A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACY 悲EY 891


```
NEW YORK, SEPTEMBER 5, 1891.
```


Frientifit American.
 ESTABLIEHED 1846.

MUNN \& CO., Editors and Proprietors PUBLIBHED WEEKLIY AT
NO. 361 BROADWAY, NEW YORK.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
No. 818.

For the Weok Ending soptembor 5, 1891.

 Price 10 costa. For asale by all pewedealera

1I. CHEMICAL.-The New Gae Chlorofuoride of Phosphoras......... 1800
 of the Uiveralty of Whisconsin. A A echolarly and dibcriminating
paper, oovering an extensive subject...................... 12
 V. Mbichanical-A Monster Mechne-Cut Spur Gear.-Large It. 180

 Erucato stork. -1 iiiusirai ion....................................
Oriental Explorato

THE ARTIFICLAL PRODUCTIOR OF RAIF.

 At the instance of the Hon. Charles B. Farwell, Sena tor from Illinois, an appropriation of $\$ 10,000$ was madeby the last Ccngreas for experimental purposes relatby the last Ccngress for experimental purposes relat-
ing to the artificial production of rain by firing explovee
Senator Farwell has given an amusing acconnt of how the appropriation was secured and his reasone for urging it. He wakes no pretensions as a scientific man; be never, like Espy and others, made a complete study of the meteorologic laws and phenowena, but he learned that in the high regions above the earth there were air currents charged with moisture, and became impressed with the thought that by means of a sufficient number of first-class bangings the said moisture might be condensed and precipitated as rain. "This idea," he said, " is old enough. I've been convinced of its practicability for twenty years, and probably other people have. It's just a question of applying what you know. Everybody knows there's a certain amount of moist ure in the air all the time. The people see their corn ure in the air all the time. The people see their corn
burn up and their cattle die for lack of moisture. They burn up and their cattle die for lack of moisture. They
know the required moisture is passing right over their know the required moisture is passing right over their
heads all the time-going off, may be, to rain itsel beads all the time-going ofl, may be, to rain itsel.
down some place where they're already drowned out. "Even the Senate Cominittee on Appropriation laughed at me about this. When the Appropriation bill came over from the Honse, I went aronnd to my colleagues of the Senate committee and said to them ' I want you to put $\$ 10,000$ in there for rajn.' They langhed at me, but they put in the $\$ 10,000$ just as n personal favor. When the bill went back to the House that $\$ 10.000$ amendinent was knocked ont. I was one of the conlerence committee to whom the bill was re to put in the rain appropriation just as an accommo dation to me The items in the Appropriation bill are numbered, 0 when the conference committee reported tavorably on No. 17, nobody in the House cared to see what No. 17, a little appropriation anyhow, was, and it passed."

PRECIPITATIIG RAII BZ EXPLOSIVES
In accordance with this appropriation the Depart ment of Agriculture has lately instituted the re quired experiments, the same being under the imme diate charge of Gen. R. G. Dyrenforth, assisted b ProfessorfCarl Meyers,|the balloonist, Professor Powers, author of "War and the Weather," Mr. John T. Ellis, and George E. Casler, balloonist
The place selected for the experiments was the cattle ranch of Mr. Nelson Morris, a few miles distant from Midland, Texas, a quiet and far out of the way place where the experimenting party were offered unlimited space and facilities for the undisturbed execation of their peculiar enterprise. Moreover, it is alleged this was a particularly dry spot, where little or no rain had fallen for three years. To this thirsty region came the rain wakers, bringing with them a strange parapher nalia, consisting of several dozen balloons, kites, re torts, acids, iron filings, chlorate of potash, sulphuric acid, manganese, rackarock, dynamite, fuses, pipes, electrical wires, dynamo machines, electric exploders, etc. It was Augast 5 when the party reached th ranch, and from that time on ward they were very busy After much toil their explosive supplies, gas apparatus, balloons, kites, and electrical devices were got into working order, and used as follows : By means of working order, and used as follows: By means of
retorts charged with chlorate of potash and manga-
nese orycen gas was prodnced ; hydrogen was gen neee, orygen gas was prodnced ; hydrogen was gen With these gases forming a highly explosive mixture the balloons were filled and time fuses applied
It required four hours to charge the first balloon, and when it was ready, a dispute arose as to who hould light the fuse. The chemist said the balloonis hould do it, and the latter said it was the duty of the chemist. Finally the chemist touched off the fuse and he balloon sailed away and exploded at about two miles from the point of ascension. A few sticks of rackarock were exploded on the ground, and that ight rain fell at Midland and Stanton, twenty-five miles away.
This was regarded as a triomphant result. After that Gen. Dyrenforth gradually increased the number of explosives untll during the last week of the experi ments an almost continuous cannonading was main ained.
The last of these rain-making experiments took place Aug. 26 and is thus graphically described by the correspondent of the New York World
"Aug. 26.-The night was beautifully clear, and not cloud could be seen. The heavens were dotted with tars, and from all indications it was safe to predic that no rain would fall within forty-eight hours at the least. A strong gale was blowing towards the west Five balloons were sent up and exploded, and 200 pounds of rackarock powder and 150 pounds of dyna nite set off on the groand. There was, of course, no mmediate result. The barometer was rising and the needle was pointed at fair.
"By 8 o'elock in the morning a bank of clonds appeared on the western horizon at the point toward which the smoke and noise had blown. The sky rapidiy became overcast, and by 4 o'clock there was rain, accompanied by thunder and lightning. When the sun rose, it was seen that the storin had come di rectly out of the west, and on the horizon the cloads rose in a fannel shape, like the smoke from a volcano. There was a beautiful rainbow visible at sunrise. It eased raining at about 8 o'clock."
After hearing this news, "I think the experiments have now demonstrated the soundness of my theory." said Senator Farwell to the World correspondent "For twenty years I have had no doubt rain could be produced in that way, and quite expected the experi nents to be successful."
What are your plans respecting the practical ap plication of the invention?"
"Why, I think they could be stated in this way The secretary of agriculture, you know, gets annua appropriations for the general purpose of advancing agriculture-that is, he gets money for eradicating die eases ainong cattle and for inspecting hogs, and fo this and that similar thing. Well, when Prof. Dyren orth inakes his official report of these experiments, expect that Mr. Rnsk, the seoretary of agriculture will ask for $\$ 1,000,000$, may be, or $\$ 500,000$ any way or rain making."
"The Department of Agriculture has its Inspectors and employes in the West, and when an inspector re ports that rain will be needed at a certain time in a certain region, the secretary will send on his men and appliances and make the rain. That's my idea of how it will be practically applied. Of course, I soek no control of any sort over the invention. If any State or other community wants to make rain on its own hook, there could be no objection to its doing so."
"To us the mest practical result likely to follow from these experiments is the extraction of money from the public treasury. We have seen how easy it was to obtain the first ten thousand dollars to aid the chimera "I asked them to put in the rain appropriation jnst as an accommodation to me," says the senator, and they did it. "Nobody in the House cared to see what No 17, a little appropriation anyhow, was, and it passed." The idea that rain can be precipitated by cannon Gring is almost as old as ganpowder ; but while there are many curions coincidences there is no satisfactory ovidence that rain was so produced. It is on a par with the Chinese mode of conquering the enemy by making a loud noise.
It is true a downpour often follows a clap of thunder but this does not prove the rain was produced by the concussion. On the contrary, we know that rain probably results from the cooling of moisture-laden air and simultaneously electricity may appear. Hence in hnnder storms the aerial concnssions are most probbly the results, not the cause, of rain formation.
Nature works on a vast scale in producing rain; and is idie to suppose that the burning of a little exploive matter can materially affect the boundless atmo phere of the skies.
In a certain sense it may be claimed that rain al ways follows an explosion; since all atmospheric hanges are successive. If to-day is fair, fire a gan, and it will rain either to-usorrow, or some following day. I o-day is rainy, fire a gun, and it will be fair either to norrow or afterward. There appears to be just a much sense in appropriating public money for explo sives to prodnce dryness in Alaska as to make rain, by similar means, in Tezas

In conclusion, we would warn Senator Farwell and his coadjator rain makers that they have infringed upon a patented article, and are liable in damages. The precipitation of rain by firing aerial explosives is the invention of Mr. Daniel Ruggles, of Frederickeburg, Va., and was patented by him eleven years ago, to wit, on July 18, 1880, patent number 280,067. His patent claim is as follows:
"The mode herein described of producing rainfall, said mode consisting in conveying and exploding torpedoes or other explosive agents within the cloud realm substantially as described."
Mr. Ruggles' invention was illustrated and described in the Scientific American of Nov. 27, 1880. We
 here reproduce the engraving and description then
published. "Novel Method of Precipitating Rain published. "Novel Method of Precipitating Rain
Falls. A patent has been recently issued to isaniel Falls. A patent has been recently issued to isaniel
Ruggles, of Fredericksburg, Va., for a method of precipitating rainstorms, which, judging from a well known precedent, is not entirely chimerical. It has been frequently noticed that heavy cannonading is followed by a fall of rain. Profting by this suggestion, Mr. Ruggles has invented a method of producing a concussion or a series of concussions in the upper regions of the atmosphere which he believes will induce rain."

- The invention consists, in brief, of a balloon carrying torpedoes and cartridges charged with such explosives as nitroglycerine, dynamite, gun cotton, gunpowder, or fulminates, and connecting the balloon with a or fulminates, and apparatus for exploding the cartridges.
electrical apparatus for exploding the cartridges. "Our engraving represents
bringing down the rain.
Mr. Ruggles' patent is still in force, and if the inven Mr. Raggles' patent is still in force, and if the inven-
tion has anything like the value which Senator Fartion has anything like the value which Senator Far-
well places upon the obtained results, then the willion well places upon the obtained results, then the million
dollars the senator speaks of should go to the patentee. dollars the senator speaks of should go to
Let justice be done to inventive gevius.
For the convenience of our readers and the further elucidation of the subject, we reprint the article we published a few months ago.

[Ffom the Scientinio Axrerioan of Dec, 20, 18e0.]

cthe artificial production of rait.

"The question as to whether rain can be produced by artificial means is to be tested by the United States government. On motion of Senator C. B. Farwell, of Illinois, a ciause was added to the appropriation bill
which provides that, ander direction of the Forestry which provides that, under direction of the Forestry
Division of the Department of Agriculture, $\$ 8,000$ shall Division of the Department of Agriculture, $\$ 2,000$ shall
be expended in experiments having for their object the artificial production of rainfall by the explosion of dynamite.
In a communication from Senator Farwell the following theories are advanced: "My theory in regard to producing rain by explosives is based partly upon the fact that after all the great battles fought during the century heavy rainfalls have occurred. This is the builders of the Central Pacific Rail way, informed me lately that he was compelled to do a great deal of blasting through a part of the conntry where rain had never been known to fail in any useful quantities and
where it has never rained since, and that during the where it has never rained since, and that during the
period of the blasting, which was nearly a year, it period of the blasting, which was nearly a year, it
rained every day. I feel almost convinced that rain can be produced in this way. The dynamite could be exploded on the gronnd or up in the air, and I think I would prefer the latter. The experiment should be made in eastern Iowa, Colorado, or in western Kansas, somewhere along the railway, and my own idea would be to commence early in the morning and explode continuously for seven or eight hours."
Thesubject of rain production by means of concussion has been frequently disussed during the last twenty Francis Powers, C.E., in a volume entitled "War and the Weather, or the Artificial Prodnction of Rain," 1871. Many eases are cited in which great battles have been followed by speedy rain. Six occurred during our war with Mexico in 1846 and 1847; nine cases of our war with Mexico in 1846 and 1847; nine cases of
battles or skirmishes are given which occurred in 1861 battles or skirmishes are given which occurred in 1861
in the war of the rebellion, and which were followed by rain at no great interval; forty cases are cited in 1862; thirty for 1863; twenty-eight for 1884, and six for 1885. Eighteen similar cases are also cited from among
the great battles which have occurred in Enrope during the past century, making a total of 187 cases. In a criticism of Mr. Powers' theory, Silliman's Journal said: "To this argument it may be replied that throughout the region from which his examples are
mainly drawn rain falls apon an average once in three days, and probably a little more frequently; so that from the conclusion of one rain to the comencement of another, the interval is on an average hat little over two days. Now, battles are not nsually commenced
during a period of rain; generally not till some hours during a period of rain ; generally not till some hours
after the conclusion of a rain. Rain, therefore, ought to be expected in sbout one day after the conclusion of a battle. Now, the argument of Mr. Powers is lame in this point. He takes no precise acoount of the length of the interval bet ween the conclusion of a bat-
tle and the commencement of rain ; nor does he show
that the interval is less than it should be if the battle had no influence in the production of the rain; and in particular he takee no account of the cases nufavora-
ble to his theory, in which rain followe a battle only ble to his theory, in which
after a very long interval."
Some of the cases, however, which may be oited where the fall of rain seems to have been caused by the discharge of cannon are very striking. During the siege of Valenciennes by the allied armies in June, 1793, the weather, which had been remarkably hot and dry, became violently rainy after the cannonading commenced. Two hundred pleces of heary artillery were defanse of the city, the whole of which were frequently in action at the same time.
At the battle of Dresden, August 87, 1818, the weaher, which for some days had been serene and intensely Vast during the progress of the battle suddenly changed. Vast clouds filled the skies, and soon the surcharged
moisture poured itself in a torrent of rain. At Waterloo, according to siborne, the weather during the morning of June 17, 1815, had been oppressively hot. It was now a dead calin; not a leal was stirring, and the atinosphere was close to an intolerable degree, while a dark, heavy, dense cloud impended over the combatants. The 18th Hussars were fully prepared and awaited the command to charge, when brigade guns on the right commenced firing for the purpose of breaking the order of the enemy's advance. The concussion seemed instantly to rebound through the still atmosphere and communicate like an electric spark with the heavily charged mass above. A violent thander clap burst orth, which was immediately followed by a rain which has never probably been exceeded even in the tropics.
In a few moments the ground beeame perfectly satun a few
ated.
Humboldt says that when a volcano bursts out in Bouth America during a dry season, it sometimes changes it into a rainy one. It is well known that in very hot calm weather the bnrning of woods, long grase,
and other combustible materials produces rain. Very and other combustible materials produces rala. Very extensive flres in Nova Scotia are so generally followed
by heavy floods of rain that there is gronnd for beleving that the enormons pillars of smoke heve some share in producing them.
Captain James Allen, acting signal officer of the War Department, in reply to interrogatories recently addressed to him regarding the probability of producgg rain by artificial means, said: "One fact would gunpowder in order to practically demonstrate the explode visability of attempts in rain production should at Visability of attempts in rain production should at
first be made after most careful consideration of the atmospheric conditions. For example, if these explosions should be made in the center of a high area, as shown by our weather maps, or even after a low area has passed ang point, we may be absolutely certain no rain will follow. The first experiments should be 300 to 600 miles from the center.

Observing stations should be established every 5 or 10 miles for 200 miles to the eastward of the point of explosion. If the explosions are made in a comparatively clear sky, and after that unmistakable clouds are observed to the eastward and not to the westward, some connection may be surmlsed. It must be said, however, that even if the production of rain be practicable,
it can only be for a very limited area, and it is believed that any benefit which can possibly arise from such rain can never amount to the expense of the enterprise."
The opinion of Captain Allen is similar to that of President H. O. Russell, of the Royal Society of New South Wales, contained in an anniversary address deivered in 1884. He says: "It would seem unreasonable to look for the economical production of rain under ordinary circumstances, and our only chance would be to take advantage of a time when the atmosphere is in the condition called unstable equilibrium, or when a cold current overlies a warm one. If under these conditions we could set the warm current moving upward, and once flowing into the cold one, a considerable quantity of rain might fall, but this favorable ondition seldom exists in nature."
The experiment of producing rain by exploding $d y-$ amite is about to be tried, and the result will be awaited with much interest."

