

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, AUGUST 23, 1890.	$\left[83.00 \text { WEELLY. }_{\text {A }}\right.$

THE NEW FRENCH ARMOR-

 ED WAR SHIP HOCHE.On the 15th of July, 1889, the Hoche received her armament at Lorient, where she had just successfully made her preliminary trial trips. The final trials will trips. The final trials will
be made at Brest, as the be made at Brest, as the
port of Lorient is not well adapted for operations of this kind on account of the difficulties that its entrance presents.

The Hoche is one of the finest specimens of modern naval architecture, and, we may add, one of the most interesting ones, by reason interesting ones, by reason
of the differences between of the differences between
it and our old war ships, and even our most recent vessels. Is that as much as to say that it is the definitive type of the armorclad? No; for in that incessant transformation of which the Gloire was the origin, in 1859, every new origin, in 1859, every is a new work, differship is a new work, differ-
ing from its predecessors. ing from its predecessors. though it was very meager, demonstrated this with elequence. In the pavilion that was devoted to it, there was on exhibition a series of models on a scale of 15 millimeters to the meter, through which the meter, through which the
progress made during the progress made during the
last fifteen years could be last fifteen years could be
easily seen. Thus, alongeasily seen. Thus, along-
side of the Hoche, put upon the stocks in 1880 , there might be seen, for example, the Formidable (launched in 1885) and the Trident (launched in 1876),

and the differences at once attracted attention. The most striking of these are found in the upper works whi h, on the Trident and the types of its time, em brace an armorclad cita dal and spacious and tall batteries. Upon the For midable they perceptibly diminish, and upon the Hoche are reduced to two stories of narrow and light superstructures, contain ing nothing but rooms that must disappear at the first shot. The armor here is thicker and of less extent. It is reduced to a very strong belt around the load water line, 18 in . amidships, 16 in. forward, and 14 in . aft (9,9 , and 11 in. on the Trident). It rests against a deck protected with 3 in. armor plate situated beneath the load water line, and that renders the submerged part of the ship impenetrable, and affords a sure protection to the motive apparatus and the ammunition. Above the deck, there are turrets for the large guns. The plates of these are 16 in . in thickness. The two vessels have nearly the same leapth, but are of different widths The Hoche is 236 it The Hoche is 336 ft . in length and 65 in width,
and the Trident is 314 ft . and the Trident is 314 ft .
in length and 58 in width. The depth at the main deck is 43 ft . on the Hoche and but 35 on the Trident. The draughts of water, center and aft, differ but

THE REW FRENCH ARMORED WAR SHIP HOCHE.
little- 25 and 27 ft . on the Hoche, and 25 and 28 on the Trident. The first displaces 10,581 tons, and the second 8,456. Finally, the Trident is of wood, and the Hoche of iron and steel.
If, now, we descend to the engines, and compare those of the ship of 1876 with those of the armorclad of 1880 the progress is found to be still wore perceptible. On the Trident, the engine, with three horizontal cylinders, is of the Wolff system. It is placed in the vessel's axis and actuates one screw. It is of $4,882 \mathrm{H}$. P., and gives the vessel a speed of $14 \cdot 17$ knots an hour. The boilers of the high type, with four furnaces to each. They are registered at 33 lb . to the square inch.
The Hoche's apparatus consists of two independent compound vertical engines with two cylinders each actuating a screw. The total power obtained should be that of 12,000 horses, which would give the ship a speed of from 16 to $171 / 2$ knots. Eight cylindrical boilers, of a special type, with three furnaces to each, with direct flame, registered at 85 lb ., and forming four distinct groups, compose the evaporatory apparatus. The en gines of both ships were constructed at our Indret works.
A speed of 16 knots, or $171 / 2$ at the maximum, will doubtless not appear great if compared with that of steamships of an equal displacement, some of which (like the City of Paris) make as many as 21 knots; but we must not forget the role of armorclads, which ren dersit obligatory to give them a width that shall per mit of the installation of turrets and their dependen cies, and to make them shorter,* so that they can per form their evolutions more rapidly in a battle. In nava construction every widening of the hull implies a di minution in speed, and every elongation an increase Upon the whole, the packet boat is.a race horse, and the armorclad is a draught horse.
But where the dissimilarities are especially shown is in the artillery. The Trident, which serves us as a point of comparison, carries six $101 / 2 \mathrm{in}$. guns, four of them in the central citadel and two on deck in semi-turret barbettes ; two $91 / 2 \mathrm{in}$. guns, one with direct fire ahead, upon the poop, and the other with direct fire aft; and six $51 / 2 \mathrm{in}$. guns in battery
The Hoche has four turrets in a bow and quarter line; two barbettes in the center armed with $101 / 2$ in. guns; one in front and one aft, in the axis, armed with 13 in. guns. There are more than eighteen $51 / 2$ in. guns in the battery, twelve revolving guns, eight rapid-firing guns, and six tubes for firing automobile torpedoes. It will be seen that the 13 in . guns do not exist upon the Trident.
Upon the ships of the Hoche type, which are three in number (the Magenta, Marceau, and Neptune), the $101 / 2 \mathrm{in}$. guns are suppressed, and are replaced by 13 in . ones, the field of fire of which is much greater. They throw 770 and 530 lb . projectiles to a distance of 27,230 ft . with a charge of 300 and 330 lb . and with a velocity of 1,820 and $1,800 \mathrm{ft}$. The $101 / 2 \mathrm{in}$. guns have a range of but $20,800 \mathrm{ft}$.
As the Hoche was put on the stocks with its three similars, the latter have not escaped that law of progress of which we have spoken. They have received quite important improvements in detail, especially in their armament. The name of the Hoche has often echoed in the discussions of parliament, of the techni cal press, and of maritime circles in recent times. The adversaries of the system of building by the state have been pleased to cite it as a striking example of the slowness of the arsenals. It is certain that the workmen of our five ports show less activity than is displayed by those of our private ship yards. But we must not exaggerate anything, even the indolence of the workmen of our arsenals.

If it takes England but three or four years to construct an armorclad, it is because parliament never refuses the credit that the admiralty asks of it. The English armorclads generally cost more than ours. Thus, the Trafalgar, a ship like the Hoche, cost $\$ 3,400,000$, while the cost of the latter did not exceed $\$ 3,000,000$. Not only does the English parliament not haggle about the funds to be given to the admiralty, but knows how to grant them at the hour desired. We, therefore, never observe the spectacle on the other side of the channel that was offered us in a certain year, precisely apropos of the Hoche, Neptune, and Magenta, when the chamber allowed $\$ 453,400$ for manual labor and refused the $\$ 906,800$ necessary for the purchase of materials. La Nature.
[Referring to our engravings, the upper one shows the Hoche as she appeared during the process of construction. The other view shows the great ship as she now appears afloat.]

Five days, nineteen hours, five minutes is the reported time made by the new steamer Teutonic, lately arrived at this port from Queenstown. She beat by two hours the City of New York, which started about the same time. This is said to be the fastest time by 13 minutes ever made, being that much faster than the time of the City of Paris.

sfrientific gesmericam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico....
One cops, six months, for the U. S., Canada or Mexico.

$\ldots . . .8380$
$\cdots .$.
150

Remit by postal or express money order, or by bank draft or check. Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, corner of Yranklin Street, New York.

Building Edition

Spanish Edition of the Scientific American

4. The safest way to remit is by postal order, express money order
raft or bauk check. Make ail remittances payabie to order of MUNN
CO.

NEW YORK, SATORDAY, AUGUST $23,1890$.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 764.
For the Week Ending August 23, 1890. Price 10 centa. For sale by all newedealers.
ANTHROPOLOGY.-An Infant Prodigy.-By 8. V. Clevengerr, M.D.-An account of a remarkable developm
infant. with parallel examples of prodigies..
. 1 . I. ARCHEOLOGY.-History of the Wheelbarrow.- Early illustra-
tions of the wheelbarrow from ancient records. - illuatrations... II. ASTRONOMY.-A Stony Meteorite from Washington Counts Kansas.-The finding of some recently fallen meteorites, their occurrence, appearance, etc... 12
 sun, as observed upon the Mediterranean coast and in France.-3
illustrations... The Tananarive Observatory.-A recent observatory erected in
Madagascar.-1 illustration... . BIOLOG Y.-A Chat about Worms.-By Rev. HILDERIC Friend.
-The natural history of annelids.-An interesting and popular pa-per.-ठ illustrations....
CHEMISTRY.-On a New Method and Department of Chemical
Research.-By Dr. G. Gork.-A paper on the subject of electrochemical curves. 17 illustrations....... 1 II. CIVIL, ENGINEERING.-The Great Railway Tunnel under the
St. Clair River, between the United States and Canada.-A great St. Clair River, between the United States and Canada.-A great
engineering work described.-The application of the Beach hyengineering work described.-
draulic tunneling shield to its construction. -10 illustrations...... 121 II. METALLURGY.-The Smelting of Iron.-An abstract of the

II NAVAL ENGINEERING.-H. M. s. Blenheim.-A ship designed to be the fastest in the British navy, recently launched in England. -2 illustrations..
PH YSICs.-A Simple Interference Rxperiment.- By ALBERT A.
MICHELSON. - A simplit cation of Fresinel's mirror experiment.-2 illustrations........................
Foam--By Right Hon. Lord RAYLEIGH.-A recent lecture on an exceedingly interesting subject, ziving the latest results in ex-
periments on surface tension. -6 illustrations............... periments on surface tension.- 6 illustrations.........................
Problems in the Physics of an Klectric Lamp. lecture by Prof. J. A. Fiekming. giving most interesting experiments with the electric lamp. -17 illustrations..
The Musical Bellows.-A simple experiment in physics without

TECHNOLOGY.-A COld Storage Establishment.-A Pictet re-
frigerating warehouse, recently installed in Paris.- - illustrationa.

SEAPORT DEFENSES

The exposed and comparatively defenseless condition of our most important seaboard cities, in respect to foreign naval attack, has for years been the subject for talk in Congress, but up to the present time little of a practical nature has been done in the line of protection. It is true a few vessels of war have been ordered and some preliminary steps taken toward the manufacture of heavy guns for fortifications. But in regard to the systematic and permanent defense and safety of such important harbors and cities as Portland, Boston, New York, we believe no definite plan has been fixed upon, no material steps as yet taken. It is, of course, to be hoped that no foreign nation will ever have the temerity to make an attack upon us, but it is impossibl to foresee the future ; and, until the policy of universal peace becomes established among the nations, we must not neglect the science and means of defense.
At the present time most of our harbors might be successfully entered and cities burned by a skillfully directed fleet from England, France, Russia, Germany, Spain, or Italy. All thes powers have ships afloat which, in a few days' time, might reach our shores and reduce New York and Brooklyn to ashes, in spite of the best efforts that could be made to beat off an attack. From the Brooklyn Navy Yard to the 24 foot low water line, say a mile off Coney Island, it is nine miles, or within the range of modern heavy guns. The width of the waterway between Sandy Hook and Rockaway Beach is about eight miles, with no intervening fortification to check the approach of an enemy.
All that could be done in the event of sudden attack would be to assemble in the harbor as rapidly as possible the few weak vessels we have on hand, and provide as many torpedoes as we could. These would chiefly be confined to the inner parts of the harbor, leaving the enemy free to select his own positions in the open roadstead, and within range of our great cities.
Obviously what we greatly need for the defense of New York, likewise for Boston and other cities, is the erection in the outer roadsteads of the harbors, out at sea as it were, of suitable fortifications or artificial islands, so located as to command and protect the approaches to the harbors. This is a suggestion of Mr. John F. Anderson, of this city, an engineer of tried experience in the construction of works such as proposed. He is the contractor for the new lighthouse shortly to be erected upon Diamond Shoal, Cape Hatteras.
Mr. Anderson's plan for New York harbor defense is to erect three islands ont in the sea, between Sandy Hook and Rockaway Beach, the islands to be about two miles distant from each other and from the shores. For the construction and formation of the fortifications, Mr. Anderson proposes to adopt the same simple and effective means he has heretofore used in erecting lighthouses in exposed situations, namely, construct on shore a large caisson or cylinder of iron, float it to the desired spot, fill with concrete and sink it, excavate the bottom through the interior, and continue to sink the caisson until the required firm foundation is reached; the walls to be built as far above water as desired.
Mr. Anderson proposes an exterior diameter of five huudred feet each for the three islands for this harbor, the caisson to be made double, that is, one caisson within another, a space of fifty feet between the two, to be filled with concrete, thus forming a fifty foot wall of solid artificial stone; the space within the inner caisson to be filled with sand dredged from outside the structure. If desired, the interior could be left open, with an entrance on the land side for torpedo boats. The depth of water at the points where these islands are proposed to be located does not exceed twentyfive feet at low water. Hence the cost would not be great. Mr. Anderson's estimate is one million dollars each.

The superficial area of each island would be about five acres, thus affording ample space for guns, mortars, torpedoes, and the most formidable military appliances. The range of the weapons to be here located would be ten miles, and the result of the proposed structures would be to restrain the approach of foreign fleets for about that distance.
The cost of a first class armored battle ship is about four millions of dollars, and when launched the vessel is always subject to sudden destruction by explosion, wrecking, or other accident. Then again the ship is in frequent need of repairs, is constantly deteriorating, and soon passes into the condition of old iron. Moreover, several such ships would be required for the sure defense of such a harbor as New York.
But these proposed outer sea fortresses would be permanent, effective, and yet economical means of defense. We commend the subject to the consideration of all who are interested in such matters, and should be glad to receive expositions of views thereon.

For waterproof cement use a mixture of Burgundy pitch or asphalt and gutta percha melted together.

Gradual Exhaustion of Natural Gas.

That which comes easily is not regarded with the same favor nor held in similar esteem to that which is more difficult to secure, even though both have equal value for the results sought. And so it is with natural gas for fuel purposes. Thousands of millions of cubic feet were worse than wasted; prodigality was the rule in its use; in fact, forming an opinion from the practices of those who supplied it and those who used it, the idea was to see which could outdo the other in recklessness. It seemed as if both suppliers and users had joined in the belief that there could be no end to the good thing that was thrown out in vast volumes from Nature's storehouse. The change came, however, aud with it the time for paying up for past transgressions. Weakening pressures and diminished volume aroused the suppliers, who, with as much intemperance in their schemes for metering and increased payments as formerly characterized their lavishness and wastefulness, awoke 'to the fact that to keep in the swim they must regulate the flow of the tide. Their regulations grew so "pronounced" that the price was finally placed at a point where the larger manufacturing concerns " looked backward" at their old servant, coal, which, it would seem, is again in a fair way to assume its sway in Pittsburg. While we do not wish to be understood as saying that "King Coal" is to at once regain his supremacy in the "Smoky City," it is nevertheless true that his return is certain, although the immediate rate of progress may be slow. These remarks were brought out by advices received the other day from Pittsburg, to the following effect "The Pennsylvania Tube Company is preparing to abandon the use of natural gas in its works, and return to the use of coal for fuel purposes. At the present time thirteen regenerator gas producer furnaces are being put in the works by the Smythe \& liaughlin Company, some of which will be ready to use in about thirty days. The company has had this in contemplation ever since the price of natural gas began to go upward, or to the point where it was a question whether its use was more econowical than that of coal. Slack coal will be used for making gasin the regenera tors. This is the first industrial institution in Pittsburg to abandon natural gas entirely and to start to using manufactured gas for fuel purposes. Some other firms have the question under consideration." In the meantime there can be no doubt that the makers of artificial gas are under great obligations to the suppliers of natural gas, in that the prodigality of the lat ter taught the housekeepers of the natural gasdistricts much in respect to the intrinsic merits of gas as a domestic aid. And it may be accepted as an assured fact that when nature's produce gives out, the artiticial gas manufacturer will have rich fields to glean in.-Gas Light Journal.

Electric Lighting of Traing.

From a paper on "Electric Lighting in Train Ser vice," read by M. B. Leonard, superintendent of tele graph of the Chesapeake \& Ohio Railway, before the recent convention of railway telegraph superintendents, we extract the following concerning the electri lighting of passenger trains :

The Buston \& Albany Railroad Company, after two and a half years' trial, recently abandoned electricity on the two trains that were so lighted, and substituted the Pintsch gas system.
The Pennsylvauia Company, however, still continues to light cars from storage batteries, using a low volt age lamp.

The Intercolonial Railway Company of Canada has adopted the accumulator system alone on the trains between Halifax and Quebec, and now has more than 40 cars fitted up with electric lamps, which are of 10 candle power, and vary from 11 to 22 to a car. The accumulators are charged at four different points on the line, running about 500 miles with the one charge, and the results thus far obtained are very satisfactory, but to provide for emergencies oil lamps have been re tained in each car.

