A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURE

A NEW TYPE OF FOLDING BRIDGE. The bridge shown in the illustrations has been recently erected over the north branch canal at Weed Street, Chicago, and is desig nated by the Board of Public Works of that city as "an entirely new type of draw or lift bridge." Chicago has sixty-one bridges within its limits, fifty-three crossing the Chicago River and its branches, five crossing the Calumet River, and three the canal, but all of them have heretofore been pivot bridges, supported on a center pier standing in the supdle of the stream, and dividing in the middle of the stream, and dividing the river into two channels, thus reducing its navigable capacity. The construction shown affords a clear passageway for ves sels in the center of the stream where the water is deepest, and gives unobstructed dock privileges up to the street line.
The width of the river between dock lines at the bridge site is 150 feet and the clea opening left for vessels by the bridge is 62 feet. As seen by the drawings, each half consists of two sections of girders supporting the floor, hinged together at their points of junction and suspended from the tower by tie rods at the points of junction and the ends of the outer girder sections. When open, the floor assumes the position shown by dotted lines in Fig . 1 and at one side in the perspective view, and not only is th space between piers free for the passage of vessels, but the raised floors form effective vessels, but the raised loors form effectiv guard gates against accidents to the high
way travel. To counterbalance the power

required to open or close the bridge, a weight is suspended in each tower, the wire rope from said counterweights passing over the pulley, P, and thence to cams, C, which are attached to the horizontal shaft, on which is also the drum, D, which operates the structure in connection with the ares, $\mathrm{A}_{\text {, }}$ which form a part of inner or land girder section, by means of wire ropes.
The mechanical power required to operate the structure varies at every different position which the girder assumes during the opening or closing process. The cams cause opening or closing process. The cams cause the weights to exert the variable powe required for a perfect counterbalance by giving the pull of the wire ropes a variable leverage about the horizontal shaft. By the aid of this device, one man power ap plied by the ordinary lever attached to the vertical shaft and geared into a horizontal shaft to which the drum is attached, is suffi cient to easily operate each half of the structure.
This construction is said to be less expensive than the ordinary style of draw bridge. The cost of the bridge entire, from dock line to dock line, was about $\$ 16,000$. The bridge is the invention of Mr. William Hurmon manager of the Chicago Towing Company and the bridge was designed and constructed by Messers. Shuiler \& Schniglan, ngineers and contractors, of Chicago, who nirl the patents. The bridge was tested control the pater and oped for tref April 18, 1891.

A NEW FOLDING BRIDGE, CHICAGO.

Šicutific Americau.

ESTABLIBHED 1845.

MUNN \& CO., Editors and Proprietors pUbLISHRD WEBKLY AT

No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. R. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mortoo...
One copy, $4 x$ montis, for the U. B ., Canade or Mexico One copy, alx montita, for the U. B., Canade or Merino.................. 150
One copy. 1500
50 Remit by poctal or expreee money order, or by bant dratt or check.
MUNN \& CO., $\%$ Broedway, corner of Tranklin Street Now Yort.
 Building Edition.

ENT, 2.00 a year. To forelen countice, NiLSO y year.

NEW YORK, SATORDAY, SEPTEMBER 12, 1891.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT
No. 819.
For the Wook Ending septomber 12, 1891.
Price 10 contr. For male by all penvedealero

\qquad provided cats, both naval and military, now being American for the nation will not be any discredit to genius and skill.

AN OFFICLAL GROLOGICAL ORGANIZATIOR.
While iwportant ends are gained by organizations already existing, such as the geological section of A. A. A. B., the Geological Society of America, and the International Congress, there is need of a closer anjon ing was held, August 29th, at the rooms of the meetClub in Waington, at the rooms of the Cosinos Club, in Washington, D. C., at which were present Major J. W. Powell, director of United States Geological Survey, and these State geologists, namely, James Hall of New York, J. M. Bafford of Tennessee, J. W. Spencer of Georgia, E. A. Smith of Alabama, J. A. Holmes of North Carolina, Arthur Winslow of Missouri, E. T. Dumble of Teras, J. Lindahl of Illinois, N. H. Winchell of Minnenota, and J. C. Brauner of Arkansas. A committee of six, of which Major Powell is chairman, was appointed to draught a constitution and by-laws, to report hereafter.
The special objects of the proposed association are the determination of the proper objects of public geologic the establishprovement and unification of methods, functions of national and State surveys, 00 -operation
in works of common interest and the prevention of the duplication of work, the raising of the standard of public geologic work and the appreciation of its value, and the inaugaration of surveys by States not having such at present.

THE ATBRICAT cheyical socisty.

At the second Cleveland meeting of the American Association for the Advancement of Science, held in 1888, the desirability of a national organization of chemists was considered by the varions representatives of that science in the chemical section. A comraittee was appointed to report on the feasibility of such an organization, and at each of the gatherings of the American Association since then the matter has been discussed in the chemical section.
Last summer a so-called general meeting was held at Newport, R.I., when chemists from all over the country met and discussed papers of scientific interest. This gathering, originally suggested by Professor Charies E. Munroe, the chemist of the United States Charies E. Munroe, the chemist of the United Btates
Torpedo Station, proved so successful that a seennd Torpedo Station, proved so successful that a second
general meeting of Atnerican chewists was held in general meeting of Atnerican chewists was held in
Philadelphia, at the close of the year. Both of these weetings were fully reported in the ScIENTIFIC AmRRICAN.
A call for a third general meeting of chemists was issurd on August 5 by the American Chemical Society and arrangements were made by the chemists of Washington to secure rooms at the Columbian University, where later the American Association convened. The meeting included sessions held on August 17 and Augnst 18.
The first session began with an address by the Preeident of the American Chemical Society, Professor George F. Barker, who said that, in science as well as socially, man was a gregarious animal. The best resocially, man was a gregarious animal. The best re-
sults in any direction were obtained by community sults in any direction were obtained by community
of action. The world fondly looked for ward to the day of action. The world fondly looked for ward to the day
when all the people of the earth would form one great when all the people of the earth would form one great
cominunity. The annihilation of time was the goal of all efforts. The great misfortune of the human race was, he said. the fact that existence is but a time function. Perhaps in a future state we would be freed from all these irksome restraints. Professor Barker then referred to the movement for the inclusion of the various local chemical societies scattered all over the conntry in the American Chemical Society as a centra] body, and expressed the hope that the plan would be carried out. United under one central or general body, the members would be benefited by the larger circle of association and the society's strength would circle of associa
The following papers were then read: "A New The following papers were then read: "A New Form of Soltaweter," by :George C. Caldwell; "A
Theory of the Mica and Chorite Groups," by Frank W. Theory of the Mica and Chorite Groups," by Frank W.
Clarke: "The Occurrence of Tin in Canned Goods," Clarke ; "The Occurrence of Tin in Canned Gooda,
by Henry A. Weber; and "Composition of American and European Chestnuts," by William Frear.
Ou August 18, the second session was beld, and on that occasion papers were read as follows: "Identifcation of Arsenic and Antimony," by James T. Ander son; "On Acid Sulphate of Lime" and "Gluten," by Hermann Endemann; "On the Nature and Origin of the Asphalt from the Island of Trinidad," by Clifford Richardson: "Some Characteristics of Picrite," by Harvey W. Wiley ; and "On Metatitanic Acid," by Francis P. Dunnington.
Subsequent to the reading of the papers, representatives of the American Chemical Society, the Washingtives of the American Chemical Society, the Washing-
ton Chemical Society, the Association of Official ton Chemical Society, the Association of Official Agricultural Chemists, the Cincinnati Chemical Soci-
ety, the Brooklyn Institute, the chemical section of the Franklin Iustitate, the Association of Manufacturing Chemists, and the Louisiana Association of Sugar Chemists, met and agreed to organize a general society to be called the American Chemical Society, of which the organizations they represented were to become local sections. This action was largely the rosult of the willingness of the New York eociety, which has borne the title of American Chemical Society since 1876, to reeolve itself into a local section, and to yield its general name to a national organization.
Appropriate resolutions covering the points of agreement were passed by the delegates assenbled, who now report back to their respective societies, and on the ratification of their action a final meeting will be held, at which the Amerjcan Cbemical Society, with local sections in New York, Brooklyn, Philadelphia, San Francisco, New Orleans, and elsewhere, will come into existence. A membership of at least 500 chemists is expected, and then the chemists will have a society that in strength will compare favorably with the other similar organizations in Germany, France, and England.
This result, which has so earnestly been sought for by the chemists of the United States during the past three years, gave great satisfaction to the many assembled representatives of chemical science, and since the Northumberland meeting of scientists to celebrate the discovery of oxygen, in 1874, no such gathering of American chemists has been seen as this in Washington.

COMDITIOR of WORETEGMBM DE michigan.

 The Bureau of Labor and Statistics of the State of restigation. A personal canvass has been made of 8.838 workmen in 201 shops and manufacturing institutions in 25 villages and cities. The industries covere n the investication were mannfactories of agricultura mplements and iron-working establishments and the pormation wes obtained, not by sending out blante nor by special canvassers, but by the regular employee of the Bureau of Labor, who visited each workman in person and secured the facts desired. When it was ecessary each question was fully explained to the per on interrogated, in order to place him in a position to ive an honest and intelligent answerIn the industries canvarsed the best of loeling is re ported as existing between the workmen and proprie tors. With the exception of the carpenters strike i Detroit, there were no serions labor troubles in Michi gan in 1890, and the good feeling now prevailing promses to continue.
Of the 8,838 employes. 57 per cent were born in the United States and 43 per cent in foreign countries. The total amonut of earnings for the year was \$4,127,591.20 erage per man $\$ 467.02$. The lowest annual wage as $\$ 12.46$, and the highest $\$ 653.54$. The average is to slagle me . 12 omployes in the can
arried and single, $\$ 10.06$ per week, or $\$ 1.67 \%$ per day
There is no "child "labor in the industries canvassed, but 235 boys are employed between 11 and 15 years of
age. According to law, all boys under 14 yeare of age age. According to law, all boys under 14 yeare of age
are prohibited from working more than 9 hours a day are prohibited from working more than 9 hours a day and inust attend school 4 months in the year. The total
family expenses for the year is given as $\$ 2,550,521$, family expenses for the year is given as $\$ 2,550,521$
making per capita $\$ 122.48$. Scotchmen, Englishmen making per capita \$122.48. Scotchmen, Englishmen, and Americans in the order capita of family expenses, and have the highest per capita of famila expenser and Germans spend the least money.
Two thousand three hundred and twenty-eigh inployes own homes, of which 2,242 are married men the percentage of married men owning their own homes being 46. The Germans are the home-owning nationality. The percentage of those who own their house and lot is 37, Hollanders 35 per cent, Irishmen 83 per cent, Scotchmen 30 per cent. Polanders 28 per cent, Englishmen 25 per cent, Americans 22 per cent, and Canadiā̃s 18 per cent. The total value of homes i \$3,055,965-which gives an average value for each home of $\$ 1,312.70$
One thousand three hundred and forty-two home are mortgaged, which is 58 per cent. The total value of the mortgaged homes is $\$ 1,630,360$, amount of mort pages $\$ 614,485$, which is 37 per cent of the valuation. In the towns and cities outside of Detroit the average age of those who own homes and have them paid for is 41 years.
The average weekly wages of those employes outside of Detroit who own homes upon which there is no in cumbrance is $\$ 12.29$.
During the year 1890, 1,890 employes made payment and improvements upon homes amounting to $\$ 175,470$ and 2,477 saved $\$ 329,880$ in money ; 264 of the 1,390 who made payments and improvements on homes also saved money and are included in the 2,477 above stated. The otal number of persons who saved something during the year, including payments and improvements upon homes and money, is 3,603 , which is 40 per cent of th tat employes canvassed.
The total present worth of 7,474 employes (1,364 no reporting) is $\$ 3,461,164$, average $\$ 950 \cdot 98$. Eighty-eigh mployes are reported to be worth over $\$ 5,000$.
Two thousand one hundred and sixteen workmen carry life insurance, which is 23 per cent of the tota employes. In Battle Creek 51 per cent of the lives o the workmen are insured, and the amount for which al the workmen canvassed are insured is $\$ 1.945,706$; aver age $\$ 1.48880$. Two thousand two hundred and forty three, or 25 per cent of total employes, belong to benefit ocieties paying an average weekly sick benefit of $\$ 8.41$
One thousand and forty-six foreigners brought money with them when they came to the United States amounting to $\$ 176,354$: average $\$ 168.57$. Total presen amount brough to this country, 1527 per cent.
Three thousand six hundred and twenty-seven per sons own sewing machines, which is 69 per cent of those who support families. One thousand eight handred ad seventy-five own musical instruments, which is 21 per cent of total employes. Number of musical instruments owned, 2,046, of which 709 are organs, 314 pianos nd 209 violins.
There were found to be 5,949 persons who took news papers and magazines, which is 67 per cent of all the
omployes crnvassed. In the city of Tecumseh 87 per omployes chnvassed. In the city of Tecumseh 87 per cent of the employes covered by the investigation
take newspapers and magazines. The number of news papers and magazines taken among the 8,838 workmen is 9.924, as follows: Dailies 5.103, or 51 per cent; story papers 443, or 4 per cent ; magazines 343, or 3 per cent Only about 5 per cent of the workmen cannot read or write.

Among the questions asked the workmen by the rep resentatives of the Labor Burean was this: "Has your labor organization been of any financial benefit to you ?" and only 1,212 persons were willing to reply to the question. 778, or 64 per cent, of these answering yea, and 434, or 35 per cent, saying no
Two thousand four hundred and twenty-one men, or 7 per cent, work at hand work, and 5,816, or 65 per cent, at wachine work, and 601, or 6 per cent, at both.

The genealogy of the horse has been most admirably orked out in various publications, and the fact has ong been established that the genus originated on the North American continent. The question, how ver, as to whether prehistoric man in America had the horse as a contemporary has been a disputed point. This question may now be considered set a rest by the discovery of a skull of an extinct species of orse in strata with human implemeats. This dis covery was announced by Prof. E. D. Cope, at the weeting of the American Association for the Advancewent of Science, held in Washington the past month August). A skull of a horse was exhibited to the nembers by Prof. Cope, who pointed out the charac ers of the teeth and who stated it would be impossible lor any one to separate the fussil teeth from those of the quagga and zebra if the three were all thrown to ether. In winor charactars, such as those of the size the bones, the differences are perceptible. So ther is no doubt the skull represents an animal differen rom any now living. That it was a horse, however ny one could see.
The most curious thing about the skull was its con dition. The frontal bone had been crushed in exactl as we see in the case of animals slanghtered for food The friable bones protecting the eye sockets! were in act, as were also the long nasal bones. Found in the ame bed with the akull was a stone hammer tha ore evident marks of having been fashioned by the hand of man.
What inference was to be drawn from this? In the irst place it has been suspected and considered prob able that early man on this continent had been con emporaneous with a horse, though not the presen ving species, but no direct proof had hitherto been ound. When Europeans landed on the new contin at, the horse was an unknown animal to the native o it had evidently long been extinct. All the horse ow found in either North or Sonth America cam rom stock originally brought over by Europeans But here we had evidence in the association of a hu man implement and a horee's skull that man and orse had lived together : and the peculiar fracture o the skall of the latter leads to the belief that the an mal had met its death at the hands of man.
This fact opens several questions. What becam f the race of borses that once lived on the continent? Were they exterminated by savage man as civilized man has exterminated the bison? Did they once serv s beasts of burden or were they used only as food Were they wild or domesticated?
It seems probable that they were not used for any ther purpose than as food, and that they existed only a wild state, for it is scarcely reasonable to suppose that having once been used by man and so domesticated, their use would ever have been forgotten or the breed allowed to die out. Neither is it probable tha hey were exterminated solely by the agency of con temporaneous man, for we know that in spite of th se of the bison by the Indians of North America, heir uumbers did not decrease to any great extent t was only when civilized (${ }^{2}$) man began his destruc ve work that the bison began to disappear
What, then, was the cause of the disappearance of
he horse ? The age of the beds in which the remain are found is prior to the Ice Age that once prevailed in North America, and in this period of cold it is possible we have a factor to account for the extinction of the orse. The intense cold coming on forced the animals o migrate from their homes in the northwest of the United States, and retreating southward, they prob ably found many competitors for existence. Th canty vegetation of New Mexioo, Arizona, and Northern Mexico probably did not suffice for the support of the great herds of animals coming from th orth. New conditions of existence may have weukened the vitality of the species; starvation may have dec ated their numbers; competition with other race uas have cut off a large supply of food, and the hand man may have hastened the struggle to its inevitble end. All we know, however, is that the race ecame extinct. That man lived previons to and o Chat he lived the Ice Age is now well established That he lived at the same time with a species of horse
is made known by the discovery of Prof. Cope. His is made known by the discovery of Prof. Cope. His aflinence in the extermination of many of the large et undetermined. JoskPH F. James. Washington, D. O.

FOR a good stove polish in the form of a powder, good quality plumbago, applied witb a stiff brush.

