a Weekly journal of practical information, art, ScIENCE, MECHANICS, CHEMISTRY, and mantractures.

NEW YORK, NOVEMBER 29, 1890.
$\$ 3.00$ Wexiy.

รrientific Ammerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERIS FOR THE SCIENTIFIC ADIERICAN.
One copy, one year, for the U. S., Canada or Mexico..
One copy, six months, for the U.S., Canada or Mexico
One copy, one year, to any foreign country belonging to Postal Union, 400
Remit by postal or express money order, or by bank dratt $10 r$ Remit by postal or express money order, or by bank draft or check.
MUNN \& Co., 361 Broadway, corner of Franklin Street, New York.

The Sclentific American Supplement

Building Edition.

Spanish Edition of the Scientific American.

MUNN \& CO., Publishers, 361 Broadway, New York The safest way to remit is by postal order, express money order,
pratt or bank check. Make all remittances payabie to order of MUNN
© CO.

NEW YORK, SATORDAY, NOVEMBER 29, 1890.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 773.
For the week Ending November 29, 1890.

 xulu Tegivo io

BUILDING THE NEW NAVY.

Contemporaneously with the launching of the new cruiser Maine at a United States government shipyard comes the annual report of the Engineer in Chief, showing how the entire work of rebuilding or constructing a new navy, worthy of our position as a na-
tion, has progressed during the past year. "It is a matter of pride for the Bureau of Steam Engineering," says Engineer Melville, " to be able to state that, ex cept for the Newark, which has engines very like those for the Philadelphia, built by the same firm ; the Concord and Bennington; whose engines are copies of the Yorktown; and the Texas, purchased abroad, all the machinery now building for the navy is from it designs; and that of sixteen vessels for whose construction bids have been received in the last eighteen months, for but two have designs for machinery been submitted by the bidders, and in both these cases the bureau's designs were adopted. The bureau has also during the past year prepared the plans and specifications for the motive machinery of coas line battle ships Nos. 1, 2, 3, of about 9,000 tons
displacement each; armored cruiser No. 2, of 8,100 displacement each; armored cruiser No. 2, of 8,100
tons; protected cruiser No. 12, of about 7,350 tons ; protected cruiser No. 6, of 5,500 tons; and Ammen harbor defense ram. Specifications have also been prepared to be followed by bidders who prefer to submit their own plans of machinery.
Chief Naval Constructor Wilson, after referring to the satisfactory work on the Maine, notes that "With the gradual appearance of the new steel navy has come the rapid retirement of the wooden fleet. When the Chicago, Boston, Atlanta and Dolphin were begun, the serviceable wooden steam vessels numbered thirty-seven; now there are eleven new steel vessels
and one first-class torpedo boat in commission, and only eighteen wooden vessels. In about seven years the wooden fleet will have practically disappeared, or have heen utilized as receiving and training vessels." The new vessels are described in Constructor Wil son's report in the minutest detail. The harbor de fense or Ammen ram of 2,050 tons is to be heavily armored and fitted with a powerful removable steel
ram-head, but is to be without armament. Much space is devoted to a description of the three great coast line battle ships designed with a view of meeting in battle vessels carrying the heaviest guns and armor. The armament of these vessels will consist of four 13inch 35 -caliber breech-loading rifles, eight 8 -inch breechloading rifles, four 6 -inch breech-loading rifles, twenty 6 -pound rapid-fire guns, six 1-pounder rapid-fire guns, two Gatling and six torpedo tubes or guns. All mod ern appliances for offensive and defensive purposes arred and the coal capacity is sufficient to carry the vessel 16,000 miles at ten knots an hour. In all these new vessels the requirements have been as severe as those of any nation in the world, and in most cases have exceeded those of all others, and the work upon
them, in hulls, armor, armament, and machinery, will them, in hulls, armor, armament, and machinery, will
be, with a few unimportant exceptions, entirely Ame rican throughout.

PROF. KOCH'S CONSUMPTION REMEDY.

The great interest shown by European doctors and the public generally in the recently announced cure for tuberculosis is manifestly increasing rather than abating, according to the accounts being daily received by
the Atlantic cable, and it is not surprising that much the Atlantic cable, and it is not surprising that much attention is now being directed to the subject by the entire medical fraternity of the United States. Many Koch's system, with the idea of starting hospitals and sanitariums in this country in which lung diseases and all cases of tuberculosis may be treated after the new plan. At least one consumptive patient, whose case has been carefully diagnosed, and both of whose lungs are affected, has also been sent for treatment direct to Dr. Koch, with the cabled consent of the latter. In the meantime it is well not to expect too much from this apparently great discovery. Those who make too large assumptions on its account, and are then disposed to discredit it wholly because it does not come up to such standard, do not come to a consideration of the subject with such understanding as is likely to be promotive of any good. It is directly the opposite of the manner in which Dr. Koch himself has made all his announcements, and the fear of an ill-conceived and improper use of his method of treatment has, doubtless, been the principal reason why he has thus far withheld, except from eminent practitioners in his confidence, the details of his discovery. The doctor only claims complete success by this method of treatment when " applied in time." which is, of course, a very elastic phrase, especially when considered in connection with the further statement that "little or no improvement is to be expected in cases of very ad vanced disease.'
In an interview with an American newspaner repre sentative, cabled from Berlin, Nov. 20, Dr. Koch thus summarizes the situation in regard to his discovery and its application :

I discovered the tubercular bacillus eight years
It was at first warmly disputed, but is now gen-
erally admitted. I have ever since then been engaged in the study of the deadly parasite, and have been en deavoring to obtain an inoculating fluid which would kill the bacilli and bring about a sufficiently strong and healthy local reaction to expel them from the body without at the same time destroying healthy or ganisms. Of course, this latter has been the difficulty. I believe 1 have it here," and Prof. Koch held up to view a vial of the inoculating fluid. It is of a dark brown color, and easily decomposed

There is very little use of my saying just now what the inoculating fluid is or how I obtained it. It has cost me years of my life, and I propose to retain the secret for a few weeks longer from publicity, though it is already known to my assistants and to many of my professional friends. Its preparation demands infinite pains and exactness, and it is being prepared by my assistant, Dr. Libbertz, to whom I have confided this important part of my work. I believe I am discreet on this subject, with good and sufficient reason. The experience of premature disclosures has made me wise. I calculate I have wasted one year of my life in combating some captious and not perfectly conscientious critics of my original work. Were I to publish how the first stage of the discovery was made, the ex act ingredients and the method of the preparation of the fluid, thousands of medical men from Moscow to Buenos Ayres would to-morrow be engaged in concocting it, and injecting it, too, for that matter. I think I am right in supposing, as I do, that more than half these gentlemen are incompetent to prepare the fluid which, with special study and special opportunities, it has taken me a year to prepare. Then these experiments might cause incalculable harm to thousands of innocent patients, and at the same time bring into dis credit a system of treatment which, I believe, will prove a boon to all mankind. If experiments now being made turn out successfully, then the medical world will find me and my devoted assistants only too ready to initiate them into the intricacies of the treatment without the least reserve. But until then, although it seems perhaps selfish, I really claim it is at once our duty and the purest unselfishness. They must content themselves with being patient. In the meantime I advise them to be very chary as to the statements which appear in the press regarding our progress.
"To sum up the results of the treatment so far in the cases in which the physical condition of the patient was good-Lupus has yielded easily to the inoculating treatment, even when the cases have been of many years' standing. The bacilli have been destroyed completely after a number of injections, of course varying with each case, and the web of lupus has in some cases been sloughed off, but in the majority it has been easily removed surgically. The narbe or star which marks the spot where it existed is not so large or the marks the spot where it existed is not so large or the
disfigurement anything like so great as is the case with the sharp spoon treatment, in which the tissue is scooped out. Consequently the danger of lessening the usefulness of the affected limb is much less, and I think the danger of a recurrence is also lessened.
"As to the effect upon living tuberculosis, though the disclosure is premature, I will tell just how we stand. I have twenty patients with whom I personally follow the treatment minutely, and they represent (and I have, of course, chosen them on this account) the graduated stages of the disease. In fifteen of these patients the bacilli have completely disappeared fom the sputa. They have gained much in weight, in general appearance, and in spirits, which last is not to be a neglected symptom. In the remaining five cases I regret to say there is not the slightest indication that the ordinary course of the disease has been stopped. These are cases in which I found already large cavities in the lungs. In these the cough, the rattle in the throat, and the almost undiminished number of bacilli in the sputa continues. All of these symptoms, I re peat, have disappeared in the other cases. Of course, nothing can be considered final yet, the first injection to a human being having only been made seventy days ago. I hope for good results in all cases in which the vital organs are intact."
The eminent Vienna physicians, Nothnagel and Billroth, who have been informed of the whole pro ess, express themselves as satisfied of its great value and Professor Virchow appears as an advocate of Dr Koch before the Berlin Medical Society, while Drs Bergmann, Fraentzel, and William Levy, and Staff Surgeon Koehl, are contributing signed articles to German medical papers fully iadorsing Dr. Koch's statements in regard to his remedy. The German Emperor has bestowed the Grand Cross of the Orde of the Red Eagle upon the now famous discoverer.

TRIAL TRIP OF THE GUNBOAT CONCORD.

On November 19, the United States gunboat Concord, a sister ship of the Yorktown, * had her first trial trip on Long Island Sound. It was a trial of four con secutive hours, primarily to develop her horse power ather than her actual speed, but during a portion of the run she made $171 / 2$ knots an hour, and her aver * For iilustration and full description of the Yorktown see Scientific
age for the entire trip was only a trifle under 17 knots. The contract calls for a de veloped horse power of 3,400 which, it is supposed, it will require another trial to demonstrate in her engines, as difficulty was experienced with her feed pumps, but the speed and steadiness of the vessel exceeded anticipations. She is said to have glided over the water as easily as though there had been no resisting medium, there not being a tremor felt in her light steel hull, even when the vesse was going at her highest speed.

GRAFTING A DOG'S BONE ON A BOY.

On November 16, at the Charity Hospital, New York City, a portion of a living dog's foreleg was en grafted into a boy's leg, to take the place of a bone that was lacking. There had been congenital malfor mation of the boy's leg, which had been operated upon before, and was broken intentionally by the surgeon but union between the bony fragments had failed to take place. The boy and the dog were bound on to take place. The boy and the dog were bound on a cot, as shown in the illustration, both under the in-
fluence of anæsthetics, but the dog, which was a black fluence of anæsthetics, but the dog, which was a black
spaniel, was incased in a hardened plaster of Paris spaniel, was incased in a hardened plaster of Paris
cast, his right foreleg and head and tail being free. cast, his right foreleg and head and tail being free.
The boy's leg showed an abnormal degree of immobi-

lity and shortening, and just above the ankle was a space that entirely lacked bony tissue. Dr. A. M. Phelps, professor of orthopedic surgery in the University of New York, performed the operation, which consisted of engrafting the ulna of the dog's foreleg the homologue of a man's arm, into the wound.
The boy's leg was shaved, washed with soap and water, and scrubbed with a brush of bristles. Squibb's ether was poured on the skin in order to neutralize the fatty secretions. Then came the aseptic measures. The skin was scrubbed with a solution of corrosive sublimate, and towels dampened with the solution were placed around the leg and ankle, leaving only a small portion exposed to the operator. The leg was seen to be scarred, the result of former operations. Every instrument was kept in an antiseptic solution. The cicatricial tissue was carefully removed, and the ends of the bones exposed to view. All bleeding during the operation was prevented by an Esmarch's bandage above the knee, which effectually compressed all the blood vessels of the leg. All newly formed tissue was scraped away. The periosteum of the bone was carefully pushed back with a periosteome. A nutrient artery in the bone was prevented from bleeding by a wooden plug made from a match. All the vessels were tied, and then the Esmarch bandage was removed. So perfectly had this controlled the blood vessels that only a small amount of oozing occurred, which was readily stopped with boiling hot water. It being so near the ankle joint, great care had to be exercised in order not to cut into the joint. A plaster bandage was then put on from the thigh to the base of the toes, being left open at the point of operation.
The dog's leg was first denuded of hair and rendered thoroughly antiseptic. Here comes a delicate part of the operation. Animals are more susceptible to an anæsthetic than a human being, and great care has to be taken that the animal does not die, for it is a live, not a dead, dog bone that is wanted for the void in the boy's leg. The surgeon cuts down into the dog's leg at a point where a dog's knee ought to be. The graft must be nourished, and to insure nutrition the keenest knowledge of the distribution of arteries in the canine anatomy is essential. The surgeon finds it necessary, and does preserve that part of the interosseous artery from which the nutrient artery of the bone makes its exit. The head of the ulna, one of the bones of the dog's forearm, is sawed off. One and a half inches below this the nutrient artery is given off, with its numerous ramifications throughout the bony tissues. The next division of the bone must be an inch and a half below. This severs the interosseous artery, but it is easily tied, and that prime factor, the nutrient artery, is saved. In his hands the surgeon now holds a piece of bone an inch and a half long. It is separated from the bony parts of the dog, but connected by flesh and those life-giving ducts, the arteries.
All is now ready, and the dog is placed alongside the leg of the boy, his head toward that of the boy. Holes are bored in the ends of the bones in the boy's leg, and silver wires are passed through, connecting the two parts loosely. The graft is next dropped between these two extremities, and medullary portions of the boy's bone are made to fit over an aluminum peg. The silver sutures are drawn tight and tied. The skin and flesh flaps of the dog's leg are sewed firmly to the sides of the wound in the boy's leg and it is dressed antiseptically. Two long rods of iron are bent to form a pro tection over the wound. They are firmly bandaged to
the body by plaster of Paris bandages, and are made to allow the surgeon to look at his dressing. Last of all comes the firm strapping of the dog to the boy's eg. This is done by broad bandages of plaster of Paris. The vocal chords of the dog have been cut and this operation, a painless one to the dog, will re lieve the boy from the annoyance of frequent whinings. Besides, frequent injections of morphine will preven the canine from becoming restless.
This ends the operation so far as the surgeons ar oncerned, it being intended to keep the dog, if living, ten or twelve days in the position shown. The dog is fed with milk and water, and morphine is injected into him to keep him quiet. For the first few days, at least after the operation, the patient is said to have been doing well. The case has attracted wide interest, the novelty of a canine bone formation growing as a part of a man's leg presenting to the medical profession specially an attractive field for future investigation.

WORK ON THE NICARAGUA CANAL.

Recent cable advices report that work is being energetically pushed on the Nicaragua Canal, and that over $\$ 3,000,000$ has been expended during the past twelve months. The pier at San Juan del Norte has been extended 700 feet, and where in last May was dry land there is now reported to be ten feet of water in the channel.
Of the plant bought from the Panama contractors there are now six dredges and ten lighters in the har bor, in addition to an immense amount of the machinery, tools, supplies, and material delivered on shore. There are also two large suction dredges, which were sent from Charleston, S. C. Two of the dredges are engaged in deepening the channel, and within thirty days will give a sufficient depth of water to allow the entrance into the harbor of the regular steamers plying between New York and San Juan del Norte, so that they can discharge in quiet waters. For twenty-five years all vessels have been obliged to lie outside and discharge by lighters. The route of the canal has been leared from the harbor to the divide cut
The railroad toward that point is completed for ten miles of the distance, and is used for transportation of stores and mattresses for filling the pier. A trestle bridge across the harbor is in course of construction and is near completion. The machine shop, equipped with the best modern machinery and tools, to meet the requirements of the work, is also rapidly nearing completion. An aqueduct twelve miles long, to bring pure water from the mountain streams, is being laid. Offices, hospitals, and quarters for employes of the company adequate to the present needs have been erected. Several millions of feet of lumber have been received from Atlantic and Gulf ports, and cargoes are continually arriving.
Payment has been made for the right of way between the lake and the Pacific Ocean. The work of clearing the route on that side of the lake has been commenced, and a party of engineers has been engaged locating the railroad there. The force of canal employes numbers at present 1,500 men, and the chief surgeon's report shows a most satisfactory operation of the sanitary service.
It is reported that there has not been a single death from any febrile or enteric disorders among the whole force of the canal employes since the commencement of the work.