THE WEATHER DEBATINE SOCHETY.
There are now so many clond compelling rain producers turning up that any opulent person who is interested in the weather can hire one of them for his own convenience. But suppose a man who would like to enjoy a shower on a warm afternoon orders his loud compeller to produce one at a time when his ext door neighbor desires to take a walk in his rain producer be liable to be sued for damages by his neighbor, or will the case be settled by arbitration? These questions are fit to be taken up by the Weather Debating Society, now that 80 many rain producers a
N. F. Sun.
meoting of the Amorican Association.
The American Association for the Advancement of Science adjourned on Tuesday, Angust 25, to meet again at Rochester, N. Y., on the third Wednesday of August, 1888. The president for next year is Prof. Joseph Le Conte, of California. Secretary Putnau reported that 653 members had been enrolled at the Washington meeting, of whom 871 were new, the latter number alone exceeding the total attendance for last year. Addresses, papers and memoirs were offered and read upon 291 distinct subjects, these communications varying in length from flive minutes to an hour each Most of theee were read in one or another of the eight sections into which the association is subdivided. From a programme members learn what is going on In our colnmns it will be impossible to give mor than an epitome of the proceedings, beginning with brief abstracts of the addresses made by the vice presidents in opening the sections of which they are the chairmen.
Prof. Nipher addressed the Section of Physics on the Functions and Nature of the Ether of Space." It was once taught that light was an elastic pulsation in an incompressible medium. Then the theory found favor that it was an electrical displacement at right angles to its line of propagation. Then the elastic and electric theories were ingeniously put on the same logical basis by suggesting for the former a rigidity zero for the compression wave-an audacious idea that created pleased surprise. Light in matter must be either more dense or less elastic than that in free space. Ether at the earth's surface moves with it, being dragged along as if it were a vivid liquid. Ether in water seems to be condensed to ${ }^{2}$ of its volume in air Yet after all the fine theories and beautiful experi ments, it remains an open question whether ether or any part of it is at rest in space, or whether it sweep through the interior of bodies as the wind sweeps through the leaves and branches of a tree.
"The Evolations of Algebra" was Prof. E. W. Hyde's topic in opening the Mathematical Section He traced the progress of algebra from its rhetorical forin in India, Egypt, Arabia and Greece, through the syncopation stage of the middle ages, to the moderd purely symbolic form. These three stages were ex plained as being originally mathematical reasoning by words, next by abbreviations, and finally by sign altogether by which the amaxing progress of the past 200 years had been made possible, and the ultimate value of which remains to be determined by its future President J. M. Conlter, the newly elected President of the Indiana University, addreased the Biological Section on the "Future of Systematic Botany." Many who style themselves systematic botanists have only pigeonholed plants for study ; and too often regard the temporary pigeonholes as more important than the facts. Three distinct lines of work are to be recos nized as of equal inportance, each of which should turn over its completed product to the next. Field work comes first; which, instead of being sporadic, or ending in a mania for new species, should make the collection and description of plants as distinctly a biological survey as any made by topographical iological survey as any made by topographical engineers. It should be done by men trained and equipped for it. Nothing requires a broader grasp of
facts than the proper discrimination of species. Each facts than the proper discrimination of species. Each
true species is highly composite, being made up not true species is highly composite, being made up not
only of gross organs, but of those that are microscopic. only of gross organs, but of those that are microscopic.
The best field work is but preliminary to the further study of the life history of plants, noting the development of each organ at every period, thus obtaining cumulative evidence for safe generalization. The last and highest expression of botanical work is the construction of a natural aystem based on an accurate description of species and a thorough study of life bistories; and this calls for a complete command of botanical literature, together with the finest powers of geueralization.
Prof. Stevenson addressed the Geological Section on the "Relations of the Chemung and Catskili on the eastern side of the Appalachian Basin." After tracing historically the studies made of these groups, he concladed that the series from the beginning of the Portage to the end of the Catskill form but one period, which should be designated as the Chemung, and be divided into three epochs, Portage, Chemung and Catskill; that the disappearance of life from this area was due to the fact that the deposits were made not in a closed sea, but by the influx of great rivers loaded with debris in which life could not exist, and that we are not justified in including the Chemung period in the carboniferous age.
"The Natural History of Analogy " was discussed by Prof. Jastrow before the Section of Anthropology. Though cautiously used by modern scientists, analogy was the main argument of primitive man, and explains savage customs and beliefs, popular superstitions, folk-lore, magic, astrology, and all pseudo sciences. The serious reasoning of our forefathers only amusee us; yet historically there is a connection between modern civilization and the primitive culture from which it is largely an outgrowth.
(To be conticreced)

Mixed Material for clame.
A new use has been found for waste glass by Messrs. Rostaing, Garchey and Geille, of Paris. Any frag ments of broken glass of various colors are mixed to Rether, after having been broken to a suitable size; they are then placed in moulds lined with silica, talc or some other resisting inaterial and fired. A coherent wass is produced which can be dressed and cut into blocks, which are, of course, irregularly colored. Such blocks may be used as artificial marble. The blocks are nsually rough on one side, owing perhaps to incom plete fusion ; this gives a surface which is admirably adapted for cansing them, especially if they are slab like in form, to adhere to walls with the addition of a little mortar. Fine decorative effects can thus be produced. Designs in reliet can be obtained by pres sure while the block or slab is still plastic. If a suit able monld be prepared with movable partitione the pieces of class can be arranced in such a way the pieces of alas pran a upon iring, a very effective "stained glass" Window is
produced, the necessity of nsing "leading," as in the produced, the necessity of nsing "
ordinary way, being thus obviated.

A sAFETY ATTACHMENT FOR CAR BRAKES.

The illustration represents a convenient means of setting brakes by hand, with a safety attachment therefor, together with a spring attachment for the brake beams, so that the brakes shall not be set so hard as to prevent the wheels from turning. The improvement forms the subject of a patent issued to $\mathbf{M r}$ Lincoln H. Ranb, of South Easton, Pa. The perspective view represents the attachments applied to the brake of a freight car, although they may be used in connection with any of the brakes in common use. Secured to the brake beam is a casing, through which extends a rod having next the brake beam a collar, while its outer end is pivoted to a bent lever, as shown in detail in Fig. 8, there being 'a spiral spring around the rod, so that when the brake is applied, the spring will prevent it from being pressed so hard against the wheels as to stop them from turning. The other end of the bent lever is connected to a chain extending over a gaide pulley supported in a depending bracket on the bottom of the car, the upper end of the chain being attached to a shaft in a bracket on the end of the car. The outer end of this shaft has a hand wheel, and its inner end is pivoted in a plate secured to the car. There is a ratchet wheel on the shaft, and pivoted to the plate is a pawl, as shown in Fig. 2, the lower end of the pawl being enlarged to serre as a weight and hold its upper end in engagement with the wheel. The pawl is pivoted on a pin, which rides in a alot of the pawl, permitting vertical movement of the latter, and at its toe end the pawl is flanged to overlap the sides of the ratchet wheel, thus gaiding the pawl to a sure engagement. The plate also has a projecting pin in the rear of the pawl, to prevent the latter from being tipped out of place, and between the pawl and the wheel is a fixed block, adapted to engage a flange of the pawl, should the pin break on which the latter is pivoted, and hold the pawl in engagement with the wheel, so that the brakes would be held in place. In applying the improvement to a passenger or platform car, the brake shaft is mounted in the railing in the usual way, and a plate carrying a pawl engaging a ratchet wheel on the shaft is secured to the

raubs car brake attachigent.
platform. Fixed to the plate behind the pawl is a post in which is pivoted a bent lever, its onter end weighted and its inner end bent to form a finger adapted to press against the outer side of the pawl, $w h i l e$ on the other side of the lever is an oppositely projecting finger, so that when the lever is tipped in one direction, the finger will press the pawl into engagement with the ratchet, and when tipped the other way, the other finger will hold the pawl away from the ratchet. In Fig. 1 this lever is shown in full and in dotted lines in both positions, its weighted end in each case holding it securely in place.

A BIT FOR BORING LARGE HOLEs.
In the expansion bit shown in the illustration, Fig. 1 represents the device in perspective, Fig. 2 showing the point of its central portion, and Fig. 3 being a plan view, while Fig. 4 is an end view of the extension arm. The shank is squared and tapered to adapt it to a bit stock, and its spirally grooved lower end has a gimlet point and cutting lips, a screw thread being cormed on the body of the spirally grooved portion. In a mortise in the shank an arm is clamped by a set screw, the outer end of the arm having two mortises, in one of which is clamped a cutting tool, while the

BEAUCHENE'S EXPANSION BIT.

other carries a guide bar. The tool has at its lower edge a pair of spurs, between which is formed a cutting edge, the spurs being arranged divergently to enable them to cut without pinching the wood, while the shank of the tool is cut away above its cutting edge so that the ascending chips will ride up and off the edge of the tool. The upper surface of the arm has a graduated scale to facilitate setting it for boring a hole of the desired size, which is effected by placing the gimlet point on the center from which the hole is to be struck and turning the bit, when its threaded portion screws into the wood, as the cutting tool on the extension arm forms a channel by which a circular piece is separated from the main body of the wood.
Further particulars relative to this invention may Lake Einden, Mich.

Fosell Plour
Since the time of the invention of sulphur vulcanization, almost everything in the way of the cheaper metallic oxides, sulphides, or earths have been tried as fillers for rubber. So careful has the experimentation been in these lines that any practical rubber man can tell exactly what results are attained by these different materials.
A curious earth that has not as yet received much attention from the rubber men, partly because the supply has not been regular, and partly because when it could be secured it was found in connection with other substances that made it of little use, is what is known as "fossil flour." Quite recently a vast deposit of this has been discovered in the State of Maine, and that too of such purity as to arouse the wonder of the best analysts. In investigating the properties of his new earth, one is impresed at once by its wonder ful faculty for resisting the action of acids, alkalies, oils, and especially by its remarkable quality as a nonconductor of heat. A simple test of this latter quality conductor of heat. A simple test of this latter quality
made by one interested in the company was to take an inch cabe of the material and place it on a bar of iron. The iron bar was then put in a blacksmith's forge and heated until it was melted away from the cube of earth. So little did the heat penetrate this cube that one could easily place the fingers apon the upper part of it without inconvenience from the heat.
Exactly what value this non-conducting property might have in rubber is not, perhaps, at first apparent, until one refiects upon the clammy, repulsive feeling of ordinary rabber clothing, and indeed of rubber goods in general. To use a common illustration, we might cite the case of the old-fashioned oilcloth, which migbt that feling, and wich being practicall has much that feeling, and which is being practically linoleum, the latter being entirely free from the inconvenience described. If rubber garments could be made of a compound of India rubber and a first-class nononductor, there is no doubt but a surface much more agreeable to the touch would be produced ; and that one objection to rubber clothing would be done away with.
It is not in clothing, however, that the strongest points of the new adulterant would be developed. For valve work it is said to be far ahead of anything wade in rabber; valves made of it have been subjected to
the severest tests, and are said to be almost indestructible.
Fossil flour is almost as white as oxide of zinc. It is so light in weight that a flour barrel of it in its natural condition will weigh not over 50 lb . It is, as we have already stated, absolutely unaffected or unchanged by any sort of mechanical manipulation, by acids, alkalies, or heat. As it is mined, it comes out of the ground a pure white powder, so fine that it cannot be ground any finer. A careful analysis of it shows about 95 per cent pure silica.
In speaking of this as silica, one would perhaps at arst get an idea of particles that have sharp edges, and a feeling similar to that of corundum or emery. That, however, is not true in this case, as the earth is what is known as a diatomaceous earth, made up of a vast number of infinitesimally small shells, each individual shell having been the home of a diatom, built for it from silica, held in suspension in water.
This kind of earth has been used in Europe very largely for a variety of purposes; one of the most curilargely for a variety of purposes; one of the most curi ous of which was in Sweden, where the poorer classes mined it and mixed it with wheat flour, in order to make bulky loaves of bread, not for sale, but for their own eating. In belting, packing, hose, and boots and shoes, this adulterant has many advantages which, no donbt, the rubber trade will readily discover.-India Rubber World.

Alloy for Hermetically Closing Glam Tubes.
It is claimed by F. Walter that an alloy consisting substantially of 95 per cent of tin and 5 per cent of copper may be used for connecting metals with glass, for electrical and other purposes, hermetically sealing glass tubes, etc.
The alloy is prepared by pouring the proper proportion of melted copper into the molten tin, stirring ronnd with a wooden stirrer, casting or granulating, and remelting. It adheres strongly to clean glass sur faces, and has nearly the same coefficient of expansion as glass; it melts at about $380^{\circ} \mathrm{C}$. By alloying it with 0.5 to 1 per cent of lead or zinc it may be rendered softer or harder or more or less easily fusible as required. The alloy may also be used for coating metals or wires, as it imparts to them a silvery appearance.

A SIMPLE CLIP FOR PAPERS, DOCUMENTS, ETC. The illustration represents an extremely simple form of spring binding-clip, having no attached bandles for opening it, but provided with apertures to receive independent handles or levers, as shown, by means of which the clip may be readily opened for placing files, etc., within its grip, or releasing them therefrom. This device has been patented by Mr. Harlan H. Ballard, Librarian of the Public Library, Berkshire Athenæum, Pittsfield, Mass., its invention having naturally followed his appreciation of the need of such a clip for the binding of pawphlets, papers, etc., and the bolding of covers on nagazines and periodicals in reading rooms. The clip is made of spring steel or brass, and a number of them may be made in series of a single strip of spring metal, when desired, to hold an accumulation of magazines, etc. each then requiring to be opened or have its sides

ballard's binding-clip for papers, etc.
sprang apart in applying it, as with the individual clips. The detachable handles or levers are readily brought into engagement with the aperture in each side of the clip, the aperture having a loop-like seat in one side approximately fitting the bent end of the lever, and only one pair of handles is required by an individual for any number of clips. With suitable wooden rods these clips are adapted to form excellent newspaper files, and they may also be employed to hold bed clothes on children by clipping the clothes to the edges of the crib. Their simplicity, durability and cheapness recommend them for a great variety of uses.
minneapolis Electric street Rallway.
The electric system of the Minneapolis Street Railway and the St. Paul City Railway companies is without doubt the most complete and one of the most extensive sys'ams in the world. Among other innovations introduced on these roads has been the burying of the feed wires, thus removing from sight and danger the most obtrusive portion of the overhead structure. These feed wires have been buried elscwhere, but the particular feature of interest that attracts attention in the ducts.
The conduit is located between the tracks and is built as follows: Two-inch plank, first treated by boil ing in fernoline, is used for constructing a long trough of the desired size. This trough is so nailed together as to be continuous and without joints from manhole to manhole, a distance of 408 feet. The trough is placed below the surface at such a depth that the top is six inches below the paving blocks.
The conduit proper consists of a number of heavy paper tubes of the Interior Conduit and Insulation Company's make. The tubes employed are one inch and one inch aud a quarter inside diameter, laid in the trough in ten foot lengths, and separated from each other and the sides and bottom of the trough by rings or spacers. The tubes are made continuons from manhole to manhole by use of a telescopic joint. After the tubes have been properly put in place, pitch, liquefied by heat, is poured in, filling the interstices and leaving a series of highly insulated raceways with a solid insulating flling, impervions to moisture, around them.
A large amount of this conduit has been in service since September, 1890, and has not as yet developed a single fault. In fact, notwithstanding the conduits have passed through the rigors of a Minnesota winter, recent tests of the various feeders show a maintenance of the originally high insulation resistances, which certainly speaks well for the plan adopted.
With these practical results before them it is not unlikely that others having roads under their charge may do likewise.-Electricity.

Tampico Harbor

Concerning the work at Tampico harbor, Resident Engineer Wrotnowski, in charge of the work, says the north jetty is now $5,835 \mathrm{ft}$. long and the south jetty $5,340 \mathrm{ft}$. When $7,000 \mathrm{ft}$. long the jetties will be in 24 ft . of water, which will be reached by October neat. The distance between the two jetties is $1,000 \mathrm{ft}$. The bar is of sand and mud. The river when in flood has a force of 225,000 cubic feet per second. This enormous force of water will quickly deepen the bar to about 25 ft . when the jetty works are completed. Work was commenced on June 1, 1890. Since that time $1,400 \mathrm{ft}$. of beach have been gained on each side of the jetties, and from 1,000 to 1,400 and from 1,00 to 1,4 , hands are now engaged in the work. About 700 cubic yards of stone are dumped daily. An inexhaustible supply of stone is had about 61 miles from Tampico, in the State of San Luis Potosi. The pilings are brought to Tampico from Pensacola and Pascagoula, Fla. The mattresses of brush are from 70 to 85 ft . at the bottom aud about 30 ft . at the top. The average curthent of the river is five miles per hour. The Panuco river has a depth of 25 ft . a distance of about 80 miles inland to the town of Tamos. It is cal culated by the engineers that vessels of the largest draught may enter in the fall. When the work is completed Tampico will be the only safe deep water harbor on the Atlantic coast

A Chance for Inventors.