The Latent Facte about the Megalonyx.

ex inc cority.
Perhaps the most grotesque of all living animais is the sloth of South America. Buffon and Cuvier hought Nature must have made such an animal merely to "amuse hereelf." It can neither walk nor tand; but it is perfectly at home amid tangled tropical forests, where it travels for many miles merely by winging from bough to bough, while feeding on the foliage. When weary, it carls ap for sleep in the fork of a tree Unless attacked it is a hamnees creature: but when pat on the defensive, its great claws are dangerous weapons.
Extinct sloths have been found larger than the elephant, and so numerous that Darwin describes the whole area of the pampas of Uraguay as "one wide sepulcher of these gigantic quadrupeds." These are known to the naturalist by the names Megatherium, Mylodon, and Skelidotheriam, of which there are sevral species, with whose habits and peculiarities we re not concerned in writing this article.
What we have now to deal with is the giant sloth of North America, first deecribed by President Jefferson, and named by him the Megalonyx, on account of its normons clavs. The typical specimen was fonnd in some one of the fifty caves in the Greenbrier valley of West Virginia and its huge bones are now in the cabiot of the Academy of Natural Sciences at Philadelphia Other apecimens have since been fonnd in the White Cave half mile from the Mamo Big Bone Lick Ky., at the monnoth Cave. Ky., at Big Bone Lick, Ky., at the mouth of Cavoe Creek, Ky., in the vicinity of Millersburg, O., in MoPherson
Co., Kansas, in a locality in Mississippi, and in Big Co., Kansas, in a locality in Mississippi, and in Big
Bone Cave, Tenn. These specimens have been very Bone Cave, Tenn. These specimens have been very
fully described by Dr. Harlan, Prof. Leidy, Prof. Cope, Prof. Claypole, Prof. Orton and others.
The latest contribution to Megalonyx literature is rom Prof. J. M. Safford. of Vanderbilt University, Tenn., whose communication to the Geological Society of America, at its meeting in Angust, 1891, was especially interesting, because he exbibited what had never previously been found, namely, the pelvis of the Megalonyx Jeffersonii, along with other bones, from the Big Bone Cave, of Tennessee. These relics were purchased from the owner, Mr. A. J. Denton and now belong to the Vanderbilt University.
They were found in the cave already named, at the oot o! the western slope of the Cumberland mountain, a point midway between the towns of Sparta and Mc Minnville. They were discovered in 1884 by a laborer Tho was digging for bat gaano, covered to the depth of three feet, and lying in such a position as to show hat they bad never been disturbed. The head, vertebrae, and hip bones were lying as would have been ecessary after the decay of the animal, and showed it to have been eight or nine loet long. The general form of the pelvis of Megalonyx strongly recalls the broad hip bones of the Megatherium: which is what we hould expect, considering the affinity of the genera.
These bones are in various degrees of preservation. some have lost one or more epiphyses. On some, portions of cartilage and tendons yet remain. The latter is a feature of great interest, agreeing with the similar condition of the bones found in the White Cave of Kentacky, and proving that the animal existed in very recent geological times, and was probably conemporaneous with the primitive men of this contisent. Many of the bones have been more or less nawed by rodents.
It is a curious fact that, in their condition and state f preservation, these bones resemble those of another ot deacribed by Dr. Leidy, in 1853, and now in a muoum at Philadelphia; being also from the same cave In enumerating the bones of the two lots it seems probable that those described by Dr. Safford really applement those described and figured by Dr. Leidy, and that they all belonged originally to the same indi-vidual-a question to be settled only by direct comparison.
It may be added that Big Bone Cave is of large size, and once contained much saltpeter earth. In 1811-12 much of the most accessible of this material was dug out and leached to make the saltpeter. It was at the me an important industry, in pursuitjof which quite village grew around the mouth of the cave. It was during this early period that the large bones were ound that suggested the name by which the cave has been known ever since.

A Now Twonty-Four Enot Torpedo Boat
Bids were opened at Washington, August 26, for the construction, exclusive of armament and of torpedoes and their appendages, of a steel twin screw sea-going orpedo boat of not less than 120 tons displacement. The vesssel is, in all its parts, including shafting, to be of material of a domestic manufacture. It is also provided that the speed developed by the vessel shall be not less than an average of twenty-four knots per hour, maintained successfully for two consecutive hours. There were bat two bids submitted, and they were for department plans. They were: The Cowles Engineering Company, of Brooklyn, N. Y., $\$ 117,490$. and the Iowa Iron Works, of Dubuque, Iowa, $\$ 113,500$.

AN IMPROVEMENT IN FLUBH HIMGES.

The illustration represents a binge which will not project in either direc 'ion beyond the sides of the parts of the cover to which it is applied, the hinge being shown in open and closed position, and one figure re presenting a sectional view. The invention forms the subject of a patent issued to Mr. Jonathan D. Davis of No. 12 Elias Street, Bridgeport, Conn. The angled

DAVIs' IMPROVED HINGE.

plate forming one-half of the hinge is cut away on op posite edges to form ears, opposite which are outwardly projecting beveled legs fitting notches in the other balf of the hinge, while on a pintle passing through the ears is pivoted one edge of a sliding plate, the body of which is received and slides freely in a mortise in the other half of the hinge. The sliding plate and a por tion of the hinge behind it are mortised, and a part of the wood is likewise cut away, sufficient to receive a V shaped spring, which bears against one-half.of the hinge and against the sliding plate to draw the latter into the mortise.
As the cover is opened the plate is drawn out against the pressure of the spring, and when the cover is being closed the spring draws it into place, the lags fitting in the notches preventing longitudinal movement of one part of the hinge upon the other. When the hinge is used on covers that naturally lie in a horizon tal position, the spring may be omitted.

AN IMPROVED CAR COUPLITG.

The illustration represents a car coupling for which a patent has been allowed Mr. William Bentley, of Lethbridge, Northwest Territory, Canada, the patent being for an improvewent on a former patented invention of the same inventor. The coupling is automatic in its operation, and its construction is designed to be strong and inexpensive, having no delicate parts likely to get out of order, while the pin is fast to the car and cannot get lost. The body of the drawhead is anpported to slide a limited distance between the frame timbers of the car, a guide bar extension carrs ing a spiral spring permitting it to yield under pre ing a spiral spring permitting it to yield under pree sure. Above the drawhead is a sliding latch bar around the inner end of which is a epiral spring, a hown the secting jected forward in the path of a pin-lifting lever pivoted on the end of the car, to be conveniently manipulated
from the side. An apron designed to facilitate the enfrom the side. An apron designed to facilitate the entrance of an approaching coupling link is pivoted to the forward portion of the drawhead, the apron being yieldingly sustained in proper position by a spiral spring, dependent from the outer end of a rocking bar pivotally supported in the car frame above the pin-lifting lever, and projecting outwardly through a'slotted guide plate embracing the lever.
The latter has a forwardly projecting arm con nected with the coupling pin by a clevis, the arm

BENTLEY'S IMPROVED CAR COUPLING.
being slotted and the clevis bolted loosely on a slide block to facilitate free motion of the pin. When the pin and apron are in raised position to allow the entrance of an approaching coupling link, as shown in the illustration, the pin-lifting lever rests upon the latch bar, which is so connected with the drawhead as to be moved inward when the drawhead is similarly moved as two cars come together, thereby releasing the lever and allowing the pin to drop to effect the coupling. The latch bar may also be drawn inwardly by means of a pull bar connected with it and projecting over the pin-lifting lever, and connected by a lipk to this lever is a tripping lever, adopted to be operated from the opposite side of the car for uncoupling and rom then rising the lever and apron into position for recoupling. A rod atending to the car roof is f or is also conned with pin-lising lition for manipulation of the device frow this position. As the coupling is effected the apron drops freely out of the way, and the springe on the latch bar as well as on the drawhead form cushions to diminish the shock of the coming together of the cars.

AN IMPROVED RECEIVING TELEPHONE.

The illustration represents a simple and effective receiving telephone to be used in connection with a microphone, Fig. 1 showing a longitudinal section and Fig. 4 a slight modificatiou, while Fig. 2 shows a sectional detail of the polar extremity of one of the magnets and the skeleton of the bobbin, Fig. 5 being another section of the skeleton of the bobbin and polar extension, and Figs. 8 and 6 being transverse views. A compound \mathbb{U}-shaped magnet is secured in the telephone handle by screws passing through the end of the haindle and into the bend of the magnet the op posite end of the handle being formed into an exter naily threadioull which nally threaded which receives the ear piece, which is an iron diaphragm, near the polar extremity Between the outer magnet, but not in contact with it. Between the outer members of the compound magne are slightly projecting pole pieces of soft iron which

receive the bobbins, connected with each other by one terminal in the same manner as those of an electromagnet, the other terminals being connected with the binding posts at the opposite end of the handle The polar extensions are held in place by screws pass ng through them and through the arms of the mag net, but in the modification shown in Fig. 4, the ex tensions consist of screws having a head of larg diameter, the screws being inserted in the central por tion of the compound magnet. Each bobbin has sof ron heads fitted to the polar extensions, soft iron wire being fitted in a circle within the heads to form the framework of the bobbins. These wires are insulated and upon them is wound a fine wire forming the con ductor of the telephone, the winding varying accord ing to the conditions under which the instrument is to be used, and its sensitiveness being varied by adjus ing the diaphragm. Figs. 7 and 8 illustrate modifica tions in which the telephone handle is omitted and the ear piece cell is placed directly on the poles of a permanent horseshoe magnet, the bobbins being attached to the poles by screws, while the earpiece is arrang to adjust the distance of the diaphragm with reference to the polar extensions
This invention has been patented by Mr. Eloy Noriega, Box 516, Mexico City, Mexico.

A DEVICE FOR THAWING ICE FROM PIPES, A portable apparatus for conveniently and rapidly thawing ice formed in water pipes is shown in the illustration, and has been patented by Mr. Isaiah H. Simpson, of Brunswick, Me. On a suitable base are mounted a hollow drum supporting inside and outside coils, an oil reservoir, a pump and an air compressor,
the two latter being simultaneously operated by a hand lever. The pump is connected by a suction hose with a receptacle set under the pipe to be thawed, and the discharge hose from the pump is centrally connected by a coupling with the inner coil of pipe, the other end of this coil connecting with the one on the outside of the drum, the outer end of the latter coil

smifson's ICE-THAWING DEVICR
being extended for insertion in the pipe to be thawed. The inner coil of pipe is preferably of wrought iron, to withstand heat, but the other portions are of zinc or lead, or material that will bend easily, while the drum is mounted to be conveniently turned without disconnecting the pipes.
Through one trunnion of the drum, as shown in the mall figure, extends a pipe having a bell-shaped outer ond, into which passes the flame of a hydrocarbon barner provided with an air pipe, while its feed pipe leads to the reservoir, having oil in its lower part, above which is an air chamber connected with the air compressor. The air compressor forces the air into the chamber above the oil, and from this chamber an air pipe leads to the burner, where the oil is drawn in through the feed pipe and atomized by the drawn in a the coubution heating the wator at come pred through the coil, so that any at is the pipe to be tha wed will be quickly melted, the in tho pipe to be thawed will be quilk melted, Any length of pipe desired cau be run orer the dram any length of pipe desired can be run over the dram to pass a distance into the pipe to be thawed out, or, by a modified form of the improvement, a section of the pipe may be heated in coil form within a separate shell instead of within the drum, the device being then used in the same manner as described.

A DEVICE FOR CLEANING WOOD SAWS,

In the device shown in the illustration the gammy matter accumulating upon the saw is removed by steam emitted in contact with the teeth, while the saw is ranning in the lumber, Fig. 1 showing the application of the improvement, while Fig. 2 is an enlarged view of the nozrles and pipe connection. The invention has been patented by Mr. Thadious V. Elliott, Nichols, 8. C. A pipe from a steam boiler, adapted to supply steam and water of condensation, or hot water, is connected by means of a valve with a vertical pipe, a lateral and horizontal extension from which connects with two nozzles whose apertures are adjacent to opposite sides of the saw, near its cutting edge. The nozzles are in the form of threaded hollow plugs, which screw into elbows of the supply pipes, be ing adjustably held to be readily moved toward or from the saw blade. To facilitate the cleaning of the saw, a lubricator of approved form is connected with the vertical pipe, as shown in Fig. 1, the oil passing from the lubricator to mix with the steam or water carried to the nozzles. The openings in the nozzles are preferably conical, so that the cleaning mixture is ejected with considerable force against the sides of the saw.

ELLIOTT'S SAW CLEANER.

A POWERPUL stEAY CRATE.

The illustration represents a hage steam crane, called a steam Titan, built by Messrs. Ransomes \& Rapier, of Ipswich, to the designs of Mr. F. G. M. Stoney, M.I.C.E., and to the order of Sir Alexander Rendel, M.I.C.E., consulting engineeer to the Madras Harbor Works, where it will be chiefly employed for transporting blocks of concrete weighing 32 tons, used in the construction of the break water now in progress. The weight of the Titan, without water ballast or load, is 152 tons, and with ballast 170 tons. All the motions of the appliance are under perfect control by means of a set of levers situated on a platform and within easy reach of the single operator. A feature of importance in connection with this appliance is that it not only has to be capable of slewing round in a complete circle, but has also, owing to the shape of the breakwater on but has also, owing to the shape of the breakwater on on a curved road. To enable it to accomplish this the on a curved road. To enable it to accomplish this the
Titan is carried upon twelve wheels arranged as two Titan is carried upon twelve wheels arranged as two
four-wheeled bogies, one at each end, and with driving wheels in the center. This arrangement enables the Titan to travel with ease round a curve 90 ft . radius. The radius described by the arin is 50 ft ., and to minimize the shock produced by stopping a load,

Old Time Weathor.

The last bulletin of the Essex Institute contains an account of the annual meetiug held last May, and a retrospect of the year, from which we learn that Mr.
Perley, in a lecture on "Old Time Winters in Perley, in a lecture on "Old Time Winters in Essex County, Mass.,' gavo intereating particulars on many sabjects, including weather. We give the following xtract :
"The lecturer spoke of the watch, church services, dress, food, and schools of the early winter seasons how the people spent their evenings, the winter em ployment of the people in cutting off the forests, sled ding timber and wood, makiug pipe staves and barre hoops, and, most interesting of all, the institution of the old-fashioned shoemakers' shops, of which nearly every farm had one a century ago. Women in those days engaged in spinning and weaving. The bolidays were referred to-Thanksgiving, Christmas, and New Year's; and the winter pleasures, such as
sleigh rides, daucing, spinning and quilting parties, and sleigh rides, daucing, spinning and quilting parties, and
games, shuffle-board, coasting, skating, trapping, gungames, shuffle-board, coasting, skating, trapping, gan-
ning, fishing, singing schools, and girls' samplers. He also spoke of the old moder of travel, snow shoes, etc. Nearly all the beavy teaming was done on sleds, and
harbor on a summer-like morning in February, were all cast away at night on Cape Cod, in a terrible snow storm, which continued a week. He also referred to more recent seasons, and of the cold winter of 1856-57, when in one week in January was the coldest day by the thermometer ever recorded of late yearn, mercury in Salem 20° below zero; travel on the railroad be tween Boston and Salem entirely saspended from Tuesday morning to Thursday afternoon. - The recent mild winters were also alluded to."

steam Company's Labllity-Damagen.

In a case recently decided by the New York Court of Appeals it appeared that a steam company fitted a store with steam for elevator and heating purposes The apparatus was tested by letting on the steam, and it worked satisfactorily. The steam company thet left the steam on and closed the store for three days. While the store was closed the bonnet of the service pipe blew off, and the steam escaped and injured the goods in the store. The court held (Reiss os. New York Steam Company) that the steam company was not liable for damages, but that, having furnished the best material and employed competent and skilled mechan ics, it was not bound to anticipate or guard against

GENERAL VIEW OF CRANE CARRYING TEST LOAD.
owing to the momentum acquired when being slewed was so bad that the farmers in the western part of the such an unusual accident which had never before hapround, spring braking devices are introduced in connection with the gearing so as to bring the arm to a gradual stop. The crane is made of mild steel, all parts being carefully machined, and all rivet holes drilled in position. The whole of the work is so ar ranged that it can be conveniently taken to pieces for transport and re-erected at its destination with.a minimum of trouble. This fine crane has been inspected and put through a series of severe tests by Sir Alexander Rendel, and has given general satisfaction. The test load, ne shown in the illustration, was 40 tons. Industries.