HATCHING COD AND LOBSTER.

Following in the line of scientific investigation first opened by our Professor Baird, Mr. Adolf Nielsen, Superintendent of the Newfoundland Fisheries Commission, has established what appears to be a most successful hatchery for the propagation of cod and lobster in Trinity Bay. The ova of the cod floats while that of the lobster sinks to the bottom, the eggs of the cod being very delicate, and cod hatching much more difficult than lobster hatching. Great care is needed in supplying the cod ova with constantly renewed pure salt water of a certain degree of salinity and density during the hatching time. During May and June 700 spawning codfish, in various stages of ripeness, were secured, and placed in pounds surround ed with wire netting to which sea water had free ac cess, and fed on the bait in season, such as herring caplin, and squids. Up to the end of July $33,000,000$ cod ova were collected, of which $17,000,000$ were hatch ed and the young fishes placed in good and healthy position in the waters of Trinity Bay. The hatchery has a capacity for hatching $300,000,000$ cod in one season. The success in lobster hatching has been even more striking. From various near-by factories over 20,000,000 lobster ova were obtained, and of these $15,000,000$ were hatched and planted. In the work 432 floating incubators were employed-small wooden
boxes anchored in suitable localities to be in constant motion in sea water, and requiring the attention of twenty-four men. The returns from fourteen stations show that over $400,000,000$ lobsters have thus been hatched and planted this season. There are now about 200 lobster factories or canneries in operation on the island of Newfoundland, but it is fair to presume
that, with artificial propagation carried on at this rate, there is no limit to the number which may find employment there in the future without depleting the supply.

POSITION OF THE PLANETS IN DECEMBER.

venus
is evening star until the 3 a , and then morning star. She wins the first place on the planetary annals of the month, for, during its progress, she passes one of the great epochs in her course. This event is her superior conjunction with the sun on the 3 d , at 11 h .24 m . P. M., when, passing beyond the sun, she reappears on his western side to commence the role of morning tar. The fairest of the stars will no longer be seen in the glowing west after sunset, but will soon be found shining in the east before sunrise, growing larger and ncreasing in luster with every evening's reappearance, until, at the end of the month, she nearly reaches her most brilliant point, rising about three hours before the sun. Venus makes a conjunction with the waning moon on the 11 th , at 1 h .35 m. A. M., being 36^{\prime} north. Planet and crescent are, however, too near the sun to be visible, even if they were not below the horizon at the time of the conjunction.
The right ascension of Venus on the 1 st is 16 h .48 m ., her declination is $23^{\circ} 39^{\prime}$ south, her diameter is $64^{\prime \prime} .2$, and she is in the constellation Scorpio.
Venus sets on the 1st at $4 \mathrm{~h} .34 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st she rises at $4 \mathrm{~h} .32 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.

JUPITER

is evening star, and reigns supreme among the glittering hosts that bestud the western sky in the early evening. He has parted with his companion, Mars, the two planets making a most interesting celestial picture when in conjunction on November 13, as they hung side by side from the dark background of the sky. Jupiter is in conjunction with the four days' old moon on the 15 th at 9 h . A. M., being $3^{\circ} 44^{\prime}$ north. Planet and crescent will be fair to see on the evening of the 14 th .
The right ascension of Jupiter on the 1st is 20 h .44 m ., his declination is $18^{\circ} 54^{\prime}$ south, his diameter is $34^{\prime \prime} .4$, and he is in the constellation Capricornus.
Jupiter sets on the 1 st at $8 \mathrm{~h} .49 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st he sets at $7 \mathrm{~h} .22 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

MARS

is evening star. The interesting feature to be noted in his course is the increasing distance between him and Jupiter. Mars is 10° east of his rival on the 1st, and 25° east of him on the 31st. Mars is in conjunction with the moon on the 16 th at $3 \mathrm{~h} .28 \mathrm{~m} . \mathrm{P} . \mathrm{M}$., being $4^{\circ} 14^{\prime}$ north.
The right ascension of Mars on the 1 st is 21 h .25 m . his declination is $16^{\circ} 39^{\prime}$ south, his diameter is $7^{\prime \prime} .2$, and he is in the constellation Capricornus.
Mars sets on the 1 st at 9 h .40 m. P. M. On the 31 st he sets at $9 \mathrm{~h} .37 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

SATURN

is morning star. He is in quadrature with the sun, be ing 90° west of him on the 8 th at $7 \mathrm{~h} . \mathrm{P}$. M. He will rise two hours before midnight, when the month closes, and may be easily found at that time coming up in the east. He is in conjunction with the moon on the 4 th the day of her last quarter, at $2 \mathrm{~h} .11 \mathrm{~m} . \mathrm{P}$. M., being $3^{\circ} 44^{\prime}$ south.
The right ascension of Saturn on the 1 st is 11 h 13 m ., his declination is 7° north, his diameter $16^{\prime \prime} .6$, and he is in the constellation Leo.
Saturn rises on the 1 st at 0 h .1 m. A. M. On the 31s he rises at $10 \mathrm{~h} .6 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

MERCURY

is evening star. He reaches his greatest eastern elon gation on the 28 th at $7 \mathrm{~h} . \mathrm{A}$. M., being $19^{\circ} 38^{\prime}$ east of the sun. He then sets an hour and a half after the sun, and is visible to the naked eye in the west about thre quarters of an hour after sunset. He must be looked for about 2° north of the sunset point.
The right ascension of Mercury on the 1 st is 17 h 4 m ., his declination is $24^{\circ} 31^{\prime}$ south, his diameter is $4^{\prime \prime} .8$, and he is in the constellation Ophiuchus.
Mercury sets on the 1st at $4 \mathrm{~h} .46 \mathrm{~m} . \mathrm{P}$. M. On the 31st he sets at $6 \mathrm{~h} .3 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

> NEPTUNE
is evening star. A telescope will bring him into the field about 4° northwest of Aldebaran. His right as cension on the 1st is 4 h .15 m ., his declination is $19^{\circ} 33$ north, his diameter is $2^{\prime \prime} .6$, and he is in the constella ion Taurus.
Neptune sets on the 1 st at $6 \mathrm{~h} .39 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st he sets"at 4 h .37 m. A. M.

URANUS

is morning star. His right ascension on the 1 st is 18 h . 1 m ., his declination is $10^{\circ} 49^{\prime}$ south, his diameter is $3^{\prime \prime} .5$, and he is in the constellation Virgo.
Uranus rises on the 1 st at 3 h .40 m. A. M. On the 31st he rises at 1 h .49 m. A. M.
Mercury, Jupiter, Mars, and Neptune are evening tars at the close of the month. Venus, Saturn, and Uranus are morning stars.

THE SIMILIGRAPH LEVEL.
A recent work by Mr. Guiot an artist, and Mr. G. Pillet, professor at the School of Fine Arts and the Polytech nic School, on landscape drawing from nature, has suggested to Captain Billio que the idea of constructing a simple and portable instrument that permits of performing rapidly and accu rately all the operations of fixing the points and of the perspective outlining of a drawing, and that too with out much knowledge of the laws of perspective. In landscape drawing from nature it helps one to place datun points and the principal lines very accurately, and the draughtsman can afterward put his own work into th sketch and give it the stamp of originality that befits it. His picture will always ap pear very true to nature
The similigraph level, as the instrument is called, con the instrument is called, con

Fi. 1.-FINDING THE HORIZON

Fig. 2.--TAKING THE DIRECTION OF A LINE SEEN
ists of two graduated rules. One of these, A (Fig. direction of. Raise or lower the left hand, and caus 3), contains a slot forming a slide. Suspended at its the movable rule to pivot, with the right hand, until upper part by the thumb and forefinger of the left one of its edges covers the line sighted. Then tighten hand, and weighted at the bottom, it gives the vertical. The other rule, B , is movable around a bolt fixed upon a slide, C, which moves in the slot of the rule, A, with respect to which it is capable of taking all positions. It may be rendered immovable in these various positions by tightening the nut, E. This latter is solid and.is.polished in order thatitit may act as a mirror. Two stops, P , permit of placing the rule, B , in a position at right angles with the rule, A. This rule, B, contains two apertures in which are stretched horse hairs that correspond to the center of the mirror.
Let us now see to what uses the instrument is put. For graphic drawing it serves as a T-square, set square, sliding square, and double decimeter, and permits of forming parallels, of making symmetrical angles, and of bringing angles and straight lines directly to their relative position. It thus aids in the copying, enlarging, and reducing of drawings
In the field, it gives the horizon over a very wide extent, and it serves as a finder, a plumb line, and a level. It permits of transferring directly to the drawing the foreground lines and the verticals in proportional length and true direction, and the vanishing lines in direction and in length proportional to the foreshortening for the point of view occupied by the observer. In topography, it serves for calculating gradients, it permits of tracing in situ, so to speak, the curves of the level before the observer's eye, and finally, it provides a means of leveling a large number of distant points from a single station. It would take too long to give the details of all these operations, and we shall confine ourselves to pointing out briefly the principal ones.
To Find the Ho rizon (Fig. 1). Suspend the in strument in front of the right eye after fixing the movable rule, B, against the upper stop, P. Raise or lower the hand until the eyeball is seen reflected in the center of the mirror. Then glance at the hair that covers the horizon. This is also the method of leveling seve. ral points.
To Trace on a Drawing a Ground Line Seen Foreshortened (Vanishing Line) (Fig. 2).Hold the instrument suspended with the left hand, loosen the nut a little, observewith the left servewith theleft eye the straight line that it is desired to take the

DREDGING IN NORWAY. the not acidation of the interesting problem

Fig. 3.-BILLIOQUE'S SIMILIGRAPH LEVEL.
and to draw ne along the rule, B
The two rules fold up, and the instrument can be ut into the pocket.
The similigraph level is called upon to render great
services to the teacher as wel as to the pupil. $-L a$ Nature.

When was Americ
 \section*{Discovered ${ }^{2}$}

As the time is fast ap proaching which has been set for the celebration of the above epoch, it becomes of interest to know accurately when it happened. That the above statement is not a mere truism is shown in an interest ing paper by Mr. S. W. Balch, which we publish in this week's Supplement, 778. In the confusion of new and old times, and of different years, Mr. Balch shows that it is far from easy to determine the exact anniversary of Colum bus' first sight of our shcres Four hundred years ago many discrepancies existed in the times of celebration o Christmas, and there is even a possibility that the year should be 1491 or 1493 . If the latter, it would certainly suit the convenience of the or of the or paper in our Supplement must be consulted for ful

DREDGING IN NORWAY.

The methods in common use in Norway to-day are about as primitive as they were in this country fifty or a hundred years ago. We find the same simple and clumsy agricultural implements, the same rude mechanical devices. This is said only of the more remote agricultural districts, however, as in the larger and richer farms the same harvesting, reaping and mowing machines are to be found that are met with on pros perous farms in this country. ${ }^{\text {Th }}$ This is due in a great measure to the great number of Norwegians who have come to this country and, after residing here a number of years, have accumulated enough means to return to their own country for the remainder of their days, and have taken back with them the new ideas that residence in this country has taught them. It is a matter of pride to the American to observe that nearly all the agricultural machines in use there are of Ameri can manufacture or model.
The Norwegian is rather backward in getting hold of modern methods, however, owing to the fact that he is limited in his resources rather than that he lacks the push or enterprise to introduce improved appli ances. Coal is a luxury. Manual labor is very cheap, the result being that, as a rule there, man is cheaper than steam.
This fact is illustrated by a curious machine for dredging docks and harbors that may be seen sometimes in Norway. An enormous wheel similar to the wheel of a treadmill is mounted upon a frame raised at the sides of a scow. A drum for carrying the chain to which is attached the dredging scoop is mounted upon one end of the shaft of th wheel. Two men are sufficient to rotate the wheel and raise the scoop with it load. With a wheel some nine feet in diameter the leverage is so great that an enormous load can be raised without diff culty.

It has been sug gested that the

 study of the in fluence of diet and habit upon the color of hair in different nations of men may cause discoverie by which the color of the hai in the human race may be mod ified by judiciou treatment.
AN AUTOMATIC CAR COUPLER

The illustration represents a simple form of car coupling which has been patented by Mr. Holiver Megorden, of Weiser, Idaho. The drawhead has a front opening adapted to receive one end of a coupling link, the latter having at each end a head with shoulders on top. These heads are adapted to be engaged by a transversely extending lever, fulcrumed at one side of the opening, as shown in the sectional view, Fig. 1, the lever extending through a transverse slot in the drawhead to one side of the car. Fig. 3 is a sectional view of the lever in engagement with the coupling pin. The

MEGORDEN'S CAR COUPLING.

lever is locked in place by a pin, shown in Fig. 2, the pin being connected to the drawhead by a chain, and having a down wardly extending arm on its outer end adapted to pass into a vertical recess near the front of the drawhead at one side of the opening. In coupling cars this pin is removed, when the entering link in passing in raises the lever until the latter drops over its shoulder. To uncouple, the pin in either drawhead is removed, when the lever is raised and the pin inserted under it to hold it in elevated position, as shown in dotted lines in Fig. 1.

a device to supply cool water.

The accompanying illustration represents an ar rangement for cooling the water supplied by a water works system or other source, under a head, by pass-

hillyers water cooler.
ing the water through pipes placed in a well, the wate of which has a low temperature, means being provided for relieving the pipes of sediment and conducting the cooled water to the desired point. In the well, as shown in Fig. 1, is submerged a coil of pipe of large diameter, the manner in which the inlet pipe leads to which being shown in Fig. 2. The coil is arranged at the side of the wel:, as shown in the horizontal section, Fig. 3, so that water may be drawn from the well by a bucket or pump, if desired, and the coil is designed to be of such capacity, according to the average quantity of water to be drawn, that all the incoming water will remain in the coil a sufficient time to be cooled. Any other desired form of coil or casting may be used in stead of the one shown, according to the capacity
called for. The outlet or discharge pipe leading to the inside of the house is much swaller than the inlet pipe, whereby water may be delivered at about the temperature of the well. At the lower end of the discharge pipe, and connecting it with the coil, is a short pipe of larger diameter, the latter pipe being provided with a valve, whereby water may be drawn rapidly through the coil to remove all sediment which may be deposited therein.
For further information relative to this invention address the patentee, Mr. George Hillyer, Atlanta, Ga.

A SIMPLE FENCE-MAKING MACHINE.

