

sfrientifit Americau.

EETABLIBHED 1846.

MUNN \& CO., Editors and Proprietors published weekly at
 No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. B. BRACH.

TERMA FOR THE SCIENTIFIC AMERICAN. One copy, one year. for the U. S.: Canada or Mexico.
One copJ, six montha, tor the U. s . Canada or Mexic

Remilt by postal or expreses money order, or by baink draft or etbect. MUNN \& CO., 301 Broesway, corner of Frauklin streel. New Yort. The selentlac A mericen smptione

TIRES IT COTTON CARGORS

According to the records of the British Board of Trade, there have been 171 flies on cotton-laden ships crossing the Atlantic from this country during the last ten years. The cause most frequently asoigned for these fires is spontaneous combustion, but the various investigations which have been made have failed to furnish sufficient evidence to establish this as the true cause. A very serious fire ocicurred on the Inman line steamer City of Richmond in June last when she was on a voyage from New York to Liverpool.
Steam was turned on the burning cotton, and this kept it ander control antil the vessel reached Liverpool, and had commenced unloading, when the fire space occupied by the cotton had to be flled with water. The inspector for the Board of Trade in his official report stated that if stean could not have been applied to the fire, and had the deck over the space occupied by the cotton not been of iron, the City of Richmond would not have reached a port of safety.
This fire, taken in connection with the many which have preceded it, recently caused a spirited debate in the English Parliament. The debate was started by an inquiry as to whether the government intended taking any steps to prohibit the carrying of cotton on passenger ships. In replying to this question, Mr. Ballour said that, in regard to spontaneous combus tion being a cause of fires in cotton cargoes, he though that as the result of inquiries made not only by the Board of Trade, but by the underwriters, by Lloyds and by the shipping commanity themselves in Eng land and in other countries, this idea was, if not dis credited, at any rate moch less generally held now than was the case a few years ago. Of the 171 car goes in which fires had occurred during the last ten
years, 81 occurred in the port of loading, 45 in the port years, 81 occurred in the port of loading, 45 in the port
of discharge, and 45 during the voyaze. If spontaneous combustion were generally the cause, it was ob vious that it would occur after the cotton bad been allowed a little time to heat, and not so much in the early days after loading. Mr. Balfour said further that he had examined the tonnage of the cotton which was loaded at the different ports in America and compared it with the number of fires which had occurred in ships coming from each of the ports and he found that the number of fires was not very disproportion ate to the number of tons at each port, and he thought that the fires did not occur, so far as America wascon cerned, from causes which were prevalent in one por more than another. The origin of the fires was wrapped in obscurity. There might be cases of spon taneous combustion, and some fires had occurred
through electricity being generated between the iron bands and the cotton
It is stated that, while there have been one hundred and seventy-one fires in cotton cargoes from this country to Europe during the last ten years, only four fires have taken place in cotton brought from India up to 1887, and since that date there has not been a single occurrence of that kind. The quantity of cotton shipped from this conntry, however, is very greatly in excess of that received in Kurope from the Eadt.
Edward Atkinson, the well known writer on eco nomic subjects, has recently called attention to the alarming increase in the number of fires on ship loaded with American cotton. He says: "American cotton is treated more barbarously, wore ansuitably more wastefully and wore dangerously than any other great staple of any kind or than any other kind o cotton in the world. From the time it passes the gin until the time it reaches the factory, the bale is abused It is badly made; it is badly covered; it is badly cut it is badly broken ; it is rolled in the mud; it is exposed to the weather, and is always in a condition in which it may become most liable to the impregnation of cottonseed oil, and thereby become liable to spontane ous combustion." Mr. Atkinson says further that i cottonseed oil is extracted where the cotton is ginned oily locks may get into the bale. Where sach im pregnated fibers of cotton are in the center of the bal no danger may ensue, but the contrary is true when it is on the end or side, and these portions become broken, so that air may enter the interstices among the fibers, making the right combination of tiber, oil and oxygen, causing rapid oxidation, which is known as spontaneous combustion. "Fires have occarred in risks under my supervision which could be directly traced to this cause." says Mr. Atkinson. "Locks of cotton saturated with cottonseed oil have been sent to me from factories which, when put into our specia apparatus for oxidation
In support of the statement that the persons wh pack the cotton are guilty of great carelessness, it is shown that at cotton mills where each bale is carefully examined before it is used there have been found oily cotton, cartridges, broken pistols, matches, beer bot tles, pieces of grindstones, old hammers and the like. A great deal of American cotton is packed in very coarse gunny cloth, the fibers of which are so far
apart that the staple is left exposed. Tightly packed
and well covered cotton is much less likely to catch ire than that which is put together in a haphazard way, and the British Board of Trade reports that it was one of the difficulties encountered in their inquiries that if a spark fell upon cotton, it was often proved that the fire ran along the edges of the bales antil it came apon some half packed bale, where it ettled.
While persons interested in shipping claim that cotton is just as safe a cargo as anything else, it is seen hat special precautions are taken to gaard against Ire. One of the officials of the Norddentschen Lloyd ine recently stated that when cotton is carried in one of the steamshipe of that company it is placed in a pecial apartment, where a fire can be flooded out peedily. A representative of the White Star line tated that great care was taken with cotton. No moking was allowed while the men were stowing it, and it was placed away from the boilers. When it has o remain for any time on the wharf it is carefully covred and watched.
Some months ago a fire occurred on the Britannic while the vessel was at sea. The ship was stopped and few bales were thrown overboard. The fire was beleved to have been in the cotton, but it was not known exactly what started it. Within a month or so of this occurrence tbere was a small fire on the Britannic as he lay at her pier. It was supposed that oil had gotten into some cotton; since which time orders have been given not to accept oil, resin, and other inflamnable goods as freight, no matter whether there is ny cotton in the cargo or not.
The underwriters, who annually pay out in losess for ires in cotton cargoes many times the amount of preminms received from such risks, have naturally iven considerable attention to tracing the causes of such fires. An officer of one of the largest companies n New York stated recently to the writer that the umerous fires which have occurred in cotton cargoe are, in large measure, due to lack of care in packing the staple in bales and stowing it in the holds of vesels.
The English Parliament has gone so far as to conider the question of prohibiting steamships which take passengers irom carrying cotton. If soch a law were onacted, a profitable line of business would be made navallable for these vessels, whereas if the cause of the namerous fires is really due to careless handling of the cotton in this country, of which there seems to be very little doabt, the remedy should be promptly applied here, so that this menace of fires in cotton cargoes may be removed.

THE COITAGIOK AND RAPID BPREAD OF LEPROAY.
In continuation of the article in the last Scientific american (Sept. 19), I desire to point out the most ikely cause of the introduction of the taint into noneprous blood, and to call attention to a danger which believe is now becoming imminent. Agnes Lambert, whoee recent epitomization of the literature of this subect has attracted much attention in England, has these pertinent words to say: "Is it not, then, a wonderful thing, not that a cure has not yet been discovered for leprosy, but that with men of science it is still an open question whether leprosy is communicable or incomnunicable, contagions or hereditary; whether it is ue to insufficient and bad food, or bad climate and dirt, or all combined; to a lack of meat or the absence fegetable diet; to the use of salt fish or the want fsalt? Such, however, is the case!' As Drs. Sir Morell Mackenzie, Vandyke Carter, Sir Erasmus Wilson, Munroe, Wynne, and Rev. Ignatius Grant have pointed out or tacitly admitted in their writings, this uncertainty and the rapid spread of the contagion in the last quarter of a century is very directly attributable to the unfortunate haste which led the Royal Colege of Physicians of London to issue their misleading and now famons report in 1867. The many data of a egative character, which came in to the college
 colonial service of the English government, were alowed to outweigh the comparatively few of a positive nature, though the latter were of a most unmistakable ind. So they reported that it was not to be regarded as contagious disease and that there was no patbological varrant for lazar houses, segregation or any laws afecting the freedom of the leper. To again quote Mackenzie: "The leper houses throughout her Maesty's domain were thrown open. Each discharged its easare of pollation into the stream of healthy life sear it. * If leprosy slew its thousands before, it as slain its tens of thousands within the confines of he British empire since 1867."
Where Great Britain led, there nearly all of the Americas, save where French or German influence ere more potent, followed ; and the consequence has oen the fearful strides which this disease has made. Sinde then the terrible fate of Dawien and many of his ollowers; of Keana, the Hawaiian convict, who was iven the choice between inoculation with the leprous irus and death, and who, choosing the former in 1885, was in 1888 far advanced in the tortures of the dieease; and scores of less famous cases, completely dis-
prove the stand then taken by the Royal College, and it is doubtful if to-day a single one of their committee of that time could be found to defend that position in the light of recent facts. That report, however, for over did away with any of athe theories which had fo 30 long done duty in attempting to account for the ex siting cause of leprosy. That it thrives in frigid Nor way and Upper Canada, along the torrid Amazons and In Ceylon; in interior India, where fish is rarely eaten and in the West Indies, where it is the commonest ani mal food; in Oahu where cleanliness is now reduced alnost to perfection, quite as well as in Hayti, where the word olean must have become obsolete; as well smong the pork-eschewing Jews of Jamaica as the pig-loving natives of Tahiti, proves that in climate soil, and'food we will hunt in vain for its origin.
Dr. W ynne, of the Robben Island leper farm, Cape Colony, sheds much light on this obseare sabject, when he writes: " Untll I came to Robben Island, I was not aware that this [comuunication of leprosy to animals] wight be possible, for I had never even heard of its being probable. * Two years ago I shot some two dozen pigeons. * Among them I found incurved claws and with nodalar or hypertrophied articulations. *From time to time leper mice have been caught in the leper wards, presenting the asual characteristics of leprosy. * I am indebted to Cessar Africanus for calling my attention to some young pheasants suffering from the same affection about the doors of the leper wards affected with uninistakable leprosy. Several young tarkeys limp abou with him showing the same symptous."
There is but one way in which pigeons, tarkeys mice, etc., could become thus tainted, i. $e .$, by eating food handled by lepers. And this should speak vol ames to the people of the United States on this ques tion. If the terrors of trichinosis can warrant our French and German cousins in closing their market to our pork, what may we not claim as our right to legislate regarding the leper-handled products of the north torrid zone which is just south of us? Trichina kills one patient, and quickly ; lepra, while it usually results in a living death that may last for a score of years, is too apt to leave its seed behind in the inno cent progeny. I know it will at once be urged that we have been getting tropical fruits and other supplies
from the West Indies in large quantities for over two Irom the West Indies in large quantities for over two
decades and that no harm has yet resulted. To this I would reply that it is a well known characteristic of this disease that it may lurk in the system for many years before becoming apparent even to the victim.
Cases are on record where a wife has lived for te years with a leprons husband, before any indication o the taint was observable in her; or where childre have almost reached maturity before its inherent of fects became manifest. Father Damien was some years with the lepers of Oahu before he discovered his and finding that by spilling scalding water on his ioo never suspected of nor suspecting the leprous taint, had a deep hole eaten into his thigh by rats during the a dight, and not until it was discovered did he realize night, and not until it was discovered did he realize that eight years before he must have contracted the
contagion which had thus killed sensation; and, furcontagion which had thus killed sensation; and, fur
ther, it may be replied to this claim that these case prove not alone that the taint is long in manifesting itself, but that medical skill is often deceived for years by the symptoms o! the disease. I myself have acquaintance with an American physician, a graduate of one of the leading medical schools of this conntry, and a licentiate of the Royal College of Physicians, who married into a leprous creole family in the West Irdies, though the taint had maimed the bride's father, was very observable in a sister and had carried a brother to an early grave. Yet he was blinded to its nature and confldently announced his ability to cure the trouble, which he considered to be of a mild scrofulous nature. He has since that had
dread cause to repent his very imperfect diagnosis. In dread cause to repent his very imperfect diagnosis. I mean no disrespect to American and English medica
men when I emphatically state that I do not believe men when I emphatically state that I do not believe
that there is one in one thousand of their number who is able to detect leprosy in its early stages; and perhaps not one in ten of that fsuall number would know what it was best to do with a leprous patient. Even to-day, the men in New York who have to dea with this problem in carrying out the laws affecting contagious diseases are not agreed as to whether loathsome, pest-ridden Chinaman shall be isolated or allowed the same freedom as is given to the uncon taminated. In Jamaica, one member of the Royal College sends all patients coming under his notice to the Lepers' Hospital, at Spanishtown, while a local magistrate, acting under the results of the College's report for 1867, allows a woman whose fingers are fast disappearing to sell fruits and nuts to the passing chool children. In St. Kitts the medical anthorities allow a leper to teach school, and in Trinidad a medical board recommend entire segregation. A railroad in India leaves one terminus from a station where a leper punches the tickets and hands them back to the travel
ing pablic, and at another station a leper, whose hands are so far gone as to compel him to wear gloves in the
streets, cooks the food at the railway restaurant. Yet, streets, cooks the food at the railway restaurant. Yet,
bet ween these stations there is a segregation settlement bet ween these stations there is a segregation settlemenc, where leprosy is sternly dealt with. These are from anong many instances of the present total lack of agreement and knowledge on the part of the AngloSaxon medical profession in this respect.
In this country we consume over $\$ 4,000,000$ worth of bananas, over $\$ 2,000,000$ of oranges, over $\$ 1,600,000$ of ninor tropical fruits, over $\$ 15,000,000$ of tobacco, and maller quantities of other like products, which come from lands were leprosy is well known. I have fre quently stood on wharves in Jamaica and noted proounced cases of leprosy going by in ceaseless rounds earrying bananas from the store house to the loading essel. I have stood in a South Cuban port and watched a leper, with but three fingers left on th right hand, and those badly eaten with leprosy, rolling cigarettes for exportation. The researches of Dr Armauer Hansen, of Norway, the discoverer of the eprous germ, bacillus lepra, are quite sufficient to show that bananas or tobacco so handled are far from being safe articles of importation. Unless special prucautions are taken to avoid eating the exposed parts of the banana, not completely covered with the skin, the risk, though it may be very, very slight, is nevertheless existent. The cigarettes should be entirely hunned. The American-made article is sufficiently in urious in the If the amoker inut toupt fato h him If this is darer I beleve I have
If this is a danger-and I believe I have greatly un arstated it-have we no right to notify such countries as Trinidad, Demerara, Barbados, Haiti, Jawalca, Cuba, Mexico, and others whence we desire a constantiy ncreasing supply of food products, that the time has come for them to deal with this problem in a firm and enlightened manner, if they would retain our trade t is bad enough to visit a presumably enlightened land, such as Jamaica, for instance, and find a partner in whom the taint is becoming evident facing you for the dance at a governor's ball ; from that the panic-stricken dancer may flee, though with hands n which the skin is unbroken, he probably runs no isk if his ablations be thorough afterward. But how hall we be protected against the employment of lepers n the handling and manufacturing of our food prolucts? That surely calls for attention from our Stat Department.

POSITIOM OF THE PLANETS IT OCTOBER

 UPITERevening star, and, though losing a little of the prestige that marked his course in August and Sepember, still retains his position as monarch of the tarlit October nights. Observers will notice a change n the time of his appearance. He is high above the horizon when it is dark enough for the stars to come out, and sets in the small hours of the morning. He is on the meridian at 8 o'clock. and sets about half past 1 o'clock on the 81st. His diameter has decreased bout 5.0 since opposition, but it makes no perceptible difference in the brilliancy of his light. The prince of planets is leaving us, and traveling toward the sun the earlier rising and setting and the lessening diameter are the tangible proofs of his obedience to the reat central orb, who sways his course as irresistibly a does that of the tiny atoms of a meteor swarm. The moon is in conjunction with Jupiter three days before the fall, on the 14th, at 6 h .46 m. A. M., being ${ }^{\circ} 57{ }^{\circ}$ south.
The right ascension of Jupiter on the 1st is 22 h 8 m. , his declination is $9^{\circ} 14^{\prime}$ south. his diameter is $6^{\prime} .2$, and he is in the constellation Aquarius.
Jupiter sets on the 1 st at $3 \mathrm{~h} .29 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st, he sets at 1 h .22 m . A. M.

URANUS

3 evening star until the 25th, and then morning star He is in conjunction with the sun on the 25 th , at 6 h . M., when he makes his appearance on the sun' western side and commences his role of morning star. The synodic period of Uranus, or the time it takes bim to travel from conjunction to conjunction, is $\mathbf{3 6 9}$ days, while his sidereal period is 84 years. It will be oticed that the more distant a major planet is from the sun, the shorter is its synodic period, for, the lower the planet moves; the less space will the earth, fter completing a revolution, have to travel to come nto line with the planet and the san. In the case of Jupiter, the synodic period is $1 \mathbf{~ y . ~} 34$ d.; for Saturn, it 1 y .13 d .; for Uranus, it is 1 y .4 d .
Uranus while evening star is in conjunction with Venus on the 17 th at $1 \mathrm{~h} .40 \mathrm{~m} . \mathrm{A}$. M., being 21^{\prime} sonth. He is in conjunction with Mercury on the 26 th, the day after he becomes morning star, at 7 h .31 m . A. M., being 10 ' south.
The right ascension of Uranus on the 1st is 18 h .58 m., his declination is $11^{\circ} 7^{\prime}$ south, his diameter is $3^{\prime} .4$, and he is the constellation Virgo.
Uranus sets on the 1st at $6 \mathrm{~h} .80 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the

MARS
is morning star and is slowly making his way toward the earth. Saturn overtakes and passes him on the 2th, when the planets are in conjunction, at 10 h .25 m. P. M., Mars being 58^{\prime} south.