Succrss presupposes conditions and preparations for it-the energy, self-sacrifice, and self-abnegation which brings brawn and breadth and dignity, strength and wisdom and skill. We cannot safely jump into success; we are likely to get hurt, and soon fall back disheartened to where we belong. Some try by wardly he generally makes a fool of himself. Nearly wardly he generally makes a fool of himself. Neariy
everything of real worth has to be earned. To be everything of real worth has to be earned. To be
appreciated and judiciously appropriated, our posses sions mast have cost us their value. The very toil and struggle and plodding that bring solid gain bring also the mature experience, thorough discipline, and hard knocks that make up stalwart manhood and perma nent success.-Items of Interest.
was 80 bad that the farmers in the western part of the coast to market. Snow remained on the roads as it, fell until about a century ago. Mr. Perley then spoke of particular winters : That of 1641-42, when the Indians said they had not seen the ocean so much frozen for forty years; of 1646-47, when there was no snow to lay; of 1696-97, said to be the coldest winter since the first settlement of New Englaud; of 1701-2, which was 'turned into summer ; ' of 1717-18, when the snow was from ten to fifteen feet deep and the drifts twenty-five feet, many one story houses being buried ; of 1740-41, said to be the severest winter known by the settlers, Salem Harbor being frozen over as early as October of 1774-75, a wonderfully mild winter; of 1779-80, when for forty days, inclnding March, there was no perceptible thaw, and the snow was so hard and deep that loaded teams passed over the fences in any direction, arches being dug under the snow so that men on horse back could ride ander them, and which was long re membered as the hard winter; of 1784-85, when, as late as April 15, snow was two feet deep, and frozen hard enough to bear cattle ; of 1785-86, when in the remark able storm of November 25, the snow blew into balls, one of which had rolled 76 feet, measuring $171 / 2$ by 22 inches; of 1794-95, when the Betsey was launched in Salem on Christmas Dar, the thermometer indicating
80° above zero at noon, and 80° above zero at noon, and men and boys went in swimming; of $1801-2$, when the Ulysses, Brutus, and
Volutia, three Salem vessels, which sailed out of the
pened in its business. The court said: This steam apparatus was put into the plaintiffs' store for their benefit. The defendant did not insure or gaarantee them against danger therefrom. It was bonnd only to them against danger therefrom. It was bonnd only to use that degree of care which ordinary prudence and
foresight would under the circumstances suggest, and foresight would under the circumstances suggest, and
prompt. Whether or not it failed in such care could prompt. Whether or not it failed in such care could
not be left to mere speculation. The burden was upon them to establish such failure by proof, and this bur den they were bound to sustain, however necessary and difilicult it proved to be.

Remedy for Poisoning by Ven Rabld Doga

The Berlin correspondent of the Therapeutic Gazette says that a remedy for blood poisoning caused by the bites of snakes and rabid dogs has been discovered in Africa, by a Dr. Engels, in the "wild-growing, black noble palm." Five hundred negroes bitten by poisonous snakes were treated with the extract of the noble palm, and four hundred and eighty-seven were cured in five days. Of sixty-seven farmers and negroes bit ten by rabid dogs sixty-five were saved, while two died of weakness. The remedy is injected under the skin and causes a moderate fever, not exceeding $355^{\circ} \mathrm{C}$ On the third day the patient is without fever. swelling and inflammation of the affected part hare disap peared, and on the fifth, or, latest, on the seventh, day the patient is cured.

Moeting of the American Ascociation.
(Continued from page 145.)
Prof. Thomas Gray addressed the mechanical engi neers, deprecating the teaching of trades in school instead of in workshops, the old system of apprentice-
ship being better. But he strongly advocated teach ship being better. But he strongly advocated teach-
ing of a practical character, both in mathematics and ing of a practical character, both in mathematics and
theoretical dynamics, in technical colleges and similar theoretical dynamics, in technical colleges and similar
institutions. He named some of the directions in which technical research should be pushed, especially as to the behavior of steam, combustion, and electrica engineering.
In the Section of Economics and Statistics, Prof James spoke of "The American Farmer, his Condition and Prospects." On awaking to the fact that he is not up with the age, the farmer is apt to explain his ills by the machinations of other classes. He blames bankers, politicians, manufacturers and railroads. Wealth flows from the country to the city. The farmer feels keenly that his interests are not taken into the account as they should be in adjusting taxation, the tarifi, and other mooted matters of nationa
finalicy. Unless a radical change is brought fanancial policy. Unless a radical change is brought
about, his future will be darker than his present. about, his future will be darser than his present.
Along what line does his hope of improvement lie ? Along what line does his hope of improvement lie?
Mere alliances will not solve the problem, although Mere alliances will not solve the problem, although
they may compel us to listen to the real grievances of the farmer. Agricultural experiments, education, intelligence and sagacity must be relied on to do it. Trained and skillful farming must excel rude and clumsy methods, and the sooner this is reslized, the better.
Among the 227 special papers read in the sections, only a few can be mentioned, taken at random, and no better it may be than others. Lively discussion was awakened by Prof. C. V. Riley's arraignment of the Patent Office for trespassing on the rights of ot Agri partments. He said that the Department of Agrimethods for destroying scale insects and other paramethods for destroying scale insects and other paraNo sooner had his process been perfected, made cheap No sooner had his process been perfected, made cheap and availiable, against protest, and ignoring the fact that he parties, against protest, and ignoring the fact that he
had oficially described and recorded this very process. This was but one of many cases where government officials had seen the fruits of their work snatched away by patents heedlessly awarded to private individuals. Great interest was excited by the explanation of the electrical tabulating machines by Dr. J. S. Billing (U. S. army), who had charge of the vital statistics for the census, and who originated this system, since perfected by Mr. H. Hollerith, and in practical use in tak ing the censuses of the United States, Canada andjAustria. By a gauge panch holes are made in cards, each containing 12 groups of 24 holes through which a metal nection, thus recording the data. Forty such dials are used at once, each for a single class of facts, and grouped on any system required. An operator will grouped on any system required. An operator will
punch from 700 to 1400 cards a day, with fewer errors punch from 700 to 1400 cards a day, with fewer errors
than are involved in any other system. The average number of punched cards passed through the machine with an average of nine daily readings was 7000 for each worker. The saving by this method effected for
the eleventh census is estimated at about half a million of dollars, with an increased accuracy of results. It would be difficult to explain this interesting process more clearly without cuts.
Prof. Lester F. Ward read a brief paper on the character and purpose of a national university, such as was advocated by Washington, Jefferson, Madison and near future. It was certain to be realizedic the sectarian, its chairs held by Americans only, its scholarships allotted by congressional districts and on competitive examination, and its faculties chosen by a special commission from among our most eminent scientific men, its "strong chair" being in the science and art of government, with the aim of altimately flling all administrative offices from its list of
ates, thus securing trained and skilled offleers.
ates, thus securing trained and skilled offlcers.
Among other papers read in the Economic Section may be mentioned one by Prof. Anderson on the World's Columbian Exposition, on which $\$ 40,000,000$ were to be expended; on state railway supervision, by
B. W. Snow; on our mercantile marine, by Henry FarB. W. Snow ; on our mercantile marine, by Henry Far-
quhar; on the muck soils of Florida, by H. W. Wiley; quhar; on the muck soils of Florida, by H. W. Wiley and on the artesian
Texas, by R. T. Hill.
Prof. Springer attracted the attention of the Chemical Section by his remarks on "A Latent Characteristic of Aluminum," as adapting it for sounding boards of musical instruments. He claimed that it differed as " metallic," and also in having an elasticity capable of sympathetic vibration uniformly through a wide range of tone pitch, being in this respect superior to any kind of wood. It is also superior to wood in being incombustible, impermeable to moisture, and in per
mitting the thickness of the sheet to be so reduced as mitting the thickness of the sheet to be so reduced as
to obtain the atmost amplitude of vibration without to obtain the ntm
injuring the tone.

The processes of mountain building were explained by Prof. Warren Upham in a communication to the Geological Section. Six classes of mountains exist the folded, arched, domed, tilted, erupted, and eroded The long mountain belts consist of folded rock forma-
tion, wave-like ridges with intervening troughs, the tion, wave-like ridges with intervening troughs, the
folds being sometimes closely pressed together. Exfolds being sometimes closely pressed together. Ex-
amples are found in the Appalachian, Atlantic, and Laurentian systems of America, and the grand Alp Himalayan belt of the Old World, reaching from the Pyrenees to the China Sea. The arched mountain are typifled by the Uinta range in Utah, an arch having been raised during the tertiary period 150 mile ong and 40 wide, and about five and a half miles high By erosion this arch has been since cut down to hal its original height. Dowed mountains, exemplified by the Henry mountains in Utah, were formed by volcanic uplifts of previously horizontal strata, the lava being injected between the strata, to which Gilbert gives the name of "alaccolite." The Wasatch monntains and the Sierra Nevada are examples of tiltmountains and the Sierra Nevada are examples of the ed ranges, being immense rocky masses tited by the
upheaval of one border with a corresponding depresupheaval of one border with a corresponding depres-
sion of its opposite border, taking place along fault sion of its opposite border, taking place along fault
lines. Volcanic eruption on a grand scale along deep Issures has made mountains like the Andes, the Cas 000 feet thick and 500 miles long, with lava bed , 000 feet thick, and lava peaks 14,000 feet high, also the volcanoes of Iceland, Hawaii, etc. Examples were also given of mountains made wholly by erosion, some of which from 5,000 to 16,000 feet high way be seen in Montana. The relation was shown between these different kinds of mountains and the earth's contraction with an attendant necessary relief of stress on its orust by the elevation of certain areas by folding, arch ing, doming and eruption.
A curious account of the "Venus fiy trap" was laid before the Biological Section by Profeseor J. M. Macfarlane, from Edinburgh, who also gave an illustrated lecture on the hybridization of plants, before the As sociation. Concerning the "fly trap," he proved by specimens at hand that two touches were necessary to make the leaf close up, but that it made no dif erence whether one of the six sensitive hairs was twice
touched, or two of them each touched but once. Th touched, or two of them each touched but once. The protoplasm of the leaf cells retained sharp recollection
of the first touch for fifteen seconds, which was weak of the first touch for fifteen seconds, which was weak
ened during the next fifteen, and was wholly gone in about a minute. This exactly agrees with the "laten period" of mascular contraction in animals, though longer as to period. He showed that every part o the leaf blade is sensitive, closing after two snips; and that if the first snip is very strong, closure may occu at the second, even after the lapse of two minutes. A trong jet of water will produce sudden closure. cells is identical in behavior with that on the nerve mascle-cells of the lower animals. This discussion wa made particularly interesting by the presence of a beautiful array of plants from the public botanica carden, loaned for the purpose of demonstration.
The deep well at Wheeling, W. Va., is $4,500 \mathrm{ft}$. deep and will be drilled to the depth of $6,000 \mathrm{ft}$. It was drilled by T. S. Kinsey, and when done will be the deepest
well in the world. It has been presented by its owners well in the world. It has been presented by its owners
for scientific purposes, being dry, and useless so far a its original object is concerned.
Mr. Wm. Hallock laid tabulated observations before the Geological Section. The strata pierced are undis torted, and nearly in situ. The well is cased for 1,500 ft ., and the uncased portion is mainly in shale. Ther mometers were lowered to various successive depths and the temperature was recorded as registered. In the upper half of the uncased portion the mercury rose 1° Fahr. for every 80 or 90 ft ., but increased to 1° for every 60 ft . in the lower half, reaching over 110° at the bottom, which is 3.700 ft . below the sea level. In wells near Berlin and Leipsic, one $4,170 \mathrm{ft}$. deep, and the other $5,740 \mathrm{ft}$., the temperature at the bottom is about 118° and 135°. Further observations as to barometrical and other phenomena will be awaited with in terest.
Prof. C. B. Thwing explained the Lippmann proces of color photography, described in France last Febru-
ary. and which differs from that of M. Becquerel, dis ary. and which differs from that of M. Becquerel, dis
covered in 1848 . The latter by a photo-chemica covered in 1848. The latter by a photo-chemica
method produced a colored image that could not be exposed to the light. Lippmann by a physical me thod gets an image that retains its colors after treat ment with hyposalphite of soda, and is as permanent as any plain negative. A transparent plate is exposed with its film side resting against a reflecting surface o mercury. This divider the film into layers as far apar as the wave length of the incident light, and thas re prodaces by reflection the color that produced th of nature, giving the complementary colors instead. A number of colored negatives were exhibited illustrat ing the paper.
Free coinage was discussed by the eminent statisti cian Edward Atkinson, the secretary reading the paper in the absence of the author; which was followed by
another on coinage ratio and our silver policy, by E.T

Peters ; these papers presenting the two sides of the exciting question of bi-metalism, and fairly recognizng the difficulties on either side.
In the Anthropological Section several papers were read by ladies, one of which especially, by Mrs. Auita Newcomb McGee, attracted attention both by its ability and the singularity of its subject, namely, "An Experiment in Human Stirpiculture." In other words, she explained the methods and results of the Oneida Community, where between 1888 and 1879 there were sixty children born on what were alleged to be scientific principles, according to a peculiar system devised by Mr. Noyes, that separated the amative and propogative functions. It was claimed that most of these children were remarkably bright and bealthy. But the spirit of monogamy prevailed, so that when, in 879, the question was put to a vote, only three favored the continuance of the experiment. In the discussion ollowing this paper curious facts were brought out as to the Mormons as well as the communists; but some doubted if rural surroundings and unusual care in training did not have more to do with the superiority f the Oneida offspring than any system of stirpiculure.
An elaborate and valuable paper by Miss Alice C. Fletcher, on "The Nez Perces Country," and another on the "Utility of the Psychical Study of Child Life," by Laura O. Talbot, were heard with marked interest. The veteran State geologist of Tennessee gave a remarkable account of the remains of a megalonyx ound in the Big Bone Cave of that State, a synopsis of which is published elsewhere in this issue.
Prof. Doolittle and Prof. Comstock read papers on the secular variation of terrestrial latitude, dealing with a question vulgarly but aptly phrased by a local reporter as amounting to the inquiry, "Does the earth wobble?" The papers bristled with technicalities, showing results of many thousand telescopic observations during a long term of years, and seeming to prove that the terrestrial pole is actually in motion at the rate of $41 / 2$ seconds a century. This fact has its earing on many other questions, and calls for systematic observation simultaneously carried on in all parts of the world for the better determination of the ate and significance of polar motion.
The research fund of the A.A.A.S. ought to be sufficiently increased to enable it to take a share in special inquiries like the foregoing. Accordingly a committee was appointed, of which Prof. Brashear, of Allegheny, is the chairman, to raise if possible the sum of $\$ 100,000$ for that purpose.
H. C. Hovey.

Efrect or Water on Lead Pipo.
A very remarkable case of danger from water in contact with lead, where neither the conditions of the drainage area nor the results of chemical analysis would arouse any suspicions as to safety, was reported by Dr. Elwyn Waller at a recent meeting of the American Chemical Society. The water in question came from creeks in the monntain districts of Kentucky. Analyses of samples "one" aud "two" were as follows, the acid radicles being distributed among varying quantities of the usual alkali and alkali earth metals, with also some silica, iron oxide and alumina:

	Parts in 100,000.	
	1.	IL.
Odor when heated to 100°	None.	one.
Chiorine, in chlorides	00811	0.0500
Phosphates....	None.	None.
Nitrogen, in nitrates.	0.0165	0.004
Free ammouia.	0.000	Trace.
Albuminoid ammonia	0.04	0.0016
Temporary hardness.	0.950	0.7300
Permanent	14000	$1 \cdot 3000$
Organic and volatile.	$1 \cdot 3000$	14000
	8.7038	3.5323

As a further test, sections of 1 in . lead pipe, each 1 n. long, freshly scraped, were put into about a pint of each sample, and for comparison a piece of the pipe was put into an equal quantity of Croton water. A slight cloudiness occurred in No. II. in twenty-four hours, a still further discoloration in No. I., and none in the Croton. Fresh samples were put into bottles with the lead, and left, with glass stopples tied down, for several months. At the end of that time the piece of lead in the Croton water was blackened, and had developed one or t wo spots of adberent white incrustations. Sample of water No. I. was whitish in color, tations. Sample of water No. I. was whitish in color,
with some detached white sediment, while No. II. was with some detached white sediment, while No. II. was
decidedly milky, and contained a half inch of detached decidedly milky, and contained a half inch of detached
sediment, the action upon the lead apparently going sediment, the action upon the lead apparently going
on indefinitely, the scales becoming detached as fast as formed. A similar case was reported some years ago by Prof. Frederick Penny, in his experiments upon the water of Loch Katrine. which showed an almost identical composition by analysis.

Phosphated Salt.-Potassiam, sodium, and calcium phosphates in nearly equal proportions are well cium phosphates in neariy equal proportions are well
mixed and finely ground. Common salt is then well ground and incorporated with 3 per cent of the phosphate mixture to form a prepared table salt.-G. D Bowie.

The Dairy of the Exhibition.