The illustration represents a simple form of machine, patented by Messrs. G. L. Banks and P. P. Belt, by which, it is designed, an inexperienced person may conveniently and cheaply construct a fence of a series of slats or laths held in place by strands of wire. The body of the device is preferably of metal, and in its back has a longitudinal recess, a vertical rack bar sliding between its sides having teeth from top to bottom on one edge and teeth centrally on the opposite edge. Opposite a central recess in the body are brackets in which is pivoted a toothed segment, from which extends an operating handle, the teeth of the segment engaging the central rack teeth. On the other side of the body are casings in vertical alignment, in each of which is a loosely fitted pinion adapt ed to engage the teeth of the long rack bar. The strands of wire to be used in making the fence are each fastened by one end to a post, and at their opposite ends to any suitable form of tension device connected with a distant and conveniently located post. Before attachment to the tension device the wires are passed through apertures in the pinions, and, the machine be ing moved close to the post at which the work is to be commenced, the toothed segment is moved by its bandle, imparting motion to the opposite rack bar and pinions, whereby a twist is given in the wire close to the post. The machine is then moved a slight distance away and a slat or lath passed down between the strands, when the rack bar is moved in the opposite direction, giving a reverse twist to the strands on the outer side of the slat, and holding it firmly in upright position. Slat after slat is thus bound in place, the twists being alternately made in opposite directions until the panel has been completed.
For further information relative to this invention address the Belt \& Loether Fence Machine Co., Fredonia, Kansas.

AN IMPROVED TOY PISTOL

The pistol shown in the illustration is designed to conveniently and rapidly explode paper percussion caps, the construction being also applicable, according to the inventor, with mock guns or rifles suitable for use in political campaigns. The barrel is preferably of tin, and fitted to slide tightly on the forward end of the body, in which are journaled two feed rolls, one bearing a ratchet, while a guide tube in the mouth of the body leads to the intersection of the feed rolls. The hammer has a downwardly projecting arm pivot ed in the stock, and a flat spring secured by one end in the rear part of the stock bears with its free end on a stud on this hammer arm to throw the hammer down on the upper face of the pistol body. The trigger is arranged on the same pivot as the hammer arm, and horizontal pawl is pivoted by one iend to the trigger, the forward part of the pawl being in engagement with the ratchet of the lower feed roll, and being supported by a coiled spring in the stock. The barrel being de tached from the stock, a strip of fulminate ribbon or paper percussion caps is folded therein, the barrel serv ing as a magazine, and one end of this strip is drawn from the rear end of the barrel through the guide tube and between the feed rolls, over the hammer bed, be tween a guide pin and the hammer arm, the hammer being cocked. The barrel is then adjusted on the stock, and, when the trigger is pulled, the spring-pressed stud on the hammer arm is thrown out of alignment with the pivot of the arm, when the spring forces the hammer sharply down upon the cap. When the hammer is cocked for refiring, this spring-pressed stud on the hammer arm is again brought directly under the pivotal point of the hammer, whereby the spring is prevented from acting until the trigger is pulled, while the motion of the trigger causes the fulminate strip to be fed a sufficient distance to locate another cap on the bed for the action of the hammer. For further information relative to this invention address the patentee, Mr. Charles Blampied, No. 195 Lamartine Street, Jamaica Plain, Mass.

One of the companies in Paris that deal in compressed air for motive power has been awarded the contract for street lighting on a novel plan. The company distributes power through its condensed air system to an immense number of small dynamos, each of which furnishes a current for a small number of lamps.

AN IMPROVED WRENCH.

A wrench which is readily applied and easily manpulated to grasp large or small objects has been pat nted by Mr. Walter S. Bunch, of Marshfield, Oregon, and is shown in the accompanying cut, Fig. 1 repre-

BUNCH'S WRENCH

senting a longitudinal and Fig. 2 a transverse section thereof, Fig. 3 being a view in perspective. The mov able jaw of this wrench has teeth on one of the sides of ts bore, adapted to be engaged by similar teeth on top of a wedge fitted loosely in a recess of the handle, and supported at its small end by a spring secured to the rear end of the handle, this spring having a endency to throw the wedge inward and disengage its eeth from those of the movable jaw. The under side of this wedge is adapted to be engaged by another wedge, a handle or trigger from which projects through a slot in the bottom of the handle, a spring pressing against the larger end of the lower wedge. In normal position, this spring operates to hold the eeth of the upper wedge in engagement with the movable jaw, holding the latter where it has been placed. To adjust this jaw the operator presses the trigger rearward, thus withdrawing the lower wedge,

banks \& belt's fence-maring machine.
when the upper wedge springs inward, by the force of he spring extending from its small end and its own weight, whereby the movable jaw is unlocked and can be moved to any desired distance from the fixed jaw on the outer end of the wrench. When the pressure on the trigger is removed, the spring acting against the lower wedge causes the movable jaw to be immediately locked in place.

Formula foe Insect Bi'fes.-One of the very best applications for the bites of moquitoes and fleas, also for other eruptions attended with intense itchings, is : Menthol in alcohol, one part to ten. This is very cool ing andimmediately effectual. It is also an excellent lotion for application to the forehead and temples in headache, often at once subduing the same.-Weekly Med. Review.

BLAMPIED'S TOY PISTOL,

THE LAUNCH OF THE ARMORED CRUISER MAINE at the brooklyn navy yard.
On Tuesday, November 18, 1890, the hull of the armored cruiser Maine was successfully launched at the Brooklyn navy yard, in the port of New York. It is the largest vessel ever built at this yard, and its launching attracted a very great number of people from the vicinity of New York, and even from more distant points. We have already described and illustrated the building of the ship (see Scientific American, vol. lxi., No. 14). The frame was set up as far as possible inside of one of the old ship houses. The length of the cruiser was such that the bow projected many feet beyond the front of the building. The depth of the hull was so great that the flagstaffs which a vessel always carries when being launched could only be set up after the vessel had left the house, while she was still sliding down the ways.
The arrangements for the spectators were very complete. The invitations specified in each case some particular stand. Of these, a number were erected, and designated by letter. Around the bows and on either side of the ram was the "launching platform." Upon this a small staging was erected over the ram for the Secretary of the Navy, the admiral of the yard, Ex-Secretary of the Navy William C. Whitney, and some guests. The breaking of the traditional bottle of champagne and the naming of the ship was entrusted to Miss Alice Tracy Wilmerding, who stood trusted to Miss Alice Tracy Wimerding, who stood
upon this platform. She is the granddaughter of the upon this platform. She is the granddaughter of the
secretary. The champagne was made from grapes secretary. The champagne was made from
grown in San Benardino County, California.
The operations of preparing for the launch began shortly after eleven o'clock. Two gangs of men on each side, armed with oak rams, about ten feet long, with four to six men to a ram, began to drive in the wooden wedges on each side of the ways. As these are driven they tend to lift the ship bodily from the keel blocks that have sustained its weight hitherto, and from the shores at the sides that have assisted its stability of equilibrium. The wedges were cut of such length as to admit of twenty inches driving.
Eight inches was found to be sufficient. This loosened Eight inches was found to be sufficient. This loosened
the shores and keel blocks enough to allow the workmen to knock and split them out of place. In about an hour the ship was clear of everything except the
forward keel blocks and trip shores, and rested with forward keel blocks and trip shores, and rested with full weight in the cradle.
The ways consist of upper and lower divisions. Two long, parallel courses of timber forming the lower ways are first laid down on each side of the ship, thickly coated on their upper surfaces with grease, and extending well down into the water. Upon these the upper ways are placed, which correspond in length with the ship. They are bolted down at their upper end to the lower ways. Upon these the cradle rests, and the wedges already spoken of are driven between the cradle and upper ways to bring the vessel's weight upon the latter. To release the hull the upper ways
are sawed in two just below the bolts, and then nothing but friction holds the ship. Often a ship will start off of her own accord. In the case of the Maine rams were applied to start her, but they did not act. Meanwhile steel wedges were being driven into the saw cut. The rams were removed, and while the wedges were still being driven, tackles were hooked on each side and a strain put on them. The great mass started imperceptibly into motion. The bottle of champagne was broken, and in less than a minute the hull was floating in the water. The hour of the launch was about 12:45 p. m.
The first keel plate of the Maine was laid Oct. 11, 1888, so that a little over two years have elapsed from commencement to completion of the shell. The hull
was designed by Commodore Theodore D. Wilson. was designed by Commodore Theodore D. Wilson.
The engines were designed by Commodore G. W. Melville, of the Bureau of Engineering. The guns and equipments are to be supplied by the different bureaus of the Navy Department. It ranks as an armored cruiser of the first class. It is built of steel throughout. $41 / 2 \mathrm{in}$.; on load water line, 318 ft . 3 in .; extreme beam, 57 ft .; mean draught, 21 ft .6 in . Displacement, 6,682 57 ft ; mean draught, 21 ft .6 in . Displacement, 6,682
tons. Speed, estimated, 17 knots. As launched, the tons. Speed, estimated, 17 knots. As launched, the
displacement was only 1,700 tons on a draught of 7 ft . displacement was only 1,700
forward and 7 ft .6 in . aft.
As at present determined, the ship is to have a protective belt of armor on the sides, 180 ft . long and 12 in. thick. Quite probably itmay be made of the new nickel steel, of a type to be accurately determined by further tests. The large guns are to be worked in pairs from two Hichborn turrets, one forward on the starboard side and one aft on the port side. The guns will be protected by 12 in . armor for the turrets or bar-
bettes, with 8 in . shields for the guns. The latter are bettes, with 8 in . shields for the guns. The latter are
10 in . breech-loading rifles, and form the main battery. An auxiliary battery of ten 6 in . rifles is to be mounted on the battery deck, protected by 2 in . shields. The secondary battery is to include four 6 pounder, eight 3
pounder, and two 1 pounder rapid-firing guns, four pounder, and two 1 pounder rapid-firing guns, four
revolving cannon, and four Gatling guns. There are also seven torpedo tubes covering the entire horizon.

They are to be provided with armored tops, so as to constitute fighting masts.
The deck is to be of 2 in . steel amidships and of 4 in . thickness on the sloping parts. Cellulose or woodite is to be used where it may be useful in closing up after the passage of a shot. The bottom is double ellular, with numerous water-tight subdivisions.
The engines are to be of vertical inverted cylinder ype, and have three cylinders for triple expansion, of following dimensions: H. P. cylinder $351 / 2$ in., I. P.
cylinder 57 in., L. P. cylinder 88 in., stroke 36 in. There cylinder $57 \mathrm{in} ., \mathrm{L}$. P. cylinder $88 \mathrm{in} .$, stroke 36 in . There lutions the engine will give about 9,000 indicated H . P. Eight steel boilers 14 ft .8 in . by 10 ft ., to work up to a pressure of $135 \mathrm{lb} .$, are to be used. The propeller will be three bladed and of 15 ft . diameter. The pumps for all purposes are of the well known "Blake" type. They will supply hydraulic power as well as water for the general requirements of the engine. With all bunkers filled there will be 822 tons on board, enough o last for 7,000 knots' steaming.
The engines are to be built by N. F. Palmer, Jr. \& Co., of this city. The armor plates are to be rolled at the Bethlehem Steel Works, Bethlehem, Pa. The cost of the entire structure will be about two and one half millions of dollars. It is proposed to put the armor plates on while the ship is in thc dry dock. Traveling cranes will have to be installed on each side of the dock for this purpose. The cranes are to be of forty tons capacity, and will cost $\$ 50,000$ apiece. Two will be for the Brooklyn yard, and two others are proposed for the Norfolk, Va., yard for putting on the plates of the Texas.
The following list of dates in connection with the Maine is of interest as showing how long it takes to execute the work and fulfill the legal requirements in uch cases:
Built under act of Congress approved August 3, 1886. Designed by the Navy Department. Plans approved November 1, 1887. Bids for materials opened June 4, 1888. Contract for materials signed June 15, 1888, with Messrs. Carnegie, Phipps \& Co., Pittsburg, Pa. First frame bent September 10, 1888. First keel plate laid October 11, 1888. First rivet driven November 2, 1888, 11 o'clock a. m. First frameraised December 5, 1888. Vessel launched November 18, 1890.

Glaciers-their Formation and their March.
In high valleys, among the mountains whose tops are covered with perpetual snow, are often found seas of ice, called "glaciers." They are formed thus : Snow that falls upon lofty mountains melts very little even in summer. So in valleys high up among the mountains it gathers to a great depth, and, from the weight of the snow lying above, the lower layers become icy, as a snowball does when squeezed. The upper crust melts a little during the heat of the day, and the water sinks down through the snow, and then freezes at night. From this melting and freezing the mass of snow is soon changed into a sea of ice.
In traveling down valleys those ancient glaciers left traces of their journey. Over all the places where the ice seas passed, the rocks are rounded and highly polished. A field of these rounded rocks, when seen from a distance, looks like a field filled with sheep crouching on the ground, and Swiss geologists have called them roches moutonnees-"sheep-like rocks." In a valley along the summit of the Rocky Mountains, near the "Mountain of the Holy Cross," there is beautiful display of these polished, rounded rocks.
As the glaciers moved down the valleys, great rooks, frozen fast in the ice on the sides and at the bottom, scratched and marked other rocks as they passed by and over then. Sometimes these scorings are very broad and deep, for the immense rocks the glaciers carried were like strong, powerful tools in the grasp of a mighty engine. Sometimes the lines are asfine as those
of a fine engraving. They usually run all one way, of a fine engraving. They usually run all one way, one can tell the direction in which the glacier moved. In the sandstone west of New Haven, Connecticut, the deep, broad scorings can be plainly seen, running toward the southeast. The height at which these scratches occur tells us something of the depth of the ice. Markings in the White Mountains indicate that the ice was more than a mile deep over the region now known as northern New England.
Wherever the glaciers melted, they left an immense amount of "drift," that is, sand, gravel, and stones of all sorts, which had been frozen in the ice when the glaciers were forming. The stones of this drift are o as small houses. There is one at Bradford, Massachusetts, which measures thirty feet each way, and weighs four and a half million pounds. There is another on a ledge in Vermont which is even larger than that, and which must have been carried by the ice across a valley lying five hundred feet below where the stone now is, showing that the ice was five hundred feet thick. Great bowlders of trap rock extend through Connecticut on a line running to Long Island Sound; and, as some of the same kind are found in Long Island, the glacier
rocks with it. An immense statue of Peter the Great, in St. Petersburg, stands on one of these glacier bowlders of solid granite, which weighs three million pounds. One of the largest bowlders in America is in the Indian village of Mohegan, near Montville, Connecticut. The Indians call the rock "Shehegan." Its top, which is flat and as large as the floor of a good sized room, is reached by a ladder.
Sometimes these bowlders are found perched upon bare ledges of rock, so nicely balanced that, though of great weight, they may be rocked by the hand. They are called "rocking stones." Near the little Connecticut village of Noank, on Long Island Sound, there is an immense bowlder called by the people there ' Jemimy's Pulpit." It was formerly a rocking stone, but the rock has worn away below it and it can no longer be moved.-Teresa C. Crofton, in St. Nicholas.

PHOTOGRAPHIC NOTES.

Cheap Developing Trays.-That very useful waterproof material, Willesden paper, forms by far the best material for developing trays. The trays are made by cutting out a square $21 / 2$ inches larger each way than the required size of plate, and folding up the sides in the way children make a paper box. The corners are secured by a few stitches along the edge, the finished tray presenting the appearance as below. Now paint with a brush dipped in vermilion in very large, bold letters, in the middle of the bottom in the inside, a word indicating its future use, such as pyro, oxalate, toning, hypo, etc. Next melt in a beaker or an old jam tin some solid paraffine, about 125° melting point; a paraffine candle will do, or, if paraffine cannot be procured, use an ozokerite candle, or even the stearine of a common or domestic composite. Heat this up so that the temperature of the fluid is well above the melting point-nearly boiling, in fact. Place your paper tray on a piece of window glass, and pour into it the whole of the contents of the beaker. Tilt the glass quickly to all four sides, so as to wet the sides up to the edge, and then pour back into the beaker, doing all as smartly as you can. When in use, the trays are held on a slip of window glass an inch larger each way than the size in use. They have many advantages over any other form of tray, of which the following are the most important:
First.-They require no cleaning, as, when emptied, the water runs off them as it does off a duck's back, so that they become quite dry instantly. As the fluids never adhere, pollution of one solution by another be comes impossible, even if the same tray be used for several purposes.
Secondly.-The weight of the contained fluid presses them down on to the piece of glass on which they are held, so as to obtain a perfectly flat surface. so that less solution is required than with any other tray. It is easy to develop a whole-plate film with six drachms of solution.
Thirdly.-Besides being very cheap, they are so portable that half a gross would scarcely weigh as much as
 suitable as half a dozen of these trays, carefully made so as to "nest," and packed in a japanned tin case open along one side, so as to form a deep, narrow tank, and provided with a tin or brass spout near the bot tom, on to which is slipped half a yard of rubber tubing fitted with a pinch cock. The outer case then serves as a water tank when developing.-FF. M. Giles, M.B., F.R.C.S., Jour. of the Photo. Soc. of India.

