumen paper. I am tronbled some with est grades of albumen paper. 1 am tronbled some wite
large blisters that commence forming in fixing bath they are in it about five minutes and keep getting arger until they are about the size of a dime, and some arger. Toning bath will tarn red litmus paper blue beth not acid. Very few small bilsters appeur. A. Make he fixing bath alkaline by adding a few drops of iixing bath be warm or the eame as that of the toning bath. Blisters are prevented by putting prints, before oning, in a salt batb. Water 10 ounces, salt $X$ ounce.
(3421) J. J. R.-The lamprey eel is both native of the sea and rivers of Europe and americ pon the rock moss and alge attached to rocks; were once considered a delicacy and are much used for food Their habitat in the United States is the rocky shore the Eastern States. We can furnish "Mioln Mak ng , as it Wa* and as it
illastrations, $\$ 3$ mailed.
( 3422 ) E. W. R. writes: Have you any receipt for killing a small fly insect or borer whic
works in oak lumber, both in piles and in buildings where there is not much to disturb them? This fly very small, light brown in color, and between on sixty-fourth and one thirty-vixth of an inch in diame er and one-eighth of an inch long. It bores very rapidly,and works in our oak flooring, posts and girders, not much walking and going to disturb them. They will not work in the floot where we are ranning track or walking through it.? We have written to a large number of lumbermen, but they know of nothing absolutely practicable for destroying the insects. A
great many had heard of them, but had had no experience with them, We have saturated the lumber with strong solutions of ealt brine, both hot and cold, and have also limed the posts and girders. It may be that we kill off a great many of the living insects, but if so, we do not kill the eggs, and the insect seems to increase ith remarkable rapidity. A. Reply by Prof. C. . umber, as described in your letter, is a common and widely distributed pest bearing the scientific name of Lyctusstriaus Melsh. It is properiy not a fy but a smal ment is frequently in receipt of letters relating to dam ge by this insect. It is rather a difficult insect to co she and the remedy I have formerly advised, and whic pain or coat the timbers, buildings, or stored lumber with kerosene. The insect works near the surface of
the wood, and the kerosene will penetrate sufficiently o kill the beetles and early stages. Benzine or gasojectionable for any reason, but the the latter is ob not be so effective on account of their more rapid vanot be so
(3423) I. B. asks for a definition of one billion and how many figures it takes. A. In
France and the United States one thousand millions$1,000,000,000$ or $10^{\circ}$. in Great Britain one million mill ons $-1,000,000,000,000$ or $10^{12}$. The word billion is lit France, the word milliard taking its place. (3424) L. J. S. writes : I noticed on some colored bank drafts the figures written in a milky
white to protect same from erasing amount. Can you tell me bow to prepare sach a chemical ink with a similar discoloring effect? A. A solution of oxalic acid in water is used for this purpose. A steel pen
(3425) H. D. G. asks : 1. Can a house be ighted successfully with a current from storage bat teries 9 My idea is to have the secondary battery charged during the day by a gravity battery. A. racticable, and would the cost exceed that of gas after the cost to exceed that of gas, if you count the a endance and deterioration of the plant as items of ex
(3426) A. J. C. asks how to make a good strong galvanic electric battery. A. For information
on the construction of galvanic batteries we refer you Sufplement, Nos. 157, 158, 159, and 792
(3427) C. W. B. asks : What metals, minerals, or materials come the nearest to insulating a
magnet when placed before it $\%$ A. There is no subhe magnetism by means magnetism. You can absor erial, but this will always be done with a loss.
(3428) F. S. G. asks : Will you kindly let me know what is the best and latest authority to
read on Bessemer steel manufacturing, also something on rolling mill workings, etc. $\uparrow$ A. Howe's "Metallurgy Steel " is the latest and best work, $\$ 10$ mailed. "Iron and Steel,"
tice." $\$ 2$ mailed.
(3429) B. F. H. asks: Can you give me factured and sold commercially in the United Statey if so, by whom is it manufactured? A. For details of the manufacture you may consult the United States round chocolate nat, or by extraction with a solvent, uch as bisulphide of carbon, or by simply boiling with Baker \& Co., of Boston, Mass.
(3430) W. E. D. asks: 1. Have you ever printed in this paper directions for Haking an electric safficient power to ran a fan eight inches in diameter at a suitable speed? A. Consuit SUPplement, Nos, 161 and 641. The dynamo described in Supplement, No. good idea of the electrical terms in common use as well
as a fair idea of motors and dynamo machines, their construction and operation? A. Houston's "Electrical
Dictionary," price 82.50 , is a good work for terms "Experimental scienc
or you.
(3481) W. B. S. asks for the ingredients the enamel used ou sewing machines, or some o steel, and does not need baking on. A. We know of no perfect substitute for baking japan. You can approximate it by mixin
arying copal varnish.
(3432) E. H. asks whether one cell o ran the small Gramme ring motor satisfactorily, illus-
ran trated in your paper published January 17, 1891. A. is a good one for this parpose.
(3433) W. B. R. asks : Would the boiler 182, be suitable for a boat 21 ft . long, 5 ft , beam, 28 in hold? Engine cylinder $23 / 4$ by 4 in. stroke. Would this boiler carry 75 lb . working steam pressure and would it be enough to run that size boat, or would it be better to add 2 to 3 more flasks? What speed could this engine run? What size screw wonld be required? What pitch ase of said boilers on rivers like the Hackensack o Passaic? Also, would the boiler inspector have to be
informed of the same to be necessary to niormed of the same to be necessary to get an en
kineer's license? A. The engine will run the boat at 81/2 to 7 miles per hour, at 300 revolations per minute Shonld have a three-bladed screw, 20 inches diameter, 30
inches pitch. The boiler is safe for 75 lb ., but wonld better service with more flasks. See Scientific Amert Can Supplement, No. 702, for other styles of smal boilers. The goverument requires license for running on navigable streams. You can get one license as engineer and piliot for a small boat for
boiler you name will pass inspection.
(3434) J. G. says : Please let me know he ordinary pitch of 10 ft . 8crew propeller, and what
would be the distance it would move forward in one wo, and three revolutions, supposing there was no loss from slip. A. Propeller screws are made with a pitch
of $11 /$ to twice the diameter of the screw, according to he kind of service. The travel is equal to the pitch per revolution without allowance for slip. One and a hal the diameter for your 10
well for ordinary boats.