The combination of dynamo and storage battery first adopted by the Pullman Company is gradually being extended in this country, and is giving great satisfaction in the East and West, but, it appears, at a large expense for maintenance. The Chesapeake \& Ohio vestibule train, "Fast Flying Virginian," running between New York and Cincinnati with six cars, is supplied with 118 lamps divided up thus: two Pullwan coaches with 30 lamps each, dining car with 26 day coach 16, combination car 13, and the baggage car three. Up to May 1, 1890, the average cost per lamp for maintenance and renewals was $\$ 1.10$ per month yet where the exhaust steam is utilized for heating th train, the cost can be very materially decreased.
With this object in view, the Chicago, Milwaukee \& St. Paul Railway Company has recently added to its equipment two independent light and heat tenders, which carry their own boilers for steam heating and for running a Westinghouse automatic engine attached to a No. 4 Edison compound-wound dynamo, supplying the current direct for lighting all the cars in the train,
thus doing away with the dynamo on the baggage car and storage battery combination.
The results have been very favorable, and during more than six months of constantservice there has not been a single failure. This company has four trains covering about. 45 cars lighted by electricity, and expects to adopt this system of illumination on all of its through trains. It is stated that the expense of building and equipping these tenders is not much greater than the cost of the storage battery-dynamo combi nation, with the expensive wiring required in that system.
It is confidently believed that the cost of lighting trains by electricity in the United States can be greatly reduced by adopting the method so largely used abroad of gettting power from the axle. Mr. Houghton, the telegraph superintendent of the London, Brighton \& South Coast Railway Company, one of the patentees of the system, advises me that there are sixteen trains running on that road which are so lighted-thirteen of them local trains and three express. The speed of the express trains reaches 70 miles an hour, while that of the locals runs from 20 to 60 miles per hour. The express trains are wired for an average of 70 lamps, and the others 40. The candle power of these lamps varie from 8 to 16, according to the speed of the train. The dyuamo furnishing current for these lamps is placed in the baggage car and has a pulley at each end connected by belts direct with the axle of the car, no intermedi ate shafting being used. The slack is taken up by loose pulleys that can be pressed upon the belts.
In the same car with the dynamo, 22 accumulators weighing about 4,000 pounds are placed in parallel with the dynamo, for use whenever the train stops.
Connected by a belt from the dynamo is a centrifucal governor which joins up the circuit at any desired speed, causing the dynamo to charge the accumulators. When the lamps are not lighted, the governor intro duces resistance into the dynamo field, reducing the output to about 40 amperes, in order not to damage the accumulator plates. When, however, it is neces sary to light the lamps, the dynamo makes the full cur rent, of which about 35 amperes pass into the lamps he balance being stored in the accumulators.
In each lamp circuit a regulator is placed in order to keep the light in the lamps at the same power regardless of the speed of the train, and shunt any surplus current into the accumulators: so that 42 volt lamps may be used with a dynamo of any E. M. F above that voltage without any variation in the ligh of the lamps.
The connections between the cars are made by coupling two cables together, and when the dynamo runs below a certain speed, a cut-out breaks the circuit of the armature, preventing the cells from discharging themselves through and burning it out. Should the current not furnish enough current for the lamps, the accumulators supply the balance, and in doing so strengthen the field magnets, and thereby cause an increase of current in the dynamos.
One arrangement of the circuits of these trains has the field magnets of the dynamo wound with two wires in opposite directions, one of which is shunt to the armature as if the dynamo was an ordinary shunt ma chine; the other is wound in the reverse direction as i the dynaufo were a compound machine, and the ac cumulators are in series with the wire. The lamps ar also in shunt with the armature.
The trains on which this system is used consist mostly of ten cars which run solid, that is, are not broken up, and average 40 12-candle power lamps to a train. By using accumulators in each car, however, no difficulty would be found in splitting up the train at variou points.
The figures given by Mr. Houghton are as follows:
Total weight of the plant on each train, three tons cost of plant on each train, $£ 400$ sterling; cost of main tenance per annum, $\mathbf{2} 65$ sterling
The only attention given trains is at each terminus where one man inspects the apparatus, oils the pulley bearings, etc., before the train pulls out. One of these trains has been running since December 19, 1883, with out a single failure being reported. During the first eleven months of its use, it made 2,352 trips, and ran 27,322 miles.
The Midland Railroad Company, of England, is run ning three trains lighted by electricity, and has recent y fitted up two others. Two of these are short trains always run solid, and the others main line trains made up at various ppints. The dynamo is placed in the baggage car, and is also driven from the axle with about the same electrical arrangements as are used on the London and Brighton Road. The short trains have eighty-five lamps run from one set of storage bat teries, in the baggage car. On one train the batterie are in series, but on the others in paranel. This seems to be the most satisfactory. Eight candle power lamps are used on this road, two to each compartment which can be turned down, and this feature is found to be very convenient to through passengers.
This system of illuminating passenger trains is bethat all such trains on the important it is believed
kingdom will shortly be equipped in this way. The expense as shown by seven years' experience on th London and Brighton Road is certainly not greater than where common oil is used, and seems to corrobo rate the report made by Sartiaux and Weissenbruch to the International Railroad Congress at Paris a year or two ago, in which it was stated that for lights of the same candle power, gas supplied by the Pintsch system would cost about $11 \cdot 3$ centimes and coal oil about $16 \cdot 9$ centimes per lamp hour as against $5 \cdot 6$ centimes for the lectric light.
Compared with the practice on American roads, the economy of this method of generating this current is remarkable. It has been stated, however, by various authorities that it is impossible to secure even fair results in train lighting in this country where the power is supplied by the car axle, owing to the numerous curves on American roads, around which the wheels will often slide without turning the axle a single revolution, thus seriously damaging belts and armature, and the constant changes in speed, while English roads re almost always tangents, and a high and constan rate of speed is maintained. The experiments made here some years ago seem to corroborate these state ments.
In 1886 or 1887, Mr. Barrett, of Springfield, Mass. fitted up a train on the Connecticut River Railroad to be lighted with electric lamps run from a dynamo ob taining its power from the car axle. A countershaft was used, and a peculiar arrangement of a friction clamp transmitted the power to a pulley on the shaft. This clamp was governed by centrifugal weights bal anced by stiff springs. When the dynamo ran at its normal speed, these springs just balanced the friction of the clamp, and there was no slip; any increase o speed then caused the friction to diminish and the pul ley slipped upon the shaft until the equilibrium wa restored; 24 accumulators were connected with the cir cuit as a regulator, keeping the lamps lighted when the train stopped, and a centrifugal governor broke the accumulator circuit when the train slackened it speed. The brushes were attached to a rocking arm or lever, which was tilted by magnets in either direc \ddagger ion in accordance with the forward or backward movement of the train.
Owing to the arrangement of the car trucks, it was ound very difficult to obtain the proper speed of the ynamo, and after successive trials with belts, ropes, and chains it was finally abandoned. Since that time there have been no further experiments of this char acter'in the United States, but it is said that such mprovements are now being made in the driving gea 8 will obviate the difficulties heretofore encountered and that further trials in this direction may be looked or within the next six months.

Coffee Cochineal

The coffee plantations in the department of Ama titlan, Guatemala, have lately been ravaged by a peculiar insect, which M. Adolf Vend rell has ascertain d to be a new species of cochineal (Coccus coffea). The principal industry in this district formerly was the cultivation of cochineal. When examined microscopi ally, one of the insects is seen to contain a yellowist liquid with thousands of little eggs. As the develop ment of the eggs continues they become larger, and the liquid diminishes, so that a dry insect contains no liquid, butinnumerable eggs of a reddish yellow color which look like very fine powder, and are transported by the wind as easily as the pollen of flowers. In December the insects are in the former condition, and about February and March the female insect reaches the stage of full development and ejects the ggs, covering them with its body. The insects are only noticed on the coffee plants when the females are fecundated; but by this time the plant has become sickly and yellow; it is imperfectly nutrified, and, should it reach the fruiting stage, the berries are smal and of little value. M. Vendrell thinks that this is because the insects extract nitrogen from the plants, and he consequently advises manuring with nitrate of soda.

A Monster Piece of Granite.

Vinalhaven, Maine, claims to have produced the argest stone ever brought to light. The Bodwell Granite Company recently quarried a shaft of granite which is the largest piece of stone ever quarried anywhere, and, if erected, will be the highest, largest, and heaviest single piece of solid stone standing, or that ever stood, so far as any record can be found. In height it considerably exceeds any of the Egyptian obelisks. The tallest of these, which was brought from Heliopolis to Alexandria by Emperor Constantine, and afterward taken to Rome, where it is still standing, is 105 feet 7 inches high, while the Vinalhaven shaft is 115 feet long, 10 feet square at the base, and weighs 850 tons. It is understood, says Slone, that the company quarried this immense monolith of their own account, not having an order for anything of the kind, and they suggest that it would be a fitting contribution from Maine for the monument to be erected in honor of General Grant.

IMPROVED THILL COUPLING.

In the engraving is shown a simple and effective coupling for attaching thills or poles to vehicles in such a way that they cannot be accidentally loosened. The clip which is attached to the axle is provided with apertured ears, one of which is slotted from the aper-

mason's thill coupling.

ture outward. The thill iron is provided at its extremity with a cylindrical cross bar adapted to fit into the apertures of the ears. To the thill iron is pivoted a latch, the motion of which is limited in one direction by a stud projecting from the iron, the latch being capable of swinging in the opposite direction, as shown in the detailed view. The latch and the thill iron taken together are thicker than the slot in the ear of the clip.
When the iron is raised to a vertical position, it cannot be drawn out through the slot without first turning the latch as shown in the small figure. The thil iron can then be moved forward and drawn out laterally from the clip. To prevent rattling, a \mathbf{U}-shaped spring is inserted between the end of the thill iron and the clip.
This useful invention has been patented by Mr. William Mason, of Clifton, Hamilton, Victoria, Australia

A METALLIC JOINT OR COUPLING FOR WHEELS

The engraving illustrates an improved joint or coup ling, patented by Mr. John Wood, more particularly adapted to serve as a spoke for wheels of all kinds, and in consequence of its lightness and strength especially fitted for use on bicycles and similar devices. One view in the cut represents this joint employed in a wheel spoke, the other one showing its use in connection with tubular structures. The essential parts of the improvement are : a straight rod, with one ond screw-threaded and the other end provided with an eye, and, passing through this eye, a smaller rod bent back upon itself to form two spring arms, bent at right angles near their ends, the ends being again bent at right angles and screw-threaded. In the application of the device to a wheel, as shown, the screw-threaded end of the straight rod is secured to the felly or tire, and the spring arms passed through the eye at its other end, the hooked ends of these arms being passed through suitable openings in the hub, to which they are secured by nuts. The eyes of the straight rods are angular in

WOOD's WHEEL AND METALLIC FRAME JOINT.
cross section, and the rods of the spring arms are shaped to conform to the angularity of the eyes, which may be lozenge shaped, triangular, or any shape that will present a series of shoulders to bind the two parts and prevent looseness and vibration. The relative position of the rods may be changed, if desired, so that the straight rod will have its threaded end secured in the hub, when the ends of the spring arms will be attached to the felly, their hooked and threaded terminals then passing back through suitable openings and being secured by nuts: In inserting the rod and its spring arms in tubular structures, one end of the smaller rod is passed through the eye of the other until the bend is reached, when the two parts are pressed together and passed along the upright to the transverse section, when they spring apart slightly, and their threaded ends pass through the openings, where they are secured by nuts, the threaded end of the straight rod being extended through a suitable opening in the other closed end of the tube or hollow column, and a nut applied to bring the two sections together and unite them firmly. In a modified struc ture the outer ends of the spring arins are simply bent at a right angle, and rest along the interior of the tube waking a fastening in which there are no protruding ends of rods or nuts to interfere with the symmetry of the framework. This improvement is also designed for use in awning frames, show cases, tree boxes, fences, bridges, saw frames, turn buckles, and for a wide variety of other purposes.
For further information address O. T. Thompson Central National Bank, room No. 1, 631 Pennsylvania Avenue, Washington, D. C.

A CEILING CENTER-PIECE AND VENTILATOR
Our illustration shows a combined ceiling center piece and ventilator, and ceiling trap door, Fig. 1 being a top and Fig. 2 a sectional view. It is designed for new or old ceilings, and consists of a ceiling plate having L-shaped slots, shown in the top view, and of a dished ornamental and perforated body having a regis ter, and an indicator to turn the register and show it

2

O'LEARY'S CEILING CENTER-PIECE AND VENTILATOR
position, and also having L-shaped lugs to engage in the slots in the ceiling plate. By taking out a screw, the body may be readily detached from the ceiling, and the opening in the ceiling plate used as a trap door. This invention was patented February 4, 1890, by D O'Leary, of Winchester, Cal.

AN IMPROVED WIRE OR CABLE TIGHTENER

The illustration represents a device for stretching or tightening fence wires, or ropes or cables on shipboard or elsewhere, prior to making thein fast or to joining and splicing them when broken. It has been patented by Mr. William Mason, of Clifton, Hamilton, Victoria, Australia. Fig. 1 is a plan view, and Fig. 3 a side ele vation, showing applications of the device, Fig. 2 show ing the movable pawl block, which in use is counected to the main operating lever of the tightener. Th stock is preferably of cast malleable iron, to which is pivoted a forked main operating lever engaging the side trunnions of a metal block movable backward and orward on the stock. This block has a central length wise opening in cros form to receive the vertical wrizontal links of a tiphtening chain, which and horizontal links of a tightening chain, which also passes through an opening in the stock, and to the back end of the block is pivoted a pawl which has a notch in its free end to slip down over a vertical link and catch a horizontal one. At the back end of the stock is a box with a central lengthwise slot and a similar pawl pivoted to the back end of the box. The latter pawl is automatically lifted by successive horizontal links of the pulling chain, and locks behind them after they pass forward, while the vertical links pass freely through the vertical slot in the free end of the pawl, the pawl thus retaining the chain against backward movement while the lever with the other block and pawl are moved to engage with or behind another flat link of the pulling chain. At its forward end the stock has a lug which forms a fixed jaw of the wire or cable clamp, with a movable jaw fitted on an eccentric block bearing having a fixed handle, the ec-
centric bearing being held to turn loosely on a pin or stud fixed in the stock. The edge of the movable jaw is preferably serrated, and it is tightened to the wire by swinging its handle. This description of the device covers its application in stretching one end of a wire or cable while the chain is hitched to a post or other fixed

MASON'S WIRE OR CABLE TIGHTENER.
object; but when a broken cable is to be pieced or joined, an auxiliary clamp is employed for one end of the broken wire or cable. Whichever way the device is used, it may be worked by one man, who may also easily secure the wire or cable stretched by it.

AN IMPROVED CAN OPENER.

This device is so constructed that a fulcrum for a lever purchase is secured in the center of top of can, and a knife, which may be easily and quickly adjusted and locked to any size of can, is set, when cutting, at three distinct angles, for securing a shearing cut. This reduces the exertion required to a minimum, and causes the blade to retain its relative position while cutting without effort. It has been patented by Has brouck Alliger, of Rondout, N. Y. (New York office 125 Chambers Street). The device is shown in perspec tive in Fig. 1, and consists of a main bar with a handle at one end and an angled pivot pin at the other end and having a toothed surface or ratchet along its unde face, combined with a knife carrier with an opening slmilar to the cross section of the main bar, whereby the carrier may be passed over the pivot pin and slide along the main bar. The blade is attached to the car rier at one side of the opening therein, and the handl of the carrier extends rearward at an angle thereto. The cutting edge of the blade is slightly inclined toward the outer edge of the can, the blade being also inclined transversely in the direction of the main bar, or pointed orward, whereby all liability of the knife to work up ward or out of its kerf is avoided. By grasping opene as shown in Fig. 1, the pivot pin is easily pushed through the center of the can, and the blade, being held rigidly at right angles to the main bar, is easily pushed through the can where desired by pressing down on the main bar. The handle of the knife carrier is then dropped on to or parallel with main bar, as shown in Fig. 2, and by grasping the tool with the right hand over both handles, as far back from the an as possible, the top of the can may be quickly and easily removed. Should the blade become dulled, it may be sharpened in the same manner as any knife blade.

Prof. Hazen suggests that the force of a tornado nay be largely diminished by the explosion of gunpowder or dynamite, just as the waterspout at sea is diverted and broken by a like discharge of explosives

ALLIGER'S "BEST YET" CAN OPENER.

AN IMPROVED RAILROAD TRACK.

The accompanying illustration represents a railroad track which is designed to be easily laid and repaired, and is so constructed as to prevent the spreading of the rails. It has been patented by Mr. Stewart J. Morse, of St. James, La. The track is wholly of metal, and has two longitudinal sleepers supporting the rails, the heads of which only project above the sleepers. Each of the sleepers, as shown in the sectional view, is made of two upright plates slightly inclined toward each other to form a narrow slot, and to engage the under side of the head of the rail, the lower edges of the plates having outwardly bent flanges or feet. At suitable distances apart in each sleeper are transverse openings to admit a key plate having downwardly extending bosses on its outer ends abutting against the ontside of the sleeper plates. On this key plate rests the tie, projecting beyond the sleepers, lugs being formed on each of the sleeper plates directly above the lugs or bosses of the key plate, and the tie being secured in position by bolts passing through the top and bottom lugs and the tie. To further hold the sleeper plates in position, short plates and key-plates are employed between the ties, and secured by bolts, by which means the ties can be placed farther apart. At the junction of two sleeper sections a tie is used preferably double the width of the others and fitting into slots formed in the adjacent ends of the sleeper plates. Tracks thus made are designed also to prevent the easy tearing up or misplacing of the rail by mischievous persons, as to do this it would first be necessary to remove the earth in which the sleepers and ties are embedded.

A PROPOSED PLAN FOR NON-SINKABLE SHIPS. The illustration represents a plan of building vessels with practically two hulls, one within the other, the

SHONE'S DOUBLE HULLED VESSEL.
space between the inner and outer hull being sufficient to receive a portion of the cargo, but so proportioned to the whole capacity of the vessel that the total filling of the outer hull with water, as it might be in case of collision, would not cause the vessel to sink. It is a patented invention of Mr. George Shone of East St. patenis, Ill, and our engraving shows plan, Lection Louis, Ill., and our engraving shows plan, sectional,
and perspective views. In a 10,000 ton boat the differand perspective views. In a 10,000 ton boat the differ-
ence in beam from present standards is designed to be ence in beam from present standards is designed to be
about twenty feet, ten feet on each side separating the about twenty feet, ten feet on each side separating the
inner from the outer hull, while in length the differinner from the outer hull, while in length
ence would be from thirty-five to forty feet, the greater portion of this intervening space being at the bow. The bottom of the central hull is also raised above that of the oute one, and its top is carried above it. Bulkheads are used partly to strengthen the ship and partly to divide it into compartments, these bulkheads also extending across the space between the hulls, but here they are preferably not made water-tight, but hav small openings by which the side compart ments will be connected with each other, so that any water admitted into one of these compartments may flow gradually, no rapidly, into all the others. This provision is made so that the ship, if the hull is stove in, will not be dangerously depressed at the point where damaged, but may be kept trim. By means of suitable water-tight decks the space between the hulls can be divided horizontally, freight being intro duced thereto by means of suitable water tight hatchways. The decks are braced with diagonal beams, by means of which the structure is considerably strengthened,

MORSE'S RAILROAD TRACK.
diminished, while, should the vessel become waterlogged throughout its whole outer chamber, it would still be kept afloat.