Chief of Construction Burnhaw has designat sd sites or the Forestry, Sawmill, Dairy and Agricultural annex buildings. They will be grouped on the space ormerly planned for a lagoon, south of the Agricultural building and near the lake shore. The lagoon which is a natural one, will disappear, the buildiugs being constructed on a piline foundation over it The being constructed on a pllag toundation overit. The approximate dimensions of the Dairy building are piven as 95×200 ieet ; those of the Forestry building Agriculture, has secured the construction of all these structares. The Forestry building will be unique in that it will be surrounded by natural tree tranks as colamns, one or more of which will be contributed by each of the several States. The sawmill people have been making a vigorous plea for their building, in which to show the actual operation of producing lamber.
No feature of the Exposition, probably, will possess greater interest or value to the agriculturist than will the dairy school, the holding of which substantially in accordance with the plan submitted some time ago by Chief Buchanan is now assured. The school will include a contest between both herds and individuals of the chief breeds of dairy cattle, with a view of ascertaining the respective merits of each in milk giving and butter and cheese producing. Each herd will be charged each day with the food consumed, accurately weighed, and will be credited with the milk, butter, and cheese produced. Manufacturers of dairy utensils and appliances will gladly furnish all that will be required in their line. Accommodations will be provided, so that spectators may view the processes of butter and cheese making.
The tests and all details of management will be ander rules to be prepared by ৯ committee composed one nember from each of the dairy cattle associations in the United States, three from the Columbian Dairy Association, three from the Agricultural Colleges and United States Experimental Stations, and one from the inanufacturers of dairy utensils.
The manufacture of the product will take place in the dairy building, in an operating space 25 by 100 eet. above which on either side will be a gallery which feet. above which on either side will be a gallery which
will accommodate fully 500 spectators. The school, in all probability, will continue through four months, and each participating herd will be represented by a given number of cows. The results of this test and of the axhibition which will be made of the latest and most advanced scientifle methods known in connection with the feeding and care of cattle, the treatiment of milk and the production of butter and cheese, cannot fail to be of very great value to the dairy interests of this couutry. These interests, it is scarcely necessary to state, are of enormous importance and extent, and, indeed, are scarcely surpassed by any other branch of industry in respect of the amount of money invested. It cannot be doubted that the Exposition Dairy School will cause a more economic and scientific management of the dairy interests of the entire country, and consequently a greater return from the capital and labor invested.

The India Rubber Tree.

The India rubber tree cannot stand shade, and uness the seedlings are fully exposed to light and well drained, they canuot grow. Owing to this it is found that in the depths of the forest, where light and air are shat out by the dense crowd of trees of many pecies natural reprodnction takes place by the gerpeoles no seeds carried by birds high up in thermination of seeds carried by birds bigh up in the crowns of other hrees, aerial roots desconding in pro ees of tive to the ground, and devoloping lato a huge hollow cylinder round the loster stem, which is soon
killed. The descent of the roots may take jears, bnt killed. The descent of the roots may take years, bnt once they have taken hold of the ground, the further growth is exceedingly rapid. In cultivating, the seeds are found to grow much better than cuttings, and these are tended in large nurseries until they are 10 feet high, when they are transplanted into clearings made n the forest, in strips of 40 feet wide, alternating with 60 feet of natural forest, this being found necessary to urnish the necessary moisture, while narrower clearings do not give air and light enough. Trees grown in grass land were found on tapping to yield scarcely any rubber, the difference being attributed to abany rubber, theisure afforded by the forest Plan of 1874-75 were found, in April, 1889, to bave attained an average height of 61 feet 11 inches and a girth of 11 feet 5 inches, thus having grown at the very rapid rate of 6 ieet 1 inch in height and 9 inches in girth per rate of 6 ieet 1 inch in heig
year.-Demerara Argosy.

Improved Cementing Material.

V. L. Daguzan says: This material is called by the nventor pyro-cement, and is "a blackish product, which adheres strongly to iron, wood, stone." etc. The following constituents and proportions yield a usefu) result : " 18 to 25 per cent of gas petroleuin or other resinons matters, 75 to 80 per cent of clay or argillacoous earth and silica, 2 to 8 per cent of natural sul phates."

Sorrespondence.

The Grooved Cartridge.

To the Editor of the Scientific American
I caine across a copy of the Scientific American dated April 26, 1890, in which you give a description of the new rifle adopted by the German government You say for it : The cartridge forms an innovation upon all others that now exist, inasmuch as it has no pro jecting rim at the base; but, on the contrary, has a small groove, in order to allow it to be grasped by the small groove, in order to allow it to be grasped hy the
extractor hook. Now I can prove that I am the original inventor of that constrnction of cartridge, as wil be seen by the plans and specifications, No. 7,779, pub lished at the British Patent Office, entitled "Jennings' Combined Single Loading and Repeating Riffe," and dated 26th June, 1885, that is, three years prior to the
German model, 1888.
R. Jensings.
54 Fruit St., Youngstown, O., Aug. 5, 1891.

JUPITER

To the Editor of the Scientific American
The planet Jupiter is now in good position to observe ven with sunall telescopes. The ever-changing relations of the four moons to each other and the plane will interest and instruct.
The belts are also of constant interest. I send here with sketch of the planet as observed last night. Four

belts were very prominent and fiuely marked. The little white spot near the right hand edge of Jupiter is the first satellite about to transit, which occurred at 8 hours 52 minutes. The small black spot just entered apon the disk of the planet is the shadow of the satel lite. It came on 18 minutes before the satellite itself and, of course, preceded it entirely across the planet The satellite could be easily seen in transit apon the gray background formed by the belt.

William R. Brooks.
Smith Obeervatory, Geneva, N. Y., Ang. 29, 1891.

To the Editor of the Scientific American:

In one of your numbers, a correspondent inquires as to the getting rid of snails and slugs. I remember a few years ago traveling in Brittany and meeting boys carrying sea sand in baskets. Having asked them for what purpose, they answered it was to prevent snails and slugs getting on to the flower beds, and that it answered perfectly. Your correspondent wight try this remedy.
Sainte Adresse, France, August 15, 1891.

Jot Propulaton.

To the Editor of the Scientific American:
I note the remarks of Mr. W. H. Wetherill in your issue of August 29. The principle of hydraulic propul sion is already secured, in that past experiments have shown its superiority to that of the screw propeller but its adoption has been retarded becanse experi menters have used impractical pumps; consequently a wedium size jet has not been obtained-a condition vitally germane to the success of the method. For ex ample, the two 9 inch nozzles on the English torpedo boat of 68 feet and the one $3 / 4$ inch jet of Dr. Jackson' sacht of 106 feet, both size nozzles being extremes.
The experiments made by the English Adrairalty employed centrifugal pumps of great capacity and com paratively little power, while the steam pumps used in the United States experiments had great power and little capacity. A pump which combines capacity and power will effect the speedy adoption of the principle I contend the screw is not intermittent. It has a continuous thrust-every blade constantly doing daty by turning a complete circle. Suppose one blade were left on the shaft, does Mr. Wetherill think its action is intermittent? If not, conld a screw propeller with more blades be regarded as intermittent? So with three or fonr constant jets impinging the water of flotation at the same time, while each jet is independ
ent of the others in its work; thus each blade is independent yet continuous in its action.
In conclusion, the possibilities of obtaining greater speed through the screw propeller are nearly limited. The application of its highest power is nearly reached ; but with a practical pump three or four times the power can be realized. In this direction lies the probability of four days Atlantic liners.
Newton, Mass., August 20, 1891.
Johi W. Hahis.

```
or armitehen Bollor nndor
```

To the Editor of the Scientific American:
A 30 gallon upright copper boiler bad been in use wenty years and was in perfect order. It was supplied from a tank under a maximum head of 8 ft .6 in . Minimum head (tank almost empty) about 8 ft .6 in . A few days ago (Monday. Aug. 31), the tank having been drawn down for washing so that the head was about $41 / \mathrm{ft}$., the upper part of the boiler suddenly collapsed, bot water being drawn at the same moment. in the washtubs.
The cause was at first not evident, nor had the plumber any explanation to offer.
The facts are that within a year the range formerly in use has been taken out and a larger one put in, with water back having a much greater heating power. It now appears that for some time a snapping bas been noticed in the hot water pipes, which indicates that steam had been formed iu the boiler and was condensed With the noise observed : proving that the water back was too powerful for the demands made upon it.
On the morning in question the fire was hot, the water in the boiler was undoubtedly at the boiling point, and had forced back water into the tank until there was a steam space of Gfteen or eighteen inches in the boiler.
On opening the faucet in the tub the pressure was relieved-cold water passed into the boiler from the tank, and the condensation was instantaneous, allowing no time for equalization of pressure through the feed, or open faucet, which was at the end of not less than 13 ft . of $3 / 4 \mathrm{in}$. pipe, and was probably only partly open.
It appears from this that water backs are put in without any calculation as to their capacity, and that onder some conditions steam may be formed and a collapsed boiler result, with all the details of inlet and outlet in ordinary working order.
The primary cause in this instance was the unneces sarily powerful water back, to which the low head of water was contributory. The conditions have been the same for twenty years as regards pressure; but a pipe water back ranning around the top of the fire had been used in the old range.
This accident serves to call attention to the need for especial care in proportioning the water back to the work it has to perform where a low pressure water supply is in use. Durand Woodmand. 80 Beaver St., N. Y., Sept. 2, 1891.

White motal Alloye

The following alloys are used as lining metals by the Eastern Railroad of France:

Number.	Lead.	Antimony.	Tin.	Copper.
1	65	25	0	10
2	0	$11 \cdot 12$	$88 \cdot 83$	$5 \cdot 55$
8	70	20	10	0
1	80	8	18	0

No. 1 is used for lining crosshead slides, rod brasses and axle bearings. No. 2 is used for lining axle bearigs and connecting rod brasses of heavy eugines. No. 8 is used for lining eccentric straps and for bronze slide valves. No. 4 is a special alloy for metallic rod packing.

A Light Concrete

F. Sang states, tufa sand, which is found as small pellets or granules in the Rhenish provinces, is inixed dry or wet with Portland or other cement, and the concrete formed moulded into any desired shape. A mixture of equal parts is said to be as strong as granite and less than half its weight, but for many purposes a mixture of 1 part of cement to 3 to 5 of tufa sand suffices.
Besides being applicable for ordinary building purposes, the patented material is said to be a good nonconductor of beat, and therefore to be fit for forming the roofs of bakers' ovens and similar uses.

The race of the two-year-olds for the Futurity take of $\$ 75,000$ took place at Coney Island, N. Y., on August 29, and was won by His Highness, a bay colt $15.21 / 2$ hands high, of such splendid proportions tbat e would be readily taken for a well furnished three-year-old. He was bred at the Kentucky stud of the late Hon. Augnst Belmont, and was sired by imported The III Used, out of imported Princess, the dam of Prince Royal and Her Highness. He cost his owner, Mr. David Gideon, $\$ 3,400$ at the closing-ont sale of Mr. Belmont's race horses at Babylon, N. Y., last February. It is said His Highress has already netted over $\$ 100,000$ for his owner.

Improvements in Aluminum Alloye.
J. W. Langley finds that if pure aluminum be alW. Langley finds that if pure aluminam be al- thus term the quotation of an article that never oyed with between one half per cent and 10 per cent appears on the market, is $\$ 4,500$ per pound. The next of titaviuin the product is harder than aluminum, The Kenwood Physical Observatory had its incepnearly as in, harly as incorro rolling a degree of elasticity and hardness inuch superior to pure aluminum. These alloys are fusible below the melting point of steel, the point of steel, the quired depending qured depending ape of titanium. When the proporben the proporMon of titanium s less than 5 per cent, the alloy is nearly as malleabe as pure aluminom. The presence of iron and silicon in this alloy are injurious, tending to render it brittle and noninalleable, but a small proportion of chromium is of substantial beneIt in increasing the elasticity of the product. The he pris is. Tha alloy is prepared by the action of metallic alaminum on titanic,oxde. The method used is also claim-
 ed for the preparation of alloys of aluminum with any more electronegative metal, and is as follows :

- A bath of preferably pure fluoride of alnminum and sodium is prepared in a carbon crucible, the oxide or ther salt of titaniuin added, well mixed and allowed and quite fluid, metallic aluminum s charged in, the relative propor tions of aluminum and oxide or alt being such that the percentag oxide shall be about twice the orcentage of metal required in the lloy. The of lloy. The temperature of the bath apidly rises on the introduction o the aluminum, and as soon as this ceases, the reaction is completed and the mass is teemed into a suitable vessel, allowed to cool somewhat, and the fluid elag run off from the metal. The latter is remelted before use.
The proportion of fluoride used s from one to four times the weigh of the aluminum. Fluoride of sodi um, fluoride of alnminum, sodium and calcium, or generally a fluoride of any metal or metals more elec tro-positive than aluminum, may be ased for the bath, but cryolite is ased for the bath, but cryolite is disadvantageous, on account of th
iron it contains. The procese
the prose must not be conduct d in a siliceous crucible, a portion of the silicon being reduced an entering the alloy. Chromium may be introduced as oxide into the fluoride bath, or an alloy of chromium and aluminum may be mixed with the manufactured titanium alloy.

Price of Rare Metals.
Iridium, a very heavy metal of the platinum group, so named from the iridescence of some of its solu ions, and well known in connec ion with its use for the points of on with its use be the points of dent prozinatel priper The resent price of platinan, the bet er kne put very infusible metal, is on a par with that of gold, namely, about $\$ 350$ per pound. But generally its value fluctuates between its more popular brothers, gold and silver The rarest metal-and it is so rare that recent discoveries have thrown doubt on its elemental characterwing during the winter of $1890-91$ brought the building to its present form, and it now includes a reception room, library, equatorial room, "slit room," "grating room," photographic dark room, general laboratory, and workshop. The grating room con tains a four-inch concave grating ton leet radiue of curvature,
monnted in the manner employed by Professor Rowland. A shorter girder allows the use of a grating of only five feet radius, in cases when the light source is too faint to adınit of the highest disper. sion. Sunlight is furnished by a belicatat on a ore dion a pier some distance to
the north of the building, while a Weston dynamo, glucinium, a metallic substance found in the beautiful \mid driven by a gas engine of six horse power, supplies the beryl, is quoted at $\$ 3,375$
o dissolve; when the mass is thoroughly incorporated and two of salicylic acid, one of subnitrate of bismath,

APPARATUS AT THE KENWOOD OBSERVATORY.

To prevent the feet from sweating, try the following
and two of starch. Wash, and apply powder freely.
arge indnction coil, and in lighting the whole observatory with incandescent lamps. A set of thirty-five Julien storage cells can be charged by the Weston machine, and used when desired.
The mounting of the equatorial was finished in March, 1891, by Messrs. Warner \& Swasey, and the excellent $12: 2$ inch object glass, figured from Dr. Hastings' calculations by Mr. J. A. Brashear, was in place and ready for use early in April, 1891. The spectroscope is of very large size, and was also made by Mr. Brashear. A frame of strongly braced steel tubing carries the collimator and observing telescope, which make with each other a constant angle of 25 degrees. The objectives are exactly alike, of $31 / 4$ inches clear aperture and $421 / 4$ inches foens, aperture and $421 / 2$ inches focus, corrected for work in the visaal region. The grating is a 4 inch lat, and in wany respects is the finest ruling I have ever seen. In addition to the grating there is a 30 degrees white flint prism, silvered on the back, which is used in photographing the spectra of the fainter stars. The large size of the spectroscope, and the necessity of a perfectly rigid attachment to the equatorial, have caused us to mount the spectroscope and tube as if in one piece, the declination axis coming at the center of their combined lengths. As the object glass of the equatorial has a focal length of 18 feet, the total length length of 18 feet, the toral length of the The mounting is built very incher. The wountig is built very large and heavy, and carries also a four-inch Clark telescope and a small finder. The weight of the driving clock can be controlled by electric connection with an excellent Howard clock.
As wy recent photographic investigations of solar prominences and their spectra have shown the necessity of employing specially corrected objectives in a continuance of
the research, it has been decided to supply the tele scope with a photographic object glass of exactly the same aperture and rocal length as the present visual glass. A double tabe will replace the single tube now uned, and the object glass will be so supported that either one may be used on either tube. The spectro scope will thus form a part of the instrument, as before, and the eye end of the se00nd tube will be left free for the attachment of any desired apparatus, euch as an amplifying lens and camera for photographing sun spots on the Janssen wethod. Various improve ments of the spectroscope will be made by Mr. Bra near of of the most important being the construe shear, one of the most for prominence tion of a new device of the writer's for prominence photography. A new observing telescope with an ob jective of about six feet fous corrected for the K region is to be constructed for the spectroscope, and used for further study of the prominence and chromosphere lines recently discovered. Mr. Brashear also has the order for the twelve-inch photographic object glass, for which the whitest possible flint will be secured from the Jena factories, while the crown will be fur nished by Mantois. The writer will spend some time visiting the European observatories in search of new ideas in apparatus and methods of work, which will be embodied in the improved instraments.
The Kenwood Physical Observatory was dedicated to scientific research on June 15, 1891. Addresses were made by Professor C. A. Young, Professor G. W. Hough, of the Dearborn Observatory, Mr. J. the Dearborn Observatory, Mr. J. A. Brashear, President E. D. Eaton,
of Beloit College, and several of Beloit College, and several
others. The observatory has been others. The observatory has been
incorporated under the laws of the incorporated under the laws of the
State of Illinois, and its control is vested in a board of trustees. The plan of work laid out for the future inclades a thorough study of solar phenomena, and particular atten tion will be given to spectroscopic investigations of the spots, chromosphere, and prominences.-Sidereal Messenger.

Artificial Ivory.