The right ascension of Mars on the 1st is 11 h .14 m . his declination is $6^{\circ} 11^{\prime}$ north
Mars rises on the 1st at 4 h .7 m. A. M. On the 31st he rises at $8 \mathrm{~h} .44 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.

saturn

is morning star. The noteworthy event in his Octo ber course is the reappearance of his ring on the 30 th . The plane of the ring then passes through the sun its northern surface comes into the light, and the southern surface enters into shadow. The ring con tinues to open until in about seven years it is open to its widest extent, then gradually closing, it become again invisible about 1906 . Saturn rises at the close of the month three hours and a half before the sun, and may be found north of the star Beta Virginis.
The moon is in conjunction with Saturn on the 1st the day before her change, at $7 \mathrm{~h} .26 \mathrm{~m} . \mathrm{A}$. M., being $2^{\circ} 59^{\prime}$ north.
The right ascension of Saturn on the 1st is 11 h .36 m., his declination is $4^{\circ} 41^{\prime}$ north, his diameter is $15^{\prime} .0$, and he is in the constellation Virgo.
Saturn rises on the 1 st at $4 \mathrm{~h} .32 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the sist, he rises at $2 \mathrm{~h} .52 \mathrm{~m} . \mathrm{A} . \mathrm{M}$

venus

s evening star. There is little to be said of her as she makes her slow progress eastward from the sun keeping so close to him that there is only an interva of twenty-seven minutes between sunsetiand the time of her disappearance below the horizon.
The new moon of the 2 d is in conjunction with Venus on the 3 d , at 2 h . 18 zu. A. M., being $2^{\circ} 36^{\prime}$ orth.
The right ascension of Venus on the lst is 12 h .45 m . her declination is $3^{\circ} 30^{\prime}$ south, her diameter is 10°, and he is in the constellation Virgo
Venus sets on the 1st at $5 \mathrm{~h} .47 \mathrm{~m} . \mathrm{P}$. M. On the 31st, she gets at 5 h .21 m. P. M.

mercury

s morning star until the 27th, and then eveningestar. He is in superior conjnnction with the sun on the 27th at $9 \mathrm{~h} .35 \mathrm{~m} . \mathrm{P}$. M., when he completes his syno dic revolution of 116 days, and comes into line with the earth and sun, being beyond the sun and at his greatest distance from the earth.
The moon is in conjunction with Mercury on the 1st at 2 h .12 m. A. M., being $3^{\circ} 31^{\prime}$ north.
The right ascension of Mercury on the 1 st is 11 h . 34 m ., his declination is $4^{\circ} 41^{\prime}$ north, his diameter is $3^{\prime \prime} .2$, and he is in the constellation Leo.
Mercury rises on the 1st at 4 h .29 m . A. M. On the 31st, he rises at 6 h .47 m. A. M.
neptune
is morning star. His right ascension on the 1 st is 4 h . 30 m ., his declination is $20^{\circ} 6^{\prime}$ north, his diameter is . 5 , and he is in the constellation Taurus.
Neptune rises on the first at $8 \mathrm{~h} .27 \mathrm{~m} . \mathrm{P}$. M. On he 81 st, he rises at $6 \mathrm{~h} .29 \mathrm{~m} . \mathrm{P}$. M.
Mars, Saturn, Uranus, and Neptune are morning lars at the close of the month. Jupiter, Venus, and Mercury are evening stars.

Rallway Conductorn' Exhibit and Fair.

A unique sort of an exhibition and entertainment is to be held at New Haven, Conn., daring the week comnencing October 12, for the benefit of a society of railway conductors and the members of their families. It will be an exhibit and fair under the management of offlials of different railway divisions in Connecticut, ncluding the New York, Hartford, Shore Line, Air Line, Northampton, Naugatuck Valley, Housatonic, Danby and Norwalk, and New Haven and Derby, and others. Inventors and manufacturers of railway appliances and supplies of all kinds are invited to exhibit heir productions, applications for space to be madeto Mr. John McCarthy, 68 Church Strẹet, New Haven.

A. Bow Propeller

An exhibition of a method of propulsion devised by Mr. Thomas Mills, of Queensland, was recently given n Glasgow. Mr. Mills' invention consists in the placing of the propeller at the bow instead of the stern of the ship. He states that he has made the change for two reasons-first, that the revolution of the screw propeller in its ordinary position at the stern of the vessel produces a vacnum, which must be filled by the inrushing water ere the ship obeys the forward inpulse; and second, that the water at the bow of a ship offers resistance to its movement. Mr. Mills thu places his propeller at the bow. The shaft is carried through the bow, and carries a conical propeller with a dianeter nearly as great as the beam of the ship. The outside of the cone consists of webs projecting at The action is thus a boring action.

THE PRAMEPORT ELBCTRICAL EXHIBITION.

Accordiug to Industries, Messrs. Siemens \& Halske bition. They exhibit practically everything within the scope of the exhibition. They begin with a double central station ; one part is direct current with batter ies, the other alternating with transformers As if this ies, the other ing were not enough, they add extensive exhibits of rail way signals, scieatio inse rents, transmission o euergy plant, telephones, telegraphic instruments, electric railway and tramway work, and electro-metal-
lurgy. They also exhibit a model of an electrically lighted theater, also an extensive display of marine electrical gear. The exhibit is so extended and complete that they publish a special catalogue of 150 pages.

We cunnot afford space to describe the whole of Messrs. Siemens \& Halske's exhibit, so we will devote our attention to their electric light and power machines. They have made up a sort of complex exhibit, containing combinations of direct and alternate current generator motors and transformers all coupled up together, and transforming from one system to the other and back again, and to all sorts of different pressures and currents. The station works incandescent lamps, direct current arc lamps, alternating arc lamps tramways, search lights, and motors, and these are scattered about over the whole exhibition.
the armature simultaneously by moving the controlling lever. All the positive and all the negative brushes are connected in parallel, and the current is carried of ing. This dynamo runs at 150 volts.

Antronomical Noten.

At the recent Cardiff meeting of the British Association, Professor H. A. Newton, of New Haven, U. S. A. read a paper on "The Action of a Planet upon Small Bodies Passing Near to it, with Special Reference to the Action of Jupiter upon such Bodies." He showed that when comets came under certain conditions into the neighborhood of Jupiter, it was quite possible that they should under its attraction be constrained to re volve in the system of that planet. This was not possible in the case of the earth, since its much smaller mass would necessitate a very close approach on the part of the comet.
Professor George Forbes, commenting upon the paper, said that he had been studying the motion of comets in the solar system, and had become convinced that the movements of certain of them could only be explained by sapposing the exintence of a yet undis overed planet in our system.
Mr. Isaac Roberts, referring to the conjecture of the last speaker, said that during the last winter he had
been engaged in carefally photographing that part o

Teuting a Now smokeless Powder

Professor Charles E. Mnnroe, a graduate of Harvard Pd recently ou duty in the navy at the Newport torwhich has been tested at the Naval Ordnance proving grounds, and is said to be eminently satisfactory to the government officis. Fleven rounds were fred from six-pound guns, a charge of 400 grawmes giving from six-pound guns, a charge of 400 grawmes givg
velocity of 1,960 feet and a pressure of 16 tons; with a charge of 392 grammes the velocity was 1,920 with a charge of 392 grammes the velocity was 1,920
feet and the pressure 14 tons. With the ordinary feet and the pressure 14 tons. With the ordinary
service charge of 820 grammes of black powder, the elocity is 1,800 feet and the pressure $151 / 2$ tons. The results obtained with three-pound guns are said to have been still better, the trials comparing well with anything which has been done in Europe. This new powder is almost entirely smokeless, but it is necessary to use with it a small priming charge of black powder, which casues a slight puff of gray smoke that quickly disappears.

The Regenerative Gas Lamp.
It may be stated as a general rule that any ordinary regenerative lamps may be relied on to increase by at least 150 per cent the light from any given consumpion per hour. In practice, one may safely guarantee at equal light will be got from little more than one hird the consumption of flat-flame burners in the

THE FRANKFORT EXHIBITION-SIEIEENS \& HALSKE'S CONTINUOUS CURRENT DYNAMO.

The electrical power is generated by two dynamos, which are the largest in the exhibition. One is an alternator, the other a continuous current wachine, and either of them can alone supply the whole distributing system. The engines are both of the vertical marine type, as shown in the illustration. The continuous carrent machine is driven by a tripleexpansion condensing engine, by Messrs. G. Kuhn, of Stuttgart-Berg. It has three cylinders, of $20 \mathrm{in} ., 28 \mathrm{in}$., and 47 in . diameter respectively, and 2 ft . stroke. It develops $400 \mathrm{~h} . \mathrm{p} ., 500 \mathrm{~h} . \mathrm{p}$. , and 600 h . p. When run at 80, 100, or 120 revolutions per minute. The dynamo, made according to Messrs. Siemens' latest design, is machine, with radial electromagnets placed inside a Gramme armature of 10 ft . diameter, giving a normal output of 830,000 watts at 65 revolutions per minute, or of above 600,000 watts at 100 revolutious. An interesting feature of these machines is the total want of a special commutator. The outside winding is made of solid copper strips, 1.2 in . high by 0.24 in . broad, insolid copper strips, 1.2 in . high by 0.24 in . broad, in-
sulated from one another by fiber. The whole of the sulated from one another by fiber. The whole of the
winding is turned up true on the outside, and ten sets winding is turned up true on the outside, and ten sets
of brushes, corresponding to the ten poles of the machine, collect in parallel. These are mounted on a star-shaped casting mounted on the outside bearing of the engine proper. This arrangement is exceedingly simple and very accessible. The brush holders are so constructed that every brush can be independently adjusted daring work without disturbing the others, and at the same time the position of all the brushes nay be altered at unce by an ingenious and simple device, and all the brushes can be lifted off or put on
the heavens to which Professor Forbes had alluded, and, though he had as yet had no opportunity of examining his plates, he had reason to believe that they would be found to have recorded the position of every star greater than those of the eighteenth magnitude If, therefore, the planet in question really did exist, he thought it probable that he should be able to demontrate the fact of its existence.
Mr. W. E. Wilson followed with a paper descriptive of experiments he had made upon the absorption of heat by the solar atmosphere. In these he had made use of Professor Boys' new radio-micrometer, and the curves which he exhibited showed in a very striking manner the variation in radiation from different parts of the sun's disk.
Professor G. E. Hale, Chicago, then contributed a paper, in which he described the results he had obtained from recent photographic investigations of solar prowinences and their spectra.

An Irrigating Flume.
The farmers and others east of Fresno, Cal., have united in a project to irrigate a large area of foothill land, on which they will raise oranges. The water will be conveyed from Stevenson Creek, in the Sierras, along Pine Ridge, which itself is twenty miles long, thence to Dry Creek and into the foothills. The water will come down into the foothills by a V-shaped flume, and will convey lumber to the farmers who need it, as well as furnish water for the soil. The flume will be about forty-five miles loug, will cost from $\$ 125,000$ to $\$ 150,000$, and will prove of great advantage to that region. Work ia already progressing on the flume.
asual type of fitting ; while, for a giveu consumption, it is equally safe to count upou almost treble duty from regenerative lamps as against ordinary burners.-D. Macfe.

Peach yellowe.

The Hale Brothers, of Connecticut, who are among the largest and most successful growers in the country, have never yet been satisfied that "yellows" is anything more than a symptom of hunger or starvation. They apply potash freely to the soil under all their trees, and thus far have had very liitle trouble from the disease. If any of their trees begin to look yellow and throw out fine, sickly shoots from the trunk and branches, they apply potash and nitrate of soda; for large trees, ten poands of the former to five of the latter.

The late P. M. Augur, of Connecticut, was more inclined to look upon yellows as a specific disease due to microscopic germs, and most easily cured by digging out and burning. The study of the disease has been undertaken by the Department of Agriculture, at Washington, and a volume of 250 pages published on he subject, but at that time (1888) no definite conclu ions had been reached, although the author, Prof. E. F. Smith, said that experiments pointed strongly to some contagium vivum as the cause of the disease. The peach is a comparatively short-lived tree at best, and uncertain in our climate, and the only way to get fruit is to plant frequently, fertilize liberally with saitable material, shorten in surplus growth annually, thin the frait boldly in bearing years, and avoid forc ing a late growth in autumn.-N. E. Farmer.

A SIMPLE FORM OF HAT HOLDER
The illustration represents an inexpensive device to be attached to the bottoms of pews, theater chairs, etc., to conveniently and safely hold an ordinary hat where it will be out of the way, under the seat or against the back of the pew or chair immediately in against the back of its owner. It has been patented by Mr. Le Roy C. Godwin, corner of High and Chestnut Streets, Roy C. Godwin, corner of High and gide rods, having Portsmouth, Va. Two parallel gu*de rods, having
upwardly bent and pointed ends, are driven into the bottom of the seat, into which also staples are driven

godwin's hat holder.
to form a fixed loop below the outer portion of each rod. The two ends of a hat-supporting loop formed of a single piece of bent wire are loosely attached by eyes to the guide rods, parallel side rods of the loop extending from the eyes to a forward bent portion where the wire is doubled to extend backward beneath the side rods, its central portion being eurved at sufficient distance back to receive the crown of the hat. A bail is secured to the loop near its forward bent portion, and the loop is drawn out, as shown in theop then sliding by its eyes on the guide rods, and being supported by the staples when pushed back, being supported by the staples when pushed back,
while the turned-down bail locks the hat in place, as while the turned-down bail locks the hat in place, as
shown in the perspective view. To support the hat shown in the perspective view. To support the hat
against the back of a seat, a light spring catch is against the back of a seat, a light spring catch is
placed in position to engage the bail when the loop is placed in position to engage the bail when the loop is
turned upward, the eyes by which it is attached to turned upward, the eyes by which it is attached to
the guide rods permitting it to be also swung, and the guide rods permitting it to be
thus hold the hat in either position.

A SINGLE WHEEL RIDING MACHINE

The machine shown in the illustration is designed to be easily and safely propelled by the rider, and normally held in upright position when at rest. It has been patented by Mr. Henry C. Ross, of Ipava, Ill.
From the rim of the large single wheel short divergin spokes extend to inner parallel rims some distance apart, bent arms attached to the latter rims extending to a hub on each side of the wheel, the hub consisting of a sleeve provided with ball bearings through which the axle extends. Mounted in ball bearings on each of the sleeves is an arm extending above and of the sleeves is an arm extending above and
below, the upper ends of the arms having handles by whish the machine is guided, while their lower whish the machice is guided, while their lower to which is secured the seat perch, the frame also affording bearings for an axle on which also aflording bearings for an axle on which
are pivoted the pedal levers. Loosely mounted are pivoted the pedal levers. Loosely mounted
in a hollow circular case at each side of the in a hollow circular case at each side of the machine, on the inner end of the axle and sleeve, is a ratchet mechanism for driving the wheel, one of the figures showing a sectional view of the ratchet attachment. A strap held in a groove on the face of the ratchet casing extends downward on each side to one of the pedal levers, to which it is secured, and as the pedals are operated the ratchet wheel and sleeve are turned to move the main wheel. To the onter ends of the axles are attached rods long enough to extend to the ground, when the axles are turned into position to bring their points down, and at a convenient point in front of the rider is a curved brake bar, connected with the squared inner ends of the axles, so that by raising the brake bar the axle is turned to throw the points of the rods down into the ground as shown in dotted lines in the the tional plan view, and in full lines in the fere in perspective. When the machine ise bur in perspective. When the machine is being operated these rods are held out of contact with the ground by a spring extending from the brake bar to the 'seat perch. A mud guard, preferably of perforated or wire cloth, is s1 רported by the framework above and back of the seat. The machine is readily steered by the handles on the arms extending upward from the sleeves at each side.

THERE is no way to bend wood better than by steaming.
 P., and, in fact, is almost exactly identical with the

ROSs UnICYCLE

At the recent International Congress of Hygiene London, in section 3, which dealt with the relations of he diseases of animals to those of man, this was one of he principal topics. The first paper on the subject was read by Dr. E. Roux, of the Pasteur Institute. In his he described hew the virus is made by inoculating rabbits with the virus, drying the spinal marrow from ch rabbits, and using this in inoculations, commenc ire with marrow fourteen days old, when it has lost ruch of its virulence, and continuing with marrow hirteen and twelve days old to those of less than day old, when it is very active. Dogs so treated do not take the disease. In the case of man. the same method is applied to the prevention of rabies in man after the infliction of the bite. From 1885 to 1891, 9,465 persons have been treated at the Pasteur Institute Of these, 90 have succumbed in spite of the treatment which gives a mortality of 0.95 per cent.
Dr. George Fleming, C.B., the veterinarian, followed with a long paper on the propagation and prevention of the disease. This contained valuable information regarding the prevalence o! rabies in England and Continental countries. In England the numbers of cases for the last four years in dogs, eattle, sheep, swine, horses, and deer are : 1887, 497 (deer 257); 1888, $176 ; 1889,340$; and 1890,134 . Except in 1887, an un176 ; 1889, 340 ; and 1890, 134 . Except in 1887 , an un-
usual year, dogs form about 90 per cent of the rabid usual year, dogs form about 90 per cent of the rabid
animals. Dr. Fleming spoke at considerable length animals. Dr. Fleming spoke at considerable length
on these suppressive sanitary police measures, which on these suppressive sanitary poice measures,
he considered to be all that is necessary to insure the he considered to be all that
extinction of the disease :

1. Destruction of all dogs which are rabid, or which are suspected of being or becoming rabid.
2. The seizure and, if need be, destruction of all wnerless and wandering dogs.
3. All other dogs to wear a properly constructed and well-fitting muzzle while rabies prevails, and also for period equal to longest interval of latency after the malady has been suppressed.
4. The imposition of a tax upon all dogs.

