
a WEEKLY JOURNAL OF PRACTICAL INFORMA'IION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.



# sirientific segmericam. 

## ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN One copy, one year, for the U. S., Canada or Mexico..
 Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York. The Sclentific American Supplemen


 Building Edition.


Spanimh Edition of the Scientific American.


Tist The safest way to remit is by postal order, express money order,
pratt or bauk check. Make ail remittances payabie to order of MUNN any failure, delay, or irregularity in receipt of papers.

NEW YORK, SATURDAY, FEBRUARY 7, 1891.


TABLE OF CONTENTS OF

## SCIENTIFIC AMERICAN SUPPLEMENT

NO. 788.
For the Week Ending February 7 , 1891.

1. ARBORICULURE-The Areof Trees for Trangplanting.-Th

 IV. BaCTERIOLOGY.-How the Pathogenic Bacteria do the

 eLectricity. - An Electric Sow smener.-A snow sween











 Oortainino OXjeen from the air-Recenily patented procees



## the hudson river ice harvest.

So far as thickness of ice is concerned, the crop this year is satisfactory; but the heavy snows that have
occurred, accompanied by rain, have formed a thick occurred, accompanied by rain, have formed a thick and tenacious crust upon the surface of the ice, which it is difficult to remove; and the labor involved in the removal
vesting.
The entire failure last year of the Hudson ice crop and the slim supply of the previous year, had the effect to develop and establish in this city quite a number of mechanical ice works. These were able to supply the finest grades of ice to customers at prices but little in excess of those charged for natural ice. The artificial ice when properly made is superior to the native article In the first place, the water for the artificial product is carefully filtered, and then the freezing is so arranged that clear, transparent, dense ice is produced, which looks better, in fact, is better-as it lasts longer-than the natural ice, the latter having more air locked in it than the artificial.
Again, many establishments which formerly made use of the cheaper grades, such as snow ice, for cooling purposes, having been for two seasons subjected to high prices, have put into use the mechanical refrigerating machines, by which storage cellars and chambers are kept sufficiently cool without the use of ice.
These circumstances have combined to diminish the demand for the natural ice and to render it necessary for the ice men to use more care than ever before to select, prepare and store the clearest and best ice, but at increased expense, as above indicated. The progress of inventive genius is well illustrated in the advance made in the artificial production of ice-advances which promise soon to supersede and beat the severes efforts of Dame Nature.

## WOODEN RAILWAY TIES.

The Forestry Division of the United States Agricul tural Department has recently made a thorough inves tigation as to the consumption of timber for railroad ties and the effect of such consumption upon the forestry interests of the country. The investigation included a discussion of the various methods in use for the preservation of tie timber as well as an exhaustive
statement of the progress which has been made in substatement of the progress which
stituting metal for ties of wood.
The results of this investigation are most interesting and valuable, as every phase of the subject has been fully covered. The consumption of timber for railroad uses is placed at twenty per cent of the total supply and B. E. Fernow, chief of the Forestry Division, wh superintended the gathering of the statistics, says that
the tie timber is now largely composed of the thrifty young growth, the promise of the future, and thus th amount of timber produced to the acre is greatly re duced. The most durable and valuable timbers only are desired, and by subjecting forests to the thinning out process necessary to find desirable tie timber, they tucky forests, where oak represents forty per cent o the natural growth after it has been culled-mostly for railroad purposes-the new growth contains not more than five per cent of this most valuable timber.
The destructive effects upon the forests of the present demand for tie timber is shown by the fact that this material is now largely cut from trees that will mak only one tie, or, at least, only one tie from a cut.
The annual consumption of railroad ties is placed a $73,000,000$, which requires $365,000,000 \mathrm{cu}$. ft. of raw ma terial. Mr. Fernow states that the opinion generally held by railway managers that young wood is mor contrary," he says, "young wood, which contains a large amount of albuminates, the food of the fungi, is more apt to decay, other things being equal. Sound, mature, well grown trees yield more durable timber than very young or very old trees."
It has been found that hewn ties will last from one to three years longer than sawn, and the explanation given that the sawn face is more or less rough and col lects the water and thus gives opportunity for fungus growth, while the smoother face of the hewn tie sheds the water. The life of tie timber, which is a most im portant factor in considering the relative advantage of wood and metal, is affected by the breaking of the wood fiber by the flange of the rail and by the spikes
Another cause of the shortening of the life of the tie is rot or decay, due to a fungus growth. These ele ments of destruction are accelerated or retarded by the condition of the road bed. When the New York and New Haven Railroad a few years ago adopted ston ballast for their track, it was supposed that the life o the chestnut ties, which are used, would be greatly ex high rate of speed of trains and weight of engines the ties don't last more than five years, the cutting of the rail on the upper and the stone on the lower side wear ing them out rapidly. Ties are less liable to rot on Sone ballasted roads, but even the oak ties which the Erie road uses are worn out on
tions of the road before they rot.
The following table shows the age of tles of different rain.
kinds of wood, and was made up from reports received from 283 railroad companies :

| Kind. | Range. | Average. |
| :---: | :---: | :---: |
| Conifers |  |  |
| Redwood.... | - $\begin{aligned} & 8-15 \\ & 4-12\end{aligned}$ |  |
| Red cedar ........................... |  | ${ }^{10}$ |
| Tamarack White ceat................... .... | ${ }_{4-10}^{4-12}$ | ${ }^{7-8}$ |
| Pine, long leaf. | 年-10 | 6-7 |
| Pine, red and white................: | 4-8 | 6-7 ${ }^{6}$ |
| Piel bull (Colorado).................: | 3-6 |  |
| Sprucec............................... | - ${ }^{2-8}$ | 4-6 |
| Broad-leaved tree |  |  |
|  |  |  |
| Chestutit........... | 4-12 | $7-8$ |
| Confee tree ........................ |  |  |
| Cherry, black walnut, locust, sassafras.: | 星 $\begin{gathered}6-6 \\ 5-6\end{gathered}$ | ${ }_{6}^{7}$ |
| Mesquite...............................: |  |  |
|  |  | ${ }_{4}^{6} 7$ |
| Black, becch, maple. | ${ }_{2-7}^{2-7}$ | 4 |

"The common spike, now almost exclusively in use," says Mr. Fernow, "must be considered the poorest and most unsatisfactory part of our railroad construction. Not only is a large part of the reduction in the life of railroad ties to be charged to these imperfect fasten ings, but they are probably responsible for more dam age to rails and rolling stock and for more accidents than is generally recognized. An improvement, there ore, in rail fastenings is decidedly needed."
It has been found that by the use of bed plates the life of ties can be greatly extended, as they give a more even distribution of rail pressure over a greate area of the tie, thus retarding the destruction of the tie by cutting, preventing the lateral bending of spikes or screws, and thereby loosening the rail. Mr. Fernow commends the bed plate designed by Mr. Post, the en ineer of the Netherlands railroad.
While the attention of railroad managers has been directed to preventing the rapid destruction of the tie by mechanical processes, they have also adopted means o preserve it against rot. In France not a tie is put down without its being first subjected to a preserving process. The same practice prevails in Europe gen erally, though little use has so far been made of the process in this country
As the rapid destruction of our forests is clearly shown in this report, as it has been elsewhere, the adoption of the best method of treating railroad building material so that the utmost service can be obtained from it becomes a vitally important factor in the ques tion of forest preservation. Most of the processes now in use for preserving wood are based upon the idea of eliminating the sap of the wood, and substi tuting in part, at least, an antiseptic which is to keep out moisture and to make the germination of fung mpossible. The vulcanizing process has been in use on the elevated railroad lines in New York City for the past six years, and Col. Hain, the manager, says that yellow pine timber thus treated after six years show o rot and hardly any wear by cutting, whereas un reated timber rapidly decayed. The vulcanizing pro cess consists in subjecting unseasoned wood to dry air heated to from 400 to 600 deg . F., under pressure of 100 to 175 pounds per square inch. heat and pressure being regulated according to the nature of the timber and he result to be obtained.
Heavy oil of tar, commonly called creosote, and also the chloride of zinc are used for preserving timber The latter process is called burnettizing, and it is claimed that by its use the life of a hemlock tie, which ordinarily is three years, can be 'extended to sixteen years.

## Barometric Plants.

The Petit Traite de Meteorologie Agricole, by Mr Cana, contains a list of prognostics apropos of the aspect that certain plants present according to the state of the atmosphere. The following are a few examples : If the head of the gith (Nigalla sativa) droops, it will be warm ; if the head of the same plant stands up right, it will be cool ; if the stalks of clover and other leguminous plants stand upright, there will be rain ; if the leaf of the wood sorrel turns up, it is a sign of a storm; if the leaf of the whitlow grass slowly bends up, there will be a storm; if the flower of the convolvulus closes, it will rain; if the flower of the pimper nel closes, it will rain ; if the flower of the hibiscus closes, it will rain ; if the flower of the sorrel opens, it will be fine weather; if the flower of the same plant closes, it will rain ; if the flowers of the carline thistle close, there will be a storm; if the flower of the lettuce expands, it will rain; if the flower of the small bindweed closes, look out for rain; if the flower of the pitcher plant turns upside down, it will rain; but, if it stands erect, it will be fine weather ; if the flower of the cinque foil expands, there will be rain; but, if it closes, the weather will be fair; if the flowers of the African marigold close, it will rain ; if the scales of the rain.

A Great Engineering work in India. The southern extremity of the peninsula of India consists of a broad plain, flanked on the west by the narrow mountainous kingdom of Travancore. In this
plain the district of Madura has one large stream, the Veigei, which rises on the precipitous eastern slopes of the Travancore mountains, and, tumbling down into the plain, flows slowly along its sandy bed until it empties into the sea on the east. It often does not reach the sea, for the rainfall is so slight and its waters are drawn off into so many channels and t has to be in flood to ever reach its mouth.
On the other hand, there are streams in those same mountains of Travancore that rise at a higher elevation than the Veigei, and not very far frow it, being separated only by a mural precipice, and yet flow westward throngh the narrow Travancore country, and pour their volume of fresh water into the sea without doing much good to man. Besides this, the rainfall is very heavy in that region, and the land does not need the water thus carried into the sea.
The benefits that would accrue to Madura could one of those streams be turned eastward, without inflicting any injury to Travancore, were recognized more than two centuries ago by the Hindoo rulers of Madura. The stream nearest to the border, and at the same time the largest of the Travancore rivers, is the Periar. In 1798 the prime minister of the kingdom of Ramnad, in the eastern part of Madura, is said to have sent some intelligent native officials to examine into the practicability of opening a channel for turning the Periar into the Veigei. They reported that the construction of a dam would secure an abundant supply of water to all the districts through which the Veigei flows.
In 1807 and 1808 two English officials explored the jungles of those regions and declared the scheme im practicable. So nothing was done until 1861, when Captain Ryves explored a portion of the course of the Periar and reported that that stream could be diverted at a reasonable cost. Other engineers seconded his proposals. So in 1867, the government passed an order directing a new survey of the course of the river within the region to be affected.
Two years ago Col. Pennycuick, now the chief engi neer under the Madras government, took up the work with such zeal and enthusiasm as to set it in actual operation and make it a probable reality within the next decade.
He chose a site for the dam seven miles below the original site chosen. It is in a deep valley, narrowed by two knolls that push out from the mountain ridges of the sides. The river runs due west at this place, and the south knoll is 150 feet high, which is just the intended height of the dam, but its connection with the mountain beyond is by a saddle 40 feet lower than itself, so that the dam will have to be thrown across the depression. The north bank rises 250 feet from the streaw, and its connection with the mountain on that side is also depressed, but not to the level of the dam. And right here the engineers are cutting down the ridge for an escape when the water rises abnormally high.
The dam itself is to be 150 feet high, 60 feet wide a the base, tapering to a width of 15 feet at the top, and as long as may be necessary to plant it firmly on the bed rock on either side. This rock is not found as near the surface of the hillsides as was expected, and the engineers are in a state of some anxiety as to how deep it will be necessary to excavate in order to find it. The construction of the dam will be thin walls of stone on
the outer sides, filled in with a great mass of cement for the outer sides, filled in with a great mass of cement for the body of the dam.
By this dam the waters will be raised so as to flow back over the course of the river some ten miles. And at a point northward seven miles away they will fill the valley inclosed by the mural precipice overlooking the plains of Madura. This rocky wall will be pierced by a tunnel 5,700 feet in length and about 7 by 10 feet in diameter.
Already a perpendicular shaft has been sunk 100 feet at the upper end and the boring carried on for 200
feet, while at the lower end the tunnel is 800 feet in length. In order to check the force of the water at the perpendicular shaft a circular tunnel has been cut at the junction of the shaft and the tunnel.
At the dam 44 feet of the outer stone wall has been built up, extending across the stream and raising the water 12 feet. Below, the wall is progressing, and it will soon be ready for its filling of cement. At the same time hundreds of coolies are cutting down the banks. The stone is bronght down from the cutting for the water escape above, where four stone crushers are at work. A gravity railway carries the loaded trucks down the long incline. On the banks of the stream a machine shop has been erected and a tur bine wheel set in place, to be worked;by thelwa
ill have an increasing fall as the dam rises.
Already the water has been set back two mi Already the water has been set back two miles, and a beautiful narrow lake formed to that extent.
The force of Europeans in charge comprises a superintending engineer, an executive engineer, two subdivisional engineers, and a young man in charge of the plant.

One of the subdivisional engineers resides at the tunael works, the others at the dam, having their residences on the knoll of the north bank that overlooks the dam.
Under them are 1,000 coolies at the tunnel and 1,700 at the dam. These comprise Eurasians, Portuguese Mussulmans, Malayalees, Tamils, speaking many dif ferent languages.
Then there is a military squad of 200 pioneers of the Madras army, under the command of their affable commander, Major Fenwick, an Englishman. These men do the same work as others, and after a short period do the same work as others, and after a short period
of service will be sent back to be replaced by others, of service will be sent back to be replaced by
that they may be accustomed to such work.
Cooly power, water power, ox power, elephant power, compressed air power, and steam power, are all n active operation.
Twenty lacs of rupees (Rs. $2,000,000$ ) have already been spent, and the estimated cost is from 60 to 70 lacs, but it will undoubtedly foot up 100 lacs ( $\$ 4,000,000$ ) before it is finished.
The coolies are congregated in two great settlements, which are lighted with street lamps. The Mussul mans have a square platform, with flags above, for their place of worship, the Hindons a couple of round ed upright stones, and the Christians a thatch chapel.
It is a feverish region, and the services of the medical assistant are in constant requisition. And the malaria is so virulent from March to June as to stop all work in those months.
But when accomplished it will bring life and ver dure to a land now smitten with drought and poverty In addition to work on the mountains, a long and broad channel is under construction to carry the sur plus water a distance of 38 miles to the northern part of Madura District, where the supply of water is most deficient. In connection with this large channel are many smaller distributing channels to carry the water
supply to as many fields as possible. The artificial resupply to as many fields as possible. The artificial re servoirs or tanks that lie in the way of the main chan nel will be utilized and will become unfailing ponds o lakes. At present they are dry all through the hot the 38 miles of channel, 22 are already dug.
There will be bridges to build over the stream tha now is fordable, but will then be continually full.
Cyrus turned the waters of Babylon from the Eu phrates channel to conquer human foes. The British government is turning this river to conquer famine and starvation and save humanity.
Madura, So. India. John S. Chandler.
Completing the st. Clair Tunnel.
The Railway Review says: The stone work of the portal of the St. Clair tunnel at eash end is now complete. The east portal face is a wall about forty feet high and nearly one hundred and fifty feet long, built of immense blocks of stone, some of which are over a yard square each. In the middle of the wall is the open ing of the tunnel, twenty-two feet in diameter. The quired depth of sixty feet for a small space just at the tunnel portal, and a large force of men is employed en larging the excavation to the proper width, so that work may be begun at the proposed retaining walls, which will extend east from the portal one thousand and fifty feet. The retaining wall will be of the same ponderous masonry as the portal, and will be further strengthened by anchorage walls extending at righ angles into the bank.
Inside the tunnel is just now a busy hive of industry. Tram cars are hurrying back and forth from the portal along the temporary tracks with loads of brick, cement, lumber, rails, and other materials, and the long line of twinkling electric lamps which stretches back from the entrance into the dim vista of the great bore reveals an army of workmen engaged in an apparent chaos of operations-calking, brick laying, excavating, grouting, track making, cementing, pipe fitting, rail laying all going on at once. The seeming confusion, however, explains itself when it is seen that the work of putting in the permanent track is going on from each end toward the middle and that the whole work is being carried on simultaneously each working party keeping a little ahead of those en gaged in the succeeding operation. The iron lining of the tunnel must be thoroughly calked at every point and seamed throughout, to prevent leakage, and this work is almost completed.
The brick bulkheads for the air locks had to be aken out, and this was no small undertaking, for the cement in which the bricks wer - laid had hardened like flint, and though a force of $m>n$ has been drilling and sledging at it ever since the compressed air was aken off, much of the brick work of the wall at the Canadian end yet remains to be taken out. For the permanent way the whole tunnel is first lined with brick work laid in cement reaching half way up the sides. A floor of concrete made of Portland cement is
next laid in the bottom to makea level bearing for the track. On this floor four lines of timber are laid, as stringers, a pair on each side, close under where
are afterward to come the lines of rails. Across the
stringers heavy beams are laid four inches or so apart, and screwed down to the stringers with screw bolts. Beams and stringers are of Georgian pine, soaked with creosote to prevent decay
After the needlebeams are laid, a floor of cement is put in between the ends of the timbers and the wall of the tunnel on each side, to keep the track in place, and to make a foot walk for the employes. On top of the needlebeams are spiked the ponderous rails, one hundred pounds to the yard and thirty feet long, and the track is then complete. In the roof are placed suction pipes communicating with the pumping station, by which the air is pumped out and ventilation is secured, and at intervals along the walls safety ladders like small fire escapes are built into the sides of the tunnel, on which the track walker may take refuge when he chances to meet a train. This work is all well advanced, and when it is finished and the electric light wires put up and proper lamps attached, the tunnel itself will be complete and ready for business. The St. Clair tunnel extends from the town of Port Huron, Mich., under the St. Clair River, to Sarnia,