A well known railroad man declares that one of the most useful inventions that can be thought of in connection with operative railroading is one that will automatically take the rear brakeman by the nape of the neck, and shoot him back from the train a sufficient distance to protect it, when, for any reason, an cient distance to protect it, when, for any reason, an
unusual stop is made. He declares, as a result of conunusual stop is made. He declares, as a result of con-
siderable experience with the genus brakeman, that siderable experience with the genus brakeman, that
nothing short of this will suffice to make it at all sure nothing short of this will suffice to make it at all sure
that traing will be protected under such circumstances, because nothing short of some such device can compel brakemen to go back a proper distance with the flag or lantern.-Industrial World.

HOT AIR BALLOONITG, WERHAWKEN, N. J.
For some time past an exhibition of much interest to those interested in aeronautics has been produced daily at El Dorado, a pleasure resort upon the top of the Palisades on the Hudson River, just above Hobo ken. It consists in the ascent of a Montgolfier balloon, to which a ribless parachute is attached. The aero naut ascends with the $t w 0$, and when a sufficien height above the earth is attained, cuts loose from the balloon, effecting his descent to earth in the parachnte We illustrate the principal features cent, and descent with the parachute.
The balloon is made of sheeting. This is one yard wide, and in the balloon which we illustrate forty segments of it were required for the circumference. For 16 ft. from its top each segment was tapered nearly to a point. The next 15 ft . were untouched, and then the last 20 ft . leading to the neck of the balloon were also tapered to about one-fourth their width The segments were sewn to gether, as in waking a to lar seam; a cord was the laid along side the seam, and the double edges bent over
 and resewed, making a sort of felling. The top was made of double thickness. The sheeting was sized with a mixture of glue, alum, soda, salt, and whiting. in water.
At the mouth of the balloon a hoop 8 ft . in diame ter made of buggy wheel felloes is attached; from this hoop four ropes, called quarter guys, are brought down, to which the parachute is attached.
The parachute in general structure represents the cover of an immense umbrella. Whis oxpanded it center has a 12 in . hole. From its periphery thirty-two cords lead down to what is known as the concentrating hoop, a strong wooden ring 18 in . in diameter, ing hoop, a strong wooden ring 18 in in diameter,
which the aeronaut grasps in making his ascent. The

COMMENCING TO INFLATE THE BALLOON.
construction of the balloon with cords felled into it is such that no net is required. As the performer goes up clinging to the hoop of the parachute, it is neces sary that he should have some means of detaching himself, at will, from the balloon. This is afforded by the arrangement shown in one of the small cuts. To the quarter guys of the balloon is attached a block of wood by means of a rope passing through a hole in it. Above this hole a knife blade is pivoted, which work in a slot in the block, and held out of contact with the rope by a rubber band. To the end of this blade a rope is attached leading down to the aeronaut's hand. By a second rope the parachute hangs from the same block. It is obvious that on pulling the cutting line the rope will be severed and the parachute detached. One more appendage remains to be noticed. Within the parachute, near its month, a wooden hoop 4 ft . in diameter is suspended, and by a proper system of guy is held in a horizontal position. The object of this i to insure the opening of the canvas.

The inflation is thus conducted: A trench about 8 ft . long, 2 ft . deep, and 2 ft . wide is dug in the earth where the balloon is to be inflated, and, except a small portion at each end, is covered with iron, boards, and earth. Over one end an iron cylinder 8 ft . high and about $83 / 2 \mathrm{ft}$. in diameter is erected. Around this cylinder barrel staves are placed with earth between them and the iron, forming a sort of rough lagging. On each side of the chimney thus provided, and at a good distance therefrom, two poles 28 ft , high are erected; each carries a pulley, and a rope is rove through the pulleys and carried through a ring on the top of the balioon. The mouth of the balloon is placed over the chimney, and, by means of the rope, the top over the chimney, and, by means
is hoisted well up from the ground.
a wod well
A wood fire is started in the distant entrance of the trench; this gradually heats the trench and smokestack, the draught at first being about as much one way as the other. After a few minutes, however, the draught begins to tend strongly toward the chimney, which is encircled by the month of the balloon, the sides being held well out from the center by a corps of assistants. From time to time a little kerosene is thrown on the fire. All thie while an attendant stands within the balloon, by the side of the chimney, armed with a circular board to act as fire screen, and with a pail of water and a cup near him to throw water upon the cloth should it become ignited The balloon gradually feels the bnoyant effect of the heated products of combngtion and as it tends to rise, more and ducts of co bure and more cloth is fed out, the assistants shifting their hold lower down upon the sider or fifteen minates the suspending rope is cast off and pulled away from the balloon, and four guy ropes leading from its top are used to keep it in position. It swells continually, and the canvas rises until only the hoop rests upon the ground. A number of the assistants now stand upon this hoop.
The last heating remains to be done. At short intervals kerosene is thrown upon the fire, by this time largely consisting of a mass of very hot embers. The oil is at once volatilized and rushes as a gas into the balloon, within which it suddenly bursts into ignition, producing a great sheet of flame, plainly distinguishable through the cloth. This is repeated over and over again, each addition of kerosene producing a reat fiame as it ignites, almost with explosive violence, within the expanded canvas, now straining violently' upward. The upper end of the parachute during the inflation has been attached to the balloon, andthe aeronaut, Mr. M. L. Macdonald, of New Haven, Conn., professionally known as "Daring Donald," stands off to one side, as the balloon is nearly ready, grasping the concentrating ring. When all is prepared, the word is given, and the balloon is released. The chimney is covered, and, as the balloon rises, the aeronaut walks or runs forward under it, and is carried up clinging to the parachute ring. A loop of rope is attached to the ring, and, when some distance up, he steps into this loop and thrusts his head up through the concentrating hoop, so as to leave his bands free to manipulate the cutting rope. When a sufficient height has been attained, and he deems himself over a favorable ground for a descent, he pulls the cutting rope and severs the connection between bimself and the balrop with accelerating velocity until commences to the parachute, suddenly opens it just as an umbrella is pened by hand. The velocity of the descent is checked. With some oscillation the earth is approached quite rapidly; in half a minute or less the surface is reached. The object of the aperture in the center of the parachute is to make these oscillations as slight as possible. The earth is struck with some violence, about as if the ump was from six or eight feet elevation, indicating a velocity of about twenty feet per second. The deserted balloon capsizes, owing to the greater weight of its top, the hot air and products of combustion with considerable smoke escape, and it collapses and rapidly falls. As the ascent is made, the entire distance from the top of the balloon to the aeronaut hanging to the parachute is about 175 ft .; the inflated balloon is about 40 ft . in diameter. The general operations of the inflating and of the ascent are in charge of Mr . Mortimer McKim, aeronautical engineer, of this city, himself an experienced aeronaut. Accidents in the
descent are often to be anticipated: sometimes the parachute falls among the trees, from whose branches the operator drops to the ground, the parachute losing its effect the moment his fall is checked. Immediately under the Palisades are the cars and track of ately under the Palisades are the cars and track of
the West Shore Railroad, a descent among which the West Shore Railroad, a descent among which
might be the cause of very serious consequences. The might be the cause of very serious consequences. The
descent is frequently made into the river. When this descent is frequently made into the river. When this
is anticipated, a life preserver is worn, to provide is anticipated, a life preserver is worn, to provid
against sinking. The cubic capacity of the balloon is about $28,000 \mathrm{cu}$
ft . Its lifting power is greater than would be th ft . Its lifting power is greater than would be the case with a similar gas balloon, on account of its ex treme lightness. The absence of net and car and o heavy varnish conduces to its power.

Ex-Commisoloner Mitchell tells about the Patent

Halloo! Is this Hon. Charles E. Mitchell, Com missioner of Patents ?"

Mitchell is my name, but I'm no longer Commis sioner. I bave resigned." " I'm post?"

To attend to neglected private business, and because I aun unwilling to do such an amount o! judicial work that I cannot do justice to the office or myself."
"I have heard it whispered that you could not af ford longer to accept so small a salary."
"That is not quite true; nevertheless, the emolu ment is totally inadequate to the position."
"Will this deter first-rate inen from accepting th office?"

Not from accepting it, but from remaining long in it. The Commissioner of Patents occupies a position of the greatest responsibility, and should be as permanent as a judge, with a salary equal to that of the higher courts."
"I see why you make this plea. On his decisions depends the validity of patents, and patents often involve millions.'
"Sometimes they do. The Commissioner must judge between applicants and people, whether patents shall be granted. In interference cases, too, the value of the contested inventions is of ten large, not to say enormous."
"Is there no appeal from the Commissioner q"
" None whatever in interference cases. So you can readily understand the importance of his trust. Last year the Commissioner and Assistant Commissioner gave 900 written opinions."
"Are all the important officers turned out with every new administration?"
"Fortunately, no. The Patent Office demands a force of experts, many of whom have been in govern ment employ 20 years or more. It would otherwise be inpossible to get the work done satisfactorily. The three examiners-in-chiel have a permanent tenure. One of them, Judge Clark, came in, I think, during Grant's first term."
"They, in their turn, have experts under them, presume?"
' Yes. There are 82 principal examiners, each one at the head of an examining division; and the principal examiner, by nature of his employment as well as train ing, becomes the best informed person in the country on the acience and art pertaining to his department
"How many assistant examiners are there?"
About 170. They also are accomplished. Many are graduates of polytechnic schools, and ail pass a very rigid examination."

Are these experts paid in proportion to their abil ity ?"
" No. The salary of a principal examiner was fixed at $\$ 2,500$ more than 40 years ago, and has never been changed."
" What an outrage! How, then, can good men be secured ?"

The fact of permanent employment and an honor able position compensates, in a measure, for the ab sence of shekels; but human nature is human nature, and clever employes leave quickly enough to take bet ter places : whereas, with adequate salaries, they would gladly remain."

A nice state of things! But just like our Congress, ever penny-wise and pound-foolish, utterly reckless in wrong directions and as mean as a miser when money ought to be spent. How many patents wer
issued last year?" issued last year?"
"Twenty-five thousand. The number of applica tions for patents number nearly 45,000 a year. During the last two years there were 10,000 more applications than during the two years immediately preceding."
"Why are 20,000 rejected?"
"Because they either are not original or lack patentability."
"I suppose electrical patents predominate ?"
"Two out of 32 examining divisions are devoted exclusively to passing on applications relating to elec tricity."

How many models are exhibited at the Paten
" One hundred and fifty thousand. Fire destroyed large proportion of the models deposited prior to 1877, and since 1880 models have not been required." "Not required? How extraordinary? Why not?"
"I fancy on account of lack of accommodation. am in favor of models, and think room should be made for them. If the govercinent possessed suitable mod els of electrical and other great inventions of the last ten years, there would bea permanent exhibit at Wash ington which would rival the World's Fair of '93, in one respect at least."

What shameful ignorance on the part of our legis lators! I should think, too, that models would be " astly better for inventors."
"Certainly. They come here with paper inventions,
and often don't know whether they work or not."
"I've visited the Patent Offlce, and know how abominably crowded the rooms are and how foul the air is in cousequence. To ask human beings to breath it is a crime. To abolish models is a blunder, so Con gress is impaled on both horns.'

The quarters allotted to the Patent Office have for years been entirely inadequate. My predecessors Commissioners Marble, Butterworth, Montgomery, and Hall, have protested in their reports. So have I. We
have merely asked for suitable room in the noble building erected out of the money paid into the Treasury by inventors."

When you reflect that inventors have actually paid for the Patent Office building, it is adding insult to in jury to devote any part of it to other bureaus.
"Congress has appropriated $\$ 16,000$ to pay rent else where for the General Land Office, which, when re moved, will leave room to meet the present need of the Patent Office. Secretary Noble is very.friendly to the Patent Office, and I'm sure will do everything in his power to carry out the intent of Congress."
"I hope so. What do you think of your successor, ex-Congressinan William E. Simonds, who comes from your State of Connecticut? Mr. Simonds did splendid work in the international copyright strug sple."
gl"
"It affords me great pleasure to know that the Pat ent Office will be in such excellent hands. Mr. Simonds has had an extensive and successful practice in patent cases. Moreover, for years he has lectured on patent before the Yale law school, so
cully equipped for his offlce."
"Very glad of it. Do you think-"
" No, not another word. You'll be asking me next to map out a policy for Mr. Simonds. I must turn you over to him for anything more you want to know Good by."
"Good by, and success to you."-By Grapevin
Telephone to Kute Field's Washington.

The Camera for Celential Photography. by s. w. burmban, hiok oberrvatory.

Every possessor of a good rectilinear lens and the ordinary landscape camera may not be aware of the fact that he has the best kind of an instrument for making pictures of the sky. The requirements in a lens for landscape photography are exactly the same as those which have to be considered in the depart inent of celestial photography. About the same angle of aperture is desirable, and in a general way, the
same class of lens as in landscape and outdoor photosame class of lens as in landscape and outdoor photo graphy. To get a satisfactory picture of a portion o the heavens at night, as we see it with the naked eye, the picture should include an angle of not less
than 30° or 40°. There is this difference between terrestrial and celestial pictures : in the former we rarely get as much as we can readily see with the naked eye from the point where the picture is taken, while in
the latter we can easily get infinitely more by pro longing the exposure. If the exposure is much ex tended in daylight work, the plate is hopelessly fogged, and instead of increasing the details in the darker portions of the picture, nearly all delicate details are lost, and the negative becomes fiat and valueless; but with the plate exposed to the dark sky of a clear night, where the light emanates only from minute points, the exposure may be continued for hours, and when the plate is developed it will be almost clear glass except where those specks of light have made their impression. Negatives of this charac ter possess this unique peculiarity, that no matter how long the exposure may be continued, they are always under-exposed with reference to the great
wajority of the stars shown; and at the same time, wajority of the stars shown; and at the same time, unless the exposure is very short, they are over-ex eye. The longer the exposure, the more stellar points we get on the plate, and this could probably be con tinued far beyond the time one would be likely to give to the following of the "stars 'as they move across th face of the sky.
Almost every amateur photographer has a lens and camera well adapted to do this work, but unfortunately not many have the means of mounting such an duringent 80 as to hold the stars fixed on the plat during the necessary time of the exposure, For this
purpose an equatorial mounting, driven by clock work, is indispensable. In other words, the photographer mast have the use of an equatorially mounted telescope of some kind, with a driving clock so adjusted as to compensate for the revolution of the arth on its axis, and keep the camera and the stars relatively fixed, the telescope itself being used as a ort of a finder, to keep the star selected for following xactly in the same place in the instrument, by changng the position of the telescope and the camera atached to it, with the slow motions with which all such instruments are provided. No driving clock, however perfectly made and adjusted, can be trusted to hold
the star exactly on the fine wire or spider web in the focus of the telescope for any considerable length of time. This must be done by watching the finder, and whenever the star shows a tendency to get ahead or fall behind the bisecting wire, bringing it back to position by the slow wotions which move the instrument independently of the clock. Everything depends on careful following and keeping the images of he stars all the time on exactly the same places on the plate. If this is not attended to, the stars will be elongated in the direction of their motion across the plate, and the negative will be unsatisfactory for any purpose. In addition to this the fainter stars will be purpose. In addition to this, the fainter stars will be lost by the images spllowing is is accurately focused, the smaller stars will be exis accurately focused, the smaller stars will be ex-
ceedingly minute specks, and if the exposure is an ceedingly minute specks, and if the exposure is an
hour and upward, there will be thousands of these tiny hour and upward, there will be thousands of these points scattered over the plate where pernaps only a
score or two of stars are visible to the naked eye, while not a dozen of them could be seen at all on the ground plass of the camera.
Of course not many photographers have the necessary facilities for making pictures of this kind. If, however, some friend or good-natured astronomer has a small telescope of the kind referred to, which can be made available, the thing is easily managed. The camera can be strapped or tied to the tube of the telescope in a few minutes, and then everything is ready to proceed with the exposure. The camera should be focused previously with the utmost care, using the ull aperture ou a well-defined distant object, and then narked or clamped in such a way that nothing can be changed when the camera is attached to the telescope. It is almost indispensable that the full aperture should be used if the exposure is to be continued long enough or the fainter stars, as otherwise the time would be greatly increased, with very little corresponding gain. Auy good rectilinear lens will give sharp images over a sufficient portion of the plate, provided it is accurately focused. In most uses of the lens this is not an important matter, because any ordinary error is corrected by the use of stops, but in stellar pictures a small error in the position of the lens will utterly spoil a plate which otherwise would have been entirely satisfactory.
It will be found very convenient to have one of the common simple shutters attached to the camera lens, with a tube and bulb running down to the eye piece, o that the lens can be closed in an instant if anything goes wrong. The clock may need winding, and the dome shifted from time to time, and, although with a good driving clock the observer can leave the instrunent long enough to attend to such matters, it is safer o be able to shat off the light in the event of the clock stopping, or any accident occurring. Then the instrument can be brought back to the original place, and when everything is all right, the exposure continued as loig as may be desired.
It is perbaps now generally known that the exquisite pictures of the Milky Way, and other portions of the heavens, made by Professor E. E. Barnard, of the Lick Observatory, were made with an ordinary portrait lens tied to the tube of a six inch telescope. These pictures have never been excelled by any one, and rarely, if ever, equaled. They show, as pictures taken with no photographle telescope could, the nonderf structure of the invisible hesens, with the wonderfal structure of the invisible heavens, with the eye. The number of individual stars shown on a single 8×10 plate, and that of a region not in the Milky Way, and in which but few stars are seen with the eye, is estimated to be not less than 60,000. This required an exposure of about four hours, using an aperture of about one-sixth of the focal length of the lens. Sach pictures require the greatest care in making the exposures, and extreme skill in developing the plate to get the best results. But very interesting pictures can be made in less time. With an hour or an hour and a half, a vast number of telescopic stars will be shown, and such a negative of a prominent constellation, like Orion or Urea Major, will repay the amateur for all the trouble it may cost to get it. Lantern slides frow such negatives are more wonderful and interesting than any other stellar photographs. When thrown apon the screen, it is difficult for many to believe that such a wilderness of starso could be really photographed with a lens through which not really photographed with a lens through which not Anthony's International Annual of Photography, 1891.