The Latest New Atlantic Steamship.

The new North German Lloyd steamship Spree, which arrived at New York October 21, from Bremen, was built by the Vulcan Shipbuilding Company, in Stettin, Germany. She is 485 feet long by 52 feet beam and 38 feet deep. She is 9,000 tons burden, is built of steel, and is divided into fifteen watertight compart ments by fourteen bulkheads. These are really valuable, for they are kept permanently closed. The Spree is propelled by a single screw, operated by triple-expansion engines of five cylinders, with three cranks. The engines develop 13,000 horse power, and give the steamer a speed of 21 knots an hour. The diameter of the screw is $221 / 2$ feet. Steam is generated in 10 steel boilers, 6 double ended, 4 single ended, and having in all 48 stoke ho'es. The diameter of each crankshaft is $241 / 2$ inches, the 3 crankshafts having a weight of 75 tons. Four dynamos furnish power for the illumination of the steamer. Fach dynamo has a capacity of 350 incandescent lamps, each of 25 candle power. The Spree has accommodations for 200 passengers in the
first cabin, 125 in the second, and 460 in the steerage.

As a means of preventing the formation of bubbles in albumen paper, Herr Kronke recommends the following solution

Glycerine Water...

Common salt
$15-20 \mathrm{c} . \mathrm{c}$.
100 "
The prints are immersed in this solution immediately on being taken off the frame. The object of the salt is to precipitate any silver dissolving in the bath as chloride. The efficacy of Herr Kronke's receipt does

Patent Legislation ror a Century.

The present century has been the time, and the United States the place, in which invention has made its greatest strides. The current year has witnessed the centenary of the United States patent system. It seems, therefore, a fitting time to review the history of the country's patent system, and to contrast the condition of invention at the beginning and at the close of the century respectively. An interesting paper covering this ground appears in the current number of the Quarterly Journal of Economics. The author, Mr. Chauncey Smith, displays familiarity with his subject, and the paper bears the marks of research
It has been said that the current year is the centenary of the patent system of the United States. The beginning of the patent legislation of the United States was an act passed on April 10, 1790, under the power given to Congress in the Constitution, "to promote the progress of science and useful arts by securing for limited times to authors and inventors the exclusive right to their respective writings and discoveries." This act, to their respective writings and discoveries." This act,
which was entitled " an act to promote the progress of which was entitled "an act to promote the progress of for the invention or discovery of any useful art, manufacture, engine, machine or device, or any improvement thereon, not before known. This provision has not been much changed in the interval, the language of the existing statute extending to any new and useful art, machine, manufacture or composition of matter, or improvement thereof. Applications for patents were to be made to the Secretary of State, the Secrewere to be made to the secretary of State, the Secre-
tary of War, and the Attorney General. The right setary of War, and the Attorney General. The right se-
cured by a patent was "the sole and exclusive right cured by a patent was "the sole and exclusive right
and liberty of making, constructing, using, and vending to others to be used "the invention or discovery for the period of fourteen years. A description of the invention in writing and a model of the same where the case admitted of it were required. The patent was made prima facie evidence that the patentee was the first inventor, and that the invention was truly described. This provision marked a change from the English system, and has been retained ever since. The act contained no limitation of its benefits to citizens of the United States, but granted its privileges to "any person."
Another act was passed in 1793. This act limited the benefits of the law to citizens of the United States. Applicants were required to make oath that they believed themselves the true inventors. The administration of the law was committed to the Secretary of State and the Attorney General. In 1800 the right to take out patents was extended to aliens who had resided for more than two years within the United States, and the right was also extended to the legal representatives of an inventor who had died before a patent was issued to him. In 1819 an important step was taken by giving the circuit courts of the United States jurisdiction of actions for the infringement of patents, with power to grant injunctions. In 1832 the practice already established was recognized of reissuing patents to correct mistakes.
Iu 1836 the previous acts dealing with the subject of patents were repealed, and a new and comprehensive act was passed. This act created the Patent Office and act was passed. The act created the Patent Office and attached it to the Department of State. It has since
been attached to the Department of the Interior. The been attached to the Department of the Interior. The
office was placed under the charge of a commissioner, who was to superintend and perform all duties connected with the granting of patents. Foreigners were placed by this act on the same footing as citizens, except as to the amount of the fees to be paid. The conditions entitling to a grant were the same, substantially, as under the act of 1793 . Provision was made for an extension of the original term of fourteen years for seven years additional in case it should appear that the patentee had, without neglect or default on his part, failed to obtain a reasonable remuneration for his time, ingenuity, and expenses. The authority to grant extensions was at first vested in the Secretary of
State, the Commissioner of Patents, and the Solicitor State, the Commissioner of Patents, and the Solicitor
of the Treasury, but in 1848 the authority was vested of the Treasury, but in 1848 the authority was vested
in the commissioner alone. Applications for extensions became very common, and at length so much opposition to this feature of the law was developed that in 1861 the law was changed. Patents were thereafter to be granted for the term of seventeen years, and all extensions were prohibited. Another feature of the act of 1836 provided for the registration in the Patent Office of assignments of patents, and of grants of exclusive rights to an invention in specified territories. But perhaps the most valuable feature of the act of 1836 was the power given the commissioner to decide whether an applicant was entitled to a patent under the provisions of the statute. The commissioner, in the discharge of this duty, was obliged to make examina tion to determine that the invention had not before been made in this country, that it had not been anywhere patented or described in a printed publication, that it had not been in public use or on sale with the applicant's consent or allowance prior to the application, and that it was sufficiently important and useful. Such an examination had not before been required, either here or abroad, but it has since been retained
here and has been adopted in other countries. To provide for facilities for examinatious the act appropriated
$\$ 1,500$ for the establishment of a library of scientific books, which has since grown to 54,000 volumes. The act of 1836 gave the Patent Office the power to investi gate and decide claims of priority between several inventors. In 1837 patentees who had made too broad a claim, and whose patents would have been void under thepreviouslaw, wereallowed to file disclaimers of portions of the original claim, and their patents were made good for all they were entitled to claim, even though no disclaimer had been made, unless they unreasonably failed to make proper disclaimers. These provisions added to the security and value of patent pro perty.
In 1839 an act was passed which provided that no use of an invention by the public, either with or without the consent of the inventor, should impair his right to a patent unless the use had been for more than two years, or upon proof of abandonment. This gave the inventor the privilege to permit the use of his invention or sell the right to use it without losing the right to the patent where the use or sale was not for more than two years, but, on the other hand, where this time was exceeded, the inventor lost his patent even where the use or sale had been without his knowledge or consent. This legislation may be said to have determined the character of the American patent law. With the exception of the amendment already referred to as having been made in 1861, extending the time from fourteen to seventeen years, no important changes have been made since, though the law had a general revision in 1870 and in 1875.
The growth of the patent system in the century which has elapsed since the first patent law was passed in 1790 has been enormous. Only three patents were granted the first year, and only fifty-five were granted under it before its repeal in 1793. The whole number of patents granted before 1800 was 256 , a little more than one-half the number now issued weekly. The number issued in the last ten years, from 1880 to 1890 , was 195,454, or more than 800 times the number issued during the first ten years of the patent law. During the forty-six years prior to the passage of the act of 1836 the number of
patents granted, exclusive of reissues, was 9,957 , a number now exceeded in a period of six months. The number of patents issued by the office in 1836, after the date of the act establishing it, was 109, and the number for the full year 1837 was 436 . The whole number of patents issued in 1889 was 24.083 . In 1836 eight persons made up the force of the office, and the aggregate of their salaries was $\$ 11,550$. The expenses of the office for the first full year were $\$ 33,506.98$, and the receipts $\$ 29,289.08$. In 1889 there were more than 560 persons employed in the office. The receipts amounted to
$\$ 1,281,728.05$, and the expenses to $\$ 1,052,955.98$, leaving a net surplus of $\$ 228,772.07$. The whole number of pat ents granted since 1836 was 431,541 . According to Mr. Swith's calculation, in fifty-four years the number of patents increased more than fifty-five fold, the receipts more than forty fold, the expenses more than thirty two fold, and the number of persons employed seventy fold. The increase has been truly wonderful. It speaks volumes for the growth of invention and the ap plication of science to industry in the last century, and more particularly in the last half century
In addition to recounting the history of the patent system in the United States, the writer discusses the question as to the utility of the system. One would suppose that a mere statement of the results achieved under it would afford a sufficient answer to this question. But it is known that hostility to the patent sys tem crops up frequently, and that bills are constantly presented in Congress providing for the repeal or modification of particular features of the act. Indeed, Mr Smith mentions the fact that he was assured some
years ago by a member of Congress from Massachusetts that a large number of the members of the House of Representatives were ready at any moment to vote for
the repeal of the law as a whole. By some the objecthe repeal of the law as a whole. By some the objection is made that a patent law does not stimulate in invention which they cannot themselves resist. In answer to this the writer, while recognizing that the greatest inventions and discoveries have been actuated by motives independent of the hope of pecuniary re-
ward, yet points out that the great number of people ward, yet points out that the great number of people
who take out patents in the United States are stimu lated by the hope of gain, and act in every way as i they were. This really goes without saying, as far as inventors themselves are concerned, and it is even more true as regards capitalists, who nowadays, as Mr. Swith points out, are almost as necessary to the introduction of inventions as inventors themselves. The capitalists as such certainly have not any motive to interest themselves in new inventions but the hope of gain which the patent laws afford a chance of securing. The evi-
dence of accomplished facts is certainly all in favor of dence of accomplished facts is certainly all in favor of
the doctrine that patents do stimulate invention, for as the writer points out, the three countries which in this age of invention have contributed the greates tions are the three countries which have longest secured
to inventors a right to their inventions, viz., England, the United States, and France.-Bradstreet's.

The Coke Industry.

The manufacture of coke is an industry of considerable importance, as an indispensable factor in our production of iron and steel. The proximity of its access to our metallurgical centers enters largely into the cost of production, and its qualities are more or less a premium or a discount on the value of the manufac tured metal.
It is obtainable from all the five great coal fields of the United States-the Appalachian, Central, West ern, Rocky Mountain, and Pacific. It varies considerably in quality and value and physical characteristics. In the Connellsville region, which is the great coke producing district of the United States, the coal bed is in the form of a basin, some three miles wide and fifty miles long, yielding eight to ten feet of workable coal, with only one small slate parting eighteen inches above the floor. It is soft and easily mined, the digging be ing easy, one man and a boy having dug and loaded 57,684 pounds inside of ten hours. This ease of mining is the distinguishing feature of the Connellsville basin. East or west the cost of mining increases; westward the coal hardens, and eastward the beds become thinner.

The Rocky Mountain field ranks next to the Appalachian in importance, both immediate and prospective It includes the coal beds of Dakota, Montana, Idaho Utah, Wyoming, New Mexico, and Colorado, the latter ranking fifth as a coke-producing State. Its proximity to the mines of the precious metais and the smelting works of extensive districts are evidence of its inport ance, even if of inferior quality. In the two Virginias Tennessee, and Alabama the same reasons hold good for its value and importance. Two new fields of cok ing coal, low in sulphur and ash and high in fixed car bon, and equal to the best Pocahontas as metallurgical fuel, have been found in the vicinity of Big Stone Gap, Va., and Middlesborough, Ky., and add to the indus trial prospects of these new centers of metallurgical production.
There is practically no exhaustion of the sources of coke supply. It is correlative with our mineral deposits, and if graded in quality and proximity of ac cess, is yet in sufficient quantities to assure all the neces sary supply. In the present production of coke Penn sylvania outranks all the other States, producing in 1888 some $6,545,779$ tons; West Virginia next, producing 531,762 tons ; Alabama comes third, with 508,511 tons and Tennessee fourth, with a production of 385,693 tons. The number of ovens increased from 12,372 in 1880 to 30,069 in 1888, and the total product in thesame time from $3,338,300$ tons to $8,540,030$ tons, the values in 1880 representing $\$ 6,631,267$, and in $1888, \$ 12,445,963$, The cost of coke varies, and its commercial osciliation is largely in touch with its accessibility. The coke made in Wisconsin in 1888 was from coal produced in Pennsylvania, and some made in Ohio and Kentucky from West Virginia and Pennsylvania coal. Its value in Pennsylvania was $\$ 1.20$ per ton; in Colorado, $\$ 4$ in New Mexico, $\$ 6$; in Montana, $\$ 8$.
The following table gives some interesting figures on the coke manufacture in the United States from 1880 to 1888 , inclusive :

Years.	Tons- -		Values.
	Coal used.	Coke made.	
1880..	5,237,714	3,338,300	\$6,631,267
1881..	6,540,602	4,113,790	7,725,175
1882.	7,577.648	4,793,321	8,46\%.167
1883.	8.516,670	5,014,721	8,121,607
1884..	7,961,974	4,873,805	7,242,878
1885.	. 8,071,126	5,106,696	7,629,118
1886.	. 10,688,972	6,845,369	11,153,306
1887.	. 11,859,753	7,611,705	15.321,116
1888.	12,945,350	8,540,030	12,445,963

In the nine years included in this table the increase in product has been 156 per cent, while in the average selling price the value in 1888 was the lowest in the time specified. The related position of coke to our iron and steel industries places the manufactured cinde among the most important contributions to our indus
trial prosperity, and it must of necessity coextend with all our metallurgical enterprises.-Age of steel.

Diving Apparatus Improvement.

Some practical improvements in diving apparatus have been effected by M. Albert Marcelhacy, a French engineer. Instead of the heavy electric hand lamp hitherto used by divers, he affixes a light but powerfu low lamp on the top of the helmet, so that the diver's hands are both at all times free for work. The lamp is connected by a conductor with a battery either on shore or in a vessel above, as the case may be. The next point is a new method of connecting the helmet with the dress, without any loose parts, and this is effected by means of only one water-tight joint instead of two as in the ordinary dress. In the new method the upper part or collar of the India rubber dress i gripped in between the lower rim of the helmet and the upper rim of the breastplate, and there held fast by gripping pieces attached to the breastplate. Thes improvements have been adopted in the French navy.