Chiseling Gun Cotton.
Gun cotton, said Professor Munroe, in beginning his lecture on that explosive, at the Lowell Institute, recently, is pure cotton dipped in a mixture of pure nitric and sulphuric acids. In seeking a method by which these ingredients might be obtained absolutely pure and the cotton thoroughly treated with the acids, nany years have been spent and serious accident have occurred.
According to the Boston Journal of Commerce, the lecturer traced the experiments with the explosive
from its discovery, in 1832 , up to the present time, and spoke of several of the most fatal explosions which at ended the experimental stage.
After experiments by Professor Hill, of the United States torpedo station, gun cotton was adopted as an explosive for use in the navy in 1884. In preparing it for this service the gun cotton is, by successive pressings in hydraulic presses, the last of which has a pressure of 6,800 pounds to the square inch, made into little blocks measuring $21 / 2$ inches each way. It now contains from 10 to 16 per cent of water, but when issued to the service contains 35 per cent. Before being made up into blocks it is carefully tested.
Professor Munroe declared that gun cotton, correctly Prepared and handled according to directions, was the afest of the explosives to use. It was dangerous only when the materials had not been thoroughly purified or the union of acid and cotton incomplete.
In proof of what could be done with it, a picture was thrown upon the screen showing the workman cutting it with chisel, jig saw, and lathe to fit it into a shell. Another illustration was the extinguishing of a block that was burning by pouring water upon it. Two thousand pounds of it had been burned in a bonfire without an explosion.
One volume of the explosive gives 829 of the gas, and the pressure developed by combustion is eighty-one tons to the square inch, and by detonation 157.5 tons, the latter being in contact, however. The effect of the explosion of one particle on another is so rapid that it would take only one second for it to pass through 19,000 feet of the explosive.
It was shown by the stereopticon that the letters U . S. N., with the date of manufacture, that are on the bottom of each block, are impressed upon an iron plate upon which the gun cotton may be exploded. It is a curious fact that, if the marks on the block are in reief, the reproduction on the iron will be raised, and, if cut in, there will be an indentation on the plate. Professor Munroe's theory is that when the letters are cut into the explosive, the gases generated in the indentations are hurled from them as a projectile from a gun. If a leaf or a delicate piece of lace be laid between the gun cotton and the iron, its impress will be left in all the perfection of outline of the original, though the article itself is absolutely annihilated.

We have received from the United States Iron and Tin Plate Co., Limited, of Demmler, Pa., an ornamental paper weight of sheet tin, on which a poetical effusion is printed, the purport of which is to anounce that the manufacture of tin plate has been commenced in this country, and has come to stay. We hope this expectation will be realized; but "one swallow does not make a summer." The consumption of tin in this country is enormous, and it will require many gigantic establishments to supply the demand. The world's product of tin plate is 562,000 tons per annum, of which the United States require 369,000 tons, nearly all of which at present comes from England.

The harvester trust, whose formation was recently nnounced, failed to complete a working organization, and the several firms who were to be members will still continue their business as individual enterprises. The trust was to have had a capitalization of $\$ 35,000,000$, and contemplated the control of the manufacture of all the agricultural machinery in the United States.

NEW GAS AND PETROLEUM MOTOR.
The probiem of designing and perfecting a motor for small and medium powers, for universal use, is one that has received a great deal of attention from engineers and inventors; but many failures have been made in attempts to meet all the requirements of the case.
The principal diffculty has been, not so wuch in the production of a working machine, as in designing a motor which is at once efflcient, economical, safe, and capable of being used anywhere and by any one, whether experienced in mechanic prnot A machine hav or not. A machine hav ing these qualities is shown in the annexed engravings. It is a new gas and petroleum mo tor, the invention of Mr. Gottlieb Daimler, the eminent engineer Cannstadt, near Stuttgart, Germany.
These motors are built in sizes varying from one to ten horse power and in several modified for:us to adapt them to various uses, the small industrial motors being designed for convenient connection with machines requiring only a small amount of power, say less than one horse power, such as cream separating machines, sewing machines, pumps, ventilating fans, watch maker's machinery, light woodworking machinery, and for the use of ama teur mechanics.
The larger sizes of the industrial motor are suitable for driving suitable for driving
dynamos, printing


The base of the motor consists of a cast iron gas ight, circular chamber, with a valve inlet for combus tible mixture or air. In the base are placed two disks
ut at the top, forming a slight angle, as shown in Figs. 1, 2, and 4. Each cylinder contains a piston fur nished with a valve for the transfer of air or gaseou mixture from the base, the valve being provided with ixture from the base, the valve being provided with
fork by which it is operated. It will be observed by reference to Fig. that both the connect ing rods of both pistons in the double cylinder engine are received upon the same crank pin. The space in the upper end of the cylin der above the piston is the explosion chamber with which are con nected the inlet and exhaust valves. All the valves used in this en gine are of the typ known as poppe valves, these having been found in actua practice preferable to sliding or rotating valves. Every alternate stroke of the piston is working stroke. During the upstroke of the pis ton, following the work ing stroke, a prelimi ing stroke, a prelimi drawn into of air part of the part of the working cyl inder, from the crank chamber in the base, as the piston rises. At th same time, the upward movement of the piston forces the products of combustion from the explosion chamber through the exhaus valve, which is opened by the slip cam. During the following down stroke, the air in the cylinder below the piston is forced upwardly into the working part of the cylinder. At the same time a charge of combustible gas is ad mitted, and the follow mitted, and the follow presses, elevators, grinding mills, etc.; while those|purpose of a crank and fly-wheels. In one of the ing upstroke of the piston compresses the explosive adapted to boats and vehicles differ but little from disks is formed a double slip-cam groove, which passes mix iure in the explosion chamber, forcing it out into those applied to other uses.

Although these motors are built with a view to In this cam groove is placed a follower, which operates durability, with all the parts proportioned to safely the valve gear so as to make every alternate stroke a stand the working strain, they are by far the smallest working stroke.
forces the piston downward. The ignition which and lightest motors of their class. They are designed Upon the base are mounted one or more working charge is retarded until the crank is on the dead cento run at a high speed, and are arranged so that they cylinders, according to the power required. When two ter, by the introduction into the ignition tube of a can be started in less than a minute, and may be run cylinders are used, they are either arranged parallel charge of mixture weaker than that contained in the independently of either gas or water mains. When with each other or joined at the base so as to spread cylinder. The speed of the engine is controlled by operated by petroleum gas, they run with still greater economy than with ordinary illuminating gas.
These motors are preferably made vertical, to economize space and reduce friction. In our engravings, Fig. 1 is a vertical transverse section of a double cylinder engine; Fig. 2 is an exterior view of the sawe; Fig. 3 is a perspective view of a single cylinder engine; Fig. 4 is a similar view of a double cylinder engine; Fig. 5 is a vertical section taken on a plane at right angles to the plane of Fig. 1; Fig. 6 is a diagramatic view of the gasproducing apparatus; and Fig. 7 is a perspective view, showing the application of the motor to a boat.


Fig. 3.-DAIMLER GAS AND PETROLEUM MOTOR
a sensitive gov ernor contained in the pulley, and arranged to intermit the admission of the combustible gas when the speed exceeds the normal. The movements of the piston, when no combustitle wixtureis introduced, resulting in simply compressing and recompress ing the air con. tained by the cylinder.

By the order of operations adopted in this engine the power cylinder is emptied of most of the residual products of combustion and a purer charge of combustible mixture is used than possible with any other system. As a consequence the fuel, whether it be coalgasor petroleum vapor, is used to the best advantage and with the greatest economy.

The ingenious mechanism by which the necessary $\mid$ to the cover of the apparatus and acting as a guide, $\operatorname{ing}$ the motor is only a minute or so. The motor is alternating motion of the valves is secured without allowing the float to rise and fall, according to the stopped temporarily by shutting off the supply of the use of gearing is worthy of notice. In engines supply of petroleum. Hot air is admitted to the car- combustible gas, allowing the ignition burner to conusing gears for actuating the valves, the principal and bureter through the pipe attached to the upper part tinue burning, but for a complete stop the ignition most objectionable noise is the rumble and jarring of of the apparatus, the air being heated in its passage burner is extinguished in addition to shutting off the
the gearing. In this engine there is no noticeable noticeable
noise; in fact, it may safely it may safely
be called a becalled a
noiseless
ennoiseless en-
gine. The inclosure of the working parts in a casing contributes largely to this re sult. This result. This construction also insures a rigid base, which is an important item in a gas engine when the power is developed in the cylinder almost instantaneously. Besides this advantage, $t h e$ chambered base secures in a very simple way the perfect. lubrication of all the working parts, working parts, at the same time confining the oil so that it is economiz-
ed to the fullest ed to the fullest extent without being scattered about where it is not wanted. , The motor is lubricated by a single oil cup, G, connected with the lower part of the cyl


Fig. 5.-VERTICAL SECTION OF GAS MOTOR ON THE LINE OF THE SHAFT.

This motor is not only admirably adapt ed for all sta tionary pur poses, but has been applied very success fully to the propulsion of small boats, to operating street cars and trolleys, and to road wagon road wagon and carriages The swalles tramway in
the world is operated in the streets of Cannstadt Germany. The car is driven by a one hors power motor o this class. It will carry ten persons, an will run a mile in four min utes.

Boats driven by these motors are, during the season in daily opera tion on Bowery Bay, north shore of Long Island City Boats of the same class are running successfully on many of the many of the lakes in Europe As this mo
tor is readily inder. The oil casing, and is remaner falls toward the bottom of the to the carbureter by the products of combustion, which supplied with fuel and is independent of water sup disks.

The explosion chamber is surrounded by a water jacket, and is kept at the proper temperature by a small quantity of water circulating through it, the water being taken from a tank and circulated by gravity in stationary engines, while in portable engines the circulation of the was while in porilates the adjustment. It has also an automatic of a pulsometer worked by the exhaust.
By these simple means the necessary cooling of the cylinder is effected without any outlay for water in stationary engines, and without the consumption of any power in portable engines.
The motor is started by means of a crank handle on the main shaft, having a clutch which engages the shaft as the crank is turned in the act of starting the engine, and which automatically releases the handle as soon as the engine, after one or two turns, begins to run itself.

Where petroleum is used as fuel, the carbureter shown in Fig. 6 is employed. The lower part of the carbureting apparatus consists of a small petroleum tank, $H$, containing a float, B which rests upon the petroleum. The float is provided with a central funnel which communicates with the main body of the liquid in the tank through a small opening at the bottom, so that while the liquid is maintained at a constant level in the funnel, it is practically isolated from the main body of the petroleum. The float is provided with an air tube entering the funnel, and perforated below the surface of the petroleum. This air tube slides freely in a tube, F, attached


Fig. 7.-DAIMLER MOTOR APPLIEd to boat propulsion. ply, it can be used in many places where a steam engine would be out of the question. It will undoubt edly be largely used for agricultural purposes, when it will find applications in thrashing, grain cleaning, wood sawing feed cutting churning cider making, and in many other ways which will suggest themselve and in many other ways which will suggest themselves
to our readers. It will also be welcomed by siuall manufacturers all over the country, who are in need of a motor of this kind. Many of these power users have been obliged to make use of animal, or even hand or foot power. Others have used swall steam engines, which are proverbially troublesome. We in ingine an engine of the class described will be gladly adopted by the small manufacturers who are remote from the great centers of business.
Another application of this motor will undoubtedly be to pumping water for irrigation, for filling house tanks, and for railroad water supply tanks.

It would be a difficult task to describe in detail the numerous uses to which an engine of this kind can be applied, but it is possible that for isolated electric lighting it may find greater use than in anything else to which power is applied.
This wotor is manufactured by The Daimler Motor Company, Nos. 937 to 941 Steinway Ave., Steinway, Long Island City, N. Y., where motors from 1 to 10 horse through a supply pipe extending down to the bottom
through the air tubes and float. The supply pipe com- York office is at No. 111 East Fourteenth Street. municates with the lamp font, which furnishes the fuel to the burner which heats the ignition capsule. The time required for heating the capsule and start- recent Philadelphia invention.