The discussion was mainly in praise of Pasteur, Dr. Hime (Bradford), Dr. Charles Drysdale (London), Dr. Redfern (Belfast), and Dr. Nocard, of Paris, joining in this; but Dr. Elizabeth Blackwell, who had visited the Pasteur Institute, said she saw there dogs in various tages of rabies suffering extreme agonies, snd she pointed out that the establishment of a Pastour insti ate involves the constant producing of madness in dogs, and in a Christian country there ought to be no question in preferring muzzling as a preventive of the disease. Dr. Roux quietly retaliated that rabbits, not dogs, are used for inoculation. The muzzling proposal received the strongest support from Professo Ostertag, of Berlin, who said that all dogs in that city are muzzled, and a case of hydrophobia has not been known there for ten years. So Germans have no need of a Pasteur institute.

New Torpedo Boat

On August 25, the official trial took place of a first lass torpedo boat for the Victorian government, built by Messrs. Yarrow \& Co. The dimensions of the vesel are as follows: Length, 130 ft ., beam, 13 ft .6 in. ith a displacement on trial of about 82 tons. She is ted with triple expansion engines of about $1,100 \mathrm{H}$
ast six first-class boats constructed for the British Admiralty. The speed obtained during a three hours un was $221 / 2$ knots in very boisterous weather, with load on board representing the whole armament and quipment required for service in actual war. fen ral Stewart was present on behalf of the Victorian government and Messrs. Pledge \& Ellis represented the English Admiralty. The sea worthiness and steer ing eapabilities proved very satisfactory, and the speed in spite of the adverse weather was half a knot beyond that contracted for
an inexpensive bow bridge sill
The improved bridge sill whose use is represented in the illustration is designed to partake of the character of both the tubular and truss construction, while epresenting also the suspension type. It has been patented by Mr. William H. Murphy, of Morgantown, nd. It consists, essentially, of three parts, a bowed beam, a cable, preferably of steel, passing through or ver the beam, and struts interposed, as shown. The beam may be of any desired material, shape, or length, with a groove along its top, in which the cable lies, ut is preferably of iron tubing, to receive the cable and sufficiently flexible to allow of considerable bending, the beam in either case supporting at each end a rooved pulley. The ends of the cable are connected y turnbuckles, one portion passing over the beam or through the tubing, as shown, the other portion being

MURPHY'S BOW BRIDGE SILL.

eparated therefrom by short struts interposed between it and the beam, the pulleys allowing for free motion of the cable, according to the load on the bridge, whereby the strain is equalized and principally trans erred to the cable, the beam supporting the weigh only as end or crushing strain. The cable is lengthened or shortened by the turnbuckles to maintain the desired bow or arch form. One or more of these sills nay be placed side by side if desired, and the floor may rest on top of the sills or on floor beams transverse to he length of the bridge, which can thus be built at omparatively small expense, and yet be very light and strong.

Return of the German Aretic Expedition.
A telegram has been received here from Hammerfest announcing the safe return to that port of the German xpedition to the Spitzbergen Islands, under the command of Captain Bade. The expedition visited Baeren sland, and proceeding northward followed the west hore of Spitzbergen itself as far as the 80th degree of orth latitude, at which point a landing was made nd the German flag was hoisted and saluted. It was found impossible to proceed further, on account of the thickness of the ice, so it was resolved to return home ward. All the members of the expedition are reported to be well. The ship and her engines stood all the tests to which they were subjected admirably.

Action of Olls on Metals.

A series of tests, lasting some twelve months, on the ction of various oils on metals in contact with them, recently carried out, gave the following results: In the ase of iron, seal oil acted the least on it and tallow . Bronze was not attacked at all by colza oil, and but very slightly by olive oil. It was, on the other hand, vigorously eroded by linseed il. In the case of lead, the most deleterion ubricant was whale oil : the best, olive oil Whale, lard, and sperm oils were about equally by inineral lubricant oils The beet oil wa by wineral lubricant oils. The best oll wa lard, and the worst sperm. Copper was not attacked by any of the mineral oils. Sperm oil had the least and tallow the most action on it Generally speaking, mineral oil attacked the metals under test the least, and sperm oil attacked them the most. In conducting the experiments, the metals were first thoroughly leaned in ether and then dried. They were next carefully weighed and placed in closed vessels filled with oil, which were kept for a year at a uniform temperature in sammer of 80° Fah. and in winter of about $50^{\circ} \mathrm{Fah}$.

Dr. Dijoud has tried this remedy in twenty ve cases, and he claims to have entirels five cases, and he claims to have entirely The duration of the treatment varied from one to seven months, and he was able without inconvenience to carry the dose up to ninety grains a day. This was only possible if a beginning was made with small doses which were gradually increased; and when the dose exceeded sixty grains daily, he found it advisable to add some glycerine to the water and sirup in which the drug was usually administered. The patients to whom Dr. Dijoud administered borax had been treated unsuccessfully with the bromides.-Med Reoord.

OPRMING OF THE ET. CLAIR RIVER RAILWAY TURMEL BETWREM TEE UMITED ETATES AFD CAMADA.
The festivities which took place at Sarnia, in Canada and Port Huron, in Michigan, on the 19th inst., in celebration of the opening of the St. Clair river tunnel, mark an ovent of much interest and importance, as well from a ceientific as from an international point of view.
In the methods of construction the great work represents a new departure in engineering science, whereby many noble projects of similar class, in all parts of the world, hitherto reparded as too difficult and costly for execation may now be realized with ease and economy.
Internationally considered, the new tuwnel stands as s boud of union and amity between the Dominion of Canada and the United States ; it forins an open highway for commerce between the two grandest empires of the new world.
The St. Clair tunnel is one of the most finished and solid engineering structures on this continent. From commencement to end of construction, it has borne evidence of the control of a master mind. Every branch of the work went forward with the utmost harnony, skill and precision. The architect, desginer and builder was Joseph Hobson, of Guelph, Ontario, of whom it may be sald, without flattery, be ytands in the front rank of the best engineers.
The question of tunneling the St. Clair river was under discussion with the officers of the Grand Trunk Railway for several years, bat most of the engineering advice was against the project, on account of the great length of time, the immense costs and extraordinary difficulties attending the erecution of the work. The only exception was Mr. Hobson, who did not share in these gloowy reports and prognostications. Mr. Hobson's plans were at first disregarded, but on closer examination were sanctioned by the directors and he was placed in absolute charge of the construction. His knowledge of the Beach tanneling shield as used in unneling under Broadway in this city in 1869-70 satisfied him that similar machines, of greater dimensions, would enable him to execute the proposed work rapidly and economically.
In this he was not disappointed. He designed and constructed two gigantic shields of metal on substantially the same plan as the Beach shield. He employed
for the production of the hydranlic work the same makers who had fitted up the Beach shield, and who knew exactly what was wanted, namely, Messrs. Watson \& Stillman, of this city, who enjoy a wide reputa tion for strong and excellent workmanship. Mr. Hobson's shields were each 21 feet 7 inches in

GHIEF ENGINERR HOBSOM BREAETIG THROUGH FROM CANADA TO THE UMITBD ETATRS URDER THE 8T CLAIR RIVER.
diameter and 16 feet long, of platesteel 1 inch thick. To design and construct for the first time two such giant nachines, to set them in place, and put them in successful operation under the river, was in itself an ondertaking which evinces superior judgwent and accurate skill. But Mr. Hobson was equal to every emergency, and his success shows that he foresaw all the equirements of his novel proceeding. In conjunction with the Beach shield he bronght to his aid the an
nirable system of nsing compressed air in tunnel work, the invention of Mr. Dewitt C. Haskin, of this city, who flrst used it in the Hudson River tunnel. This air pressure system is a necessity in helping to uphold the soft earth of the tuncel heading.
The 8t. Clair Tannel Company was formed in the year 1886. Work upon the great cuttings was begui in January, 1889.
Work upon the tunnel portion was begun in August. 1880, and in one year, to wit, on Monday, August 25, 1890, Mr. Hobson enjoyed the supreme satisfaction of breaking through the headings, being the first man to pass through the tunnel. The last stones on the portals, thereby fully cowpleting the tannels, were laid Dec as 1800. Since that time a preat amount of work Dec. 2L 1800 . to the tunnels, a work of great difficulty, owing to the to the tunnels, a work of great dimculty, owing
treacherons and slippery nature of thc ground.
Referring to our engravings: On the first page the upper sketch shows the approach to the great tannel at Sarnia, on the Canadian side of the river, with the inaugural train ad rancing to enter the tunnel. This train was composed of splendid cars, occupied by Sir Henry Tyler, president, with the directors of the Grand Trunk Railway and many distinguished guests. Near the head of the approach to the tunnel Sir Henry was presented with an address by the Sarnia council. after which the inangural train, amid the cheers and rejoicings of the people, steamed down the incline into the tunnel and disappeared from view under the de the of the St Clair river energing therefrom in depths ol the Port Huron, Michigan, where an address was preaented to Bir Henry lro At a later hour a grand banquet was given in Sarnia, when several eloquent speeches were delivered. Such, in brief, were the ceremonies attendant upon the formal opening to public trafic of this new roadway between Oanada and the United States. Our lower engraving, first page, shows a bird's eye view of the St. Clair river and adjacent country, with the approach on the Sarnia side. The dotted line indicates the course of the tuncel under the river.
The approaches and portals to the tunnel are mach the same on both sides of the river. One of our views, taken from the roof of the Barnia portal, will give some idea of the magnitude
plete the approaches.
The walls of the tannel are composed of segmental

the great railway tunnel under the st. clair river, between the united states and canada the meeting of the shields.

Alanged iron plates, connected by bolts. One of the plates is shown in our engraving. Thirteen of these plates and a key compose a ring of the tunnel. The lower half of the tunnel is lined with massive briakWork. The tunnel is ventilated by means of two tubes, 20 inches in diameter, arrauged in the rool of the tunDel, as shown in our engraving. These tabes extend to the center of the tunnel and pass to the entrances, thence underground to a side building, where they connect with two large Root blowers, by which the required ventilation is obtained.
On page 196 we give sectional elevations, showing the interior of the tunnel and the meeting place of the great shields, by means of which the work was excavated.

The tunnel is $6,050 \mathrm{ft}$. in length from catting to catting, and is divided as follows: From the American cutting to the river edge, $1,800 \mathrm{ft}$. ; from the Canadian cutting to the river edge, $1,050 \mathrm{ft}$. ; and distance across cutting to the river edge, 1,80
the St . Clair River, $2,800 \mathrm{ft}$.
The original estimate of cost was $\$ 8,000,000$. But it is understood the actual expenditure will be less than this amount.
In the construction of the St. Clair River tannel, two deep cattings were made, one on each side of the river; that on the American side had a depth of 53 feet, and that on the Canadian side 58 feet deep. Upon the floor of each cutting, against the head thereof, one of the great shields was placed, and the work of tunneling began.

Each shield was circular, 21 feet 7 inches in diameter,

 16 feet long, and is built of plate steel, one inch thick, divided into twelve compartments by means of two horizontal and three vertical stays.. The front or heading end of each shield was made with sharp cutting edges. Arranged around against the walls of the rear end of the shield were twenty-four hydraulic rams, each eight inches in diameter and a stroke of 24 inches. By their means the shield was forced forward enough to admit of the building up of a section of tunnel rings within the shield. The power supplied by a Worthington pump was capable of producing a pressure of 5.000 pounds per square inch, or 3,000 tons on the 24 rams. The greatest pressure used was 1,700 pounds per square inch, which is 40 tons per
ram and 1,060 tons on the shield. ram and 1,060 tons on the shield
Each ram had a separate stop cock, so that its pressure could be let on or shut off at will. Thos all of the rams could be operated simultaneonaly or a portion of them, or singly as required. Thus by letting on or shatting off pressure the shield could be guided and directed in any direction desired, up, down, or laterally, and made to traverse the exact grade required.
The shields weighed eighty tons each, and were built from the designs of Mr. Hobson, by the Tool Manfacturing Company, of Hamilton, Canada, the hydraulic work being supplied, as before stated, by Watson \& Stillman, of this city. This form of hydraulic shield is the invention of Mr. Alfred E. Beach, one of the editors and proprietors of the Scientific AmeriCAN, and was first made and used by him in 1888-69, in constructing a section of railway tunnel under Broadway, New York. The invention was subsequently copied by Greathead and used by him in London in 1886-89, in constructing the two subway tunnels, each three miles in length, from the Monument, passing under the Thajnes River, Kennington Park Road, etc., to Clapham. The cars in these tunnels are worked by electricity. The Beach hydraulic shield is also now being used in the Hudson River tunnel, in process of construction under the Hudson River between New York and Jersey City.
Joseph Hobson, the chief engineer who planned and built the St. Clair tunnel, is a native of Guelph. Ontario, born March 4, 1834. He served an engineer apprenticeship at Toronto, was engaged in private practice as civil engineer, was for several years employed on location and constraction of railways in the United States, Ontario, Nova Scotia. He was resident ongineer of the International Bridge, Buffalo. In 1873 he took a position as chief assistant engineer of the Great Western Railway. He was appointed chief two years later, and still holds that office. He is a meinber the Institute of Civil Engineers, Eneland, of of American Society of Civil Engineers, of the Canadian American Society of Civil Engineers, of the Canadian In person he is fine looking, six feet high, full gray In person he is fine looking, six feet high, full gray
beard and mustache, bright and genial. Mr. Hobson's beard and mustache, bright and genial. Mr. Hobson's efforts in the St. Clair tunnel were from first to last
heartily seconded by Sir Henry Tyler, president of the heartily seconded by Sir Henry Tyler, president of the
Grand Trunk Railway, who is himself an engineer of rare ability. Further illustrations and particulars of the St. Clair tunnel may be found in the Scientific American for August 9, 1890, and September 13, 1890.

Profrssor Thurston says: "The assumption seems fair that the locomotive engine will have been saperseded when we double our speeds, and that we must find ways to atilize the weights of the cars themselves for adhesion and to make each to carry its own motor."

Now Procese for Toming Blue Printa

The intense blue color of the ordinary blue print sives unnatural effects in prints from photographic negatives : also in architectural drawings where views
and elevations of buildings are reproduced. The foland elevations of buildings are reproduced. The following method of toning such blue prints has been found to be easy of application and to give tones varying from a brilliant blue through violet blue to neutral tint and warm shades of gray, acoording to the intensity of the action of the bath.
The paper employed may be common blue print paper, sold ready for use in rolle, or the specially made paper sold in packages of cut sheets by the dealers in photographic supplies. The solar printing is carried out in the usual manner. The best results are obtained with dark prints, as the intensity of the color is some what reduced by the toning procese. The following baths are employed:
bati A.

The prints are immersed face downward in bath A until all the soluble salts contained in the paper are dissolved and removed, then dipped into bath B until the negative turns a violet blue and the whites are clear, care being taken that the immersion in the ammouia be not continued too long, as the definition of the picture may be injured. The prin aperd in a tray flled with bath C, path, plosed to bricht sunshin 10 from 5 to 10 ininntea ontil no increase in the streng of the picture of the picture can be noticed. The pictures are finished by toning in bath B until the desired shade of olor is obtained, the picture becoming first a brilliant blue, then violet, and finally, by prolonged action,
bluish gray or neutral tint. The toning may be varied by a second imeersion in the tannic acid bath \mathbf{C}, followed by a second toning in bath B. After toning, the prints are dried in the sunlight in the usual manner. The above process is specially applicable to prints from photographic negatives, enabling the amateur in the field, provided with a printing frame, some sheets prepared blue print paper, and the above easily procured chemicals, to test the printing quality of his negatives with results only slightly inferior in detail and definition to those obtained by the complicated process of silver printing.