Labyrinthine Deafness

Mr. G. P. Field, M.R.C.S., Aural Surgeon to St. Mary's Hospital, communicates to the British Medical Journal a paper on the treatment of this form of deafness with hypodermic injections of pilocarpine. The results (told in most cases in the patient's own words) are of a remarkable character. Persons who had been deaf for long periods, 20 years and even more, and had to rely upon ear trumpets for anything they did hear, gradually, under the influence of the pilocarpine, recovered their hearing, and that in so marked a manner as to cause comment by those who were unaware of their being treated. Mr. Field hesitates to explain how the pilocarpine acts, but there seems to be little doubt of the correctness of his suggestion that it stimulates secretion by the membrane, and maintains this so well as to help the absorption of any solid waxy matter which may be lodging in the ear cavity.

AN IMPROVED VEHICLE TOP SUPPORT، In ordinarily constructed vehicles, when the buggy top is down, its weight is all far back from the bearing or prop, causing great strain on the back bow and also on the whole top and seat, which frequently bends and breaks the bow. The accompanying illustration repre sents the application of a top support, which has been patented by Mr. Sawuel Sanders, of Montezuma, Iowa, designed to obviate this difficulty, and afford a good, easy rest for the top when down, and, even if the joints are thrown so that the top drops down hard, it will not be damaged in the least. Our view represents the improvement applied upon a carriage when the top is up, and when it is partly laid back, while the small figure is an enlarged view of the attachment in place upon the back bow. A shoe, preferably of malleable iron, is secured to the back bow by means of clips and a screw, and this shoe has depending arms the lower ends of which are bent forwardly. A slightly curved yielding rod or spring, adapted to be supported by the rest or prop, is attached thereto at the forward

sanders' vehicle top sopport.
end of the spring by a strap and buckle, the strap passing through an elongated slot in the spring. The rear end of the spring is attached to the depending arms of the shoe by means of ferrules or clips. This device, as will be seen, can be readily attached to any back bow, and by its use the weight of the top is thrown so far back as to entirely prevent damage to any of the parts when the top is thrown down. The devicealso improves the looks of the carriage, particularly when the top is down. Although the improvement has been but recently patented, it is said that some large orders have been already received for sets of these supports.

IMPROVED STEAM FOOD COOKER.

We give an engraving of a new steam food cooker recently patented by Olive C. Christin, of Bodie, California
In the engraving portions are broken away to show the interior construction. This invention is designed to cook several different varieties of food at one operation, without imparting the flavor of one to another.
The invention consists of a boiler and two or more cooking sections arranged one above the other on the top of the boiler. The lower section is provided with passages leading through it and arranged to deliver steam to the upper section without communicating with the lower section. Each section is divided into compartments, the steam entering the lower compartment separately through the perforated bottom. Steam is admitted to the compartments of the upper section through the passages referred to and through apertures in the bottom.
The central compartment, which extends downward through the sections and projects a short distance into the boiler at the bottom, forms a soup vessel. The cover of the soup vessel is made flatand adapted to receive a coffee pot or other cooking vessel. By means of the conical cover the steam of the upper section is

CHRISTIN'S STEAM FOOD COOKER.
deflected so as to strike the coffee pot resting on the cover of the soup vessel. The passages leading through the lower cooking section are clearly shown in the de ail plan view.
By means of this improved cooking vessel, six or eight different kinds of food may be cooked at once without interfering one with the other, thus greatly conomizing space, time and labor

Mortuary Gold.

The French scientist, Mr. Victor Mennier, as the re sult of careful inquiries, asserts that the American dentists insert in American teeth, each year, the enormous amount of 800 kilogrammes (about 1,800 pounds) of the precious metal, which represents nearly $\$ 450,000$. This gold is never recovered, of course, but is buried with the person in whose mouth it is placed. Making allowance for the rapid in crease of the population of the United States and for the continued deterioration of American teeth, it appears that in less than one hundred years the American cemeteries will contain a larger amount of gold than now exists in France.

Chimneys, to be safe from fire and draw well, should be not less than sixteen inches square inside and built up from the cellar Use good brick with clay, instead of mortar up to the comb. Plaster it inside with clay mixed with salt. Top with the best brick well wet and laid in cement. Do not let wood come too close to the brick, and don't let the stovepipe come nearer than eighteen inches to the ceiling.

Making an Attractive Home.

A farmer, whose years have scarcely reached middle life, and who owns a farm of moderate value, asks for a statement of the attractions of a useful character which he may connect with his home, which will make it a real home for his growing children, and without incurring heavy expense. He proposes to effect his object by planning, planting, and pleasing cultivation, and in-door allurements.
A proper answer to this request would fill at least one volume. But we may briefly allude to a few points. Of the out-door attractions, and among the best, are the elements which constitute a neat, well managed farm-neat fences, good crops, absence of weeds, and general success. Young persons have quick eyes, and they draw ready conclusions, and they at once appreciate the difference between pleasing success and slipshod failure. Those who see disorder around them through the year, and from year to year, will rarely find pleasure in the business that pervades the premises. On the other hand, neatness and skill, in connec tion with the growth of handsome crops, fruit-bearing orchards, and a few luxuriant shade trees, will present strong attractions. A well-selected, well-planted, and properly cultivated fruit garden should be connected with every country residence. Hardy and productive varieties, which can be relied on to give fine fruit throughout the entire year-the small berries in early summer, followed by late summer and early autumn stone fruit, and the abundant throng of the many larger ones in autumn, lasting through winter and into spring-constitute all together some of the strong charms of living in the country.
Among ornamental attractions are the well kept lawn and shrubs which more immediately surround the dwelling. While adding much to the beauty of the place, they need cost but little. The selection of shrubs may take in those only which are vigorous and hardy, and which will require but little care after planting, except an occasional training into proper shape. The hand mower will give the lawn the beauty of a green carpet. The cultivation of flowers in a few circular beds cut in the turf will depend on the taste and preference of the occupants. Some young people will have a strong predilection for botany-for a collec tion of native plants-and whenever this is the case every facility should be afforded. Many native plant possess surpassing beauty, and have strong attraction to the mere florist. Others will be drawn to the cul ture of early bulbs, some of which will bloom annually year after year with little or no care such as the cro cus, snowdrop, Siberian squill, and early tulips.

All these plantings may be used at sinall expense to render country homes attractive, and by properly grouping all together, the residence which otherwis might be a very plain home, might be converted into a gem of neatness.
A large opportunity for pleasure and delight is to be derived from domestic animals-horses and cattle among the larger ones, and those not less interesting to many persons in the various smaller animals, chick ens and doves, canaries and song birds generally.

Another point of great importance is the cultivation of the sciences and everything connected with them Where young people are growing up, they should be provided with a room specially for this purpose, which might be termed a museum or library, for books, study, and reading; for drawing and sketching by those who desire : for minerals and plants, and specimens in en tomology for young naturalists; for apparatus in che mistry and physics-all of which would be infinitely better than frequenting vapid parties. There is no difficulty in accomplishing all these, if the owner him self has a taste for them, and the expense will be com paratively trifling.-Country Gentleman.

A New White Lead Process.

The evils attending the manufacture of white lead by the Dutch or stack process are too well known to require insisting on. They may be summed up as ex pensiveness, tediousness, and serious danger to health Attempts have been made from time to time to intro duce other methods of manufacture, which have been recorded by us. These, for the most part, have proved failures. Another process for attaining the desired end inexpensively, quickly, and safely has just been brought under our notice. This process is the inven tion of Professor McIvor, F.I.C., and has been in ope ration for the past nine months at the experimenta works, 47 Clapham Road, London. In this process of manufacture, which was recently inspected, the lith arge is first made from lead ore and then thoroughly purified by washing. It is then put in a vat which is fitted with stirring apparatus, and a solution of ace tate of ammonia is run into the vat upon the litharge The mixture is then agitated for six hours, so that the lead is absorbed into the solution, and it is allowed to settle. The supernatant liquor containing the lead is then pumped over into a second vat, in which it is sub mitted to the action of carbonic acid gas. By this means the lead is precipitated and the acetate of am monia recovered for use over again. If the litharge is very pure, the carbonic acid gas is introduced into the
first vat, with the result that the white lead is produced direct and the acetate of ammonia separated at the same time for re-use as before. In either case, after the white lead has been precipitated, the mother liquor is drawn off and the unwashed white lead is passed through filter presses to extract from it all the mother liquor. The pressed lead is then put in a washer and agitated by stirrers in cold water. After eight of these agitated washings, the white lead is again passed through the filter presses and through a hydraulic press, from whence it is removed to the dry ing room, and, when dry, is ready for use. The resul is a pure white lead, free from crystals and produced in a few hours, as against months by the ordinary method, the cost of production being also much less. The process and the products have been examined by several leading chemists. All the operations in the manufacture of lead under this process are done in the wet, so that there is no dust, and therefore no dange to health from that source.-Chem. Tr. Jour.

ORNAMENTAL ELECTROLIERS.

The illustrations represent two out of a great variety of electroliers shown at the Edinburgh, Scotland, expo

sition. They are represented as showing the qualities and characteristics of Continental rather than English designs, and are in the Renaissance style. Both are handsomely done in gold lacquer, and the sinaller on

has, in addition, a ruby center, which shows up we against the gold.

Sir Thomas Symonds urges on the prime minister the weakness of our fleet, and its entire incapability of performing the duties which would fall on it in time of war, namely, the blockading of ports, the protection of our commerce, and the supply of coal to fleets and coaling stations, duties out of all proportion to those arising in war in former times, when our commerce was about one-twentieth part of its present dimensions, and when sailing vessels only were employed. In those days interruption of commerce meant commercia ruin. Now it means absolute starvation, if complet even for a few successive weeks.
Our desire is to indorse the general position taken by Sir Thomas Symonds, and, as far as we can, to support him in the most necessary and important work he ha done and is still doing in pressing for increased trength in our navy, and increased protection to "England," for it is England herself rather than English coumerce" which is concerned. Half a dozen ships on one side or the other would not affec the question. England depends for her existence, he actual supply of food; on her trading ships. Stop them, and she must be starved, as surely as an invested ortreso
Sir Thomas Symonds points out that in the grea French war it was only our commerce, not our actua ood, that was at stake ; and yet Britain then had 200 battle ships to 180 possessed by the rest of Europe, of which France had 60 . Now we have 501, while France has 357 ; Russia 227-together, 584 ; while France and Italy have together 570 ; France and Germany, 556

As to armorclads, England has 77; France, 48 ; Russia, 45 of some kind ; and Germany, 40.
These actual numbers show England by no means qual to a combination of France and one other But, even supposing it is urged that useless smal vessels have been included in the lists of the foreign powers, and that in tonnage England stands fa better than is here represented; suppose it wer even conceded that she is equal or superior to any two others, is there any guarantee in this fact that we wight not be starved? To attack commerce distributed over the world is far easier than to defend it. Are we to risk so great a danger without any guarantee? I we were starved into an ignominious, ruinous peace, it would be very little consolation to have it proved to us that our fleet, reckoned up in the proper and most scientific way, was more than as strong as any two powers, which was all that we had simed at. Why do we aim at any such arbitrary st adard, which has no particular meaning in it, un!?es we suppose the whole fleets of both belligerent sides to be drawn up com plete and then and there to fight it out ?-a proceeding which would no donbt simplify the question for Eng land, but would be the last thing to be desired by her enemies. It may be asked, then, what standard can be taken? To this we should reply, that this must en tirely depend on the task to be performed. Lord Charles Beresford gave us clearly to understand that not very long since-in fact, during the time of the present government-there was no settled plan as to what should be done if war broke out. This state of things is intolerable-it is madness.-The Engineer London.

How Deer Act in a Snow Storm.
From a gentleman recently down from the moun tains, the Marysville Appeal learns of the strang experiences of various sorts of wild animals during th winter "Deer when caught in a blinding snow storu, huddle together and tramp round and round in a cir cle, beating down the soft snow, so that when a ver heavy fall occurs during say twelve hours, they find hemselves in a snow pen, with walls above them; and if they commence to tramp on top of several feet o snow during a storm, they often find themselves in a corral of snow, with a wall surrounding them to a height of ten or twelve feet when the storm clears off being virtually imprisoned in a snowy prison pen from which escape is inpossible until the spring thaw of the season.

There lives an old miner on Cañon Creek, in Sierra County, several miles above Brandy City, who was taking a stroll near his cabin last winter after one of the heavy snows, when he came across one of these deer pens in the snow, and there imprisoned were sev enteen deer of various sizes. They were in a circula pen of snow, with walls fifteen feet high. Upon the man's appearance the deer became quite excited, and huddled together and dodged from one side of the pen to the other. However, as hunger came upon them they became more docile, and the frequent visits of the miner, with boughs and buds from adjoining trees, which he threw into the pen as food, caused the dee to become regular pets, and to watch for the visits of their protector. After a while the man placed a ladde in the pit, and spent a great deal of time in handling his pets. Occasionally he would take one out for food s meat became scarce, and in this way used several of the deer, but he had most of the deer yet in a state of domestication. It is said he has a deer ranch in his mountain home, mach after the fashion of a cattlo ranch on a small scale."
The Appeal is also informed that a similar band of deer was found in one of those deadly snow pits near Washington, Nevada County; and was likewise res ued. The streets of Downieville were enlivened last winter by the appearance of deer which were driven rom the mountains down to the river towns by starva tion, and domesticated by kindness and food. As the now has been disappearing, many carcasses of dee have been found where they have perished in the deadly snow corral. The heavy and sudden snows of the past winter have caused fearful mortality among the deer which did not escape the lower altitude. Marysville (Cal.) Appeal.

The Phonograph as a Disseminator of Disease
It is reported that the Philadelphia park commis sioners have ordered the disuse of the public phono graphs heretofore in use in Fairmount Park, on ac count of the danger of their serving to disseminat disease. This danger is doubtless very slight, like that of injury to the ear, and probably neither danger is worth consideration if the instrument is kept reason ably clean and used properly; but its promiscuous use in a public park does not seem to admit of perfect security in this respect, and the announcement tha the phonograph company intends to substitute a plat ar piece for the penetrating one now in use, avowedly or the reason that there are persons who object to the present form, goes to show that the Philadelphia com missioners are not the only people who entertain th idea of danger in the phonograph.-N. Y. Med. Jour.

Sorrespondence.

Cloaring Waste Pipes.

To the Editor of the Scientific American
The last issue of the Scientific American, under the caption "Valuable Points by a Plumber," gives directions for clearing waste pipes by the use of soda lye. Experience prompts me to suggest the use of potash lye instead. The saponifying effect is more complete, and the result more easily washed away than if the less energetic soda lye be used.
Pottsville, Pa., August 11, 1890.

How Snakes Climb.

To the Editor of the Scientific American:

In the Scientific American of August 2, 1890, page $69, \mathrm{Mr}$. John E. Garside describes the black snake's manner of tree climbing, yet he does not state how the snake with its smooth and highly polished abdominal plates holds on to the bark. It is not by simply preseing its body close to the bark, but by turning its abdominal plates to a certain angle, so that their sharp edges catch upon every little ridge or prominence in the bark, thus giving many points of support. The plates or scutellæ on the under surface-the black snake has 170 to 200 of them-and the ribs, are to the snake what the feet are to the millepede.
When a snake glides through grass or over rough ground, it propels itself forward by pressing the curves of its body against resisting objects, the same as in the act of swimming. A snake cannot climb the trunk of a tree with the same rapidity with which it moves on the ground through grass and bushes, because it has no lateral support with which to propel itself. On the ground it has a double mode of propulsion, while on the tree but one. I have sometimes seen snakes in climbing move in the manner of an earth worm, that is, by alternately lengthening and contracting the body. The posterior abdominal plates having been firmly fixed, the anterior portion of the snake is stretched upward, takes a firm hold with its plates, when the posterior portion quits its hold and is drawn upward and again aiichored, and the movement repeated.
Mr. Garside is wrong in his supposition that the black snake climbed the tree " to get in a position to catchflies, in which the place abounded." The black snake never wastes its time at fly catching; it is not insectivorous. It feeds upon young and old birds, rodents, frogs, and small snakes. The snake probably was on the watch for certain birds that were likely to be attracted by the numerous flies.
C. Few Seiss.

Philadelphia, Pa., August, 1890.

Further Reports from Amateur Electricians. To the Editor of the Scientific American:
I have had splendid success in making induction coils as described in Mr. Hopkins' superb work on such subjects. My method, which is a slight modification of Hopkins', is as follows :
The spool is placed in a screw-cutting lathe, geared to cut a very fine thread. No. 36 B. and S. bare wire is arranged to feed from the spool it is shipped on, through a hole in a piece of hard wood placed in the tool post, on to the spool in the lathe. When all is made ready, a thin coat of shellac varnish is put on the spool and the wire wound as rapidly as one wishes, the whole length of the spool. If the spool is a long one, the varnish may be fed just ahead of the wire as you proceed with the winding, and as the last few turns are put on, the entire winding is covered generously with shellac. After waiting a few minutes for the varnish to set, the layer is covered with writing paper, the gear reversed and the process repeated until the desired number of layers have been wound. I have
just finished a spool containing 9,000 turns of wire, which was wound in a part of one forenoon, and much other work done while the varnish was drying. The lathe was run as rapidly as I could make it go, which would be out of the question if silk-covered wire had been used. These points, together with the fact that bare wire is so very much less expensive than covered make the above an admirable method of winding coils of fine wire, and for which I, for one, am very gratefu to G. M. H.
Peoria, Ill., August 2, 1890.
Harold Plowe.