Birds Nests and Plants on Telegraph Lines
It has frequently been found that birds, through their industrial instinct, are capable of offering impediinents to telegraphic communications. The following are a few examples adduced by the Revue des Sciences Naturelles Appliquees. The American representative of our European woodpeckers, the green woodpecker of California (Melanerpes formicivorus) has now the habit of installing its dwelling and its innumerable storage places for food in the interior of the red cedar poles that support the wires of the lines of the western United States. A native of the mountains of Central America, this beautiful bird, of a dark green above and with a throat encircled with white, long ago spread throughout the western region of the United States without ever going beyond the territory of Arizona toward the east. Col. Clowry, an officer of the Western Union Telegraph Company, in a tour of inspection made by him in the far West, found that the summits of large number of poles were deeply pierced by Melanerpes that had chosen a domicile therein. Performing its labor upon a height of about six feet, each couple of these birds forms two principal cavities, one above the other, with a space of about twenty-four inches between them, penetrating to the heart of the pole and communicating with the exterior by oritices of about three inches in diameter. The male, which occupies the upper cavity, keeps watch through small windows looking in different directions. The female and her brood occupy the lower story, which is of larger dimensions on account of the number of the inhabitants. Other holes of variable dimensions, widening toward the interior, are formed in vertical or oblique lines all around the top of the pole. These are the store houses in which the family of woodpeckers keeps various kinds of seed in reserve, the capacity of the cavity being proportioned to.the bulk of the provisions that it is to contain. These holes, whose orifices measure about an inch or so in diameter, exist to the number of more than seven hundred upon each pole attacked, and it may be readily conceived to how great an extent they must reduce its duration, which usually reaches fifteen or eighteen years. The store houses are higher than wide, but their aperture, on the contrary, is wider than high, the object of this arrangement doubtless being to prevent the falling out of the seeds that they contain. This peculiarity of the Melanerpes (which are insectivorous birds) of accumulating seeds in the trunks of trees has long been known in America. So De Saussure, Sumichrast and several other authors had, by reason of this fact, considered them as granivorous. According to Clowry, the seeds are not eaten by the woodpeckers, but contain small larvæ upon which these birds feed.
A bird belonging to the family Ploceinect, of the widow birds, forming large colonies in the south of Africa, at Natal, formerly saw its nests ravaged by snakes, which ate its eggs and young. The industrious bird had already displayed a certain architectural knowledge in the construction of its elegant nests, suspended from the branches of trees near dwellings. In making a new application against its dreaded enemy it modified the plan of its aerial dwelling, the sole opening of which it formed in the bottom, directed toward the ground. The depredations of the snakes, which could no longer enter so easily, diminished with out, however, ceasing. Seeing the number of tufted trees diminishing in the region, the birds began to suspend their nests from the telegraph poles; but, as the snakes found it difficult to ascend these perfectly smooth columns, the birds resumed their primitive plan and formed the opening at the side in order to have more easy access to it
We now come to a new source of trouble in tele graphic communications, brought about this time by representatives of the vegetable kingdom. The tele graph wires radiating around Rio Janeiro are covered it appears, with huge tufts of orchids hanging in festoons and garlands, and of a very pretty appear ance without doubt, but which, by diverting the cur rents, cause frequent interruptions in the transmissio of telegrams. The wind plays no part in this trans plantation, which has birds alone for agents. These latter, being very fond of the capsules of the orchids, eat them in the forests, and the seeds, deposited upon the wires with their excrement, soon germinate and then vegetate in the most luxuriant manner.-Revue scientifique.

## The British Shipping Trade.

Many steamers have been laid up in northern ports Other vessels are on their way home to lie idle, and it seems certain now that the winter will be a dull one in the shipping trade. All the reports from abroad speak of little demand and unpromising and unprofita ble rates. The only vessels that seem to be doing any good at all are the newest and largest class of steamer supplied with the latest improvements of triple expan sion engines. These are enabled to take large cargoe and make quick voyages as a rule, and as they are said to save about 15 per cent in the cost of fuel, there is no wonder that they can be kept working whil others are altogether unemployed.

## AN IMPROVED HALTER.

The illustration represents a strong, simple, and inxpensive halter. the size of which may be readily changed to fit it to the heads of different sized animals. It has been patented by Mr. L. E. Shippy, of Sandy Hill, N. Y. The check straps and nose strap of the halter are made of a single strip of leather, by means of a sliding engagement of such strip with two similar cheek guards, preferably made of stout leather, cut in disk form, and each having two slits, at nearly right angles to each other. The cheek strap passes down through one shit and out through the other slit to form the nose strap, a ring being placed on the strap at the fold thus made on the outer side of the cheek guard.


## SHIPPY'S HALTER

The nose strap passes in a similar manner through the cheek guard on the other side, and the two ends of the strap are united by a buckle at the top, whereby the two cheek straps and the nose strap snay be lengthened or shortened as desired. Through the rings at the side of each cheek guard is inserted a curb strap, pass ing under the animal's mouth, and adjustable by means of a buckle, to draw the nose strap and cheek straps to proper position, the leading or hitching strap being attached to a ring placed on the curb strap. Th end portions of the brow band oif this halter loosely engage the cheek straps and the throat latch strap such portions being folded and stitched to form elon gated loops through which the straps slide.

## A HOLDBACK DEVICE FOR VEHICLES.

The accompanying illustration represents a device whereby the holdback strap may be readily and firmly secured to the thill, and a "sulky hitch" accomplished with less length of strap than is usually required. It has been patented by Mr. Isaac H. J. Ellsworth, of Jackson, Mich. The device is preferably made of cast iron, and is secured to the under face of the thill by means of screws. The strap being secured to the breeching, its eyeleted end is passed through a slot in the bridge of the device, as shown in the perspectiv view, brought over and wound round the thill, and then passed downward through a slanting slot, the beveled face of which turns the end of the strap out, as
 trap around the thill is required, and a neat,
rapid, and substantial hitch is thus effected. For fur ther information relative to this invention address th patentee, or Mr. L. C. Butler, West Bay City, Mich.

## Growth of European Cities.

The census which has just been completed in Germany shows that the growth of cities is almost as rapid in Europe as in this country, and, in some respects, even more wonderful. Berlin has gone up past New York, with a population of $1,574,485$. Hamburg, with ts big suburb of Altona, has 715,170 inhabitants. Leipsic is credited with 353,272 . Munich has a population of 344,899 , and that of Breslau is 334,710. Cologne has 282,537 inhabitants : Dresden, 276,085; Magdeburg 200,071 ; and Frankfort-on-the-Main, 179,850. In 1885, when the last previous census of Germany was taken
Berlin had $1,315,297$ inhabitauts; Hamburg and Al
tona, 410,404; Leipsic, 170,076; Munich, 261,981; Bres lau, 299,405 ; Cologne, 161,266; Dresden, 245,515; Mag deburg, 114,298; and Frankfort-on-the-Main, 154,513 Such gains as are here shown can scarcely be matched by an equal number of American cities. The period between the two enumerations, it must be remembered is only half as long as that from 1880 to 1890 , which is used in all tables showing the growth of American cities, and yet while there are but four places in this country in which the increase in population has been as much as 120,000 in the last ten years, Germany has four cities which have increased from 121,000 to 259,000 each in five years. It is the same with some of the smaller cities. Magdeburg has gained about as much in five years as Detroit or Milwaukee in ten, and Munich is growing much faster than Cincinnati or San Francisco. The crowding into the towns which has caused so much comment in this country is found everywhere in the civilized world. Next year the census to be taken in Great Britain will show that not a few British cities have been gaining at an astonish ing rate for old towns in a country where the popula tion has long been dense. Even in ancient India the growth of the cities is out of all proportion to that of the country as a whole.-Cleveland Leader.

Phosphorescent Centipedes.
That there are luminous Myriopods has been known for many years, as also the fact that they occur only among the family Geophilide of the Chilopod Myrio poda. Both sexes are luminous, sometimes quite intensely so, and the luminosity spreads out over the whole ventral surface of the animal. If one of these Geophilids is taken up, the luminous matter communicates to the hand of the observer or to anything else with which the specimen comes into contact.
There is considerable dispute regarding the origin of this phosphorescent matter. According to Dr. R Dubois, it is contained in the epithelial cell of the digestive tube, and the emission of the light depends on the moulting of the digestive tube. Mr. Mace, on the contrary, contends that the luminons matter is a gland ular excretion, and that these glands (glandes preanales) are situated on the last two segments of the animal Mr. J. Gazagnaire has satisfied himself that the luminous matter is secreted from glands situated on th sternal and episternal plates. Upon pressure these glands secrete a yellowish, viscous substance, having a peculiar odor and which is highly phosphorescent
ln a more recent article (Mem. de la Soc. Zool. de France, v. iii, 1890), Mr. Gazagnairerevie ws all previous observations on luminous Geophilids, and finds that, so far as the European fauna is concerned, luminous speci mens were found only between the end of September and beginning of November. The luminosity appears, herefore, only at a certain epoch in the life history of these Myriopods. Further, in all more carefully record ed cases, luminous specimens were never found singly, but always in pairs or in companies of three or more specimens. The few and fragmentary observations that have hitherto been made on the mode of repro duction in these animals seem to prove that the fecun dation of the female takes place in autumn, or just at he time when the luminous specimens are found, and Mr. Gazagnaire is thus fully justified in connecting the appearance of luminosity with the excitement caused by sexual instinct
In Algiers, Mr. Gazagnaire observed luminous spec mens of Orya Zarbarica in the month of April, and he concludes that in other countries and in consequence of altered climatic conditions the period of luminosity probably differs from that observed in Europe. -In sect Life.

The Teredo.
The teredo is a nuisance and expense here, but the great Northwest coast, which tries in many ways to prove its superiority over California, in one respect at least carries off the palm, and that is in teredos. Captain Gibson, of the bark J. D. Peters, has presented this office with the section of a pile which was in a raft waiting to be used in the building of a wharf at Seattle. The pile had been in the water only thirty days, and when hauled out on the beach it was noticed the teredo had got in his deadly work, and the stick was, before it had ever been used, rendered worthless by this pest. The section referred to is about a foot in diameter, and contains by actual count 212 holes bored by this industrious wood worker. When the log was on the beach, it is said the little pests keep up boring, so that placing the ear near the pile, it sounded as if a sawmill was in active operation. With such an illustration of the futility of using wood for wharves, why is it that here and at the North some plan is not devised by city or State authorities to make permanent improvements on the water front of each city? Docks built of stone, though the first cost is greater, would in a very short time be cheaper than wooden wharves constantly needing renewal, and this section of a pile, which is on exhibition in this office, is an object lesson which merchants, tax payers, and particularly officials having charge of the wharves in this and other Pacific coast cities should study.-Commercial Neros, Cal.

## PHOTOGRAPHIC NOTES.

A New Method of Mounting Prints.-The British Journal of Photography explains the following method of mounting prints on thick paper :
Part of the process consists in thoroughly damping the mount as well as the print, which in the case of a solid paper does not present the same difficulties as in the case of a built-up cardboard; while the mount is undergoing the damping process it is an easy matter to submit it to a little extra washing, or, if necessary, chemical treatment, in order to remove the impurities if such be suspected. Or the danger to the print may be at least lessened by applying a more or less impervious varnish to the mount, which, while not preventing the absorption of water, forms a protective coating when dry. Such a varnish is found in bleached lac dissolved in aqueous solution of borax. If this be applied to the paper mount before damping, it will dry without leaving any gloss, and when the mount is subsequently soaked any excess of borax will be removed, and when dry the impurities will be isolated from the print.
The method of mounting consists in immersing the mounting paper previously cut roughly to size in clean water, assuming that any necessary preparation has been already effected. When perfectly limp, the sheets are taken out of the water and, as required, blotted off between blotting paper. The wet prints are similarly treated, and then both print and mount-the latter over such part only as the print is to occupy-well impregnated with the mountant. If the print only be treated, it will in all probability peel off at the edges on drying. Nothing answers so well for mounting as arrowroot paste made pretty thick and allowed to cool, then squeezed through fine cambric to remove lumps. It should be used fresh, as it soon becomes watery, in which condition it loses its adhesive power. A convenient plan for applying the mountant to the center of the mount consists in making a mask from stout, smooth paper, or perhaps, better still, from thin sheet zinc of the outside dimensions of the mount with a central aperture a little larger-say an eighth of an inch each way-than the print. If this be laid on the damp mount, the arrowroot is easily applied to the proper portions with a sponge, and the print can be laid down in its position before removing the mask. The narrow strip of arrowroot extending beyond the edges of the print may be removed by means of a damp sponge after the print is rubbed down, but this is scarcely needful, as it dries perfectly matt, and is only likely to show on a colored mount.
With regard to the rubbing down, this is not so simple a matter with gelatine-surfaced papers as with albumen or platinotype, but all difficulty is surmounted by interposing a sheet of the thin paraffine-wax-saturated tissue paper sold for wrapping or waterproof purposes. This, while it adheres closely to the gelatine surface during the rubbing, comes easily away from it when it has served its purpose.
We next come to the drying, which is the most important part of the process if perfection of result is desired. It will be noticed that in order to avoid "cockling " of the dried print the mount as well as the print has been moistened so that each may swell and shrink equally; but this is not alone effective. If left to dry alone, the edges of the mount will dry first, the extra thickness of the print-covered portion remaining damp for a considerably longer period, and taking a saucer shape from the contraction of the surrounding portions. To obviate this, the print as soon as mounted may be pinned to a flat board, or laid on a sheet of glass and the edges of the mount turned over and stuck at the back. But by far the better plan is to have a quantity of sheets of clean blotting paper slightly larger than the mounted prints. Let these be thoroughly dried by exposing them for some time in a hot oven, then packing in a mass, and wrapping in tinfoil until required.
The prints are allowed to become partially dry, but before they lose their limpness, or show any tendency to curl, they are taken singly and placed between the blotting pads, at least two sheets of drying paper intervening between each pair of prints. In the case of gelatine-surfaced prints a sheet of waxed tissue paper is also necessary. If the pile of interleaved prints be now placed under gentle pressure for a few hours, they will be found perfectly dry, and as flat as if they had been rolled. It only now remains to trim the mounts to size, and if desired, to apply a " plate mark" by giving the print a "squeeze" in a copying press between folds of paper or in the copying book, a plate of zinc of the proper size, and with its edges slightly beveled, being laid over the face of the print.
Such prints are equally suitable for framing, for binding, or for keeping loose in a portfolio. For the last two purposes, indeed, this method of mounting is more convenient than any others we have tried.

The wire rope made by the Washburn Iron Manu facturing Company, Worcester, Mass., in 1890, for the Denver Tramway Company, Denver, Col., discounts the Glasgow cable. It is six miles long, and is made of crucible steel wire.

## ©orrespondence

## "Was It a Telephone?"

## To the Editor of the Scientifc American

I remember reading when a boy of the discovery of mining operations under the walls of a besieged town by the commander placing a cup of water on a drum head, and noticing the effect produced on the water by the vibrations of the earth beneath the drum and thus locating the exact position of the mine. May not this be the plan referred to in your article with the above be the plan referred to in your
caption in No. 4 of your paper?
T. J. W. R.

Washington, D. C., January 22, 1891.

## A TOOL HOLDER THAT HOLDS.

o the Editor of the Scientific American:
Every lathe hand knows how exasperating it is to have a turning or boring tool slip while trying to fasten it, or, worse yet, after it has been set to work. It is a common thing to find a great many tool supports in the condition shown in sketch, Fig. 2. This is evidently one of the weak points of a lathe; no blame, however, should attach to the tool builders. The usua appliance is sufficiently strong for all ordinary purposes. It is when long tools are used, such as those for boring articles in a chuck, that difficulty arises in holding the tools securely. Not unfrequently ungainly braces or wedges are employed to prevent the tool from slipping. We remedied this defect on a lathe we were running a number of years ago. The sketch, Fig. 1,

shows the contrivance employed. The block, $c$, was of cast iron, and the holder, $a$, of best refined iron, the lower end being gibbed into the rest, $d$, and a hole through the center sufficiently large to allow the bor ing bar to pass without touching, so that when the se screw was tightened, the whole was made fast to the athe rest, $d$.
It was a source of satisfaction to know the boring bar could not swivel around and make a tapering hole.


The adoption of this device or something similar would save much trouble. It is difficult to duplicate a lathe est, and almost impossible to repair one satisfactorily Chattanooga, Tenn., January 1, 1891. Quirk.

## An Ascent of Pike's Peak by Rallway.

The autumn has been partially spent by your cor respondent in the Rocky Mountains, erossing the "Great Divide," penetrating canons, climbing passes, prospecting gorges where walls soared thousands o feet above the beaten trail, traversing picturesque valleys, pausing at rich mining camps of gold and silver, visiting Indian reservations, in short, familiar izing myself with peaks, plains, lakes, rivers, canons, and mesas, the difficulty being, not where to go, but what to omit.
This mid-continent region, as is well known, possesse the finest scenery in the world.
But, after all, the most enjoyable experience was my ride to the top of Pike's Peak over the new so-called "cog wheel railroad," recently opened to tourists. It is the most novel railroad in existence. Compared with it, those of Mt. Washington, N. H., and of th Rhigi, Switzerland, are insignificant. The winding and curving necessary to attain three miles of altitude make the road ten miles in length. Its cost was a hal million of dollars. The road bed is twenty feet wide the culverts are of solid masonry, and the bridges and rails are of the heaviest steel, with a double cog rail in the center. The track is substantially anchored a short intervals into the solid rock.