The Proposod Tubular ERallway mider the

Sir Edward J. Reed, at the late meeting of the British Association, Cardiff, read a paper on "The Channel Tubular Railway." Among the earlier railroad proposals were sereral, he said, for constructing metalic tubes upon the bed of the channel. The sea in the channel is everywhere of very moderate depth, and where the bottom is not practically level, its departres from the level are surprisingly small and gradual. The depth of the channel nowhere reaches 200 feet upon wiles out from from England to France. For severa and the greastest depth is, roughly it is not 100 feet deep and the greatest depth is, roughly speaking, abon wo-thirds of the way across to France, and there its maximum is 186 feet. 1 railway across this piece of submarine ground is as good as any other railway. The fact that it is a railroad witbin a perfectly watertight and durable tube-or a pair of tubes, for there would be a tube for each line of railroad-completely renders the presence of the sea water outside of it of no consequence. The securing of these tabes in place, and the ventilation of them, led on to the details of he system. The necessity which enforces the use of water tight tubes for the purpose is attended incidentally by great advantages. The author stated that the tubes would be "of iron or steel in so far as the prioary and essential elements of their structure are cpnarned; and this at once, and obviously, relieves us almost entirely, if not altogether, of the cost, the dimculty, the delay, and the danger of doing our construction work at the bottom of the sea. These tubes can be perfectly well built by our shipbuilders and engibeers, and partly by those of France, just as ships are built, but with much greater economy. The tubes hus made will be towed by steamers from the buildgid in place, and the as they are required for being which has been very operation of laying them is one which bas been very carefully studied and worked out order to wake it safe and certain. To this end had been devised the systern of making the length of tube which has last been laid the means and the instrument of bringing the next length into its position with unerring accuracy. It is difficult to explain in words alone the operation of laying the tubes. But, obviously, if one end only of a buoyant tube is forcibly taken down from the surface of the water to the bottom, or nearly to the bottom, the other end will loat
and rise somewhat above the surface. This being so a pier wholly afloat at the time is brought up to the emerged end of the tube, and coupled up to it by enor mous hinge jointe. The next length of ficating tabe is then broaght up to the other side of the floating pier, and similarly jointed to $i t$. The pier is now sauk by suitable means and under proper control, and as it goes down carries with it the second end-so to speakof the first named tube, and the first end of the last named tube. The other end of this latter tube floats, of course, and the operation is repeated. In this manner tube after tube is laid, with piers between the suocessive lengths, antil the whole is accomplished. The lines of railway, of couree, pass continuoualy through the piers as well as the tubes. The whole operation is like the paying out of a hoge cable, link by link tubes and piers alike forming, as it were, the links of the cable. The approximate cost will be hetween 19 and 15 millions aterling."
The author then dealt with the question of national security, which many suppose the channel tunnel to security, which many suppose the channel tunnel to infringe. In the case of the channel tunnel, were that carried out, it would undoubtedly afford a subter ranean military road, which, were it once secured by an enemy, might, in the opinion of many, be held in spite of us, because this subterranean road, being deeply situated below the channel bed, would be completely preserved from attack by the British navy. The channel tubular railway, on the contrary, is everywhere situated above the bed of the channel, and could, therefore, be attacked at every point by dynamite. At the same time, it is so constructed and brought up along the foreshore-at a gradient of 1 in 80-as to be exposed for a length of no less than 8,160 leet to the direct fire of the guns of ships between the high water and low water limit. Any breach or hole made in it below high water mark would, of course admit the sea at the next tide to the whole interior of the tube The trains in each tube will almays pass through it in the same direction. The always pass through it in the same direction. The trains themlating pistons, forcing air out at one extent as ventilating pistons, forcing air out at one end of the tabe and drawing it in at the other. By fitting wings to the engines or carriages, and throwing them out when neoessary, the crain may be made to fit the tube more
nearly, so to speak, and thus to add to the efficieney of nearly, so to speak, and thus to add to the efficieney of
this source of ventilation. If other ventilation should this source of ventilation. If other ventilation should be chought necessary-which was rery doubtful it elec-
tric engines were employed-one or more of the piers could be fitted up as a ventilating station, with stean engines, air pumps, etc., the foul air of the tubes being forced into suitable chambers, and thence by nonreturn valves into the sea.

Two Oylindore in ono.

A new departure in compounding locomotives, which is almost as redical as the idea of componnding itself was, has been put into practical and successfal overation by F. W. Johnstone, superintendent of the motive power of the Mexican Central Railway. Coal costs about $\$ 11$ per ton on the Mexican Central, and Mr. Johnstone undertook to reduce fuel consumption by the introduction of a componnd system of his own, in which the high-pressure cylinder is encircled by the ow-pressure cylinder.
The high-pressare oylinder is 14 inches in diameter, and the low-pressure cylinder has a diameter of 303/ inches, which is equal to a cylinder $241 / 4$ inches in diaweter. The stroke is 24 inches, and the t wo rods of the low-pressure piston are coupled with the single high-pressure rod to one crosshead. In a competitive test of 12 trips with a single engine, the compound locomotive showed economy in fuel of about 25 per cent, which means a great deal on a road where the luel account is the largest item of operating expenses, being 22 per cent of the total.-Chicago Journal of Commerce.

One Hundred and Eight Years old.
Mr. Jacob Steel died at a small town near Pittsburg, Pa., on Angust 24. He was born in Fajette County. n that State, on October 19, 1783, and would, conse-保 he remembered weeks longer. He used to say that econd election to the presidency, and his first vote was cast for Jeferson. His habits, are his frst vote rather careful in his diet, drank a little whisky occasionally, but never used tobacco. What probably consionally, but never used tobacco. What probably conof his life was a cheerful disposition and a remarkable evenness of temper.

Artificial Aephalt.
By heating resin with sulphar to about $250^{\circ} \mathrm{C}$., a reaction takes place, atteoded by the evolution of sulphareted hydrogen, and leading to the formation of an almost black pitchy substance containing sulphur and resembling Syrian asphalt in many of its proper ties. Thus it is insoluble in alcohol, but dissolves readily in chloroform and benzene, and is sensitive to ight in the same way as Syrian asphalt, for which it can be substituted for photographic purposes.

THE LOCOMOTIVE EXPLOEION AT OYETER BAY, I. I.
The locomotive explosion noticed briefly in our columns last week forme the subject of the annexed illustration, reproduced from a photograph of the wreck. It will be seen by reference to the engraving that the explosion must have been one of terrific power, as it demolished the rear portion of the engine, drove the drive wheel partially into the ground, tilted the boiler upon one end, and forced the pilot and forward end of the boiler some distance into the earth.
It is supposed that the explosion was due to the weakening of the stays and rivets of the crown sheet, as it was reported that the engineer, who was killed, had intimated to some of his associates that the riveting in the crown sheet and in some of the outer plates of the fire box was defective. If this is true, the present example of the fearful consequences of neglect shows the importance of attending to such defects as soon as they are discovered. Had these imperfections in the boiler been noticed and repaired, the loss of life and the suffering entailed thereby would have been avoided, and a valuable machine would have been saved.
It is reported that the lonomotive was built by the Rogers Locomotive Works in 1889. It was one of the 46 tonners intended for the heavy summer trafic, and was run two seasons on the main line. It had been receutly thoroughly overhauled, and superintendent of motive power, Charles Thompson, of the Loug Island Railway, was unable to offer any explanaion of the catastrophe, but the form which the explosion took seemed to indicate that there must have been some foundation for the observations of the engineer, as the crown sheet and fire box were completely detached from the shell of the boiler.
The present accident s a forcible reminder of the responsibilities of the officials whose business it is to know the condition of boilers and condition of bollers and ongines, and lu ralses an nterestly q uestion, not only in regard to locomotive engines, but as to the condition of thousands of boilers in the basements of our buildings and under the sidewalks over which we pass from day to day. It is possible that this accident may have been one of the kind whose cause could not have been foreseen, bat the everse is more then probable.

Pitch Pine from seed.

 Acorrespondent writes as follows to the editor of Garden and Forest: A large field, worthless for cultivation, alnost pure sand, in places a little loamyg growing up with bay
herry, sweet fern and golden rod. Wood seeds of Pinus rigida catch here, and if so, how should they be sown, or is there any chance of saccess in using other tree seeds, and if so, what sorts-either deciduons or evergreen? Expense is very much to be conidered. The editor says :
Such land as our correspondent describes will quickly produce a crop of pitch pine (Pinus rigida); but it often possesses more plant food than its natural plant covering would indicate, and such land will often grow white pines, oaks and chestnats of a considerable size and value, as the plantations made in East Greenwich, Rhode Island, by Mr. Henry G. Russell, demonstrate. The best way to plant pitch pine is to sow the seed in the spring with an ordinary seed sower in shallow furrows four or five feet apart each way ; but, as the surface of this particular piece of ground is already more or less covered with dwarf sbrubs and other plants, it would be cheaper to scatter the seed broadcast over the surface and take the chance of a sufficient number germinating to cover the ground with plants. White pines are best transplanted when ten or twelve inches high. It is a good plan to plant acorns of the white, red and black oaks and chestnuts among young pines, to replace these in case they nuts among young pines, to replace these in case they
are destrayed by fire or other causes, or to take their are destrayed by fire or other causes, or to take their
place after the pines are cut. The seeds of such deciduous trees can be quickly and cheaply planted in boles an tich or two deep, made with an ordinary walking stick. The holes, after the seeds have been dropped in, should be covered by a pressure from the foot, which will make the soil compact over them. The seedling oake and chestnuts will exist for years under
the dense shade of the pines, and will grow rapidly as soon as light and air are admitted to them.

Camphor in Phthists.

Good results are reported from Berlin as attending the use of injections hypodermically of camphorated oil ($\mathbf{1}$ in 10 of olive oil) in the treatment of phthisical patients. Fifteen-minim doses were given, and after a time these were well tolerated, night sweats, irritating congh, and expectoration being diminished in a remarkable manner, even the first dose effecting a very noticeable improvement in the patient's condition. In hæmoptysis the method also proved very useful. patients being enabled to get about again with out fear of a recurrence more rapidly than under ordinary methods. The treatment also did good in bronchitis.

The Tupolo and the sacararras.

Here two most beantiful and much neglected trees, the tupelo and sassafras, are in their own home. A real tupelo cannot be had from a nursery-a nursery bred tree has neither character nor foliage. The only way is to choose in some pasture or upland an orthodoz looking tupelo, not over large-one that has decidedly a look and way of its own-and then, with a long bladed narrow post spade, to cut a circle round the tree, severing every root on the way, and to drive the spade through under the tree, dividing the down-going roots as well. Wait a year, and then in the spring move your tree. Let the new hole be dag four feet deep, even though the same soil is replaced; fertilize it liberally, for which purpose wood ashes are excellent ;

THE LONG ISLAND RAILROAD LOCOMOTIVE EXPLOSION.

Disanter to Janmson's Party on Mont Blanc. An expedition had been organized by M. Janssen, the French astronomer, with a view to searching out, ear the summit of Mont Blanc, a solid rocky foundaion on which to commence his proposed observatory. Five men had been engaged for a week in driving tunuels, but the weather becoming adverse, and provisions being exhansted, and the feet of one laborer being rostbitten the order was given on the morning of rostbit 21, the order was given on the morning of ugust 21 to descend to Chamounir. All went well ill they reached the Petit Platean, where the weather got worse and a fog was encountered. This drove
them ont of their nsual course, and just at that time them out of their nasual course, and just at that time
an enormons avalanche was precipitated from the an enormous avalanche was precipitated from the

The party consisted of eleven persons in all ; first, five who had been working at the tunnel operations, ext Count Favernay, of Paris, with a guide before and behind him, and next to these Count Armand, a guide, then Herr Hermann Rothe, of Branswick, a anded proprietor, who had been to the top, and lastly the eleventh toan, Michel Simond, a well-known guide. These were all roped. The avalanche of enormons blocks of frozen snow and ice, of almost inconceiveble ize overwheled the whole party. swept the sir ize, overwhelmed the whole part, owept the six保 uide slwond wore neen wore. It is the opinion of an the rest that thay mast have met with an instantaneous death, for tons and tons of ice in blocks fell upon and must have crashed them instantaneously. As soon as those on the margin of the crevasse could disentangle themselves from the ice in which they were buriod up to their necks, they went round to the other side of the crevasse in the endeavor to rescue those in it. Blocks of ice, very sharp, had cut the ropes in two places. At a depth of twenty metera, and in various situations, four persons were found saved from farther descent by resting on the blocks of ice which had shattered and entombed the two victims of this catastrophe.

An Enormoue Micro-

The Poeller Physical Optical Institute, of Munich, have under Munich, have undruction an enormconstruction an enormous microscope for oxhibition at Chicago in 1893. It will magnify to 16.000 diameters, or, as ordinarily fitted, to 11,000 diameters. An electric light of 11,000 candle power is to be used for illuminating the imare, which is to be projected on a screen. As the heat from this and by and by you will have a tree of some intereating |powerful light would derange the focus by expansion and beantiful shape, covered with more leaves than can be found in the same space on any tree, each leaf as rich in color and lustrons as that of an English holly, and the whole tree in autumn a jewel of deep and brilliant color.
The sassafras, with the liveliness given by the fresh color and variety in the form and motion of the leaves, is a charming tree all summer; and, as every one knows, its leaves turn with great beauty in the antumn. It may adopt, or be made to adopt, other forms than that of a succession of parasol-like layers of leaves on a slender trank, which is its natural habit. If cut down close, it will sprout into a bush; suckers will appear on every side until a thicket appears, rising everywhere to the middle, a natural bit of artificial work ; or, again, a goord-sized stem inay be cut five or six feet from the ground, and the tree forced to grow so freely that the branches droop and the whole becomes a pile of charming foliage, and a mass of glowing color later.-Garden and. Forest.

Pante for Labela.

A good paste is made by soaking flake tragacanth in sufficient cold water that the brush will not sink into the paste when finished. To prevent souring, add to the water 2 grains of hydronaphthol (dissolved in a little alcohol) for each pint, and a few drops of clove oil for scent. To keep away the flies add some oil of pennyroyal. Avoid, in making pastes, oil of wintergreen coloration by contact with the tinned iron of the brush.
owerfal light would derange the focus by expansion the metal, an ingenious device is used to cool the netal. This is a small copper cylinder filled with iquid carbonic acid under a pressure of $\mathbf{3 5 0}$ pounds to the square inch. It is connected with the microscope n such a manner that an electric regulator automatioally opens a valve and allows a drop of the acid to scape in a spray on the metal to be cooled. The iquid immediately evaporates and produces intense cold. The whole cost of the instrument is said to be nearly 810,000 .

Frequency of Thunderstormu.

A German periodical gives statistics concerning the requency of thunderstorms in various regions of the world. Java has thunderstorms on the average 97 days in the year ; Sumatra, 86 ; Hindostan, 56 ; Borneo, 54 ; the Gold Coast, 52 ; Rio de Janeiro, 51 ; Italy, 88 ; West Indies, 36 : South Guinea, 82 ; Buenos Ayres, Canada, and Austria, 23 ; Baden, Wurtemberg, and Hungary, 22 : Silesia, Bavaria, and Belgiam, 21 ; HolHungary, 22: Silesia, Bavaria, and Belgiam, 1 ; Holland, 18; Saxony and Brandenburg, 17 ; France,
Austria, and South Russia, 16 ; Spain and Portugal, 5; Sweden and Finland, 8: England and the high Swiss mountains, 7; Norway, 4; Cairo, 3. In East Turkestan, as well as in the extreme north, there are almost no thunderstorms. The northern limits of the thunderstorms are Cape Ogle, northern part of North america, Iceland, Novaja Semelja, and the coast of the Siberian ice sea.

Use French polish for taking out scratches on var nished furniture.

MOR-VENOMOUS BRAESS

cr c. Few siss.

The following is a plain descriptive list of the nonvenomous serpents found in the States from Maine to Delaware and Maryland inclusive, and from the Atlantic coast to Ohio. It embraces 23 species and from 4 to 5 well marked varieties. In this section there are found but three venomous species, viz., two rattlesnakes, one of which is rare, if not exterminated, and the copperhead. Of the non-venomous snakes many are insectivorous and beneficial, while others reduce the number of destructive rodents. Bat the common water snakes are pests and robbers, and deatroy the game fishes of our rivers and lakes hy the thousands.