To the Editor of the Scientific American

I noticed in your valuable paper of July 19 an article headed "Electrical Workers will Please Re port," and take this liberty to advise you as to a number of experiments which I underwent in testing the eight-light dynamo, which I made per the instructions contained in Supplement, No. 600. The dynamo was made by myself during my two years' study at the Rose Polytechnic Institute, at Terre Haute, Ind. I completed the working drawings, blue prints and patterns during the freshman year. I made everything, with the exception of the socket and lamp and oil cups. I migh there mention that the wrought iron rings which I used in the armature can be purchased at any hard ware store, but the diameter of bore was smaller than
given in the instructions, thus increasing the weight of the armature. I used good, well seasoned maple on the shaft as an insulator, and the rings were firmly held together by long brass rods previously insulated, before inserting them in the holes. The field weighed 90 lb . before wire was wound on, and was made of soft gray iron. The armature rings were insulated from each other by paper as per Hopkins' suggestion, but to insure a good distribution of magnetism, I shellacked each disk of paper as I put it on ring; 12 lb . of No. 18 wire were used on the fields, a wrapping of shellacked paper being put around each layer, and wire thoroughly shellacked; 3 lb . No. 20 were used on armature, and thoroughly shellacked, held down to avoid centrifugal force by fine brass wire and adhesive tape. I put an incandescent lamp on top of machine, and lighted it by a shunt from the main current. A wooden cap was screwed on top of fields, under which the fine taped wire (such as used as hangers for incandescent lamps) was laid, terminals connected to the two binding posts which you see on top of machine, and other terminals connected to lamp socket. I believe this is all of any importance which is necessary for me to mention. The machine runs excellently as a motor, and requires a pressure of about 70 to 80 volts to run it. I made a large fan 16 in . in diameter and keyed it to pulley, and it is now being used as a motor in the Express Publishing Co., Terre Haute.
Something which might be well to note is the speed of the machine when a pressure of 130 volts is put into it. It speeds up to the enormous rate of 7,500 revolutions per second. I soon found this was far too fast and cut the speed down to 2,500 by making a rheostat of 15 lb . of small galvanized iron, which I made into small coils or spring, and put it in the field magnet circuit, that is, the current went in at commutator, thence to one pole, thence through rheostat, thence through second pole (or field), thence back to dynamo (or generating machine at electric light station). I have made several bells, spark coils, etc., but not as per your suggestion. Ain lighting house burners by an 8 lb. No. 14 copper wire spark coil. I am now em ployed at the Brush Electric Company, this city, and will probably find some time to experiment on Mr. Hopkins' suggestions in his "Experimental Science," and should you wish any of my tests, I will gladly urnish you with report.

EDWARD S. Allen.
Cleveland, Ohio, August 2, 1890.

Career of a Billiard Ball.

There are few men or things that are called upon to roll into more close corners or queer situations than is a billiard ball. That is, of course after it has become a full-fledged billiard ball. Its career prior to this is, of course, rather monotonous. An elephant, either in Africa or Asia, carries it with him in his wanderings, very near to his trunk. It is then known as a tusk, and has been the cause of some tall lying in the way of elephant stories told by various persons, of whom Rider Haggard is now the foremost representative
The transition from being an elephant's tusk to being a billiard ball in good standing is not sudden. It takes time to effect it. In the first placeit is not every tusk that is suitable to make a billiard ball from. There are several factories in New York City, and they say that it takes a good while to turn out a perfect ball. The firms here, however, have to do but part of the work for they get the tusks that are of the proper quality sent to them cut into sections, each section being large enough to allow of the turning of a single ball out of it. Most of this material comes from Hamburg. Th ivory is so marked that the turners here know what part of the tusk each piece comes from, and in this way an calculate as to the grain and quality of the article It requires skilled labor to turn out a billiard ball One-half of it isfirst turned, an instrument of the fines steel being used for the work. Then the half-turned ball is hung up in a net and is allowed to hang there for a year to dry. Then the second half is turned, and then comes the polishing. Whiting and water and a good deal of rubbing are necessary for this. It is necessary in the end that the ball shall to the veries fraction of a grain be of a certain weight.
It is after being placed on the billiard table that the real life of the billiard ball commences. There ar pores in ivory just as there are in the epidermis. These may close, and then, if in a hot room, the ball is likely to crack, or it may crack by reason of concussion with other balls. During the first stage the billiard bal may mix in almost any society. It may gyrate under the magic cue of a Slosson, a Schaefer, a Vignaux, or some other champion, or it may be toyed with by fair dames in private billiard rooms in swell houses on Murray Hill.
When it cracks it drops a step lower. It is sent to a actory and a small fraction of a nick is shaved off from it. You nextsee it in some some second-rate billiard room on Sixth Avenue. Finally it rolls even lower and into some second-hand shop, and thence into a Bowery saloon, where "crooks" manipulate it to the dismay and discomfiture of visitors from the rural districts. The rest is soon told. The balls become cracked, de crepit, and practically useless for the purpose for which
they were made. Then they are bought up by dealers, are cut up and made into smaller articles. If the worst comes to the worst, they can be burned and used in the making of ivory black. A checkered life enough is that of a billiard ball.-Mail and Express.

Meat Preservatives.

According to Mr. E. Polenske, the composition of ome of the preparations employed in commerce for the preservation of meat is as follows :

SOZOLITHE.

THE "MINERVA" CHINESE PRESERVATIVE POWDER. Cbloride of sodium

Boric acid

Sulphite
Water. \qquad

Crystallized borax.
Chloride of sodium
AUSTRALIAN SALT.

With 0.5 per cent of some hydrocarburet.
RUGER'S BARMENITE.
Boric acid.
Chloride of sodium 50 per cent.
the true australian meat preservative.
According to analyses of three specimens from diferent sources, this is bisulphite of lime. This is what s unwittingly employed in solutions by butchers, on ummer afternoons, for painting their meat. It is sold them under various fantastic names. The liquid is othing but a solution of lime in sulphurous acid and s used every day in brewing, as a disinfecting agent The bisulphite of lime, applied to meat, preserves it from the attack of flies and keeps it looking well. There is no danger attending the use of it, since a por tion of the sulphurous acid volatilizes, and the sulphit changes into sulphate of lime, or plaster, which, a well known, is innocuous. A simple washing, more over, suffices to remove the sulphite completely at the moment of preparing the meat. This preservative agent is particularly valuable during the heat of summer, and the use of it can be very safely recommended In commerce, it is found in a more or less concentrated solution containing :

Sulphite of lime Sulphurous acid

${ }^{20 \cdot 46} \stackrel{10.4}{30.04}$ "Chronique Industrielle
Production of Slate
The statistice gathered by William C. Day, for the new census, place the total value of all slate produced n the United States in 1889 at $\$ 3,444,863$. Of this mount, $\$ 2,775,271$ is the value of 828,990 squares of oofing slate, and $\$ 669,592$ is the value of slate for al other purposes besides roofing.
As compared with the statements of the tenth censu report of 1880 on stone, the roofing slate product of 889 is nearly twice as great in number of squares and in value.
Twelve States at present produce slate. A line drawn on the map from Piscataquis County, Maine, to Polk County, Georgia, and approximately following the coast outline, passes through all the important late-producing localities. According to amount and value of product, the most important States are, in the order named, Pennsylvania, Vericont, Maine, New York, Maryland, and Virginia. In the remaining six States productive operations are of limited extent, and in the case of Arkansas, California, and Utah, of ver recent date.
The twelve States referred to do not include all those n which merchantable slate is known to exist, since discoveries promising good results for the future have been made in a number of other States, among which may be specially mentioned Tennessee, where opera tions of production are beginning
The slate quarrymen of the country, and to a con siderable extent the firms operating the quarries, ar ither Welsh or of Welsh descent, many of them hav ing learned the methods of quarrying slate in the celebrated quarries of Wales.
The quarries are operated on an average of about 220 days in the year. The idle days are the result of rainy weather and holidays. The first day of every month is regarded as a holiday by the Welsh quarry men, and no work is ever done by them on Satur day afternoons.
The average wages for the entire country paid to oremen or overseers is $\$ 2.48$ per day, for quarrymen and millmen $\$ 1.56$, for mechanics $\$ 1.64$, for laborers $\$ 1.27$, and for boys 76 cents.
the early mission ebtablibiyents in califorinia. We present herewith, from photographs taken by Mr. W. J. Rea, of Santa Barbara, views of some of the old wission houses established in California by the Catholic missionaries in the last century.
The California mission began at about the period of the Awerican revolution, and attained a wonderful degree of prosperity, but is now as much a matter of the past as are the Iroquois or Huron missions of the North. Generally speaking, a rectangular building of eighty or ninety yards frontage, and about as deep, composed the wission. In one end was the church and parsonage. The interior formed a large and beautiful court adorned with trees and fountains, and surrounded by galleries, on which opened the rooms of the wissionaries, stewards, and travelers, the shops, the schools, store rooms, etc., and the granary. A part, separated off and called the monastery, was reserved for the Indian girls, and here they were taught by native wowen to spin and weave, and received such other instruction as was suited to their sex. The boys learned trades, and a dignity being thus given to labor that impelled all to
and other articles. The surplus was spent in the purchase of necessaries for the mission.
The mission of Santa Barbara, shown from two points of view in Figs. 1 and 2. was founded by Father Palou, in 1786, at the foot of a chain of arid mountains. The church fs of stone, with two towers and an extensive wing, tiled roofs and arched corridor.
The mission of Santa Inez (Fig. 3) was founded in 1797, on a beautiful prairie embosomed in the hills, a perfect garden of fertility. The building is similar to that of Santa Barbara, but differs in the appearance of the church. In front there was a large brick inclosure where the females bathed and washed. To the right were the gardens, filled with choice fruit trees; and, on the left, a few clusters of Indian huts and tiled houses.
The mission of San Luis Obispo (Fig. 4) was founded by Father Serra, and the church and barracks were begun in 1772. It is built near the extremity of a small pass through the hill, where the sun casts its burning heat in a degree almost insufferable. The mission, though formerly wealthy, is now of little in portance. The buildings are in a decayed state, and
four years, over $16,000,000$ oz. of silver have been produced from the Broken Hill Proprietary Mine-a record nearly or even exceeding that of the most famous of the Leadville mines.
The European and American exhibits are of a less systematic character than those of the colonies, being confined to comparatively few localities. The Harney Peak tin district in the Black Hills of Dakota shows a arge series of specimens of the coarse, tin-bearing ranite which represents the most considerable find of the ore of that metal made as yet in the Uuited States. This is very unlike the tin stuff of the older districts of Cornwall, but a similar condition appears o prevail in many of the Australian tin mines. The quicksilver mines at Avala in Servia-a comparatively new find of that metal-are exceedingly well represent ed, the specimens of crystallized cinnabar being of the highest beauty and interest. The great Bolivian silver mine of Huanchaca is, or rather is to be, represented by a characteristic series of specimens of the rich ores rom which from eighteen to twenty-two tons of silver are produced monthly. This is one of the most valuable wines in the world, and is in the comfortable pos

Fig. 1.-santa barbara misbion-front view.

Fig. 3.-MISSION OF sANTA INEZ.

Fig. 2.-santa barbara mission-Perspective view.

Fig. 4.-mission of san luis obispo.

EARLY MISSION ESTABLISHMENTS IN CALIFORNIA.
embrace it. Each mission was directed by two friars, one of whom superintended the mission building and the religious instruction, while the other superintended the field labors, in which he always took part, teaching by advice and example. The disci pline was severe, and the whole establishiment was conducted like some vast factory. This, in modern times, has excited great outcry; but the missions have been abolished, and the Indians left to the "enlightened" men of our day, under whose care they have disappeared like smoke be fore the wind.

Around the mission building rose the houses of the Indians and of a few white settlers, and at various distances were ranches or hamlets, each with its succursal chapel. In a little building by the mission was a picket of five horsemen acting as soldiers and couriers. The Indians of a mission were not all of the same tribe, but perfect harmony prevailed, and when the season of work was over, many paid visits to their countrymen, and seldom returned alone. In this way, the missions constantly received new accessions, for the good friars had the art of making labor attract tive. When the crops were harvested, each mission sold or shipped its breadstuffs, wine, oil, hemp and cordage, hides and tallow, and from the returns distributed to the Indians clothes, handkerchiefs, tobacco,
everything about them bears the appearance of ne glect. It is surrounded by high and rocky hills.
International Exhibition of Mining and Metallurgy. This exhibition, lately opened at the Crystal Palace, London, contains many objects of interest. Prominent in importance, says the Engineer, is the contribution rom New South Wales, which occupies an area of about 15.000 square feet. Among its contents are the coals and bituminous minerals, especially the white can-nel-kerosene shale or petroleum cannel-which, since the exhaustion of the boghead mineral, is probably the richest gas-producing mineral in the world, yielding over $15,000 \mathrm{ft}$. of 48 candle gas or 150 gallons of oil per ton. This, however, is only a subordinate product, the output of ordinary coal, mainly of a coking character, having attained to $3.655,000$ tons in 1889, the area covered by coal-bearing rocks being estimated at nearly 24,000 square miles. Gold mining, though still of importance, is less productive than formerly, owing to the exhaustion of the richer alluvial deposits, while the deep vein mines yield refractory minerals, which can only be reduced with difficulty. The most important of the newer mineral developments is that of the silver lead ore deposits in the Barrier ranges, near the western boundary of the colony, where, during the past
tion of having about 1,000 tons of silver in its reserves underground, besides undressed ores and tailings of underground, besides undressed ores and tailings of
considerable value at the surface. The chief drawback, namely, the extremely inaccessible position, the mine being situated in the Cordillera of Bolivia, about $14,000 \mathrm{ft}$. above the sea level, has now been in great part overcome by a railway, 400 miles long, connecting it with the Pacific coast at Autofagasta, where very large reduction works have lately been started

A Phonograph to Record on Two Cylindors.
A phonograph to record on two cylinders simultaneously, so that one may be retained as a file, or so that a message may be repeated from one cylinder to another, is one of the most recent improvements in this line. The construction is said to permit of listening to the record on one cylinder and simultaneously therewith dictating a reply to the other cylinder, or to allow two persons to dictate at the same time. It will also reproduce two like messages simultaneously, thereby greatly increasing the volume of sound, or a cylinder bearing a record may be placed in the phonograph with one having no record, and the record be reproduced on the plain cylinder while the operator listens. This phonograph is a patented invention of Mr. James P. Magenis, of North Adams, Mass.,

A GAS WELL BLOW-OUT AT PULASKI, N. Y. Our illustration represents a gas well blow-out which occurred at Pulaski, N. Y., in May last, and presented some remarkable characteristics. The blow-out took some remarkable characteristics. The at 12 o'clock at night, when only two men were at work, but, notwithstanding its violence, no one was injured, and as one of the workmen had the presence of mind to extinguish his lamp, the gas did not take fire. The well was then 913 feet deep, when the principal workman noticed the kinking of the rope, showing that the tools, weighing 2,000 pounds, were rising, indicating great pressure. He and his assistant immediately fled, and, as described by the Pulaski Democrat, in an instant the roar became terrific, the air was filled with gas, causing a dense fog, and stones and sticks and timbers flew in every direction. The flooring to the derrick was blown into the finest kindlings. The crown pulley at the top of the derrick was blown off, and the casing, solidly anchored down in the hole for 640 feet, was blown hundreds of feet into the air. Some of it was thrown about 300 feet southeast of the well, while other lengths struck the highway and plowed a ditch a foot deep right across street. The cap head buried itself by the side of the road, two feet underground, while the temper screw and rigging was embedded in the ground close by, but t wisted all up like a rope. One length of the casing was nicely balanced on the walking beam. The roar is said to have sounded to those who lived near by like the explosion of a cannon.

The next day it was found that the well had 913 feet of water, through which the gas boiled up with great force, and all around the well through the soft ground the gas bubbles came up freely. The wash of the boiling gas and water covered the mouth of the well with stones, some of which fell in and thus added to the diffculties of the workmen in their subsequent efforts to "fish out" the tools at the bottom of the well-a work which was immediately com menced, although the flow of gas has since become quite small. The well was cased to a depth of 600 feet, each length of casing being twenty feet, and weighing ten pounds to the foot. All of this was blown up through the derrick, and it has ever since been a problem among the local authorities of the place as to what amount of actual pressure was developed in the well to produce such effects.