The cars, without being tiltec are hung within fifteen inches of the rails, and tire pinion brakes are
so arranged that, when necessary, the train can be brought to a full stop in a space of ten inches, either ascending or descending. Each passenger seat is level The engine was coupled at the rear and pushed the train, a desirable innovation, relieving one's eyes from the constant annoyance of cinders. Stops were fre quent at all sightly points. The round trip, costing five dollars, occupied three hours, and I considered it the best investment of time and money made during ears of travel
A brief chat with Sergeant O'Keeffe, in charge of the government signal station on the summit of Pike's Peak, elicited the following facts.
The gentleman having made the rude cabin on the peak his home for five years, and being the only person ever detailed twice to that station, his information may be considered reliable.
The lowest temperature he ever experienced was 57 below zero, the highest 62 above zero. The mean highest winter temperature was 14 below zero (all Fahrenheit)
The winter zephyrs were frequently of sufficient strength to cope with and blow through the whiskers of the most able-bodied man.
In one instance a speed of one hundred and thirtyfive miles per hour was indicated, at which point the wind blew the balls out of the socket and the roof from the cabin, followed by a rapid increase in velocity, continuing several hours, during which he estimated that a speed of one hundred and fifty miles per hour was attained.
Bowlders weighing tons are not uncommon near the summit, and are frequently utilized for holding the cabin roof in position, for which purpose they are nore effective than chains.
Sergeant O'Keeffe pronounces the thrilling narrative of the death of his associate while on duty at the station as pure fiction, no person of the name given having ever been employed there, and no death having eve occurred. He attributes the story to the effervescing but fertile brain of some Eastern scribbler, too far re moved from the "seat of war" to invent a reasonabl yarn.
W. Y. B.

The Anthracite Coal Fields of Pennsylvania. by john h. jones.
The anthracite coal fields of Pennsylvania are situ ated in the eastern part of the State, and extend about equal distances north and south of a line drawn through the middle of the State from east to west, in the counties of Carbon, Columbia, Dauphin, Lackawanna Luzerne, Northumberland. Schuylkill, Sullivan, and Susquehanna, and known under three general divisions, viz., Wyoming, Lehigh, and Schuylkill regions. Geologically they are divided into five well defined fieids or basins, which are again subdivided, for con venience of identification, into districts, as follows :

| Geological Fields or Basins. Local Districts. |  | Trade Regions. |
| :---: | :---: | :---: |
|  | Carbondale Scranton $\ldots . . . . . . . . . . ~$ |  |
| Northern........ ..... $\left\{\begin{array}{l}\text { P } \\ \mathrm{W} \\ \mathrm{P} \\ \mathrm{K}\end{array}\right.$ | Pittston................. |  |
|  | Wllkesbarre .............. Plymouth....... | Wyoming. |
|  | Kingston .................. |  |
| Western Northeru...... |  |  |
| Eastern Middle ........ $\left\{\begin{array}{l}\text { B } \\ \text { Hem }\end{array}\right.$ | ${ }_{\text {Black Creek............ }}$ |  |
|  | Hazleton.............. | Lehig |
|  | Pauther Creek..........) |  |
|  | East Schuylkill.......) |  |
| Southern.............. $\{$, | Lorberry. |  |
|  | Lykens Vailey.......... | .Schuylki |
| Western Middle. ..... $\left\{\begin{array}{l}\text { E } \\ \mathbf{W}\end{array}\right.$ | East Mahanoy |  |

The total production of anthracite coal in Pennsyl vania during the calendar year 1889 was $40,665,152$ tons of 2,240 pounds (equal to $45,544,970$ tons of 2,000 pounds), valued at the mines at $\$ 65,718,165$, or an average of $\$ 1.61^{\frac{8}{10}}$ per long ton, including all sizes sent to market In the above $35,816,876$ tons is included unsalable size temporarily stocked at convenient points near the mines and tonnage loaded into cars but not passed over railroad scales, as well as waste in rehandling in the various processes of cleaning the smaller sizes. The quantity reported by the transportation companies as actually carried to market, which is the usual basis fo statistics of shipments, was $35,407,710$ tons during the year $1889 ; 1,329,580$ tons were used by employes and sold to local trade in the vicinity of the mines, and 3,518,696 tons were reported as consumed for steam and heating purposes in and about the mines.
The number of persons employed during the year including superintendents, engineers, and clerical force was 125,229 . The total amount paid in wages to al classes during the year was $\$ 39,152,124$. The total number of regular establishments or breakers equipped for the preparation and shipment of coal was 342,19 of which were idle during the year. Besides these, there were 49 small diggings and washeries, supplying local rade. There were also 18 new establishments in cours of construction.-Census Bulletin, No. 20.
-The Population of Japan.-Official returns show hat the population of Japan on December 31, 1889. was 40,072,020-20,246,336 males and 19,825,684 femaleswho occupied 7,840,872 houses.

DESTRUCTION OF ELECTRIC WIRES BY A SNOW STORM.
In the early morning of January 25, New York City and its immediate vicinity was visited by a snow storm which was very destructive of all kinds of suspended wires-electric light, telegraph, and telephonethe falling.poles also doing considerable other damage, and temporarily interfering with travel to some extent, although no lives were lost. It had been raining the previous evening, but the rain changed to hail and then to snow shortly after midnight, with a high wind. The wind went down before daylight, but a heavy, wet snow continued to fall until about 9 o'clock in the morning, clinging to everything it touched, weighting down the branches of trees, and lodging on every abutment and in every crevice open to it, presenting everywhere spectacles of marvelous beauty. Such storms have always been especially dreaded by telegraph men, and in this case the wires soon began to feel the effects of the snow accumulating upon them. They constantly grew in size, until each wire became a great white cable, as large in many cases as a man's wrist. The tall poles from which the wires are sus pended were not desirned to support such weight. From the cross bars of some of them as many as tw
railroad station. This pole pulled down others in suc cession, until not one pole was standing between Ninth and Eleventh Avenues, and the wires became tangled across the railway tracks, inpeding travel until they could be cut away. From six o'clock until noon the poles fell in quick succession all over the city, and by Sunday night it was stated that not a single wire could be operated from the Western Union headquarters. The electric light wires themselves, being mostly buried, escaped with comparatively little injury ; but from fear of accidents from crossed wires, orders were given early in the day, both in New York and Brook lyn, to shut off all current, and the greater portion of this service was thus disabled for two days. Had these wires, in themselves so heavy, been hung on poles, as was formerly the case, the destruction would have been much greater, and the companies, therefore, have to thank the city for compelling them to bury their wires, a work which was carried out only after the prolonged insistency of the authorities. The police and fire department wire service, by which every portion of the city has been thoroughly covered, was so completely paralyzed that patrols were organized to traverse the streets in many localities, and lookouts stationed on high buildings. In this respect, matters

## Novel scheme for Producing Rain.

Senator Farwell, of Illinois, proposes, after his term of office expires, which will be next March, to devote himself to the scientific work of trying to produce ain by the firing of cartridges of gunpowder or nitro glycerine high up in the air. During the last session, Congress appropriated two thousand dollars for carry ing on experiments of the kind, but Senator Farwel does not intend to limit himself to this small sum, and will, if necessary, contribute from his own pocket such sum as may be necessary to complete the trial to his satisfaction. The main fact on which the theory of the experiments is based is the circumstance that heavy cannonading is often followed, after a day or wo, by rain. Acting on this observation, attempts have been made at intervals, during the last hundred years, to produce rain by firing cannon, and producing concussions of the air in other ways, but without much success. Senator Farwell, however, says that during the construction of the Central Pacific Rail road through the arid region east of the Rocky Moun tains, where a great deal of blasting was necessary, it rained every day that there was blasting. For this reason he thinks that a sharp explosion of nitro-gly cerine, produced high up in the air, would be more


EIGHTH AVENUE AND THIRTY-NINTH STREET, LOOKING EAST.

ninth avenue and thirty-ninth street, hooking west.

BREAKING DOWN OF ELECTRIC WIRE POLES BY SNOW.
hundred wires are suspended, and, stout as they are, they soon began to lean over and break under their burden. The weakness or failure of one added to the load of its neighbors on either side, and there followed such a falling of poles, carrying electric light, telephone, and telegraph wires, as had never before been seen in New York City
Our illustrations represent the scene presented by this breaking down of the poles, as seen from two different points on Thirty-ninth Street. The views are from photographs made just after the storm, by Mr. E. C. Slater, of the New York Society of Amateur Photographers. A branch telephone station and a telephone exchange being near by, many telephone wires ran through Thirty-ninth Street, and one of the views shows a telephone testing box on the upper broken-off end of a pole, the broken pole lying at an angle across the street against the side of a building, and thus supporting a mass of debris.
The falling poles in many cases broke off cornices punched holes in the walls of budings, and smashed much glass, while it often happened that the apparent imminence of danger in a particular quarter drew groups of the curious, and seasonable warning was given to those who were threatened. The poles began to fall about 5 oclock in the morning, when a large one snapped in two near its base and fell on the roof of the Fifty-ninth Street and Ninth Avenue Elevated
seemed as though we had gone back a quarter of a century, to the time when alarms of fire were rung out from a great bell in a tower just behind the City Hall, for among other temporary expedients, the fire department arranged to have fire alarms rung from the church bells in different parts of the city.
Actual figures as to the direct pecuniary loss thus caused are not obtainable. It has been estimated as high as $\$ 4.000,000$. One company absolutely lost 3,200 wires, and partially lost 1,300 others; but all the sufferers are inclined to make their loss appear as small as possible, on account of the pressing demands made upon the companies so persistently of late years that all wires should be buried. It is extremely fortunate, if the term can be properly used in such connection, that this breakdown in all electrical service occurred on Sunday. Happening on a regular business day, and in some conjunctions of affairs, it may easily be seen how such a failure of the usual means of communication might have been the cause of great and widely extended disaster. This reason alone should operate to hasten the time when all trunk lines of communication between great cities will be placed beneath the surface.

THE underground system of telegraphs of the Gernan empire has a total length of 3,600 miles, and has cost $\$ 10,219,000$.
effective than cannon firing near the ground, and he proposes to send up balloons in the dry portions of Western Kansas and Colorado, furnished with tor pedoes and slow matches, by which he hopes to obtain a concussion extending for fifty miles in every direction.
The American Architect thinks that while the scheme does not give a very great promise of success, it would be interesting to see the experiment tried and even partial success would be of great value. If the farmers of Colorado and western Kansas could get a shower once a week by sending up torpedoes every day, the result would be well worth the trouble, and there is plenty of reason to zuppose that such artificial showers, by fostering the growth of vegetation, would in time produce the conditions which lead to regular natural showers, and the consequent permanent establishment of fertility throughout the region to which the process is to be applied.

THE commissioners appointed by the United States naval authorities to visit and report upon the nickelbearing districts of Canada report that they are convinced, from the surface indications and the shafts already sunk, that the mineral cannot be exhausted by this generation. The deposits of nickel lie between walls of granite and diorite, and are easily to be distinguished.

## THE FALL RIVER STEAMER PURITAN.

The Fall River line has no significance in its title relating to the city of Fall River, but takes the name simply for the reason that that port is the eastern terminus of the water route connected with the enterprise. The line itself is made up of 181 miles of water route-from New York to Fall River-and 49 miles of
railroad, the Old Colony Railroad from Fall Railroad from Fall
River to Boston, in all 230 miles of route, embracing in its direct ministrations the cities of New York, Newport, and Boston as terminal points.
The Puritan is the most successful achievement of the Fall River line and is the largest and finest vessel of the fleet.
The model and general plans of the Puritan were designed by Mr. George Pierce, Supervisor of Steamers of the Old Colony Steamboat Company; the details of steel hull, etc., by Mr: Edward Faron, of the Delaware River of the Delaware River
Ship and Engine Building Company; and the hull was built at Chester, Pa .
Her principal dimensions are as follows: Length over all, 420 feet;
length on the water line, 404 feet; width of hull, 52 feet; extreme breadth over guards, 91 feet; depth of hull amidships, 21 feet 4 inches; height of dome from base line, 63 feet; whole depth, from base line to top of house over the engine, 70 feet. Her total displacement, ready for a trip, is 4,150 tons, and her gross tonnage is 4,650 tons.
The Puritan is fireproof and unsinkable. She has a double hull, is divided into 59 water-tight compartments, 52 between the hulls and 7 athwartship bulkheads. In the fastenings of her steel hulls and compartmente, therehave been used 700,003 rivets, and shehas upward of 30 miles of steel angle bar. Her decks are of steel, wood covered. Her masts a re of masts are of steel, and hollow, to serve as ventilators,
and are 22 and are 22
inches in diainches in dia-
meter. He r paddle wheels are incased in steel.
Steel, as a building material, has lately superseded iron in the naval world, and so it is that, in keeping with the progress of the age, the Puritan's hull is made of mild steel, wh ic h steel, which for weight, is some 20 per cent stronger than iron, with 25 percent reduction of weight, according to the best government tests.
Her wheels are of steel, and are 35 feet in
considered that the section of beam strap measures $91 / 2$ by $111 / 4$ inches, one may get an idea of the enormous strain and the strength of resistance of this beam. The main center of the beam is 19 inches in diameter in main bearing. The shafts are 27 inches in diameter in main bearing, 30 inches in gunwale bearing, and are the largest ever made in this country. They weigh 40 tons each. The
cranks weigh 9 ton $s$ cranks weigh 9 tons each. The crank pin is enormous, the bearing
being 19 inches in diameter and 22 inches long.
The gallows frame is of heavy steel plate, and by its angles easily supports the enormous working beam.
She has eight steel boilers of the Redfield return tubular $t$ y $p e$, and the maximum working pressure is 110 pounds to the square inch. Six of these boilers are 18 feet 1 inch in width and 15 feet 2 inches long; the other two are 10 feet wide and 14 feet long. Each of the wide boilers has two shells; the narrow boilers have one each, 7 feet 8 inches in diameter. The boilers contain 850 square feet of grate surface and 26,000 square feet of heating surface.