1. Ground snake, Carphophis amana. Body glossy 1. Ground snake, Carphophis amana. Body glossy
and opalescent ; color uniform brown above; beneath and opalescent; color uniform brown above; beneath
salmon color in life, dull yellow in alcoholic specimens. salmon color in life, dull yellow in alcoholic specimens.
13 rows of smooth rhomboidal scales across the back. 13 rows of smooth rhomboidal scales across the back. Length of adult froin $81 / 2$ to 12 inches. Found fromu Massachusetts to the Gulf States, and westward to Illinois. The Western species is the C. vermis. It is genarally found hidden in the ground, and is consequently called "worm snake" in some sections.
2. Valeria's snake, Virginia Valeria. Color yellowish brown above; pale yellow beneath. There are generally minute black dots scattered along the dorsal region, sometimes forming two or more longitudinal rows. The center of each scale is marked with a pale line, which gives the body a somewhat striated appearance. 15 rows of dorsal scales, smooth or very faintly keeled (carinated) on the posterior portion of faintly keeled (carinated) on the posterior portion of
the body. Length from 8 to 11 inches. Rare north of the body. Length from
Delaware and Maryland.
3. Chain snake, king
4. Chain snake, king snake, Ophibolus getulus. Color deep lustrous black, with 27 to 30 nearly equidistant transverse white or pale yellow bands or rings. These bands are narrow and do not encircle the body, but bifurcate on the sides, so that one portion joins the white band in front and the other anites with the band behind, thus often producing a nearly continuous undulating line on the sides. Sometimes there lines cut the ground color into the form of large somewhat heragonal black blotches. Beneath, either noiblack blotah black or dull yellow, uniform glossy black or dull yellow, more or less spotted with black. The coloration is not uniform, the ground color being brown in some individuals. The head is black and spotted with pale yellow or white. 21 to 23 rows of smooth dorsal scales. Length from 3 to 5 feet. Found from Long Island, N. Y., and New Jersey sonthward to Florida and Texas. Has been frequently known to crush and swallow other snakes. The commonly expressed stories that it wages particular warfare against the rattlespake, so far as I can learn, have not been confirmed. I have heard of instances in the Sonth where it has attacked and killed the noccasin, so there can be no reason
why a hungry king snake should be so fastidious as to pass by a fat rattler. My note book says : On the
27th of June, 1879 , a female of this species laid 5 eggs. They were white and chalky, of a blunt oblong oval hape, and measured about $11 / 2$ inches in length.
5. Scarlet snake, Ophibolus doliatus. Scarlet to red brown, in life, with 21 or more pairs of black rings with a yellow band between them. In some varieties these pairs of black rings are parallel and regular, while in others they separate or diverge on the sides and unite with the adjacent black ring of the next pair ; thus forming a black border to a large red spot. Beneath, yellowish white, irregularly marked and spotted with black. 19 to 23 rows of smooth dorsal scales. Length 18 to 27 inches. Found in certain localities from Delaware to Kansas and southward to the Gulf of Mexico.
House snake, milk snake, checkered adder, Ophibotus doliatus, var. triangulus. All the common names are inappropriate, as it neither lives in houses nor drinks milk, and an adder is, strictly speaking, a venomous snake. Ground color, dull white or pale gray to pinkish; a dorsal row of dark brown or red brown spots, bordered with black, and one or two alternating rows of smaller spots on each side. Beneath yellowish white, marked with small subquadrate black spots, giving the abdomen a pretty tesselated appearance. A V or \mathbf{Y} shaped spot on the head. 21 rows of sinooth dorsal scales. Length 27 to 42 inches, rarely 4 feet. Canada sonthward to Mississippl and west to Kansas. The young are often bright red in color like the scarlet snake. Very useful on farms as a field mouse destroyer. It will also kill and devour other nakes.
6. Ring-necked snake, Diadophis punctatus. Generally dark slate color above, with a small darker spot at the base of each scale; sometimes ash color or brown. The head posteriorly has a jellowish white
ring generally bordered with black: sometimes this ring generally bordered with black: sometimes this
ring is wanting. The lips are white. Body beneath ring is wanting. The lips are white. Body beneath
orange, in life, with two series of sunall black subtriangularspots ; each abdominal plate having two spots, one on each side aniting with the dorsal color. Often there is a third or middle row ; and rarely the spots are entirely absent. 15 rows of smooth scales. Length 12 to 15 inches. Canada to Florida and west to Michigan. A pretty and timid little snake; found generally under rotten logs and bark. It feeds upon salaman ders, slugs and earth worms.
7. Common green snake, Cyclophis vernalts. Color of head, body and tail above, bright grass green (blue in alcohol); lips yellowish white, tinged with green. Beneath pale yellow or pale yellowish green. 15 row of smooth dorsal scales. Length 15 to 20 inches. Found from Nova Scotia to W yoming and New Mexico. Fre quently met with on the ground in grassy valleys, but has been observed also searching among the branche of low plants, for insects.
8. Green bush snake, Phyllophilophis astivus. En tire upper surface brilliant green. Beneath oreamy white, or with a tint of pale green. Form slender tail long and delicate. Scales in 17 rows, carinated, or kseled, except the two rows next to the abdomina plates. Length 24 to 34 inches. Found from New to Florids and Maico Most cominonly seen glidin about bushes in mountains and hills.
9. Fox snake, Coluber vulpinus. Ground colo above, yellowish brown; a series of subquadrate chocolate brown dorsal blotches ; another lateral rov of smaller spots on each side, one spot opposite to each of smaller spots on each side, one spot opposite to each
space between the dorsal blotches. Sometimes another
young, is often pale brown, with a dorsal row of about orty large dafk-edged brown spots, separated by narow light spaces of the ground color, and with rows of alternating spots on the sides (S. confinis). Scales generally in twenty-seven rows, carinated above, with bout seven rows of smooth scales on the sides. Tail less than one-fifth the total length. Length, when full grown, 5 to over 7 feet. Can easily be distinguished rom the common black snake by the keels in the upper dorsal scales. Found from Massachuset ts to Texns and Missouri.
10. Black snake or racer, Bascanium constrictor. Coor above uniform glossy black, beneath bluish slate. chin and throat white, sometimes with few black spots. Westward the color varies from bright blue and leaden blue to olive, while the under parts are more or less yellow. (var. flaviventris), the blue racer. The young when about a foot and a half in length are dark olive colored, with a row of irregular brown spots, with darker margins along the back, the sides of the body and the abdomen also spotted, the spots becoming indistinct posteriorly, head yellowish, spotted with brown. Scales large, smooth, hexagonal, in 17 rows. Tail about $1 / 4$ the total length. Length $41 / 2$ to 6 feet. Canada and the United States. The typical black valiety is lound from Canada south to Texas. This well known snake is of a restless and wandering nature. In the breeding season the old males are often irritable and aggressive. But although they sometimes put on a bold front and slowly approach the intruder, they keep at a safe distance, and retreat when a sudden advance is made. If the intruder should turn and run, the suake will at times give chase, but the moment the runner halts and turns, the snake halts and turns also, and beats a hasty retreat the moment you become the chaser or aggressor. I have no authentic facts of its ever seizing hold of a man, unless an attempt was made to catch or hold it under foct, when I have known it to give the trousers al good shaking. Linne was informed that it entwined itself about the-legs of men, and thus threw them to the [ground. For this reason he named it constrictor. The black snake is a Pgreat and active climber, and will: ascend the tallest trees to rob bird's nests, even monnting dead and almost branchless tranks to drag young woodpeckers and squirrels from their holes.

Packing the stern Gland at sea. The New Zealand Shipping Company's steamship Otarama, on her last voyage homeward from the Colonies, lost two of her propeller blades; the two remaining blades being at right angles to each otber placed an awkward strain upon the tail shaft, the consequence of which was a tendency to eccentricity and the setting up of great vibration. After a time the packing in the "stern gland". was destroyed, and gradu.
row of small spote, resting on the edges of the abdominal plates, either opposite to the dorsal spots or anit ing with the second row, and thus forming vertical bands. Beneath, white with a tint of yellow, with alternating subquadrate black spots; generally two spots on each plate. Body robust in form, more so than any of the genus; tail thick, rather short, and subconical. Head rather large, and eyes small. Dor sal scales in twenty-five to twenty-seven rows; fonrteen to seventeen rows are carinated, the lower rows smooth Length, 4 to 5 feet. Found in Ontario, Canada, Mas sachusetts (Allen), New York, and in several localities west to Nebraska.
9. Corn snake, spotted racer, Coluber guttatus. Color above, light reddish brown ; somewhat lighter on the sides; along the back is a row of about fort large, dark brick-red spots, bordered with dark brown or black. On the sides are about three irregular row of small spots, sometimes indistinct. Beneath, white or yellowish, with black squarish spots, irregularly dis persed and of unequal size; two or three close togethe occur on one side and then on the other. Twenty seven rows of dorsal scales, about thirteen of the upper rows indistinctly carinated; body, rather slender; tail small and tapering, about one-sixth the total length [The tail of a snake is that portion posterior to the anus or vent.] Length, from 3 to 5 feet. Specimens have been taken in Massachusetts and New York (United States National Museum). Found from Virginia to Illinois, and south to the Gulf of Mexico.
10. Pilot black snake, Coluber obsoletus. Genera color above, glossy, coal black ; often small white streaks or dashes are seen at intervals between the scales, indicating the boundaries of large spots : some tindes dull red blotches appear along the sides. Be neath, blaish slate color posteriorly; yellowish clouded with slate anteriorly; chin and throat, white or pale yellow. The Southern variety, eapecially when
ally worked ont in small pieces: then the water commenced to make rapid ingress. At this period the ship was off the Sonth American coast. However, omething must be done. So after a consultation beween the engineers, a most original plan was adopted. Procuring a length of new $21 / 2$ manila rope, a loop was passed over one of the remaining propeller blades; then a turn was taken round a deck bollard, and the ongines turned round with the steam twining gear; the rope was pulled in toward the "stern tube," and gradually became wound tightly round the shaft at the recess between the propeller boss and the stern frame. The result was that a perfectly tight joint was secured, and the stern gland could be repacked in afety. The plan was found to answer so well that the leakage was almost nil.

A New Compreseed Air syatem.
A system of pipes for the transmission of power by compressed air has been recently established at Offenbach. The laying down of the pipes was commenced in November last, and has, been carried out in spite of many difficulties. The total length of pipes laid amounted to 7,760 yards, of which 1,702 yards consisted of pipe 1 foot in diameter, 1,710 yards 8 inches in diameter, and 4,347 yards 4 inches in diameter. The pipes were laid about $11 / 2$ feet below the footpath. The connections of the pipes were made by means of India rubber as in the sitnilar installation in Paris. Valvee re provided for shutting off the air from separate lengths of pipe. A trial of the system was made by the engineering authorities of the town and by the Boiler Inspection Association, which showed that Boiler Inspection Association, which showed that
there was a loss of 0.11 of an atmosphere in 71 hoursthere was a loss of 0.11 of an atmosphere in $71 /$ hours-
that is, 0.39 of a cubic meter per hour kilometer. This that is, $0 \cdot 39$ of a cubic meter per hour kiloweter. This
lose amounts to 13 per cent on the daily output, the power transmitted being, on an average, 500 h . p. This reault is regarded as very favorable.
©arrespondence.

Infucorial Earth and Enbber.

To the Editor of the Scientiflc American:
Under title of "Fossil Flour," you publish quite a engthy article in your valuable paper. The use of the same, if the article is correct, is not new, as our Mr. A. B. Jenkins patented, under date of October 5, 1880, the use of diatomaceous silica or infusorial earth, mixed with rubber and gutta-percha, or either, and such other watter as is necessary to vulcanize it. It will not be necessary for us to go into details, as any one interested in the manufacture of rubber compounds can easily procure a copy of the patent wherein the use of silica or infusorial earth is clearly defined for use in different rubber compounds. The article speaks particularly of valve work. We wish to state that the different steam pump manufactarers have used ou silica valves for years.

Jenkins Bros.
71 John Street, New York, September 10. 1891.
To the Eiditor of the Scientific American:
I have read your editorial in the Scientipic American of September 5 on "The Artiflcial Production of Rain," also an editorial on the same subject reproduced from the Scientific American of December 20, 1890. The article of the latter date escaped my notice at the time it was published. You say that in a commonication from'Senator Farwell the following theories are advanced:
"My theory in regard to producing rain by explosives is based partly upon the fact that after all the great battles fought during the century heavy rainfall
ave occurred. This is historical and undispated."
Then follows the descriptions of rainfalls after various battles, extensive fires, and eruptions of volcanoes. In quoting Siborne, you make him say that "At Waterloo, the weather during the morning of June 17, 1815, had been oppressively hot. It was now a dead calm; not a leaf was stirring, and the atmosphere was close to an intolerable degree, while a dark, heavy, dense cloud impended over the combatants. The 18th Hussars were fally prepared and awaited the command to charge, when brigade guns on the right cominenced firing for the purpose of breaking the order of the enemy's advance. The concussion seemed instantly to rebound through the still atmosphere and communicate like an electric spark with the heavily charged mass above. A violent thunder clap burst forth, which was immediately followed by a rain which has never probably been exceeded even in the tropics.
In a few mowents the ground becaine perfectly satu In a fe
As a matter of history, I will state that this violent storm of rain occurred soon after the battles of Ligny and Quatre-Bras, which were fought in the afternoo of June 16. Waterloo was fought on the 18 th under disadvantages, on account of previous rains.
"It rained incessantly," says Siborne, "during the aight of the 17 th , occasionally in torrente, while loud and frequent peals of thander fell ominously on the ear of the toil-worn soldier." "As the morning (June 18) advanced," continues Siborne, "the dense, vapory masses which had so long rolled slowly and heavily over the plain gradually began, as if relieved by the constant discharge of their contents, to soar into a higher region, where, during the whole day, with little or but imperceptible motion, they hung spread out into a broad, expansive vault, through which the rays of the sun were unable fully to penetrate, antil just at the moment of its sinking from the scene of strife, when it shed the full blaze of its setting splendor apon the victorious advance of the Anglo-allied army.'
It appears to me that the cause of rainfalls after bat tles is not fully understood by the experimenters wh are so deeply interested in producing rain by firing ex plosives. If our atmosphere were perfectly pure, fre from minute particles of matter, it would be a question whether we would have any rain. When the mole cules of water condense into fog or rain drops, they first equire a nuclens, and that nucleus is the imperceptible dust in the air. The burning of gunpowder, eruptions of volcanoes, and extensive fires increase the particles in the atmosphere, and, therefore, make the conditions more favorable for rain.
Atmospheric dust plays an important role in the economy of nature. It not only produces rain, under favorable conditions, but diffuses light, gives us the red and golden sunset, and the more minute particles f dust or water, the blue sky. H. C. Stilliman. Oswego, September 7, 1891.

Succemaful Trial or the Justin Dynamite Cartridge. The failures heretofore attendant upon the attempt to fire a shell containing dynamite from the ordinary cannon have not discouraged Dr. Justin, the inventor of a special form of dynawite cartridge, and he made three apparently saccessful shots on September 10. Two of these shots were fired from a 5 -inch Parrott being about hall a mile, and the shells striking against
a wall of limestone rock. The two 5-inch shells carried forty-one ounces each of nitro-gelatine, seven pounds of powder belng used for each charge. Neither of
these shells was exploded, and one of them, strange to these shells was exploded, and one of them, strange to
say, rebounded many feet in the air. The 8-inch shell say, rebounded many feet in the air. The 8 -inch shell
is said to have contained 150 pounds of nitro-gelatine, is said to have contained 60 pounds of nitro-gelatine, charge of thirty pounds. It exploded on striking, bringing down great quantities of rock and bowlders.
bx c. r. sumep
bT c. V. RLlury.

During the past summer, and especially during the last six weeks, the papers have contained numerous reports concerning serious grasshopper ravages in various parts of the country, in some cases the reporte being quite sensational and well calculated to create apprehension as to the safety of -our crops and as to
the possibility of serious locust devastation this fall or next year. I have felt that perhape a few words indicating the exact state of the case and summarizing the investigations made, whether by agents of the department or others, will be of service in giving our farmers the true condition of things. While, from the investigations made a year ago and the reports of locust injury, it did not seem probable that there could be very much foundation for the reports of ti:'s present ysar, I deemed it quite desirable to endeavor to ascertain the facts as closely as possible. Accordingly Professor Lawrence Bruner was instructed to examine fally the repions in the North western States where the iujuries were reported, and he has been over Eastern Color dido, Eastern and North Dakota. Western Miunesota and portions of Montana and Wyoming. Professor Herbert Osborn was instructed to visit the western parts of Kansas and investigate the soathwestern portion of he State, examining all localities from which any reports of injury could be obtained. Profeseors
F. W. Snow and E. A. Popenoe, on behalf of the F. W. Snow and E. A. Popenoe, on behalf of the
State authorities in Kansas, thoroughly examined the section of country in southeast Colorado, passing over the country embraced in Northern Kansas, and thas connecting the territory covered by Professors Bruner and Osborn, so that it may be stated that the plains repion from Northern Minnesota west to Montana and outh to the Arkansas River has been pretty thorv ghly examined. Mr. Nathan Banks was instructel to visit South Texas and New Mexico to in quire into the reports of injury in those sections.
It may be stated in brief that the depredation
It mas he the exceptional multiplication of the been due to exceptional multiplication of the long-winged locust (Disosteira longipernis. This species always occurs in that section, and some of the arst insects
which I collected in Colorado on my first visit in 1887 were of this species, and are now in the national collection. It has never yet been reported in such inmense and injurious numbers, and its work the present year furnishes another illustration of the fact that we never know when a species that has bitherto been ooked upon as harmless may become seriously injurions to agriculture. During the latter part of July millions of pupe and full grown larvo of this species were found ranging over large areas of Eastern and Sontheastern Colorado, moving in vast bodies all the way from Akron to the Arkansas River to the south. The insects moved in a body in various directions, their line of Professor Bruner reports, the Normally his species frennents partially bare hill slopes and plains where the grases are coant and Prosesor Bruner's view of the matter is that the past few years have been favorable to its excessive multiplication but that during the present year the exceptionally heavy rains which have occurred in that repion hav caused an unusually abundant growth of grasses and ther vegetation, and the locusts have been compelled to move in search of more open country, and have requented the roads, apon which they congregated and which they followed in vast bodies. He found, in going some distance away from the roadways, where the vegetation was at all rank, that but few insects were found. This species, in size and length of wing, much more closely resembles the migratory and destructive species of Europe and some other countries than does the Rocky Mountain locust (Caloptenus pretrus), and there seems to be no particular reason why, at times, it should not become destructive and fy in vast swarms from one locality to another. So ar as past experience justifles calculation, however, it will not do so, and I think there is little reason to fear any continued and widespread injury from this species. It is worthy of note also that its concentra tion in injurious swarins is due to conditions the very opposite of those which favor the undue increase of our most-to-be-dreaded species (Caloptenus spretus).
The locusts foand further north have consisted o everal species, wost of which are known as sedentary. that is, not ordinarily migratory. But one of them, namely, the pellacidilocust (Camnula pellucida), is the species that has already done much damage and is one of the Pacitic migratory forms. Commencing in Idaho it has been gradually working eastward and is
now found in portions of Montana, North Dakota Wyouning and Western Nebraska. The gradual east ward spread and increase of this species deserves at tention, but so far as the reports go, it has nowhere been sufficiently numerous to justify alarm.
The true Rocky Mountain locust, the species which we most have to fear (Caloptenus spretus), was found in considerable nambers in North Dakota and Minnesota in some counties proving quite destructive; but owing to vigorous measures which have been adopted, especially in Minnesota, by the State authorities, chiefly under the direction of Professor Otto Lugger, of the Minnesota experiment station, they have been to a large extent destroyed, and there is little probability that they will spread extensively from the localities in which they now occur. The destructive species most commonly found in Southwest Kansas was the differential locust (CalopSouthwest Kansas was the diferential locust (Calop-
tenus differentialis). It has devastated the alfalfa fields in the irrigated territory along the Arkansas felds in the irrigated territory along the Arkansas
River for a distance of some fifty miles. This is a wideRiver for a distance of some aity miles. Theins east of the Rocky Monntains, occurring spread species east of the Rocky Moantains, occurring
all over the country, and it is one of the species which all over the country, and it is one of the species which
acquires the power of extended flight only in very dry acquires the power of extended fight only in very dry seasons and under certain favorable conditions. Ordinarily the female is too heavy bodied and short
winged to become migratory. There is no fear of widespread injury from this species. The accounts rom south west Texas have been very greatly exaggerated, and little injury could be found by the agent sent there. The species were also those indigenous to the region, and not of migratory forms that had come from other parts. The reports from Ohio and from some of the other Eastern States, though not investigated particularly, need not concern us, because they are known to be based upon the undue multiplication of some of the indigenous Eastern speciee plication of some of the indigenous Eastern species
which never acquire the destructive powers of the Western migratory forms.
On the whole, therefore, it is safe to conclude that while there are several localities where locusts have been more or less destructive and required attention, there is no canse for widespread alaru and no reason to believe that any general injury will result in 1892. It will, however, be desirable to gather all the data possible as to the regions where eggs will be thickly laid, and especially to get further data from Manitoba and British North America. These data it is hoped may yet be obtained through the Canadian authorities, or possibly by some mutual arrangement with them, so that if it should be necessary to urge any particular action on Congress, it may be done during the coming winter
One of the difficalties in sudden outbreaks of locunt injury is that they find the farmers ill prepared to meet the attack. These injuries are almost always preatest in newly and thinly settled portions of the West, and the farmers, as a rule, even where they know how to deal with the insects, have not the means to buy the necessary sapplies. The department has been applied to the present year for material assistance in the way of coal oil and sheet iron, but has no way of
furnishing such material aid, which must be had of furnishing such material aid, which must be had of
the State anthorities where the emergency requires.