Ancient Lake Cliffs and Terraces. The facility and certainty with which the vestiges of ancient water margins are recognized and traced depend on local conditions. The suall waves engendered in ponds and sheltered estuaries are far less efficient in the carving of cliffs and the construction of embankments than are the large waves of larger water bodies. The element of time, too, is an important factor. A system of shore topography frow which the parent lake has receded is immediately exposed to the obliterating influence of land erosion and gradually loses its character and definition. erosion and gradually loses its character and definition.
The wave-built terrace is distinct from the wave-cut terrace in that it is a work of construction, being composed entirely of shore drift, while the wave-cut terrace is the result of excavation and consists of the preexistent terrane of the locality. The wave-cut terrace is overlooked by a cliff rising from its upper margin, and only appears on the wargin of an open basin broad enough for the propagation of efficient waves.
The great Lake Bonneville (of the Quaternary period), in the division of the Great Basin of Utah, is known by the records on its ancient shore lines. All about the Great Basin of Utah the lower slopes of the mountains are skirted by level tracings-not a single line merely at a single level, as in the Coast Range of California, but a series of lines at many levels, testifying to a system of oscillation of an ancient lake. The highest water line is 1,000 feet above the level of the Great Salt Lake, and over every foot of the intervening profile can be traced evidence of the action of waves. The point of outlet of this ancient lake was at the northern extremity of Cache valley. The sill over which the water at first discharged was soft, and yielded easily to the wear of running water, permitting the lake level to be rapidly lowered, but eventually a reef of limestone was reached; by which the erosion was checked and held at a nearly constant level
until the outflow was finally stopped by climatic changes which diminished the water supply.
The history of this great lake is written by wavesculptured topography and by lacustrine deposits. The Bonneville basin is surrounded by and interspersed with mountains. Form and substance conspire to prove that the lake had a beginning as well as an end, and before its inception the lake basin was for a long time subjected to the ordinary laws of sculpture by the action of rain. Nevertheless, the Bonneville shores are almost unwodified.-Min. and Sci. Press.

Bismarck's Regimen.

The details of Prince Bismarck's present dietetic egimen, says the British Medical Journal, may be interesting to those interested in the treatment of obesity. He says: "I am only allowed to drink thrice a day, a quarter of an hour after each meal, and each time not more than half a bottle of red sparkling Moselle, of a very light and dry character. Burgundy and beer, of both of which I am extrewely fond, are strictly forbidden to me; so are all the strong Pheni

a gas well blow-out at pulaski, n. y.
and Spanish wines, and even claret. For some years past I have been a total abstainer from all these generous liquors, much to the advantage of my health and my 'condition.' in the sporting sense of the word. Formerly I used to weigh over seventeen stone. By observing this regimen I brought myself down to under fourteen, and without any loss of strength-indeed, with gain. My normal weight now is one hundred and eighty-five pounds. I am weighed once a day, bs my doctor's orders, and any excess of that figure I at once set to work to get rid of, by exercise and special regimen. I ride a good deal, as well as walk. Cigar smoking I have given up altogether; it is debilitating and bad for the nerves. I am restricted to a long pipe, happily with a deep bowl, one after each meal, and I smoke nothing in it but Dutch Knaster tobacco, which is light, wild, and soothing. Water makes me fat, so I must not drink it. However, the present arrangements suit me very well."

Meat Cooked in a New Tin Pail.

At Elizabeth, N. J., Everett Gordon, an engineer on the Jersey Central, his wife and son lately were poisoned by eating some food which had been cooked in a new tin pail. They were attacked with severe cramps and vomiting. Prompt medical attendance saved their lives. An investigation showed that the victims were suffering from lead poisoning.

The Little Toe
The small toe in man has recently (Nature learns rom Humboldt) been made a subject of study by Herr Pfitzner. It is well known that thumbs and great toes are two-jointed, and the other fingers and toes generally three-jointed. In many human skeletons, however, the small toe is found to be two-jointed, the middle and end pbalanges being fused into one piece, though still distinguishable. This variety occurs in about 36 per cent of cases, and, as a rule, in both toes simultaneously ; and there are more instances amoug women ($41 \cdot 5$ per cent) than among men (31.0 per cent). One naturally thinks here of shoe pressure causing union of two bones originally separate. But it appears that in children, from birth to the seventh year, and in embryos from the fifth month, the fusion occurs about as often as in adults. Further, the material of examination was not from a class of people who wear tight shoes. Herr Pfitzner concludes that the small toe in man is in course of degeneration (Ruckbildung), and that wit hout apparent adaptation to external mechanical influences. Processes of reduction arealso observed in the connected muscular system. The question arises, has the tendency reached its liwit, or have we merely the first act of a total degeneration of the fifth toe? The author inclines to the latter view, but desires an extension of these researches among peoples who do not wear shoes or sandals, or have only of late begun to wear them. In living persons, it is not difficult to determine, by stretching and bending, whether the small toe is two or three jointed; and in this way adequate data wight be had for determining any percentage differences in occurrence of the old and new form in different races; also for investigating the inheritance of acquired characters, members of several successive generations being examined.

Luminous Water.

Ernest Fahrig, in the Chemical Trade Journal, narrates that, being in a dark room, having in his hand a sealed bottle partly full of a solution of ozone in water, he idly shook it up ; whereupon a soft phosphor scent glow of light floated above the surface of the water and pervaded the space in the upper part of the bottle. The appearance was only momentary ; but on shaking up the liquid again immediately afterward, the light reappeared, although in much diminished intensity. Further repetitions of the shaking failed to produce any re sults; but after an interval of ten days, the liquid had apparently regenerated its luwinous power, for the same effects could be produced with it, although weaker. The phenomenon was afterward observed in another way, and some specially remarkable results were obtained by pouring a small quantity of an ozone solution into a glass beaker containing ordinary water. At first the cone-like projection of the solution, where it falls into the water becowes luminous; and then the light suffuses the whole mass as the liquids become thoroughly mixed, finally dying away. It is described as a soft phosphorescent glow, which quickly spreads over the mass of fluid or gas, as the case may be, and as quickly disappears.

A correspondent of the Building News (London, England) writes to that paper asking for information as to how best to get stains out of granite. Several correspondents reply. "Elbow Grease" says, " You have a troublesome job before you in attempting to get smoke and soot stains out of granite. Try this: A paste of 1 ounce oxgall, 1 gill of strong solution of caustic soda, $11 / 2$ tablespoonful of turpentine, with enough pipe clay to ruake it thick and consistent, scour well." "A Mason" is of opinion that "Washing is about as useful in getting stains of soot out of granite as tickling with a feather or fixing an electric belt round the window sill. Pick out a place where the stain is worst, and as a sample apply the following Mix together $1 / 4$ pound whiting, $1 / 4$ pound soft soap, 1 ounce washing soda, and a piece of sulphate oi soda as big as a walnut. Rub it over the surface you propose to treat, let it stand four and twenty hours, and then wash off. If it succeeds, try another portion." "G. D. M." replies that "Smoke and soot stains can be removed with a hard scrubbing brush and fine sharp sand, to which add a little potash."

PHOTOGRAPHIC NOTES

Cleaning Negatives.-By the use of sodium sulphite in the developer, the staining of negatives from the pyrogallic acid is generally avoided. When such stain does appear, it is easily removed in a few minutes, sometimes in less time, by immersion in a bath of alum and citric acid.

Alum.

Citric acid.. 1 "。 1 "~
Should a yellow stain appear in a negative after fix ing and washing, it is due to the insufficient fixing out of the unacted-on silver, and is very difficult to remove. Negatives thus stained may be cleared by immersion in a weak solution of cyanide of potassium, ten grains to the ounce of water. Care must be taken not to let the action be too prolonged, otherwise the density of the negative will be reduced too much
Removing Hypo from Gelatine Films.-In all the operations of intensifying or reducing negatives it is very essential that every trace of the fixing salt, hyposulphite of soda, be removed from the film if a har monious result is to be obtained. Belitzki's method, as described in the American Annual of Photography, is recommended.

Water.................... ... 300 oz gr
Add to the milky liquid thus formed a solution of sulphite of zinc (600 grains dissolved in from 80 to 100 ounces of water), shake the mixture well and decant the clear solution. This supernatant solution of hypochlorite of zinc should be kept in glass stoppered bottles. One ounce mixed with sixty ounces of water will remove the last traces of the fixing soda. As long as the solution smells of hypochlorous acid; it remains active.
A solution of bromine in water of a light sherry color is said to destroy hypo in the gelatine film.
Herbert B. Berkeley.-We regret to learn of the death of Mr. H. B. Berkeley in England, who we believe first proposed the idea, about 1880 or 1881 , of using sodium sulphite in the pyro developer as a preservative, which also rendered the developer capable of producing clear, stainless negatives.
We well remember the slowness with which this new addition to the developer was adopted by the leading dry plate manufacturers of this country, who now universally use it. Mr. Berkeley patented in England the addition of bisulphite of soda to the fixing bath, which has recently been recommended in connection with eikonogen-developed negatives. He was also the first to practically demonstrate the possibility of developing successful images on chloride of silver by means of the ordinary alkaline developer.
Rev. T. F. Hardwich, author of "Hardwich's Photo graphic Chemistry," has also passed away. He wrote a very concise practical book applicable to the days of wet plate photography, which met with a large sale, and has now reached its ninth edition. Says the British Journal of Photography: "Of late years Mr. Hardwich's contributions have been almost exclusively confined to the improvement of the optical lantern, in which he continued to feel a deep interest. He looked upon the lantern as a great means of education, and he employed it extensively in his parochial work. The rough Durham miners, with their wives and families, used to crowd to hear him, and the Vicar of Shotton was looked upon as a sunbeam who illumined the many dark shadows in their path way.'
Toning Aristotype Paper.-According to Mr. T. C. Porter, in the British Journal of Photography, a very pleasant brown tint may be given to the prints by im mersing them after the first washing (which should be moderate) for a second or two in a solution made a follows:

Hyposulphite soda... 4 oz.
to which add four or five drops of a saturated solution of potassium ferricyanide, then washing in running water for three or four minutes, and toning and fixing as usual in combined toning and fixing bath for such paper. Prints $s 0$ treated should be in the first place considerably over-printed, as the ferricyanide bath much reduces their intensity. An accidentally overprinted print may be made into a satisfactory picture After the ferricyanide bath, the prints seem to ton more readily than without it.

A New Property of Gelatine.-While studying the action of metallic chlorides on bromide of silver gela tine, we have made the discovery that gelatine will dis solve cold in a solution of barium chloride. The consequences for photography which may arise from this peculiar property have induced us to examine into the matter further. Other bodies which present a similarity from a chemical point of view, such as the chlorides of potassium, sodium, calcium, etc., do not display this capacity for dissolving gelatine, nor do their iodides or bromides. The chloride of strontium is, however, an exception, and possesses the same pro perty as the chloride of barium, though in a much smaller degree.
With a solution of fifteen per cent of barium chloride the solubility is so great that sufficient gelatine may
be dissolved to render the solution sirupy. The liquid keeps well and does not decompose under the action of the air. Allowed to evaporate spontaneously, it leaves behind a solid white substance, which, when examined under the microscope, shows itself to be composed of an amorphous mass of filaments mixed with chloride of barium, but it does not appear that any combination has taken place between the two substances. This solid substance dissolves in water without leaving any sediment behind. When the barium salt is precipitated by means of sodium sulphate, chloride of sodium is obtained in solution, and the gelatine does not then solidify in the cold
From these observations we have drawn two conclusions which may be of practical use in photography. These are :

1. The presence of barium chloride in gelatine emul sions should be avoided. We have sometimes found traces of this compound in chloride of silver gelatine, and have then observed that the films have a tendeney to detach themselves from the plate.
2. The property we have observed might be employed in treating emulsion residues.
It suffices to add barium chloride to the said residues to cause them to dissolve in the cold. If the liquid b then diluted till it be no longer viscous, the haloid silver collects at the bottom of the vessel, and the dissolved gelatine may be removed by washing and decantation. The employment of heat and acids may thus be avoided without causing the cost of money to be much raised.
Finally, the chloride of barium may be employed for developing carbon prints in the cold, hut in this case the image shows a tendency to leave its support. $-A$. \& L. Lumiere, in Moniteur de la Photographie.
Reducing Ooerdense Negatives.-According to the Beacon, the following formula of L. Belizki's is said to possess several advantages over Farmer's well known potassium ferridcyanide and hypo. It must be mixed in the order given.

It will retain its working strength if kept in the dark, and may be used over and over, so long as it has a green color.
Various Eikonogen Developers.-The use of eikono gen as a standard developer for the gelatine dry plate is advised by many manufacturers, and as a couse quence its consumption in photographic establish ments is greatly on the increase.
In our own photographic work for nearly a year we have employed it exclusively in preference to any othe developer, and have secured uniform results. We have found it to be more economical than either the pyro or the ferrous oxalate developer.
Since its first introduction eikonogen has been much improved. It is now supplied in clear, pale, yellowish reen crystals, instead of the dark green powder, as a first. When the crystals are dissolved with the prope amount of sodium sulphite, a clear, light yellow solu tion is obtained. The formula we now use is as fol lows, based on 437 grains to the ounce :

No. 1.

odium sulphite (Merck's c. p. crystals)
 . 2 ounces.

Eikonogen..............................
Water (distiled or rain water preferred)
4 ounces.
To develop an 8 by 10 plate, having had a prope exposure, take 4 ounces of the above solution and ad $1 / 2$ ounces of water.
Then apply to the plate and continue it in the de veloper until the picture acquires sufficient density Six or eight plates may be developed successively in the same solution.
It will be observed that no alkali is necessary, which is one of the latest improvements. In case the picture should appear too slow, or the plate be underexposed then half a drachm at a time of the following solution may be added until the desired detail is brought out :

No. 2
Water..
No. 2.1.
After two or three plates have been developed wit the No. 1 solution alone, it is advisable to add a hal drachm of the potash solution, since it will overcom the slowing effect of the bromine given off from the plate during development.
It is also advisable to preserve some of the old de veloper in a small bottle, and when starting with fresh solution of No. 1, add to it 1 drachm of the old developer.
Another formula advised by the Beacon, based on 437 grains to the ounce, is as follows
A.

Dissolve the sulphite in the water, warm urry, and add the eikonogen, shaking till dissolved. B.

Sodium carbonate............... 2 ounces.
Water.....................................

For plates that have had an ordinary fair exposure use 1 ounce of A and B, and add 1 ounce of water. The developer leaves nothing to be desired, giving perfect detail and full density, within a reasonable time, while the deposit is of such a nature as not to lose much in the fixing solution.
That the keeping qualities of solutions of eikonogen with sodium carbonate, after use, are greater than is generally understood may be known by the fact that we have recently developed a technically excellent negative with a solution that has been used over and over again, some part of which had been made for eight months.
H. E. Gunther, in the Photo. News, recommends the following mixed hydroquinone and eikonogen devel oper. It acts as powerfully as eikonogen without fogging the shadows, and yields the characteristic intensity of hydroquinone:

These are dissolved in-
................. 1,000 c. c.
After cooling down, add-
In well stoppered bottles the developer keeps for onths
Mr. Eugene Himly has ascertained that the addition of glycerine improves the keeping qualities of the eikonogen developer, while the addition also of yellow prussiate of potash acts as a preservative, gives clearer shadows, prevents fog, and produces more contrast in the high lights. His developer is made as follows :

Water.	1,000 c. c.	
Glycerine.	100 2 grammes.	
Potassium meta-bisulphi		
Sodium bisulphite.	75	"
Eikonogen	12	"
Carbonate of potassium.	60	"
Hydroquinone.	4	"

It should be diluted with one or two volumes of water before applying to the plate, unless the plate is undertimed.

From notes by Colonel J. Waterhouse, in the Photo. News, the following developer for bromide paper en largements is stated to answer very well. It is pro posed by Dr. Krugener :

Distilled water.. 20 oz.	
Sodium sulphite.	320 grs .
Sodium carbonate (crystals)	240
Eikonogen..	

and as required according to exposure, add 10 drops of a 1 to 50 solution of bromide of potassium to each 1,000 c. c. of developer.
The brown coloring of eikonogen crystals which has been noticeable of late results from oxidation, and ha a staining action on the gelatine film it is well to avoid To clean the crystals it is only necessary to wash them once or twice with very little water. This re moves the color, then the remaining clean crystals may be dissolved in distilled water, which will make a clear developing solution.
Keeping Qualities of Dry Plates.-As to how long gelatine plates will keep when properly packed, is stated by the Beacon to be thirteen years. Plates were coated in 1877, and when dry packed in pairs film to film, each pair being separately wrapped in yellow paper and then placed in specially good wood boxes. The boxes were tied up in brown wrapper paper, and in that condition, eight years after being made, the plates were taken across the Atlantic Ocean. Negatives made on them to-day are almost faultless, there being on one edge only a faint trace of the well known netallic appearance which some plates assume even within a few months of manufacture
Panoramic Instantaneous Camera.-This new in vention, designed by Stirn \& Lyon, of this city, is a compact and simple camera, arranged to take a panoramic photograph instantaneously on the rollable transparent film. It is so arranged that when the camera is rotated in a circle by pulling downward on a string, the film is carried in an opposite direction over a slit one-sixteenth of an inch wide behind the lens, the exposed film being simultaneously wound up on another spool. Some very curious results are ohtained, and as it may be regulated to operate in onefourth, one-half, three-fourths, or a whole circle, the angle embraced exceeds that of any wide angle lens. We have been shown a few interesting views of the East River Bridge and street scenes in New York, taken with this small instrument.