## THE STEAMER PURITAN.

Of her machinery, boilers, etc Messrs. W \& A. The products of combustion pass through two super Fletcher \& Co. (North River Iron Works) were the heaters, 8 feet 10 inches inside diameter and 12 feet builders, and they were also the contractors for the 4 inches outside dianeter, by 12 feet high; thence building and completion of the ship in every part The Puritan has a compound, vertical beam, surface condensing engine of 7,500 horse power. The high pressure cylinder is 75 inches in diameter and 9 feet stroke of piston. The low pressure cylinder is 110 nches in diameter and 14 feet stroke of piston. A horse and wagon could be driven through this cylinder, if laid on its side. The surface condenser has 18 inch stroke. T.
for a big tug boat.
There are two into two smokestacks, the top of each being 101 feet and 1 inch from the keel. The fire room is 78 by $121 / 2$ feet. There is a donkey boiler on the main deck for auxiliary purposes. Her stean steering apparatus has an engine of two cylinders, each 24 inches in diameter, 18 inch stroke. This engine alone is powerful enough There


IN THE ENGINE ROOM OF THE PURITAN ong and 5 feet wide, each bucket of steel $7 / /$ inch tons. Of condenser tubes of brass there are $141 / 2$ thick, and weighing 2,800 pounds, without rocking miles in the Puritan. Her working beam is the largarms and brackets attached. The total weight of each wheel is 100 tons. The two to wheel is 100 the 17 center, 17 feet wide, and weighing 42 tons. When it is
capable of throwing $10,-$ 000 gallons per
minute. $\mathrm{Be}-$ sides these there are three other large pumps, with a combined capacity of 2,000 gallons per minute. Novel features are the three steam cap stans, ove for ward and one on each quar ter, used in docking the boat. Each capstan has a double cylinder engine each cylinder 12 inches in di ameter and 14 inch stroke She has two Sturtevant blowers, fur nishing fresh air for the fire room, each capable of 50,000 feet per win ute. She burns about 120 ton of coal on the trip from New York to Fall River and back.
On the main deck the Puri tan has an after cabin 82 by 53 feet, with floor space 72 by 24 feet. Still further aft is a ladies private cabin, 42 by 27 feet. The dimensions of the social hall, or quarter deck, are 58 by 24 feet. The usual office rooms, barber shop and toilet, small bag gage and coat rooms, etc., are arranged on this deck
in the most satisfactory manner. The freight deck contains about 80,000 cubic feet of space.
The forward cabin of the saloon deck is 76 by 22 feet, and the main saloon is 128 by 28 feet in measurement. The deck room forward, outside of the saloon, is 48 by 32 feet, and the deck room aft is 44 by 40 feet. The sa-
loon or music room aft, on the gallery deck, is 64 by 24 loon or music room aft, on the gallery deck, is 64 by 24
feet, and the deck room outside is 48 by 36 feet. The feet, and the deck room outside is 48 by 36 feet. The
continuous promenade outside the paddle boxes is afcontinuous promenade outside
forded also on the gallery deck.
The dining saloon is 108 feet 4 inches in length, by 30 feet in width and 12 feet in heignt. The kitchen and pantry is 52 feet long by 20 feet wide. The dining room shows no racks or fixtures running fore and aft amid ships, as in other steamers of the line, but, instead, arched spaces at regular intervals on each side contain elaborately finished sideboards, the plan being two sections of berths (concealed), and then a sideboard sections of berths (concealed), and then a sideboard
archway, alternating for the entire length on both archway, alternatin
From stem to stern, and in every nook and corner of this ship, the electric wire is to be found. In all there are 12 miles of this wire, and including annunciators, fire alarms, etc., there are 20 miles of wire on the ship, and 12,000 feet of steam pipes. There are capacious gangways, grand and imposing staircases, heavy with lurass and mahogany, lofty cornices and ceilings supported by tasteful pilasters, the tapering columns of which, in relief, fiank exquisitely tinted paneling which, in relief, fiank exquisitely tinted paneling
throughout the length of her grand and minorsaloons. throughout the length of her grand and minor saloons. And over all this artistic work and exuberant col
the incandescent electric light sheds its soft rays.
The electric light plant of the Puritan is very perfect. The system used is the Edison incandescent lighting, and it is furnished by the Edison United Manufacturing Company. The currents are generated by four dynamos of special type and construction, each having a capacity of 400 lights, or a total of 1,600 lights as a safety load, but capable of maintaining 1,850 lights if required. The dynamos are located in the forward if required. The dynamos are located in the forward connected in pairs, the motor being supplied by two of Armington \& Sims special double engines, of 50 horse power each, two of the dynamos being connected with each engine, and the two connected with each other by direct shafts, so that one or both dynamos can be used at will.
In connection with the electric apparatus is a most complete fire alarm system, with which, indeed, all the vessels of the Old Colony Steamboat Company are now equipped. The alarm relied upou is by thermostats. One of these thermostats is placed in every room, and at every point where there is the least danger to be apprehended from fire-an automatic fire watchman, at all times alert and ready for action. The Puritan is also fitted with watchmen's clocks. The clock placed in the captain's office indicates the hour and minute throughout each day of the year at which the 20 clock stations of the ship are visited by the watchmen. The connection between each station and the clock in the office is by electric wire, and the circuit is closed and registry made by the use of a simple key carried by the watchman. Thus any failure of duty by the watchman, through neglect, sleep, indifference, or for any reason, is revealed completely by the tell-tale clock in the office.
For fire fighting, the Puritan is equipped with the most thorough and complete apparatus, including steam and hand pumps, extinguishers, tools, etc. There are 50 connections to the steam pumps in different parts of the boat for fire purposes exclusively. She has three hand pumps, and these are of unusual She has three hand pumps, and these are of unusual
size. She has eight Harkness fire extinguishers, and size. She has eight Harkness fire extinguishers, and
carries 175 fire pails and 36 axes, distributed through the ship at convenient points.

The life saving service and appliances of the Puri$\tan$ are also of the best approved establishment and effectiveness.
As an adjunct of the life saving service, and for use in case the whole ship's company should be threatened, the Puritan carries a dozen 26 foot life boats, 12 life rafts and 1,400 life preservers. With all these provirafts and ainst disaster by fire or water, the claim that this ship affords the element of safety in traveling may fairly be made in her behalf.
The general style of the ornamental and decorative finish is that of the Italian Renaissance, the work raised and largely carved in wood, desigos in white and gold, with liberal use of soft rich tints blending in the fines harmony, all ornaments pure and classic and no shams allowed. The raised work, consisting of garlands, friezes, scroll work, etc., is applied to ceiling, wall door, or partition, to form the proper adjustments in relief.

Some idea of the immense amount of finish in th different departments may be obtained when it is understood that in the gilding alone, 185,000 gold leaves, each $33 / 8$ inches square, were used. In painting the ship, nearly 100,000 pounds of lead were expended.
The Puritan has in all 364 staterooms. These are in double tiers for the entire length of the main saloon and gallery decks, and upon the main deck there ar 139 rooms. On the gallery deck there are 152 rooms,
and for considerable area on this deck the staterooms
are in treble tiers. This is made possible as the top are in treble tiers. This is made possible as the top
of the wheels reaches only to the base of the gallery deck, thirty additional staterooms on either side being thus secured.
The sanitary arrangements of the Puritan are in accordance with the latest and most improved provision applied in the finest and most costly edifices on land and are as near perfection as scientific discovery and invention have yet attained.
And let no one suppose that the efforts of the designers and builders of this great ship were directed with a view alone to beauty and magnificence. First of all the safety, comfort, convenience and accommodation of passengers and ship's company have been studied, the taking advantage of all opportunities for attractive and appropriate ornamentation following in order. In every part and department, provision matches demand, and the useful and beautiful ar found side by side.

American Society of Civil Engineers.
The fortieth annual meeting of this society was held in this city on January 21 and 22. Some two hundred members, including most of the distinguished engineers of the vicinity, attended the sessions. At the first day's meeting, in the Twenty-third Street Baptist church, annual reports of committees were read, offcers were elected, and general business was transacted during the first sitting. The treasurer's report showed receipts of $\$ 36,654.39$, and disbursements of $\$ 34,089.03$. The Norman gold medal was awarded to John R Freeman, of Boston, Mass., for his paper on "Experiments relating to the Hydraulics of Fire Streams.' The Rowland prize of $\$ 50$ was awarded to 0 . Chanute, John F. Wallace, and W. H. Breithaupte, joint authors of a paper on "The Sibley Bridge."

The following officers were elected: President Octave Chanute ; vice-presidents, Alphonse Fteley and Charles Hermany; secretary and librarian, Francis Collingwood ; treasurer, John Bogart ; directors, Chas. B. Brush, Rudolph Hering, Clemens Herschel, Edward P. North, S. Whitney
"At the evening session the following committees gave their reports: On Compressing Cements and Settlement of Masonry, Uniform Methods of Testing Materials Used in Metallic Structures, Standard Rai Sections, Domestic Water Supply, Uniform Standard Time, Units of Measurement, International Engineer ing Congress, and Failure of South Fork Dam. A stereopticon description of the progress of the work of the Chignecto Ship Railway was given by John F. O'Rourke, of Amherst, N. S."
The next day, January 22, was devoted to the inspec tion of various places of interest in this city, Brooklyn and Jersey City. In the evening a reception was held in the rooms of the society, 127 East Twenty-third Street. The society has adopted the 24 hour notation of time. Its announcements of time include, therefore such hours as 18 o'clock, 15 o'clock, and the like.

## Horse Notes.

Senator Stanford received a dispatch from his California agent recently, announcing the death from rheumatism of his famous stallion Electioneer, probably the most valuable stallion in the world.
Just what his value was, says the Amesbury Vehicle it would be hard to determine, as no price has been put on him for twelve years. He has earned as much as $\$ 40,000$ in a year, though, and it would be safe to estimate his value at $\$ 200,000$.
Electioneer was foaled in 1868, and was bred by Charles Backman, of Stony Ford, N. Y. Senator Stanford bought him of Backman twelve years ago for $\$ 25,000$, at that time the highest price that had eve been paid for a stallion.
Since he came into Senator Stanford's possession, Electioneer's colts have sold at prices ranging from $\$ 3,500$ to $\$ 18,000$. Electric Bell sold at the latter figur vefore he was a year old.
Bell Boy had the most remarkable career of any of Electioneer's get. Senator Stockbridge took a fancy to him, and bought him from Senator Stanford for $\$ 5,000$. He sold him for $\$ 35,000$, and he was afterward sold for $\$ 51,000$
An extraordinary horse has recently been brought to Boston. He is a beautiful golden chestnut, with light mane and tail, white hind feet, and white face. He is seven years old, weighs 1,435 pounds, stands 16 hands high, and is three-fourths Clyde, one-eighth French and one-eighth Printer.
Linus-that's his name-was born in Marion, Ore. May 20, 1883, and is considered a perfect and beautiful animal. The fact that at the present time his foretop is 8 feet, wane 8 feet 8 inches, and tail 12 feet 3 inches in length, is certainly wonderful, and makes him an extraordinary attraction.
No particular care or attention was given the horse until he was five years old, when his foretop, mane and tail had increased so much in length that they reached the ground. At this time his owners comnenced to put them in braids and bag them up. Som four months after it was braided the hair was loosened
and found to have grown seven inches. On account of such rapid growth, the owners commenced to cultivate
it, and it grew rapidly, and at the present time has it, and it grew rapidly, and at the $p$
reached the length mentioned above.

In the last twelve months the mane has grown 14 inches and the tail 16 inches, and both are still growinche
ing.
The

The horse commenced to attract considerable attention and the owners, the Rutherford Brothers, extensive Oregon cattle dealers, were induced to place him on exhibition in the town of Marion, Ore. Realizing, how ever, that the horse was peculiarly adapted for show purposes, and not having any knowledge of this par ticular line of business, they offered him for sale Photographs of the horse were sent East, and a copy happening to attract the attention of C. H. Eaton, of the Eaton stock farm, of Lexington, that gentleman made up his mind to investigate.

The result was that Mr. H. W. Eaton made a journey to Marion. One sight of the wonderful equine con vinced him of future possibilities, and in behalf of Eaton Brothers he made an immediate purchase of the longest haired (mane, tail, and foretop) horse in the known world. The price paid was $\$ 30,000$ cash.
The horse was taken aboard the cars for Boston, and while in transit a stop was made at Albuquerque, $N$ M. Here a syndicate offered $\$ 50,000$ for him, which was refused. A further inducement, in the shape of $\$ 1,000$ for a three days' $\in x h i b i l i o n$, was offered. This was also refused, and the trip to Boston was continued and finished after a journey of twenty-seven days.
The present owners of the wonder, the Eaton Broth rs, are both horsemen, and are well known to al owners of thoroughbred stock throughout the United States. They have stock farms at Calais, Me., and Lexington, Mass.

## At the Bottom of the Sea.

At the depth of about 3,500 feet waves are not felt The temperature is the same, varying only a trifle from the ice of the north pole to the burning sun of the equator. A mile down the water has a pressure of ove a ton to the square inch. If a box six feet wide were filled with sea water and allowed to evaporate under the sun, there would be two inches of salt left on the bottom. Taking the average depth of the ocean to be three miles, there would be a layer of pure salt 230 feet thick on the bed of the Atlantic. The water is colder at the bottom than at the surface. In many hays on the coast of Norway the water often freezes at the bottom before it does above.
Waves are very deceptive. To look at them in a storm one would think the water traveled. The water storm one would think the water traveled. The water
stays in the same place, but the motion goes on. Sometimes in storms these waves are forty feet high and travel fifty miles an hour-more than twice as fast a the swiftest steamship. The distance from valley to valley is generally fifteen times the height, hence a wave five feet high will extend over seventy-five feet of water. The force of the sea dashing on Bell Rock is said to be seventeen tons for each square rod.
Evaporation is a wonderful power in drawing the water from the sea. Every year a layer of the entire ea, fourteen feet thick, is taken up into the clouds The winds bsar their burdens into the land, and the water comes down in rain upon the fields, to flow back at last through rivers.
The depth of the sea presents an interesting problem. If the Atlantic were lowered for 6,564 feet, the distance from shore to shore would be half as great, or 1,500 miles. If lowered a little more than three miles, say 19,680 feet, there would be a road of dry land from Newfoundland to Ireland.
This is the plan on which the great Atlantic cables vere laid. The Mediterranean is comparatively shal low. A drying up of 660 feet would leave three differ ent seas, and Africa would be joined with Italy.
The British Channel is more like a pond, which ac counts for its choppy waves. It has been found diff cult to get the correct soundings of the Atlantic. A midshipman of the navy overcame the difficulty, and a shot weighing thirty ponnds carried down the line. A hole is bored through : e sinker, through which a rod of iron is passed, moving easily back and forth. In the nd of the bar a cup is dug out and the inside coated with lard. The bar is made fast to the line and a sling holds the shot on. When the bar, which extends below he ball, touches the earth, the sling unhooks and the shot slides off. The lard in the end of the bar holds ome of the sand, or whatever may be on the bottom, and a drop shuts over the cup to keep the sand in. When the ground is reached a shock is felt, as if a lectric current had passed through the line.-Ocean.

The Electric Review thinks it a poor place for the elephone in the land of the Arabs. They have no "hello" in their language. The nearest they can come to it is to throw a stone and hit a man in the back, and then ask him, as he turns around : "Does it please heaven to give you good health this morning?" There are some unscientific people who say they would prefer the stone in the back to a wrestle with the telephone on some exasperating occasions.

## The American slate Industry.

The superintendent of the census has lately published the report of William C. Day, prepared under direction of Dr. David T. Day, on the slate industry, from which it appears the total value of all slate produced in the United States in 1889 is $\$ 3,444,863$. Of this amount, $\$_{2,775,271}$ is the value of 828,990 squares of roofing slate, and $\$ 669,592$ is the value of slate for all other purposes besides roofing.
As compared with the census report of 1880 , the slate product of 1889 is nearly twice as great in number of squares and in value.
Twelve States at present produce slate. A line drawn on the map from Piscataquis County, Maine, to Polk County, Georgia, and approximately following the coast outline, passes through all the important slateproducing localities. According to amount and value of product, the most important States are, in the order named, Pennsylvania, Vermont, Maine, New York, Maryland, and Virginia. In the remaining six States productive operations are of limited extent, and in the productive operations are of limited extent, and in the
case of Arkansas, California, and Utah, of very recent case of
date.
The twelve States referred to do not include all those in which merchantable slate is known to exist, since discoveries promising good results for the future have been made in a number of other States, among which may be specially mentioned Tennessee, where operations of production are beginning.
The Bangor region, which is entirely within Northampton County, Pennsylvania, is the most important. This region includes quarries at Bangor, East Bangor, and Mount Bethel, Pennsylvania.
The Northampton Hard Vein region is specially distinguished on account of the extreme hardness of the slate as compared with that produced in other regions of the State. This region includes the following localities: Chapman's Quarries, Belfast, Edelman, Seemsville, and Treichlers, all in Northampton County.
The Vermont and New York region includes an extensive slate formation occupying a part of the old Champlain Valley, lying between the western base of the Green Mountains of Vermont and the southern the Green Mountains of Vermont and the southern
trend of the Adirondacks in New York. The area in trend of the Adirondacks in New York. The area in
which slate is actually produced at present is confined to a narrow strip in Washington County, New York, and a somewhat wider one lying next to it in Rutland County, Vermont. It extends from Castleton, Vermont, on the north, to Salem, New York, on the south, a distance of 35 or 40 miles, and has a maximum width of six miles, but the average is not more than a mile and a half. With the exception of red slate, the production of which is at present limited to Washington duction of which is at present limited to Washington
County, New York, the general character of the slate County, New York, the general charact
in Vermont and New York is the same.
The slate quarrymen of the country, and to a considerable extent the firms operating the quarries, are either Welsh or of Welsh descent, many of them having learned the methods of quarrying slate in the celebrated quarries of Wales.
The quarries are operated on an average of about 220 days in the year. The idle days are the result of rainy weather and holidays. The first day of every month is regarded as a holiday by the Welsh quarrymen, and no work is ever done by them on Saturday afternoons.
The average wages for the entire country paid to foremen or overseers is $\$ 2.48$ per day; for quarrymen and millmen, $\$ 1.56$; for mechanics, $\$ 1.64$; for laborers, $\$ 1.27$; and for boys, $\$ 0.76$.