## TO INVENTORS.

An experience of forty years, and the preparation of
more than one bundred thiousand applications for pa tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A foreign countries may be had on application, and persons contemplating the securing of patents, elther at homeor abroad, are invited to write to this office for prices,
which are low, in accordance with the times and our extensive facllities for conducting the business. Adres MUNN \& CO., office SCIENTIFIC AMERICAN, 361 Broad way, New Yorl

INDEX OF INVENTIONS
 United States were Granted

September 22, 1891.

## AND EACH BEARING THAT DATE

## these patents.]





Steam! Steam!
Quality Higher, Price Lower. 2-Horse Eureka Boiler and Engine, - $\$ 145$

## B. W. PAYNE \& SONS,



LEARN WATCHMAKING, etan, of W, Whitin. Wooncook
TYPHOID FEVER - A VALUABLE



STEEL TYPE FOR TYPEWRITERS
 A CONNECTICUT PEACH ORCHARD.

 CUSHMAN CHMUCK the builders of the steam en-



SPECIAL NOTICE!




## 

 The Siennific American PUBLICATIONS FOR 1891.Tht pricas of the differant pubtigations in the Unitea
 The Scientitic American Supplement (weekly), one
year, 5.00
The Scientifc American, Spanish Edition (month-
The Scoentitid American Architects and Builders
Edition (monthy). one year. The Scientific American and Supplement . . $\quad \mathbf{8 7 . 0 0}$ The Scientific American and Supplement Be Scentitic American and Architects and Build-
ers Edition, ers Edition, -erican - This includes postage, which we pay. Remit by postal
or express money order, or draft to order of


October 3, 189r.]
§rientific gmerican.

THE MARVELOUS MOQU SNAKE DANCE


By Dr. R. W. ShuFkldt, of the Smithphotographs which are said to be the only ones ever made. All of
our illustrations are made direct from photo-negatives,
hence are absolutely true.
This article is illustrated, showing The Beginning of the Dance, Handling Live Rattle Snakes, Hualpi,where the dance was held, and Moqui Indian Girl. The above is but one of
the many articles and illustrathens : the special feature of
the 0cT0BER Great Divide will the OCTOBER Great Divide will
be its Art Supplement. an be its Art Supplement. an
Aquarelle in seven colors, Aquarelle in seven
suitable for framing, of
TOLTEC GORGE the incomprehensible wonder of the $R$
mer, yet surrounded by beautiful foliage.