combating Incecte with precece.

A few weeks ago we published an article in reference to destroying chinch bugs in sorghum fields by introducing insects infected with contagious disease. By the kindness of Mr. M. B Clement, of Sterling, Kan., we have received a small bundle of forage stuff, having many dead bugs attached to the leaves where they died from the effects of contagious disease intentionally introduced.
In this case, as we are informed, myriads of chinch bugs hatched in a wheat field, and as soon as they were able to move about, migrated to the adjoining corn and cane fields, literally covering the plants and destroying them, row by row, as they advanced. A few chinch bugs which had been exposed for twenty-four hours to infection, by being put into a jar containing disesea chiuch bugs, were scattered among the destroying in sects.
In five days after the introduction of the contagious disease, the destruction of the crop ceased, the myriads of moving insects were motionless, and it was difficult to find any living chinch bugs in the feld.
As chinch bugs sometimes injure sorghum, by invasion in countless numbers from the wheat fields where they principally breed, it is a matter of interest to sorghuw growers to know whether there are any practicable means of preventing the losses caused by these insects, and for this reason repeated experiments have been inade this season in this line at the Sterling Sorghum Experiment Station.
When young the chinch countless numbers. When double means of locomotion, there appears to be tion, there appears to be no way to bar their entrance into a field of cane.
It appears to be impossiIt appears to be imporsible to poison these insects in a wholesale way. They live through the coldest winters, they thrive most, in the hottest and driest summers. They find a hawe in the foot stalks, or he funnel-shaped parts of the sorghum leaves which encircle the canes and suck the sweet sap of the cane. A very moderate estimate of the loss caused by chinch bugs in Kansas for a single year is $\$ 11$ for each man, woman, and child in the State.
The legislature of Kansas appropriated several thousand dollars to be ex pended, under directions of Prof Snow in cultivas ing and spreading contagious chinch bug diseases. Infected bugs have been sent by thousands all over the State of Kansas, and the evidence which is now
accu:uulating seems to point very strongly to the welcome fact that the losses caused by chinch bugs may be greatly reduced by cultivating coutagious chinch bug diseases, and by causing infected insects to spres the disease.
Prof. Galloway, of Washington, is now propagating myriads of germs of a disease which is deadly to the chterpillars. It is said that when a diseased caterpillar is stabbed with a needle, and the needle is put into gelatine or extract of beef, the germs of the disease are transferred to the liquid, and soon every drop contains thousands of the germs of the disease. It is believed that, having the germs of disease, a farmer can prepare quantities of such solution and can distribute it iu his felds with an atomizer. Any worm touched mast die and must give the contagion to other worms.
It may be that the cotton boll worm may thus be checked. By cultivating disease we may, perhaps, be relieved of the plague of flies and other noxious insects.
The ethics of the twentieth century may consist in avoiding diseases which now afflict hamanity and in giving deadly disease to all living creacures whose interests conflict with ours.-La Planter.

scallopa.

They like the long sedges, or eel grass, and at low tide can easily be taken with a crab net or with the hands. They often have their shells open, and when they see you they seem to give a spring, that is, they shut their shells quickly, which gives them an impetus that makes them rise a little, and they fall about welve inches farther away than they were at first. The line of motion is a curve, and they generally turn over just as they commence to fall. When caught they seem quite indignant, spit out a stream of water, and open and shut their shells quite rapidly. The
part which is eaten is the hard muscle which controls the shells; all around this muscle is soft flesh, like the edges of an oyster, and this extends to the edges of the shells. All around are rows of spots of the most beautiful steel blue. These are probably organs of sight. J. Husson.

A WATER DEODORIRING FLUME.

The illustration represents an attachment for gar bage disposal plants, to render inodorous the gasea and smells which arise during the process of reduction of the garbage, whether the garbage be burned or dried. All the garbage drying or burning ovens are connected with a pipe leading to the air blast pipe, also the flues from the boiler grates are connected in the same manner, causing a suction of all the sinoke and gases from the boilur grates and the carbace ovens, which are delivered into the air blust pipe and re the are eighteen feet depth of water. The pressure of air from the air engine causes an outward current from the flume, and the wings upon oither side of the fluine supply fresh water to assist the operation. The flume may be extended into the water any length desired, and can be used in any strean or body of water where the necessary depth can be obtained naturally or artificially, or by the prection of a tank or reservoir. In the latter instance the flume and wings would be set vertically, not horizontally as sbown in the illustration. The process
of deodorization is achieved by the mixing of the gase

A WATER DEODORIZING FLUME*
an attachment for Garbage Disposal Plants.

Asphalt and Coal Dunt Fruol.
The Southern Pacific Company has long had a serions problem to consider in obtaining a proper and cheap fuel for its locomotives. No large bed of coal has ever been discovered in California that could fur nish a supply of proper fuel sufficient for this coll pany. The coal now used comes most from Victoria, and is brought to West Oakland in steamers built especially for that trade, and from West Oakland the coal is sent over the road.
The company has now turned its attention to the nanufacture of artificial fuel.
A plant has been purchased in England, for the manufacture of an artificial fuel brick from coal dust and asphaltum ; capacity five tons per hour. If this process is as successful on this coast as it has been on the Continent, it will be an enormous eaving for the Southern Pacific Company.
The machinery will be set up alongside of the coal bunkers on Long Wharf and the coal bunkers will be utilized.
The outfit will cost $\$ 75,000$, and will have a capacity five tons of coal bricks an hour. - Enquirer.

Luminous Painta.

For orange luminous paint. 46 parts varnish are wixed with 17.5 parts prepared barium sulphate, 1 part prepared India yellow, $1 \cdot 5$ parts prepared wadder lake, and 38 parts luminous calcium sulphide.
For yellow luminous paint, 48 parts varnish are mixed with 10 parts prepared barium sulphate, 8 parts barium chromate, and 84 parte luminous calcium sulphide. For green luminous paint, 48 parts varnish are mized with 10 parts prepared barian sulphate, 8 parts chrowium oxide green, and 34 parts luminous calcium sulphide.
A blue luminous paint is prepared from 42 parts varuish, 10.2 parts pre-
pared barium sulphate, 6.4 parts ultramarine blue, $5 \cdot 4$ parts cobalt blue, and 46 parts luminous calcium sulphide.
Δ violet luminous paint is made from 42 parts varnish, 10.2 parts prepared barium sulphate, 2.8 parts ultrausarine violet, 9 parts cobaltous arsenate, and 36 parts luminous calcium sulphide.
For gray luminous paint, 45 parts of the varnisb are mixed with 6 parts prepared barium sulphate, 6 parts prepared calcium carbonate, 0.5 part ultramarine blue, 6.5 parts gray zinc sulphide.
A yellowish-brown lumof the ovens and the boiler grates with the oxygen of inous paint is obtained from 48 parts varnish, 10 parts the water, all moving in ebullition under direct air five or have been patented by W. F. Goodhue, civil engineer Milwaukee, Wis.

Marlne Phomphoremcence, etc.

During the first week of June was seen, off the south coast of Devon, one of the most beautiful natural bhenomena it has ever been my privilege to witness. Across Torbay, beyond Hope's Nuse to Babbicombe Bay, on to Oddicombe and Petit Tor, far as the eye could reach, the sea was dyed with brilliant crimson, which in the bright summer sunshine looked as if the water was turned into arterial blood, reflecting the ight with a weird and wonderful effect. But it was at night the strange phenomenon revealed its full splendor. Then, right and left, far and near, the sea looked like molten silver, tinged with amber, and rich with gold. The far-off horizon was one long bar of glorious surge dashed waves broke apon the rocks, and the Babbicombe Bay, showers of phosphorescent spray wabe hurled high into the air prodncing a spectacle grand in the extreme. The phosphorus which produced this magnificent sight was caused by the surface duced this magnificent sight was caused by the surface
of the sea being covered with the spawn of the common of the sea being covered with the spawn of the common
inussel. When the tide was ont, rocks, pebbles, and sand were coated with a thin film of transparent gela tine, which speedily vanished with the light and heat of the noontide sun. What renders the phenomenon peculiar is that I could find no trace of mussel bods in the neighborhood. The phosphorescent effects were greatest on the third night after the spawn was seen apon the water. In another forty-eight hours it had completely disappeared.-Th. S. King, Science-Gossip.
precipitated barium sulphate, 8 parts auripigment, and 34 parts luıninous calcium sulphide.
Luminous colors for artists' use are prepared by using pure East India poppy oil, in the same quantity, instead of the varnish, and taking particular pains to grind the inaterials as fine as possible.
For luminous oil-color paints, equal quantities of pure linseed are used in place of the varnish. The linseed oil must be cold-pressed and thickened by heat.
All the above luminous paints can be used in the manufacture of colored papers, etc., if the varnish is manufacture of colored papers, etc., if the varnish is to a paste with water.
The luninous paints can also be used as wax colors for painting on glass and similar objects. by adding, instead of the varnish, 10 per cent more of Japanese wax and one-fourth the quantity of the latter of olive oil. The way colors prepared in this way may also be used for painting upon porcelain, and are then care fully burned without access of air. Paintings of this kind can also be treated with water glass.-Ztschr. Oest. Ap. Ver.

The list of articles to be admitted free of duty to Cuba and Porto Rico from the United States, under the new reciprocity treaty with Spain, on and after September 1, includes the following: Woods of all kinds, in trunks or logs, joists, rafters, planks, beams, boards, round or cylindrical masts, although cut planed, and tongued and grooved, including flooring woods for cooperage, including staves, headings, and wooden hoops ; wood boxes, mounted or unmounted except of cedar; woods, ordinary, manufactured into doors, frames, windows, and shatters, without paint or varnish, and wooden houses, unmounted, withou paint or varnish.

HEW TLASH LGHT AND FOG BELL AT CONEY ISLAND POINT.
This new lighthouse is 81 feet in height above th foundation, and is $761 / 2$ feet to center of light above low water. The cylinder on which watch and light rooms stand is 60 feet in height and 6 feet in diameter, and is made in nine courses of $3 / 4$ inch wroughtiron. The four supporting rods are 6 inches in diameter. These are braced every 20 feet on the four sides by 4 inch pir ders and $11 / 2$ inch cross braces. The four apright gupders and $1 / 2$ inch cross braces. The four upright sup ports are each bolted to the foundation by four 11/2 inch bolts. The foundation is 24 feet square at the top. Piling of white oak was tirst driven down to the depth of 32 feet. On the piling were placed two rows of yellow pine timber 12×16, one row crossing the other, leaving an opening between each timber of 12 inches. The open spaces were then filled up with concrete. The timber was then covered over with 18 feet of concrete. The watch room above the top of cylinder is about 9 feet in height and 9 feet in diameter. It is fitted up with closets for keeping lamp chimneys,
one winding up for three hours. The bell rests on a pedestal running up on the inside and fastened to the top. The hammer works on a pivot at the top, striking the bell on the inside. The bell weighs 1,482 pounds and can be heard from 1 to 5 iniles, according rounds are one and one-sixth acres. There is also a wellhouse and cottage apon the grounds. The depth of sunken well is 21 feet. The cottage contains 8 roows with cellar. The grounds about the buildings had to e remade. They were first covered with 18 inches of yellow clay, over the top of which was added 12 inches f soil and then sodded. The lens was made by Sautier \& Co., Paris, France. Cost $\$ 1,500$. The entire grounds and buildings cost about $\$ 28,000$.

A Now Harlem River Bridge.

Work has been begun on a new bridge over the Har-
em River at Seventh Avenue, New York City. The plans have been prepared by A. P. Boller, C.E., 71
ively low resistance. The electrical resistance of such a wire varies according to its temperature; so that the reading of the one gives the other by consulting a table prepared with reference to the zero of the instrument. The well known Siemens electrical pyrometer depends upon the same prisciple; but in this case the zero is known to change largely and continuously. Mr. Callender, however, indicates that this effect is due to the imperfect design of the Siemens intruments; and he decleres that if the wire is pure to start with, and is protected while in use from strain and from contamination, its resistance, after having once been annealed, is always very near the same at the same temperature. Mr. Callender's improvements in the platinum resistance thermometer, or pyrometer, seem therefore to consist in the better protection and treatment of the platinum wire. This is differently treated according to the heats to which it is to be exposed. For use at temperatures below $700^{\circ} \mathrm{C}$., the leads may be of copper or silver, and the tube of hard glass. For rough work at temperatures below 1,000 C.,

NEW FLASH LIGHT AND FOG BELL AT CONEY ISLAND POINT.

| onl, etc. Above this is the light room, containing the | Broadway, New York City, and it is estimated that the |
| :--- | :--- | :--- |
| lens. The room is about 7 feet in dianeter and about | cost will be about $\$ 1,250,000$, the full amount appropri- | feet in height up to the top of the windows, where it runs up to a point about 2 feet, making the height of ourth order and is 2 leet and 10 inches in height and lourch order, and is 2 leet and 10 inches lo height and 20 inches in diameter. It is made entirely of brass and glass, and contains 90 curved prisms and 10 mirrors. The leus is bolted at the bottom to a 20 inch gearing wheel which revolves around on a ball socket inside of the pedestal. The pedestal stands in the center of the room and is 3 feet 6 inches in height and 6 inches in diameter. The lamp holds two quarts of kerosene oil and will burn 7 hours. The lens makes a red flash by means of a red globe on the lamp every 10 seconds, and one revolution in 1 minute 10 seconds. The light can he seen $161 / 2$ nautical miles. It is run by clockwork connected to the giaring wheel hclding lens. The weight used is 60 pounds. The lers will revolve four and a half hours with one winding up of weight. The keeper visits the light every four hoars. To see the fall force of light a person must stand directly in front of the mirrors. a person must stand directly in front of the mirrors. As soon as each mirror gets at an angle, the light dis-

appears gradually and makes a red flash. The fog bell is rung by a Stevens machine. The weight used for ringing bell is 540 pounds, and will ring the bell with
ated by the legislature. There is one draw span of 412 feet in length, giving a clear water way of about 160 feet on either side of the central pier. It is estimated that this draw will weigh about 2,400 tons, and it will
be operated by a 60 horse power engine. It will be one of the heaviest draw spans in the world. The stone work of the central pier is to be rock-faced ashlar in two-foot courses, the copings being all cut stone. The superstructure will be entirely of mild steel and the floor of the bridge will be of the buckle plate type covered with asphalt laid in bituminous concrete. The width of the bridge will be 67 feet over all, 40 feet of which is devoted to a roadway, with two 10 foot sidewalks on either side. The length of the bridge proper will be 731 feet, and the approach 1,740 feet, making the total length 2,471 feet.