## Sand on the Columbia River

Sandstorms along the upper Columbia have long been a great source of annoyance and expense to the company operating the railroad through that section, trains frequently being delayed a day or more, at a time, from sand blown on the track. Heretofore no systematic effort has been made to get rid of the sand. A large gang of Chinese has been employed for years at an expense of about $\$ 18,000$ a year, to simply shovel sand off the track, and pile it up on the other side in a wost convenient place for being blown back again. In some places the sand was from eighteen to twenty feet high on each side of the track, the accumulation of years, and
of times
A scheme has been adopted for the removal of the sand by sluicing it into the river by means of water supplied by a force pump on the river, near which the road runs for a long distance. The scheme bids fair to prove a great success, as with a comparatively smal pump the sand is washed into the river for four cents front, by which it is expected that the sand can be moved for three cents a yard.-Pacific Lumberman.

ONE of the latest inventions in connection with the electric light is a silent cab call. Several clubs and hotels in London have already been supplied with this useful commodity. Two lamps are suspended outside the building, one red and the other green, and by pressing a knob in the entrance hall one or other of the lamps can be lit at will. The red light calls a fourwheeler, and the green a hansom.

## AN IMPROVED CARRIAGE SPRING

The construction shown in the illustration is very ight, while with it the body settles evenly without egard to the placing of the load, does not tip when one gets in and out, and may be made of full width, It has been patented by Mr. Alfred Conner, of Exeter, N. H. Pivoted on the under side of the platform are four bearing arms or levers, whose outer ends are connected to the axles, and whose inner ends come together centrally under a spider-like supporting frame attached to the under side of the platforim, as shown in Figs. 1 and 3, a conical spiral spring between the body and frame here connecting the inner ends of the bear-


CONNER'S " CLIMAX" CARRIAGE SPRING AND hanging apparatus.
ing arms with the body. Any other suitable form of spring may be used instead of the one shown in the illustration. Fig. 2 is a bottom plan view showing the application of the invention. A vehicle in which this construction is followed is not liable toget out of order, and is designed to afford easy riding and obviate all rocking motion, while any tendency to upset in turning corners is materially lessened. With a heavy person on one end of the seat and a light one on the other, there will be no tipping of the seat to ore side, the arrangement of the spring and bearing arms causing the body to settle evenly.

## A CRATE FOR SHIPPING AND EXHIBITING

 POULTRY, ETC.A crate especially designed to safely carry and advantageously exhibit poultry, etc., and which may also be used for the conveyance of perishable articles generally, while, when not in use, it may be knocked down and packed in small compass, for storage and transportation, is shown in the accompanying illustration. It has been patented by Mr. Henry M. Bickel, of Larned, Kansas. The crate is made with opposite flat sides and beveled end sides, covered by wire netting, and has a detachable floor, on the outer edges of which are straps by which the floor may be connected with buttons on side strips. At the corners of the floor are beveled perforations, adjacent to which are hinged vertical posts, extending downward through the floor and upward through the ceiling of the crate, the upper


## BICKEL'S KNOCKDOWN CRATE.

ends of the posts being reduced in size, thus forming shoulders to support the ceiling, and means for connecting with supporting posts above, whereby any number of similar crates may be thus superimposed on each other, our illustration representing a double crate.
The top of the lower crate has centrally sliding doors moving in slideways, and the top of the upper crate has a swinging door held closed by a suitable catch, whereby fowls, etc., may be conveniently placed and con fined in the crate. Detachable posts are used in connection with the upper crates, and the floor of the bottom
crate has a removable central post, which, with other posts near the edses of the floor, is adapted to support partitions of cloth or webbing, whereby the crate may be divided into such number of compartments as desired. The webs pass through slots in the center post
so that they may be easily regulated or moved. A detachable floor is also provided, of cloth or other flexible material, a strengthening rod or rib extending around its outer edge, adapted to fit within the side strips of the crates, this floor also having straps adapted to connect with buttons on the side strips. The crate shown, instead of being double, may be put together to afford one large interior compartment, with no dividing floor, the bevels from the top and bottom edges then giving a larger central horizontal portion. The network sides may also be made in globe form, the posts, supports, and side strips provided for in the construction admitting of application in the making of various shaped crates, as well as facilitating the nesting of them in such way as may be deemed desirable.

## Stimulants for Pot Plante

The successful florist has more faith in giving stimulants when the plants really need them than in keeping the roots buried in soil made rich and almost offensive by strong manure. When roots are few and the plants are almost at rest, the purer the soil and the less stimulant the plants receive, the better will they thrive when their roots come to draw up larger supplies of nourishment.
Moisture is needed to soften the soil and to allow the roots to extract nourishment from it, but when all the virtue is out of the earth and the plants begin to show signs of distress, all the watering in the world will not give vigor to the exhausted functions, but let a portion of guano or any well prepared manure be mixed with the water sufficient to color it, and let this be repeated at every watering instead of giving a much stronger dose at longer intervals, the result will be most satisfactory. The beneficial results obtained from manure water when judiciously applied to flowering and fruiting plants have long been recognized by cultivators, and its use is now becoming more general
A valuable liquid is made by using ammonia, put ting about one teaspoonful to two quarts water when watering the plants.
Plants require about the same treatment except in the matter of food. Ivies may be given plenty of warm water, but should not be stimulated with liquid manure.
Callas will bear stimulating to almost any degree. Give them an abundance of stable manure and warm water. Cowmercial fertilizers are of no value in creat ing blossom stocks.
Give your pinks a little lime water, but never stimu late them with guano or anything of the sort.
Give roses a little powdered charcoal or weak soo tea. If flowers do not mature well, they way be made to by placing a layer of powdered charcoal half an inch deep on the earth in the pot.
Commercial fertilizers or plant food should not be applied oftener than once in two weeks. Stir up the soil around the edge of the pot and sprinkle in a suall tablespoonful of the fertilizer, watering the soil slightly immediately after.
All stimulants should be applied with care. Begonias are particularly sensitive to them, and they should be used but seldom on geraniums; but to roses, fuch sias, carnations, heliotropes, and others they may be given with more safety.-American Rural Home.

## Telegraph Statistics.

The following comparative figures may be of interest:

| Country. | Mlies of Telegraph Wire. | Meseages per Annum. | Messages per Annum per mie of erected. |
| :---: | :---: | :---: | :---: |
| United Stat | 776.500 | 56,000.000 | 72 |
| England. | 180,000 | 50,000.000 | ${ }_{277}^{136}$ |
| Ruspia ...... | 170,500 | 10.280,780 | 60 |
| Australia.... | 105.300 58.500 | $12.000,000$ | 114 |
| Italy........ | 19,500 | 7.000,000 | 360 |
| Japan ...... | 16.500 | 5.000.000 | 303 161 |
| New Zealand | 11,375 | 1,835,394 | 161 |

Dentists, Moulding Wax.
Dr. P. David communicates to the Journal de Pharmacie et de Chimie an analysis of the composition known as "Godiva," or "Stent." Upon this he bases the following formula:

|  | Parts. |
| :---: | :---: |
| Stearin |  |
| Hulf-soft copal. | 25 |
| Talc. | 50 |
| Carmine. |  |
| Oil of rose |  |

Melt the resin by the heat of a sand bath, and when slightly cooled add the stearin, stirring constantly. When this has melted add the other ingredients, pre viously intimately mixed, and stir so that a homogeneous product may be obtained.
The adhesiveness of the composition may be in creased or diminished by modification of the amount of copal. A more thorough blending of the color may be insured by dissolving the carmine in a little potash solution before mixing with the chalk.

RECENTLY PATENTED INVENTIONS. Engineering.
Furnace and Process for Treatina Zinc Ores.-William West, Denver, Col. Two patents have been granted this inventor for means
desigued to facilitate the saving of all the metal in minerals composed of zinc and lead sulphides carrying is provided and sith for which purpose the roasting furnace leaching tanks and a blower, whereby the gases may be drawn from the drying floor and forced beneath a false bottom of the leaching tanks, and the zinc will be separated and recovered from the other metals as a sulphite, this being effected in a single economical opera tion, and the other metals left in good condition fo
further treatment.
Strengthening Dikes. - Albert Q. Withers, Victoria, Miss. This invention covers an ap paratus to facilitate forming a vertical channel in
levee or dike, filling the channel with a suitable grout such as cement mortar, to form in the dike a vertical plate or wall of solid cement, the invention covering a novel combination of parts designed to afford a mos fficient construction
Boiler Furnace. - Samuel Porter Denver, Col. The grate of this furnace is mounted to turn. and the fire box and ashpit are transversely
divided, while a water drum passes transversely throug he fire box, with other novel features, designed to plete compustion, and consume all smoke and gas.

## Railway Appliances.

Car Brake. - John Kinney, Plilipsburg, Montana. By this invention a rod is mounted to slide on the end of the car and connected by a chain o rope with the brake mechanism, a lever or levers
pivotally connected with the rod being fulcrumed ou pivotally connected with the rod being fulcrumed ou
the car, to enable the operator to quickly set or throw the car, to enable the operator to quickly set or throw
off the brakes from either the side or the top of the car, the device being specially designed for box and flat
Fare Collector. - Moses D. Greenard and Fradelshon Harris, St. Louis, Mo. This incarried by a conductur of a street car and presented to
each passenger for the deposit of the fare, the construceach passenger for the deposit of the fare, the construc-
tion being designed to prevent the extraction of money tion being designed to prevent the extraction of money
therefrom, or in any way tampering with it, without detection.
Interlocking Bolt. - Thomas J. Bush, Lexington, Ky. The formation of this bolt is such that whenits flattened surfaces come in contact viated, and adjustable sloping washers are provided for use therewith, to permit of a rail thus fastened to be adjusted to the proper gauge, while by slackening the nuts the rail may be removed and replaced.
Bolt Making Die. - Thomas J Bush, Lexington, Ky. This invention relates to a ma-
chine for making interlocking bolts patented by the chine for making interlocking bolts patented by the
same inventor, the bolt being faced off and recessed to form a locking shoulder, which is effected by compresion without removing the metal, whereby its strength is not materially weakened.

## Mechanical

Pipe or Rod Cutter. - William Vanderman, Willimantic, Conn. This device has a
body frame to which is attached a chain adapted to surround the article to be cut, rotary cutters being monnted in the links of the chain and an adjusting justable device adapted to cut pipes or rods of various justab
sizes.
Artesian Well Borer.-Thomas H. Logan, U. S. Army (El Paso, Texas). Combined with auger are dogs adapted to engage the well casing and hold the tube from rotary movement, with other novel features, forming a simple and durable auger, actuated
by the weight of the connecting rods, to sink wells in by the weight of the connecting rods, to sink wells in
Brush to Clean Metal Castings. Louis P. Mahier, New York City. This is a rotary brush with metal bristles arranged in bunches and hav they will yield sumfiently to the brush core, whereby they will yield sufficiently to prevent their beiug easily
Paper Making Machine. - Heinrich Hoeborn, Hemer, Germany. In this machive the paper, in its passage from the couch rolls to the press
rolls, is made to pass between two felts, and is guided in a broken line forming an obluse angle to the press rolls, the same machine being designed to make paper
of all kinds of materials, aud of any desired thickness, of all kinds of materials, and of any
from cardboard to tissue paper.

## Agricultural.

Cultifator. - Nathaniel F. Bloominger, Rochester, Ill. This cultivator is made with an improved shank, whereby, when the blade meets an
obstruction, the blade will yield and be automatically obstruction, the blade will yield and be automatically
carried rearward, being returned to its normal position when the obstruction is passed, thus guarding the share and a
Роtato Digger.-Augustus Leonard, Newell's Run, Ohio. This is an attachment designed ordinary shovel plow, a digging shovel being bolted upon a short standard, the blade being of spade form and having its upper edge bifurcated, to disintegrate the soil and expose the potatoes, the device being very simple and inexpensive.

## Miscellaneous.

Charr. - Henry U. Pohl, Saginaw,
ng chairs, providing means whereby the back may be
eadily set at different inclinations, and the chair so ad justed that the occupant can assume a comfortable ra clining position.
Head Rest for Chairs. - Isaiah D. Crispell, West Stockbridge, Mass. A block secured to he back of the chair has a rack on which is pivoted the head rest, while a handle lever is adapted to engage he construction being specially adapted for use in con ection with dentists' or barbers' chairs.

Fireplace Heater. - Nathaniel A. Boynton, New York City. Combined with the body o of flues or passages for the escape of the products o combastion, including flues down either side of the tilized within the apartment in which the heater is ituated.
Dental Mallet and Re-enforcing attacement.-Dr. J. L. Mewborn, Memphis, Tenn.vice he styles the "Mulley mallet," with which the old and pluggers, burnishers, and chisels are used, no oints or bits being required, but adapted to delive the gold, or on the chisels, trimmers, and burnishers in the other work. The re-enforcing atiachment takes the place of the bit in other mechanical pluggers, convert-
ing them into re-enforcing mallets, so that those who ing them into re-enforcing mallets, so that those who already have the electric or other pluggers may use this
attachment with advantage, it being a cup-shaped tool o be inserted in the plagger to receive the end of dinary hand tool
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for $2 \mathscr{}$ cents each. Please
send name of the patentee, title of invention, and date send name of
of this paper.