Cleaning Panama Hata.

To renovate white straw hats the following method has been recommended. Prepare two solutions as given-

No. 1.

First sponge the straw hat with solution No. 1, and lay aside in a moist room (cellar) for twenty-four hours; hen apply solution No. 2 and treat similarly as before. Finally the hat should be gone over with a flatiron, not too inot. If very dirty, the hat must be cleaned with some detergent and dried before beginning the bleaching operation.-Western Druggist.

Disappearing Lampposts.
An ingenions suggestion has been made to the Brusels anthorities with regard to the electric lighting of their principal streets, and particularly of the Grand Place, in which the Hotel de Ville is situated. It hae hitherto been objected to the plans for the electrical illumination of this square that the poles on which the lights were hung, and all proposed improvements in the lamps, were ont of harmony with the surrounding architecture, which is of an exceedingly interesting character (many of the buildings being in the old style), and were apt to be an eyesore in the daytime. It is now 'proposed that the light shall be shed apon the square from tall steel standards which will be sunk in deep sheaths underground in daylight and elevated by bydraulic pressure at dusk. Prizes of $\$ 200$ and $\$ 100$ are offered for the best design of lamppost.

Fixirntific Aintrican.

ONE EIND OF CAM.
 by A. d. pentz.

In modern designing many kinds of movement are $\left\lvert\, \begin{aligned} & \text { N, ane revolution it may be at. The mortise in } \mathrm{N} \text { should } \\ & \text { the }\end{aligned}\right.$. The him with one class of motions and the means by the interior spindle, P.
which sach motions are got, and another person's Then, if a tool be placed within the angle, B, A, C

line leads him to a knowledge of other classes of move- and the cam, O, be revolved, the point, A, will describe ment and their data. The kind of cam here de- the square, A, D, E, F, but if the arc, M, be less than wonstrated is probably the most useful irregular nut positive probably the most useful irregular the eccentric eylinder, that is used in practice.
The use of this cam gives a reciprocating motion that has these peculiarities: A positive action, a rest at the ends of the strokes, which rest may be varied to suit the designer from 0° indefinitely, a quiet and

would do, should such eccentric be revolved three

 times as fast as this cam is revolved.If agrain this cam be mounted eccentric to its mean center and at the same time at anequal distances from each of the three centers of construction, then if it were placed in the devices in Figs. 1, 2, 3, there still would be three reciprocating motions in each revolution, but each of the three would be thrown to a different distance. The cam would then be as in Fig. 6. Should, at any time, the American inventor desire a rotary engine and not be able, as heretofore, to find a practical one, and get to a point where one that, while it does not exactly rotate about one center, revolves about three would satisfy him, let him perfect this. I know so little ubout steam, that I do not feel competent to perfect it myself. Still, I have known it some years, and had reserved it for the future-but? Thus it is in its present form, and if there is any valuable property in it, I present it to the rotary engine men, and everybody else.
A is a casting having a central opening to which the piston, B, is fitted. The corners in A fit the small arcs on the piston, B. Through these corners are the ports $1,2,3,4$, and valves operated by the rods, $5,6,7,8$. The port 1 is closed, but is about to open, 2 is open full and admitting steam, 8 is closed but is about to exhaust, 4 is open to exhaust. Of course, this valve schewe is not a practical one, but I believe this a new way to make an engine, and that it only needs to have a means to keep it tight, a valve arrangement and the connecting mechanism devised, to make it a good one. As I said before, I am not in steam.
(To be continued.)
Tattoo Marks.
According to Variot, a French authority, the proper

sunooth motion, a strong and lasting means to modify |wore than 90°, and becanse J has no iwore length of way is to wash the part with a concentrated solution
movement, and one having the capability of being adjusted for lost motion. This cam may either recipro cate a bar or slide (Fig.,1).
It may oscillate a lever (Fig. 2).
Or it may produce four motions within a quadrangle that is a part of a componnd slide or rod (Fig. 3).
If this quadrangle were in the upper of two slides which are arranged at right angles and in horizontal relations to each other, then this cam would, in revo-
arc in degrees than K, but the same precisely, then J and K each are 45° of arc. Now if at the center, G, there be placed a tool whose edge shall be at the point, G, that edge will describe, not a square, but one-half a square, the corners being curved as shown at S . Therefore there can be but one size of square hole made by one shape of cam, in a given mortise, but there may be many cams made to fit this mortise,
of tannic acid, then closely puncture it with a set of needles, such as tattoers use. A crayon of nitrate of silver is next thoroughly rubbed over the area, and after a moment the skin is dried off, when it will be found that the punctures are deeply blackened by the formation of the tannate of silver in the superficial layers of the skin. The cauterization is said to result
Fiq.

lution, produce the same four motions in every part of the upper slide which the point, A, indicates in Fig. 3.
This cam, if the angle of rest be 90°, may be the bear ing part of a drilling spindle which will produce a square hole (Fig. 4).
The section, \mathbf{N}, is a part of the frame of a drill press. The eccentric cam, O, is fitted to the square mortise in

Fiヶ. 7.
subsequently in the formation of a crust or thin eschar. which separates spontaneously in from fourteen to eighteen days, leaving beneath it a superficial red cicatrix, which gradually loses its color, and at the cicatrix, which gradually loses its color, and at the small area should be treated at one time, and a dress small area should be treated at one time, and
ing of powdered tannin should simply be used.

in an inflammatory reaction for a couple of days, and

A cam, if constructed thus (Fig. 5) and mounted concentric to its uean center, will force a lever, or a slide or slides, or a rod, to reciprocate three times in each di rection every time the shaft revolves the cam, but If thise will be no distinct rests at the ends of strokes, If this cam, then, should be placed on the shafts in
either Figs. 1, 2, or 3, it would, if it fitted the devices either Figs. 1. 2, or 3, it would, if it fitted the devices
there shown, act similar to what a regular eccentric

REOEMTLY PATETTED IEVEITIOME. Hechanical Appliancea.
Press Gear. - Charley L. Stanley Montezama, Ga. This invention relates eapocially io proce zears for oparating cotton preseea, prorliding
therefor a dipple and durable gear which may be quickis reversed, no that the follower may be moved beck ad forth withoat atopping the machine A
fricilion pulley and driving wheel are mounted, one in stationary and the other in movable bearinga, and tbere io a reccesed eupport adjacent to the wboel and palley in which ate a palley bluck having a palley to contect a lever mechanism for railelng the driving wheel shaft This geer its aleo adaptod for wee with other kidide of prowes and mechinery.
LUBRICATOR. - Karl A. Jakobson, Crintiania, Norway. This is a derice adapted to be
convenientl convected with machinery to labricate ite parta, and consiate or a cyllinder of two diamotora, reservoir being connected with the larger portion of
the cylinder, whlle there is a valve-controlled opening in the other portion, a planger of two diametera being held to sllde in the cylinder, the smaller portion of the planger carrying a slide valve to it the smaller portion of the cylinder. The planger serves an a pamp to suck oll down from the reservoir and force it outward
turough suitable tabe connoctions to any part of the through suitable tabe connoctions to any part of the machinerr, the plinger being connected by a crank
with a shaft carrying a ratchot wheel, and moved with a step by step movement by the mechinery.
Oin CaNx. - Charles B. Underhill, Lancaster, N. Y. This invention covers an improvelaventor. The oll can has a apring boulom, while a cap containing , air vents closes the apper opening of the bodiy, there belng a spring-controlled valve in the cap,
so that when the bottom is presed inward and released at that
a the valve. The can may be ased in any posilion, and be forced out with as mach facllity and force an when the can is nearly fall.
Brick Mould.-Charles E. Simpson, Portamonth, Ohlo. The die, according to this inven-
tion, consints of a frame with receses in ite alde walle lags on the lining plates ofting the rece bees and fangee overiapping the edges of the die, there being a nlling of hend or Babbitt metal mag be neod for this alling whereby the lining plates are held in place, the plate betog readily removed by heating the die when it it neceseary to replace a worn plate with a new one. inng plates are especially adapted for une in preesing wears out much faster than the die in anch eordinaril)
Cotton Condensers. - George P imple and novel form of safety cap, so that if the condenser belt slipe from the condeneer drum an oullet will be opened for the colton, to prevent it from accumulating and choking within the condenser casing, An Intermediate mechaniom is prorided betwoen the cap or ante and the condensor drive belt, an oper-
ating device being sapported on the beit and arranged when the support is removed to open the gate by gravity, while
Pump. - Stephen G. Mills, Wichita Kanese. This is an improved form of pump designed ylinder in order to out of the bottom of we pision veetber. A check ralve is hinged to a spring plate at the bottom of the cylinder, a rod extending apward
from the pliate to a notched lever plvoted in the stock whereby the plate may be rileed, the extent which in may be lifted heing governed by an adjastable stop. A priming mechaniem is also provided for priming the

Windmill Pump Regulator. Daniel Δ. Ferrier, Crete, Neb. This invention proHides a dorice operated by a fioat and deagned to antonatically throw the nin in the wind when the cistern it piy has been receivod the constrcition being such, leo, that should the mill be thrown in the wind too vaddenly, the pall rope, wre or chain controlling the wheel may also be thrown linto the wind by drawing Pownard oa its rope or cable when the cistern is full.
PIPE Connections. - Wilhelm Thielnann, Styrum, near Mulhelm, Germany. The manaecture of angle pipe connecting joints in a simple and wich has been likewise patented in eight European conntries. A blank of saltably shape to ent out of mallieable cant iron, steel, or other metal, and is bent to nhape while hot by a machine, with tos edges formlaf the seam adjacent to each other; the monlded angle pipe Joint is then placeed on the mandrels of a machine
and the adjacent edges of the moolded pipe joint whle In a heated condition are welded together by being compreseed in the machine.

Agricultural.

Cotton Chopper and Scraper, Albert Whitley, Woodville, Mise. This machine it designed to scrape the edge of a row of plants, and
chop it out at intervals, to convert the continnos row nto a series of hills. A ranning wheel with cams on he eide is mounted on an axial shaft in the rear of the main frame, a slotted choppling arm embracing the
shaft and being pivoted to the frame in front, whille a chopping boe is atiached to the arm in the rea
Sorcing the chopping arms against the came.
Mowing Machine.-Edward Bartlett, solleville, Canada. The cutter bar of this machine is
dapted to be ralised or lowered as deesired, and tilted to and from the groand, in a convenient and expedidions mennor, whilio the machine is light and atrong, and
trume and a reetically awingiog frame carrying the cut uag apparatas io a crank obaft, the cater-operating bo catter bear, by nulversal or ball and socket conneceona, while a longitudinal apring connects the arm and
 abar. In thic machine the atoo can be raised euffl
clenty
High to carry the channed bar at an angle of orty-ave degrees to the ground.
Hay Fork. -John Anderson, Hickson, North Dakota. The armes of this fork are fulcramed apon each of the tranniona, the arms being inwardly carred and consisulug of two hinged members, the laptch adapted to enguge with the apper end of the lower member, trip ropes beling atteched to the latchee aod meana provided for operating the ropes. The
device is simple and inexpenaiva, and will lift ather ong or ahort hay, while it can be reedily operated to ump the hay cleanly from the carrying arme.
Planter Mrchanism. - Albert J. Helvern and William B. Schwalm, Walton, Ind. This avention relates to the driving mechanism for the seed cop bars of planters, and is an improvement on a Combined with the seod drop bar is an actaating mechanism consisting of an endless chain in which are piroted angers haring a shovel-lilke lower ond and a
invardly inclined beed, with cavities in one alde fece inrwardly inclined hesd, with carities in one adde face,
while epars prujecting forward from the under edges ohlie apars prujecting forward from the ander edgee
of the linke between the fingeris are adapted to enter the carties of the ingers, and hold them while in action in a perpendicular position.

Miceellameous.

Process of Treating Zinc Oris. or a process of delminating zinc from complex oree. The ore is rosested to form sulpharons acid gas and oxidize the zinc, and the gus is cooled to 1800 F. and paceod in gaseones form with steam, withont oxidation.
into sulpharic acld, throngh a provioasly roestod ato suipharic scia, throagh a provioasly roostod
charge, to form onluble sulphite of zinc, and then im. mediaiely leached oot, spparating the zinc sulphite with warm water. The leached ore residanm io simulaneonasly dried by the transit of the hot sulpharoas acid gas, thereby cooling the lattor. The zinc is thas
separated and recovered from the other metals in a ingle economical operation, the remmining metals
being left in good condition for farther treatment.
Wrapper Paster.-David W. Colling, Philadelphia, Pa. This device has a pacto-holding pan
with a longitudinally apertured bottom and an inner ares of the lome a series of perforations over the aper pente diecharge controlling alide beneath the lower apertared bottom. The apparatus is destigned to antonatically supply paste and liy it on the part of each rrapper to be pasted, being more particularly applitcabie for ase with newspaper and similar wrappers, but upace and obviating the ecattering or droppling of peate. Pasting Machisfe- George w. Lolman, Now York City. The paeting of paper or which has two graded reservolss connected by a valve pipe, a peate wheel revolving in the smaller tank, while a shaft carrying a reel is journaled in a hanger over the the reel shaft and the pasto wheel shaft, There is a frictional feed device apd a gulde polley, a tape reel betng secured to the appor ahath, and a brash is located paste io fed from the smaller to the larger reeservolr an oeded, that the paste whoel may not carry any more pocte than is needed, all surplas material being reape being delivered from the machine for convenient pplication to any object.
Twine Cutter. - Frank Grigsby, Alma, Neb. This Invention covers an tmprovement in clase of twine cattors which have a blade and spring piate so arranged that the twine or thread to awn between them and thne eevered. It is a very connter or any suitable support, and consists of a twine holder of apring metal having a reversely bent or book shaped portion, and a shank section similar to that of the cutter, which is arranged parallel and close to one edge of the holder. The end of the twine is held by the holder, after cutting, in convenient poastion to be again
taken hold of when the next bundle to to be tied. Shutter Fastener. - E d win T
 tical device to securely lock a palr of ehatters and re lease them from the inside of an apartment without
ribing the sash. The fastener mechanism is mainly sapported in a separable casing, and comprises a rock ing latch connected with the inner end of a sliding he latch against rocking when the rod is tarned in one

Portable Fence.-Charles E. Harris Winnipeg, Canada. The ponts from which the sectlons
of this fence are sapported have each a bed beam to of chis fences are sapported have each a bed beam to
hich a plate or hlock in traneversely attached, the pose proper having rectesees at its upper end, and being is designed to be stannch and durable, and capable of being expeditionaly and easily set ap on even or aneven removal.
Chimner Cap. - Joseph A. Hodel, Cumberland, Md. A ribrating valve which antomatically adjushir iseelf to provent downward dranght is em ployed in this cap, the bace piate of which has dianges
atting the chimpey tue, while lis inverted semicircular cap portion has lateral dianges atting under retaining brackets or plates, the valve being piroted in the cap to swing agalioet danges when ribrated. The con-
struction is aimple and inexpensive, and the cap is

Fire Escape. - Michael O'Reilly, carriod by a main frume on a track, or may ret on an conveniont eapport, and has drums operated by cranki to move cables, ranning over sheaves secured to difPrakent points on a bailding, conveniently operatod brakes beling providod, aod the cables being adapted to ravee and sapport a car opposite any decired part of a
building, to carry people eafely to the ground, the car belng aleo capable of carrying fremen with their hose and holding
eficiently.
Fire Escape.-Peder Thoresen, velvig, Norway. The boildings to which this escape may be appliod have polleys at intervale near their which laferer ropes may be hanled ap over the palleys, The escape proper condelsts of a tabolar chate of canvae. whose apper end is saspended on a hinged bar supbent rod holding the rope to be swang horizontally, ertending downward through it, which mapy be grasped by a person descending in the chate, to regulate the

Exrrcising Machinte. - Frank G. collon, Hoboken, N. J. This device has a platform Lorizontally fuicrumed betwoon wadarie on a base With an adjustable seat, and friction rollers journnlo cord attactod to the platform and connected with ite base passing over the rollers. The machine is designed of adjustment to ascommodato persons of capabers welgtta, while it is of simple construction and may be
Churn Driving Mechanism.-Charle D. Olda, Barnard, Mo. A shaft with a crank arm it monnted in a sapporting frame having galde rods in
which silices a croeshead, a pitman beling connected to the crank arm and to the crosebend, a rod secured to
 durable in conatruction, and is designed to greatly r re duce the labor of charning
Nort.-Coples of any of the above patents will be
fornished by Munn \& Co., for 25 cents eech. Please end name of the pacontee, title of invention, and date

scientific american

BUILDING EDITION

SEPTEMEBER NUNEERE-(NO. 71.)