## TWENTY GEMSTONES

"Profusely and admirably illustrated."
sold by all booksellers, or sent, post PAID, BY
OHARLES SCRIBNER'S SONS, 743-745 Brondway, New York.
A FREE TICKET TOTHE WORLD'S FAAR

 you will "get there " without feel-
ing it Locks and registers sepositil
Opens itself when $\$ 5$ in dimes have Opens itsect when \%5sin dimes shave
been deopited. Fits Vest ocket!
Postpaid to any address on re. Postpaid to any adaress on ree
ceipt of 25 ce Money refunded if
not satisfory. Agents wanted.
Orite for circuiss of Ms


THE SUNDERLAND TELEPHONE

DEAF NESS \& HEAD NISES CURED Scientific Book Catalogue
 "STANDARD" EMERYEL DRESSER


 HOW TO MAKE DYNAMO-ELECTRIC







Cheap

TO BUSINESS MEN
The value of the scientivic Ambrican as an adver-- MANUFACTURING ENTERPRISES
ising medium
 ries, and is read in all the principal libraries and reading
rooms of the world. A business man wants something more than to see his advertisement in a printed news
paper. He wants circulation. This he has when he ad
vertises in the ScrExtic the advertising agent influence you to substitute some
other paper for the ScIENTIFIC AMERICAN, when selecting a ilst of publications in which you decide it is fo-
your interest to advertise. This is frequently done for your interest to advert ise. This is rrequently done for
the reason that the agent gets a larger commission from
 361 Breadway

## (ITF

THE PENNA. DIAMOND DRILL \& MFG. CO BIR DSBORO, PA. Bullere of High Clas
Steam Engines, Diamond Drills, Power and Hand

## PAINTrioös

 DIXON'S SILICA GRAPHITE PAINT

 BIT



 RAILWAY \＆STEAM FITTERS SUPPLIES Rue＇s Little Giant Injector． John s．virulhart， 46 Cortinndt St．，N．

 CENTAGE，\＆C

 FELT \＆TARRANT MFG． $\mathbf{C O}$ ．， $52-56$ IIIInois St．，Chicago， 3 sto so B．．r．THE Motor of $1 g^{\text {th }}$ Century


OILS AND FATS－SOME PRACTICAL





ARTIFICIAL INCUBATION．－A DE

FOOT POWER LATHES
 For Electrical and Experi－ mental work．
For Gunsmiths nd Tool Makers．For General Machine Shop Work
Hilgh grade tools：elegant tin design，superior in construction．The best foot power hathes made．
and tualit considered the cheapest．Send tor

W．F．\＆JNO．BARNES CO．

## GATENTS！ <br> －＝$=$       MUNN \＆CO．，Solicitors of Patents， 

## 

 THE BRIDGEPORT WOOD FINISHING CO GRANVILLE M．BREINIG GENERALAGENT Z ${ }^{2}$ SUPERWHEELERS PATENT WOOD TILLER BrEINIG＇S LITHOGEN SILICATE PAINT．
PAMPHLET GIVING DIRECTIONS FOR FINISHING HARD WOOD FREE TO ANY ADDRESS．


NEW KODAKS


L LoADED witt
Transparent
For sale by all Photo．Stock Dealers．
THE EASTMNN COMPANY，
The Best Mechanical Help For inventors，experimenters，etc．，comes
from a real machine shop with first－rate men and tools accustomed to regular
work．We have put some notions of ours in a primer－sent free．
 CABLES．

ELECTRIC LICHT
SIEMENS \＆HALSKE by THE EDISON GENERAL ELECTRIC CO
their SCHENECTADY WORK
Cable and Wire Department，Edison General Electric Company，
dison building，broad st．，new york

## E．W．JOEENS <br> ASBESTOS SECTIONAL PIPE COVERING



A Non－Conducting Covering for Steam and Hot Water Pipes，etc ASBESTOS BOIIFR COVERINGS．
 H．W．Johns＇Asbestos Milboard，Sheathings，Building Felts，Fire－Proof Paints，Liquid

87 Maiden Lane，New York．
A Culedt Adventioino Medinum． The Architects and Builders Edition

This superb architectural work has by far the largest
dreculation of any periodical of its class．It goes rectly into the hands of those who have the ordering of the reat bulk of Building，Materials and Appliances，namely，
the Architects，Builders，Constructing and Sanitary Engineers，Contractors，and House Owners． The Building Edition of the Scientific american unquestionably the very best advertising medium for nanufacturers and dealers in Bulding Materials，Car－
penters＇Tools，Woodworking Machinery，Heating．Ven－ tilating，Plumbing and sanitary Appliances，Roofing， Architectaral Wood and Metal Work，Builders＇Hard－ which enter into or are used in the construction maintenance of Buildings or works of any kind．
The rates for advertising are moderate．For