## SCIENTIFIC AMERICAN

## bUILDING EDITION

FEBRUARY NUMBER.-(No. 64.)
TABLE OF CONTENTS

1. Handsome plate in colors of an elegant residence on Chestnut Hill, Mt. Vernou, New York, erected at views, floor plans, etc.
. Colored plate representing an attractive residence at Auburn Park, Chicago. Cost $\$ 7,000$. Floor plans, perspective elevation, etc
2. Plans and perspective view of a carriage house
erected at South Orange, N. J., at a cost of $\$ 2,700$ complete. H. H. Holly, Esq., architect, New
residence at South Orange, N. J. Cost $\$ 11,000$ complete. Perspective elevation, floo
Architect, H. H. Holly, New York.
3. Handsome residence of Gothic design at Germantown, Pa., erected for Mr. B. P. Wis.
spective elevation and two floor plans.
Cottage in Sophia Avenue, Chicago, estimated cos
$\$ 2,800$. Floor plans ard perspective elevation. erspective elevation and floor plans of a recently
erected cottage at Stratford, Conn. Cost $\$ 2,700$ complete.
4. A colonial reeidence erected at South Orange, N. J., rom plans by Rositter \& Wright, architects, New York. Cost $\$ 17,000$ complete. Perspective ele-
vation and two floo plans. vation and two floor plans.
5. Cottage at Austin, Chicago. Estimated cost $\$ 3,700$.
Floor plans, perspective view, etc. Floor plans, perspective view, etc.
6. Floor plans and perspective view of an elegan
cottage at Austin, Chicago. Cost about $\$ 5,000$.
7. A corner of a boudoir, designed by J. Armstrong Stenhouse. Hair page illustration from a colored drawing, which app
8. A picturesque cottage of moderate cost at Austin, Chicago. Two floor plans
tion. Estimated cost $\$ 900$.
Miscellaneous coutents: Jarrah wood.-Biographical sketch of Henry Schliemann,the archæologist. - Belp to builders.- -American stone fields.- - How can iron pulleys be papered?-England's favorite hard woods.-Floors.-Plaster.-Developments of construction.-Corrosion of zinc in contact with
brick.-Etching upon glass.- Magnesia in cement. -Our last year's volume.-Improved woodworking machinery, illustrated.-A novel calendar, made of tin.-Broughton self-closing basin cock, made of tin.- Trougson recording pressure gauge
illustrated.-The Edson
-A new gasoline engine, illustrated.-Universai -A new gasoline engine, illustrated.-Universa file handle, illustrated.--The Dunning hot water
heater.-Improved conduits for electric wires, il heater.-Improved conduits for electric wires, il
lustrated. - A thoroughtly built parlor door lustrated. - A thoroughly built parlor door
hanger, illustrated. - California fruit.-Laborillustrated.
The Scientific American Architects and Builders Edition is issued monthly. 82.50 a year. Single copies,
25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages ; forming, practi cally, a large and splendid Magazine of Architrc TVRE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and
allied subjects. The Fullness, Richness, Cheapness, and Convenience of any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO.. Ptiblibrers.
361 Broadway, New Yor
$\mathfrak{P u s i n e s s}$ and Personal.
The charge for Insertion under thrs head is One Dollar a line for each insertion, about eight words to a line. as early as Thursday morning to appear in next issue

For Sale-New and second hand iron-working maAcme engine, 1 to 5 H. P. See adv. next issue.
Preseses Dies. Ferracute Mach. Co., Bridgeton, N. J
For steel castings of best quality, write the Buffal teel Foundry, Buffalo, N. Y.
Send to H. W. Knight \& Son, Seneca Falls, N. Y., for -
Best Ice and Refrigerating Machines made by David
 Steam Hammers, Improved Hydraulic Jacks, and Tu
Expanders. R. Dudgeon, 24 Columbia St.. New York. Power presses and dies. Also contractors for specia
nachinery. T. R. \& W. J. Baxendale, Rochester, N. Y. Screw machines, milling machnes, and drill presses he Garvin Mach. Co., Laight and Canal Sts., New York. Money provided for manufacturing patented articles
of superior merit. Manufacturer, P. O. box 2584 . New Guild \& Garrison, Brooklyn, N. Y., manufacture Guild \& Garrison, Brooklyn, N. Y., manufacture team pumps, vacuum pumps, vacuum ap,
umps, acid blowers, fliter press pumps, etc.
For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc., address J.
S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y.

The best book for elect tricity is " Experimental Science," by Geo. M. Hopkin By mail, $\$ 4$; Munn \& Co.., publishers, 361 Broadway, N. Y Simpson \& Cie., stove mfrs. and mechanical engrs., 38
Boulevard des Italiens, Paris. France, want household Boulevard des Italiens, Paris. France, want household
novelties to make and sell during summer season. Finest Magic Lanterns and Stereopticons of all prices. tc. Mas a pruftable business for a man with small cans, etc. A proftable business for a mant with smal capi-
tal. Also lanterns for home amusement. 203 pare cata-
logue free. McAllister, Optician, 49 Nassau St., N. Y. Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broadway. New York. Free on application.

## 

HINTS TO CORRESPONDENTS Names and Address must accompany all letters,
orn on attention will be paid thereto. This is for our
information and not information and not for publication.
Renswers should
give dates to former articles or anser and patior number of question
Inquiries not answered in re number
 or in this department. each must take his turn.
Special
personal ritten Information on maters of than general interest cannot be expected without remuneration.
Scientifici A A Aer ican supplements referre
to may be had at the office. Price 10 cents each. tom
Bo二
price
Minerals sent for examination should be distinctly
marked ordabeled.
(2793) J. L. F. asks: 1. Would you kindly tell me how to make a gelatine pad, such a
is used in ottices for copying 100 or more letters from one original? A. See Scientific American SuppleMENT, No. 438, and as below. 2. How to keep copying
ink from running when used on wood, and exposed to
the rain. A. It cannot be done while the ink retaing its copying qualities. 3. The formula to make a transshow windows. The cement is put on the engraved side, and water will not wash label from the glass, A. Attach with a solution of gum tragacanth and when dry varnish, or at tach directly with dammar varnish.
(2794) R. V. H. asks: 1. Is there any simpler form of hektograph than that described in Sci-
ENTIFIC AMERICAN SuPplement, No. 38 ? A. No; noth ing could be much simpler. See also Scientific Ame RICAN, March 15, 1899, p. 166. 2. How is paste sho blacking made ? A. See answer to query No. 1704. 3.
What is the composition of those so-called magical ink What is the composition of those so-called magical ink
erasers? A. Possibly potassium binoxalate,or perhaps a mısture of tartaric aud oxalic acids. 4. Is there any composition which if rubbed on softened stiff hats will restore the stiffness and brilliancy somewhat 9 A. Hats are stiffened by a solution of shellac in borax water.
The solution can be made quite strong, but it never The solution can be made quite strong, but it never
stiffens to the same extent that an alcoholic solution $\begin{aligned} & \text { stiffens } \\ & \text { will. }\end{aligned}$
(2795
(2795) E. E. asks: 1. Are sulphate o lime and oxide of iron harmless when taken internally dose? A. They are harmless. Hydrated oxide of iro is administered as an antidote to arsenc poisoning Sulphate of lime in large quanties might give rise to troublesome concretions. No dose can be prescribed
2. Can you recommend a book upon the elements o 2. Can you recommend a book apon the elements of
chemistry, which can be had at a moderate price? A chemistry, which can be had at a moderste price? A.
We recommend Fownes' "Chemistry." $\$ 3.25$, in cloth. We can supply others at lower prices.
(2796) How can the ravages of book orms be stopped ? A. It is said that the best metho of putting a stop to the depredations of book worms i
to take equal parts of powdered camphor and tinely chopped tobacco, and then to sprinkle this mixture over the shelves. This operation should be repeated ever six or eight months.
(2797) A. E. P. asks: What is the best thing to take out printer's ink from woolens and
tweeds \% A. It iu almost impossible to effect. Benzine
or chloroform may do it. Apply in a circle all around the spot, and gradually work in to the stain.
(2798) M. T. writes: I observed that gas would not burn on a cold day, in Omaha, Neb. Why was that, did the pipe freeze up, or was the pipe full of
condensed moisture ? A. The pipe was probably filled with ice condensed from the gas as water, and freezing in contact with the cold metal pipe.
(2799) G. M. P. says: Please inform me through the Scientific American whether or not you
ver printed in the said paper any such notice as this: "That the government or any party offered twenty thousand doliars for a nut lock that would never become nch staten
(2800) G. R. L. asks how to read an neroid barometer. A. A very slight tap may be Siven before reading, to cause the index to reach its
proper place. This is not always advocated, however. The figures may be for inches and decimals, or for
(2801) F. J. G. asks: What chemical or compound is used by the so-called fire eaters to protect them from being burned $\uparrow$ A. Dilute sulphuric acid, or a strong solution of alum.
(2802) J. E. F. asks what size wire the 24.
(2803) A. A. H. asks how to amalgamate zincs. A. This is accomplished in several ways:

1. By dipping the zinc in dilute sulphuric acid and then dipping the end of it into a small quantity of mercury, afterward rubbing the surface with a brush. 2. Dissolve 1 pound of mercury in 5 pounds of
nitro-muriatic acid (nitric acid 1 part, muriatic acid nitro-muriatic acid (nitric acid 1 part, muriatic acid
3 parts), heat the solution gently to hasten the 3 parts), heat the solution gently to hasten the
action. When a complete solution of the mercury is effected, add 5 pounds more of nitro-muriatic acid. The solution should be applied with a brush, as immersing the zincin it is wasteful. 3. To the bichromate solution commonly used in batteries, add to every pint of solu tion 1 drachm of bisulphate of mercury or a similar nitric acid). By tion of the zincs is maingained continuously after the first amalgamation, which must be accomplished by method 1 or 2. 4. In the Bunsen Grove, or Fuller bat tery the amalgamation may be accomplished by placing a small quantity of mercury in the cells containing the zincs. 5. Place a little mercury in a saucer with some dilute sulphuric acid. Dip the zincs into dilute acid.
Then with a little strip of zinc or galvanized iron touch the mercury under the acid and rub it on the zinc. This will transfer a little to the surface, and a few min Tuis rubbing will make the zincs as bright as silver.
a tery small globule of mercury is enough for a single
(2804) J. F. B. asks : 1. Are the matethe and processes in patent medicines patented, or only the name and trademark 9 A. The composition and
the method of making may be patented. 2 . How to the method of making may be patented. 2. How to
find the safe working pressure of a boiier. A. Examine the boiler carefully for corroded places, go over ${ }^{1}$ arefully with a hammer to ascertain if there are thin static pressure, the working pressure. If no defects appear, the boiler may be safely worked to a pressure $2 / 6$ that reached in the test. 3. Do the carbon plates for batteries need as much care in making and as long baking as the rods
used in arc lights? A. The plates may be more porous used in arc lights ? A. The plates may be more porous
than electric light carbon. They require the same bak ing. 4. Are the dynamos used for electric welding wound for high E. M. F., or heavy current strength?
A. The dynamos for welding are generally made to deliver an alternating current of high E. M. F., which i reduced to a very low E. M. F. by the transformer 5. What is the resistance of No. 26 copper wire? A
The resistance of 2354 feet of No. 26 wire Am. W. G. is 1 ohm . One pound of the same wire has a resistance of 55:33 ohms.
(2805) A. L. asks what the ingredients are of stamping powder that is used by dressmakers in stamping embroidery designs on cloth. A. Powdere
talc is good for marking cloth. For blue marks on white goods use ultramarine blue.
(2806) O. C. H. asks (1) how benzine or gasoline can be made so as not to have a disagreeable odor. A. Treat with cold solution of bichromate of roughly and allowing to settle. Decant, wash with weal alkali, followed by pure water, and if necessary distill rejecting first and last portions of distillate. 2. Can i be colored red or blue? If so, what shall I use? A.
For red, use extract of alkanet root. For other colors For red, use extract of alkanet root. For other colors
use oleates of the aniline bases. See Scientifi american, vol. 63, No. 16, page 248.
(2807) S. E. H. asks how to prepare (1) will be able to give a thin coat to a plaster Paris inpres sion without heat aud which will not peel off, but mak a hard, smooth surface with no air bubbles, so that very a smooth. The article, if possible, should stand boiling water for an hour without change. A. Your re quirements are too severe. Possibly by shellacking and subsequently japanning, you might effect your purpose
but we doubt it. We would suggest a trial cement for the moulds, made as smooth as possible, bu unvarnished. 2. Please inform me if potash lye poured into clogged drain pipes will injure lead, iron, and
glazed drain pipes by corroding the same, and to what glazed drain pipes by corroding the same, and to what
extent ? A. It will do no injury, unless on standing a ong!time
(2808) E. S. F. asks: 1. Will you please tell me a good recipe for making a pasteorgum that wil make paper adhere to greasy cans? Something I supin first to be ade to the paste that whil corrode the by hot water Use gum tragacanth in thick misture with water for a paste. Also consult Scientific American, vol. 63, No. 15, page 227. 2. What essen
tial oils cau best be used to give an agreeable odor to or a good mucilage, one that will keep? A. Gum arabic solution perfumed with oil of cloves. 4. Whe make a gum out of dextrine, it is of a brown colo ualities? A. Use pure dextrine. Flltering keeping ualities ? A. Use pure dextrine. Filtering throug
(2809) M. M. asks : 1. What is the E. M F. of a plunging bichromate battery with 2 carbon an How many amperes of current will it gives A. On hort circuit of 0 resietance the battery would yield current of from 4 to 8 amperes. 3. What is the volt ge of the simple electric motor described in Supple ment, No. 641 ? A. It requires a current having from to 12 volis E. M. F. 4. What is its current capacit nd what part of a horse power will it develop with the attery mention will develop shout $1 / \frac{\text { arse }}{}$ vorable conditions.
(2810) W. G. asks: Can you tell me . How I can clarify bleached shellac varnish, for use d. Long settling might anow Also if there is anything better for the purpose than ite varnish thinned with turpentine, or if you wish an alco
olic solution, use gum sandarac varnish.
(2811) C. A. W. asks : 1. What would ou dissolve phosphoras in, so you could apply it wit brush on a wall to have it illume up at night ? A Supplement, Nos. 229, 249, 497. 2. What is the fastest printing press in the United States, and how many mpressions will it take, and how many completed papers will it print a minute? A. The Hoe perfecting press; it will print and fold 500 eight page papers inute, the size of the page being about 17 by nd is that a good trade for a young man to learn? would be hard to strike an average that would be worth anything; the wages vary from $\$ 2$ to $\$ 5$ a day is a good trade, but requires intelligence and bard
work to get to the top. 4. How do you temper drills, so they will bore the hardest steel known? A. Heat to dull redness and plunge into a strong solution of zinc hloride. This hardening is only supericial and wil
(2812) H. L. J. asks : Will you please nform me how to prepare canvas for oil painting . Nail the canvas on the stretcher, then give it a coa of thin desired tint with a palette knife. The paint should have about the consistency of that sold in artist's
(2813) H. J. D. asks how to make white stain for the bottoms of shoes. A. Leather is bleached
with a solution of oxalic acid. It is apt to injure the
(2814) G. R. asks what the chemical in gredients are that are in the smoke emitted from soft
coal. A. Principally carbou and vapor of water, with possibly minute quantities of hydrocarbons.
(2815) McF. \& Co. ask : Why cannot water be made by gravity to run through a square co aid in a horizontal position? By pouring water in a the top it will not run out at the lower end. We think we know the eir prevents it, but why does it We Wer ainly know the water is neavier than the air, and think hat three inches or four inches of head shonld force of pipe and down out through bottom outlet, but it won' We have tried it. A. A coil, either square or circula with a number of turns, when laid on its side, forms will flow through when the ends terminate on a level with the top and bottom of the coil. When there are wo turns, the head where the water is poured in must be twice as high as the diameter of the coil, with three urns, three times the height and so on. The coil be-e-enforcing the preceding siphon by its tatic pressure. Thus the first coil or siphon overfows and the water drops to the bottom of the second air in the down leg and forcing the water up the next leg, the air remaining in the down leg, and so on through a series, each upward leg of water by adding to the height of the water inlet.
(2816) T. P. A. writes: Suppose the + wire of an incandescent circuit is grounded, the -
wire being perfectly insulated, does any current go to ground $\rho$ If not, what is the object of ground detectors Ansulated, there would be no circuit, ond is perfectiy quence the current would not flow. Perfect insulation, however, is impossible. With the best there will be small leakage, but this is negligible. The object of a ground detector is to determine when both branches of the circuit are grounded to such an extent as to inter-
fere with the working of the circuit. 2. I have been old I could get a shock by grounding. say + wir the - teing perfectly insulated. I say no. What do you
say? A. Generally enough of the current will find its way to the ground by leakaye to give a serious shock In the case of some arc light circuite, a ground connection through the body has proved fatal.
(2817) G. R. asks: Between what ages an a boy serve as a "page " in the national House of get pay monthly, whether House is in session or not and about how many pages are required in that House A. The Honse of Representatives has thirty-two pages, when House is not session. A boy is eligible at 12 years backing up to 24 years of age
(2818) F. F. V. asks: If 25 open gas jets are burning to the best advantage in a room 18 by 18
reet, and the same amount of gas is burnt in an improved gas stove in a room the same burnt in an imperature register the same in both rooms, and if so,
why ? And if not, why? A. There will be but little
difference in the total amount of heat. The gas jets ould equalize the heat by heatingthe air near the floo and would ulso produce a general circulation and equalization of the heated air thronghout the room. The e gas lights.
(2819) J. R. asks: How are plans for xterminating Australian rabbits entered for the prize with the New South Wales government? A. Address
Hon. F. Abigail, Sec. for Mines, Sydney, New South Wales.
(2820) J. A. W. asks : 1. Can you fur oish me with a book containing the recipes for makin "Electro-Deposition of Metals," $\$ 3.50$ by mail. Als ee Supplement, No. 310, for a very good article on he subject. 2. Can you furnish me with a recipe for coating brass that will wear well and withstand the action of hot potash and cyanide of potassium? A an India rubber tupe or even deposit India rubber it by deposition. This would have then to be vulcan zed, preferably by treatment with chloride of sulphur dissolved in naphtha, followed by heating toward the (28)
(2821) H. H. writes: Can you give me ceeipt for an ink (waterproof) that will do just as we for drawings as the so-calied India ink? A. We re commend you to rub up Irdia ink in a solution hellac in borax water. If it were not for its corrodin ve a $n$ absoly waterproof vehicle for India ink. (2822) C. L. H. asks: I am a stamp col inge eng to know how to make adhesive paper er than solution of gum arabic just perfumed with oil of cloves. Postage stamp mucilage has often been pub