The Electrical Pyrometer

It appears from a paper by Mr. H. L. Callender, published in the Philosophical Magazine, that at last something like precision has been secured in a thernometer for high temperatures. This much-needed instrument is made by Mr. Callender in the form of a platinum resistance, the simplest shape of which conpists of a coil of fine wire welded to leads of compara-
very fair results way be obtained by the use of a wrought iron tube. The instrument is the size of an ordinary thermometer.

An Aluminum Boat.

Interesting experiments have recently been made on the Lake of Zurich with a boat built entirely of aluminum. The boat weighs only about half a ton-viz., about half the weight of an ordinary boat of the same size. It was built at the works of Messrs. Escher Wyss \& Co., of Zurich, the metal having been furnished b_{y} the Aluminum Works, of Schaffhausen, where it is obtained by an electrical process, the dynamos being driven, not by steam engines, but by turbines, which utilize the water power of the celebrated falls of the Rbine, so that the boat claims to be exclusively the product of S wiss labor and power. It carries eight persons, and, with a petroleum engine of only two horse, easily makes six miles an hour. Aluminum not being subject to rust, the permanent color of the boat is a beautiful dull white, while the chimney, being of polished aluminum, shines like silver. The trial trips of the boat were eminently successful, and it is anticipated that the construction of aluwinum steamers,
having the same capacity and only half the weight of the iron ones now used on Swiss lakes, has a great future before it.

REFRIGRRATION FOR TOWNS AMD CITLES BY sTREET yanss.
The Colorado Automatic Refrigerating Company, of Denver, is, we believe, the first and thus far the only company to successfully introduce a method of supplying refrigeration to families, restaurants, salcons, hotels, zneat markets, commission houses, etc., by means of street mains. Established in 1889, at a cost exceeding $\$ 130,000$, it is already a demonstrated success. The plant of the company, as shown in our illustration, occupies a room 40 by 180 feet in size. Over two miles of street mains have been laid. Numerous applications for streat service, beyond its capacity, have been necessarily declined. An extensive cold storage ware house, issuing negotiable warehouse receipts, is operated in connection with it. It is the business of this company to furnish thorough refrigeration at lower cost than the same could be obtained, in an inferior and imperfect manner, from the use of ice. The company have secured a franchise from the city to lay mains in its streets and alleys. About one hundred and fifty service connections can be made to the mile, service boxes being provided at the sidewalk, similar service boxes being provided at the sidewalk,
0 those
The street piping is virtually a part and an extension
of piping surface supplied and according to the amoun of aminonia allowed to fiow through.
No refrigeration is doue in the conduits in transit to
the consumer because a pressure is maintained to hold the ammonia in liquid form, therefore no refrigeration is lost. The entire amount is delivered where it is utilized and paid for.
The liquid anhydrous anmonia used is contained in strong reservoirs under a pressure of 150 pounds, and in expanding absorbs heat from the coil and from the air surrounding it and from the material to be refrigerated. The ammonia gas resulting from the expansion of the liquid ammonia is returned to the central station, through another pipe, where it is absorbed by water, which has a great affinity for ammonia. It is then separated from the water by distillation, and cooled and reconverted back into liquid ammonia, being held in that state in the receiver ready again for use. The ammonia is, in this way, carried through pipes at small expense, as the quantity required is small, an inch and a quarter pipe being sufficient for the street wain of an entire district. When refrigeration is desired, ammonia is turned on by opening a cock in the supply pipe. This is antomatiopening a cock in the supply pipe. This is antomati-
cally turned on and off by an electro-magnet connect-
manufacturing artificial ice in closets adjoining the kitchens, freezing ice cream and carafes of table water, and cooling bottles of ohampagne.
The Denver Club, an extensive institution well known anong club men thoughont the United States, and located a mile distant from the central station, has six difforent compartments refrigerated by the com pany, waintainiug six different temperatures. One or fruit at about 45° Fah., one for meata, fish, gane t 86° Fah., one for wines and liquors at 40° Fuh., and one for freezing carafes of water, ice cream, and wines at about 10° below zero. Fresh meat, poultry, game, ish, and all kinds of delicate food are thus readily preserved for weeks, in the warmest weather, obviating the waste herotofore attendant upon the use of ice in the old-fashioned way, it being possible when necessary to bold refrigerators or cold storage rooms at a permanent temperature of 20° below the Fahrenheit zero. The system is also readily applicable to hospitals, theaters, sick rooms, and wherever it may be desirable to reduce temperaturo.
The system operated by this company is covered by a combination of twenty to thirty pateuts, the most important of which applies to the storage of the sur-

PLANT OF AUTOMATIC REFRIGERATING COMPANY, DENVER, COL.
of the storage tanks located at the central station, and consists of three lines of extra strong ammonia pipe, laid in cement and connected by special steel fittings. One pipe is called the " liquid line," for the conveyance of auhydrous ammonia under pressure, and is about one and one-quarter inches in diameter. Another, two to three inches in diameter, according to its distance from the central station, is called the "vapor line," or return main, for returning the expanded ammonia in gaseous form after having performed refrigeration. The third pipe, known as the "vacuum main," is about one inch in diameter, and is connected at each customer's service box with both the liquid and vapor lines. Its office is to remove any accumulation of gas from main or branch lines.
A suitable amount of plping, called the "expansion coil," is placed in each refrigerator, or apartment intended to be refrigerated, one end being connected with the "liquid line," the other with the "vapor line." A valve, when opened, allows a trickle of ammon!a to enter the expansion coil, and the liquid ammonia, when relieved of pressure, boils or vaporizes at 25 degrees below zero of Fahrenheit, thus cooling the plping and producing an exterior covering of white frost, refrigerating the box or apartment inclosing it to any desired temperature, according to the amount
ed with a thermostat. When the temperature of the box or room falls below a standard, the valve stops the box or room falls below a standard, the vaive stops the
flow. It also opens it when the temperature rises above a standard, obviating the necessity of any attention from the engineer in charge.
Exhaustive experiments are said to have resulted in establishing the fact that one pound of anhydrons liquid ammonia has the same refrigerating power as thfee pounds of ice. Water and vapor from melting ice saturate with moisture the contents of the most expensive and perfect of modern improved ice refrigerators. The odors of the various foods deposited in them is absorbed by the damp air so that the fiavor of each is injured, recognizable as the "ice box taste." The absolutely dry refrigeration of this system is one of its most inportant features.
A walk along the line of the mains now in operation and a glance at the results is interesting. At one place the temperature of a large butter room of a commission house is held by contract at $42^{\circ} \mathrm{F}$. Near by is the meat room of a wholesale market with a constant temperature of $\mathbf{3 6 ^ { \circ }}$ F. Adjoining, the beer vault of an extensive brewery is properly cooled, while on the principal retail streets are found numerous saloons,
restaurants, hotels, and club houses availing themselves of similar facilities in a variety of ways, such as
wanted, obviating the necessity of the continuous wanted, obviating the necessity of the continuous operation of the machine
the anhydrous ammonia.
The machinery which we illustrate, and which was photographed specially for us, is a modifled type of the refrigerating apparatus known as an absorption machine, the essential process of which is the separatlon by heat of the ammonia from its water, the cooling and condensing of the same to liquid anhydrous ammonia, the use of this liquid in street lines, and the absorption of the expanded gas from the return main back again into its water, to be again distilled, reliquefled and sent out, the waste of material in the cycle of operations being very slight. The construc tion of machinery suitable for pipe line work necessitated a number of costly experimente, as the variations in the rate of the refrigerating load are often sixty-five to seventy per cent above or below a daily rate, and such changes often occur within a very short space of time. Such perfection has been attained in this particular that the machine equalizes the pressure auto matically withont attention from the engineer and adjusts itself to the irregular use of the liquid. The company claims that its safety devices and its system of operation are such that any serious accident is an impossibility.-W. Y. Beach.

Qorrespondence.

Wolp, Comet.

The Editor of the Scientiflc American:
Wolf's periodic comet is now well placed for obeerva tion, and it is bright enough to be visiblo in telescopes of moderate aperture. I send the following places to nable any who may wish to see the comet to pick it up withont difficulty

Seplember	R. A.	Declination.
1	8 h .88 m .	+250 51
4	8 h .40 m .	24.8
8	8 h .49 m .	$22^{\circ} 57^{\circ}$

It will be seen that the comet is moving in a southeasterly course, and from the above its path in the heavens may be traced for future dates. On September 8 and 4 it is in the Pleiades, where it may be easily found. From the Pleiades the comet moves toward the bright star Aldebaran. The

William R. Broors.
Suith Observatory, Geneva, N. Y., Aug. 26, 1891.

The Intornational Congroms ar Hyetione and Demography.

One of the most interestingiand important gatherings of scientific personages that has taken place in these ater days is the congress now in session in London, in the rooms of the Royal Society. The science of demography, we may here remark, relates to the statistics of population,! mortality, etc. The opening address was made by the Prince of Wales, who said: "My bope is that the work of this congress may not be limited to the influence which it may exercise on sanitary authorities. It will have a still better influence if it will teach all people in all classes of society how mach every one may do for the improvement of the sanitary conditions among which he has to live. I say distinctly 'all classes,' for although the heaviest penalties of nsanitary arrangements fall on the poor, who are themselves least able to prevent or bear them, yet no class is free from their dangers or sufficiently careful to avert them. Where could one find a family which has not in some of its members suffered from typhoid fever or diphtheria, or others of those illnesses which are especially called 'preventable diseases'? Where is there a family in which it might not be asked, 'If preventable, why not prevented 9 ' I would add that the questions before the congress, and in which all should take a personal interest, do not relate only to the prevention of death or of serious diseases, but to the maintenance of the conditions in which the greatest working power may be sustained."
At the conclusion of the Prince's address, speeches were delivered by representatives of France, Italy, Austria-Hungary, Saxony, and Prassia, in which all bore high tribute to the part which has been played by England in the promotion of measures calculated to .preserve and improve the public health. D Brouardel (France) was indeed specially emphatic :
"I In the year 1887 appeared the act which rendered obligatory the registration of deaths. This act did not
long remain alone. Under the impulse given by two long remain alone. Under the impulse given by two of your most illustrious patriots, William Farr and Edwin Chadwick, you have organized a system of registration of the causes of diseases and of deaths. Certain important cities, before the law made it obligatory, obtained supplies of water beyond all suspicion of pollution, and adopted systems of removal of foul water and waste matters. In these cities, whose action cannot be too much praised, the sickness and death rates diminished rapidly; this furnished the necessary proof it was time for reform. Twenty years ago the local Government Board was established, and in 1875 had submitted to Parliament a bill for the protection of ${ }^{\text {the }}$ public bealth. During its discassion in Parliament one of your greatest ministers (Disraeli) prononnced in the House of Commons tbese memorable nounced in the House of Commons tbese memorable in all Parliaments : 'The public health is the foundain all Parliaments : 'The public health is the foundation on which repose the happiness of the people and
the power of a country. The care of the public health the power of a country. The care of the public health
is the first duty of a statesman.' Since this, each year you have made fresh improvements in your sauitary laws; if in your eyes they are not perfect, in the eyes of the nations who surround you they are an ideal toward which all their most ardent aspirations tend. It is your example they invoke when they claim from the public authorities the powers necessary to oppose epidemics, to combat the scourges which decimate their populations. You have taken the first rank in the art for formulating laws for the protection of health; this is not all that you have done in the domain of hygiene.

Among the diseases which one can properly term pestilential, there are, thanks to the work of the hygienists of all countries, certain ones which from the present time may be considered as preventable : such are small pox, typhoid fever. dysentery, and cholera For one of these, the most terrible, the immunity conferred by vaccination is absolute. The person upon whom this immunity; is conferred can pass
through thefmost severe epidemics and expose himself to all'sources of contagion without being affected. Who is.it that thas preserves from death, from blindness, is,it that thas preserves from death, from blindness,
from infirmity, millions of haman beings of all counrom infirmity, millions of haman beings of all coun
tries and of all races ? On May 18, 1796, a date which tries and of all races ? On May 18, 1796, a date which might well be the date of a great battle, Jenner in-
oculated with vaccine matter, by means of two superoculated with vaccine matter, by means of two super
ficial incisions, the youth James Phipps. Protection against small pox belongs to you; the world will be to you forever obliged.
"Let us consider two other epidemic diseases. Is it possible to establish the conditions of propagation of typhoid fever without quoting the names of Budd or of Murchison? I am aware that in 1855 Dr. Michel de Chaumont had for the town in which he lived experimentally established the role played by drinking water in the propagation of this disease. Unhappily, pablic opinion was not prepared, and his discovery pabic opinion was not prepared, and his discovery
was not listened to. In the work which we are considering, the efforts of the English school were most fruitful. May I recall the fact that it was the epidemic fruitful. May I recall the fact that it was the epidemic
of cholera in 1866 in England which gave birth to the of cholera in 1868 in England which gave birth to the
theory of its propagation by drinking-water? Was it not at that date that, under the influence of your hygienists, the lords of the Privy Council issued an order formulating the laws of prevention which we adopt to-day ? Certain it is that even in England these discoveries have not immediately borne all their fruit. The anti-vaccination leagues are not yet dead. Proofs accumulated during a century have not sufficed to cure that mental blindness which is congenial.
France be represented in a congress of hygiene with out recalling the name of M. Pasteur? For centuries we have asserted that epidemic diseases were propagated by means of contact, by the air, by the effluvia, by miasinata. The idea of morbific germs, if not the name, is even found in the works of Hippocrates, but in what an uncertain sense.
"The theory of contagion has passed from century to century with strange inodifications; the uncertainty of the methods of research and the difficulties of obervation bound up together truth and error. It renained for Pasteur to prove the existence of these germs, their form, their life, their mode of action, and by their attenuation to solve the problem of immu dity. Thanks to his work, and thanks to those of his pupils, realities have succeeded to contingent possibilities. We know some of our enemies, their habits, and their mode of penetrating the body; up to this time man was conquered by these infinitesimal beings, but, thanks to recent discoveries, he will be their conqueror. When, at the beginning of a centary, one can inscribe the name of Jenner, and at its end that of Pasteur, the human race may rejoice. More has been one for it against misery, disease, and death tit." Dr. Van Coler, the medical director-general of t Prussian army, the representative of the German government, showed the aid reudered to armies by the inprovements in sanitary sciance.
'It is indeed with a feeling of joyous pride that from his place and in this country, where we have to trace the very cradle of all modern science of pablic health am permitted to point out how the many effort made in the direction of hygiene radiating from Eng land were, especially in Germany, hailed with much delight : where they received the most careful atten tion, and where they ever since have been most ac-
tively promoted. . . If from our army diseases tively promoted. . . . If from our army diseases like malaria, small pox, dysentery, have completely, or almost completely, disappeared ; if typhus fever and diphtheria become more and more diseases of the past, we have to be thankful for these attainments to the development and application of hygiene.
now an established fact that infections diseases are by no means a necessary evil in the army. They are sim ply diseases which can be avoided, which can be powerfully opposed, and against which the science of ou days battles victorionsly with ever increasing success."