Chicago，philadelphia，boston．

## PELTON WATER WHEEL



## MERAYESYEVATORS．



95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877．No．186，787．
The transmission of Speech by all known orms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents，and renders each individual user of telephoues not furnish ed by it or its licensees responsible for such ed ful use and all the consequence and

1

TANITEEmery， Emery Wheels， Emery Wheels，
Emery Whetstones． Grinding Machines Knite Sharpeners，
Knife Grinders． 0．，Knife Gr
Stroudsburg，PA．
Strington St．New York．
161 Wa エエエモ

## SCIENTIEC AMERICAN

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World
Only 83.00 a $\mathbf{Y e n r}$, Including Postage Week $1 y-52$ Number
This widely circulated and splendialy flustrated paper is published weekly．Kvery number contains six－
teen pages of useful information and a large number of original engravings of new inventions and discoverles，
representing Enkineering Works，Steam Machinery， New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity，Telepraphy，Pbotography，Archi－ eeture．Agriculture．Horticulture，Natural History．
etc．Complete list of patents each week． etc．Complete list of patents each week．
Terms of Subscription．－One copy TIFIC AMERICAN will be sent for one year－ 52 numbers－ postage prepald，to any subscriber in the United States，
Canada，or Mexico，on reeeipt of three dollars by the Canada，or Mexico，on recelpt of thee months，81．00．
publishers s six months， 81.50 ；three Clubs．－ －peccial rates for several names，and to Post
Mastefse Write for particuars．
The safest way to remit is Dy Postal Order．Draft，or The safest way to remit is oy Postal Orader．Draft，or
Express Money Order．Money carefully placed inside Express Money Oraer．Money carefuny placed inser
of envelopes，securely sealed，and correctly addressed， seldom goes astray，but is at the sender＇s risk．Addres
MUNN \＆CO．， 361 Broadway，New York．
\＄rientifit fancrican supptement
This is a separate and distinct publication from The SGIENTIFIC AMERICAN，but is uniform therewith in size， every number con which are taken from foreign papers， and accompanied with translated descriptions．TBE SCIENTiFic American SUPPLEEMENT is published week ly，and includes a very wide range of contents．It pre
sents the most recent papers by eminent writers in al sents the most recent papers by eminent writers in all
the principal departments of Science and the Useful Arts，embracing Biology，Geology，Mineralogy，Natural History，Geography，Archeology，Astronomy Chemis－
try，Electriety，Light，Heat，Mechanical Engineering． try，Electrictry，Ligg Engineering，Mining，Ship Building， Marine Engineering，Pbotography，Technology，Manu－ facturing Iñustries，Sanitary Engineering，Agricuiture．
Horticulture，Domestio Eeonomy，Biography，Medicine， Horticulture，D vast amount of fresh and valuable information obtainable in no other publication．
The most important Enpineering Works，Mechanisms，
and Manufactures at home and abroad are illustrated and Manufactures at home and abroad
and described in the SUPPLEMENT． Price for the SUPPLEMENT for the United States and
Canada， 85.00 a year；or one copy of the ScIENTIFIC AM－ Canada， 85.00 a year；or one copy of the SCIENTIPIC AM－ ERMCAN and one copy or
for one year for 87.00 ．Single copies， 10 cents．Address an remit by postal order，express money order，or check， MUNN \＆CO．， 361 Broadway，New York， Publishers Scientific America
ghuilding eflition．
 BULDDER＇KDition is issued monthly． 82.50 a year．
Single copies， 5 cents．Forty large ouarto pazes，equal to about two bundred ordinary book pages：forming a large and splendid Magazine of Architecture，richly adorned with elegant plates in colors，and with other fine engravings；illustrating the most interesting examples
of modern architectural construction and allied subjects． of modern architectural construction and alled subjects． of a variety of the latest and best plans for private resi－
dences，eity and country，including those of very mod－ erate cost as well as the more expensive．Drawings in
perspective and in color are given，together with full plans，speeifications，Sheets of Details，Estimates，etc．
The elegance and cheapess of this magnificent work The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of any have won for it the largest Circuiation of any
Architectural publication in the world．Sold by all news－ dealers．\＄2．50 a year．Remit to
MUNN © CO．，Publishers．

361 Broadway，New York．
PRINTING INKS