Attempts have been made to pro duce a good artificial substitute for ivory. Hitherto none have been successful. A patent has recently been taken out for a process based opon the employment of those ma terials, of which natural ivory is somposed, consisting, as it does, of tribasic phosphate of lime, calcium carbonate, magnesia, alumina, gelatine, and albumen. By this process, quicklime is first treated with sufficient water to convert it into the hydrate, but before it has become completely hydrated, or "slaked," an aqueous solution of phosphoric acid is poured on to it phosphoric acid is poured on to it ; and while stirring the mixture the calcium carbonate, magnesia, and alumina are incorporated in small quantities at a time; and lastly the gelatine and albumen dissolved in water are added. The point to aim at is to obtain a compost sufficiently plastic and as intimately mixed as possible. It is then eet aside to allow the phosphoric acid to com plete its action upon the chalk. The following day the mixture, while still plastic, is pressed into the desired form in moulds, and dried in C. To complete the temperature of about 150 deg . product by this process, it is kept for the artificial weeks, during which time it becomes perfectly hard The following are the proportions for the mixture, The following are the proportions for the mixture which can be colored by the addition of suitable sub stance: Quicklime, 100 parts; water, 300 parts; phos-
phoric acid solution -1.05 sp . gr., 75 parts; calcium phoric acid solution -1.05 sp . gr., 75 parts ; calcium
carbonate, 16 parts; magnesia, 1 to 2 parts; alumina carbonate, 16 parts ; inagnesia, 1 to 2 p
precipitated, 5 parts : gelatine, 15 parts.

New French Rallway.

There has just been inaugurated with great eclat the opening of a new railway from Brive to Gourdon the construction of which has called into force the utmost skill and ingenuity of the engineers engaged on the project, and has entailed an enormous expense It has no fewer than seven viaducts, one of which near Le Boulet, measures 476 meters, and twelve tunnels, several of which are over 1,000 meters long The new line will shorten the journey between Paris and Toulouse by two hours, and when quite ready for traffic will considerably expedite the transport of goods between France and Spain.

APPARATUS AT THE KENWOOD OBSERVATORY.
cement cup, with brush and cover, a stitcher made after the fashion of the well known tracing wheel. and a smooth iron hand roller for setting the seams after cementing
The frst process in the manufacture after the diferont parts reach the bag maker is that of cementing. In order that the cement may not touch the portions of the bag that are not to be covered with binding, a metal form is laid lightly over the bag, leaving the edge free, which is brushed lightly over with the best white rubber compound dissolved in naphthe that can be produced, as non the integrity of the cepent depends a preat deal of the strength and dura bility of the water bottle After the bility been cemented, that is the the varlous parts have heon the binding and the various parts of the bag proper, the bloding and the neck, the double bag piece is opened out at the mouth and slipped over a ourved rod of half round iron, somewhat similar to a section of a wheel tire. The binding is then put over the edges of the bag pieces, holding them together, is rolled down by the roller, and then run over by the tracing wheel, which latter gives it a finish, and also helps to set the two portions of unvulcanized rubber more closely together. The neek piece is then formed separately, and after being cemented at its lower edge is placed around the metal bottle top, the thread of which has received a generous coating of cement. This is sometimes wound in with wire to keep it solid and to keep it from leaking, and sometimes it is not. A piece of binding is run around the neek of the bottle, the flexible rubber handle, which is made of friction cloth covered with rubber, is next cemented to the shoulders of the bag, the tail piece is cemented on, and, if it is a solid piece, is eyeleted. If the bag is a combination syringe and water bottle, an outlet pipe is put at the lower end of it, and the whole dusted over with French tale and laid upon the zinc-covered shelf, ont of the way of the workers.
In finishing up the work of the In finishing up the work of the bag, the next process is to carry it to the in an laid in an inith that is practically filled with a layer of French tale pressed down very smooth. A little of the tale is put inside of the body of the bag to keep it from sticking together, and then the whole is covered about three inches deep with another layer of talc. This forms in reality a mould for the water bottle, the whole design being to hold it in place after it is exposed to the heat, and until vulcanization is complete. A two or three hour beat is commonly given goods of this sort, after which they are taken out, the French tale is carefully blown out from the interior of the bottle, and the goods go to the packing room, where they are gotten ready for shipment.-Rubber World.

To Restore Faded or obliterated
The following suggestions are from Haldane's "Workshop Roceipts:"

1. Wash in warm water to remove
results. After the stock has been stripped from the salt if the paper has been immersed in sea water, and apron upon which it is spread, the next thing is to give then soak in a solution of gallic acid, 3 grains to the it the peculiarly ribbed appearance that many of the ounce of water. goods have. This to be sure is not a necessity as goods have. This, to be sure, is not a necessity, as many water bottles are made up plain. One method of producing this ribing was to press the rubber after bad been cut up into small sheets between metal plates that acted as dies and gave a fine appearance.
Another way is to have a grooving roll so arranged that it may be run against one of the calender rolls, that it may be run against
and thus give this result.
The stock after being thus ribbed is sent to the cutting room, and here the parts for the water bag are shaped. These parts consist of the bag shape proper, the neck, the binding, the rubber handle and the tail piece. The bag proper is cut out by a die, two sheets of the stock being laid together with the ribbed sides out, and the cutting of the die through the two sheets of rubber in a measure catches them together, so that this is really a part of the making up. These large pieces are put in cloth books, and then sent to the tables where the making up takes place. This work is all done by girls. The bag maker's table is, as a rule, covered with zine, has a hanging shelf above it and a shelf below it, also zine covered, for receiving finished work. Each worker at a table is provided with a tin
2. Wash in clean water and soak in solution of ferous sulphate, 10 grains to the ounce.
3. Apply a solution of potassium ferrocyanide with brush, when the writing will appear in blue, if any iron is left of the original ink.
4. Falsified Writing.-Gobert has found that if writing is ever so carefully scratched out, there are still left sufficient traces of the nxide of iron in the ink to become visible in a photographic copy. Light reflected rom paper that has not been written on acts in a different way on the photographic materials from that reflected from places which have been once covered with ink.

Rubber Cement.
To fasten glass letters, figures, etc., on glass (show windows) so that, even when submerged in water for several days, they will not become detached, use an India rubber cement. The best for this purpose consists of one part India rubber, three parts of mastic and fifty parts chloroform. Let stand for several days at a low temperature to dissolve the cement. It must a low temperature to dissolve the cement. It must
A. E. Hunt stated in a lecture before the Boston Society of Arts that the extravagant claims made concerning the production and properties of aluminum had constituted the chief difficulty in its introduction and extended use. The pure metal is soft and weaker than the commercial variety containing 8-4 per cent of Impurity. The tendency of aluminum to become coated with a thin flim of oxide in exposure to air gives it a dull appearance and makes it unsuited for table ware. It loses its tensile strength and much of its rigidity at $400^{\circ}-500^{\circ}$ Fah.. becomes pasty at 1,000 Fah., and melts at $1,800^{\circ}$ Fah. It does not roll or cast well, and its conductivity for heat and electricity is only about half that of copper, its tensile strength is not greater than that of common cast iron and only about one-thifd that of structural steel, while its strength in compression is only about one-sixth that of cast iron.
A bar of aluminum 1 inch square and 4 feet 6 inches between its supports deflects 3 inches with a load of 250 pounds, while a similar bar of cast iron requires double the load to give an equal deflection. The modulus of eiasticity of cast aluninum is about $11,000,000$, being only about one-half that of cast iron and one-third that of steel. Its presence in iron is stated to be deleterious, and it is said not to lower the melting point of steel, statements to the contrary notwithstanding. The theoretical cost of 1 pound of aluminum as made by the Pittsburg Company is 20 cents per pound, the items being, 2 pounds of alumina, 6 cents; 1 ponnd of carbon electrode, 2 cents; chemicals, carbon dust, and pots, 1 cent; 28 electrical horse power for one hour (water power being used), 5 cents; labor and superintendence, 8 cents; general expense, interest, and repairs, 8 cents (this amounts to only 19 cents).
Although the value of aluminum has been much overrated, hoth it and its alloys have many useful qualities. The difficulty of soldering it is alleged to have been overcome by the use of a special flux (nature not stated). Hard or soft solder, zinc or an alloy of zinc and aluminum are the solders used. The diffculty caused by the softness of aluminum is also said to have been overcome by alloying it " with a few per cent of bardening metal," or hammering or drop forging.

The New Artificial Quinine.
Artificial quinine, writes the Paris correspondent of the Lancet, way be considered one of the discoveries of the year. The synthesis of that useful, nay, indispensable substance, quinine, has long been a desideratum, and now, thanks to MM. Grimanx and Arnaud (the former professor of chemistry at the the late illustrious centenarian, Chevreul, at the Maseum d'Histoire Naturelle), the chemical dream has been realized. The method adopted by there gentlemen ie as follows: The base cuprein contained in the shrub Remijia pedunculata growing in Brazil is treated with sodium, then the combination thus obtained with chloride of wethyl. The product is quinine absolutely identical with the substance with which we are familiar. This important discovery should have the effect of bringing down the price of quinine, and of rendering us independent of supplies from the nsual sources. The discovery presents a further interest in that, by the substitution in the foregoing process of componnds of ethyl and other higher alcohols for those of methyl, new bodies analogous to quinine may be manufactured-bodies whose therapentical value may be great.

Black Tea and Green.

Mrs. Scidmore, in her "Jinrikisha Days in Japan," says:
The tea plant, as every one knows, is a hardy evergreen of the camellia family. In the spring the young leaves crop out at the ends of the shoots and branches, and when the whole top of the bush is covered with pale, golden green tipe, generally in May, the first picking takes place. The choicer qualities of tea are never exported, but consumed at home. The average tea brought by the exporters for shipment to the
United States and Canada is of the commonest quality, and, according to Japanese trade statistics, the average value is eleven cents a pound
For green tea, the leaves are dried over hot fires almost immediately after picking. leaving the theine or active principle of the leaf in full strength. For black tea, the leaves are allowed to wilt and ferment in heaps for from five to fourteen days, or antil the leaf turns red and the harmful properties of the theine have been partly destroyed.
Tea which is to be exported in treated to an extra firing, to dry it thoroughly before the voyage, and, at the same time, it is "polished," or costed with indigo, Prussian blue, gypsum and other things, which give it the gray luster that no dried tea leaf ever naturally wore, but that American tea drinkers insist on having Before the tea leaves are put in the pans ior the second
firing, men, whose arms are dyed with indigo to the aring, men, whose arms are dyed with indigo to the
elbows, go down the lines and dust a little oi the
powder into each pan. Then the tossing and stirring
of the leaves follows, and the dye is worked thoroughly into them. . . . This skilled labor is paid for a rates to make the Knighte of Labor groan, the wage list showing how imposible tea culture is for the United States until protectionist tea drinkers are ready to pay ten dollars a pound for the commonest grades. During the four busy months of the tea season the firers are paid the equivalent of eleven and four-tenth cents, United States gold, for a day's work of thirteen hours. Less expert hands, who give the second firing, or polishing, receive nine and six-tenths cents a day. Those who sort and finally pack the tea and who work as rapidly and automatically as machines, get the immense sum of fifteen cents. . . Each year the United States pays over $\$ 7,000,000$ for the nerve-rack ing green tea of Japan.

The Northern Pitch Pine.
Inquiries about this tree often reach us from Europe, especially from France and Germany, where the impression prevails that it is the species which producee the pitch pine of commerce, generally known in thie country as Southern pine or Georgia pine, and now ex ported from the maritime region of the southern At lantic and Gulf States to Earope and South America
in large quantities. The vernacular name is, in part in large quantities. The vernacular name is, in part
at least, responsible for this confusion. It should be at least, responsible for this confusion. It should be
remembered that all our pines on which the leaves apremembered that all our pines on which the leaves ap
pear in twos or in threes in the same cluster, and which pear in twos or in threes in the sawe cinctly marked by broad bands of dark colored cells, are called pitch pines, and that the pitch pine in New England and in New Jersey is an entirely different tree from the pitch pine of Georgia or from the pitch pine in California and that there are more than a dozen different trees in the United States to which this name is applied by the people living in the regions which these trees inhabit. The northern pitch pine is the Pinus rigida o botanists. The wood of this tree was formerly used in building in those parts of the country where it was found before cheap transportation brought the more valuable material of the Southern pine forests to Northern markets. Now it is rarely mannfactured into lumber, and during the last twenty years it is not probable that a single foot of it has been exported from the United States. The two pitch pines of North America, which now possess commercial importance are the pine of the Bouth, Pinus palustris, and the Western or Oregon pine, Pinus ponderosa; and it is from the forests of the former that the pitch pine 80 largely used in the North is derived, and that furnish all the American hard pine sold in Europe.
The Northern pitch pine is a valnable and interesting tree in spite of the fact that the lumber it yields is not of the best quality. It grows natarally on poor and sterile land, usually on sandy barrens, and less irequently in sour, swampy soil. Its presence is a good sapply other trees with sufficient plant food to comsupply other trees with sumcient plant lood to com-
pete successfully with this tree. Once in possession of a sandy plain on our Northern seaboard, no other tree can wrest this advantage from the pitch pine, and its hold upon existence is strengthened by the peculiar power it possesses of reproducing itself from seed Seedlings spring up in great quantities in the neigh-
borhood of seed-bearing trees, and grow rapidly in what would appear to be most unfavorable situations and it can be raised from seed sown in the oped ground wore easily and with greater certainty than any other tree which is hardy in the Northern States. In this capacity of the seed to germinate readily will be found the greatest value of this tree, which seems destined, sooner or later. to be used in covering the great tract of noproductive land which occur in the neighborhood of our Northern seaboard. Its value and adaptability for this purpose has already been proved. Thousand with forests of this tree, raised from seed at a mere nominal cost, and nothing but the dread of fire pre vents the extension of these forests over still larger areas. What appears to be barren soil, such as occurs on some parts of Cape Cod, in Massachusetts, and in
southern New Jersey, will, in forty or fifty years, produce a forest of pitch pine of considerable wifty years, pro duce a forest of pitch pine of considerable money value
for the fuel which it contains. No other method has yet been found by which such waste lands can be made o yield any return whatever, and any comprehensive ystem of agriculture must look to covering, sooner or ter, these lands with trees.
The pitch pine planted on barren soil will not grow to a large size or produce anything more valuable than firewood. It will, however, in a comparatively short the acre ; and the fuel value of this wood is unsur passed by that of any other inhabitant of our Northern forests, and for many purposes, such as brickmaking and for charcoal, it is extremely valuable. When individual specimens have happened to grow in good soil they have sent up tall, stout stems two or three feet in diameter. These trunks were eagerly sought for in the early settlement of the country, and were
quality and remarkable durability. In 80 me parts of New Jersey houses timbered and floored with this wood a hundred years ago are still standing, and are in a perfect state of preservation. Such trees have now almost entireiy disappeared, however, and there will probably never be a question of planting the pitch pine for timber, for where the soil is good enough to profor timber, for where the soil is good enough to pro-
duce large indvividuals, with straight, clean trunks, it will support a forest of more valuable species.
As an ornamental tree, Pinus itigida, although it is ot suited to decorate a trim lawn, can be used some times to advantage when it is desired to produce bold, picturesque effects, or to clothe a barren knoll with verdure. It grows rapidly; the truuk, covered with dark, deeply farrowed bark, broken into large, square plates, is always a bandsome object, and the color of the coarse, pale green foliage makes a good contrast with the other trees of our woods and plantations.Garden and Forest.

Spontancous Ignition of Coal.
In the chemical section, British Association, was a paper read by Professor Vivian B. Lewes on the "Spontaneous Ignition of Coai," the true explanation of which he held to be partly physical and partly hemical, but not dependent upon the percentage of pyrites. Freshly won coal had, he said, the power of beorblng from a fraction over one to three times it volume of oxygen from the air, and the oxygen being endered chemically highly active, partly by compres ion and partly by the elimination of nitrogen, it at tacked some of the bituminous hydrocarbons in the coal, converting them into carbon dioxide and water vapor. With regard to the bunker tires which are now becoming perilously frequent on sowe of he fast liners, Professor Lewes attributed them entirely to rise of emperature, from the bunker bulkheads being too lose to the hot air upcast shafts from the boilers and arnaces. In the course of a discussion which foilowed pretty general agreement was expressed with the views of the reader of the paper. In reply to a question by Sir Frederick Bramwell, Professor Lewes pointed out that in case of coal bunkers in ships the coessary safety could be obtained by having a thin ater jacket between the smoke shaft and the bunkers. The remaining papers were of interest only to experts, ad the same may be said of all the numerous com munications submitted to the mathematical and phy ical science group. Such subjects as the surface ten ion of ether and the measurement of Hertzian oscilla ions could allure only the initiated.

Arsente Poisoning from Coal.
A source of contamination with arsenic recently pointed ont is from coal. When coal is burnt it it oasted out and it is the only product of the coal which is at first volatile and afterward non-volatile. A part of the smoke that goes into the air is arsenious acic wixed with carbon, and a large part of it lodges in the chimneys. Now take a city like London, or any of the great English cities where coal is burnt very freely, here the quantity of arsenious acid that is given into he air must be very considerable, and it would be in eresting to make comparative tests of the arine o persons in a city like Boston and in a city like London. The English coal is very bad coal in this respect every ton of coal burns off about twenty to forty ounds of sulphur. That sulphor is transformed into ixty pounds of sulphuric acid, which has left its stain on every marble building in London. I speak of the ulphur becanse the sulphur is largely accompanied by arsenic.-Professor Crafts in Boston Medical and surgical Journal.