Proposed obwervatory on Mont Blanc
Particulars of the observatory which it is proposed to erect on Mont Blanc are given in the Neue Zuricher Zeitung. It will be remembered that last year M. Joseph Vallot erected an observatory and hut of refuge on Mont Blanc on the Rocher des Bosses, 1,812 ft. from the summit of the mountain; but this undertaking is now to be eclipsed by the construction of an observatory on the very summit of Mont Blanc (15,781 feet above sea level). The idea originated with M. Janssen, who stayed on the mountain some time last summer for the purpose of making meteorological observations. In conjunction with M. Eiffel, and with the support of M. Bischoffsheim, Prince Roland Bonaparte, and Baron Alfred de Rothschild, he has now elaborated a plan which is as daring as the Jungfran Railway scheme The observatory is to be entirely of iron, and is to have a length of eighty-five feet and a breadth o cal form of an ironclad roof is to have the spheri cal form of an ironclad turret, which the construction will mach resemble. The erection of such
a building on the highest point of Mont Blanc naturally a building on the highest point of Mont Blanc naturally
involves thorough preliminary studies, with which a
arich engineer experienced is works on high mountains has been charged by M. Eiffel and M. Janssen. In the first place, it is necessary that a firm foundation should be found for the supports of the bnilding on the rook of the monntain. For this purpose a horizontal gallery is to be driven through the ice of the highest glacier until rock is met with, and by means of this callery the formation and position of the rock buried beneath the ice and snow are to be ascertained and ex amined. If once this has been accurately determined a structure is to be designed which will give to the ob servatory a firm hold by iron pillars founded in the rock. It is not stated how these pillars are to resis the movements of the ice. The question of how the heavy materials are to be moved to the top of the mountain does not appear to give much concern, but whatever method is adopted, it will certainly prove laborions and very costly. More is thought of the work of surveying, which was to have been commenced this month. Should the surveys prove the practicability o the plan, it is intended to proceed with the erection in September.

Pletet's Fluid.

Carbonic acid, or, as scientific purists will have it carbonic anhydride, in the solid state, has now been employed for a good many sears past in the proluction of intense cold ; but inasmuch as the snow-like sub stance (partly from its rapid evolution of vapor, partly owing to its flocculent physical condition) is not easy to bring into very close contact with a solid body, it is generally necessary to mix it with some liquid. Thus it is dificult-almost to impossibility-to freeze mercury by merely surrounding it with solid carbonic acid When, however, a little pure, dry ether is mixed with it, solidification of the metal takes place within a very few minutes. This, in fact, is a very favorite lecture table demonstration, and is accomplished without any trouble whatever. The comparative high boiling point of the latter, nevertheless, detracts largely from the ef fect, and hence the mixture in question is not so suit able for the production of very low temperatures as it might otherwise be
It has recently been found by M. Raoul Pictet that when a mixture of the anhydrides of sulphurous and carbonic acids is liquefied by cold and pressure, the fluid thus obtained is more manageable than the carbonic acid-ether mixture just referred to. It produces, by its rapid volatilization, an extremely low tempera ture, and, for purposes of this kind, is now known a "Pictet's fluid." Aided by a mechanical pressure of four to ten or t welve atmospheres-for most purpose one of about nine is amply sufficient-gaseous nitrous oxide is readily liquefied by the cold resulting from the evaporation of "Pictet's fluid." Then by the use of this liquid nitrous oxide a yet more intense cold is obtained, and, under pressures of from 120 to 200 atmo spheres, hydrogen, oxygen, nitrogen, and common air are rendered fluid. Fluid air, the temperature of which are rendered liuid. $200^{\circ} \mathrm{C}$., is described as a blue liquid and on letting a little escape, a distinctly blue cloud is formed in the air, disappearing very quickly as the vapor diffuses in the air

Ground Bone an Fortlizer.

In a report on experiments made at the New Jersey Station with ground bones as a fertilizer, it is pointed out that ground bone is both a phosphate aud a nitro genous manare, insoluble in water, but when in the soil is decomposed and yields its constituents to the feeding plant in proportion to the fineness. It varies but little in composition and is less liable to adultera tion than most fertilizers. They, in fact, are usually pure. Ground bones have a tendency to cake, and to avoid this the manufacturer may use other substancee which, while aiding mechanically, reduce the chemical value of the mixture. Raw bone is most usually pure but the fat it contains renders it less easily decomposed. Bones having served the purpose of the glue maker are low in nitrogen and very high in phosphoric acid The method now employed of steaming the bones under pressure improves their quality without alter ing the amount of the plant food ingredients. As the value of ground bones depends upon composition and their fineness, a mechanical as well as chemical analy sis is required to determine their value. The farmer must determine by crop tests which grade he should buy-whether, for example, pay a dollar for ten pound of phosphoric acid in one condition, or for eighteen and a half pounds in another form. Average wood ashes are worth $\$ 9$ per ton, but the best vary consider-ably.-Fruit Growers' Journal.

A Now Dindufectant.

A recent discovery, which is the outcome of the investigations of Dr. H. Oppermann, and which he has also paiented, is the application of dolomite to antiseptics. The dolomite, after a special preparation is mixed with a certain proportion of oxide of iron and iron pyrites, and the mirture is employed in the form of a powder. According to the experiments made a the Hygienic Institute, at Kiel, it seems likely to sub stantiate its reported efficacy.

a FAITHFUL AID TIRELESE EERVAMT.

The patient, tireless, hardy beast of burden form ing the subject of our illustration has borne an extremely important if not always duly credited portion of the labor of opening up our new western conntry both on the great plains and in the mountain regions. In our fully illustrated description of the building of the Pike's Peak railroad, in the Scientipic American of January 24, it was stated that " all provisions, tools, of January 24, it was stated that "all provisions, tools, and camping outfits were transported by trail to the
various camps along the line on the backs of mules various campe along the line on the backs of mules
and burros," but, in addition to this general credit, we and burros," but, in addition to this general credit, we now present a view, from a photograph, of one of the animals so employed. Odd as the view must seem to most of our readers, it is by no means an uncommon one to those familiar with life at mining camps in the mountains and in many other places distant from the railroad lines. And, with variations in the character of the burdens, these same sturdy, diminutive equines, which would generally be classed as donkeys at the East, or as bronchos, burros, or Indian ponies at the West, have borne a large part of the labor attendant upon the advancing settlement of the plains.
liancy those obtained from the best varieties of com mercial indigo. Its identity with the natural product was established by means of its chemical reactions, by dyeing tests, and by spectroscopic examination The yield is about 00 per cent of the glycocoll taken. -Ber. Berl. Chem. Ges., Amer. Jour.

The Kermes (Coccus Illis).

From the earliest ages this insect has been employed to impart a scarlet color to cloth. It was known to the Phonicians under the name of Tola and to the Arabians and Persians as Kermes or Alkermes (Al signify ing the, as in the Arabian words Alchemy, Alkali).
Dioscorides calls it kokkos, and Pliny coccum and granum. In the middle ages it received the epithet Vermiculatum, or "little worm," from its having been supposed that the insect was produced from a woriu. From these denominations have come the Latin coc cineus, the French cramoisi and vermeil, and our own words crimson and verwilion. The Coccus ilicis, or sermes, is found in great numbers in India and Per sia, attaohing itself to the leaves of a small oak, the kermes oak (Quercus coccifera), a low bushy shrub with
duce as much coloring matter as ten or twelve pounds of kermes. Cochineal has supplanted kermes, and the latter is now only cultivated by the poorer inhabitants of the countries in which it abounds, especially in India and Persia, and the peasantry of Bouthern Europe.
Another species of kermes (Coccus polonicus) is very plentiful in Poland and Russia, and is sometimes called the scarlet grain of Poland. Before the advent of cochineal, this insect formed a considerable branch of commerce. In the neighborhood of Paria, and in many parts of England, the C. polonicus is found upon the roots of the perennial knawel (Sceleranthus perennis), a plant not uncommon in Norfolk and Suffolk. The color which it furnishes is nearly as fine as that of cochineal, und capable of giving the same variety of tints. The insect was formerly collected in the Ukraine, Lithuania, etc., and though still employed by the Turks and Armenians for dyeing wool, silk, and hair, but especially for staining the nails of Turkish women, it is rarely used in Earope except by the Polish peasantry.
The same may be said of other species which the

\triangle HRLPER ON THE PIKE'S PEAK RAIHROAD.

Our engraving was made from a photograph sent to us by Mr. John Potter, of Colorado Springs, Col.

Syntheale of Indigo-carmine.

Heymann has succeeded in effecting the synthesis of indigo-carmine, the disulpho acid of indigo, by acting upon phenyl-glycocoll with fuming sulphuric acid. If, for example, phenyl-glycocoll be mixed in a test tube with ten to twenty times its mass of fuming sulphuric acid containing 20 to 25 per cent of sulphuric oxide, acid containing 20 , it dissolves with a yellow color, and gently warmed, it dissolves with a yellow color,
evolving sulphurous oxide gas. On pouring the soluevolving sulphurous oxide gas. On pouring the solu-
tion upon ice, it rapidly assumes the greenish-blue tion upon ice, it rapidly assumes the greenish-blue
color of indigo-carmine. For its production the followcolor of indigo-carmine. For its production the follow-
ing method gives the best results : One part of phenylglycocoll is mixed with 10 to 20 parts of sand and theu introduced into twenty times its mass of fuwing sulpharic acid, warmed to 20° or 25°, containing 80 per cent sulphuric oxide; the temperature not being allowed to rise above 30°. The glycocoll goes easily into solution with a yellow color, which at once, with evolation of sulphurous oxide, passes into the deep-blue color of the indigo solution. To remove the concentrated acid, the mass is diluted with sulphuric acid of 66° B. The coloring matter is isolated by farther dilution with ice and the addition of salt. As so prepared colors obtained in dyeing with it lar exceed in bril-
mes is also found in the southern conntries of Europ and in the south of France. In parts of Spain, the kermes oak grows in great profusion, as on the side of the Sierra Morena. Many of the inhabitants of Marcia gain a livelihood by collecting kermes. This work is for the most part done by women, who scrape the insects from the tree with their nails, which they allow to grow long on purpose.
The insect attaches itself to the young shoots of the hrub; the female affiring itself and remaining immovble, till after having reached its full size, about that a pea, which it much resembles, it deposits its eggs and dies. It is gathered before the egys are hatched thrown into vinegar and then dried in the sun or in an
ven. It has been, from time immemorial, used to dy ven. It has been, from time immemorial, used to dye cloth, and is supposed to have been the substance employed in dyeing the curtains of the Jewish taberna le. As the color which it yielded was more beautiful han the celebrated Phonician dye, it may have contributed to put an end to the monopoly of the Phoonician dyers.
The kermes yields a brownish red color, which alum turns a blood red tint. Dr. Bancroft showed that when a solution of tin is used with kermes dye, as with cohineal, the kermes is capable of giving a scarlet color quite as brilliant as that which cochineal proaces, and to all appearance more permanent. Bu
cochineal has eclipsed, such as the cocous, found upon the roots of Poterium sanguisorbis, an insect formerly used by the Moors for dyeing silk and wool a rose color ; and the C. uva-ursi, which, together with alum, dyes crimson.
All these species owe their coloring property to a principle called carmine.-G. E. Cope in 8cience-Aosprine.

Locumte in Donver.

Our Colorado correspondent, writing from Denver July 29th, says: "The city last night was full of grass. oppers, or rather Rocky Mountain locusts. Their tay was brief. They were apparently hastening in a bee line for the grass on the streets of Onaha. They came in immense swarms from the west, passing on oward Kunsas and Nebraska, a few thousands only pending the evening here for rest and recreation."
They are supposed to breed beyond the range west f the city, and were driven across by the violent but brief storm. So abundant were they that the radiance of many of the electric lights was perceptibly obscured and many of the sidewalks were made slippery. The last visitation of grasshoppers to Denver ocurred in 1874.

INDIA ink is made from fine lampblack compacted and cemented with glue. The finest black is derived from pork fat. The glue is made from buffalo hide

Lae (0 ocow laccaca). This insect, like its congener the cochineal insect, my are nearly order Hemiptera. Its habits and econo my are nearly identical with it. When a colony of several males and females select a branch of a tree for
their home, they puncture it, and a milky exudation follows, in which they are soon entombed, and which furnishes them with both food and shelter. It form irregular dark-colored, resinons masses on the twigs of the trees which it surrounds, and which is gradually added to until they are sometimes nearly an inch in diameter. To each male insect it has been compated there are not less than 5,000 females, the males being twice as large as the females.
The trees most usually affected are the Ficus In dica and F. religiosa, which both abound in a milky juice. When the season arrives the natives collect the encrusted twigs, which in this state are known commercialy as "stick-lac." It contains about seven pe To of resin and one-twentieth part of colorig To separate the stick-lac is placed in large onts of colign mat ter, the atla la is placed in la ge vate of hot water, which melts the resin and thus liberates all impurities. it is then taken and a man standing at each end of the bag holds it over a charcoal fire. By this plan the resin is liquefled
and drops through and falls on to the smooth stems of and drops through and falls on to the smooth stems of the banyan tree, placed parposely to catch it. This
flattens it out into thin plater, and it is then known to us as shell-lac. If the coloring matter has not been well washed out, the resin is left of a very dark color. Thus we find in the lac market, orange, garnet, and liver varieties, that which most nearly approaches to a light brown color being the best.
When separated from impurities, pulverized, and the major portion of coloring matter removed, it is known as "seed-lac."
Sometimes it is melted up and made into small cakes. In this state it is known as "lump-lac." The water which remains behind after the lac has been
softened is rich in a coloring matter akin to that o cochineal, so that when strained and evaporated beautifal purple residue is left. Cut into cakes thi orms another important article of commerce, viz lac dye."
Shell-lac is soluble in anhydrous alcohol, ether, fat and volatile oils. In the alcoholic solution it forms ne varnish.
Hydrochloric and acetic acids also dissolve it. It is necessary sometimes to bleach it, for the manufacture of colorless varnishes, sealing wax, eta. This is effected by dissolving in caustic potash, and passing chlorine gas through the solution. It can then be pulled and twisted into sticks. Seed-lac is much more soluble in cohol shac dye is soluble use in dye ing is generally bi-tartrate of potass and protochloride fin.
The chief use of lac is for the manufacture of varn ishes and sealing wax. The differently tinted sealing waxes are produced by adding vermilion for red, ivory black for black, and verditer for blue (sometimes smalt is used). For a white wax, the lac is simply bleached before mentioned
To obtain the fine golden color sometimes seen powdered yellow mica is incorporated with it. Shell ac is imported from Assam, Siam, and an inferior uality from Bengal.
Pegu :stick-lac is exceedingly dark, and therefore ot fitted for the finer uses of lac; but the finest lac, of Very light sherry color, comes from Cicar.
We receive something like $1,000,000$ pounds annually but a large portion of this is again exported to Ger many, Italy, and other foreign countries.
After the first melting of the lac it is usually more tenacious than after subsequent meltings, which tend to make it hard and brittle. The ancient Chinese were their works of art, which remain perfect to this day They are usually small bores, either in wood or metal,
which have had a thin coating of lac, and while soft and plastic, had been moulded into various beautiful Sins. Some of these works of art fetch considerable prices.-H. Durrant, in Science-Gossip.

Improvements in Water Gas.