## Dextrine Acetic aciä..

Acetic acid
Water
(2823) J. V. D. writes : I have a quan dity of cider that has taken up a taste from a ciste can be removed or neutralized \& A. Try placing a bag doubtfu
(2824) A. B. asks how to cement polished glass to cast iron (planed smooth). I have tried Major water, small pieces of glass break off and spoil it. wish to know if there are other cements that will hold o the glass, and how to do it it withont ijury ement. A. Soak fine white glue or gelatine in water ver night. Pour off the surplus water and add molasses equal to about 25 per cent of the bulk of glue Heat gently and stir until the misture is formed. You can vary the proportion of molasses to suit. Glycerine (2825) A. W. B. asks: 1. What causes the singing noise that is heard on telegraph poles ? A. The noise is due to the vibration of the telegraph wires, produced by the movement of the air. 2. Has alcohol cohol has been rendered viscid by low temperature, but never solldified. 3. Can the simple electric motor be arranged to produce the electric light, and how? A. Yes. By using a cast iron field magnet and winding the magnet and armature with No. 20 wire. 4. What is the best work on physics ? A. It would be difficult to say which is best. For the advanced scholar, Daniell, panot, or Deschanel can be recommended, while "ence is suited to all interested in physica 5. Are the paper conductors in the sinple Holtz ma chine placed on the same side of the apertured disk, and next to the revolving disk, when they are in position $?$ A. They are both on the side of the disk re(2826) M. A. H. writes : What number omplies with the following proposition : That if $5-7$ of iss ${ }^{2} V$ be multiplied by $9-12$ of $5-10$ of its ${ }^{3} v$ and then add 45435423999995227344295 to the product, and then 13 to the quotient, the final result is equal to 30 and A. The easiest way is to commence at the bottom and work upward as far as possible. Thus $30-13=17=$ the quotient last named. Multiply this by 20 , giving 340 , which
by the statement is the 5 th root of the sum of the long by the statement is the 5 th root of the sum of the long number given (45435439999.52 2344200) and of a certain other number. Then $340^{\circ}=4543544400000$. From this the By the conditions $5-7 x^{\frac{1}{2}} \times \frac{9}{9}-12 \times 5 \cdot 10 \times x^{\frac{1}{3}}=0^{\circ} \cdot 4772655705$. The first member of the equation reduces to 225.840 cet and the whole equation reduces to $x^{\frac{5}{8}}=1 \cdot 78177813$. Solving, preferably by logarithms, we find $x=2$.

## NEW BOOKS AND PUBLICATIONS

 Electricity in Daily Life. Illusner's Sons. 1890. Pp. xv, $288 . \quad$ Price $\$ 3$.Scribprites on electicity which here colls Monthly Magazine during the past year are ilar in its way to American Railways, produced by the same firm in the same way. The reputation of the best guarantee of its and the chore or of the quality familiar to the readers of the magazine, and are also very numerous and pertinent to the subjects treated. It forms about as good a popular presentation of the subject as has yet been put before the
The Ilustrated Amorican.-This beau iful weekly publication, which is now issued in an im umes for the library, continues to be of as ane quality 38 ever. The issue for the week ending Jannary 31 has ngs, with an excellent portait of Mr. Seney. Many of the pictures of the celebrated collection are reproduced, and
marginal cuts give the portraits of the famous artists nirable, giving all the softness and geveral effect of the original works. The great collection of Mr. Seney, which has a wide repuation for lhs excellence, in som to bed American au auction in this city, and the Mlus Another article in this number describes and illustrates "Sioux Women at Home" as seen at the Pine kidge Agency. The everyday life of the agency Indian is well shown, with graphic pictures of the semi-civilized product reproduced from photos takeu on the spot. An other article is devoted to the U. S. S. Philadelphia, and, with numerous illustratione. gives an excellent idea of Music, literature, history, and last, not least,"Women," Music, literature, history, and last, not least," Women,"
receive their meed of attention in chis issue.

TO INVENTORS
An experience of forty years, and the preparation of
core than one hundred thousand applications for paents at home and abroad, enable us to understand the laws and practice on both continents, and to possess synopsis of the patent laws of the United States and all foreikn countries may be had on application, and persons contemplating the securing of patents, either at home or which are low, in accordance with the times and our ex ensive facilities for conducting the business. Address munN \& CO.. office Scientific American, 361 Broad-

## INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted Janaary 27, 1891,

## AND EACH BEARING THAT DATE.

 [Seenote at end of list about copies of these patents.]
: 46

$\stackrel{45}{45,25}$




| Base |
| :--- |
| Bat |
| Bat |
| Bat |



## 

4-



$\substack{\text { Brat } \\ \text { Rat } \\ \text { Rat } \\ \text { nuction }}$



## 

## 




## 











> Cofexiatine the thin





|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



## DESIGNS.


TRADE MARKS.









 Price $\$ 4.0 .00$.
Particularics sutabere for makin







## Books on Electricity.





















































 britan of the above books promply sent by mail MrUNIN er CO.. Publishers of the "Scientific American
381
Broadway, Now
York.



## ฐrientific Ammerican

## The Most Popular Scientific Paper in the World

## Only $\$ 3.00$ a Year, Including Postage. Weekly

This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixorikinal engravinks of new inventions and discoveries, New Inventions, Novelties in Mechanics, Manufactury Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, Terms of Subscription. - One copy of the Scien-
postage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of three dollars by the
publishers ; six months, 81.50 threemonths, 8100 publishers; six months, $\$ 1.50$; threemonths, 81.000
Clubs. - Special rates for sereral names, Masters. Write for particulars.
Express Mont way to remit is by Postal Order, Draft, or of envelopes, securely sealed, and correctly addreside seldom goes astray, but is at the sender's risk. Address MUNN \& Co., 361 Broadway, New York.
MUS

## §rientific sumerican ⿷upplement

This is a separate and distinct publication from The SCIENTIFIC AMERICAN, but is uniform therewith in size, gravings, many of which are taken from foreign papers and accompanied with translated descriptions. ThE
SCIENTIFIC A MERIC AN SUPPLEMENT is published week ly, and includes a very wide ranke of contents. It prethe principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geole History, Geography, Archæology, Astronomy, Chemistry
Electricity, Light, Heat. Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine
Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Hortivast amomestic Economy, Biography, Medicine, etc. A ble in no other publich and valuable information obtainThe most important Engineering Works, Mechanisms, and described in the SUPPLEMENT. Canada, 85.00 a y ear; or one copy of the SCIENTIFIC AMER ICAN and one copy of the SUPPLEMENT. both mailed for
one year for $\$ 7.00$. Single copies, 10 cents. Address, and mit by postal order, express money order, or check,
MUNN \& CO., 361 Broadway, New York.

## Shuilding Cedition.

The Scientific american archiects' $\triangle$ nd build copies, 25 cents. Forty large quarto pages, equal to bout two hundred ordinary book pages: forming a adorned with elegant plates in colors, and with other fine engravings: illustrating the most interesting example m mpecial feature is the presentation in allied subjects. a variety of the latest and best plans for private res dences, city and country, including those of very mod drate cost as well as the more expensive. Drawings in ans, Specifcations, Sheets of Details, Estimates, etc.
The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any Archi tectural publication in the wo
year. Remit to
MUNN \& CO., Publisher
The Technical Works CHARLES T. DAVIS.


The Textile Industries jUST READY.
A New and Completectite of the Lendignand
 Cors, etc. free, and free of postage to any one in any part
of the worta who will furnish us with his address. Also
Alst
 the whole covering every branch of Science applied to the
Ants. sent free and free postae of any one in any part of
the ovorld who wil furnish his oddress. HENRY CAREY BAIRD \& CO., Industrial Publishers, Booksellers \& Importer
$\mathbf{8 1 0}$ Walnut St., Philadelphia, Pa., U.S. HOW TO MAKE DYNAMO-ELEC'TRIC








(xancoleOABPIINGE and MATERIA LS for
8 and 16 Light and Hand-Power
DYNAMOS and 16 Light and Hand
DYNAMOS. Large plunge batkheries for runinc and Carbon Plates. Send stamp for Catalogu
PALMER BROS.,

ELECTRO MOTOR. SIMPLE. HOW TO make. ByG.M. Hopktns.-Description of a small electro amateurs to make a motor wnich might be driven with
adranage by a current derived from a batery, and
and



## Fifatente.

An deutsche Erfinder. Die grosse und thatige Klasse der deutschen Erfinder
in den Vereinigten Staaten machen wir besonders darauf nufmerksam, dass unsere Firma durch ihre Verbindunjen mit Washington und den europäischen Hauptstäd-
en, besondere Vortheile zur Erlangung von in-und auslăndischen Patenten bietet.
Jeder Erflinder, gleichviel welcher Nationalität ange Jeder Erfinder
hörig. ist duichviel welcher Nationalitat ang
giberalen Putentresetze der Vereinig Unsere Firma ist bereit, gestützt auf enne 45 jährige Erairrung, deutsche Ertinder jeder Zeit zu berathen nd pūnktlich Patente zu erlangen. chen Ingeniearen Abeleitet wêlche in on far Offigen deutnnlich vorgprechencien rindern direst verkehren, und apulĭr gebaltene Zeib schrift Unerere "Scientifific Americanic un" oespricht in inren Spalten die bedeutenderen Erfindungen der Neuzetit. Eine kurze
die durch uns patentirt
munserer Zeitechrift
Correspondenz in deutscher Sprache erbeten.
Pamphle, in deutscher Sprache, über Patento wird auf Pamphlet, in dentscher spra
Verlangen frei zugeschickt.
Man adresi


RANKS THE HIGHEST CHALMERS-SPENCE CO. Ofice, 59 Liberty Street.
works, $419-425$ E. Eighthst..New York


Important Improvements.
Althe Essential Features greatly perfected.
The Most Durable in Aliknment. The Most Durabie in Alinnment. Most Silent.
All t ype cleaned in 10 seconds without soiling the hands. The Smith Premler Typewriter Co., Syracuse, N. Y., U. S.A. A.
Send for Catalogue.


2nd Mcs MACHINERY SEWING MACHINE MOTOR FOR AMA-



## TYPEWRITERS

 ALL MAKES. NEW \& \& SECOND HAND-
## 1(S) ENGRAVIM (OMPAY


D T B Bores SMOOTH ROUND, OVAL, and SOUARE HOLEE, Mortising Core Boxes,



THE BOOK-KEEPER.



## OTARIRIEB <br>  <br> Box L. Windsor Lockn, Ct

THE EACLE
THE EASIEST RUNNING
IN THE WORLD.
nso Speed, Comfort and Safety GENTS WANTED.
sent free to any Addrass.
THE EAGLE
SH An invesmont of thamononv




NUT TAPPING DURRELL'S PATENT.


 CE-HOUSE AND REFRIGERATOR Directions and Dimensions for construction, with one


 PARTIES DESIRINQ MACHINERY
 W ANTED. Solling AEentit for EIteci
 S500 Weanted to oulld beat Dumplug Care ever ins PLATS




PROPOSALS
Proponis For Lock Conatruction, ENGiNERR
 1
 on application at this thas tor prop proposals will be furribhect


Inventions Developed,
Experiments made, investigations furadapted to all such work with firgt-clas men and facilities. Primer to send The Jones brothers Electric Co. Cin'ri, 0
 OIL WELL SUPPLY CO. Ltd.


ARTESIAN

 STEEL TYEE FOR TYPEWRITERS
 ON GAS ENGINES. - A VALUABLE




The prices of the diferent publications in the Unitod
states, canada, and Mexico are as foliows.
The Scientict American ( weekly one year
Tei scientific American Supplement (weekly), one year. The Scientific American, Spunish Edition (monthly) ${ }_{3.00}$ The sicentitic American. Arenitectis and Builders
Edition (monthy), one fear. The Scientilic American and Supplement. . 87.00 The Scientutig American and Architects and Build- 5.00 The Scientife A American, supplement, and Arcai- ${ }_{9.00}^{\text {tects and Builders Edition }}$


みんvertisements．





## Viotor Bioycles！

For the season of＇9r we have ex－ tended our line to include Machines of many more styles and prices than heretofore．Having any interest in Wheels，you will surely want to see our Catalogue for＇ 9 r ，which will be freely mailed on application．Ready in February．

OVERMAN WHEEL CO． Makers of VICTOR BICYCLES，
BOSTON．WASHINGTON，DENVER，SAN FRANCISC

 JENKINS BROS．VALVES！

 COMPTOMETER ALLARTTHMEGLIEAS Solved rapidly and accurately
by uaing the
Saves 40 per cemptometer．
 FELT \＆TARRANT MFG．CO．， $52-56$ Illinois St．，Chicago．

 00 cents．Address T．L．PREVOST，Racine，Wis．


## THE COPYING PAD．－HOW TO MAKE




## ©LV <br> MBIAS＂ HIGHEST－GRADE OMTALOGVE．FREE．

## Steam！Steam！

Quality Higher，Price Lower． 2－Horse Eureka Boiler and Engine，－\＄145 $\left\lvert\, \begin{aligned} & \text { 2－Hor } \\ & \text { 4－} \\ & \text { Other }\end{aligned}\right.$

## B．W．PAYME \＆SONS，

 Uovaly straightway VATVMS THE DAIMLER MOTOR THE DAIMLER MOTOR CO．
ed to furnish 1，2，and 4 Horse Pas for all Industrial Purposes．Fully Motilustrens and price list on application．Motors in operation at Works，Steinway，Long Island City．


## 

 awno mave sime the country．
 Mriknt steam and mant ELEVATORS，

 ICE－HOUSE AND COLD ROOM．－BY R


## GRAVESELEVATORS

PHE PENNA．DIAMOND DRILL \＆MFG．CO．

 STEVEVS PATGNT SPRING Dividers





THE MODERN ICE FACHT．-BY




## QATES ROCK \＆ORE BREAKER

 Capacity pt $t$ to 20 tors per hoor．
 CATES IRON WORKS，



NEW KODAKS
 we do the rest．＇

Seven New Styles and Sizes
witn Transparent Films．
For sale by all Photo stock Dealers．
THE EASTMAN COMPANY



Scientific Book Catalogue RECENTLY PUBIISHED

MUNN \＆CO．，Publishers Scientific 361 Broadwny，New York


## 

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465．and January 30th， 1877．No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use．and all the consequencer thereof，and liable to auit therefor．
 NO SKITMMD FNGENWMR， The Shipman Automatic Steam Engine STATIONARY AND MARINE． 4， 6 ，and $\mathbf{S}$ Horse Power，Single．
For Elevating Water，Creameries，and all Manufse Power，Compound SHIPMAN ENGINE CO．， 210 Summer St，BOSTON

 Rue＇s Little Giant Injector． SCREW JACKS，STURTEVANT BLOWERS．\＆c． S．Cheap Printing KELSEY \＆CO．，Meriden，Conione to


STEAM ENGINE．HOW TO MANAGE




LITTLE WONDERS


WORKING MODELS $\begin{gathered}\text { ndd Experimental } \\ \text { Work } \\ \text { Nem inven }\end{gathered}$
 hunter＇s SIFTER \＆MIXER

 Sin barores atalopque of al kind J．H．DAY © CO，

## PRINTING INKE