The Green Ray.
Mr. C. Mostyn, in a letter to Nature on the well known appearance of the green ray at sunrise or sun et, caused by the refraction of air, states: "This green ray' is soen to best advantage at sunrise, owing I imagine to the eye not being wearied with watching the previous glare, as is apt to. be the case at sunset. at the same time, I had many very satisfactory obser ations at sunset, one in particular, when we were run aing before a very heavy sea in the Southern ocean, and the 'green ray' was seen no less than three times n as many seconds, as the ship rose and fell on the huge waves, causing as it were two sunsets, with a sunrise between them. The best displays took place when the refraction near the horizon was of such a character that the sun assumed a balloon, or vase, shape as he came close to the sea line. When, on the contrary he sun appeared flattened out in its horizontal diahe sun appeared fattened out in the horizontal a was seen only in an indistinct and uncertain manner."

Dissolve the nigrosine by trituration in the hot water and then add the other ingredients and strain through piece of silk. If too thick when cold, dilute to the a piece of silk. If too thick wh.

NEW TOBOGGAN SLIDE FOR BATHERS.

This new toboggan shute for bathers is 22 ft . in height from the bottom to top of platform and 12 ft . 6 in . in width at the bottom, tapering up to the top of the platforia to 6 ft . The framework is made of hemlock timber. On one side are steps built for bathers lo ascend to the platform. They are 32 in number o ascend to the plaflo 1 On thejother side is the shute. The shute is connected to the platiorm at the top, and runs down and out in-
to the water for about 10 ft . The toboggan slide is to the water for about 10 ft . The toboggan slide is
carried up by the bather and placed in the shute, the carried up by the bather and placed in the shute, the
bather sitting on the bottom of slide, on which are bather sitting on the bottom of slide, on which are
handles running full length of slide' on each side, for handles running full length of slide' on each side, for
the bather te grasp hold of. Theslides are about 7 ft . in length, 2 ft . in width, of $1 / 4 \mathrm{in}$. stuff, and are made of Kentucky hickory. They weigh about 18 to 20 pounds. The shute is 28 inches in width; the sides and strips at its bottom are made of linden wood. The sides are 8 in . in height and $11 / \mathrm{in}$. thickness. The ive strips at bottom of shute are 8 in . Width and 1 in . thickness and are placed about 2 in apart, so that a loose roller can revolve between them easily. Iron rods about $1 / 2 \mathrm{in}$. in diameter are run through the center of each strip and each roller and side pieces. The rollers are made of rock maple boiled in oil. They are inches in diameter and 1 in . in thickness. The strips and side pieces are braced underneath by heavy ash strips running across in a zigzag manner. The shute is made in seven 6 ft . sections. Euch section has eight rolls placed a short distance apart. On each are 4 rollers, making 82 rollers to a section, the slide passing over the rollers on its way down to the water. The greatest angle in the shate, which is about 45 deg ., is about 25 ft . from the starting point. When the slide strikes this point it goes down like a shot and out into the water, if it is not too rongh, to a dis tance of about 200 ft . The time tance of about 200 ft . The time con sumed in the passage of the bather rom the top of the shate to the bottom is about $11 / 2$ reconds. The frame
work rests on 16 in . wooden wheels, work rests on 16 in . wooden wheels,
and is jacked back and forth as the and is jacked back and forth as the tide rises and falls. This shute was built by H. A. Shearer \& Co., Rochester, N. Y., at a cost of $\$ 600$.

The Two New Warship

Work has begun on the big warship known as Cruiser No. 6, at the Union Iron Works, San Francisco. She will be the largest vessel ever built on the Pacific coast, having a length of 340 feet, 53 feet beam, and will draw about beam, and will draw about ea, on a displacement of 5,500 tons. The contract calls for a speed of 20 knots or about 24 miles an hour or four consecutive hours, with engines 13,500 horse power. Her coal-carrying capacity will be 1,300 tons, and at a speed of 10 knots she will be able to steam 13,000 miles.
The new cruiser will be fitted with a steel protective deck, twin screws, and will be schooner rigged. In her main battery she will mount four 8 -inch breech-loading rifles in two barbettes, one forward and one aft, and ten 5 -inch rapid-fire gans. The secondary battery will consist of fourteen 7-pound and six 1-pound rapid-fire guns and four Gatling guns. She will also be fitted with six torpedo tubes.
It is $h \supset p e d$ by the builders that the cruiser will be ready to launch within eight months at the outside. The engines and boilers for the cruiser are in the shops, and are well advanced toward completion. They will be all set up and ready to be put in place before the vessel is launched.
Men are now at work laying the blocks on the new slip for the battleship Oregon, the keel of which soon will be laid.

Young People whould have Plenty of Sleep.

A German specialist, Dr. Cold, has recently pleaded or giving young people more sleep. A healthy infant sleeps inost of the time during the first weeks; and, in the early years, people are disposed to let children sloep as much as they will. But from six or seven, when school begins, there is a complete change. At the age of ten or eleven, the child sleeps only eight or nine hoars, when he needs at least ten or eleven, and as he grows oldar the time of rest is shortened. Dr. Cold believes that, up to twenty, a youth needs nine hours' sleep and an adult should have eight or nine. With insufficient sleep, the nervous system, and brain especially, not resting enough, and ceasing to work norwally, we find exbaustion, excitability, and intellectual disorders gradually taking the place of love of work, general well-being, and the spirit of initiative.

Trade sohool of the Pratt Inatitute, Brooklyn, N. \mathbf{Y}.

Applicants must be between sixteen and twenty-five years of age. All tools and materials are farniehed withont extra charge. Day and evening classes.
Carpentry.-Practice is first given in the use of saws, planes, chisels, and laying-out tools, and is followed by a thorough course in joint work. After this pracsice, and when some mastery of the tools has been gained, a model of a frame house is made, and the different methods of framing illustrated. Afterward, partitions are set and bridged and floors laid. Door and window frames are made and placed in the partitions, which are sheathed, clapboarded, shingled and corniced. Lastly, inside trimming is taken up doors, sashes, and shutters are maje and hang; wains coting, baseboards, and stairs built, etc. Constan practice is given in the use of working drawings, and in laying out work from plans.
Blacksmithing.-The instruction includes care and management of fire, operations in drawing, upsetting. forming, and welding iron, and making and tempering steel tools. The exercises mainly represent useful pieces of work, and several complete designs in ornamental work finish the course.

Machine Shop (twoo years' course).-Bevel, surface, nd keyway chipping are first practiced; after which the class is put upon straight surface filing until ability to fle straight and true is obtained. This is followed by straight, tongue, round, and dovetail fitting, free hand filing, filing to templet, making culipers, square

Plumbing.-The plumbing shop is equipped for about fifty pupils, each member having a gas furnace or melting solder, and a drawer holding a set of tools. nstraction is both practical and theoretical, lectures being given from 8:30 to $9: 30$ o'clock every Wednesday vening.
The manual work includes the use of tools; preparng wiping cloths; making soil ; tinning soldering iron. brass, iron, lead, and tin ; making solder; soldering eams: making cup-joint; over-cast joint, straight viped-joint, flange joint, and branch joint; working heet lead into bends, traps, service boxes, and safes; ining tanks, calking iron pipe joints, and bending with sand and kinking irons.
The lectures deal with the proper arrangement of drain, soil, and waste pipes, trapping and ventilating the same, supply pipes, boilers, tanks, fixtures, pumps, and also explain mistakes in plambing.
House and Fresco Painting.-The Master Painters' Association, of Brooklyn, co-operates in the direction of the painting classes, and at the end of the term examinations are held and certificates granted, with their approval.
The equipment for the house painting class consists of screens containing duors, windows, and wainscoting; and, for the fresco workers, of booths, plastered on ides and ceiling, with varied forms of cove and cornice.
House Painting.-The house painting course includes both elementary and advanced classes; the former having practice in the preparation of surfaces, mixing paints, and plain painting on wood, brick, and plaster surfaces; and the latter in varnishing and hard wood polishing, polish white, gilding, lingg, graining, and paper hanging.
Lectures are given on the harmony of colors, mixing of colors, proportion of oils and driers, and the various terials used in painting. Sign Painting.-A special class in sign painting will be organized next year. The instruction will include preparation of surfaces, spacing, and plain lettering, followed by ornamental lettering in gold and colors, and painting on glass and metal.
Fresvo Painting. - Instruction is given preparing walls and ceilings for calcimine, in lining, laying out work, making and applying pounce and stencil, and in putting on flat and shaded ornaments.
Advanced Fresco Paint. ing.-Applicants are admitted only on approval of some nuember of the Master Painters' Association, or after giving satisfactory proof of proficiency in plain fresco painting.
Instruction is given by alternate practice in drawing and coloring designs in the Art Department, and in applying the same in fresco to the plastered wall.
Further information may be obtained upon application to F. B. Pratt, secretary, at the office of the institate, Ryerson Street, between De Kalb and Willoughby Avenues, Brooklyn, N. Y.

Free Libraries in Paria.

In a report addressed to the Prefect of the Seine with regard to the municipal and other free libraries in Paris and the suburbs, it is stated that they now number 64, and that they are attached to the different town halls and cominunal schools. The number of books given out to read last year was $1,886,642$, and of these 690,105 were novels. The artisans, who use these libraries the most, and who prefer reading at their own homes, appear to be very scrupulous about returning the books given out, as the annual loss does turning the books given out, as the annual loss does not amount to one-half per cent, and when the books are not returned this is due to carelessness rather than
fraud. The great preference shown for works of fiction fraud. The great preference shown for works of fiction
induced the administration to instruct the librarians induced the administration to instruct the librarians to bring their influence to bear on the frequenters of nstructive books, but the only result of this was to effect an immediate decrease in the number of readers. The attempt was, therefore, given up, the adininistration preferring that the public should read novels rather thin not read at all.

To ascertain the amount of lime in Paris white or whiting, dissolve in dilute hydrochloric acid and precipitate the lime from ammoniacal solution (filtering first if necessary) with solution of ammonium oxalate.

RECENTLY PATENTED INVENTIONS. Engincering.
Steam Cylinder. - Charles F. Hin richs and Joel C. Barker, Poplar Bluff. Mo. The yube or casing, with longitudinal and end nauges, with groove or recess, and a liniug or shell atung in the caniag. Where it may be be readily removed when worn out and another subetituted in its place, without neces eitating the reboring of the cyllinder. It is destgued in practice to furnish one new lining and an extra set of piston ringe with each cylinder, so that a worn or
damaged cylinder may be quickly repaired.

Packing Extractor.-Addison GoodNin, Aloria, Orezon. This is a device ror quickly and easily taking out the worn-out packings from stufting It consists of a semovew-threaded bushing made it in tlons and adapted to be placed in the stuffig box, one section having tongues and the other baving groove while there io an annular packing groove in its head and an annular inwarily projecting fange at ite bo tom for eapporting the packing.

Rallway Appliancea,

Switch Device for Cars. - James M. Pickell, Lake City, Fla. This is an attachment capable of ready application to the dash board of a street car, where it may be operated by elthor the hand or foot of the dirver, or the operator of a cabie or eler tric car. to move the frog of a switch without having to
stop the car. A spring-actuated rod having a horizon tal curved shoe at its lower end is held to slide in casing, the rod terminating at its upper end in a crank with means for gniding the rod vertically and laterally, whereby the shoe may be tarned as desired, whlle will when released return to tto normal position, the
occillations of the car not interfering with its efficiency.

Mechanical Appliances.

Gin Saw Guard.-Wiley S. Killinge worih. Laurens, s. C. Separate gmoved guard angers are mounted ripidily upon the crose bar of the frame work below the saws, and extend ap around thei
lower portlon, covering the periphery of the saws be lower portion, covering the periphery of the saws be
tween the gin ribe and the brueh at the lower side of the saws to protect the band and arm of the operato from being accidentally cat by the saws. The Angers
are cheaply made of cast iron, and are applicable to are cheaply made of cast iron, and are applicable to
Horseshoe Blanks. - John F. Rob Ineon, Rockaway, N. J. This iavection provides a machine for the forming of these blanks in series from a hot bar of iron or steel. It is a machine having two
revoluble rolls on a housiug trame, each roll having series of horseshoe mould haif sections on it, and adapted to mate in palis, the bottom half nection of each monld having sockets to form toe and heel calk od the blanks, with knife dies to sever the blanke. A the rolls are rotated toward each other the metal it
forced into the monlds and crowded into the cavitles, produclog the calks, creases, and nail hole marke on each blank, which is cut off as it is formed.
Spoke Tenons. - Jefferson M. Sher man. Brushton, N. Y. This invention covers an imman. Brushion, Nachines for tarning tenons on wheel
provement in mater
apokes, eapecially the spokes of carriage wheels. It consiats of two aligning pairs of jaws connected by apring bars, one pair of jaws being adapted to hold a apoke and the opposite pair being hinged together and
provided with a locking device, while aliso carrying a revoluble catter head and suitable feed merbanism The machine is of simple construction and easily
onerated and is destgned to turn the tenons rapidly and nccurately
Split Spindles.-Charles E. Soder berg. Worcester, Mass. Heretofore these spindies for
weaving ahutles have been made by welding two weaving ahutles have been made by welding iwo
atripe of steel, the body and point previous to welding being rolled half round on each plece, the splndle
being liable to overheating, cansing waste, and the weld when not exact caueling spliting of the spindle throughout. The invention provides an improved
method of making the apindle from a single piece of stock, by frst panching or otherwise forming a slot the spindle blank, and then rolling or hammering th
blank by suitable machinery to form the spindie body

Miscellaneous.

Scalping and Bolting Flour. Jobn Metherell, Murfreesborough, Tend. Thin inven-
tion provides an improved apparatus for scalping, rescniping, and bolting the dour from wheat or othe grain after granulating, to render pare foar and perfec machine has a plurality of bolting reels arranged one ently, whereby the reels may be moved at differe ently, whereby the reels may be moved at different
speeds and in opposite directions, the mechanism for
revolving adjacent reels in ofposite directions being so arranged that the stock may be bolted from one ree upon a clear portion of the next ooter reel, with other
novel features. The machine is designed to effectively accomplish a classification of grades in succ
keep its grades pure from beginuing to finish
, Gun Carriagr Brake. -- Adolf T. Resow, Essen, Germany. This is a self acting brak
for traveling gun carriages, the invention covering mechanism whereby the brake blocks are bronght anto
matically into and out of contact with the wheel tire
of field of field and other guns, the movements of the carriag
wheels being thereby controlied. A three-srmed leve connected with the brake block and another ari
adapted to engage the hub of the wheel, while a lev mechaniem tits the third arm for adjusting a sliding the gon is again to be brought into position.