TABLE OF CONTIENT8.

1. Handsome plate in colors of a dweling at Δ ring ton, N. J. Perspecti
Cost complete $\$ 4,730$.
2. Colored plate of a cottage in the col Colored plate of a cottage in the Colonial style re
cently erected at Now Rochelle, N. Y. Δ quain and tasty piece of rural architecture. Floor plans and porspective elevation. Coot 85.600 cormplete. hedral.
A $\$ 1,0 n 0$ cottage at Chicago. Two ioor plans and photographic view. A very comfortable
dence.
3. View of Napoleon the First's bedsteed
4.
5. A dwelling at Arlington, $\mathrm{N} . \mathrm{J}$. Cost $\$ 4,800$ complete, ready for occupancy. Perspective view and
floor plans.
6. Cotlage at Stamford, Conn. Cost $\$ 4,000$. Floo plans and perspective elevation. Two floor plans and photographic view. Coet \$8,800.
7. Mount Vernon M. R. Charch at Monnt Vernon, N. Y. Coot $\$ 38,000$ complete. Messrs. L. B. Valk \& Son, of Bro.
ground plan.
tein in Bavaria. Views or King's parlor in the palace and of the dining iew of the newe hoase.
now belng erected house for Los Angeles, Cal. tocts Meesre. Curleth Eisen \& Calbertson, of Loo Angelea.
I. Y. Coet 88,850 , Benst-by-the-Sea, Long Ioland spective eleration.
8. The very attractive residence of samuel Clark, Keg_{m} at Newark, N. J. Cost 89,500
Floor plans and perspective elevation.
9. A pretty cottage for $\$ 1,000$ erected at Chicago. Two floor plans and perspective view.
10. Miecellaneoons contents: Schimper's artincial fuel. Cement for parchment paper.- Forcing tea roses.
-The exclusion of rate and mice from dwellings. -The exclusion of rate and mice from dwellings. A thoroaghly fireproof roof, illustrated.-Steam pipe required for heating,- Fine hard wood stairpulley, tllustrated.- A new hand tool for sheet
por iron workers. Illastrated.- Venetian blinds.- East
Indis roofs. - Granite in architectare. - The "I Iron Indis roofs. - Granite in architectare. - The "Iron-
clad " range boiler, Hlustrated.-A belp for the clad " range boiler,
inarm, illastrated.
The Scientic American Architectes and Bailders so centa. Forty large quarto a pages, equal to about two hundred ordinary book pages: forming, practiCally, a large and aplendid Manznns or Ancrirreo--
Uras, richly adorned with olegant plates in colors and Fuat, richiy adorned with elegant piatos in colors and
with ane engravinge, ulastrating the mont interesting eximplee of M
The Fillnese. Richneses. Cbeapnoes, and Convenience of this work have won for it the Laspezer Cuncountion of any Architectu

MUNN \& CO., Publanisa,

2 Business and Personal.

 For Sale-New and mecond hand lethee, planert arille.
 ing. List sent free. W. P. Davis, Rochester, N. Y. Patant Dealers. Street \& Fishburn, Dellas, Tarse, Preaces \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Barrel, Keg and Hoashead Machinerr. Seesdr. p. p.
For beat holeting eastine. J. 8. Mundy, Nowarh, N. J. The Improved Hydranilc Jaoke, Punches, and Tube Now York. Money prorided to manufacture patented artioles of
superior merit. "M Manfacturer," P. O. box 25el, N. Y.
 Sorow machinea, milling machinea, and drill preseces. Bilings' Patent Adjustable Tap and Reamer WrenctRubber Beltino, all size, TTX per cent from reguler list All kinds of rabber goods at low prices. John W. BuckGulit south Btreet, New Yort.
Guild \& Garrison, Brooklyn, N. P. manufacture steam
pumpe, vacuam pumpa, vacuum apparatua, atr pumpen pumpe, vacuam pumpes. vacuum app
Split Pulleya at Low prices, and of same strensth and
ppearance as Whole Pullers. Yocom \& Son's Shafting appearanco as Whole Pulless. Yocom
Works, Drinker St., Philladelphia, Pa.
The Bradford Board Trade solldits correspondence Ith manufacturers about to locate where oheap prael is
in object. Address W . W. Brown. Pres't. Bradford, Pa. Manufecturer wishes to seoure, services of praction Manuracturer wishes to secure, services of praction
mechanic and inventor to deaign \& mechne to do wort
at present done by hand. Addrese Kingsiley, care ombe at prresent done by ha
Solentinc American.
Gr Send for new and complete catelogue of sotentinc New York. Free on application.

HINTS TO CORRESPONDENTS.
lames and Addrees must sccompany all letters.
or no antention will be palid thereto. This is for our
information and not for publication.

 price.
winar ent for examination should be dietinctly
marked or labeled.
(3391) P. J. H. asks : 1. How would he flow of water vary to a pamp withlhe height lifted? A. The flow to and through the pamp will be the eame
for various heights, but more power woald be reguired to ran the pamp with the higher lift. 2. What is the relation between the velocity and friction of water in
horizontal pipes A. Friction of water in pipes is horizontal pipes ? A. Friction of water in pipes is
nearly se the square of the velocity. 8. A tank of water 20 feet high by 15 feet in diameter has a horizontal pipe 1 inch in diameter and 100 feet long connected
to its bottom. What would be the velocity of its disto its bottom. What woald be the velocity of its dis-
charge per eecond A . The velocity of flow will be org of a foot per second, and will discharge 0 - 47 of a
 or an excellent series of articles on hydraulics.
(3392) J. Y S. asks the best thing for zeeping my shoalders atraight. I have tried shoalder thorougt they do not give me good satiofaction. A. and
robably straighten you and help you to keep 80 .
(3993) O. asks: How many gallons of water evaporated into steam will give one horse power much can the common gas we burn be compreseed in strong canves gum lined bags? A friend sald 8 feel 31 foot space. I supposed it coald be mach mora You cannot compress gas in a bag, such as you describe to above a x to $1 / 1 /$ ponnd pressare; 8 feet in 1
foot is equal to 80 poundis pressare. For this pressare metallic cylloder is the bees
($38^{n} 4$) N . B. N. writes: 1. I weighed one bundred and oixty-six pounds about a year ago, and I now welgh oaly one handred and forts-two, a loes
of twenty-four pounds. I am healthy, eat hearty, sleep sonnd, and am never sick. I am a blackemith by trade. give me tell me the reason of this lose of weight and weight a, prescription by which I can regain my ormor
A. Your healch belng good, there is no advan. tage in additional welight. You can probably increase
your weight by enting more nitrogenous tood. All your weight by enting more nitrogenous tood. All
kinds of sweets and sweetened food tend to produco kinds of sweets and sweetened lood tend to produce
fat. 2. Please give a receipt for the most sensitive invisible ink nsed with heat and not with light. A. Write with a solation of cobalt chloride. It will appear when the writing is sabmitted to some heat. Or ase
a weak solution of nitrate of copper. It pives an invisia weak solution of nitrate of copper. It pives an invisd-
ble writing which becomee red by heat. \& Give the ble writing which becomee red by heat. \&. Give the
sise of wire to nse on an electric bell on a line of 1,000 sise of wire to use on an electric bell on a line of 1,000
foet nnd how many Leclanche celle it will take to run 1t. A. Use No.j16. About four cells of battery will be required. 4. Can you tell me how the wax on the drum of a phonograph is propared, aud how it is put aronnd
the axle or ehaft? A. The composition of the phe the axle or ehaft ? A. The composition of the pho-
nograph cylinder is a secret. The cylindera elip on a nograph cylinde
coaical drum.
(3395) A. D. B. asks (1) how to make Trouve's battery, thimble size. A. A Trouve batter
may be made by providing a plate of zinc, a plate of mine elze. Have enongh sheets of bloting paper to mak pile $3 /$ of an inch thick. Separate the plle into two halves, noak one pile in a saturated solation of sulphate of zinc, soak the other pile in a saturated solation of gainst the sulphate of zinc side and the copper ane plat the sulphate of copper slde. Inclone the whole in saitable casing and connect a wire with each of th plates, and you have a Trouve battory which will yield a small current for a long time. 2. How to make very malleat battery that will generate carrent safficiently temple, and how long will ft rure without to tongue or temple, and how long will it rux without recharging, I
mean a dry or moitt battery? A. Prohably a chloride of silver battery is capable of being made in as omall izes an any. Consult Supplemint, No. 157, for in formation on the chloride of sllver battery. The cur rent from any battery is not very perceptible to the ouch anleses used in connection with an induction coll. A very slight carrent, however, can be detected by the rodes ! I mean, by terminal, the end of the wires. Platinum or carbon would make good terminal electrodea forithe ends of the wires. 4. Will the three pleces of elecric light carbons 4 Inches long, wrapped with one! laye $o f$ felt and inclosed in amalgamated zinc tubes, contain nough moistare when satarated wih solaton or gen ipping them in solution, and how shall I ax carbons
 . The battery you describe, if charged with a solution of chloride of ammonium, would work for a few minutes. S. What makes best battery eolution to div an absorbent material in wo in a dry or molst bat
(8396) G. W. V. writes: 1. I have made an clectric motor like the one deecribed in 611 , and ire, and woald you let me know if that wonld hinder from going, because I did not use bell wire ? Δ The insulation on bell wire ts very heavy, and occupies so moch room on an armatare or teld magnet so to preven rinding enough wire in the allotted space. Besides this of the feld magnet and armature. 2 . Would yon let me know the difierence between bell wire and magnet wire . Bell wire or office wire is provided with a slagle o doable covering of cotton braided apon the wire and occupying about four or Ave times the space needed et wire is provided with a single or donble coveringo cotton or silk, which io quite thin. 3. Would you le解 A. For information on making carbon plates
 "Experimental Science." You can cast your zincs in metal moula, or in a sana mnula if you have a suitable pattern. 4 . Woald yon let me know how many hal used eight. A. Half pint cells are rather amall for nning the motor referred to. It would require a large number connected up in paraliel to equal one cell of large battery. It would be better for you to conatrac arger cella, sach as you will ind deecribed in Surphs ITNT, No. 782. 5. Let me know how to make a paint a mooden cell for a bchromato batters. A Δ ooden battery cell may be rendered acid-proof by
 rouden cell is to coat it with coal tar pitch. Wooden cells are not
(3397) J. S. L. asks how to fasten rubber rolls on clothes wringers. A. Clean shaft thoroughly oes on. 2. Give the shaft a coat of copal varnioh beween the shoulders and let It dry. 3. Give shaft a cost varnish and wind shaft tightly as posesibe with ve ply jute twine at once, while varnish is green, and let it diry for aboat sirs houns. 4. Give Bhath over nd let it dry for about six hours. 5. Repeat 4. 6. Remove washer on the short end of shaft, aleo the cog wheel if the shaft has cogs on both ends. 7. See that he rabber rolls are always longer than the space be tween the washers where the rubber goes on, as they chrink or take ap a little in pattling on the shaft aing a small brush or swab. 9. Put the thimble of pointer on the end of shaft from which the washer has been removed, and give shaft over the twine and thimble another coat of cement and stand cpright in a vise. 10. Give the inside or hole of roll a cont of ce ment with a rod or alick. 11. Pull or force the roll on he washer ou with a cold chisel. 12. Let roll stand ad dry for two or three days before nsing same. Co ment for use shoold be just thin enough to run freely. If it rets too thick, thin it with benzine. For rabber ement dibsolve pure anvaicanized rabber in pare apirits of tarpentine. From "The Scientife Amertcan
(3398) W. S. asks: 1. What gas has the reatest lifting and lasting power and how long will it
 here is no question of its "lasting power," Any gee of lower specific gravity than air will last forever. Leakage and difnasion through the pores of the balloon causes the gas to escape and apparently "lose power." Hydrogen escapes thus fueter than any other gas. No
umit of time can be assigned, as all depends on the enelope or material of the balloon. 2 Would it be poent le to inclose it sn that it woald not waste ? A. This has never yet been successfalily accomplisted. If the
metal conld be worked thin enough, a copper balloon, h'ch hea maty rogen
(3399) I. S. A. writes: 1. My cistern aprang a leak and I put aboont a peck of bran lo to stop
is. Now the water has apoiled, it smells bed and to
harder than before. What is the! mattor, and can it be
purified and how \& A. Pomp it ont, clean it, and otop the leake with cement. The bran we preanme has fermented and occasioned the troable. 2. Can glass be cant perfect enough to make an arr-tight joint without y grinding after casting ? A. No.
(8400) Amateur Stone Cutter asks for a method of pollehing Vermont marble. I have a emall nonument cat out of it, rabbed down ready for pollohgig, and I can't go any farther, as I don'l kow what ded for polishing or how to ase it. Aleo, in rubbla inches or 4 inches long. Would like to know if thern ny proparation neod ty polishers to all small cracko before polishing, and what it is: A. After rabbing the marble down with ane sand, use pumice stone ther powdored and applied with a folt rabber in its nataral state in the form of a lump with
plane sarface. After smoothing with pumice polish :with patty powder and water. The crack nay be allied with Portiand cement mixed with marble ast, or with a cement formed of oxychloride of zinc. his cement is made by mixing oxide of zlac with a strong eolation of chloride of zinc. It is applied in the
asme manner as patty. You can tint the cement by same manner as patty. You can tht the cement by
adding to it while mixing it any of the dry pigmente sed in painting.
(3401) J. A. P. asks : What size wire on on a 110 volt circuit filled with 4 magnets instend of ; aleo what number will it be? A. A magneto mechine cannot be used as a motor without providing a commnantor to change the direction of ihe carrent. For in-
formation on this point consult Suppuserxt, No. 161 . ormation on this point consult Supplisitist, No. 161. he armature shonld be wound with No. 30 wire,a sum20 ohms. It will have about one-fourteenth of borse power.
(8402) W. B. Y. asks : Will you please mo how to make gold and silver alloy, that which moothest castings ? A. Silver melte at aboat 18000 and gold at abont 23009 . You can make any misture oo sult the color desired, or you can add a litule copper make a cheaper alloy of a deep gold.color. Any of these alloys melt at abont 2000 . For details of the
alloging of gold and silver with other motals, see the - Practical Gold Worker." \$1.25, or "The Sllveramith's andbook," \$128.
(3403) L. H. P. asks: 1. What kind of cid or chemical is used to write a name on a stoed knife blade, and not be defacod by time or noe of blade ? A Vee nitric acid and water equal parts to etch your knife blade. is is there a good treatios on dairy work, and
what is its price o \mathbf{A}. We can mail "Handbook on Nuch Cowa," for \$1, and Stewart's "Dalryman" " 11 mailed.
(3404) G. L asks: Will you please tel ne the beet way to get rid of worms? We have
beantifal lawn for tennis, but the worms make it almoe mpoeelble for us to keep it in good shape. I was adrised to try lime, and to pat it on when the worms are oul at nught. We have tried it, and I am sorry to say not very succesesfally, an it doess not kill them unless they get great dooe. It orcurred to me that you may be able to tell me what will do it and not kill the grases
A. Reply by Prof. C. V. Riley. - Your ascribing the inury to worms which you say are oat athlght would seem to indicate that ithe depredators are the common earth worms or angle worms. Grase lande, however, are frequently injured by the larve of May bectlea, thoug
these do not ordinarlly leave the soil. One remedy for angle worms and also for white grabs is to remoroughly
in wet the kround with the kerocene emulsion, the formale for the preparation of which has beon pablished in the
 lawns of the Capltol groonds, and an account of the
resalta is given in the periodical bulletin of the DIreselits is given in the periodical builetin of the Di-
vieion of Entomology, inect Lusa, rol. 1, No. 2. This plication of the emalsion. The larve of May beatlea reed on the roots of graseos, and are very injurions lawne. The earth worms, on the cortrary, feed on the earth and the regotable hamus in the goil, and are con stantly carrying the soll, throagh their excrement from the lower hayers to the sarinco, and as hase bee advantage to lawns under certain circumstances. Whe however, they interfere with any apecial object as your case, they mast be considered hartful, bat beyond the use of lime and kerosene emulaion, as bore ind cated, I do not know any way of getting rid of them Heary rolling alght by means of lenterns, especielly after a good rain. They come out of their burrows, ander sach cli camstances, and may be killed in large numbers by any one who is at all quick and active.
(3405) Serouky says: As I incessantly oet with the following dimentty in developing dis plates, will you oblige me, through the columns car valuable paper, whit the information as to the cause and romedy? In developing, the image is siow comes ip gradrailly ontll it reeches a cortetn stage, then Pog seems to take hold, and the image continnes to develop slowly bat aniformly, indicating over exposare, and the result is a'iat negative. The trouble is not in he light, and I am convinced that it resto in the ex-
posure or development. I have tried lese expoene and ho resalt is ander-axposuro win hoavy contrabl. Gence follow strictly the formula coming with the plates. you use the etkonogen developer made ap
 and poar this on the plate withont the addition of any
carbonate of potash or carbonate of soda, as is usally carbonate of potash or carbonate of soda, as is usually
ppecified in the plate formulas, and then get the fogsy apecined in the plate formalas, and then get the forgy
and fiat pegatives that you dercribe, the canse is proto a leaknge of weak lught through the bellows of the
camera. If the emaision is defective, the rabbet edgee fog over just the same so the exposed portion. plates poorly packed in ordinary pacteboard bozes separated by stripe of card board will fog, becanse of the deleterions chemicals in the separatora. If the plate is under exposed, simply add a few dropa of a carbon to of potanh solation 1 ounce diseolved in 8 oances water) to the above solucion and try a fresh box scribe and obtained peseable bat fogeg negatives b leaving them in the developer for some tume. The edgee protected by the rabbets of the plate holder
foged over. We proved the fault to be a defective rogged over. We proved the fault to be a defective
emalion on the plate. Another box of the same mann racturer's plates worked ander
(3406) 8. A. D. asks: 1. What is th corro-pruasiate paper used for in photography, and how No. 584, for foll particalars 2 How long (abont must a Harvard dry plate be exposed on a medium bright day ? A. One second exposure with f-sy stop in
an 8 inch equiv. focus lens, on an ordinary open land an 8 inch equiv. Pocus lens, on an ordinary open land-
scape shoold be sufficient. Mach depends on the subcape shoald be suficient. Mach depends on une enbject, the time of day, the lena, and the size of the dia-
phragm used. a . How long after the exposure must the developer be applied ? What is next done with them . After exposure, if the plates are removed from the holders and packed, film eldes in contact with each other and surrounded with waxed paper, then placed in a box, they may be preserved ior two years before do
veloping. In general it is advisable toj develop the exposiress as soon as it is convenient to do so. After thi a bath of hyposulphite of seds one onnce to six onnce of water. Then it is washed for an hour and dried From the negative in a printing frame the photographa
(3407) O. S. P. asks: 1. What make black spots on phowograpilic negatives? tod spots on the prinitu? A. Biacrispols many be caused by particlea oping trays are nesd or to particles of forelgo devel beling embedded in the film. Rod opots on prinas are due to too weak a toning beth, or to Insumficient toning or to fallore to move the printe around in the bath. 2 What is the best material for dasting and polishing
camera lensee ? A. Use an old clean cambric bandker camert lenese : A. Ure an oid clean cambrit chandiker
chief to remove dust, brushing the lens lightly with it chief to remove dust, brushing the lens lighty with
s. What will tuke photograph stalns of the angers? A. If the stains are caused by the pyro developer, they What canses reddish brown dast to appear on nega dives when drying ? A. The reddish brown dast is pro babiy a preclpitate or iron deporitod on the alm. pro or iron developer. It may be removed by lmmersing the plate to dilute solation of selph aric acid and water.
(3408) W. F. asks : 1. How to compute of the diametor of the cylinder by 0.754, and this pro duct by the mean presaure in the cylinder. The mean pressure, assuming the usual practice in small engines at ive-eighthy cat-off, will be 0 -28 of the bolier pres sure. Yaitiply the last prodact by the speed of the pis
to in feet per minute and divide by 38,000 for the horse power. 2. How mach power woald an engine sure per square inch on the pieton head, and makin 100 revolations per minnte ? A. For yoar engine this