THE ELECTRIC UNDERGROUND RAILWAY, LONDON. Among the new works lately inaugurated in London is an underground electric railway known as the City and South London Railway, 34 miles in length. It was opened on November 4, 189", by the Prince of Wales, and the public interest in it has been excited by reason of the novelty of the location, the method of working and the method of construction. The roadbed consists of two tracks 4 feet $81 / 2$ inches in width, which are laid in two underground tunnels, each $101 / 2$ feet diameter. These at present extend frow King William Street, near the Monument, thence under the Thames River to the south side of the river, thence along and under High Street, Newington Causeway, Kennington Park Road and Clapham Road. There are four stations. One of the peculiarities of the work is its great depth underground, the rails being, with few exceptions, not less than 40 feet below the streets, while in some places they are 100 feet underground. At the stations the two tunnels are brought into an enlarged chamber built underground, and from these passengers are raised by elevators to the street level. Thecars are propelled by electric locomotives, of which fourteen have been supplied
When the promoters were before Parliament for the purpose of obtaining authority to build the tunnels, they met with much opposition frou property owner along the line, and a searching inquiry was made into the particulars of the mode of building and the intended working of the line. The company produced witnesses to prove that the tunnels were to be constructed by means of hydraulic shields similar to that used in America in making the short section of Broadway tunnel. The cars were to be worked by cables, same as in America at San Francisco, Chicago, and New York. The cars were to have end platforms and protecting
return conductors. The dynamos are of the EdisonHopkinson type, and to drive them three Fowler engines, each of 375 horse power, are provided. The operation of the cars, elevators, etc., is reported as being very satisfactory; but the reverberating noise of the train when running through the tunnel is spoken of as rather disagreeable. We give from the Illustrated London News, The Engineer, Engineering, and the Daily Graphic, several illustrations, embracing a map of the route, river diagram, the appearance of the tunaels, the stations, the electric locomotives, etc.

The Hudson River Tunnel

To the Editor of the Scientific American:
My attention was drawn to your issue of November 1, in which you explain the operations now proceeding under the Hudson River by the Hudson River Tunnel Company.
The information which you have received is both partial and misleading. Mr. J. H. Greathead is the inventor and patentee of the system of tunneling adopted by the Hudson River Tunnel Company, and the peculiar machinery now used by that company was devised by him, and the work of construction carried on under his supervision. On behalf of Mr. Greathead, I have made a contract with the Hudson River Tunnel Company, under which they are permitted to use the patent device of this great engineer, and he, together with Sir John Fowler and Sir Benjamin Baker, made the drawings under which the Hudson River tunnel is now being constructed. I desire you to make the necessary correction of your report, because great injustice is done to Mr. Greathead in his position as engineer and to the value of his patents in the United States by your statement, which, if promptly corrected,
using a variety of indispensable patents, for about every tool and appliance that can be thought of nowadays is patented.
Mr. J. H. Greathead was the engineer of the two $101 / 2$ ft. tunnels lately completed in London, of which we give description in these pages. His experience in tunnel building has been extensive. In this line he is the author of several effective and ingenious devices, which are patented. The Hudson River Tunnel Company is to be congratulated on having the benetit of the ideas, devices, and assistance of an engineer so able and competent. It is an added assurance that this great and difficult work is to be prosecuted with the highest skill.
In our recent article we credited the first use of compressed air in horizontal tunnels to Mr. Haskin, and the first construction of the hydraulic shield to Mr . Beach. Compressed air had been used in sinking caissons long prior to Mr. Haskin's time. Still, we believe he is justly entitled to the credit of the idea of using it as a support of the earth in tunnel headings, and but for him probably there would, to-day, be no Hudson River tunnel. Sundry proposals for tunneling shields, and hydraulics with them, date back nearly to the beginning of this century. But we think it will be found the first hydraulic shield actually built and put into use, and carrying a connected series of hydraulic rams for propelling and at same time directing the shield, was that of Mr. Beach, with which in 1869 he built the section of railway tunnel under Broadway, New York. This tunnel was 9 ft .4 in . in diameter. The London tunnels recently completed by Mr. Greathead were built with shields of the above description. They are 10 and $101 / 2$ feet interior diameter.

The gigantic shields used by the Grand Trunk Railway under the St. Clair River were of the above char

ELECTRIC LOCOMOTIVE-LONDON ELECTRIC UNDERGROUND RAILWAY.
gates, and Westinghouse brakes, same as in America. The passengers are to pay on entrance and be raised and lowered from the underground tunnels by means of elevators, same as in America, and so on. Many curious questions calling for explanations of these novelties were put to the witnesses by the parliamentary examiners, for most of the features were new to them. But the fact of successful operation in America carried the day, and the necessary authority to build was granted During the construction of the tunnels a few difficult places were encountered where the water came into the headings; but these troubles were readily overcome by using another American device-Haskins' system of compressed air. This was supplemented by an ingenious device of Mr . Greathead, the engineer, which consisted in playing a spray of grouting upon the exposed portion of the porous heading of soil. The compressed air acted to force the grouting into the soil, and thus stop the outward leakage of air and prevent entrance of water.
The rapid improvements in electric economies enabled the projectors to substitute electricity as a motive power in place of the cables as first planned. The cars, lighted by electricity, are 29 ft . in length over the platforms. The trains consist of an electric locomotive and three cars, accommodating in all 100 passengers to the train, which weighs all told 30 to 40 tons. The locomotives are able to make 25 miles an hour, but the time for the trin of $31 / /$ miles, making four stops, is at the rate of 15 miles an hour.

The underground stations are from 20 to 28 feet in diameter. From them stairs lead to waiting rooms at the street level; also elevators. There are two elevators for each station. which will carry up a train load, namely, 100 people, in 30 seconds.
The electric locomotives weigh 10 tons each. On each axle is the armature, which forms the spindle of the motor. The axles are independent. There is no gearing of any kind. Each locomotive is of 100 horse power. The current is picked up from a center rail, carried on glass insulators. The track rails serve as

I assume to have been inadvertently made, and therefore, if so corrected, although the damage cannot wholly be repaired, it will relieve you from any responsibility in regard to the matter.
I am Mr. Greathead's agent and attorney in the United States, interested in his inventions, and the tunnel, as now being carried on under the Hudson River is practically in imitation of the great South wark tunnel and subway which Mr. Greathead constructed. If you will take your file of the English Engineering, and turn to page 306 of the issue of March 7 , 1890, you will find a statement of the completion of that line of subway in London. 1 have boxes full of evidence, patents, and other documents in support of these facts, and the tunnel company itself, whose work you illustrate in your paper of November 1, admits by contract and payments of royalty therein provided for that the invention which makes their work practicable is that of Mr. Greathead. The St. Clair tunnel was built upon the drawings made by Mr. Greathead, which were improperly appropriated by the Grand Trunk Railway Company, and I am under instructions to proceed against that company for the unauthorized appropriation of Mr. Greathead's ideas and infringement of his patents.

Respectfully,

New York, November 12, 1890.
Simon Sterne.
[We stated in our paper of Nov. 1 that the Hudson River tunnel was being constructed by means of the hydraulic shield and the use of compressed air in the heading. The impression conveyed by our correspondent's letter is that both of these important inventions originated with his client, and that he now holds the patents upon them. In this our correspondent is mis taken. Mr. Greathead, we think, has never claimed to be either the originator or the patentee of them, those boxes of evidence and other documents to the contrary notwithstanding.
With the inner secrets of the tunnel company w do not pretend to be acquainted. No doubt they are
acter; so is the great shield now at work in the Hud son River tunnel.-Ed. S. A.]

Has Pure Water any Color?

Dr. McPherson, writing to a local scientific journal (Pacific Record), states that it has now been undenia bly proved that distilled water has a blue color. A Scotch gentleman of much perseverance has carried out a series of experiments, and proved this fact, which he says is easily demonstrated as follows: Let down into water a metal tube (open at the top and closed with a clear glass plate at the bottom) close to a white object 20 feet below the surface. This object when looked at through the tube has a most beautiful blue looked at through the tube has a most beautiful blue
color. The object would have appeared to be yellow if its color was due to light reflected by extremely small particles of matter suspended in the water.

The Secret of Cheap Building.
A man who is resolved to be independent of landlords can build a very comfortable house for from $\$ 2,000$ to $\$ 2,500$. He can have sufficient room, and a house with a decent exterior and a plain interior. He ought, first and foremost, provide a bathroom, even if he cannot buy a slate mantel. It will be wisest in the long run to have a bathroom. Ask any woman who has had the care of two or three children how much a bathroom saves them. The larger the family, the great er the saving in work and worry-which is more wear ing than work. If a man has only $\$ 2,000$ and a large family, he must sacrifice something, or deny himsel something, when he builds. If he is wise, he will con trive closets and cupboards, a style of house that ren ders running up and down stairs unnecessary (there is nothing so tiresome as going up and down stairs), make his dining room large enough for a living room, and see that the arrangement of the kitchen is labor-saving Slate roof, slate mantels, bay windows, and pretty trimmings can all be dispensed with. There are people who do not seem to have any clear idea of the things

1. Interior of a passenger car. 2. Device for taking the electric current from conductor. 3. Interior of THE LONDON ELECTRIC UNDERGROUND RAILWAY.
that are appropriate in a cheap house. We recall an instance where a gentleman, after looking at a design for a cheap house, expressed surprise at the cost, which was very low, and in the same breath he inquired if it was roofed with slate. A cheap house is not roofed with slate, it is needless to add. His next query had reference to the plumbing. If his ideas were realized, the plumber would charge at least $\$ 300$. Evidently the gentleman

THE LONDON ELECTRIC UNDERGROUND RAILWAY--POSITION OF TUNNELS UNDER THE THAMES RIVER
thought that the plumbing would cost about a third of that sum, or less. To sum it all up, have substantial fixtures rather than pretty trimming. Good ventilation, ample room, plenty of light and warmth may be obtained, if a man desires to insure it in building for his own use, at a very moderate outlay. But then he must, as the Manufacturer and Builder says, build to please himself, instead of vying with his neighbors.

MAP OF THE LONDON ELECTRIC UNDERGROUND RAILWAY

THE LONDON ELECTRIC UNDERGROUND RAILWAY-STATION IN THE BOROUGH.

STATION IN THE LONDON ELECTRIC UNDERGROUND RAILWAY-THE ELECTRIC LOCOMOTIVE AND PASSENGER CARS,

Sewer Gas Poisoning.

Sewer gas is a technical term suggested by one of its sources only. It is a compound product of the putrefaction of excrementitious or other organic matter ema nating from a variety of sources, but chiefly from the neglected and unsealed wastepipes in houses connected with sewers or cesspools.
The prevalence of affections more or less due to sewer gas poisoning, at this season of the year, particularly among persons who have recently returned to their homes, which have been unused for some weeks or months during the summer, should serve to make people generally better acquainted with its nature and the indications of its presence.
Sewer gas consists of common air, carbonic acid gas, sulphureted hydrogen, ammonium sulphide, and sometimes free ammonia, and it frequently bears disease germs from filthy wastepipes and sewers, which are the favorite breeding places of such germs. Yet it is co
Sewer gas ordinarily finds the easiest access to dwelling houses when the occupants are absent, or by the "spare" rooms-those which are, perhaps, the most efficiently and elegantly equipped with plumbing fixtures, but rarely used-because at such times and in such rooms, the water in the traps of the waste pipes evaporates and opens the way for the emanations from the putrefying filth in the wastepipes and the cesspool or sewer, with which the pipes communicate, to enter the apartment.
The indications of the presence of sewer gasare commonly first made known by its effects on the comfort or health of persons exposed to it. Hence these effects may be justly regarded as the symptoms of poisoning by it, though unfortunately, by ignorance or negligence, they are not often taken advantage of as suggestive indications of their cause.
The symptoms of sewer gas poisoning, or the effects of sewer gas as commonly recognized by those who limit the scope of their inquiries to the sick chamberthe diseases more or less due to it--greatly vary in both variety and severity, proportional with the intensity of the exposure or the power of constitutional resist ance on the part of the exposed, and hence, unfortunately, the relation of the effects to the cause are much less frequently recognized, even by physicians, than they should be. Named in the order of their relative frequency, approximately, they are about as follows : General lassitude, unrefreshing sleep, uncomfortable heary-headedness, morning headache, sticky saliva, bad taste in the mouth, poor appetite for breakfast, nausea on first rising, feebleness, pasty-furred tongue, " malaria," relaxed throat, elongated uvula, ulcerated tonsils, laryngitis, sticky and inflamed eyes, feverish ness, disturbed sleep," nervousness," dyspepsia, irregular action of the bowels and kidneys, diarrhœa, typhoid fever, diphtheria, erysipelas, puerperal fever, pyæmia, septicæmia and death-the post-mortem sign-and this, if attributed to one of the infectious symptoms named (in communities where deaths from infectious diseases are required to be reported), is the only symptom recognized as being of sufficient importance to base in quiry upon. But death much more frequently occurs as the result of the non-infectious diseases due to sewer gas poisoning than of the infectious, though the rela tions of the former to sewer gas are rarely or never in quired into, either by the physician in attendance o the health authorities.
In cases of death, exclusively reported from infectious diseases, through the medium of sewer gas, the post-mortem examination (of the premises) is commonly conducted by the sanitary inspector of the board of health, whose services in this direction are never otherwise called for, and the signs or symptoms in the premises revealed by his examination are appar ently the only ones which medical practitioners gener ally accept and boards of health appreciate. The symptoms in these cases are about as follows: Corpse, undertaker's paraphernalia, faint or qualmish odor on first entering the premises, chokage or absence of traps under the wash basins, water closets, sinks, washtubs, and main house drain pipe, and absence of ventilation appliances, malodorous cellar, cellar water closet damp places in the walls, floors, or pavements, along or near the course of the waste pipes, subsidence of floors, rat holes in or about the basement floor.

When the boards of health acquire such knowledge of, interest, and pride in their service as to reverse the order of their work, by such an application of the duties of sanitary inspectors as will gain knowledge of and deal with the preventable causes of disease in anticipation of the issue, if allowed to proceed, instead of continuously waiting for and dealing with the fatal results, and medical practitioners have learned that the highest and most sacred cbligation of their office, as well as the most successful exercise of it, consists in gaining knowledge of and eliminating the causes in conflict with health, the symptoms of sewer gas poisoning and the material causes which give rise to it will rapidly wane and ultimately cease to exist.
*A. N. Bell, M.D., in the Sanitarian for October, 1890.

Mr. John B. Drake, proprietor of the Grand Pacific Hotel and one of Chicago's most prominent millionaire citizens, is about to have erected and present to that city an elegant drinking fountain to cost $\$ 15,000$.
It is to be of polished granite 30 feet high surmounted by a bronze figure of Columbus of more than life size. A vault for the storage of ice is to be built underneath the fountain, through which the water will be conducted.
Mr. Drake is not actuated solely by a desire to present the city with an ornamental fountain, but he believes it will be of humane service during the crowded state of the world's fair in providing free ice water to the multitude, and thus the cause of temperance may be promoted.

AN IMPROVED FLUE CLEANER.

The device shown in the illustration has a series of radially arranged spring-pressed cutters, forming an effective flue cleaner, which is readily applied and not liable to get out of order. It has been patented by Mr. Wm. H. Watson, P. M. S. S. Co., Isla de Naos, Panama Bay, U. S. Colombia. The casing is made in two parts, each having a hub, and both mounted on a stem forming the outer end of a handle by which the tool is manipulated, the casing being held in place on the stem by a nut on its outer end. Each section of the casing has a cylindrical disk on its largest end, where the two sections meet, and in these disks are formed radial slots in which slide cutters, each having a V-shaped segmental cutting edge. As shown in the sectional view, each of the cutters has a radially extending slot, through which passes a pin on the face of the disk to hold the cutter in place, while allowing for sufficient inward and outward movement. The inner edge of each cutter is also segmental, and rests on a spring held in a circular recess formed in the two disks, the radial slots of the disks leading into this recess. A loose collar is held on the stem in this recess inside of the circular spring, to limit the inward movement of the spring when it is compressed In introducing the tool, the cutters are pressed slightly inward on one side or the other until the implement is completely inserted

WATSON'S FLUE CLEANER.
when, by shoving the casing forward and backward, the cutters remove the scale and other deposits adher ing to the inside of the tube or flue.