Amaleamator. - Thomas Shannon Whitewood, Soath Dakota. This is an improved sel has a false bottom, with croes elats forming apacee for the quickellver and amalgam. The botiom is removable, when it is desired to withdraw the amal. place by retaining bers phecione mineral, being held in secared by screwe turned through the amalgamanting vescel from the ootside. The agitator or stirrer is soparted to turn in the amalgamating ressel, and has
arms above the mercury line to disintegrate the pulp Hing through the mercury to separate its particles and insare the deposit of practically all the gold and $=$
Two Wherled Vehicle. - John F. Sarrows Saginaw. Mich. This to a vehlele apecially designed for carrying orgnan, apright planos, sewing machines, farniture, etc., to permit of easily loading and unlonding the articles, whlch are made to ride very a frame with apright bars connected with the vehicle ody, horizontal arms extending from the lower ende of the bars and connected by a board on which is held an adjustable cushioned arm to lock the article in piace. By connoctiog the axle rigidly with the epprings add the latter with the shafte, the jogging motion nenal
to ordinary road carta is overcome and the vehicle runs

,

Lamp. - Charles H. Van Hise, New York Cits. Thle invention relates to oll-barning lamps for lighting streets, the lamp containing means for devices being also readily applied to portable lampe for ane in the honse. A sleeve and thimble envelop the wick tabe, while a defector plate and tabeor from each other by a mechanism provided, there being a bollow float in the oil chamber carrying a standard with a thamb piece and neries of pins spaced or represent intervals of time. A rocking tripping bar, is one end nf which 2 gravity block is lovesily secured raled bing whe extio
Ice Pick, Shaver and Scoop. rederick K. Kaiser. Wilmington, Del. In this compick point, bebind which is held sccop is mads win with a cntting edre, there belng a gauge plate at the pick blade next tis point to control the depth of cut of the forward end of the scoop, which has a detachable
over with catch or latch devices. The implement mas anver with catch or latch devices. The implement may
also be nsed for loosening and handling any caked aiso be ased for loose
Stove Drum and Damper.-Thomas Power, Portland, North Dakota. This drum is in the ength of one jolnt of stove, pipe being placed In posilion on the stove by taking off the lower joint of pipe that bears against the stove collar and replacing it with the rum. In connection with the dram a tabalar damper provided, of the stove pipe section, by means of tion to the dram for warming and coning atiliza articles of druas for warning and cooking variou of the stove, while the dranght will be all the time inder complete contro
Scratch or Matting Brush. stephen D. Engle, Hazleton, Pa. This is a revolving brush wheel for jew
glase
ther or apan α part around and eecured within its hab. The ends of he tafta repeatedly strike the metal they are used on, harp cutting ends on the glass dbers inetead of blunt ing, while they will not corrode or become bent out of shape, to canse them to draf on the work and make
scratches instead of pits. These brushes are designer scratches instead of pits. These brashos are designed to wear longer and act on harder earfacea
Skid for Piling Barrels, etc. James C. Boyle, Omahs, Neb. This invention provides sectionally constructer plank or series of skids, being acilitate the plling up of tierces, barrels, and other ike packages in any number of tiers. The akids ans eact made of an upper board and a leg piece shaped io at down in between each two aajacent barrele in the same tier, the leg plece tapering on tis eldes to bag cosely the barrels and keep the top board at its proper
height and level. In une a number of these ekide Arst arranged on the lower tier, and as the barrels are rolled to place, the ekide are successively re-
moved to be replaced on the barrels above for another

Cigar Filler Machine. - Thomas Hancock and Lee B. Hancock, Richmond, Vo. By this ardine the tohecco is presesed into snitrably shaped of the cigar and ready for the binder. On a suitable aid on the supporting feed table; over a portion of the pocket projects a
former or bunching housing of glass, or of metal with sight openings, there being at the discharge end a cnt
ter operated by a gravity dog or pawl engaged by
radial projections on the revolving table. The table ter operated by a gravity dog or pawl engaged by
radial projections on the revolving table. The table it
fed around in short intermittent movemente, and the machine may also be used for making cigarettes.
heroots, etc. Cigar or Pipe Holder. - James kuce, Trnesdell, Wis. This device has two tabe sectube, forming a central drop tube between its month
end and the outer end, the drop tube being so constructed as to arrest and condense the nicotine and
other volatile matters, while the holder has a sufficiently long smoke passage to insure the cooling of the
smoke before it reaches the month of the smoker. The
parts may be readily taken apart for cleannng and easily parts may be readily taken apart for cleaning and easily
put together. The onter end of the device is adapted pot together. The outer end or the devico is

BUNKER COVER FASTENER.-John S Farlow, Philadelphia, Pa, Combined with a cover
plate, in a nut mounted centrally in which a post is held wo aove perpendicularly. levers having thelr outer ends arranged to extend beyond the edge of the cover plate while their inner ends are loosely secured to the post. The fastening
may be nead to eecure any cover or hatch in place, bat may be ased to secare any cover or hatch in place, bu scapper hatches of sea-going veseels, so that they shall be water-tight, notwithatanding the wave concuseion and shifting of coal in the banker.
Cover.-Hasbrouck Alliger, Rondout N. Y. This is a removable cover for condensed mill laterally to amblers, ecc., and is adapled to be moved consists of a semicircalar clip or band of spring mete adapted to be conveniently clapped aboot the giass of tending eye on which the lid is pivotally connected to the band by a pin, there being a washer Interposed be tween the eye of the clip and the lid, while the lid hae knob extension opposite its pivotal point for con venience in moving it to either side. W . Murphy \&
Incubator. - George Co., Quincy. II., are the patentees of an incubatn The invention provides a novel constraction desigued to facilitate the automatic regulation of the tempera ture of the incnbator by means of a balance ther mometer and other pecaliar features, and whereby chamber is obtained. The body of the incubator is
cher made impervions to moisture and cold, and the tray surface of the eqge, the position of the latter being changed expeditionely and conveniently, withou liability to breakage. The pans for the interior of the hatching cham ber are designed to absorb any sarplus of ments to the trays.
Norr.-COples of any of the above patents will b
parnished by Mann \& Co., for 25 cents each. Pleaes send name of the patentee, title of invention, and dato of this paper.

SCIENTIFIC AMERICAN
BUILDING EDITION.

TABLE OF CONTENTS
. Hendsome plate in colors of a dwelling at Arling Lon, N. J. Perspect
2. Colored plate of a cottage in the Colonial style re and tasty plece of raral architecture. Floor plans and perspective elerailon. Coet $\$, 600$ cormplete.
8. Plan of the magniacont North Porch, Chartree
8. Plan of the
Cathedral.

A $\$ 1,0 n 0$ cottage at Chicago. Two foor plans and
photographic view. A very comfortable residence.
6. Climbing roses over a doorway, illustrated
6. View of Napoleon the Firat's bedstem.

A dwelling at Arlington, N. J. Cost $\$ 4,800$ comploor plans.
8. Cotiage at Stamford, Conn. Cost $\$ 4,000$. Floo plaps and. perepective elevation.
9. Cottage at Monroe Avenue, Hyde Park, chicago Two ator plans and photographic view. Co
$\$ 2,800$.
10. Monnt Vernon M. E. Church at Monnt Vernon, N. Y. Coot $\$ 38.000$ complete. Messrs. L. B. Valk ground plan.
Castle Nenechwanstein in Bavaria. Views of the
King's parlor in the palace and of the ining room in the gate house.
2. View of the new court house for Los Angeles, Cal. now being erected at a cost of $\$ 750,000$. Archiects Moesrs. Carlett, Eisen \& Culbertson, of Lo Angeles.
13. A dwelling at Bensonhurst-by-the-Sea, Long Ieland
N. Y. Coot 86,350 complete. Plaus and per N. Y. Cost 86,850
spective elevation.

The very attractive residence of Samuel Clark,
Eso., at Newark, N. J. Cost $\varepsilon 9,500$ complete Kag., at Newark. N. J. Cost $\$ 0,500$ complete.
Floor plans and perspective elevation.
15. A pretty cottage for $\$ 1,000$ erected at Chicago. Two hloor plane and perrepective view.
16. Miecellaneons contents: Schimper's artiacial fuel.--The exclusion of rats and mice from dwelliggs. A thoronghly fireproof roof, illustrated.- Steam
pipe required for heating, - Fine hard wood stair-
case and hall work, illustrated.-A new sash palley, illustrated.-A new hand tool for sheet
iron workers, illustrated.-Venetian blinds.-- a ast India roofs.- Granite in architecture.-The "Iron-
clad " range boiler, illustrated. -A help for the infirm, illustrated.
The Scientific American Architects and Builder
Edition is issued monthly. 82.50 a year. Single copies Edition is issued monthy. 82.50 a year. Single copies,
25 cents. Forty large quarto pages. equal to about
two hundred ordinary book pages ; forming, practically, a large and splendid MAAAZINE or Archirec-
rure, richly adorned with elegant plates in colors and with fine engravings, illnstrating the most interesting examples of
The Fullness, Richness, Cheapness, and Convenience
of this work have won for it the Laraest Circulation of any architectural publication in the world. Sold by
all newsdealers.
MUNN \& CO.. PUBLlererrs,
Broadway, New York

2 Business and Personal.
The charge for Insertlon under this head is One Dollar a une
for each insertion; about eloht words to a iline. Advertsements must be rececived at pubticatiom office as carily a

For Sale-New and second hand lathes, planera, drille, ing. List eent free W. P. Davis, Rochiester, and shaft ing. Lu Tr, Newart, N. Preese The Improved Hydranlic Jacks, Punches, and Tube Billings' Drop Forred Lathe Doass, 12 sizee-
nchee. Billings \& Spencer Co., Hariford, Conn. "How to Keep Bollers Clean." Bend your addresa for
tree 86 p. book. Jas. C. Hotchkise, 112 Liberty St. N. \mathbf{Y}. Scrow machines, milling machines, and drill presees:
The Garrin Mach. Co., Laikht and Canal Sta., New York: Rubber Belt ing, all sizes, $77 X$ per cent from reaular list.
in kinds of rubber koods at low prices. John W. Buck, 158 80ath street, Nell Yort.
Guild \& Garrison, Brookilyn, N. Y., manufacture steam umpe, vacuam pumps, vacuum ap.
cold Dlowera, alter press pampe, etc.
Split Pulleys at Low prices, and of name atrength and
appearance as Whole Pulleya. Yocom \& Son's Shafung

Worka, Drinker Sh., Philadelphia, Ph.

The best book for electricians and beslinners in elo
 To Leaso-Or owners would capitalise in a stock com
pany, factory in New England, adapted to manufactir matine machinery. Plant covers over 100 arst clases m Ines. Factory, two stories; surtace areas each fioor
welve thousand square feet. Address Factory, care

For Sale-Two hydraulic presses and pumpe, one 280 Ons capactty, the other 1,000 tons. Esstimated weight of the first 40 tons and of the second $\pi 7$ tons. Have bad but
trining usage. Full deecription and low prices upon ap

cF-Send for new end complete catalogue of Sclentinc nd other Books for sale by Munn \& Co., 881 Broedway

HINTS TO CORRESPONDENTS.
Names and Addrose must accompany all letters
or no antention will be pald thereto. This is for ou
ont

 though we endeavor to reply to al either by lette
or in this department. each mant take his torn.

 price.
minere eent for examination shonld be distinctly
marked or labeled.
(3341) W. S. aske (1) for an Aristo ton Ing bath that the paper will not curl in. A. Try soak
ing in a mixture of alcohol and glycerine before devel nping. 2. A recipe for a good cheap chewing gam. A Mix paramin with a very little olive oil and glycerine by
melitig. Vary proportions to eoit climate. 3. A meltivg. Vary proportions to enit climate. 3. A
recipe for making extract of lemon. A. Partially dry recipe for making extract of lemon. A. Partialiy dry
ounces outside rind of lemone, poond in a mortar, ageitate with 2 quarts deodorized alcohol antll color is ex tracted, add 6 ounces recent oll of lemon, agitatiog
and altering after standing eomedays. 4. A receipt fo extract of ginger? A. Pack 4 ounces ginger in a percolator, moisten with alcoool, percolate ontil $11 / /$ pintu have passed, add 8 ounces girap. S. A recipe for dis-
solving gold for photo parpoees ? A. Diesalive in hy drochloric acid to which nitric acid is added from time to time. After solution evaporate nearly to drynes and dissolve in water. 6. A recipe for making ehocolat sirap that will keep for a long time. A. Mix 8 ouncee chocoiate with 2 pinis water, stir, and warm
(3342) W. H. K. writes : There is a num ber of tables in different works whlch claim to give the very moch in statement. Can you inform me by wha veans this is ascertalined? Is there a epecial instrument made for the purpose ? $1 f$ so what is its name an where procured A. Pyrometers of various construc
tion bave been applied to determining melting point of metals. The high degree determinations are not to
be considered perfectly accurate. The instruments ca be obtained from dealers in scientific appar
determinations require a high degree of skill.
(3343) F. L. asks : 1. How can I produce a viscous or mucons fermentation of engar ? A.
Procure the proper caltare germ from a sample already
in the mucons fermentation. Inoculate the sagar solution therewith. 2. Would the same process work with
starch? A. This must be tried. It possibly may work
(3344) D. H. asks : Is there any known rocess by which eggs can be preserved and packed at any season of the year? A. Eggs are now indefin-
itely preserved in a fresh state in cold storage room 40° Fah. Egg packing liquid is made as follows : Lim
1 bushel (slaked with water), common salt 2 or 3 pounds
arong enough to float an egg. Used to preserve egge, which it is aald it will do for two yeare, by almply
(3345) A. W. writes : I want to make a frame with a strong cloth fastened aroand it, abont
feet by 4 feet, so I can uee it to sketch on with chalk feet by 4 reet, so i can use it to sketch on with chaik,
colored or black, and afterward wash it off clean with a sponge. Glass ground is liable to break, and a board have been using common cheap muslin, and getting it waehed after. and using it over again. Cannot cloth (muslin) be prepared in some way as to be ueed for he above parpoee like a blackboard, but white ? A You can prepare cloth like a blackboard by severa conts of paint, rubbing down between tumes with
ground pumice. As a fnal coat nee white lead mixed with enough groand pumice to give a "tooth" to the cloth. Or yon may use shellac varnish mired with Chinese white and gronnd pomice as the Anal coat.
(3946) J. E. E.-Gutta percha is made to adhere and act as cement by means of heat. One of
the most convenient ways of ueling it is to place a thio sheet of the percha between the sarfaces to be joined and then apply heat by means of a hot pressing iron appliga and melts the percha. This is the mode used by tallors in cementing leather and cloth to cloth: Thin heet percha is on the market for this parpose. An other method is to diseolve the gatta percha in bisalphide of carbon. Apply the solution to the surfaces to be joined. Let dry. Then place the coatod sarface cogether and apply heat as before described anull the together.
(8347) L. H. W. asks : What can I get o wash over stone that is perishing, crombling away lind of cement can I get that will fasten on corners and allivers knocked off, so that they will stay and not attrac
 cess for the obeliok and diccusion on preserval pro tone, brick, ecc.

Cement for sandstone:

Dry clean ine sand......... 20 parts. Litharge................... Pulverizod ilme
 Pulverisod lim

Mix with bolled linseed oil to a thick paste.
Master of Paris colored with any dry palnts to a sulta ble color then quickly wet to a paste and applied mak
(3948) I. A. L. says: I see in the SCI Nrinc Aksaican, No. a, Augast à, thal oak tumber
 hg and eemouning difterent things ? Pleaes explein alr-dried, te not free weight by thoronghly drying by heat,
(3349) J. S. L. says: I am running a iight locomotive. Can I divide the lead of the valve he lead openings mary slowiy in this manuer: Have divider and mark the center of the distance betwoen he two marks? Would the value be made to cut of the case may require, so that the valve will travel as far beyond the center mark one way as the other: A. Your method of inding an error in length of connecting rod
(3350) J. O. says: Will you let me know whether you can drive a plpe two inches in diameter for a weil iwents fool deep with a slodge, and ir you surike a stone, will you please let me h.low what to do A. Yes, you can drive $\$ 0$ feet with a slodge with riven with a wooden maul or drop; hickory or locnsa best. If stopped by a stone, poil np and start a littlo way off. A steel cap is good to strike on. See sormatipic Amprioax Suppliment, No. 10\%, on methode of
(8351) G. J. L. asks: 1. How can I re ove the size from one corner of a piece of paper with
 pply a piece of blotting paper to absorb it. Repea the operation if neccesary. 2. I have ballt an electric motor according to Supplement. Noo. 161 and 590, bat t does not work, and I am golng to baild a new arma lare. What size wire shonld I wind the armature with ,inake a movor to rpn 2 sewing machiue? A. The arrent from foar celle of a large plonging battery.
(3852) J. G. asks : 1. What should the power) be for running the 8 light engive (nearily hors descent lampe : Will No. 16 or 18 galvanized fro answer for this boller? Should the dynamo be con ectod up in shant or series ! A. Yoar boller should have 20 square feet of heuting surfice. For small boiler conatruction for amateurs dee Sorismitioto Ameri an SUPPLEMERTT, No. 70 , with illastrations and di mensilers. Not lese than three-sixteenthe fron should be used for a 14 horse power boiler shall. Connect the dynamos in series, an shown in Solemitifio Ancibioni SUPPLEMERT, No. 600.
(8353) E. K. H. asks how to mend neerschanam, or how it can be glued. A. Caseine cecheese in water until it is ropy. Diseolve it in water glase or solution of sillcate of sodinm, strir into it cal cined magnesia and use at once. Use equal welghts of cheese will mir with 1 t .
(3854) W. S. writes: I have been cop per plating the ends of carbon plates for bichromate water, but after a short time sulphate of copper ba crmed on them and broken the soldered connections. What to the cause and prevention of this ? A. To pre
ent the battery colntion from acting apon the copper In deposited on the carbon, you will need to parafinge e carbon and carbon, hat in io say, you should hea of the carbon is saturated. Yoa can electroplate on his and eolder saur ced. Yoa
race.
(3855) F. E. C. asks with what to coa der therm alrtight for preeerving parpoeees. A. Heat the jars to a temperatare of boiling water, or a little hotter if poseaible, and rab puraffin all over the un-
 ide and outaide of the jars to make care of the jare eing artight.
(3356) R. C. B. asks how to make the bent kind of a battery for an electric bell. A. There Othing better for an open circuil electric bell than the IT, No. 150 , also in " Experimental science."
(3357) W. E. F. asks how to clean and ifferent mixtures of acids, bat do not get good resalti. The acid will either not clean or the work will tarnisi (tarn black) immediately on taking from the ranning water. A. The brase mast be thoronghly cleuned from rease or dirt before dipping, by boiling in strong cans tic soda wator; wach ic hot water, then dip. We do not
know of a better mixture than equal parts of nitric and anlphoric acles, with half a part of mariatic. Dip but a rew ecoonds and immediately plange the brase in boiling hot water and dry quickly. Cold water will no wear the acd from the porous metal. We recommend to you Batif "Tinman's Manaal," $\$ 1.25$ mallod, which
(8858) T. J. asks for recipes for some ceap wasir that will protoct a wall plastered with con rom froest. How will etim milk rain and consequen ily do: How abont the eolntions of orlde of enc end chorlde of zine: Woald a wash with Portand cemen bo suificlent? A. Whitewweh used on United States pabic morke: x buehel best lime siaked with boillng water, 1 peck sait dissolved in warm water, 8 pound whiting 1 water. Mix all together, add hot water for proper aee and let atand for several days. Then heat and apply with large brushec. Chloride and oxide of zinc are zood bat expensive. Portland coment makes a fair rown wash. Skim milk may be used with cement
(3359) W. J. U. says : I contemplate bilding, for a siallow crooked river, a stoamboat os feet foet (carreat $19 /$ milee per bort) haght when loended put in 2 oingle enaine to oporate four 2 feet propeller wheels by beval friction, each whoel to be reversed or stopped with eagine always golng one way. Do yon think this will be as good a plan as the ordinary donble ebgine and stern wheeal of the river boato? If so, what ower shoald be ased to make a speed of 12 miles per our boat. They are diments to connect properly, and boved friction is not suitable or reliable for operating propelor scrows, and gearing is too noday. You will wheel with two enginee. see Somertifio Axurions SUPPLEMESTT,
Wheel steamers.
(8360) J. H. L. asks : Is it the best to hut ap all doors and windows or lot ae mach air get setter plan to to cloee all doors and windows, as a colamn of warm air isealng from the house would te allitate the paseage of the electric diecharge.
(8881) W. A. A.-The insect is the com mon mole cricket, Gruviotalpa boseats.
(3862) E. W.-Nigrosine is a coal tar This product is varionoly modined in the process of manufacture several shades, varyligg from blae throngh blaish gray to gray, violet to black, this last being called nigroolipa, are produced. Other namee for the
various other shades are violanilline, alberfold blue, arious other shades are violaniline, alb
(3368) J. C. M.-See Scientific Amerian SUPPLMMINT, No. 61, on the manafacture of sine inc white and white lead. Chemical analysis is the oly sure test.
(3364) G. H., Jr., asks : 1. Why is the ling moon red? A. Becance of the abeoption of the more refrangible rays of light by the great distance that or setting, alded by the hygrometric condition of the ir, the watar in the atmospbere probably being the ooks red as seen from a consilderable depth in watar Divers notice this pecullarity. 2 Where is the largest marble cutting establishment in the world? The largest marble works are near Ratland, Vermont. 8. I have a copper bath tab which to costed with tin or zinc. This bright coating has worn off in places and the copper these injured places? A. You can do nothing better than to keep the bath tab clean by polishing with apollo, or with oxalic acid. You cannot retin the (2805).
(3865) J. F. 'M. asks: What is the in lowed powater? it is ased in the porous cap of a bat lary. A. The powder is principally or entirely potasmixed withate, common sallate ealphaticer. In the portd it eapplies free nitio