$0 \times 0788 \times 100 \times 0.82 \times \frac{5 \times 2}{18} \times 100$

would be- $\quad 3,3000 \quad=18 \mathrm{~h} . \mathrm{p}$.
. Give the Ingredients of a cracible for melting brass. A. For a crucible nee finels pulverized plumbago weil and baked at a red heat after drying. 4. What Stourbridge clay \& A. Stourbridge clay is used aiso for crucibles. It comes from England. 5. How much heavier is common brace thau common plne wood \& A Brase welghe 16 times the welght of the pine paltern.
o. About how many poands of brass conld I melt with a good alzed fan ran by hand? A. If you use a pro forge with loose brick chamber you may melt 5 to 10 pounds. 7. What should the diameter and weight of a Ay wheel be for an engine with 23 Inch by 5 inch cylin-
der : A. Fly wheel 20 inches :diameter, weight 40 der \& A. Fly wheel 20 inches :diameter, weight
pounds. 8. What would be the safe carrying pressure per pound on the piston head of a cyllinder $1 / y$ inch 9. What is granulated lead, and how is it made? A water in a small atream. 10. How can I purify common lead : A. Parify lead by melting and pouring ofl
(3409) Reader asks: Is there such thas at an elfive halr inverawor, and tas the ever been any article on this subject

The qainine is diseolved in the alcoholic liquids by varming siightiy, then the other ingredia
Aatringent Bair Tonic.

Tinctare of myrrh
 Glycerine.

From "Sclentac American Cyclopedia of Recelpte
Nos 388 , 438 , and 898 .
(3410) J. C. B. writes : Can you explain the working of a small toy sampan or boat sold here in
Japan : The botiom of the sampan eeems to be made
of thin copper, and a reddish pante is sold with it, which

Ittle craft is put on water, it gayly aelle away. The Cante smells like a mixture of camphor and ammonia.
cell its probeble composition and what reaction ccury when it unites with water! A. The pracipal hen in the above composition is and A. Thedice tansion of he water as in the familiar camphor motions. Its exact and be dedaced from a mero descrip. on. It wonld be an intereating cobject for experi
(3411) J. J. C. asks : 1. How to prepare nitrous oxide gus. A. Nitroas oxide is propared by
heating ammonium nitrate in a saitable saek. 2. Will No. 16 German silver wire do for the reslutance wire in a Wheatatone meter bridge : If so, what is the higheat ander
hm coil for the third reasisance p A. No. 16 Gorman ild $v e r$ wire will answer. Yon can probably measare reistances ap to 500 ohms with a meter bridge, asing wire otor be to be ran by 16 cells with each an R. M. F. of 88 volts and an internal resistance of one-afth ohm ? a. The resintance of the motor should be the same as hat of the battery. The power in watts is obtalned by maltiplying the E. M. F. in voits into the carrent in mperes. 4. Will German silver wire do as well for the cribed in "Expermental sclence," se copper ? It beet to use copper coils in a galvanometer, and if re istance is needed, to insert it in the circuit ontalde of
(3412) C. A. M. writes: 1. Please give he chemistry of ablue print made from a citrate of Iron, mmonium and prassiate of potesh solation. A. The ction of light reduces the ferric salt to a ferroas salt, of potassium. 2. Please give directions for making a potassiam. 2. Please give directiona for making a all directions. A. See scienturic Amipican Supple. Ent, Noe. ${ }^{225}, ~ 680,507$, for photographic cameras. \& In the Scientrific Americanfof August 29, 1801, query 318, it eays, " Incessant vigilance and patz pomade are les." As I anderstand it putz pomede is very bacy for ickel. We had some nitckel plated water cocke for uning the pomade the nickel was soon worit off. A riend who works in a large nickel plating estabishnent has told me never to uee patz pomado on alver or ickel plated goods. A. Putz pomade is recommended agly. Oarefol wiping is the principal polint in the pre agly. Carefol wiping is the principal point in the pro-
ervation of the plating. 4. Will wood alcohol diseolve hellac, and make a colorless film on applying to wood? A. Wood alcohol dissolves shellac, is nearly coloriese as wood varnish, but sinks into the pores of the wood. On page fo, scientifio Americin of August 1. 1891.

 ill need thinning down, and if so, with what? A ylinder oil or sewing machine oll, which can be had rom sewing machine agenta, is good, and requires no inning.
(8413) F. E.-Bromide prints may be xing, they ame slightily bleached with a solation of blloride of mercury Atter weshing ox in a solation chloride of mercury. After washing Ax in a 10
of hyposulphite of soda 1 ounce, water 6 ouncea.

TO IMVERTORS.

An expertence of forty yeark, and the proparalioa of Ore than one hundrod thousand applicutions for pawe and practice on both continente, and to possees unequaled fsollitles for procuring patents everywhere. A nopsis of the patent laws of the United states and all ontemplating the securing of patents. et ther as pormens abrond, are invited to write to this onice for prices, ansive faclitiles for conducting the bustinemand Addroee | GUNN \& CO., |
| :--- |
| Tay, New York. |

INDEX OF INVENTIONS
For which Letters Patent of tho
United states wore Gramted
September 15, 1891,
AND EACH BRARING THAT DATR.

September 26, 1891.]

IS THE BEST IN MARKET. Simple of Manipulation.
Plates or Films are used The Shutter Is always set. PRICE $\$ 18.00$.
Send for Catalogue and copy of Modern Photography.
WE MAKE ALL KINDS OF CAMERAS. ROCHESTER OPTICAL COMPANY,

14 s. Water St, ROCHESTER, N. Y.
Machines.-BM GAKE M. Hopknins. With Araw

HisFOOT POWER LATHES

 VOLNEY W. MASON \& CO.,
PRICTION POLLEYS CLDTCHES and ELEVATORS

Motors and Dynamos,
 Keystone Eplian ees. Keystone Electric Co.,
1uh and State strees, Erie, Pa.
"STANDARD" EMERY ${ }^{\text {WHEL DRESSER }}$

\section*{| \%ry |
| :--- |
| rix |
| ritit |}

After being on the Market Five Years The 4 A C I E Still Leads!
 ROCHESTER MACHINE TOOL WORKS. BTOWI's Race, ROCHESTER, N. Y

A NEW EDITION OF

BRITISH ASSOCIATION MEETING

 GATES IRONWORKS

 OIL WELL SUPPLY CO.

ICE and REFRIGERATING MACHINES
The Pictet Artificial Ice Company (Limited), Room 6, Coal \& Iron Exchange, New York

 PAINTrioiors DIXON'S SILICA GRAPHITE PAINT

TO MANUFACTURERS SEEKING FOREIGN TRADE.

 The subyeriptio
Hon. Adider
Hon. Adaress
MUNN \& CO., Publishers
361 Broadway

OTTO GAS ENGINES

Engines and Pumps Combined. For coal gas

SCHLEICHER, SCHUMM \& CO. PHILADELPHIA. EA ARTH SCRAPERS.-DESCRIPTION

INVENTIONS PRACTICALLY DEVFLUPFD

Useful Books!

MUNN d Co.. 361 mrondwny. New York

 म̈̆s

Awarded the Grand Prize at late Paris Exposition.
THE EACLE THE EASIEST RUNNING BICYCLE IN THE WORLD. nex Speed, Comfort and Safety. AGENTS WANTED. Large Illustrated Catalogue sent Free to any Address. THE EAGLE BICYCLE MFG. CO.,
cabie ousi-

CLARER'S FANS.

 . P. CLARK, Manut.

Experimental Science

Wวvertisements．
Inside Page，each insertion ．． 75 cents a line
Back Page，each insertion ．．． 81.00 a line Back Page，each insertion 81.00 a line

The

Remington Standard Typewriter

SIEMENS＇$*$ CABLES．
SUBMARINE， UNDERGROUND， INTERIOR， SIEMENS \＆HALSK KE by THE EDISON GENERAL ELECTRIC CO．
their SCHENECTADY WORKS． ？
Cable and Wire Department，Edison General Electric Company，

NEW KODAKS

Styles and LLL LOADED with Transparent
Films．
For sale by all Photo．Stock Dealers．
THE EASTMAN COMPANY，

send for catalogue． DEVELOPMENT OF AMERICAN

OILS AND FATS－SOME PRACTICAL

EXCELLENT BLACK Copiss，only equaled by Litho
Traphy，of anvthing written or drawn with any Pen by
thePatent
specimens Ten Eyck \＆Parker， 66 Pine Street，New York

$\$ 85$ Lovell Diamond Safety $\$ 85$

Strictly high grade in every particular．No better machine made at any price
Rice

\qquad $\substack{\text { roto } \\ \text { toil }}$

POROUS EARTHENWARE．－BY

LITTLE HERCULES DRIL CHUCK

CHICAGO．

BATENTS！
 2－wos fents，and to act as solieitors of Patent for Invents of business they have had forty－fue vear

 MUN \＆Co．，Solicitions of Patente．

3
PATENT JACKET KETTLES
 COLORING MATTERS：THE QUAN
 MAENERALANO EXPERIMENTAL MILTTARY SIGNALING．－THE EARLY

 （20

Double Brace，Self－Oiling，Adjusia ble Ball and Socket Hangers， Pillow Blocks，Post Hangers，Etc．

EDISON GENERAL ELEOTRIO 00.
ELECTRIC POWER APPARATUS， for every variety of meohanioal work SAFE，SURE，RELIABLE．

THOMSON－HOUSTON MOTOR CO．，
620 ATLANTIC AVENUE，BOSTON，MASS．

This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor．

エエコ

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World
Only $\begin{aligned} & \text { \＄3．00 a Year，Including Postage．} \\ & \text { Weekly }-52 \text { Numbers a }\end{aligned}$
This widely circulated and splendidy illustrated paper is published weekly．Every number contains six－
teen pages of useful information and a larke number of original engravings of new inventions and discoveries，
representing Engineering Works，Steam Machinery， New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electriclty，Teleegraphy，Pbotography，Arebl－ etc．Complete list of patents each week． Terms of Subscripition．－One copy of the SCIEN－
TIFIC AMERICAN will be sent for one year－52 numbers－ postage prepaid，to wall be sent firseriber in year－ 5 the numbers－ Canada，or Mexico，on reeeipt of three dollars by the Olubs．－Spectal rates for several names，and to Post Masters．Write for particulars．
The safest way to remit is by Postal Order，Draft．or Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed， seldom goes astray，but is at the sender＇s risk．Adaress
all letters and make all orders，drafts，etc．，payable to MUNN \＆CO．， 361 Broadway，New York

Stientific Gumerican supplement

This is a separate and distinct publication from THix scientipic AMERICAN，but is uniform therewith in size， gravings，many of whtch are taken from forelgn papers，
and accompanied with translated descriptions．THE Scientivic Amebican Sup plement is published week－ Iy，and includes a very wide range of contents．It pre－－
sents the most recent papers by eminent writers in all sents the most recent papers by eminent writers in all
the princtpal departments of Science and the Useful Arts，embracing Biology，Geology，Mineralogy，Natural tistory．Geography，Archrology，Astronomy Cbemis－
try，Electricity，Light，Heatt，Mechanteal Engineering． Steam and Ratlway Engineering，Mining，Ship Building， Marine Engineering，Photography，Technology，Manu－
facturing Industries，Sanitary Engineering，Agriculture， Horticulture，Domestic Economy，Biography，Medicine，
etc．A vast amount of fresh and valuable information
 and Manufactures at home and abroad are illustrated and described in the SUPPLEmignt
Price for the SUPPLEMENT for the United States and
Canada， 85.00 a year：or one copy of the Scientric ERICAN and one copy of the SUPPLEMENT，both mailed
for one year for 87.00 ．Single copies， 10 cents for one year for 87.00 ．Single coples， 10 cents．Address and
remit by postal order，express money order，or check， MUNN \＆CO．， 361 Broadway，N， Publishers Scievtipic York，

Fuilding Edition．
The SCientipic American Abchitects＇and
Builders＇kition is issued monthly． 82.50 a year． Single coples， 25 cents．Forty large quarto pares，equal to about two hundred ordinary book pages：forming a large and splendid Magazine of Architecture，richly
adorned with elegant plates in colors，and with other sine engravings；illustrating the most interesting examples of modern architectural construction and allied subjects．
A special feature is the presentation in each number
of a variety of the latest and best plans for prive ree dences，city and country，including those of very mod－
erate cost as well as the more expetsive． perspective and in color are are expentivive．Drawings in Plans，Specifications，Sheets of Details，Estimates，etc．
The elegance and cheapness of this have won for it the Largent Circulation of any Architectural publication in the world．Sold by all news－ ealers． 82.50 a year．Remit to

MUNN \＆CO．，Publishers．
361 Broadway，New York．
PRINTINE INKS