Reckoning Time

A correspondent of the Evening Telegram tells its readers how time is reckoned at the observatory in Washington, as follows :
The observatory does not reckon its time by the sun but by the so-called "fixed" stars, which are so far off that their position with relation to the earth does not change appreciably within a few months or years Star time is the only true time, therefore. The opera tor looks through a big telescope and watches for a given star that he knows to cross the plane of the meridian. As it crosses he records what moment it does so, as shown by a star time clock with a twenty-four hour dial. Then he consults a printed table that shows him at just what number of hours, minutes and second the star in question must actually have crossed the meridian plane.
The table is right, and by as much as the star time clock differs from it, the latter is wrong. No attemp is made to set the star clock right, allowance being simply made in subsequent calculations for the error thus discovered, which amounts only to a fraction of a second in some days. Next the corrected time, as taken from the star clock, is reduced to sun time, which re quires some figuring, inasmuch as the star year is on day longer than the sun year. A sun time or "stand rd" time clock stands close by, and the amount tha his varies from the truth having been ascertained, a owance is made for the error in sending the noo stroke all over the country.

REGULATING CHRONOMETERS.
At the observatory all the chronometers made for the navy are tested and regulated before they are sent out
on vessels, each one of which is supplied with three
first class chronometers, as well as one that is half used up, called a "hack," for carrying about and for rough service generally. It takes twenty-one weeks of testing to properly regulate and prove a chronometer, and part of the trial consists in subjecting the instrument to the action of cold in an ice box and to heat communicated through steam pipes. Each chronometer, when given out, is accompanied by a chart telling just how it will vary under certain temperatures. A curious exhibit now shown at the observatory includes eight chronometers that went down in the great gale that swamped a fair part of Uncle Sam's navy at Samoa. Their glasses are broken and their works so far used up that they are no good any longer.

Rules for Distributing Oil, as Recommended by the U. S. Hydrographic office

1. Scudding before a gale, distribute oil from the bow by means of oil bags or waste pipes. It will thus spread aft and give protection both frow following and quartering seas. If only distributed astern, there will be no protection from the quartering sea.
2. Running before a gale, yawing badly and threatening to broach-to, oil should be distributed from the bow and from both sides, abaft the beam. Where it is only distributed at the bow, the weather quarter is left unprotected when the ship yaws. With oil abaft the beam, as well as forward, the quarter is protected. 3. Lying-to, a vessel can be brought closer to the wind by using one or two oil bags forward, to wind ward. With a high beam sea, use oil bags along the weather side, at intervals of 40 to 50 feet.
3. In a heavy cross-sea oil hags should be hung out t regular intervals along both sides.
4. Steaming into a heavy head sea, use oil through forward closet pipes. Oil bags would be tossed back on deck.
5. Drifting in the trough of a heavy sea, oil from waste pipes forward and bags on weather side. These answer the purpose very much better than one bag a weather bow and one at lee quarter.
6. Lying-to to tack or wear, use oil from weather bow.
7. Cracking on, with high wind abeam and heavy , use oil from waste pipes, weather bow
8. Towing another vessel in a heavy sea, oil is of the greatest service, and may prevent the hawser from breaking. Distribute oil from the towing vessel, for ward and from both sides. If only used aft, the tow alone gets the beneft.
9. At anchor in an open roadstead, use oil in bags from jib boom, or haul them outahead of the vessel by means of an endless rope rove through a tail block secured to the anchor chain.
10. A vessel hove-to for a pilot should distribute oil from the weather side and lee quarter. The pilot boat runs up to windward and lowers a boat which pulls down to leeward and around the vessel's stern. The pilot boat runs down to leeward, get out oil bags to windward and on her lee quarter, and the boat pull back around her stern, protected by the oil. The ves sels drift to leeward and leave an oil-slick to wind ward.

Armor-Piercing Projectiles.
Bids have been received by the Ordnance Bureau of the War Department at Washington for supplying armor-piercing projectiles for the new steel guns now being constructed for sea coast defense, as follows : Carpenter Steel Company, of Reading, Pa., 8 inch shot, $\$ 150$ each ; 10 inch shot, $\$ 285$ each. Midvale Steel Company, of Pennsylvania, 8 inch, $\$ 150^{\prime}$; 10 inch, $\$ 287$. Sterling Steel Company, of Pittsburg, 8 inch, $\$ 300$; 10 inch, $\$ 575$. For the purpose of securing a supply of armor-piercing projectiles, Congress appropriated $\$ 100,000$ to decide the question whether or not American teel makers can produce shot and shell equal to those made in Europe. The projectiles used in the Annapolis armor tests with such success were of European manu facture, and it is the desire of the ordnance officers to stimulate steel makers to produce an equally powerful projectile in this country. Two of the bids received are said to be reasonable in amount, the average price being about 50 cents a pound. Just how the projec tiles are to be made is not specified in the bids. The Carpenter Steel Company has, it is believed, secured he right to make them under the Firminy secret pro cess, used in England, but it retuses to permit the pro cess of manufacture to be observed. The Midvale Company has been in correspondence with four lead ing firms of European shell makers, and, while it is willing to permit the manufacture to be witnessed by an inspector, the process is to be kept secret. The Sterling Company has been working up its own process, and purposes to use the best crucible steel made from Dannemora iron. The requirements of the Ordnance Bureau are based upon European tests, and are severe. The 10 inch shot, which will weigh 570 pounds, will be fired at a velocity of 1,635 feet a second, and must pierce a steel plate 11.2 inches thick, and emerge without crack or material deformity. The 8 inch shot, fired under the same conditions, must pierce a plate of 9 inches thick.

A COUNTERBALANCED DRAW BRIDGE

There is a new railroad bridge over the Morris Canal between the towns of Jersey City and Lafayette, N. J., which from its simple construction and easy manipulation is worthy of notice. The draw of the bridge, which is about 25 ft . long, is manipulated by hand power. The entire length of the bridge is 55 ft . The principle of operation is clearly shown in the accompanying illustration. The weight of the draw being about three tons, two counterbalanced weights are employed weighing three thousand pounds each, made of cast iron in the shape of a cylinder, about 3 ft . in diameter, and mounted in such a way as to be rotatable on their axes. These weights are designed to run in tracks which are laid in an ellipse on an inclined framework extending from near the top of the central framework to the level of the roadway of the bridge. Wire cables connect the counterbalance weights with the free end of the draw, the cable passing once around the pulleys at the top of the framework. The pulleys are mounted upon a three inch shaft which extends along the top of the central cross beam, and which is provided at its right hand extremity with a pinion $21 / 2 \mathrm{ft}$. in diameter. This engages with a small pinion that is mounted ou the shaft that is rotated by the endless chain from below. The draw is almost balanced by the weight of the rollers, but the system of pulleys employed renders
"To tell a broken bone," he said, "examine care fully the part supposed to be injured and compare it with the same part on the other leg or arm, as the case may be. There will be an indentation or a swelling to indicate a fracture. Now, what should be done in case of a fracture? Restore the limb to its proper shape and then let nature takes its course. The doctor sets the bone, nature does the rest."
Dr. Newcomb here illustrated how a bone is set in an emergency case. He showed how splints could be made from common pieces of wood picked up on the street. Then he called to the platform a boy, and showed how the injury should be bandaged
"Never put a splint next to the skin," remarked the lecturer. "Always put something between-cotton, a piece of rag, anything soft will do. Give the injured organ rest, don't irritate and excite the person injured.
"In the case of a broken rib, wind the banaage all the way around the body. If the shoulder bone or any other joint is dislocated, bear down and press upon the separated parts to put them together again.
" For a sprain get some hot water, as hot as you can bear it, and keep the foot or hand in it for an hour or an hour and a half. If it is a part you can't put in hot water, put hot cloths on. After having applied these preliminary remedies, wait till the physiplied these
cian comes.
downward. The next thing to be done is to create artificial breathing by moving up and down the arms fifteen or twenty times a minute, which should be kept up as long as there is the faintest sign of life. Besides this, the limbs should be rubbed, and this treatment kept up for at least an hour.
In all cases of poisoning the best thing would be to administer an emetic. Mustard is commonly used for this purpose, and if an emetic be not handy, a finger should be forced down the patient's throat to produce vomiting.
Strong poisons were likely to irritate the stomach, and for this common mucilage is good, and to get the stomach in good condition again, aromatic spirits of ammonia should be administered.

Ashtabula Harbor.

Owing to the growing importance of the port of Ashtabula, Ohio, an effort will be made to have Congress vote a sufficient sum of money to enlarge the entrance and construct a breakwater there. The ore receipts at Ashtabula are in excess of all other Lake Erie ports, and the volume of trade is largely increasing, so much so that a prominent vessel owner in Cleveland states that he would not be surprised to find that Ashtabula would increase her tonnage list next year by fully 20 per cent over the phenomenal total of the present sea-

A COUNTERBALANCED DRAW BRIDGE

it possible for one man to raise an enormous weight at the end of the draw without any inconvenience. The bridge was built for a single track railway bridge, and although it has been in service only a short time, it has proved very efficient.

Free Lectures in Public Schools.
A bill was passed by the New York legislature in 1888, providing for free lectures in the public schools of this city. On the evening of November 17 a course of lectures was commenced in six different grammar schools, and from the World and other daily papers we learn they were all well attended. Professor C. A. Doremus lectured on "Fire and Water," illustrating his subject with interesting chemical experiments. Mr. James Bowie lectured on "Paris and the Great Exposition." Doctor Charles S. Wells took his audience "A Tour on the Nile," with stereopticon views. Professor Henry A. Mott discussed "Light and Color," made clear by experiments. Mr. William Bradford gave "Glimpses of the Arctic Regions," giving a graphic description of life in the far North.
But perhaps the most useful and interesting lecture was that of Doctor James E. Newcomb, on "Everyday Accidents and how to Treat Them." It was replete with hints as to "what to do till the doctor comes," made clear by interesting illustrations.
"There are two rules which should be followed in case of an accident," said the doctor. "First, common sense should be used; second, the person should be made as comfortable as possible."
After describing the human body, Dr. Newcomb spoke of the every-day accidents met with.

In regard to wounds. If it is a clean-cut wound, seethat it is kept clean by repeated applications of water. That is the main thing. Cleanliness is an essential pa
the cure.
" All wounds made by bites, like dog bites, are likely to be sore and painful. It is always a good plan to cauterize a dog bite.
"Always use water for a burn. Before you attewpt to remove the clothes from a person burned, drench him or her with water. Next, take care to keep the wound from the air. Sweet oil is one of the best temporary dressings to give relief, and keeps the air out. Baking soda is the best for burns from scalding water.
" Another very common and serious accident is loss of blood by hemorrhage. If a scalp wound, take a small piece of cloth, wash away whatever little clots of blood thereare, then put the cloth over the wound andjkeep it, there for twenty-four hours. A hemorrhage of the arm may be stopped by pressing together the tubes or arteries through which the blood escapes. The openings may also be plugged up and then bandaged until the doctor arrives.
"For hemorrhage of the lungs ice is a good remedy and in case of hemorrhage of the nose, cold water may be dashed on the neck."
In regard to the restoration of apparently drowned people, Dr. Newcomb advised that, unless in particularly inclement weather, no time shonld be wasted in removing the patient to a place of shelter.
First, every garment should be loosened, so that nothing could impede the free flow of blood. Second, the patient should be laid on his back and then face
son. There can be no doubt, however, that the port of Ashtabula is becoming the greatest ore center on Lake Erie, and facilities for establishing the port should be awarded with a liberal hand by the government. It matters not under what administration, or political bias, the House may be ruled protem:, nor by whow individually the necessary legislation tending to foster and encourage commerce is introduced before the legislators of our land-suffice it to say that where important and valuable commerce is desirous of centering, the federal authorities should liberally assist and encourage it by the aids and facilities which lie in their power to grant.
That Ashtabula can already lay claim to being a prominent lake port may easily be rerified by the arrivals and clearances of United States tonnage during the present season, and for distinctively domestic tonnage the past four months arrivals at that port com pare favorably with any port on the New England or Pacific coasts. Such being the case, it would be difficult to conceive why such a port should not receive a full and complete consideration at the hands of our representatives during the next session of Congress Vessel owners, mine owners, railroad companies, and all corporations interested in the welfare of the lake marine, and the speedy transportation of the country's products, are in unison of interest regarding the future development of Ashtabula as an ore-receiving port, and there can be no doubt but that it is destined to become an important lake terminal. We therefore strongly indorse any legislative measures tending to the advancement of Ashtabula as a shipping port, and also as a harbor of refuge.-Marine Record.

RECENTLY PATENTED INVENTIONS. Electrical.
Clock. - Frank Schwartz, Halifax, Canada. This invention provides a mechanism for
utilizing electric force to accurately regulate the impulse of a pendulum near the terminals of its vibratory arc, forming a compact and trustworthy time marker to operate continuously without other attention tha the renewal of fluids in battery ceils
Meter.-Etienne Mares, Paris, France Actuated by an electro-magneric device is a balancin lever mounted to oscillate, there being a carriage on th lever, with mechanism for reciprocating the carriage
and a separate and independent registering device the path of the carrigge, the meter being especiall adapted for measuring electricity and other fluids an suhstances.

Railway Appliances.

Car Coupling.-Edgar Canniff, New whereby the link may be held in horizontal position, o canted up or down as occasion may demand, and whereby also the coupling or uncoupling may be effect ed from the side or top of the
in the sight of the engineer.

Treating Ores

Roasting. - Edwin M. Clark, Butte City, Montana. This invention relates to an apparatus and consists chiefly in the manner in which the wate jacket is applied to the air pipe in the furnace, anc the means for supporting
it with the water pipe
Oxidizing and Desulphurizing ORes.-The same inventor has ob tent on an improved construction of this apparatus,
designed to accomplish the result in a short time and at little expense, in which a water jacket, inclosing an air pipe, extends through a revoluble furnace, wit
projecting from the air pipe through the jacket.

Agricultural.

Harrow and Cultivator.-Fred G Umbach, Athens, Ga. This invention provides a simple and durable construction of harrow to which,
when desired, a cultivator tooth may be attached, whereby the implement, as drawn forward, will perform the dual functions of a harrow and a cultivator, the cultivator tooth and the harrow teeth being readil

Mechanical.

Friction Wrench.—James N. Farlow nder, Wyoming. This wrench has a circular head plate having adjustable jaws mounted theren, and handle composed of two members hinged together a one end and adapted to be clasped upon the head plate, forming a wrench which may be readily applied to any ordinary wrench cannot be applied.
Power Transmitter. - Thomas C Hutchinson and Trevanion W. Hugo, Duluth, Minn out a rope or chain attached to some device or operating some subsidiary mechanism located at a distance, the rope being wound on drums whose rotation is reversed
at regular intervals by automatic mechanism, the power at regular intervals by automatic mechanism, the powe being derive
direction.
Slate Jig. - James N. Boone and Samuel D. Taylor, Hazleton, Pa. This invention provides a suitably constructed frame, in which a screen is held to swing by means of links, and provided with a
pocket for the reception of the slate, the pocket also forming a passage for the coal, to separate slate from coal and clean the latter without the aid of water.
Roller Mill. - Louie E. Kruger, Canton, South Dakota. Combined with the frame an
the rolls are inclined vertically reciprocating upper and lower screens, with other novel features, forming a mil designed for the continuous treatment of stock in suc manner that after the first reduction all particles sufficiently fine will be sifted out, being joined afterward b other products fined by other sets of rolls, the bran,
lour, and niddlings being delivered in separat flour, and middlings being delivered in separate
streams.
Bands for Spinning Machines. Henry G. Hall, Shel by, N. C. This invention relates to
the manufacturing of bands for spinning and twisting machines and a machine therefor, in which the band is stretched after it has been shortened by twisting, and extra twist put in, afterward subjecting it to tensionf the twist to become set.