scia mad

(8860) W. W. B. asks: 1. What ohemi cals and in what proportion, added to water, will exdent quantity in water act as extinguishers. Sulphato of sodinm is excellent. Bicarbonate of ammonium is
good, as yielding a certain amount of carbonic acid gas.

Bo

 2. How can a photographic plato be developed a poei-ive : A. Thia hae not
lly ally. No practically successful procese lo known. Sev Explain EME \mathbf{F} ane now working on the problem. columns. A. Electromotive force, or the difference of potential which is the cause of a carrent of electricity is produced by batteries and dynamos in genera practice.

TO INVEETORS.
An experience of forty yeark, and the proparation o
more than one hundred thousend applications for pa cents at home and abroad, enable us to undersitand th Lawn and practioe on both continenta, and to poseeces unsqualed facilities for procurng patents every where. farelgn countries may be had on application, and person contempiating the securing of patenta, elther at home o which are low, in accordance with the times and our ex IUnsive fucuities for conducting the Dusinoms. Addrea way, New York.

INDEX OF INVENTIONS
Which Lotters Patent of the September 1, 1891,
AND EACH BEARING THAT DATE. [see note at end of list about coples of theee patenta.]

 BoltBoot
Booter
Borta
Bortit Box
Bral
Brat
Brat ${ }^{1}$

\qquad

${ }_{6}$

\section*{| crar |
| :---: |
| Crar |
| Crar |}

2hocertisements.

USE ADAMANT WALL PLASTER

PROPOSAL.

TO INVENTORS and mawnactubirs
 sixtibth grand national ind

American Institute of the City of New York

$=\begin{aligned} & \text { duce } \\ & \text { darge } \\ & \text { tions } \\ & \text { lis }\end{aligned}$ large propor
tions abroad.
CANADA. -The cost ot a patent in coirinvenless than the cost of a United States patent, and the
tormer includes the Provinces of Ontaric former incluades the Provinces of Ontaric. Quebec, New
Brunswick, Nova Scotia, Britisb Columbia, and Mant-
toba toba.
 patents in Canada is very large, and is steadily increas-
ing.
ENGIL IND.-The new English law, which went into
torce on Jan. ist. 1885, enab es parties to secure patents in Greal Britain on very moderate terms. A British patent includes Kngland, Scotland, Wales, Ireland and the
Channel Islands. Great Britain is the acknow edged flnazcial and commereial center of the world. and her
goods are sent to every quarter of the globe. A good invention is likely to realize, as much for the patentee
in Knglana as bis United states patent produces for in Knzland as his United States patent produces for
him at home. and the small cost now renders it possible for almost every patentee in this country to secure a pa-
tent in Great Britaiu. where his rights are as well projected as in the United States.
OTHER COUNTRIES.
OTHER COUNTR IES.-Patents are also obtained on very reasonable terms in France, Beleqium, Germ
Austria, Russta., Italy. Spain (the latter includes Cuba ano all the other spanish Colonies), Brazll, British India
Australia, and the otaer British Co onies Australia. and the otiner British Co onies. pubhishers of The scientipic ambilione to establish competent and trustworthy ageycies in all the principal
foreign countries, and it has always been their aim to foreign countries, and it has always been their aim
have the business of the:r cllents promptly and proper have the business on theres faithfully guarded. A pamphlet containing a synopsis of the patent laws
of all councries. Including the cost for each, and othe information useful to persons contemplating the pro
curing of patents abroad, may be had on application this office.
MUNN \& CO. Editors and Proprietors of The SclENTIFIC AMERTCAN, cordially invite all persons desirink
any information reative to patents, or the registry of trade-marks. in this country or abroad. to call at their
tiffices, 361 Broadway. Examination of inventions, consultation, znd advice free. Inquiries by mail promptly Address. MUNN \& CO..
Publishers and Patent Solictt BRANOH OFPICRS: No. 622 and 624 F SHeet, Pacitlo
Buiding, near 7th Street. Washington, D . C.

THE PREMIER CAMERA

IS THE BEST IN MARKET.

Simple of Manipulation.
Plates or Flims are used. PRICE \$18.00.
Wend for Catalogue and copy of Modern Photography
ROCHESTER OPTICAL COMPANY,

SCIENTIFIC AMERICAN SUPPLE
MENT. Any desired back number of the SCIENTEIC
AMERICAN FOREIGN PATENTS

Thif bost rivece.

14 S. Water St., ROCHESTER, N. Y

THE SMITH PREMIER TYPEWRITER

The Scientific \angle merican and Supplement - $\quad 87.0$ The scienific American and
ers Edition, -
The Scientific American, Supplement, and Archl-
teots and Builders Edition, This includes postare, which we pay. Remit by postal MUNN \& CO., 361 Brondway, New York.
portant Improvements. A.
 The Smith Premier Typewriter Co.,Syracuse, N. Y., U. S.A.
Send for Catalogue. LEARN WATCHMAKINGG, etc., of W. F. A. Woodcock
Write for terms and particulars. Winona, Minn. TYPHOID FEVER. - A VALUABLE paper by Prof. Duarain Beaumetz, showing the greai
progress that has been made in reent years in the
treatment of this dankerous disease. Coantained in in

STEEL TYPE FOR TYPEWRITERS

 A CONNECTICUT PEACH ORCHARD, - By J. H. Hale. An interesting description of a farm

THE CONIC SECTIONS,-BY PROF

WANTED A BUSINESSS.-We have a forty horse
 would ilke to matk is speirlaty of some one article.
Address R. D. PETRCE \& COO., Canaan, Conn.

ARTESIAN

THE BUILDERS OF THE STEAM EN
 SCIENTIFIC AMEICAN SUPPLEMENT, Nos, 802 and
So3. Price 10 ents each. To be had at this ontioe and
Irom all newsdealers.

COAL TAR OR ANILINE DYES-A

The Scientific American PUBLICATIONS FOR 1891.
The prices of the different publications in the United
States, Canada, and Mexico are as follows: The Scientiflc American (weekly), one year $\quad 83.00$
The Scientific American Supplement (weekly), one Year,
yentifl American Supplement (weekiy), one - 5.00
The ceientifl American, Spanish Edition (monthIy), one year,
The Sclentific American Architects and Builders
Edition (monthyly), one year.

∞

Blinn's Tin, Sheet-Iron and Copper-Plate Worker
 One of the Nost Popular Tochnical
n the Encted Sates
JUST READY. A PRACTICAL WORKSHOP COMPANION TIN, SHEET-IRON COPPER-PLATE WORKERS.

E

ELECTRIC POWER APPARATUS, for every variety of yeghamionl work SAFE, SURE, RELIABLE. zetimatke purmibhed. THOMSON-HOUSTON MOTOR CO.,

620 ATLANTIC AVENUE, BOSTON, MASS.

IN

dit

INYENTION\& PRACTCCLLLY DEVELIOPEE

 ḦS WVEV

DIXON' SILICA GRAPHITETPAINT

CHICAGO.

PURR TEWP PERED COPPER
ICE and Refrigerating machines The Pictet Artificial lee Company (Limited), Room 6, Goal \& Iron Exchange, New York

 EDWARID MEEKS, Publisher,
2 Walnut Street, Philadelphla

THE EACLE THE EASIEST RUNNING BICYCLE IN THE WORLD. aped, Comfort and Safe
AGENTS WANTED. sent Free to any Ad Large mustrated Thalage BICYCLE MFG. CO.,
CONN.

THE HORSE'S HOOF.--BY DR. WIL
 Contaned in scirs
No. 756 . Price 10 cen
from all newsdealers.
The
Remington Standard Typewriter

 STANDADE WRITINGMACHINE OF THE WORI
BEND POR ILLUSTRATED CATALOGEE Wyckoff, Seamans \& Benedict
${ }_{37}^{27}$ Broadway, New York.

"STANDARD" EMERY ${ }^{\text {tor }}$ Truning and Sharpening Emery Wheelk. for Truing and Sharpening Emery Wheels.

tising medium cannot be overestimated. Its cricculation
is many times greater than that of any similar journal now published. It goes into all the States and Territo-
ries, and is read in all the principal librarles and reading rooms of the world. A business man wants something
more than to see his advertisement in a printed news-
paper. He wants circulation. This he has when he advertises in the Scientiric AmERICAN. And do not let
the advertising afent influence you to substitute sot the advertising apent influence you to substitute some
other paper for the Scientiric AMEricAN, When seother paper for the scientiric AMERICAN, when se-
lecting a list of publications in which you decide it is for
your interest to advertise. This is frequently done for the reason that the agent gets a larger commission from
the papers having a small circulation than is allowed on
the ScIENTIFIC AMERICAN. the SCIENTIFIC AMERICAN.
For rates see top of first column of this page, or ad-
dress MUNN \& CO., Publishers, C0., Publishers,
$\mathbf{3 6 1}$ Broadway, After being on the Market Five Years
 The "ACME" Sill Leads!
 Ame ievetusf

THE ENGINEERING MAGAZINE.

 Tunnols ana Mooem Methoud The Drooul
 DEAFMESS \& HEADMOISES CURED $\$ 10.00$ to $\$ 50.00 \begin{gathered}\text { par palabl } \\ \text { patin }\end{gathered}$
 PATENT STEAM-PIPE CASING

Scientific B烏 Catalogue
RECENTLY PUBLISHED. Oar new catalurue containinp uver 10u pagee. 'Inelud. mallod froe io any addraen on appliculion. Amorican. THE UNIVEREAI FI, YOATCHER. - 500
 ATOMIC WEIGHTS. - A REVISED

 CIEAREXAEB
Ventilating and Drying FANS.
Klight Kunning, Adjustable
Blades, selfociling Benrinks.
 GEO. P. CLARK, Manut. VOLNEY W. MASON \& CO., FRICTION PULLEYS CLUTCHES and ELEVATORS OTTO GAS ENGINES : 33,000 sOLD.
Engines and Pumps Combined For COAL GAS \qquad
SCHLEICHER, SCHUMM \& CO.
CHICAGO. NEW X

Experimental Science

ゆひрertisements.
Inside Paze, each insertion - . 75 cents a line The above are charges per agate line-about elight
words per line. This notice shows the width of the 1 nee and sis set ine agate type. Engravings may head adver-

ARTIFICIAL INCUBATION,-A DE-

 LITTLE WONDERS

 tared and reest Send number of tool desired to to York.
J. DICKINSON, $\mathbf{4}$ Nassau Street, New
PT,ATITIUME.

4
 In this line of buviness they have had forty-five year axperience, and now bave unequaled facilites for th

PACKING, BELTING, HOSE, MATS, MATTING, ETC. retablishod 1855.

The Largest Manufacturers of Mechanical Rubber Goods in the Worl THE GUTTA PERCHA AND RUBBER MFG. CO. Para Building, 35 Warren St, New York. \qquad

 SIEMENS'*CABLES.

SUBMARINE,

 UNDERCROUND, INTERIOR,
SIEMENS \& HALSKE by THE EDISO

Cable and Wire Department, Edison General Electric Company,

$\$ 85$ Lovell Diamond Safety $\$ 85$

 OHN P. LOVELL ARMS CO., 147 Washington Street, BOSTON, MASS
JAMES WATT, AND THE APPLICA-

Perfect Newspaper File

DEFIANCE MACHINE WORKS.

 BuILSER
$\mathbf{H U B}$, SPOKE,
WHEEL,
WAGON CND
Carriage
NAG Machinery. o. o, hue turning lathe. oho. U. s, a, POROUS EARTRENWARE.-BY

 CONSTIPATION. - BY C. L. DODGE

Hillerfs lil Coupllliss

Double Brace, Self-Oiling, Adjusta ble Ball and Socket Hangers, Pillow Blocks, Post Hangers, Etc.

Edison general bleotrio 00., sCheneotady, n. x

Hagh ine ELEVATORS

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March th, 1876, No. 174,465, and January 30th 877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use and all the consequences thereof, and liable to suit therefor.

GEAR CUTTING
Leland, Faulconer \& Norton Co., Detroit, Mic

ESTABLISHED 1846
The Most Popular Scientific Paper in the World
Onty 83.00 a Year, Including Postage

This widely circulated and splendidy illustrated paper is pubbished weekkly. Every number contains six-
 representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electrictty, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, Terms of Subscription.-One copy of the Sores THIC AMERICLIN will be sent for one year- $\mathbf{y 2}$ numbers
postage prepalc, to any subseriber in the United States Canada, or Mexico, on receipt of three dollars by the publishers; six months, 81.50 ; three months, 81.00 .
Clubs.Clubs. - Special rates for sev
Masters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed Inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Adaress seldom goes astray, but is at the sender's risk. Address
all letters and make all orders, drafts, etc., payable to

MUNN \& CO., 361 Broadway, New York.

This is a separate and distinct publication from THE Cery number containing sixteen large paqes full of enravings, many of which are taken from foretgn papers, ad accompanied with translated descriptions. THE CikNTIFIC American SUpplement is published weekents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archrology, Astronomy Chemis-
try, Electricity, Light, Heat, Mechanical Englneering, team and Railway Engineering, Mining, Ship Building. Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture.
Horticulture, Domestic Economy, Biography, Medicine. tc. A vast amount of fresh and valuable information obtainable in no other publication.
Ihe most important Enjinecring Works, Mechanisms, nd described in the SUPPLEMENT.
Price for the SUPPLEMENT for the United States and Canada, 85.00 a year; or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLEMENT, both matled
for one year for 87.00 . Single coples, 10 cents. Address and remit by postal order, express money order, or cheekk, MUNN \& CO., 361 Broadway, New York,

Guilding Cedition.

The scientific american Architects' and Unders' EDrtion is issued monthly. ${ }^{82.50}$ a year
ingle copies, 25 cents, Forty large ougrt. paces, equa to about two hundred ordinary book pages; forming a
large and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with other fine engravings; illustrating the most interesting examples A spectal feature is the presentation in each number of a variety of the latest and best plans for private resi-
dences, oity and country, inclading those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full perspective and in color are given, together with full
Plans, Specifcations, sheets of Details, Estimates, etc.
The elegance and have won for it the Largest Circulation of any Arehitectural publication in the worla, sold by all news ealers. $\$ 2.50$ a year. Remit to

MUNN \& CO., Publishers,
PRINTING INKS