When steam is passed through incandescent carbon ceous fuel maintained at $550^{\circ}-750^{\circ} \mathrm{C}$., a gas is pro duced which consists mainly of bydrogen and carbonic cid, with only small quantities of carbonic oxide. When the fuel is maintained at a higher temperatare he proportion of carbonic oxide increases until, at a emperature of 1,000 , the resulting gas consists of a nixture of about 40 per cent of carbonic oxide and 50 per cent of bydrogen, with only about 5 per cent o carbonic acid. This is known as water gas, and its use often oblected to on account of the poisonous pro perties of the carbonic oxide contained.
The main object of this invention is to produce a ga ontaining but little carbonic oxide, and to increase its alorific power by removing the carbonic acid from the combustible gases. The process consists in passing team (preferably superheated) or water through fue ontained in externally heated retorts, or in water ga enerators, maintained at $550^{\circ}-750^{\circ} \mathrm{C}$. The resulting as, consisting of liydrogen and carbonic acid, in the proportion of 2 to 1 , is cooled and freed from sulphur inpurities in the usual way. It is then passed through an absorbing apparatus containing carbonates of alkal or alkaline earths, preferably solutions of sodiun car onate (soda) or potassinm carbonate (potash). These abstances readily absorb (especiaily under pressure) the carbonic acid, forming bicarbonates, from which the carbonic acid is easily removed by the action of a noderate vacanm, especially if aided by heat. The remaining gas consists principally of hydrogen, and is ready for use, while the solutions are again available or unlimited repetition of the absorbing operations,

REGENTLY PATEITED IITVETTIOAR. Engineering.
Engine Cross Head. - William 8 . Hoghes, New York City. This crose head is made in two sections with aligning tapering bores and dismotrical channela, the platon rod having one end anter the channels in the wallis of the bores, with other novel features, wheraby the rod may be attached without threading it, or employing a key, cotter, or similar evice. The crose head is so anited with the piston that a socure connection is effected, and the pliston from the conter of the croses head to the face of the loton, the cross head and piston being quickly and 0 elther
Gauge for Aligning Engines. George J. Hunt and Thomas F. McKechnie, New West ainster, Cansia. This invention provides for adjust the ends of the bore of the cylinder in connection with a cord holder adapted to be vertically or laterally djasted to bring it in line with the contral openings of te heads. The device is especially designed for use in ssembing the parts of an engine to bring them in proper alignment, readilly locating in the proper place dides for the croes head, withont roling through the tedione processes now ordinarily followed.

Mechanical Appliances.
Lathe Attachment. - Martin L. Weeks, Yantic, Conn. This invention relates to atrode, etc., and doing miecellaneons work of this kind. poviding therefor a die holder comprising a ianged pipe with a chambered head at the end opposite the lange and a perforated plate or cover for the chamber较 cover having an Inner marginal fange and a central ocket, The plpe holder has a base reasing on the mith moans for rigidly securing it thereto. It is
 plpes and rods in position to be cat by the dies.
Punch. - Francis N. Simmonds, Sa Pranciseo, Cal. This is a panch for use on iron, steel punch has à shank or which the face is atted and fastened by a bolt having a pointed heed extending centrally from the face. The bolt extends nearly
through the shank, its rear end being engaged by nuto through the shank, its rear end being engaged by nutu a a reccese in the rear end of the shank, and in opera panched before the autng edge of the material to contact therewith. The face of the punch can thus be adily resewed when worn oat or injared.
Belt Stretcher. - Claude Darst pomeroy. Onio. This is a device capable of ready ap plication to large or amall belts to draw their ends to ather to give the desired tension, and to permit the orkman to convenienty lace or otherwise fasten wo mod with Clamping arme to clamp the belt at each and are sets of connected nute on which the togr levers are plvoted, screw rods having right and left hand threads engaging the nuts to move the sets ogkle levers oward and from then orber, ath to op iem actiated by a hand lever. ORE WASHING Rowe, Kotchum, Idaho
almple and darable construction, deelknod to com-
pletely separate the ore from the tallings. It compiecely separate the ore from the tailings. At con ring frame with an endless belt peooing over it and came for raising and suddenly droppling it, with suit jige wang frame being higheat at the discharge end and inging inclined beling
Wate Force Device.-William Mal olland, Los Angeles. Cal. This is a mechanisn deagned to be converted into rotary motion for the purpose of sapplying power. A gallows frame on a
wharf supports a walking beam in vibrating potit wharf supports a walking beam in vibrating pooition,
and there is a fexible connection between the end of and there is a iexible connection between the end of
the beam and a foat in the water, the inner end of the beam being connected by a rope with a grooved pulley drums, the latter contacting with friction wheels. A number of these devices may be arranged in etries and
connected to one shaft to atilize power obtained as the connocted to one shaft to ntilize
Spinining Frame Lubricator.-Jose Alberto McDowell-Gaajardo, Saltillo, Mexico. This ib device for labricating tho top rolls of spinning, slab labor and the material need as a labricant It it trundiling or rolling labricator, capable of manipulation by hand, and composed of a ceniral oil chamber and
parallel circular series of radially arranged main lubricating tubes extending therefrom, the tubee in each serios being arranged at equal distancos apart. If the ably connected, there will be no solling of the main body portions of the top rolls with the lubricant.
Stitching Horse. - Henry J. ElsEmp, Leadille Col This is Henry J. Els dapted for aise in harness making, and is designed to hold large pleces of leather in position while they are being stitched. The device compriecs a seat on which is secured a clamp, while levers pivoted on opposite sides of the seat have their apper ends arranged to
press against the clamp, togkle levers operated by readle mechanism connocting the lower ends of the of the seat, and may be locked to hold the jaws of the clamp firmly on the leather, the lovers pressing of the clemp.

Agricultural.

Windrower. - Frank L. Boals, Mansfield, Ohio. This machine is destgned to te simple and Inexpensive in construction, and easy to operate, in
raking or gathering hay or atraw into racing or gathering hay or straw into a windrow.
Sapporting wheele are independently journaled on the main frame, which carries borizontally-revolving rake rames provided with radial arms carrying sweeping leeth, the arms and teeth successively engaging and aweeping the hay towart each other and than rising
from contect with ith the mechanism for revolving the rom contact with ith the mechanism for revoiving the rakees being
machine.

miscellancous.

Theatrical Stage Mechanism. Elmer E. Vance, Colambus, Obso. This invention provides an apparatus to exhibit an effect on the stage
orepresent a locomotive and a train of cars, while the apparatas can be folded and packed in a small compeses. Wooden aprights are provided with drams and
palleys for sapporting and driving an endlees cable the palleys for sapporting and driving an endiess cable, the
aprights being braced to withuland teneion of the
and a train of cars is sapported by one strand of the
endleses cable and drawn forward by the other strand. endiese cable and drawn forward by the other stranc
The head light, escaping steam, and sparks from the MUSic Holder. - William F. Shaw Yarmonth, Nova Scotla, Canada. This device comand a slot in its front face, a lever pivoted in the reces projecting through the alot, while two transverse rod baving cranke connect the lever at opposite sides of it pivot with the inner cranks of the rods, spring angers
being moanted on their ooter cranks. The device adapted for almoot instant adjuatment to allow prevent the turning of leaves of maslc, at the will of the performer, and is convenlent for ase at a table as
well as on a piano or organ, while it may be employed well as on a piano or organ, while it
Ice Cream Freezer. - Frederic B. Cochran, Now York City. This invention relates pound is revolved in the materlal to the freezing com the sabject of a previous paternt by the same inventor, and provides a simple means for changing the helght of the eylinder so that it will project the right distance in the material beneath. The ends of the cylinder pro-
trude through the slots of a casing in which are pivoted levers sapporting the cylinder, means being provided ends of the cylinder is provided with a crank.
Stop Bead for Windows. - Walte Braner and Edward W. Knemeyer, Fort Madison Iowa. With a window frame having vertical groovee at opposite sides of its middle bead are combined grooves, there being welights in the beads and pnlley at their apper ende, with the sashes and cords passing
therefrom over the pulleys to the weighte. This stop bead is designed to take the place of ordinary woode beade, and its construction io sach that it may be ap plied to old window frames as well as new, and wil
form corvenient receptacles to carry the window weights.
Cabinet Folding Bed. - Arthur A immerman, New York City. This invention provides panimente, when in cloced edjastment, will preeent an ornamental exterior. It containe means for adinatably coanterbalancing the weight of the couch purtion and partly antomatic in their adjastment, which, when the bed io lowered, assume positions at the side of the bed, to afrord the asaal toilet facillties. The bed complet the place where it is to be zet ap for ase, the facility with which this is effected being one of the prominen advantageous features of the construction
Vehicle Reach Coupling. - George E. Macy, Orlando, Florida. A detachable or adjast able slidable connection is provided by this invention which dispenses with the asaal front hoands and silde bars, also the usaal sand bolster, thereby simplifying
the constructlon of a wagon. A slidable bar, adjust sble along the reach, has a fork at its front end to re celve the front axle and boleter, which are united with it by the king bolt, and the bar has band-like clipe through which the reach pascess, independent locking means belng provided for secaring the bar and react together. The device may be nsed on elther one or two
horse wagons, but ls especially deelgned for one horse wagons for farm une.
Coupling for Sleighis. - Richard Ecclec, Anbarn, N. Y. This is a atrong and simple
thill coapling to whicb the thills of a aleigh may be
easily attached, and is aleo adapted to form a support or the shirting bar, that the thills may be casily vertically apertared bar having transverse apertures and spaced earr, each extended to form a brace, ne carved apwardly and the other downwardly. This conplang facilitates the shifting of the thills when and the sleigh to follow the track.
Incubator. - Frank C. Beardsley, Blllerica, Mass. This invention provides an improved to be effertively and equally distributed to insare a cafe development of the embryos. The heating chamber has a metallic botiom and is arranged over a hatchiog chamber containing trays, the healing chamber boing beated by a pipe discharging into it, while below he trays are arranged moisture boxes into each of nofow of which is regulated by a damper. The temperature io regulated by means of a thermometer arranged apon the free end of a lever, which is actuated the expanNoa and contraction of the mercary
Orange Sizer.-John J. McClendon, weebarg. Florida This is a machine for separating oranges into grades of diferent sizees, aud consisis of a bottoma, which are gradually opened by one or their ams as the table revolves. The orauges are dropped larough the gates into compartments for the different ores, the extent of horizuntal travel on the table and diferent sizes are dropped at different points in the ravel of the table, the smailer oranges arst and the Hitching Hitching Post.-Lafayette B. Hopclns, Council Grove, Kansas. This is an attachment ready hitching and unbitching of horses and operating to take up the slack, so that the horse cannot get his foot over the hitching strap. A welght bor or casing
is attached to the post by lugs or ears, and in the top ot解 attached to the post by lays or ears, and in the top of the casing is journaled a palley to gaide the bitching e puiley and being connected at its inner end with a weight which silides vertically in the box.
Game Table. - John P. W. Patillo, Greenville, Texas. This invention relates to parlor bich is an apright ceserefor a table on one end of vertical levera, each carrying at its lower end a ball aching neither the rail nor the floor of the table. The levers are so connected within the casing that on one of the table, according to such ralees as may be made for the play, a card containing a picture or numeral will be made to appoar at one of several openings at the top
part of the casing, the game admitting of many varia art of the casing, the gamo admitting of many varia

Toy Bowling Alley. - John R ettit, New York City. This is a miniatare device ins when the latter are arranged atter the usual style playing, and means are also provided for stopping ball sent to the projecting mechaniem before the pins are set ap or the projector adjasted. A gum band spring slides the pusher bar :orward as
latch plate tagaging a trigger rod.
Nors.-Copies of any of the above patents will be and name of the patentee, tille of invention, and dete of this papar.

September 5, 1891.]
$\mathfrak{\bigotimes}$ Business and \varliminf^{2} ersonal.
The charge for Insertion under this head ts one Dollar a line
for each insertion; about eight words to a line. Adver for each insertion; about eight words to a line. Advertisements must be received at pubtication offce as early a
Thursday morning to appear in the following week's issue I wish to buy second hand lathes, planers, drills, shap-
ers, engines, bollers, and machinery. Must be in good ers, engines, bollers, and machinery. Must be in go
order. Will pay cash. W. P. Davis, Rochester, N. Y. Acme engine, 1 to δ H. P. See adv. next issue. Presses \& Dles. Ferracute Mach. Co., Briggeton, N. J. Steam Hammers, Improved Hydraulic Jacks, and Tub Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Tight and Slack Barrel Machinery a specialty. John
ireenwood \& Co., Rochester, N. Y. See illus. adv., p. 300 . Wanted-A first class draughtsman and machine de-
inger with experience. Address C. N. J., box T73, New Inventive man, with experience in chemistry and en-
gineering, wants position. Reputation, box $\pi 3$, New gineer
York.
Wanted-" Agency" for Paciffo coast. Some good
pecialty. Burt, Ramsay \& Co., 208 Sutter St., San Franisco, Cal.
For the orlyinal Bogardus Universal Eccentric Mm, Foot and Power Presses, Drills, Shears, etc., address J.
S. \& G. F. Simpson, 26 to 36 Rodney St.. Brooklyn, N. Y. The best book for electricians and beginners in elec-
tricity is "Experimental Science," by Geo. M. Hopkins. By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y. Sheet Rubber Packing, $1-16,3-3,2,3,3,3-16$, and $\%$ inch thick, 7% cents per pound. All ktnds of rubber goods at
low prices. John W. Buckley, 156 South St., New York. Position as superintendent or manager in a mfg. es-
tablishment; varied practical experience in important positions; fully up in duplicat
tice. "C.," box TT3, New York.
For Sale-Two hydraulic presses and pumps, one 2,800 ons capacity, the other 1,000 tons. Estimated weight of
the first 40 tons and of the second 27 tons. Have had but trifing usage, Full deecritption and low. prices upon ap-
pication. Address s. C. Forsaith Machine Co., machinplication. Address S. C. Forsaith Machine Co., machin-
ists and general machinery dealers, Manchester, N. H.
 New York. Free on application.

hints to correspondents.
Names and Address must accompany, all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto. This is for our
information and not for pablication. Ther
References to former articles or answers should
 be repeated; correspondents will bear in mind that
some answers require not y ilttle research, and
though we endeavor to reply to all either by letter some answers require not a little research,
though we endeavor to reply to all either by le
or inthis department each must take his tunn.
pecint wi ricten In or in this department, each must take his tarn.
pecinu \mathbf{W} riten In Iformation on maters of
personal rather than general interest cannot be expected withont remuneration.
sientife American suppents referred
to may be had at the offlec. Price 10 cents each. Scientific American Supplements referred
tomay bee ad at the office. Prie 10 cents each
Books referred to promptiy supplied on receipt of Minerals sent for examination should be distinctly
marked or labeled.
(3314) Experimenter asks how the explosive used for priming cartridges is made and how applied. A. It is made by dissolving 1 part mercury
in 12 parts nitric acid, and mixing the product with an in 12 parts nitric acid, and mixing the product with an
equal quantity of alcohol. The liquid is heated to comequal quantity of alcohol. The liquid is heated
plete the reaction, is cooled. and the fulminate separates. It may be parified by recrystallization. In ne trate, and the mixture is secured in place by a drop of varnish.
(3315) G. A. W. writes: I have a deposit of kaolin which shows the following analysis
Moisture...................................11-35 Moisture
Silica....
Silica.....
Alumina.
Iron oxide
$46 \cdot 60$
39.30
3.04
also have a deposit of marl which shows by analysi 62 per cent carbonate of lime, and am informed that s Will you please inform me how this can be done. A. The only way to make a cement such as you describe i to grind together proper proportions of your materials,
make intolumps with water, dry and burn in a kiln make into lumps with water, dry and burn in a kilh
You mas experiment on these lines, using an ordinary fou masy experiment on the result is doubtful.
fire. The
(3316) H. N. Van T. asks for a recipe for I wish an ink of brilliancy, drying rapidly, and water proof. Also a recipe for adhesive ink, used in making gold, metallic and other lettering. A. The genera basis of such inks is a solution of gum arabic. This is
not waterproof. An approximately waterproof body not waterproof. An approximately waterproof body is
given by a solution of shellac in borax water. An alco holic solution of shellac may be nsed which will be quite waterproof if otherwise satisfactory. Color with
(2317)
(3317) G. S. asks : What process shall I have to put cow's horns through, to soften, so that
I can twist them in various shapes? A. Boil the horns in soda or potash lye until soft. The horn will be brit tle when pressed or moulded. Or try simple boilin
(3318) G. E. B. asks for a recipe to make what they call chalk engraving plates, that is the whit plement, No. 790.
(3319) W. T. V.-The bright metallic particles in the sample sent are iron pyrites of no value.
(3320) F. J. K. and M. J. M. ask how horn workers soften horn so that it can be made into
different shapes. A. The safest way is to use boiling
water. The moulds, if of iron, may be heated
immersion in the same water. See query 3317.
(3321) G. J. H. asks how much a cubic oot of gold will weigh, avoirdapois weight. A. About nent it bas received, whether it is rolled or not, etc. (3322) "Die Germania" asks for a good receipt for making printers' roller composition. A Good proportions are 1 pound glue to 1 pint of molasses, Soak the glue in water for 24 hours, then melt with the nolasses and cast in a monld previously oiled with
(3323) W. C. P. writes : I notice in your lesue of this date, page 73, the descriptlon of a static motor the same in action as the rotating glass globe with strips of tin foil on it, which, if I remember aright, Mr. George M. Hopkins described several years ago in his series of experiment with the Holtz machive, as pubished in the Scientipic Aberioan? A. It seems to avolve the same principle.
(3324) M. M. A. asks: Is there any way of patching rubber goods, snch as hot water bags, etc. make it, one that will resist the action of hot water? A The only effectual way to do this is to use a benzole o other solution of India rubber, apply to the surface and join, and then vulcanize, by Parke's cold proces or otherwise. For general treatment of India rubbe we refer you to "Rubber Hand Stamps and the Manipu
ation of India Rubber," $\$ 1$ by mail. No good cement or vulcanized rubber has yet been discovered.
(3325) E. S. desires to learn from Notes have a tendency to enlarge or extend the same, so as to make that part appear fat, or, what will hold a swelling created under the vacuum process permanently . Try vigorons massage.
(3326) C. M. asks for a composition for hning casks and like vessels, stoppers for bottles, etc.For vessele and stoppers used for beers and ales, the compound not affecting or being affected by acids or
other chemicals contained in those liguors. A. The in gredients are as follows, the powdered pipe clay being omitted if the composition is not to be used for monld ing stoppers: Shellac 41/2 pornds, resin $11 / 2$ pounds, wood carbon 4 pounds, powdered clay 4 pounds, palm
wax $1 / 2$ pound. Thees ingredients are agitated with $13 / 6$ wax $3 / 2$ pound. These ingredients are
gallons of methylated spirit, which " amalgamates all o them into a compoand." Without the clay the cone
pound is semi-liquid, and can be run or brushed ove the surface to be coated, and allowed to dry.
(3327) D. D.-Waterproofing composition for stone, bricks, plaster and cement surfaces.One pound of " gum dammar"" is dissolved in 1 gallon paraffin wax added. The paraffin dissolves, and th composition when cold can be brashed on to the sur-
face to be waterproofed. Dirty surfaces should be first cleansed. The compound is kept in jars carefully
(2028)
(3328) M. T.-For furniture polish.seed oil 1 gallon, butter of antimony from $1 / 4$ to 1 pin as desired, spirits of wine $1 / 5$ pint, white vinegar 1 quart, um cassia, a few ounces.
(3329) M. S. K. writes : Southern elec trical workers seem to be scarce, so I will give you my experience in this direction. T have constracted severa induction coils of different sizes, among them the on from instractions by using only eight ounces of No. 3 otton-covered wire wound in two sectione, insulatin ach layer with three thicknesses of tea paper; spark anzed are nearly half inch in length, without conelephone and three small bichromate cells. Have made Science;" they work admirably I Blake transmitter. I have also constructed batteries bells and galvanometers of my own design, and con cmplate making simp
can get the material.
(3330) A. W. B. asks (1) for prices of he metals named.