Miscellaneous.
Invalid Bed Apparatus.-Frank M Collins, Walden, N. Y. This is an apparatus designe ofacilitate taking care of the sick or injured, the in combinations of parts to promote the easy and conve rient lifting of patients, the changıng of their position, the service of meals, etc., and for sustaining a fracture or diseased limb comf

Window Blind - John P. Clark, Jr., Jackson, Mich. This is a vertically slatted blind in rooved on each side ond hinged together, the groov of one side being opposite ribs on the other side while a vertical rectangular bar is hinged to the windo rame stiles and also to the corrugated strips flatwise, blind for a window.
Pump Attachment. - Jonathan A.
ith a waste outlet, the valve of which extends in the iding improved means for the speedy emptying of the pump barrel of a hand or power actuated pump, to void injury to the pump from freezing.
Shears. - Richard S. Pearsall, Sea liff, N. Y. The thumb clip of these shears is hinged its center to the rear extremity of the shank of the ower blade, to tilt back toward the finger eye or loo the other shank, the thumb clip being adapted to he shank of the lower blade is curved upward to arnish room and a better grip for the front finger
Basket. - Merrill H. Tilghman, Nor folk, Va. This is an improved truck basket or packag having braces arranged in pairs, the braces of each o cross each other at their middles, rendering th

Peach Stoner. - John C. Bryan Peach STONER. - John C. Bryan ationary base plate above which a circular knife is a driving the stone through the knife up into a passag way or throat, the device in a single operation remov ing the stone and slicing the peach into two or mo

Globe and Lamp Shade. - Otto F Gegener, Seattle, Washington. This invention relate shades of a segmental character, which do not ex circular way around the lamp, but swing radially in circular path, being adjustable vertically to an ion and arrangement of parts.
Self-Closing Gas Burner.-William . Sherman, San Francisco, Cal. This inventio overs a special form of thermostatic spring to be a
plied to the burner to hold the cock open when it hot, or when the gas is burning, but liberating the cock o as to make it_self-closing when cool, to prevent ac cident and loss of life from the escape os gas when the burner is not lighted.
Ventilating Flue.-Carey F. Hall, Dunkinsville, Ohio. This invention relates particularly
o a ventilating collar or register surrounding a metallic ue where it passes through a floor, roof, or attic pa tition, and provides a means for ventilating one or
more rooms, and also to render a flue as nearly fireore rooms, and
Stirrup Leather Suspender. Gustave Biebuyck, Brussels, Belgium. This is an im-
proved safety saddle bar or suspender for stirrup eathers, of simple construction and easy of application, cause the stirrup leather to be released automati-
ally in case of accident, and to render it impossible or the rider when thrown to be dragged by the animal, rom the foot becoming entangled in the stirruy
Album and Album Support. Bernard Branner, New York City. This album consists of duplicate books which meet at their backs and of the leaves of each'section by an encircling band cured at the point of junction of the sections, whil the device is provided with a pivotal support upon a
stand or frame to facilitate inspection of the content of the album.
Coin Operated Machine. - Frederic . Cochran, Brooklyn, N. Y. This is designed to be a simple and inexpensive machire to deliver goods by casing, and producictuated from the outside of the paid for is delivered, the machine being operated by epositing a coin in the casing, and especially adapte
o sell confections, cigarettes, or ocher small wares.
Mortar Mixing Apparatus. - Ed ward D. Johnston, New York City. A rotatable sepaable cylinder for the mixture of the ingredients is losely mounted on a fixed shaft to which a coarse ieve is attached, a sclaper supported by the shaft being pon the sleeve, whereby mortar and sinilar compound ciently mixed
Brewing Beer. - Michael Byrne, New York City. This invention relates to an improve wort may be obtained at a higher and whereby the emperature and protected against scorching or color tioni, and also provides against the wort cooling down ment being such that the wort may be drawn from th an without loss and in a convenient and expeditiou
Horse 1)etacher. - John H. Akers, Washington, 1]. C. This is a device in which a spring traces are connected by peculiarly constructed backles o arranged in connection with the shafts and the breeching that the trace sections and the shafts can be quickly detached by the driver to allow the animal

Cart Loader and Sweeper.-Joseph A. Schonley, Brooklyn, N. Y. This is an attachment or the rear of a cart by which a broom is held in contact with the ground, and, as the cart is drawn forwar the sweepings are forced up the inclined surface of
dust pan into the buckets of an elevator, by which the are dumped into the cart body, the broom and dust pan being elevated by levers when the cart is full.
Horseshoer's Implement.-Williau H. Woodman, Columbia, South Dakota. This is the nail point held normally open by a bowed spring nippers for cutting off the point, and a gouge for formhe a depression in the wall of the hoof for receiving the clinched point of the nail, whereby the farrier is nabled to expeditiously perform his work.
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of Invention, and date send name of
of this paper.

NEW BOOKS AND PUBLICATIONS.
air Brake Practice. By J. E. Phelan Press of the Locomotive Enginee
New York. Pp. vi, 105.

A very complete manual of the Westinghouse system train braking is here presented. In view of the most universal adoption of the Westinghouse brake manual of this sort appears very timely
Practical Sanitary and Economic Cooking Adapted to Persons of Moderate and Small Means. By
by the American Public Health As sociation. 1890. Pp. xi, 190.
500 was'awarded by the American Public Health ociationald As in competition with sixty-nine other essays. It is eally a scientifically arranged cook book, and with the ecommendation of excellence following upon the ap neval of the association that publishes it, it shoul
nemand. A number of bills of fare fo ifferent days, with the chemical analyses and cost o ame, and a table of cold dinners are given toward the end of the work. We commend it warmly to all house

The Old Meeting House and Vaca
TION Papers. By Rev. C. Z. Col
ton. New York: Worthington Co. 1890. Pp. 298. Price $\$ 1$

This elegantly printed work contains a series They, hered for They are arranged for publication by his brother. T go, ant subjecto are tive minent divine, their author. The old-time life in the Green Mountain State is brought vividly before the reader in some papers, while the author's early experiences in other New England States also appear. The ook has as frontispiece a portrait of the author, wile front view
its cover.
Any of the above books may be purchased throug this onice. Send for new book catalogue just pub
ished.
Address Munn \& Co., 361 Broadway, New York

SCIENTIFIC AMERICAN

BUILDING EDITION.

NOVEMBER NUMBER.-(No. 61.

TABLE OF CONTENTS

1. Plate in colors of a modern dwelling of pleasin design at West End, Chicago. J. De Howarth architect, Chicago. Floor
view, sheet of details, etc.
2. Elegant colored plate showing perspective view of $\$ 1,400$ cottage at Chicago. Two floor plat
sheet of details, etc. Architect J. M. Young.
3. Design for an entrance hall.

An attractive dwelling at Hollis, Long Island, erected at a cost of $\$ 6,000$ complete. Perspective
view and floor plans. Schwietzer \& Diemer architects, New York.
A neat-looking cottage at Humboldt Park, Chicayo Cost $\$ 3.200$. Ph
two floor plans.
6. A colonial house erected for Mr. C. A. Hutchings, It Montclair, N. J. Cost $\$ 5.000$ complete. Floo plans and perspective elevation
A Flemish cottage erected in Philla Park at Wayne Pa., at a cost of $\$ 5,800$ complete. Perspectiv A house erected at Elm Station, Pa., at a cost of 5,200 . Photographic perspective view and floo
9. Perspective elevation and floor plans of a hand Atwood, New York, architect. Cost $\$ 13,000$ complete.
0. Engraving showing a block of economical brick houses erected at Philadelphia, Pa. Cost $\$ 2,000$
each. J. M. Stiller, of Philadelphia, architect. Floor plans and perspective.

1. Perspective and floor plans of a Lake Side cottage at Minnetonka, Minn. Cost about $\$ 4,000$. W H. Dennis, architect, Minneapolis.
2. Miscellaneous contents: Some of the merits of the Architect and Builders Edition of the Scientific American.-The air supply.-The
Alhambra.-Decoration of entrance hall, illus-Alhambra.-Decoration of entrance hall, illus-
trated.-Questions on construction. The Henry Martin brick machine, illustrated. - Buckeye Portland cement. - A government contract for woodworking machinery.-Architects' and carpenters' transit, illustrated.-Improved dwelling houses, illuetrated. - Dumb waiter and hand power elevators.-Improved double blind wiring machine, illustrated.-An improved boiler for
power and haating, illustrated.-Resistance to ire of wood posts.-An improved door spring, il lustrated-An mproved hot air furnace, illus-trated.-The Taylor " old style " roofing tin. The Scientific American Architects and Builde Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practi cally, a large and splendid Magazine of archite rure, richly adorned with elegant plates in colors an with fine engravings, illustrating the most interesti allied subjects.
The Fullness, Richness, Cheapness, and Convenien of this work have won for it the Largest Circulatio of any Architectural publication in the world. Sold b
all newsdealers. M MNN \& CO.. Publibhers,
361 Broadway, New York

Dusiness and ゆersonal.

The charge for Insertion under thes head is One Dollar

 a line jor each insertion; about eight words to a line. as early as Thursday morning to appear in next issue.For Sale-New and second hand iron-working ma, W. Davis, Rochester, N.Y Wanted.-A company extensively engaged in the
manufacture of steam boilers for large power plants is desirous of securing the services of several experienced alesmen, possessing a practical knowledge of steam and ood business quafitications. Address, with references
and full particulars, Manufacturer, Box Acme engine, 1 to 5 H. P. See adv. next issue. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Flour emery a specialty. New process. No dust. All解 Boyle, Chicago, Ill. 155 machines in satisfactory use The Improved Hydraulic Jacks, Punches, and Tub Expanders. R. Dudge Power presses and dies. Also contractors for special
machinery. T. R. \& W. J. Baxendale, Rochester, N. Y. Screw machines, milling machines, and drill presses. Screw machines, milling machmes, and drill presse8, Tight and Slack Barrel Machinery a specialty. John Billings' Patent Adjustable Tap and Reamer Wrench es. Bronze Forgings. Billings \& Spencer Co Hartford Conn.
For Sale-Valuable invention: self-oiling car axle for mine cars. Patented A pril 1. 1890. A good thing for the For Sale-One half interest Europe and the old world. Address "Lewis," care
Scientific Americaii, New York. Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum ap
pumps, acid blowers, fllter press pumps, etc.
For the original Bogardus Universal Eccentric Mill, S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y The best book for electricians and beginners in elec tricity is "Experimental Science." by Geo. M. Hopkins.
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. \mathbf{Y}. Sheet Rubber Packing, 1-16, 3-32, 1/8, 3-16, and $1 / 4$ inch hick, $71 /$ cents per pound. All kinds of rubber goods aì
low prices. John W. Buckley, 156 South St.. New York. Blake's improved belt studs are the best fastening for Blake's improved belt studs are the best fastening for ture on every box. None other genuine. Greene, Tweed Magic Lanterns and Stereopticons of all prices. Views illustrating every subject for public exhibitions. tc. Also lanterns for home amusement small capi$t a l$. Also lanterns for home amusement. 20 sage cata-
logue free. McAllister, Optician; 49 Nassau St.. N. Y. Wanted-A competent foreman for a machine shop
emploging about 50 men; the foreman to work under the instruction of a general superintendent t salary under the rate; works located in a small and pleasant town near as to character, experience, and ability. The works are engaged in manufacturing heavy machinery. A permanent and desirable opening for a good man. Address ge and giving references.
Send for new and complete catalogue of Scientific and other Books for sale by Mun
New York. Free on application.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
ind or no attention will be paid thereto. This is for our
information, and not for publication.
References to former articles or answers should References to former articles or answers should
give date of paper and page or number of question.
In inties not answered in reasonable time should
ne reepent

$\begin{array}{l}\text { price. } \\ \text { vinerala sent for examination should be distinctly } \\ \text { marked or labeled. }\end{array}$

(2595) Amateur Photographer asks : 1. Pease give me a good toning formula and how many $\times 5$ prints will a given amount of the solution tone, 890, Scientific it take? A. See page 225, April 13, 1 sheet 18×22 inches. Usually takes ten minutes. 2. Will the common ammonia such as all druggists sell do to fume sensitized albumen paper? A. Yes. Get the
strongest you can. 3. Please give formula for a.silver senstongest you can. 3. Please give formula for asisiver sen-
sitizing bath. How much will be required to sensitize dozen 4×5 sheets of paper at a time? How long must the paper remain in the bath? A. See Aprili13, 1889, Scientific American; also August 2, 1884, in Photo. Notes. You buy albumenized paper in sheets 18×22 and sensitize it all at once, then cut up to 4×5 size. The paper is floated 3 minutes, on the silver bath. The bath will keep, if bottle is corked. Clear the bath by pating solution or pate for pher ang will hold tight and not curl up and leave the card around the edge. A. Most photographers use ordinary freshly made starch paste. The following is also re-

Nelson's No. 1 photographic gelatine
Water.
.18 gr.
Glycerine
16 oz.
1 ""
Dissolve the gelatine in warm water, then add the glycerine, and finally the spirit. 5 . How can I treat un-
mounted albumen prints so they will remain flat and
not curl up? A. Immerse the finished prints in follow
ing solution for a few minutes :

Alcohol

Alcohol.
ilycerine
(2596) R. T. C. asks for the cause of ex plosioni in kerosene lamps.and if the cause is attributa be to the generation of a combustible gas, what gas is it A. Aisdueto the generation of a gas which accumulate the right proportion of and which when mised wit when inflamed by the flame. It is probably an olefine or paraffine. True explosions are comparatively rare the basis of many so-called explosions.
(2597) Java asks : a. How is a very soft toned portrat to be made with the alkaline pyro and ammonia) developer? My portraits are wanting in soft ness. I tried to omit bromide entirely, and made m best plate that way, still as treatises never mention this way of doing, which at the best can only be done win anclyexposed plates, I suppose there must be an soda developer will give softness. Dissolve inWater
Sodium sulphite.
Sodium carbonat
and just before using add
Dry pyrogailic acid. 3 grs .
Should the density be too weak, put in twice the quan
6 oz.
2 drs. tity of pyro. The softness is regulated by the quantity of pyro. No bromide is necessary. The eikono
gen developer also gives soft negatives. Mix the eiko gen developer also gives soft negatives. Mix the elko
gen as follows:

develop, take 2 ounces of No. 1 add 1 ounce water and half an ounce of No. 2 , or if necessary No. 2. If the negative is too hard, use 1 ounce of No. 1, dilute it with 2 ounces of water and add half an of No. 2 .
b. My prints have a knack of getting yellow staine in the whites by the rolling process especially if mounted n black cards. What may be the reason of this? I use he best mounting pastes in the market. A. Perhap he hypo bath was old, or the washing water may be he prints in the hypo too or by impurities in the mounts. Try light-colored mounts. Add a little bicar bonate of soda or a drop or two of ammonialto the fixing bath.
c. Before rolling I rub my prints with soap. Is there at a better medium for getting a fine, glossy print ould you give me the recipe. A. The following Wilson's " Photographics:"

Paraffine
 8 drs
 Gum ammoniacnm.................... 30 grs.