Long Distance Electrical Power

The Elektrotechnischer Anzeiger states that the Allgemeine Elektricitats Gesellschaft have announced their willingness, in conjunction with the Oerlikon Company, to transmit 300 horse power from the Neckar at Lauffen to the Frankfort exhibition, a distance of 175 km . (about 109 miles), on condition that an ordinary overhead cable, 5 mm . in diameter, connecting the two places, is provided free of cost.
handling fish to make fertiluzers. In the Scientipic Ambrican of June 7, 1890, the Chase elevator was described as applied to the handling of coal. The same apparatus has found a new application in the handling of "menhaden fertilizers," at the factory of Joseph Church \& Co., Tiverton, R. I. It is, perhaps, unnecessary to again go into minute details in the description of this elevator, as the construction of the one used in this case does not differ materially from that employed in handling coal.
ally from that employed in handling coal. magnitude of the menhaden fertilizer industry. There are on the Atlantic coast no less than fifty establishments for catching menhaden and converting these fish into fertilizers. The firm of Joseph Church \& Co. was the first to introduce steamers especially adapted for wenhaden fishing. This enterprising firm was also the first to introduce the Chase elevator for discharging their fishing vessels, and so far as we are aware they are the only users of machinery of this class for this purpose.
Our engraving shows one of these elevators conveying fish from the hold of the fishing vessel. They find that by the use of this elevator the entire fleet of steamers may be discharged in succession without being obliged to wait one for another, whereas under the old system some of the vessels were obliged to lie up for two or three days at a time to wait for their cargoes to be discharged by the old hand method. During the height of the season it is found that by the use of this modern appliance for handling the materials, the vessels may be continuously upon the fishing ground, and they frequently succeed in bringing in two loads in a day. The largest vessel of the fleet of Joseph Church \& Co. has taken over 500 tons of fish within twelve hours and delivered the same to the factory. This fact is mentioned to show the activity which prevails in this important industry.
The fish season extends from May to November of each year. The fish are caught along the coast from Cape Hatteras to Eastport, Me. The United States Committee on American Fisheries, in its report, mentions that in 1881 seventeen thousand tons of fish guano were used as the active ammoniacal matter in 284,000 tons of fertilizer used in raising $2,272,000$ bales of cotton. in raising $2,272,000$ bales of cotron. This gives an idea of what is done in
one branch of agriculture, leaving enone branch of agriculture, leaving en-
tirely out of account the use of fertilizer for corn, wheat, and other cereals.

American Inventions in Foreign Countries.
The demand for American machinery is constantly growing, and the exports attest this fact. American textile machinery is being largely bought because, according to London Engineering, of the numerous patented improvements which are being made in this line of mechanical construction. In the case of the American loom this is especially true, for it is generally thought that for speed and good workmanship combined it is superior to all its foreign rivals. As a result it is being gradually introduced in many English factories, where practical test has de monstrated its value.
The American steam fire engine is being introduced into Germany. Certain officials of Berlin have been in the United States, studying our system of fire-extin guishing apparatus, with the result stated. American railway engines and various other details of railway plant find buyers in different countries. American printing presses and wood-working machinery are in demand everywhere, and our manufacturers in these lines find a constant increase in their export orders. The same thing may be said of steam engines, boilers, pumps, agricultural machinery and tools, mining machinery, electric light plants and electrical appliances, and in short the whole range of labor-saving machines is included in the list.
Several paper-making plants have been sent abroad, notably to Japan, and Japanese buyers are now in this country making selections for the equipment of a paper mill. Only recently there was shipped to Japan a complete plant for the manufacture of camphor.
The list might be extended indefinitely, and indeed it would be difficult to make an enumeration which would not omit some article of American invention or some manufactured product which does not find a market abroad. Textiles, carriages, wagons and articles of everyday domestic use would be included. A correspondent, giving an account of his experience while traveling through Asia, says: "I saw advertisements
in newspapers and large spaces on the outer walls of buildings in all the great cities of India. I heard the hum of the American sewing machine in the byways and broad streets of Bombay and Calcutta and Rangoon. I saw American lamps for burning American petroleum hawked about the streets on wheelbarrows for sale in Yokohama and Tokio and Shanghai. I heard the clatter of the American typewriter in Chefu and Tientsin and Swatow and Aintab. I saw American tram cars running in the streets of Tokio, and the American windmill pumping water on the bluffs of American windmill pumping water on the bluffs of
Yokohama. I was glad when I heard the click of Yokohama. - was glad when I heard the click of
Connecticut clocks keeping good time for Orientals, Connecticut clocks keeping good time for Orientals,
who are always behind. California canned fruits and Oregon salmon and Boston baked beans in hotels all over the East made me feel that home was not so very far away."-The American Mail.

Perils of Icebergs.

The steamer Portia, which lately arrived at New York, reports a marvelous escape from destruction by an iceberg off Fogo Head. Captain Ash says that a berg 150 feet high and 600 feet long broke in three pieces just as the Portia, going at full speed, was passing it. One of the pieces, 200 feet long, which had sunk, came up under the steamer, lifting her. She re-

taring fish from the hold of a vessel with an elevator.

Corrosion from Pare Water

The purest water, according to the Locomotive, often is the most active in corroding and pitting plates, and this makes it probable that the active substance, in some cases at least, is air. It is well known that wate is capable of dissolving a considerable amount of air in fact, it is this dissolved air that enables fish to breathe. It is not so widely known, however, that the oxygen of the air is more soluble than the nitrogen. If a small quantity of water be shaken up in a bottle, it dissolves so:ue of the inclosed air, and when this i it dissolves so:ue of the inclosed air, and when this is
afterward driven off by boiling, and analyzed, it is found to consist of oxygen and nitrogen in the propor tion of 1 to 187 , instead of 1 to 4 , as in the natural air Thus the dissolved air, being more than twice as rich in oxygen as common air is, and being brought into more intimate contact with the metal by means of the water that holds it in solution, exerts a correspondingly more noticeable effect.
It is probable, too, that water plays some other important action in connection with the oxidation of metals, for it has been found by recent experiments that pure oxygen will not combine with things it has the greatest affinity for, provided it is perfectly dry Even the metal sodium, which has an intense affinity for oxygen, may be heated in it to a very high temper ature without combination, provided sufficient precautions are taken to ex clude the slightest trace of moisture It appears, therefore, that water plays a most important part in the oxidation of metals by air-a part, indeed, that we cannot explain, and that we really know but little about.

Patent Soliciting Profession.
It has been wittily said that the man who undertakes to be his own lawyer has a fool for his client. The same is true in a multitude of situations as well as in the practice of law, and we know of some empty purses and broken ambitions to be the result of men un dertaking to transact clerical and pro essional work which comes within the domain of vigilant and well posted specialties. In the domain of mechanical inventions and the patents with which to protect them this is painfully true, and it is even a matter of record that some of the cleverest inventors of our time have beggared themselves in bealth, courage, and pocket by trying to secure their rights without the help of such expert intervention. A patent solicitor and attorney is of the first wportance to an inventor; he is post ed as to the expense of any given pro ceedings in his specialty, he can insure expedition as well as economy, and by his regular and watchiul attention to the Patent Office, he is often enabled to spare his client the trouble of instituting what might prove to be wholly worthless claims, and hence the com plete loss of his invention so far as securing protection in exclusive rights is concerned.
It must assuredly behoove inventors and owners of in ventions to steer clear of blunders, and the proper thing to
mained for some minutes resting on the huge cake of | do is to place their matters wholly in the hands of some ice, when a tremendous sea set her free.
'It was to all appearances a large, solid block from five hundred to six hundred feet long and from eighty to one hundred feet high. I have at times passed near nough to an iceberg to touch it with my hat. I have of ten, when sealing, tied up to an iceberg for a week at a time. Certainly I never knew one to behave as this one did.
" Just as we got abreast of the first end I saw a few tons of ice fall out of its square face. Then I told the man at the wheel to steer to starboard. In ten seconds here were three bergs instead of one. The break was ccompanied by terrible noises.
" The furthest portion ahead of us tipped so that its submerged part arose directly in our course, lifting us almost out of the sea, there being not more than three or four feet of water under us. The propeller began to go around rapidly. I stopped the engines. We had run squarely upon a shelf about one hundred and the commotion of the waters caused by the plunge of the berg raised a wave that swept onward while we were trying to go ahead. I signaled the engineer to proceed at full speed. That was the critical moment. Had the berg continued to roll, it would have carried us over and under. Had not that wave helped us, our ship would have been high and dry on that mountain of ice.
i. W
"We left a broad streak of red paint on that ice dock, and the wave that saved us swept quantities of ice aboard."
experienced attorney and solicitor of patents.-Chi cago Illustrated Century.

Sparks from Belts.

An interesting note comes from a correspondent of the Electrical World in Woonsocket, R. I. Some time since there was trouble with one of the are machines in use, and after a careful investigation by Mr. Pierce, the electrician who kindly furnishes the facts, it was found that the static discharge from a belt to the frame, and thence to the armature, perforated the insulation so that the machine current had followed it and burned out the armature coil. The trouble once found, a very simple and effective remedy was employed : Grounded rods were bent from the pulleys so as to take the static discharge from the belt. It is well known that quite a powerful spark can be obtained from belts under certain circumstances, but this is a remarkable instance of its effect.

The Busk-Ivanhoe Tunnel,

cutting the Continental Divide of the Rocky Moun tains, on the line of the Colorado Midland Railway, which, when completed, will be the third largest tunnel in the United States, is now likely to be pushed with vigor to an early finish, the contract having been inally let to Mr. M. H. Keefe, of Helena, Montana
The complete double outfit of tunneling machinery, boilers, air compressors, and rock drills are to be furnished by the Ingersoll-Sergeant Rock Drill Company, No. 10 Park Place, New York.

REGENTLY PATENTED INVENTIONS.

Engineoring.

Vaporizer and Burner.-Frank B Meycrs, New York City. This invention is designed to providc a burner specially designed for boilers an
like apparatus, to permit of using oil and steam as fue in a simple and effective manner, and in which the oil supply pipe is located in a nozzle within which onte concentric steam channels discharge.
Power Apparatus. - Patrick J Dalton, New York City. This apparatus consists in general of a main reservoir supplied under a "head"
by a flume or conduit, the outlet or exhaust surround ing the reservoir and bracing it, while supporting a
series of wheels, preferably turbines supplied from the series of wheels, preferably turbines supplied from the main tank and discharging into the exhaust chamber the constructio
great power.

Device for Propelling Vessels. Jacob Cochrane, Hill City, South Dakota. A series o buckets, accorang the this andless chains and wheels, 18 ueen in connec cally reverse as the engiue is reversed, the bucket having a feathering action, and benng readily detach
able, so that their number may be lessened as desired

Rallway Appliances.

Car Coupling. - Warren Portlock, San Diego, Cal. In this coupler the drawheads are both vertically and horizontally birurcated, so that the
cars maty be readily coupled for cars may be readily coupled from either end, the device operating automatically and being more especially
adapted for application to box or freight cars, although applied io paseenger cars without change in their con-

Indicator for Railway Cars.John R. Fletcher, Baltimore, Md. This is a street or asing being arranged high ap i one corner of the car, in connection with an annuncia tor connected to a button or ring on the outside of the
car, which when pulled announces the street or station, car, which when pulled announces the street or station,
the indicator wheel being operated from a connection the indicator wheel being operated from a connection
with the car axle, and arranged in correspondence with with the car arle, and arranged
the distance betwoen stations.

Eloctrical.

Trolley for Electric Street Cars -Franklin C. Wheeler, St. Joeeph, Mo. This invenelectric conductor from the trolley is avoided, an which also furnishes means for readily reveresing th trolley when it is desired to rus the car in the opposite
Telegraph Key. - John B. Van Densen, Saratoga, N. Y. This invention provide
means for automatically closing a telegraph circuit as means for automatically closing a telegraph circhit as
the operator releasees the key, and for opening the cirthe operator releases the key, and for opening the cir-
cait when the key is grasped by the hand, there being apring antomatically choing the circuit on the ke ever, and an auxiliary for pressing the contact spring away therefrom.

Agricultural.

Hay Loader.-Albert J. and William J. Hughes, Lisbon, North Dakota. This elevator has a
receiving chamber, to the maiu frame of which is connected an elevator board, with endless belts provided with projecting teeth or tongs arranged in triangula shape along the rake and up the elevator board, to
deliver the hay on the load in the most compact shape, for'more easily stowing it in its proper place, and prevent its being scattered by the wind

Mechanical.

Placing Belts on Pulleys.-Henr A. Scheuerle, Philadelphia, Pa. The device provided by the inventor to facilitate such jobs consists of two opposed disks united by a spindle section, a shank pro-
jecting from one disk and an arm extending from the jecting from one disk and an arm extending from the
shank, whereby the belt may be elevated and placed over the polley, or in partial contact with it, when the dovice is turned and lowered until one disk is located
at each side of the pulley and the spindle section holds at each oide of the pulley and the spi
the belt in contact with its periphery
Riveting Machine. - Reinhold A. Carl, Hearne, Texas. This is a machine by which metal
riveta may be rapidly driven through any desired mariveta may be rapidly driven through any desired ma-
terial and the rivets be headed at the same operation, terial and the rivets be headed at the same operation,
the machine being particularly intended for light sheet the machine belng particularly intended for light sheet
metal and other light materials, and the invention metal and other light materials, and core
covering various novel features and combinations parta

Wrench. - Friedrich W. Kasch, Anstin, Texas. This invention is designed to provide tool especially adapted for a pipe wreach, but also cally also two handles, one of which may be used as a lever to disengage the jaws from the pipe, and adjust he upper jaw to and from the lower jaw.
Wrench.-George W. Hooks, of Hooks Switch, Texas. This tool has a rigid jaw on the outer shank, an eccentrically headed lever bearing on the hank and pivoted to the rear end of the movable jaw o move the latter, making a combined pipe and nut wrench, and one
Galipers and Dividers.-Anders P. Laursen, Passaic, N. J. This invention is designed to provide a rapid, simple and convenient adjustment sides of the legs, whereby the devices may be most e sides of the legs, whereby the devices may be most ef
fectually employed as inside calipers or dividers, the evice being manufactured at a minimum cost an tooifred wo de reay torabie.

Oil Cup. - Charles L. Burbeck, Fort tending stem carrying a collar in connection with dich is arranged a spring, a cam being monte
eneath the collar, with means for turuing it, thas pro vidng for the intermittent delivery of oil to a journal
bearing, and also for regulating the amount of oil so bearing, and
delivered.
Shaft Hanger.-John W. Fisher and Watson A. Kinney, Bridgetown, Nova Scotia, Canad Sis invention reates to a combined start hanger and nidater or dead pulley support, providing a hange hich will equaize the lateral strain of the sharl and
the weight of the pulley and make an essentially unithe weight of the pulley and make an
versally balanced bearing for the shaft.
Cotton Seed Linter. - Edward J O'Brien, Texarkana, Texas. This invention covers an mprovement on a former patented invention of the int within the lint chambers, the automatic discharg of lint from the saw teeth, thorongh agitution of the seed within the receiving chambers,

Miscellaneous.

Dipper. - Martin L. Schoch, New Berlin, Pa. This is a dipper having a set of scraper des, with means for actuating the scrapers, whereb hen the dipper has been emptied of thick or stick abstauces, it will be self-cleauing, the adhering por

Type Writing Machine. - William Quentell, Kansas City, Mo. Combined with the typ rerier and a vertically rocking key board geared thereto he key board, the depression of a particular key servng to stop the movement of the carrier, with other
ovel features, designed to constitute an inexpensive nd durable machine
Book and Index. - Richard R. Vernon, Woodbridge, N. J. This is a device designed o allow of folding the index into the book, and permit
using the book or index each independently of an ithout distrorbing the other, ensibling the user to brin the inder Into a convenient position for inspection o ler writing in the names, titles, and page nambers
lecounts, etc.
Show Case.--Robert E. Sherlock and Manfred Freeman, Grenfell, Northwest Territories, anada. This is a simple and convenient case, designe
o occupy but little floor room, display conveniently a reat variety of goods, and effectually protecting them rom dirt and dust, while the case may be adjusted to hold large or small articles.
Advertising Dfvice.-John B. Wilhe form of a cylinder, from which a tape or scroll mas be drawn outward and automatically returned wher eleased, apon which scroll or tape
matter or information may be printed.
Coil Clasp.-Calvin Jackson, Jack sonwald, Pa, This clasp consists of two individua parallel oppositely wound coils adapted to be pressed
laterally together, and a removable connestor to be passed through and removed from the space formed by the overlapping
Bicycle Head. - Henry G. Barr, Westborough, Mass. This invention provides for th
teering heads compensation for contraction and expa sion due to atmospheric changes, thereby avoiding objectionable rattling or binding, the invention being ap plicable to all kinds of bicycles, having either ball one heads.
Shaft Holder for Vericles. od. A case Davis and Orval E. Byrd, Crawfordsville, he shaft, and provided with an endless or continuou groove, a bar having a stud or portion to traverse the
groove, while there are means for connecting the bar groove, while there are means for connecting the ba
with the axle, the device holding up the shafts when with the axle, the device holding up the shafts whe
not in use, and for convenience in hitching the horse

Shutter Worker. - Abraham Pngsley, Jamestown, R. I. This invention provides simple and efflcient device by which the blind ma be operated from the inside of the building, and also
or fastening the blind in any desired position, the in ention covering various novel features of constructio
Folding Ceprr
Folding Chatr and Step Ladder Charles L. Knoeller, New York City. This is a piec or library chair, although it may be used to advantag in other rooms or places where a step ladder is required being very substantial when set up for either use, and

PEN Holder. - Joshua C. Palmer Lanham, Texas. This is a holder designed to be easily support the pen well in sight of the writer, being carved flat holder with a projecting shank for the pe the shank being nearly parallel with the straight por-
tion of the holder, and in line with the eye when held in position for writing.
Trace Carrier.-Andrew Hartman Chicago, Ill. This invention covers an improvemen and which is all kinds of harness, team tracesincluded, ectually prevent it from being chafed, as no portion of the harness usua
contact with it
Handle for Table Cutlery.-WilHam T. Decker, Rockport, Pa. This is a handle fo poons, forks, and other table or culinary and other ar plied to the under side of the handle, in advance of the back or outer end of it, and adapted to close in front
up againat the handle.

Business and æersonal.
The chargefor Insertion under thes head is One Dolla
a line jor each insertion: about eight words to all a line jor each insertion: about eight woords to a line
Advertisements must be recsived at publication ofic as early as Thursday mornino to appear in next issue. For Sale-New and second hand iron-working ma-
chinery. Prompt delivery. W. P. Davis, Rochester, N.Y Acme engine, 1 to 5 H. P. See adv. next issue. Prtion Clutch Pulleys. The D. Frisbie Co., N.Y. It Dies. Ferracave Mach. Co., Briageton, N.J Send to H. W. Knight \& Son, Seneca Falls, N. Y Best Ice and Refrigerating Machines made by Davia
Boyle, Chicago, Ill. 155 machines in satisfactory use. Boyle, Chicago, IIl. 155 machines in satisfactory use. The Improved Hydraulic Jacks, Punches, and Tub Power presses and dies. Also contractors for specia machinery. T. R. \& W. J. Baxendale, Rochester, N. Y.
Tight and Slack Barrel Machinery a apecialty. John Fight and Slack Barrel Machinery a apecialty. Joh Screw machines, milling machines, and drill presse he Garvin Mach. Co., Laikht and Canal Sts., New York
Veneer machines, with latest improvements. Farre Veneer machines, with latest improvements. Farre
Fdry. and Mach. Co., Ansonia, Conn. Send for circular Billings' Patent Adjustable Tap and Reamer Wrench-

Pattern makers wanted in wood shop and in our meta Pom. State experience and pay wanted. Illinois Mal

The Holly Manufacturing Co., of Lockport, N. Y mill send a book of offoial reports of duty t
Guild \& GarriBon, Brooklyn, N. Y., manufacture
team pumps, vacuum pumps, vacuum apparatus, alr team pumps, vacuum pumps, vacuum apparatus, at
umps, acid blowers, filter press pumps, etc
Linen and rubber hose, all kinds of belting, general mill and factory supplies. Send for catalogae and price
Greene, Tweed \& Co., 83 Chambers St., New York.
The best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. \bar{Y}. For Sale-Patent No., 4ub,442, Nov. 19, 1889. Canadian o. 33.447, Jan. 21, 1890. In successful operation. Costs 2, sells at 85. Price-American, 810,000; Canada, 85,00
Addrees P. H. Brown, Vesuvius Baj, Balt Spring Island

A business man, who has traveled extensively, de Ares a manufacturers' agency, or to assist in introducin ure that will be universalis salable. References. Ad ress W. Y., Grove Hall, New Haven, Conn.
Send for new and complete catalogue of Scientunc
and other Books for sale by Munn \& Co., 381 Broadway New York. Free on application.

HINTS TO CORRESPONDENTS
Namos and Addrese must accompany all letters,
or no attention will be paid thereto. This io for our
information, and not for publication information, and not for publication.
Reforemen to to former articles or answers shonld
give date of paper and page or number of question.

expected without remuneration.
tonethe A morlican Supplente referre
to may be had at the office Price 10 cents each.
Booke referred to promply suplied on
price.
wince sent for examination should be distinctly
marked or labeled.
(2381) R. W. asks : 1. I am making an ectric motor according to directiong contained in SUPplement, No. 641, and would like to know what it is
hat makes the armature revolve when the current that makes the armature revolve when the current is
urned on. Does the field magnet repel the wire placed t right angles to it? A. The field magnet poles atract and repel the poles of the armature. The
location of these is determined by the winding of the magnet and armatare. 2. Why can't a person use a brass armature ring, or does it have to become mag
netic in order to operate: A. Becanse it will not be ome polarized, i. e., magnetic. 3. Could it be geare to a common sized skiff, and be run with 8 one quart
batteries or 2 four quart? A. Your battery would be batteries or 2 four quart? A. Your battery would be ower in a motor can only be developed by a stron ower in a motor can only be developed by a stron
magnetic field. Suppose the armature were connected with 4 quart batteries and the field magnet with another 4, would it be strouger? A. In general terms, the stronger the batery, the stronger would the motor be.
5. Why does Stanley not come to America? Did he not get his start from Gordon Bennett, and has he not spent most of his life here, not counting that spent in
Africa? A. In his last African trip he represented Africa? A. In his last African trip he represented
England, not America. For his life, etc., we refer you o our Supplement, Nos. 505, 581, and 754.
(2382) R. McK. asks : In speaking of a single car in a vestibuled train, should it be called a
vestibule or vestibuled car? Also should a solid train of cars be called a vestibule or vestibuled train, both ends of the cars having vestibules? A. We prefer the wo
(2383) A. W. writes: 1. I have a paper balloon and wish to blow it ap with common air to prevent the sides from sticking, so I can varnish it. What
can I tind to blow it up with, and what is best? A Blow up your balloon with a bellows. It may first be partially inflated by holding its mouth against the win or by running with it, holding its mouth forward. 2
Where can flaxen or linen netting be found, such as is used for small balloons? A. Address a dealer in sporting goods and fishermen's supplies. 3. Is there any
danger in boiling lineeed oil, a'small quantity at a time,

In a pot containing
(2384) A. N. D. wishes to know how to cean photographic negatives so that the glass may be ised for other purposes. A. To eight ounces of water lution minims or hydrofluoric acid; pour the mixed so ative at a time. tray, immerse in the solution one t the edges, and with a flat wood atick may be rolle ap off the plate and removed bodily. Negative after egative may be thus easily cleansed. Keep the finger
from touching the solution as much as possible. other method is to soak the plates in a hot dilute sal soda solution, which will dissolve out the film.
(2385) S. A. A. asks: 1. How can I make Turn out \& wooden wheel, put thin glue on its peri phery and roll inemery. 2. What is the beat acid to etch on zinc plates with? A. Sulphuric acid is the cheapest and gives gond results.
(2386) J. W. B. asks (1) the kind of glue
 2. How to prepare the white and colored inks for show card writing? A. Mix the desired pigments, Chinese
white, etc., with thick gum arabic water. Apply with white, elc., with thick gum ${ }^{2}$
(2387) L. B. asks for a desirable dressing or the hair of an elderly person who has remarkably pure white hair, but is troubled by the ends of hair
splitting and also breaking off. A. We should not adsplitting and also breaking off. A. We should not ad-
vise any dressing. An occasional clipping of the extreme ends by a good hair dresser is the treatment that
(2388) W. W. W. asks : 1. In making a dry pile, is there anything that I could use instead of
peroxide of manganese. I have been unable to get it. A. We know of nothing that will answer so well. You can get it of any dealer in chemicals in this city. 2. How can I construct a dry battery for use with a telephone?
A. Dr. Gasener's dry battery is described in the ScisNA. Dr. Gassener's dry battery is described in the Scien ific Ambrican, vol. 61, page 306. Also in Experi-
mental Science.
(2389) B. E. P. writes : Quite a while ago I noticed in this department a method for easily
and readily splitting newspaper. Can you refer me to the issue giving such receipt, or can you name a ready chemical to enable it to be split perfectly? A. Thishas been published in Notes and Queries. Some dexterity, or rather judgment, is required in executing it. The paper to be split is pasted between two sheets of compact strong paper. The best flour paste should be used.
Mucilage is unreliable. When nearly dry, if the two Mucilage is unreliable. When nearly dry, if the two
outer pieces of paper are pulled apart, the central one outer pieces of paper are pulled apart, the central one
will split, and one-half of the central piece will adhere to each. By soaking in water they can be removed. Some paper works better than others. If the outer paper is (2390) T. C. B. asks : Can a rain gauge e strictly accurate and yet have a funnel-shaped dicular. A. A funnel-shaped mouth involves a little inhe reading division.
(2391) J. W. S. asks : What is the longest piece of carpet, 3 feet wide, that can be placed diago-
nally on the floor of a rectangular room 10×20 feet, and cutting ends of carpet square. A. 19 36-100 feet, ap-
(2392) E. D. S. asks: Can you give me ne formula for the codry tot process) \& A. Plaster of Paris can be used, or a metallic mould made of zinc, of type metal, or of fusible alloy. Use talc powder to
of
(2393) C. A. B. asks: 1. Is there any other practical way of duplicating written matter be-
sides the "copying pad "and the "cyclostyle"? \mathbf{A}. Several other methods have been devised; some are photographic, others involve the use of a steel stylus for writing, with a file-cut steel surface for the paper to rest
on. This gives a stencil. It has been proposed to rest on. This gives a stencil. It has been proposed to rest
the paper on a carbon surface and cause sparks from an induction coil to pass from stylus to carbon, thus producing a stencil. Lithographic apparatus is also on sale by stationers. 2. Can you give a recipe to make a good blackboard fluid? A. 4 pints 95 per cent alcohol. 8 ounces shellac, 23 drachms lamp black, 20 drachms ultramarine blue, 4 ounces rottenstone in powder, 6
ounces powdered pumice stone. Many other formulæ given similar to this.
(2394) C. P. G. writes : I want to make ome rubber castings in plaster of Paris moulds, and way) in which to treat the rubber so that it will become very firm in the mould without pressure. The rubber that want to use is that of which car springs are made, and would like to have it as frm as it is now. A. Use rubber mixed with sulphur, but unvulcanized. Some pould. Then by heating it will become vulcanized. What is sold as pure gum rubber can be treated as ment, Nos. 249, 251, 252, for a valuable paper on India rubber. Possibly the rubber you wish to use is too (2395) B. E. P. asks : Can you give a description of method and process employed by you in the production of the printed copies of the specifications
and drawings of patents, which you furnish for 25 and drawings of patents, which you furnish for 25
cents? A. The patent copies are printed by the governcents? A. The patent copies are printed by the govern-
ment. The drawings are printed by the lithographic the type matter in the usual way
(2396) J. N. H. asks: 1. Is there any way by which the gold can be recovered from the tonlution of ferrous sulphate (copperas). The gold will be lution of Yerrous sulphate (copperas). The gold will be
precipitated as a metallic oowder. 2 If an article is bought for nothing and sold for five dollars, what is the percentage of gain: A. The ratio of gain is infnite; it percentage of gain? A. The ratio
is not expressible by percentage.
(2397) W. M. asks for a receipt for ing is the only bleaching that should be used. A little ing 18 the only bleaching that should be used. A little
bleaching powder, say one or two spoonfuls to the tub bleaching powder, say one or two spoonfuls to the tub
of water, may be used, but this tends to causedecay of the clotkes.
(2398) W. A. H. writes: I read in a newspaper that it was now possible to treat wood, ivory, troplated. Can you give me any information on the subject? A. This can be done by rubbing them ove with graphite. By dipping into nitrate of silver solu tion and exposing to hydrogen gas, the surface can also be prepared for electric deposits. 2. In reply to a ques tion asked by me some weeks ago, you stated that it
would be absurd to attempt to obtain heat by electro decomposition of water. Could it not he done economically and practically on a surplus water power, one that would not otherwise be nsed. and where the water to be treated was a waste product containing a smal proportion of pyroligneons or acetic acid? Coal at the point in mind is dear and heat necessary. A. Your best plan would be to run your dynamo on a closed circuit
with resistance interposed, so as to generate the heat di ectly, as is done on the small scale in the incandescent lamp. Of course you could do it the other way by pro acing oxygen and hydrogen gas, but probably with less conomy
(2399) L. W. Z. asks : Will burning sulphar in a room, to exterminate moths, etc., have a dele erions effect upon the keys of a piano or upon furni-
ure: A. If done upon a perfectly dry day it will have little effect, especially if followed by prompt and tho ugh ventilation. Iron or steel articles, nails, etc., wil however, be
bad effects.
(2400) C. W. F. asks for a safe method and good receipt for making amalgam for frictiona gether one part zinc and one part tin, remove from fire nd stir in two parts mercury. Place in a wooden tra cold, powder in an iron mortar. Keep in a closed bo tle. The cushion should be elightly greased before ap (2401)
(2401) Dez. writes: Will you kindly in form me how I can get rid of freckles? A. The drug The really operative ones depend on aqueous extract of he rind of pistachio nuts. Thus applied to the face plexion clear. But the freckles immediately formagin
(2402) F. I. S. asks : Can you tell me o anything that will banish Croton buge from a house but is hichly dangerous on account of its poisonous pro erties. Powdered borax, buhach or erythum, and ersian powder are all recommended.

NEW BOOKS AND PUBLICATIONS.
The Science of Language. By F. Max Muller. Chicag
This little book presents in attractive form the thre nteresting lectures of Professor Muller delivered

SCIENTIFIC AMERICAN

BUILDING EDITION AUGUST NUMBER.-(No. ©8.) TABLE OF CONTENTS.

1. Elegant plate in colors showing perspective and loor plans of an attractive little cottage recently from plans by Munn \& Co., architects, New ork. Sheet of details, etc.
2. Plate in colors of Mr. Charles Barnard's cottage at Stamford, Conn. Perspective elevatio
plans, sheet of details, etc. Cost $\$ 2,000$.
3. Chateau de Chenonceaux, erected in the reign of
Francis the First. Page engraving.
4. A cottage at Villa Park, New York. Cost $\$ 3,400$ comple
etc.
5. A residence on Chester Hill, Mount Vernon, N. Y Cost $\$ 5,500$ complete. Perspective view and floor plans.
6. A block of city residences erected for Dr. F. E. Robinson, on West End Avenue,
7. General view and details of Festival Hall of the Union of German Singers at Vienna.
8. Residence at Greenwich, Conn. Cost $\$ 7,800$. Perspective and floor plans.
Delling at Stamford, Conn. Cost $\$ 5,000$. Plans and perspective elevation.
9. A dwelling at Holyoke, Mass., erected at a cost of $\$ 9,500$ complete. Rossiter \& Wright, New York
10. Dwelling and store at Mon S. Stickles, architect, Mount Vernon. Cost $\$ 5,600$ complete. Plans and perspective elevation.
11. An elegant residence erected on the Highlands, Springfield, Mass., at a co
plans and perepective view.
12. Attractive stable at Montclair, N. J. Cost complete $\$ 3,200$. J. C. Cady, New York, architect.
13. Miscellaneons: Steam as a fire extinguisher.Trees and streets. - Portrait and biographical sketch of Joln Ruskin.-A porch covered with clematis montana, illustrated. - Prevention of decay in stone.-The porcelain tower at Nankin. lightning rods. - An improved square chisel m:ortiser and borer, Illustrated.-Zinc and brick
work.-The Hartman sliding blinds. - An im
proved mitering machine, illuatrated.--An im proved twist machine, illustrated.-An improved heater, illustrated.--A perfect sanitary wash tub, d. York Central Iron Works Company

The Scientific American Architects and Builders dition is issued monthly. 82.50 a year. Single copies, cents. Forty large quarto pages, equal to about wo hundred ordinary book pages ; forming, practically, a large and splendid MAGAZINE of Archite with fine engravings, illusirating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fallness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation of any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO.. PUBLibisRe,
381 Broadway,
TO INVENTORS.
An experience of forty years, and the preparation of more than one hundred thousand applications for palaws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. aynopsis of the patent laws of the United States and all
foreign countries may be had on application, and person ontemplating the securing of patents, either porsons abroad, are invited to write to this office for prices,
which are low. in accordance with the times and our exensive facllities for conducting the business. Address MUNN \& CO., oftice SCIENTIEIC AMERICAN, 361 Broadway, New York.

INDEX OF INVENTIONS
For which Letters Patent of the郎

August 5, 1890

AND EACH BEARING THAT DATE

 [See note at end of list about coples of these patents.] Advertising device, J. B. Williambon.............. 433,841 Air brake, w. . H. Maher..................................... 433, 43,737Alarm. See Firealarm Bafety alarm. Alarm. See Firealarm. Safety alarm Auker bit, 8. H. Jenning

Baling press, a. A. Neison
Baling press for hay, etc... R. G. E. Elis.......
Baling presses, power device for, T. M.
Ball. See Pipe welding ball.
Bar.
Bee Grate bar
Barrel. ventilitede, A. W. Ballou.....................
Barrels, etc., furnace or appliance for burnlng or
dryink. G. A. Oncken......................
Basin, sink, bathtub, etc., W. Bunting, Jr............ 433,788
Bath. See Blotter bath. Batteries, (derice foth.
lain
Battery. See Gaivanic battery.
Beading machine rod, T. C. Belding
Bed slat support, F. . C. Cnte......
Beer drawing device, \mathbf{F}. Batter.
Bell, door, C. A. Emme
Belts upon pulleys, device for placing, H.
Bicycle head, H. G. Bar
Binder, temporary. J.
Bit. See Auger bit.
Block. See Traveling block.
Blotter bath, W. M. \& L. H. Leveg.... Boat. See Ship's boat.
Boller. See Wash boiler
Boiler feeder, Marcy \& Jones.......
Botler furnace, steam, G. G. Vivian
Boiler or pipe covering, H. W. Johns
Bolt heading machine, B. s. Meader..
Bolt or rivet clipper, stoks.
Bolting reel, L. Lindsas.
Boring machine, H. A. Mi
Bottle cap, R. Whitaker
Box. See Journal box. Letter box. stuffing
Box corner nail, Brown \& Bold... 433
Brake. See Air brake. Store ser
Vehicle brake. Wagon brake.
Bridge rail joint. R. H. Buckingham
Buffer, pneumatic, L. D.
Bug trap, C. H. Lawton...
Buildings, construction of, H. B. Walbridge.

Burner. See \mathbf{O} Oil burner.

Butter, manaffacturing, G. H. Hamrick
Cable grip, F. A. Yard.................
Calipers and dividers, A. P. Laursen.
Camera. See Photographis
Camera, W. E. Schneider..
Can. See Oll can.
Cant hook crate, F. s. Postal
Car coupling, C. Burpee...
Car coupling, P. J. Dockray.
Car coupling, G. H. Dougall
Car coupling, G. H. Dougal.
Car coupling, A. Luqheed...
Car coupling, H. Marshal....
Car couppling, H. H. M. Moomaw
Car coupling F. W. Parsons
Car coupling, F. W. Parsons.
Car coupling. T. F. Phillips..
Car coupling C.

Car molor support, railway,
Car trolley, electric motor, F.
Car trolles, electric street,
Car trolley, electric street. F. F. Whe....er
Cars, means for heating railway,
Cars, pin and link holder for, J.
Cars, atreet indicator for, G. Spoelstra et al...
Cars, street or station indicator for railway,
Fletcher

Carding engines, cyllinder for
Carpet sweeper, R. H. Kddy

Cart,
Cart,
Cart.
Case.
Casn
Cas
Cas
Cas
Cas

Cup. See oill Cup.
Curling iron, J. He Beting. Thill coupling.
Current converting apparatus, Zipernows........................
Deri...............................
Curtain fastening, M. Renshaw
Curtain pole ring and pin, combined, L. Weide feld................................
Cut ofr, automatic water, Bissell \& Prescott..............
Cut-off, fusible, W. J. Jenks......................
Cutter. See Fodder cutter. Glass tube cutt
Milling cutter.
Mililigg cutter. Tobacec cutter.
Dental mallete and pliers. combined, A. o. Cores.
Direct-acting engine, A. Ball
Dish, F. A. Oetzmann........
Door check, J. M. Brohar
Door hanger, G. A. Colton.....
Door hanger, sliding, G. A. Co
Door, sliding, T. J. Gillette.....
Drier. See Clothes drier.
Drying kiln, W. S. Mayo...
Dye vat, E. Remy.
Dyelng. T. Ingham
Egg Case, wire, G. E. R
Egg lifter., E. E. Smitn.
Egg sirup prepering P.

Electric conductors, manufacturing, E. P. War
ner....
klectric current controller, M. ©. Barkent.....
klectric machine, dynamo. C. F. Winkler..
Klectric machine, dynamo. C. F. Winkler.
Electric motor mechanism. S. . Mower.
Electric motor mechanism, Mower \& Spence
Electric wire cleat, L. Furlong.
Electric wire support, Hallbauer $\dot{\text { E }}$ Hilier....
Electrical communication, J. L. Cutler....
Electrical communication, J. L. Cutle
Electrical transformer or induction
Tesia.....................................
Electro-magnetic motor, alternating current,
Flectroliter. Little \& Robb

W. E. Mariett
Embrodiering machine. F. J. Perr...
Enery wheel hopper, J. F. Leonard..

Enery wheel hopper. J. r. L, Leonard............... 433, 431,735
End zate, wagon, George \& McGinness.
Engine
Engine. See Direct-actink engine. Gas engine.
Gas and steam motor engine. Gas or oll motor
Gas and steam motor engine. Gas or oll motor
engine. Motor engine. Rose engine. Rotary

Engines, apparatus for governing gas or petrol-
eum motor, N. A. Otto.........................
Envelope moistening pad. A. Stelzner..
Evaporating device, liquid, J. U. Lloyd.
Fabric holding and stretching clamp, A. N. Wil-
son....
Fastening device. A. Epple....
Fence machine. wire and picket, s. Jarvis.........
Fences, device for applying tighteners to wire, \mathbf{C}
Knopp...........................
Filter, Wheel. D. P. Aims, Jr

Fire alarm and night call, electric,
Flush tank, siphon, H. H. Craigie.
Foder
Folding chair and step ladder, C. L. Knoeller..
Frame. See Picture frame. Umbrella frame.
Frame clamp, J. M. Wilson.
Frame clamp, J. M. Wilson..........................
Fuel of coal, charcoal, or coke screenings, lum
A. Mayer...

Regenerative furnace.
Furnace grate
Furnace grate, R. S. Richards.............
Fuse and fuse block. J. G. s. Cunnington
Gauge. See Saw rauge.
Galvante battery, S. w. Maquay.
Game apparatus, F. Gammeter.
Game a paratus, M. Jacob.....

Mitchell.

Fine Taps, Dies, Reamers, Etc. (Hailimimil lightning Lightning and Green River Screw Plates.
Bolt Cutters, Hand and Power Drilling Machines, Punching Presses, Tire Benders. Tire Upsetters, and othWILEY \& RUSSELL MFG. CO., Greenfield, Mass. STEAM ENGINE. HOW TO MANAGE.

PEPPERMINT INDUSTRY OF ST.

MODELS

N. ERLAN LIGHT MACHINERE

ROCK DRILLS AIR COMPRESSORS. minig And auarrying machinery,
Ingersoll - Sergeant Rock Drill Co. No. 10 PARK PLACE, NEW YORK.
Send for Complete Priced Catalogue.
NEW YORK CITY AQUEDUCT.-AN

STEEL TYPE for TYPEWRITERS, Stencils, Steel Stamps, Rubbe and Metal Type Wheels. York Stencil Works, Mfra.
100 Nassau Street, New York. DRYING IN VACUO.-BY EMIL PASS-

 LUMINOUS FOUNTAINS A DE

EPFECTLY JNIFORM SPEED

T. M. $\begin{gathered}\text { Apply for information to } \\ \text { FOOTE } \\ \text { REGVLATOR CO. } \\ \text {. }\end{gathered}$

Useful, Beautiful, and Cheap.

To any person about to erect a dwelling house or stable, elther in the country or city, or any builder wishing house, club house, or any other public bullding of high or low cost, should procarea complete sett of the ARCBIaxkhican.
The information these volumes contaln renders the work almost indispensable to the architect and builder And the work suggestive and moot usemel. They sonta colored plates of the elevation, plan, and detall drawIngs of almost every class of buildina. with spedifca-
tion aud approximate cost. tion and approximate cost.
alned, by mall, direct from thow ready and may be obnewsdealer. Price, 82.00 a volume. Sutched in pape covers. Subecription price, Der annum, \&250. Addree

MUNN \& CO., Publishers, 361 Broadway, New York.

TO INVENTORS

 AND MANUFACTURERS 59th Grand National Industrial Exposition American Institute of the City of New York WIII Open Oct. Ist and close Nov. 29, 1890. Intendlng exhibitors must make early application to

Remington

Standard Typewriter

Goid mmai-Paris mirposition, 18 Wyckoff, Seamans a Benedict 327 BROADWAY, NEW YORK.

FOREIGN PATENTS

 THEIR COST REDUCED.The expenses attending tne proouring of patents in
nost forelgn countries having been conslderably ren duced the obstacle of cost is no longer in the way of a arge proportio
tions abroad.
CANADA. -The cost of a patent in canada is even lormerincludes the Provinces of Ontariu. Quebec, New
for brunswick, Nova scotia, British Columbia, and MantThe num The number of our patentees who avall themselves of atents in Cansds is very large, and is aceadly tincreas

KNGLA ND.-The new Enalush law, which went into in Greal Britain on very moderate terme, 4 Brtish pa tent inculudes England, Scotland, Wales, Irelurd and the nannel Iolands. Great Britain is the acknowledged oods are sent to every quarter of the globe. A good nvention is likely to realize as much for the patentee h Kngland as his United States patent produces for im at home. and the small cost now rendersit possible tent in Great Britain. Where his rights are as well pro ected as in the United States.
OTHEIL COUNTRIES.-Patents are also obtained on Very
Autrias, Rusanabla. Italy, Spaln (the latter Includes Cuba and all the other Spanish Colonies), Brazll, British India Australia and the ot aer British Colonies.
An experience of over rorti years has enabled the competent and trustworthy aqeacies in all the principal corelgn conntries, and it has always been thair aim to have the business of their clients promptly and propery done and their intarests faithrolly guarded.
A pamphlet containing a synopsis of the patent laws
of all countries. including the cost for each, and othe tuformation usefui to persons contemplating the procoring of patents abroad. why hac on appication to this omece.
GNTHN \& C'O. Faitors and Proprietors of TEE SCIany information re:ative to patents, or the reations of crade-marks. In this country or abroed to call at their oflices, 201 Broad way. Emamination of inventions, con-

$$
\begin{aligned}
& \text { Address. MUNN \& CO. } \\
& \text { Pabishers and Patent \&oiliot }
\end{aligned}
$$

ADAPTATION OF THE STEAM

OIL WELL SUPPLY CO. Ltd

SAFE BOILERS FOR AMATEOR WORK

Ai EOM

 cele
 THE PROPELLING MACHINERY OF

THE TEACHING OF SCIENCE.-
 735. Price toncents
fromall newsdealers

ROUGH OR DRESSED SURFACES. Ransome's Method of Finishing Conorete Walls RANSOME \& SMITH COMPANY, 230 Montgomery Street, San Prancisco,
 rules. ICE-HOUSE AND REFFRIGERATOR.

BIGYCLES par wasma
Noextra charge; all makes, new or $2 d$ hand
loweet pricesguaranteed Send for Cotan
Couse THE STEAM ENGINE ; ITS PRINCI-

Useful Books!

Canufacturers, Agricultorists, Chemists, Engineers. Me-
chantcs, Bullders, men of leisure, and protessiona
chanics, Bullders, men of lieisure, and professiona
men, of all classes need good books in the line of their respective callings. Our post office department permits the transmission of books through the maila
at very small cost. A comprehensive catalogne of diferent subjects, has recently been published for free ofrculation at the omies of this paper. Subjects classified with names of author. Persons desiring
 DEAF ${ }^{2}$ anawna

 CIRCULATION OF WATER IN STEAM

TELESCOPES
 ACHROMATIC OBECTVES EQUATORIAL STANDS EYEPIECES \& LENSES CHRCNOGRAPHS, \&C. SEND FOR

2nd se MACHINERY Brown's Incombustible Machinery Wiping Towels are
 CIAVEMTIQMS PERFECTED, OETAML DRAWIMEB, PATTERMB,

THE EACLE THE EASIEST RUNNING BICYCLE Speed, Comfort and Safety aGENTS WANTED.
Large Illustrated Catalogue sent Free to any Address. GTANEPORD,

ALUMINUM.-DESCRIPTION OF THE

PERFECTENSPAPER ILE

NOW READY.
R Xperimental 8 cience,

By GEo. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid,
$\$ 4.00$
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents.

MUNN \& CO., Publishers,

361 Broadway, New York.

DRY AIR REFRIGERATING MACHINE eratriytion of Hall's improved horizontal dry air refrigo cold sir per four, when running at a speed of 100 revotu-

NEW CATALOCUE VALUABLE PAPERS -

䢒 HOW TO MAKE DYNAMO-ELEC'IRIC Machnos - By Geo. M. Hopkins. With drawings toscale

The Scientific American

Publcarions for 1890.

The prices of the different publications in the United
states, Canada, and Mexico are as follows. The 8clentifc A merican (weekly one year . $\$ 3.00$ The 8cientific A merican 8upplement (weekly), one 5.00
year. The scientific Δ American, Spanish Edition (monthly)
one year,
3.00 The Scientific American, Architects and Builders
Edition (monthly), one year. COMBINED RATES.

sand buina- 5.00
seote and Builders Edition.
tement, and Archi- 9.00 in includee postace Rates for Six Months.

みдेertisements．

Inaide Page，each ingertion ：：： 75 centa alloe．
 ment，as the leter press．Advertisements must be
received at pubication ofice as early as Thursday morn－
ing to appear in next issue．
 The Montauk cAMmRA

Is compact and neat，coveret with seal leather，spppled shots，interiors，exteriors，hooses，groap
etc． $\begin{gathered}\text { Bize of picture，} 4 \times 6 \text { inches }\end{gathered}$ or full description，send to G．GIEINITIRT，

business，recre
tion，and for anything you
could use a bicycle for． VIC＇INRS ARE BEST
Send for catalogue． Overman Wheel Co．，Makers ELECTRICITY，LIGHT AND HEAT．

PThe CHANDLER リATER MOTOR Wreasks well on Low and High Plingle，Duplex，Triple，and Quad－
ruple Automatic PISTON MO－
rile S， WM．H．LOCK，Buffalo，N．Y． G．Hatfeld．With directions for constraction．Four

NEW KODAKS

THE EASTMAN COMPANY，
Send for Catalogue．
2 to $40 \mathrm{H} . \mathrm{P}$. The MOTOR of 19th OMNTURI．

Charter Gas Engine Co．
Slodlety，selaty．P．O．Box 148 ．Sterling，III． and how to nse；with an engraving．Practical directions
how topreparet he gating pad，aid aliso he diline ink
by which the coine are made；how to apply the written
 Contalned in SCIENTIFIC AMRRICAN SUPPLIEMANT，No
438．Frice 10 cente．For sale ant
newidealers in ail parts of the country．

NICKEL Eiectiopiplaing MATEFALAL

PATENTS！

TYPRWRITIRS

ELECTRO MOTOR．SIMPLE．HOW TO

The HARTFORD SAFETY
the best sioo bicycle made．
 HARTFORD CYCLE CO

LEFFEL TURBINE WATER

 WHEELS
Machine－Molded Gearing．

 driving plant for cable railiways Shafting，Pulleys，and Hangers． Mixers and General Ontilt for Fertilizer Works Facilities for the heaviest class of work． Robt．Poole \＆Son Co，Baltimore，Md． INATMONAET TUBE CLEANER
PULLEY8 HANGER8， FRICTION CLUTCHE8．

SRAPING SHEET METAL．－DESCRIP

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alezander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877．No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such anlawful use．and all the consequences thereof，and liable to suit therefor．

，Keg，Hogshead STAVE MADCHINER $\mathrm{T}^{\text {AND }}$ $\underbrace{-1}$
E．$\underset{B D E F A}{B}$ ．Holmes
\qquad bubraid．N．Y． METALLIC RAILWAY TIES－A RE

IL MAKES

THE GREAT IMPROVEOENT I

ROOFING

The Important features of our reeont tmprove．

 Coating，ready for ehipment，about 85 pounds to
 RLWo There are Inferior 1 mitatitons of our Asbestos

H．W．JOHNS MANUFACTURING CD．
H．w．Johng＇Yire and Water Proof Asbesto Sheathing，Building Felt，etc．，A Abestos Boiller Coverings，Steem Packings， Fire－Proof Paints，etc．
end
and Decriptive Price List
Tree by Mail
87 Maiden Lane，New York．

 RANKS THE FIGGHEST CHALMERS SPENGE CO

MAOHING WORKS，

THE REFINEMENTS OF MODERN

OBESITY．－BY WALTER MENDEL

Scientific Book Catalogue RECENTLY PUBIISHED．
 nailed tree to any address on application．
MUNN \＆CO．，Publishers Scientific

THE PHONOGRAPH．－A DETAILED

GRAVESELEVATORS．

THOMAS ALVA EDISON．－A BIO－

COMPTOMETER
ALL ARITHMETICAK

 FELT \＆TARRANT MFG．CO．， $52-56$ llinois St，Chleago． JENKINS BROS．VALVES！

MALLEAELER

エ浢曰

ダcientific $\begin{gathered}\text { Amexican } \\ \end{gathered}$

BSTABLISHED 1846.

The Iㅛost Popalar Scientific Paper in the World． Oniy 83.00 n Yenr，Including Poatage．Weekly．
This widely circulated and splendidly illustrated teen pages of useful information and a large number o original engravings of new inventions and discoverles representing Engineering Works，Steam Machinery， New Invenions．Novelties in Mechanics，Manuf ictures tecture，Agriculture．Horticulture，Natural History，etc Complete List of Patents each week．
Terms of Subacription．－One copy of the SCIEN－ OFIC AsiEBICAN will be sent for one vear－62 numberb－ Canada or Mexico，on recelpt of three dulliura by the publishers；six montts，81．50；three months， 81.00 ．
Clubu．- Special ratee for seeveral netines，and to Poot Clubn．－Special ratee for several natnes，and to Post The sof cot wasto remit is by Pootal Order．Drath，or Express Money Order．Money carefully pliced inside of envelopes，securely sealed，and correctly addresed， seldom goes astray，but is at the sender＇s risk．Ad
dress all letters and make all dress all letter
ableto

MCTININ \＆CO．，
361 Broadway，New York． TPE以
Scientific American Supplement．
rhis is a separate and distinct publication from tik size，every number contsining sixteen larm therewith of engravings，many of whith are taken from forelgn papers，and accompanied with translated descriptions mir Scicstific Amikican Sulpleminnt is publishe presents the most recent papers by eminent writers in all the principal departments of science and the Useful Arts，embracing Biology，Geclogy，Mineralogy， Natural History，Geograp hy，Archæology．Astronomy， neering．Steam and Railway Engineering，Mining Sbip Building，Marine Engineering．Photogruphy． Technology，Manufacturing Industries，Sanitary Kn－ gineering，Agriculture，Horticulture，Domestic Fcoono
my，Biography，Medicine，etc．A vast amunnt of fresh and valuable information obtainable in no other pab－ lication．
The mas
The most important Enotneerng Works，Mechanioms，
and Manufactures at home and abrocd ane illastrated and described in the SOPPLLEMENT． Canada． 85.00 a year，or one copy of the ScIENTLIC AM Por one year for 87.00 ．Stingle coples 10 cents．Addreas and remit by postal order，express money order，or check MUNN \＆Co．， 361 Broadway，N．Y．o

Building Edition．
Thi Soientifio Amerion Archirgcts＇AND
BUILDERS＇Edition is isgued monthly． 82.50 a year． Single copies， 25 cents．Forty large quarto pages，equa to about two bundred ordinary brok pages；forming a large and splendid Magazine of A rchitect ure，rich－
ly adorned with elegant plates in colors，and with other Ane engravings；illuatrating the most inderestiog ax－ alled subjects．
A spectal feature is the presentation in oach number
of a variety of the latest and best plans for private resi－ dences．city and country，including those of very mode erate cost as well as the more expensive．Drawings in Plane，Spec．Acations，Sheets of Details，Estimates，eto
The The elegance and cheapness of this namnificent work Architectural publication in the world．Sold by all ewsdealers． 22.50 a yea．．Remitto

MUNN \＆CO．，Publishers，
361 Broadway，New York．
PRINTING INKS：