Vanadium	9,979 per lb. avds.
Zirconium.	4,536 " "
Lithium.	4,082
Rhodin	2,238 "
Iridinm.	906

Can you refer me to any work on the production
hese metals? A. You will find the snbject manuals of chemistry. 3. What is the hardest know metal? A. Manganese is the hardest of twenty promimeals, according to Bottone.
(3331) B. Y. S. asks : If beeswax is dis ream, how shall I color it white, also brown? A. White can only be produced by a solid pigment, such as Chinese white. You should start with bleached wax and the lightest colored turpentine. For brown nse arnt sienna or prepare an aniline color by solution in
water or alcohol and precipitation with a solation of
(3332) W. P. B. writes : Will you kindly one that will answer for posts and how it can made. A. Best Portland cement 1 part, clean sharp
sand 2 parts. Make a thick mortar, mix well, dump
. sand 2 parts. Make a thick mortar, mix well. dump
into a wooden box of the intended form of your post. The cement will be sufficiently hardened for remova oval the hox might be made of four separate pieces
mor or staves temporarily held together with iron boops. (3333) G. H. I. writes : Will you please state what is the best gum to use
First quality gum arabic is the best.
(3334) E. M. W. asks : 1. How can I renove rust from tin, say a tin pan used to hold copy
cloths for copying letters ? A. The ruat cannot be cloths or copying letters ? A. The rugt cannot bo
permanently removed; the pan can be japanned, of
what is better, have a tinned copper pan made, which
will last years. 2 How can I prepare and apply copying ink to dried-out typewriter ribbons, either blue or
ind green? A. Typewriter ink is described in the Scies 48ic Ambrican, No. 21, vol. 59, query 15;
So. 7, vol. 56; query 22, No. 8, vol. 56
(3335) G. W. O. asks: What date did the 19th century commence, and what time will it ex
pire \& A. It began January 1,1801 , and will end Deember 31, 1900.
(3836) T. G. D. asks: In which number of your paper will I find the explanation of firing a
a should be needed. The motion received by the cannon ball is composed of the motion of the train and of th obtained by the parallelogram of forces.
(3337) M. M. W. asks : 1. In what ways and for what reasons does siemens producer gas differ
from ordinary coal gas used for lighting purposes ? A. Producer gas is made by incomplete combustion combined with distillation of the foel and at the same time by decomposition of water by the hot fuel. It is characterized by the presence of large quantities of nitrogen rom the air, and carbonic oxide. Coal gas is made by distillation in a closed retort of bituminous coal, con-
tains very little nitrogen, only a few per cents of carbonic oxide, and the rest is hydrogen and hydrocarbon principally. 2. What substances are used for lighting by incandescence? A. Oxides of the earths, magnesia mes, zirconia, and others. Some become luminescen alower temperatares than others, and so far are desira is. Some deteriorate more rapidy than others, whic
is a bad feature. Many mixtures have been experimented with. 3. How may coal gas be made to give a non-luminous flame ? A. By mixing air with it before combustion, as in the Bunsen burner. 4. Why is it that ammonia is found in the products of combustion of carbonaceons fuel ? By what means is it extracted and
obtained in a form snitable for nse in the arts ? Because the fuel contains nitrogen already combined with carbon and hydrogen. On distilling coal ammonia is evolved, and is washed out with water, whence it is extracted by heating, first alone and afterward with me. The ammoniacal gas evolved is collected in diduced by evaporation. 5. In what way, and why, does oal belonging to different geological periods differ ? . No very good answer can be given. The coal of he older periods is apt to be more thoroughly compacted and altered than the recent coals and lignites. he later are nearer finch all were originally formed
(3338) E. J. M. asks : What is the lifting ower of gas ? If a cylinder, 20 feet long, 10 feet in pressure of 200 pounds per square inch, what would be the upward pressure, or how much would it lift? If vacuum coald be made in the same cylinder, would he liftiug power be greater or less ? Also, how much ? A. The more gas is compressed above the atmospheric pressure, the less will it lift. At 200 pounds to the
square inch, hydrogen would be almost as heavy as air, and ordinary coal gas would be about six times as heavy, so that the cylinder would fall more rapidly than if filled only with air. Pure hydrogen will lift about 70 pounds to the thoussand feet, coal gas about 40 pounds. A vacuum will have slightly greater lifting power than
hydrogen, about 5 pounds more to the thousand cabic
(3339) W. L. V. writes : 1. I have a fine ilm negative which has some .small red spots on it. I think that they are silver stains, cansed by printing on damp albumen paper. If such, what will remove them?
A. Probably they are silver stains. J. V. Drake gives the following directions to remove: Soak the film for five minutes in clean water, meanwhile make a of water. Immerse the film in this for ten minates. If it is an old stain, immerse for half an hour. Dissolve half a drachm of cyanide of potassium in one ounce of water. Immerse the film in this and rab the stains with a tuft of absorbent cotton until they disappear. If the merse for longer time. 2. Give a formula for reducing negatives locally. A. To reduce negatives locally dissolve 10 grains of hyposulphite of soda and 5 grains of red prussiate of potash in one ounce of water. Apply to epot wit ca.
(3340) F. W. S. writes : 1. In your issue or Angust 22 is not the answer to query 3202 a mistake I have figures which show the fusing point of plaerroneons. It should read 3800° Fah., instead of 3080° Fah. Such temperatures are only approximate. 2. What is the highest degree Fah. which can be obtaine
ordinary gas blowpipe \& A. 6000° to 6800° Fah.

TO INVENTORS.

INDEX OF INVENTIONS

United States were Granted

August 25, 1891.
AND EAOH BEARING THAT DATE.


```
Two New Books on Steam Engineering, JUST READY
``` Ma mariman Maiar Mginam
 \(y=2=2\) vava玉sv

2nd MACHINERY
INVENTIONS PRACTICALLY DEVELOPED

PI,ATINTUM.

\section*{PAINTroörs}

PIXON'S SILICA GRAPHITE PAINT
 THE HORSE'S HOOF--BY DR. WIL
 THE SUNDERLAND TELEPHONE

NE Steam! Steam! For Strictly Cash, Complete Fixtures except Stack.
2-Horse Eureka Boiler and Engine, - \$145 \(\begin{array}{llll}\text { 2-Horse Eureka Boiler and Engine, } & \$ 145 \\ \text { 4- " } & \text { " } & \text { " } & \text { " } \\ \text { 4- } & & 225\end{array}\)
B. W. PAYNE \& SONS,

TO BUSINESS MEN
 the Scientific American.
For rates see top of first column of
dress MUNN \& CO., Publishers.

361 Broadway, New

Experimental Science

DEAF RESS. \(\alpha\) HED. MOISS CURED Scientific Book Catalogue

\section*{Harvest Excursions}

At LOW RATES
via Missouri Pacífic Ry. and Iron Mountain Route

A Grpat Advertising Melidin. ar Scientifio Amers Edition (Established 1885.)
This superb architectural work has byaar the larges reculation of any periodical of its class. It goes di-
recty into the hands of those who have the ordering of the great bulk of Buidaing Materials and Apppliances, namelely,
the Architects, Builders, Constructing and Sanitary Engineers, Contractors, and House Owners.
The Building Edition of the Scientipic American
is
unquestionathly the very best advertising medium for manufacturers and dealers in Building Materials, Car-
penters' 'ools, Woodworking Machinery, Heating, Ven penters Toois, Woodworking Machinery, Heating, Ven-
tllating, Plumbing and Sanitary Appliances, Roofing Architectural Wood and Metal Work, Builders' HardWare, Doors, Sash, Blinds, Paints, and in fact all goods
which enter into or are used in the construction maintenance of Buildings or works of any kind.
The rates for advertising are moderate. For term
address MuNs \& Co Puble

 ADDITION, SUBTRACTION,
MULTIPLICATION, DIVISION,
INTEREST, EXCHANGE, PERINTEREST, EXCHANGE, PER-
CENTAGE, \&c.
The COMPTOMETER
soives rapmy

 FELT \& tarrant mfe.co., 52-56 illinols st.. Chleago. A NEW EDITION OF
 VGEGGEV

 THE BRIDCEPORT WOOD FINISTINC CO GRANVILLE M. BREINIG PRINGIPAL OFFICE GENERAL AGENT \& SUPERINTENDENT. NEW MILFORD. CONN
NEW YORK.
OFFICE R4O PEARLS

Whellers Patent Wood Filler Breinios Lithocen Silicate Paint. ADAPTED TO ALL CLIMATES ESPECIALLY MARINE EXPOSURES. PAMPHLET GIVING DIRECTIONS FOR FINISHING HARD WOOD FREE TO ANY ADDRESS.

NEW KODAKS

For mule by an Photn. Rtock Denlerf.
THE EASTMAN COMPANY,
THE MODERN ICE YACHT. - BY

Inventions Realized,
That is, made real; which rarely happens before a model is made, and rarely then. primer with full particulars. pter Jones Brothrrs Electric
SIEMENS' + CABLES.
SUBMARINE, \(+ \pm+ \pm+\) TELECRAPH, UNDERCROUND, * * * TELEPHONE, INTERIOR, + ELECTRIC LICHT.

SIEMENS \& HALSKE DY THE EDISON GENERAL ELECTRIC CO.
Cable and Wire Department, Edison General Electric Company,

Double COMPLETE STOCK OF
ble Ball and Solf-Oiling, Adjusta Pillow Blocks, Hangers, Hangers, Etc.

EDISON GENERAL ELEOTRIO CO., SCHENECTADY, \(\mathbf{N}\). \(\mathbf{y}\).

MPLETE stock

SAWS Wante samp Saryers SAWS

\section*{\(\mathbf{S}\) ©eo. Aumited, beaver Fails, pal \(\mathbf{S}\)}

Perfect Newspaper File
 61 Broadway, Now York.

\section*{BARNES} UPRIGHT DRILLS

Complete line, ranging from our New Friction Disk Drill, for light work 42-inch Back Geared Self Feed Drill.

Send for Oatalogue and Prices.
W. F. \& JOHN BARNES CO. 1990 Ruby 8treet, Rockford, \(11 i\). ARTIFICIAL INCUBATION.-A DE

\section*{GRAVESELEVATORS.
}

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877. No. 186.787.

The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders each by it or its licenses responsible for such anlevful use and all the consequence thereof, and liable to suit therefor.

The Most Popular Scientific Paper in the World
Only es.00 a Year. Including Postage
Weokly-52 Numbers a Year.
This widely circulated and splendidy Illustrated cen pares of useful Information and a large number of original engravings of new Inventions and discoveriea,
representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufacturee, Chemistry, Krlectrictty, Telecraphy, Photography, Arch1 eta. Complete list of patents each week.
Terme of Subscription. - One copy of the ScIENTITITC AMIRICAN will be sent for one year-52 numbersCanade. or Mexico, on recelpt of three dollars by the publishera ; six monthe, 81.50; three months, 81.00. Clubs. - Special rates for several names, and to Poot
Mesters. Write for particulars. Mesters. Write for partlculars. The safest way to remilt is by Postal Order, Draft, or
mxprems Money Order. Money carefully pinced tnaide of envelopes, securely. sealed, and correctly sadreseed. aeldom goes astray, but is at the sender's risk. Addree
all letters and make all orders, dratts, etc... paykule to MONN a CO., 361 Broadway, Now York.

\section*{THE}
§rientific Gextricau §upplement
This is a separate and distinct publication from THI
 gravings, many of whlch are taken from forelgn papers SCIENTITIC AMERICAN BUPPILNENNT IS published weokIy, and includes a very wide range of contents. It pre
sents the most recent papers dy eminent writers in all the principal departments of sclence and the Usefa Arta, embracting Biology, Geology, Mineralogy. Natural History, Geography, Archæology, Astronomy Chemis Steam and Rallway Rngtneering, Mining, Ship Bullding, Martne Engineering, Photography, Technology. Manu Tncturing Industries, Sanitary Knplneering, Agriculture
Lorticulture, Domestic Economy, Blography, Medicine etc. A vast amount of fresh and valuable information obtalnable in no other publication.
The most important
The most important Enoineering Works, Mechanlsms, and Mancractures at home and Price for the Supplimisnt for the United States and Canadia, 8.00 y year ; or one copy of the Scientific AX for one year for 57.00 . single coples, iD oents. Addreses and remit by postal order, express money order, or check, MUNN \& CO., 361 Brondwny, Now York
publishers Scientific American
Building CEDition.
THE SCIENTIFIC American Architects' And
BUILDERS' EDITLO Single coples, 25 cents. Forty large quarto pages, equa to about two hundred ordinary book pages: forming
large and splendid Magazine of Architecture richiy large and splendid Magazine of Architecture, richly
adorned with elegant plates in colors, and with other fine engravings; tllustrating the most interesting examples
of modern architectural construction and alled subjects. A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country, Including those of very mod perspective and in color are given, together with full Plans, Spectifcations, sheets of Detalls, Estimates, etc. The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of any Architectural publication in the world. Sold by all news dealers. 82.50 a year. Remit to

MUNN \& CO., Publishers, 361 Broadway, New York.
 The most Succeaffur Lubricator
for Looee Pulleys in use for Loose Pulleys in use
VAN DUZEN'SATENT
OOSE PULLEYOILER

PRINTING INKS
```