ticking to the pestle while grinding the gnm in a mor ar. Add A and B together, and shake well and apply with a flannel or rag. The above gives a fine polish. . rounds, that will not crack? A. Mix common oil pai ith a strong, hot solution of soap. When applied surface and is said not to crack
(2598) H. W. asks : 1. In the liquefica tion of gases, or the reliquefication of a liquid tha rts the most influence in the liquefication? A. For each as there is a critical temperature above which no pre are will lquefy it, and a critical pressure below whic o reduction of temperature will liquefy it. 2. In answer ing question 4 of No. 1694, of December 28, 1889, yo ay the 8 light dynamo increased to twice the size woul evelop a bout 5 horse power used as a motor. Would cient ammonia (anhydrous) to freeze 5 tons of ice wenty four hours? A. For information on artificis ee making we refer you to our Supplenevt, Nos, 21, $254,288,335,358,550,551,578,605,722,726,749,757$. lease give different mixtures of chemicals for produc tion of low temperatures. Please give

Cools from 50° Fah. to -14° Fah
amer 2 parts may be ased. 1 part,
(2599) W. H. McC. asks: What acid can I use with marble dust to produce a gas that will aise a small balloon? A. No acid. Usezinc and dilute sulphuric acid, which produce hydrogen gas. Marble dust with acid pro
(2600) G. A. J. asks the value of $501 / 2$ decimally. Is it 505 or 5005 ? A. $50 \cdot 5$
(2601) F. F. asks how to make maine glue. A. Soften one part masticated India rubber in 12 parts berzine. add 20 parts shellac and heat careully until perfectly mixed. The benzine is expelled conflagration. Too great care cannot be exercised in conducting the operation.
(2602) J. G. T. asks: 1. I wish to know how to prepare snake skins to be kept flat, i e., not stuffed, and would be glad if you would mention the therewith. A. After cleaning the inside of the skin,
prinkle powdered alum on the surface, and after a day
work it off again. 2 . Would like to know in what countries spiders may be found the bite of which is dangerous to life. A. Such are to be looked for in the ropics especially. 3. Why does a banjo make a bet er impression upon a phonograph than a guitar, a though played no louder 9 A, It is donbtful if it does.
Possibly it has fewer overtones.
(2603) O. W. H. writes: I am a shoe fin isher by trade, and we have to keep up with times.
Have you any books, receipts, or formulas treating on the subject of making stains for finishing the bottom of shoes? A. The following purports to be a receip ounce each of borax and oxalic acid and dissolve them one quart of water. Be sure not to get more of the and than the borax, use sooner a little less. After
and with this solution, and when nearly dry apply white bottom balls in the usual way. . Thences brings put ne white bottom, though it is slightly tinged with ink. If a yellowish shade is required instead of the pinky" color, a small quantity of chromic yel low should be added to the borax and acid. It has this disadvantage, and all "finishes" have the same, viz., the bottom hangs in the damp when in stock, the ed color works through. We cannot recommend y
(2604) H. I. asks : 1. What kind of bat tery is best suited for electric lighting? A. Probably olls per 16 bendlan the Bunsen. 2. The number ells per 16 candle power lamp? A. You will requir
enough cells in series to secure the required E. M. F and enough in parallel to produce the necessary cur resistance of your lamp. See Scientific American, March 22,1890 , page 179, and March 29, 1890, page 105. 3. The cost of running it, per lamp, for 5 hours A. The cost would vary under different conditions, but in any case it would be more than that of gas. 4
And, also, a good book on the subject. A. "Experi nd, also, a good book on the subject. A. "Exper
(2605) A. H. L. asks for a preparation or paint to apply to shingles of a roof, to preserve the hingles, and a guard againt ire. In other words, I a singles with some kind of paint that will both pre erve them and be proof against catching fire from
sparks. A. Dissolve
Sulphate of zinc
.20 lbs.
Alum.
Caustic potash..
Manganic oxide.
and add
and add
Sulphuric
Pack the shingles loosely in another barrel and fill Fill up the first barrel also with shingles, soak for hours and pile to dry, and repeat until all the shingles are fireproofed. After the house is shingled paint with in boiled linseed oil, and mixed to suit your taste as to
(2606) I. X. L. writes : I am under 25 years, having common school education, and some business. I wish to gel melec self-taught. 1. What studies, in their proper order. are best for me to pursue? A. Stuay physics,mathematics, and mechanical evgineering. You will have to compete with college students. 2. What department is best specialty exceptafter you are established in the profession. You must take any opening, however low, and rust to work up. 3. What department,or devartments, in the near future will demand best pay? A. This admits of no answer. Pay will depend more on the man than on the department. The road to good remuneration is an nphill one. If in any kind of electrical posi-
(2607) J. B. asks : 1. Having trouble th moths eating plush silk furnture, can you furnish me a preventive? Also what will I procure to destroy and brushing is the best cure. Treatment by a naphtha laundry is efficacious. 2. What do paper hangers make paste of that has such a consistent body and adhesive qualities? A. Use rye flour paste. Mix the flour with a little water to a perfectly smooth mess, then add more
water and cook. The paste may be passed tirough water and cook. The paste may be passed tirrough a fne screen if desired. If properly manipulated, this wil (2608) M. D. asks: What is the effect n torsional strength of boring ont a steel or iron shaft, . e, will a shaft of given diameter bear greater torsional strain after being bored out? A. It will not.
The idea is derived from the general statement in technical works that tubular shafts are strorger than solid shafts for equal weight.
(2609) J. T. writes : Working with a so ution of 1 gramme tannin in 100 grammes water, some nen clothing and handkerchiefs got wet with it, and tained a dark brown color. What can be used so to take away the stains without destroying the fabric . Try citric acid solution to remove tannic acid stains, if this does not simee, ase a mixture of oxalic and citric acids in equal parts.

TO INVENTORS
An experience of forty years, and the preparation of
more than one hundred thousand applications for more than one hundrea thousand applications for pa-
tents at home and abroad. enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons and person abroad, are invited to write to this office for prices, Which are low. in accordance with the times and our exMUNN \& CO.. oft
way, Nem York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

November 18, 1890,
AND EACH BEARING THAT DATE

 SEND TEN CENTS for a trial subscription, and we will
end you three numbers, including our CHRISTMAS NUMBER, with an aistic I 8 gi, with a painting-" The Minuet"-by J. G. L. Ferris.
(1) Mrs. Amelia E. Barr's new serial, "The Beads of Tasmer." Mrs. Barr is the author of that most successful serial, "Friend Olivia," just completed in The
Century; but hereafter Mrs. Barr will write exclusively
for The Nere York Ledger.
(2) Hon. Ceorge Bancroft's description of "The Battle of Lake Erie," beautifully illustrated
(3) Margaret Deland's latest story. "To What End?"
(4) James Russell Lowell's poem, "My Brook," written expressly for The Ledger, beautifully illustrated by Wilson de Meza, and issued as a FOUR-PAGE
(5) Mrs. Dr. Julia Holmes Smith starts a series of articles giving very valuable information to young
(6) Robert Crant's entertaining society novel, " Mrs Harold Stagg.
(7) Harriet Prescott Spofford, Marion Harland, Marquise Lanza, Maurice Thompson, and Ceorge Frederic Parsons
(8) James Parton, M. W. Hazeiltine and Oliver Dyer (author of "Great Senators") contribute

In addition to the above SPARKLING EDITORIALS Illustrated Poems, Helen Marshall North's chatty column, and a variety of delightful reading of interest to all members o the household.

The foregoing is a sample of the matter which goes to make up the most perfect National Family Journal ever offered to the American people

Send Ten Cents for these three numbers and judge fo

The New York Ledger,

Robert Bonner's Sons, Publishers, $\quad 21$ William Sit, N, Y. City

$\$ 3$ PRINTING PRESS.

To business men

Eduands Wayis on ha cheam Enging

 of illustrated circulars, show owing full tashlse of toontent
 in any part of the world who will furnish his adaress.,
GIC LANTERTVS Le lamps have no equal NEWS ofAll SUBJETES 1 N figigs guagnis

HOME-MADEINCUBATOR.-PRACTI

 The CHANDLER $\xrightarrow{\text { Wrorks }}$ well on Low and \mathbf{H} igh
 WM. H. LOCK, Buffalo, N. Y
HOW TO MAKE DYNAMO ELEGTRRIG

THE PHONOGRAPH.-A DETAILED

THE EAGLE HE EASIEST RUNNING BICYCLE
IN THE WORLD. Seed, Comfort and Safety.

Large illustrated Catalogue sent Free to any Address.
THE EAGLLE BICYCLE MFG. CO.,
CONN.

IIItente.

An deutsche Erfinder. Die grosse und thatitige Klasse der deutschen Erfinder
in den Vereinigten Staaten machen wir besonders daraut in den vereinigten staaten machen wir besonders darauf gen mit Wa-hington und d 11 europaiischen Haupistäd-
ten, besondere Vortheile zur Erlangung von in- und aus-
 ten Staiten zum Patentechut 7 fur Erfindung gen beerechis Urnsere Firma ist bereit, geisityt ant eine 45 jairige
\qquad Unsere deatsche Abtheilung widd von fahigen deat-
schen Ingenieuren geleitet welche in der Office mit per-
 begricht in inren Spalten die hedentenderen EEAfindungen
der Neuzzit. Eine kurze Beschreibung von E' findungen,
die durch गns patentirt werden, geben wir unentgeltich in unserer Zeitschrift. Werden, geben wir unentgeltich Correspondenz in deutscher Sprache erbeten.
Pamphlet, in deutscher ¢prache, über Patente wird auf

TYPEWRITLBRS

CIARTK'S FANS.

 box GE

POP SAFETY VALVE WATER RELIEF VALVE IMPROVED STEAM GAGE STEAM ENGINE INDICATOR Single Hell Chime Whintle, and all Instruments
used in connection with Steam, Air and Water.
Sole Agents tor clarkis Linen Fire Hose.

2nd MACHINERY

OIL WELL SUPPLY CO. Ltd.

RANKS THE HIGHEST
 TUBE CLEANER
A LIBRARY for $\$ 1,00$

CASH

HOLIDAYS.

Popular Scientific Recreations.-.Cyclopedic science Simplified.-By J. H. Pep-per. With over 60 illustrations. Treating on LightBoys' Book of ©cience. -The Boys' Book of Sci-
Electricity in the Service of Man.-A Popular
and Practical Treatise onthe A pplications of Electricity

 Practical Electricity.-A Treatise for the Use of
Sudents of Elecrical Engineerins. teaching how to
Erocut
 Electrical Engineering. By W. Slingo and A.
Brooker. A Aractical Book for Electric Light Artisans

 ook. Fully illustrated............................. 2.50
Dynamo Electric Machines.-By Carl Hering.
Principles oft and Practical Directions for Designing

 and Terms, etc. Fift ty-second edition. By Chas. H. Has-
well. 12 mo, pocket book form................ $\mathbf{4 . 0 0}$ Engineers' Handy Book, -Containing a full Ex-
planation of the Steam Ennine inclator, and is
Adse

Smorm Engines. One volume. Second dedition. 675 pages.
1

 Practical Microscopy.-By G. E. Davis. A Desira-
ble Work. Illustrated. 8vo $\mathbf{\$ 3 . 0 0}$

Any of the above books promptly sent by mail, postpaid, on receipt of the price, by

MIUNIN de OO.,

Publishers of the "Scientific American," 361 Broadway, New York.

PVDertisements.

Victor Bicycles!

tion, and for an
could use abi
ICTOHS AR Overman Whefl Co., llakers, SMALL ELECTRIC MOTOR FOR AM-

BELTIN M More texible and nine tomething New Strond C) - 1 Tn
 THE MODERN ICE YACHT. - BY

NEW KODAKS

zee do the rest."
Seven New Styles and Transparith Films.
THE EASTMAN COMPANY,

$A^{\prime \prime}$NEW CATALOCUE VALUABLE PAPERS 1. Barrel, Keg, Hogshead (ander STEREOTYPING; THE PLASTER AND

NICKEL

matearial
92 LEWART, N.v.N.
PATENTS!

ASBESTOS SECTIONAL PIPE GOVERING.

 HuNMA Non-Conducting Covering for Steam and Hot Water Pipes, etc. ASBES TOOS ROILER OOVERINGS -
 H. w. Johns' Asbestos Millboard, Sheathings, Builining Felts, Fire-Proof Paints, 87 Maiden Lane, New York. chicago. philadelphia. boston.

THE SMITH PREMIER TYPEWRITER

VELOCIT OF ICE BOATS. A COLLEC

 ICE-BOATS - THEIR CUNSTRUCTION

MCIENTIFIC AMERICAN SUPPLEE-

GRAVESELEVATORS.
 Sindevisin hour tr M.

WORKING MODELS

Frientific American

 The Most Popnar Scientific Paper iu the World.
This widely cir culutated and splendidyly ylustrated
paper is pub ished weekly
 orizinal engravings of new inventions and discoveries,
representina
Engineering
Works, steam
Naw Cbemistry. Electricity, Telegraphy, Photography, Architecture. Agriculture, Horticulture, Natural Bistory, etc.
Complete List of Patents each week.
 postage prepaid. to any subscriber in the United States.
Canada Canala or Mexico, on reeeipt of three dollurw by the
pubbispers ; six montis, 81.50 ; three months, 91.00 . Cubun.- Special rates for several names, and to Post
 Express Money Order. Monny carefully pliced inside
of envelopes, securely sealed, ano correctly addressed

able to MIUNIT \& $C 0$
361 Broadway, New York. TIET
Scientific American Supplement.
This is a separate and distinct publication from
TBE SIIN: TIFIC AMERICAN, but is unitorm therexith In size, every number containiux sixteen lareqe pages full

of engravings, many of wlich are taken from forign | $\begin{array}{l}\text { of engravings. many of which are taken from foreign } \\ \text { papers, and accompanied with translated descriptions. } \\ \text { Tner }\end{array}$ |
| :--- |

 weekly, and iucludes a very wide range of contents. It
presents the most recent papers by eminent writers in all the prinapal departments of science and the
Useful Arts, eubracing Biology, Geology, Mineraloky, Natural History Georraphy, Archwology Astronomy, neering. Steam and, Railmay Engineering, Mining, Ship Building, Marine Enkineering, Photogri.ping,
Teennology, Manufacturing Industries, Sanitary Engineerion, Agriaulture, Horticiuluture, Domestita creono-
my, Bioprapis, Medicine, etc. A vast amunnt of fresh lication.
The most important Ensineering Works, Mechanisurs, and Manufactures at home anna abrond are illustrated
and described in the Soppl Inver.

> Building Edition.
the Scievtific Anerican architects' and Bulupers. EDrition is issued monthly. 2 2.50 a year.
Single copies, 25 cents. Forty large tharto Single copies, 25 cents. Forty lirge quarto pages, equal
to about two hundred ordinary book papes; forming a
 II adorned with elegant plates in colors. and with other
tine engravings; illustrating the most interesting extine engravings; illustrating the most interesting ex-
amples of modern Architectural Construction and amples of mod
allied subjects.
A special feature is the presentation in each number of a variety of the latest and pest plans for private resi-
dences, sity ard country, including those of very moderate cost as well as the more expensive. Drawings in in
perspective and in color are e iven. together with full
plans, spec fications, sheets of Details, Estimates, tetc. Plans, Spec fications, sheets of Details, Estimates, etc.
The elegance and cheapness of this magnificent work have won for it the Liarsest Circulation of any
Architecural publication in the world. sold by all newsdealers. ${ }^{2} 2.50$ a year. Remit to

MUNN \& CO., Publishers,
PRINTING INKS:

