
a weekly jourval of practical information, art, science, mechanics, chemistry, and manufactures.

NEW YORK, AUGUST $2,1890$.

IMPROVED MOVABLE DOCK CRANE.-[See page 69.]

Srientific glumticat.

ESTABLIBHED 1845.
MUNN \& CO., Editors and Proprietors. poblished weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. brach.

TERMS FOR THE SCIENTIPIC AMERICAN.

One copy, one year.for the U. S., Canada or Mexico...
One copy, six months, forthe U. S., Canada or Mex co.

co......

. .8300
\ldots
150

One copy, one year, to any foreign country belonging to Yostsil Dui..... 4 it
Remit by postal or express money order, or by bank draft or check. Remit by postal or express mones order, or by bank draft or check.
MUNN \& CO.. 3 cil Broad way, corner of viranklin Street, New York.

The Scientife American Supplement
Is a distinct paper from the Scientipic amimican. Tile supplism sNY
is issued weetiy. Kvery number containg 16 octavo pakes. uniform in sise with scientific Amitican. Terms of subscription for suppiement, 85.00 a year, for U . S ., Canada or Mexico. $\$ 6.00$ a year to forelgn
countries belonglig to the Poatal Union. countries belonging to the Postal Union. Sinkle coples, 10 cents. Bold
by all newadealers throughcut the country. See prospectus last paze. by all newadealers throughcut the country. See prospectus last page.
Ciombl inal Haten.-The ScIENTIPIC AMEICAN and BUPPLEMENT will be sent for one year, to any address in U. 8., Canada or Mexico, on Win be sent for one year, to any address in U. 8.. Canada or Mexico, ou
receipt of seven dollars. To foreign countries Fithin Postal Union, n ine

Bullding Edition.

The architects and bulderes kdition optare Scientipic amer-
ican is a large and splendid illustrated periodical, issued monthly, conicAN is a large and splendid illustrated periodical, issued monthly, con-
taining floor plans, perspective views, and sheets of constructive detaits, pertaining to modern architecture. Each number Is llutustrated with,
beautiful plates, showlag destrable dwellings, public buildings and archlbeautiful plates, showlng destrable dwellings, public buildings and archl-
tectural wort in great variety. To builders and all who contemplate buildting this work is invaluable. Has the largest circulation of any architectural pablication in the world.
8 8ingle copies 25 cents. By mall, to any part of the United States, Canada
or Mexico, $\$ 2.50$ a year. or Mexico, $\$ 2.50$ a year. To forelgu Postal Union countries, 83.00 a year.
Combined rate for BuILDING Enition with Scientific AMEMICAN, 85.00 a vear; combined rate for Builining Einition, Scientipic Am ERICAN and SUPPLEMENT, 89.00 a year. To foreign countries, 811.50 a year

Spaniuh Edition of the Scientific American. LD Ayehica Cientifica r indostrial (Spanish trade edition of the
scientific Amehican) to published monthly, uniform in aize and typography with the SCIENTIPIC AMEricaN. Every number of La Δ merka is
profusely illuatrated. It is the finest scientifc, induatrial trade profusely illustrated. It is the finest scientiflc, industrial trade paper
printed in the Spanish language. It circulates throughout Cuba, the W eat Indies, Mexico, Central and South America, Spaln and Spanilh pooses-
Blong-wherever the panish language is spoken. $\$ 3.00$ a year, post paid to Blons-wherever the Spanish language is spoten. 83.00 a year, po
uny part of the world. Single coples 25 cents. See prospectus.

MUNN \& CO., Publishers,
[7] The safest way to remit is by postal order, express money orde praft or baik check. Make all remittances payable to order of MUNN
Mas.

NEW YORK, SATDRDAY, AUGUST $2,1990$.

Contents.	
(Illustrated articles are marked with an asteribk	
Atlantic. new route................ ${ }^{739}$	
Buar, rame, Fisher's	
Civent for iron railinks........... 64	
Construction, careleseness in..... $6^{\circ} 5$	
Sericele	
Knginea, marine, improved.	
Fever, yellow. humeopath on	
Halter, improved, Ėöighi's*...... 65	
He wiil succeed. K....	Venus, planet Wush botler, improved*.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT NO. 761.

For the week Eading anguat 2, 1890.

 Price 10 centa. For sale by all newedenlere.

 IV. CeqCuING.-A Water Veloctpede.-A water bicescle with co.......

x. TECCNOLOOQ..

a telegraphic firb.

The headquarters of the Western Union Telegraph Company, 195 Broadway, corner of Dey Street, were greatly injured by fire on the morning of July 18. The chief operating room, with its grand arruy of instru ments, simplex, quadruplex, and many other kinds operatively connected with thousunds of wires, leading to all parts of the world, were almost instantly destroyed, and the telegraphic communication of the country interrupted and disorganized. The effect upon busine
The company, with commendable activity, proceeded to secure temporary quarters in various parts of the city, obtained instruments from other towns, and, in the course of a few days, succeeded in restoring to a great extent its normal facilities. Much inconvenience is, however, still felt by the public, by reason of the tardy and uncertain dispatch and delivery of many messages.
The Western Union building was built of iron and masonry, and has always been claimed and bragged about as a fireproof structure-one that could never be seriously damaged by fire. But now it turns out to be simply a fireproof shell with a combustible liningin fact, a dangerous sort of building.
The fire broke out at 7 a . m., when only a few operatives were on duty, otherwise, probably, there would have been loss of life. As it was, there were several
rrot escapes.
The fire is supposed to have been occasioned by the overheating of a telegraph wire from contact with an electric light wire on the street. This ignited the within the building, and the other wires concentrated within the building, and the flames rapidly spread to the mass of wood work of which the interior was com osed.
It is said the loss to the company is about half a million dollars on the building. The report is, the put it in an actual freproof condition.

Quicksilver in South Africa.

Mr. W. J. Smith, of Zeerust, is at present in Cape Town, and advantage was taken by an Argus reporter to ask him a few questions about the alleged valuable deposit of quicksilver at Marico, in the Zeerust district. The substance of Mr. Smith's statement is that some time ago, while inspecting Witkop farm,
his attention was attracted by a peculiar formation of his attention was attracted by a peculiar formation of
rocks there, and also by the color--vermilion-of the rocks there, and also by the color-vermilon- $Q^{f}-$ silver.
Since then operations have been carried on by Mr. Lemmert, Jr., and specimens of the rock have been subwitted to experts, including Dr. Hahn, with the result that a rich mineral discovery has been made. Quicksilver exists in very large quantities and of ex cellent quality, while silver, zinc, lead, and other winerals are abundant. The Witkop mine is at present worked by a syndicate with successful results; and this success led to prospecting operations on the adjoining farm of Buffelshoek, where precisely similar conditions were observed, and where a scratching of the surface has revealed the fact that there are equally good results to be anticipated from the mine being worked.
A syudicate has been formed to work this mine as well as that of Witkop; and a movement is also in progress for further exploration in the district, where quicksilver is evidently abundant. Professor Hahn has expressed an opinion that the quicksilver mine at Witkop is one of the richest in the world.

Salt Every Day.

Dairy cattle should have access to salt every day, and salt should be added to their stable feed. A series of experiments has convinced me that when cows are denied salt for a period of even one week they will yield from $141 / 2$ to $171 / 2$ per cent less milk, and that of an inferior quality. Such milk will on an average turn sour in twenty-four hours less time than milk drawn from the same or similar cows receiving salt, all other conditions of treatment being equal. Comfortable quarters are indispensable to the health and well-being of cows. Stables during the winter should have a temperature constantly within the range of 40 to 55 degrees Fah. In summer time a shade should be provided n the pasture fields or adjacent thereto to protect against the bristle-making influence of July and August suns. In all the management of cows such conditions should be provided and such care given as will insure excellent health and apparent contentment. When practicable, milking should be done by the same per-
son, with regularity as to time. He only that hath clean hands should be allowed to milk a cow. I say " he " because I think the men of the farm should do all the milking, at least daring the winter months. I have exercised the right of changing my mind on that subject since I left the farm. It is no more difficult to milk with dry hands than with them wet. It is certainly more cleanly, and leaves the milk in a much

Pure stable atmosphere is indispeusable to prevent con tamination from that source. Imwediate straining will remove impurities which otherwise might be dissolved, to the permanent injury of the whole product. -Orange Judd.

Revival of American Ship Building.

According to the Marine Record, the new tonnage of the first six months of the present year is represented by 79 steam vessels, with a tonnage of 63,922 , and 30 sailing and tow vessels with a gross tonnage of 15,559 , making a total of 109 vessels having a gross measurement tonnage of 79,481 tons, including steel, iron, composite and wooden vessels of first class design and quipped with all modern inventions.
Of the new steamers, 18 are vessels having a tonnage between 1,000 and 2,000 tons, and 13 have a tonnage between 2,000 and 3,000 tons. The average tonnage of the above 18 is 1,609 , and of the 13 it is 2,307 . It must be said, however, that from 15 to 35 per cent should be added to the foregoing tonnage, as several of the modern high classed, steel built propellers are already n record as exceeding 3,000 tons capacity
Of the above new steam tonnage (excluding the smaller vessels), Cleveland shipyards are to be credited with at least 30,000 tons, as against 12,000 tons for West Bay City, 11,000 tons for Detroit, and still smaller totals for Buffulo, Milwaukee, Grand Haven, Duluth, etc.

Clivility in Trade.

A gentleman bought some machine tools of a certain firm, and, not receiving them when promised, wrote, requesting to know why they were not delivered. To this he received no reply. Waiting for three days longer than it would take for an answer, he telegraphed briefly: "Send tools at once, or let ue know why ; in great weed of them." This brought a reply from the superintendent, who fancied that this called for what he thought was a dignified rebnke. So he answered: "Tools will be sent when we are ready, not before." The customer took the next train to the works-only one hour's ride-and brought the telegram with him one hour's ride auperinugh dent with his grievance, who, being a sensible man, dent with his grievance, who, being a sensible man,
soon arranged matters to the buyer's satisfaction. Then the president interviewed the superintendent, and gave him some good advice on the subject of politeness in trade, which it is to be hoped he profited by.
Human nature is weak, and the best of us are liable to err, but it is a bad thing to err on the side of incivility. No matter how large or small an order may be-five cents or fifty thousand dollars-the buyer is entitled to courteous treatment and prompt attention. The mouse gnawed the lion free of the net, and the five cent order man may know a fifty thousand dollar order man, whom he will take where he will be well treated. As the Engineer, from which we copy, says, civility pays every time. It is a cardinal point in business, and boors should remember that rudeness always recoils upon those who exhibit it.

To Eectify Turpentine.

As it is difficult to obtain nice, clear turpentine for microscopical purposes, I want to give other workers the benefit of my experience in rectifying the ordinary fluid. I proceed as follows :
Take one pint of the common turpentine and mix in a quart bottle with four fluid ounces of 98 per cent alcohol. Agitate well, and let stand until the two fluids separate. Decant the turpentine (which will form the lower layer) from the alcohol, and mix it with one pint of clear water. Agitate thoroughly, and let stand until these two fluids separate, then from the water decant the turpentine (which this time will form the upper layer), and, finally, mix with the turpentine about one ounce of powdered starch, and filter through paper.
By pursuing the foregoing plan any one may secure a pure, limpid, and brilliant turpentine. The alcohol used in rectifying it need not be wasted, as it will do to burn, to clean slides, or for other purposes. J usually wake a large quantity and recover the ulcohol by distillation.-The Microscope.

Where Traveling is not Altogether Pleacant.

Travelers on the Eastern Bengal Railway have placed before their eyes on entering the stations of the road a placard containing the following cheerful information: "Passengers are hereby cautioned against taking anything to eat or drink from unknown persons, as there are many who live by poisoning travelers. They first of all court acquaintance with passengers in a sarai or some other place, and then gain their confidence on the plea of being fellow travelers going to the same place. When they reach a place convenient for the purpose, they poison the water or food of the passengers, who become insensible, and then they decamp with all their property. They also at times poison the passengers' water when being drawn out of wells, or sweetmeats brought from the bazar, or food wells, or sweetmeats
when being cooked."

POATTION OF THE PLANETS IN AUGUBT JUPITER

is evening star. He retains his place as first on the list during August, but when the month closes, he loses his pre-eminence, for the splendor of his fair rival in the west equals if it does not exceed his own. He will however, at the close of the month be near the merihowever, at the close of the month be near the meri-
dian when Venus sets, and shine brightly for hours after she has disappeared below the western horizon. The bright star on the southeast of Jupiter is Fomalhaut, the bright star on the northwest is Altair. Observers will note how much larger and more brilliant Jupiter is than either of these first magnitude stars. Jupiter sets on the 1st at $4 \mathrm{~h} .41 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31 st , he sets at $2 \mathrm{~h} .25 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. His diameter on the 1st is 46°.2, and he is in the constellation Capricornus. VENUS
is evening star. She shines with increasing luster a she makes her way toward the earth, becoming visible soon after sunset, and continuing above the horizon for about two hours. Her diaweter at the close of the month is twice as large as it was at superior conjunction. When seen in the telescope, she takes on the gibbous phase, like that of the moon passing from the full to the last quarter. This beautiful planet is near Spica on the 30 th , passing 1° north of the star. Observers will note her rapid movement southward. She passes during the month from $4^{\circ} 53^{\prime}$ north declination to $10^{\circ} 14^{\prime}$ south declination.

Venus sets on the 1st at $8 \mathrm{~h} .55 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st, she sets at 8 h .4 m. P. M. Her diameter on the 1st is $15^{\prime \prime} .8$, and she is in the constellation Leo.

MERCURY

is evening star. As he moves eastward from the sun, he encounters Saturn moving westward toward the sun. The planets are in conjunction, on the 9 th, at 11 h .56 m. P. M., Mercury being 34^{\prime} south. They are both too near the sun to be visible
Mercury sets on the 1st at $7 \mathrm{~h} .46 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st, he sets at $7 \mathrm{~h} .18 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. His diameter on the 1st is $5 " .0$, and he is in the constellation Leo.

mars

is evening star. He is in conjunction with Antares on the 14 th , passing $1^{\circ} 25^{\prime}$ north of the star he so closely and Jupiter, as well as the de approach of ars ruddy planet.

Mars sets on the 1st at 11 h .44 m. P. M. On the 31 st , he sets at $10 \mathrm{~h} .38 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. His diameter on the 1 st is he sets at 10 h .38 m . P. M. His diameter on
$15^{\prime \prime} .0$, and he is in the constellation Scorpio.

SATURN

is evening star until the 30th and then he becomes morning star. He is in conjunction with the sun on the 30 th at $2 \mathrm{~h} . \mathrm{P}$. M., and is of little account during the month, being too near the sun to be visible.

Saturn sets on the 1st at $8 \mathrm{~h} .21 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st, he rises at 5 h .17 m. A. M. His diameter on th 1st is $15^{\prime \prime} .4$, and he is the constellation Leo.

NEPTUNE

is morning star. He is in quadrature with the sun on the 30th at $1 \mathrm{~h} . \mathrm{A}$. M.
Neptune rises on the 1st at $0 \mathrm{~h} .20 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st, he rises at $10 \mathrm{~h} .21 \mathrm{~m} . \mathrm{P}$. M. His diameter on the 1st is $2^{\prime \prime} .6$, and he is in the constellation Taurus.

uranus

is evening star. He sets on the 1st at $10 \mathrm{~h} .11 \mathrm{~m} . P$. M. On the 31 st he sets at $8 \mathrm{~h} .15 \mathrm{~m} . \mathrm{P}$. M. His diameter on the 1st is $3 " .5$, and he is in the constellation Virgo.
Mercury, Venus, Uranus, Mars, and Jupiter are evening stars at the close of the month. Saturn and Neptune are morning stars.

Copyrights in Different Conntries

The duration of copyrights in various countries, according to a resume given some months ago by a
writer in the Westminster Review, is as follows: In Greece the period during which an author can hold a copyright is restricted to fifteen years; and the writer indicates his estimate of the limitation in a business point of view by saying that the modern Greeks thus justify their reputation as the most acute of business men. The Swiss grant copyright during the life of the author or his heirs during thirty years from the date of publication of his work. His heirs can have a $\mathrm{c}_{\mathrm{t}} \mathrm{y}$ right in his posthumous work for thirty years from the date of his death, if they publish the works within ten years of his decease. In the United States copyright is accorded to authors during twenty-eight years from the time when the title is recorded. and for fourteen years more if the author, or certain representhork in question be recorded anew within six months before the expiration of the twenty-eight years-the period during which the copyright was already secured. In Japan the ordinary copyright is accorded for thirty years; but fifteen years may be added to that period in favor of works of great utility. According to Eng lish law, authors enjoy a copyright for a term of forty-
during the life of the author and seven years from the date of his death, whichever may be the longer. In Brazil the author enjoys a copyright for life, and it is extended for ten years after his death. In Venezuela the copyright endures for the life of the author, and fourteen years after his death. In Holland and Bel gium the copyright lasts during the life of the author, and during twenty years after his death. In Germany, Austria Hungary and Portugal copyright endures during the life of the author, and duringithirty years after his death. The duration of copyright in ltaly is regu lated in a peculiar manner. It endures for the life of the author and forty years after his death, or for eighty years after the publication of the work; the term of years being divided into two periods of forty years each. If the author dies within the first period of forty years, the remainder of the term is enjoyed by his heirs or assigns. The second period of forty years begins at the death of the author, if he has died after the first period of forty years has elapsed ; or if he has died before then, at the end of the first period of forty years. During the second period any one is at liberty to republish the work on payment to the owner of the copyright of a royalty of five per cent on the price, which must be marked on the book. France, Norway, Sweden and Denmark accord a copyright during the life of the author and during fifty years after his death. Russia not only gives copyright for life and during fifty years after, but also for ten additional years if an edition of the work is published within five years from the end of the first copyright term. - The law of Spain accords a copyright during the life of the author, and for eighty years thereafter. Only in Mexico is copy right perpetual.

Careleneness in Construction.

If men persist in running the ends of floor beams nto the flues of chimneys and leaving them so, out of sheer laziness or besotted stupidity, says the Independ $e n t$, it must be expected that houses so built will take from If apartment houses are built with a wooden bo from cellar to roof, kiln dried in course of time, with temptations added in the use of matches and hot coals, the house will be on fire from cellar to roof in a flash, if the start of a little fire comes, whether the first week or the thousandth. If people build, and other people occupy, such a dwelling in the cellar of which a baker just as sllers in hot fat before daybreak in the morning other little slip spills the fat on the fire the whole structure will be in a roar of flame, although there may be a handred little children dreaming in their cribs on eve a handred fittle children dreaming in their cribs on
evilders run up a churci wall and leave every floor. If builders run up a churci wall and leave
it unsupported by floor beams or shoring, and a heavy gale cowes, the wall will crash down on a dwelling alongside. The intention, the plan, the forethought or lack of forethought, are all immaterial. The poi son does not observe it has been swallowed by mis take, and therefore omit to attack the stomach in the way natural to it. It is the act, and not the motive which determines results. And if a tinder box shaft is put into a building, or if there is a furnace flue placed too near the wood, these things act precisely as if they had been planned to set buildings on fire as soon as they are brought into the right conditions, and if there are open air spaces, and connecting within walls and under floors and roofs-as there are in all buildings except perhaps one in ten thousand-the firegoes through those spaces to the top as readily and certainly as is they had been planned to be the flues they really are Then when the train which bad building and bad habits have laid goes off and the fire breaks out we run and bring a fire department maintained at a heavy ost, which stope the burning with a water damag second only to that of the fire, then we look to the in surance companies and consider that there is no real loss if only we have been "covered."
Now just as long as these bad habits continue, fire and all the list of preventable calamities will follow them. That these reckless ways will continue indeinitely is not to be expected-they are too costly, their cost will compel reform. But is it not time to seriously undertake the reform and stop the cost from running up further?

six Thousand Dollars for Aetronomical

 Discoveries.Miss C. W. Bruce offers the sum of six thousan dollars during the present year in aiding astronomica research. No restriction will be made likely to limit the usefulness of this gift. In the hope of making it of the greatest benefit to science, the entire sum will be divided, and in general the amount devoted to a single object will not exceed five hundred dollars. Precedence will be given to institutions and individuals whose work is already known through their publications, also to those cases which cannot otherwise be provided for or where additional sums can be secured if a part of the cost is furnished. Applications are invited from as tronomers of all countries, and should be raade to Pro essor Edward C. Pickering, Harvard College Observa ory, Cambridge, Mess., before October 1, 1890, giving complete information regarding the desired object

Applications not acted on favorably will be regarded confldential. The unrestricted character of thi gift should insure many important results to science, if judiciously expended. In that case it is hoped that thers will be encouraged to follow this example, and that eventually it may lead to securing the needed means for any astronomer who could so use it as to wake a real advance in astronomical science.-sicience

The Rabbit Plagae in Auetralacia.

A recent report by the United States consul at Sydney, N. S. W., gives a vivid idea of the extent of the rabbit pest in Australia. The extraordinary fecundity of the animals under the climatic conditions there pre vailing have caused the country to be completely over run with them. Vast regions are devastated, and the grass and other herbage isdevoured. The government has spentimmense sums to destroy and repress them. New South Wales has spent nearly $\$ 4,000,000$. Seve ral thousand miles of wire fencing has been erected and large amounts in bounties for scalps have been paid. The bounty has varied from two cents a scalp to twenty-four cents, according to the number of rab bits in the district. The rabbit hunters have earned rom $\$ 20$ up to $\$ 50$ a week. The natural consequence has been that the extermination of rabbits has been the last thing desired by some of these rabbit hunters and the bounty began to take the form of a practical subsidy or protection for the very animals it was desired to destroy. The employment of the rabbit hunters wa made compulsory on the owners of land. The deter mination has at last been reached to discontinue' the payment of such bounties.
Wire fencing has been found of use. A height of 3 eet, with $15 / 8$ mesh and No. 17 wire, has been found effective in excluding them. A wooden picket fence is also noted as giving good results.
The figure of five millions is given as the possible in crease of two pairs of rabbits in three years. Yet even this is a low estimate of the possibilities of reproduc ion of rabbits. The average life of a rabbit is put at bout nine years. The doe may have young eight time in a year, averaging eight each time. The first litter is produced when but four months old. The progres sions based on these figures lead to astonishing results For three years the possible progeny of two rabbit has been calculated as over thirteen millions, and for seven years as fifteen hundred millions. Of cours these estimates may exceed reality, but they indioat he impossibility of killing off the foreign invader. Fifteen million skins have been exported from New South Wales in one year, yet the rabbits are not diminished. The climate of Australia seems to be such hat no extraneous limit is placed to their propagation n other lands they do not increase to any extent, and in settled places often become extinct. Instances of their cestructive power are only too frequent in the antipodes. At a place called Terganynia, in 1889, 60,00 acres of grass were destroyed by them, although a mil ion were killed on this identical tract.
At present the southwestern part of the continent is most afflicted. Curiously enough, tame rabbits will not spread. In the early history of the country they vere introduced, but did not thrive. The origin of he present evil is traced to a single pair of wild brown rabbits liberated in Victoria. The first enactment against them were passed in 1879.
While their destruction would seem hopeless, in view oot only of the figures given above, but an account o the experience of the past decade, attempts are still in progress. Poisoning is extensively used, of course un fitting the animals for food. This is held to be an advantage, as any utilization of the animal is in the line of opposition to its extermination. It is largely on account of poisoning that many canning factories started to utilize rabbits as a food product have been aban doned. Ferrets are found useful, but they have already done much harm to poultry and some of the interest ing indigenous birds. Traps that kill the rabbits kil errets also, so the use of wire pounds to capture them in quantities alive is advised.
It will be remembered that a reward was offered by the government of New South Wales for a method for the destruction of rabbits. Πp to the end of last year about 1,500 methods had been proposed and examined, but none answered the requirements. No less than 115 were for the destruction by disease. One curious scheme consisted in the killing of the females and letting the males escape. This, it is claimed, will bring about a preponderance of the males, who will worry the emales to death. This plan is actually under trial now. M. Pasteur, the eminent French biologist, proposed to introduce chicken cholera by inoculation. He reserved as his secret thethod of preparing the virus, which secret he agreed to divulge only if the reward was given him. The method was tried most carefully under the superintendence of M. Pasteur's own assistants. Rodd Island, near Sydney, was chosen for the work. The commission reported adversely, holding that practically the virus was little or no better than arsenic or other known poison. Thus the reward of $\$ 25,000$ remains in abeyance, while the rabbits continue to be as bad a plague as ever.

\triangle NOVEL TOY.

The game box shown in the accompanying illustration is designed to afford amusement for young and old. It has been patented by Mr. Charles W. Fishel, of Carbondale, Col. The cover is hinged at one end

FISHEL'S TOY OR GAME BOX.

and fastened with screws at the other end, and has a longitudinal groove slightly slanting downward toward the center; this groove being intersected by another groove having a turn. In the latter groove is a projection to prevent the marbles rolling into the end groove by gravity, and in this end groove is a longitudinal slot with a enlarged portion through which projects a lever which turns on a fixed pivot, and is pivoted at its lower extremity to a rod projecting through an opening in the front of the box. This rod is surrounded by a spiral spring which serves to force the rod outward after it has been pushed in. The pushing in of the rod releases a marble from the angled groove, and the marble falls into the main groove in front of the lever. Now, by striking smartly on the button at the end of the rod, the lever will be instantly moved forward, and the marble in front of it will be projected with great velocity. At the same time an arm, not shown in the drawing, pushes another marble over the obstruction in the angled groove ready to he discharged into the main groove, when the apparatus will be ready for another shot.
The box is anchored as shown in the engraving. It is obvious that a variety of games may be adapted to this apparatus. \qquad TABLE

NEW FOLDING TABLE.

In the annexed engraving is shown a folding table which is designed to be used as an ordinary table, and also as a pedestal for the use of undertakers for supporting coffins and caskets.
The table top is provided with a cruciform groove, to which are fitted the upper ends of the table legs. The upper and lower ends of the legs near their adjacent sides are provided with slotted straps, as shown in the detached plan view, which hold the parts in proper relation to each other, whether the table is folded or arranged for use.
When the table top is removed the legs are folded to gether, as shown in the lower view, and held in this position by the slotted straps and by a hook attached to the first of the series of legs and an eye inserted in

the last. When the table is arranged for use it is ver strong and capable of supporting considerable weight When it is knocked down it is very compact, and may This inventionily packed for storage or shipment.
This invention was recently patented by Mr. W. J Moan, No. 145 India Street, Brooklyn, E. D., N. Y.

maproved dwelling houses.

The illustration represents a model plan, recently patented by Mr. Leonard E. Ladd, of No. 2144 Mount Vernon Street, Philadelphia, for the building of improved dwelling houses. The plan provides for the erection of a block of buildings, and their connection in such way that the ordinary kitchen work and gen eral supply features will all be cared for in one centra building, the illustration showing twenty-four houses laid out after such a scheme, although the system would be equally applicable to at least as many a forty houses. As the average distance through the sup ply hall for forty houses 18 feet front would only be about 90 feet, the houses proper would admit of more than the usual variety of construction and interior arrangement, from the fact that the kitchen and dining room would not be in them, thus leaving more room for other purposes. From the rear of the ground floor a covered passageway or hall leads to a back building of sufficient size for the dining room, this building being preferably only one story in height, with a tentlike or canopy cover, to form a pleasant place to sit in favorable weather and to protect room from heat of the sun. From the dining rooms of all the buildings in the block a covered passageway or general supply hall extends to a central building, to be used as a common supply building, laundry, and kitchen, and fitted up with appliances for furnishing light and heat, room for servants' quarters, etc. When electric light is used, the dynamos would be located in this building, as also the plant for supplying heat, and the blowers for arti Gial ventilation, and cold storage, if this was desired. This central building would preferably be connected with each of the houses in the block by a speaking

spiral spring, which tends to press the bolt downward. In a slot in the upper end of the bolt is pivoted a lever having a shoulder which rests upon a bar extending across the aperture in whish the bolt slides, and through the slot of the bolt. This lever is adapted

WITTLIG's LOCEING DEVICE FOR BICYCLES.

o lift the bolt and hold it in an elevated position, so s to permit of freely woving the bicycle fork.
When it is desired to lock the fork and the steering wheel in a fixed position, the bolt is released by turning down the shouldered lever, when the spring will orce the bolt into the aperture of the segmental plate, and thus lock the steering apparatus in a fixed position.
This device can be operated in an instant. It may be made light, and there is no danger of its being broken, as the collar on the head will turn before the bolt can be overstrained. The attachment adds to the appearance of the machine, and is, withal, very useful and desirable.
This invention has been patented by Mr. Fred E. Wittlig, of Marietta, Ohio.

ELECTRIC SLAUGHTERING APPARATOS.

The inventors of the slaughtering apparatus shown in the engraving have found by experiment that their method of killing animals by means of a high tension electrical current is less cruel and barbarous than the ordinary method. They also find that the animal bleeds more freely, and that the meat is benefited by the passage through it of an electric current. The inventors state that meat slaughtered by this method will keep longer than by other methods, and that pork slaughtered by electricity is found to be entirely free from trichinæ.
The apparatus consists in a pen provided with a metallic floor divided into two sections, an electric generator for supplying a current of sufficiently high tension for the purpose, and a hand electrode for applying the current to the animal. The pen rests upon insulators, and one portion of the metallic floor is connected with the dynamo, which is represented diagrammatically in the engraving.
The animal to be killed is first driven through a shallow pool of water to wet its hoofs, so as to secure a good electrical contact with the sections of the metallic floor. When the animal stands partly upon each section, it may be killed by bringing the electrode into contact with the rear part of the floor, thereby causing

GULER \& DOFPLEYYRE'S GLAUGHTRRING APPABATUR
a current in the dynamo to flow through the electrode, through the rear part of the floor, and through the animal to the front part of the metallic floor, thence back to the dynamo.
If desired, the killing may be effected by the direct application of the electrode to the head of the animal. Messrs. J. D. Miller and James A. Dofflemyre, of Gunnison, Colorado, are the inventors of the apparatus.

INSTRUMERT FOR FASTENING FUEE CAPS.

A new implement for fastening caps on giant powder fnse has been patented by Mr. Nathan W. Moodey,

MOODEY'S FUSE CAP FABTENER

of Fresno City, Cal. This implement is made in the generalform oi pliers. It is formed of two similar parts connected together by a pivotal rivet. Each part has a curved handle, and with a cheek having notches with cutting edges at the sides of the notches. Upon the edges of the cheek pieces opposite the handles are formed curved jaws which, when closed together, form a circular aperture for receiving the fuse cap.
The jaws are beveled on opposite sides around the aperture. One jaw is provided with a tongue which fits into a corresponding groove in the other jaw.
The pliers are used for cutting fuse and for contract ing the end of the cap on the fuse. They are well adapted to the pur pose for which they were designed, pose for which they were designed,
and will doubtless speedily find their way into the kits of users of fuse and fuse caps.

NEW WASH BOILER

A wash boiler in which the articles to be washed may be separated, so that they may be readily sorted and classified, is shown in the annexed engraving. Each lot of articles is separately boiled or steamed and rinsed in one general receptacle. The apparatus may also be used with equal facility in bleaching.
The body or outer portion of the device is a metal vessel having a faucet at the bottom for drawing off the contents, and provided with a suitable cover furnished with a groove for .receiving the apertured groove for .receiving the apertured
edge of the vessel. This vessel is edge of the vessel. This vessel is
divided into a series of compartments by transverse and longitudinal corrugated partitions, the partitions being attached to the inner walls of the vessel. These partitions may be either fixed or removable as circumstances may require. Within each compartment thus formed is placed a perforated bottom, and toeach compartment is loosely fitted a bucket furnished with a perforated bottom and a bail for convenience in lifting it out of the boiler.

In the operation of washing, the chamber in the lower part of the vessel is nearly filled with water, and the clothes are sorted and placed in the different

MRS, MARTINOT'S IMPROVED WASH BOILER.
buckets, and the buckets are lowered into their respective compartments in the boiler. As soon as the water in the lower part of the vessel boils, it is forced by steam pressure upward between the partitions, the linings of the vessel and the buckets, and flows into the buckets, returning through.the clothes by gravity, carrying with it the dirt loosened by the action of the hot water and the steam. This operation goes on con tinuously so long as the boiling point is maintained.
It is claimed that the clothes are not actually boiled but that the dirt contained in the fabrics is softened by the action of the steam, and is removed by the circulation of the boiling water. As soon as this opera tion is complete, the different buckets may be removed and placed in another similar vessel for rinsing, or they may be rinsed in the usual manner, each class by itself. For further information regarding this invention address Mrs. Mary White, 1541 Broadway, N. Y. City.

NOVEL STEAM ENGINE.

In the engine shown in the annexed engraving, the inventor has provided a mechanism for utilizing the steam to the fullest extent. This engine is practically furnished with four pairs of reciprocating pistons, al though in reality one of the pistons answers a double purpose. The power cylinder consists of a longitudinal cylinder intersected by two transverse cylinders. In the longitudinal cylinder are arranged three pistons, two pistons being placed in opposite ends of the cylinder and connected by a rigid bar outside of the cylinder, the third one being placed in the center division of the cylinder. The central piston and the end pistons are connected with oppositely arranged cranks on the main shaft, so that the end and central pistons move simultaneously in opposite directions.
Transverse cylinders are located at points corre sponding to the ends of the strokes of these pistons, and in each transverse cylinder are arranged pistons which move simultaneously in opposite directions, and their
cylinder, it presses upon four pistons, which move out ward simultaneously, thus utilizing the steam pressure upon all sides of the point of admission. The detail view clearly shows this construction. In this view the pistons of one set have reached the end of their out-

ENIGHTS IMPROVED HALTER.

ward stroke, while the other set are at the inner limit of their stroke and are about to take steam.
This improved engine has been patented by Mr James G. Robey, of Greenville, Texas.

AN IMPROVEMENT IN HALTERS.

A simple and effective device for controlling and leading unruly horses without danger of doing them any injury is illustrated by the annexed engraving. It

ROBEY'S STEAM ENGINE.
movements are 80 timed relative to the pistons in the main cylinder that when the pistons in the main cylinder approach the point of intersection, the pistons in the transverse cylinders approach in like manner, and the movement of the pistonsin the opposite direc tion are also in unison.
An auxiliary shaft is arranged at right angles with The halter is made so that it may be adapted to the the main shaft, and connected therewith by a miter gearing. The auxiliary shaft is provided with two oppositely arranged cranks, which oppositely arranged cranks, which
are connected with the crossheads of the piston rods of the adjacent pistons of the transverse cylinder, and these crossheads are connected byrodsrunning underneath the cylinder with the diagonally opposite pistons in the transverse cylinders. By means of this construction these two sets of pistons are made to alternate with each other in their movements.
Upon the top of the cylinder is placed a steam chest containing a valve adapted to admit steam to and exbaust it from the space at the intersection of the cylinders, and the speed is regulated by a governor of ordinary construction.
It will thus be seen that when oteam is admitted at one end of the

TOOLE'S IMPROVED STEAM BOILEE,-[See page B8.]
head of any horse. This useful invention has been patented by Mr. Joseph Knight, of Livermore Falls, Maine.

\triangle NEW STEAK boiler

We give an engraving of a steam boiler which was recently patented by Mr. Charles O. Toole, of Dubuque, Iowa, containing novel features for which superiority is claimed. It is of the water tube type, the connec tion between the tubes being secured bs water heads at opposite ends of the boiler. The tubes are inclined to secure a good circulation and to facilitate the escape of steam to the front water head when it is delivered to the steam dome above. The tubes are arranged to form a fire chamber in the front of the boiler.
A baffle plate resting upon or supported above th upper row of tubes causes the flame and products of combustion to pass rearwardly before reaching the smoke pipe.
Stay bolts are introduced wherever necessary, and a series of rods passing through the tubes connect the front and rear heads of the boiler.
To insure a complete circulation of the water, the front and rear water heads are connected by a pipe which is entirely outside of the heating compartment.
The front water head is provided with an arched opening for the fire door.
When it is desired to clean the tubes, the front plates of the water heads are removed, thus giving access to the tubes through the water heads. By means of this improvement every part of the surface of the tubes is submitted to strong heat.
The boiler when filled or empty is lighter than cylinder boilers of the same capacity, and the tubular construction permits of carrying a high pressure with safety.

A Homeopath on Yellow Fever

Dr. Henry R. Stout gives, in the N. A. Journal of Homeopathy, an interesting account of his experiences at Jacksonville, during the yellow fever epidemic in that city in 1889. He says as many as possible of th unacclimated nurses were sent to the Sand Hills Hos pital. This hospital was situated in the pine woods, three miles from the city. The non-contagious character of yellow fever was well illustrated at this hospital. With between two and three hundred patients during the epidemic, not one of the nurses or attendants had the disease. The pure air of the pine woods did no become infected.
Another illustration was given by the immunity en joyed by those families who lived at Pablo Beach, 16 miles from the city, on the seashore. Gentlemen from here, as well as from other points, would come to the city each day at 9 o'elock and return at 4 o'clock, and in some cases visited their friends who were six, bu not one had the disease, nor were the germs carried to any of these points.
Yellow fever is pre-eminently a disease of the night I doubt if it is ever contracted during sunlight. Th attack was not generally preceded by any prominent symptoms, and the person might be seized suddenly with a chill, soon followed by fever, aching of the
bones, etc. In some the attack was ushered in with bones, etc. In some the attack was ushered in with great nervousness and a feeling of alarm. I had cases of men who could not control their emotions, but would weep when first attacked. This feeling was probably due to the depression felt by every one whether sick or well. Some cases were very turbulent and restless, and required the most careful attention. Should they uncover themselves and the perspiration thereby be checked, the result was liable to be serious. In our practice we did rot induce the excessive sweat ing that our allopathic brethren did. Their patient would not only saturate the bedding and mattress, but in some cases would wet the floor underneath the bed.

We generally began the treatment of a case with a hot foot bath, which relieved the pains and nervous ness, and about the same time administered an enema of warm water to evacuate the bowels. The patient was then put to bed, covered with a sheet and one or two blankets, and aconite $3 x$ administered every half hour or hour. He was allowed a reasonable quantity of water to drink, and sometimes cracked ice.
In the course of twenty-four or thirty-six hours either belladonna or bryonia would be indicated. Within the next day or two mercurius vivus, china, arsenicum, or possibly some other remedy would be required. $A r$ gentum nitricum, sulphuric acid and arsenicum were sheet anchors in black vomit, and cantharis
for scanty or complete suppression of urine.

A decoction of watermelon seeds, with a teaspoonful of gin to a small glass of the deeoction, as recornmend ed to we by Dr. Falligant, of Savannah, I fotad to act exceedingly well as a diuretic. Other remedies were required in the various complications, but our works on practice, particularly "Kippax on Fevers," treat fully on these points, and it is unnecessary for ine to refer to them. The remedies were used in the $3 \mathrm{x}, 6 \mathrm{x}$ and 30 potency.
Stimulants were necessary for collapse and during convalescence, and of these braudy and champagne
wre the best. The latter particularly is exceedingl beneficial.
The diet must be managed with the greatest care A return too soon to a substantial diet is almost cer tain to be followed by disastrous results. During the course of the fever gruel should be the only food a lowed, followed on the third or fourth day by chicken broth, milk, or milk with lime water. The bowel hould be moved by enemas of warm water
Our allopathic brethren, with nothing to guide them in the selection of remedies, floundered about in their usual aimless manner. The germicidal treatment with bichloride of mercury was very popular with the doctors. They were determined to exterminate the germs which infested particularly the intestines, but appeared to lose sight of the fact that the microbes could withstand more mercury than the unfortunate patient, and the result was generally disastrous to the patient.

The very best and most rational allopathic treatment can show no such results in yellow fever as homeopathy has shown in many epidemics. Under this treatment the disease is no more to be feared than an ordinary remittent fever. That such is the case is capable of demonstration from the books of the Board of Health. There were reported 4,696 cases, with 430 deaths, a mortality of $92-10$ per cent. Of this total number of cases 2,173 were white, with 331 deaths, mortality of $152-10$ per cent. The mortality among the negroes was 4 per cent. At the Sand Hills Hos pital 216 cases were treated, with 34 deaths, a mortality of 15 7-10 per cent.
There were treated homeopathically by Dr. P. E Johnson, Dr. C. W. Johnson, and myself, 501 cases, with 13 deaths, a mortality of $26-10$ per cent. This death rate can, I think, be properly compared to that of the whites, inasmuch as we had very few colored cases; but even compared to the general mortality ate it is less than one-third.
It was reported in the newspapers that Mr. Thomas A. Edison claimed that an epidemic could be prevented if on the discovery of the first case or cases the ground about the house and streets about the block were saturated with a germicide. To get an authoritative statement I addressed a note to him, asking for further information. He replied that a five per cent solution of caustic soda would destroy every living thing, both animal and vegetable; that it would remain where it was put for weeks, notwithstanding rain; and that germs passing along the ground would be killed by it. If the theory of the propagation of yellow fever along the surface of "the earth be correct, and thers ff every
reason to believe it is, the plan of Mr . Edison is wel worthy of trial.

Venus.

Signor Schiaparelli, the Italian astronomer who has made more wonderful discoveries among the planets than all the other astronomers of our day put together, has just furnished a new surprise, greater even than his recent discovery that Mercury performs only one rotation in the course of a revolution around the sun. He now asserts that Venus, the brightest of all the planets that we see, the twin sister of the earth, which is at present glowing with nightly increasing splendor in the west after sundown, also turns but once on its axis in the course of a revolution around the sun. In other words, there is no alternation of day and night on Venus, as on the earth. The planet enjoys per petual day on one side of its globe, while the othe side is plunged in unending night.
Astronomers have heretofore believed that the time of Venus' axial rotation corresponded almost exactly with that of the earth's, namely, twenty-four hours. This was supposed to have been established by noting the return of spots visible on Venus to a similar position night after night, but Schiaparelli shows that some of these observations have probably been misin terpreted, and that instead of indicating a rotation period of twenty-four hours, they rather confirm hi ouclusion that the rotation is performed in $224 \cdot 7$ days which is the time the planet takes to complete a revo-
lution around the' sun, or, in other words, is the length of Venus' year. Venus is about $67,000,000$ miles from the sun, and its orbit is more nearly a circle than that of any other planet. It follows that there is very little variation in the amount of solar heat falling upon Venus at different periods of its sear.
Schiaparelli says the axis of rotation is nearly per pendicular to the plane of the orbit. If that is so Venus has no diversity of seasons such as the earth enjoys. Its equator forever burns with the arden heat of an unending summer, and its polar regions un dergo no change of temperature. Inasmuch as Venus receives almost twice as much light and heat from the sun, in consequence of its greater proximity, as the earth gets, it must be pretty hot in the equatorial re gions, on that side of the planet which perpetually faces the solar furnace. If what the great Italian observer says about Venus' rotation is true, then the additional fact announced by him that the planet's xis is perpendicular to the plane of its orbit seem
way it is rendered possible for the polar regions to enjoy a comparatively mild climate, although the equator and the spaces corresponding to our tropical and temperate zones may blaze with unendurable heat.
If the axis of Venus were inclined like that of the earth, the :consequent variation of seasons would plunge the poles alternately into a day of fierce sun shine enduring for seventeen weeks and a frosty nigh of equal duration. The result would be that life under such forms as it assumes upon our globe would proba bly be impossible anywhere on the surface of Venus, or the sunward side of the planet would be scorched bile the night side was frozen. But if, as Schirpa elli's observations indicate, the poles of Venus are not tipped now one and now the other toward the sun but remain upright at right angles to the direction o the sun, then in their neigh borhood the heat may be tempered just as it is at the poles of the earth, in ac cordance with the law of incidence of the solar rays Of course the cold, being unbroken, may be very in tense just around the poles themselves, and in fact within a few years past white spots have been dis cerned on Venus, about where the poles would be sitated according to Schiaparelli's idea, and these spot may be caused by accumulations of snow and ice there But in somewhat lower latitudes an agreeable mean night be found between the consuming heat of the quator and the glacial chill of the poles.
The imagination may not go far astray in picturing these intermediate zones, on the sunward side of the planet, asthe scene of activities corresponding to those that mark the human occupation of the inhabitable parts of the earth. To be sure, the inhabitants of ven these favored regions on Venus could not enjoy he apreeable interchange of day and night, but would be perpetually shone upon by the sun, but even here there are indications that nature may have provided at least a partial compensation. All telescopic observa tions of Venus testify to the blinding brilliancy of it urface, and the most reasonable hypothesis yet put forth to account for this phenomenon is the exist nce of an extraordinary amount of cloud in its atmo sphere.
Anybody who has watched a sun-illumined cloud knows how splendidly it reflects the light, and, of course in looking at the clouds of another planet we can practically see only their sunny side. If, then. as ppearances indicate, Venus' atmosphere is largely filled with clouds, the effect would be to screen off th superabundant sunshine, and perhaps render even per etual daylight far less obnoxious than we might, a lrst sight, be disposed to regard it. There are reason or thinking that the atmosphere of Venus is mos abundant. Its depth has been calculated to exceed that of the earth by about one third, although Venus is a slightly smaller planet than ours. The existence of watery vapor in this atmosphere has been clearly established by spectroscopic examinations. Of the ex ent or even the existence of oceans on Venus we know othing by direct observation, but since the plane possesses an atmosphere and clouds, it is not unrea onable to conclude that it must have oceans capable of supplying the needed vapor.-New York Sun.

Delayed Telegram.

The Western Union Telegraph Company was sued or $\$ 25,000$ in the Chicago Federal Court by Mrs. Hannah Joseph. The plaintiff is the wife of a travel ing salesman who, while at Paxton, Ill., one Saturday vening, telegraphed his wife that be would be hom the following day. He did not come, and Mrs. Joseph was seized with hysterics, which a physician said were th9 commencement of a more serious disorder. Mrs. Joseph sent a message to her husband asking him why be did not come, but did not receive a reply until the ollowing day. During all that time she suffered grea agony. Judge Gresham heard the evidence and in tructed the jury that, while the company was liable for the delay in delivering the telegrams, Mrs. Joseph's ufferings commenced before she sent the message, and she could only recover the price paid for tolls. A ver dict for 25 cents was returned.

He Will succeed.

A young man going through a course of electrical en ineering at the Thomson-Houston works, in Lynn, Mass., writes to his friends in Osceola, Fla., as/iollows "Here I am at last. I started at work in the Thomson Houston electric factory last Monday. To say I am surprised is putting it inildly. There are over 4,000 men employed in this factory. It is a good sized town in itself. My first position is in the expert department adjusting and testing are lamps. I an to go through a very thorough course, and be turned out a full-fledged electrician, but it comes very severe upon a lazy devi ike me to go to work at 6:30 A. M., and continue unti 6 P. M. But if others can stand it, I can."
"THE widest plank on earth" is on exhibition at the railroad depot in this city. It was cut at the Elk River mill, and is sisteen feet it width. It will be among the Humboldt exhibits at the World's fair in Chicago.-Humboldt Standard.

IMPROVED MOVABLE DOGX CRATE.

Our illustration shows one of two coaling cranes erected at the General Terminus Quay, Glasgow, for the Caledonian Railway Company, by Messrs. George Russell \& Co., engineers, Motherwell, near Glasgow. These cranes, says the Engineer, are constantly at work, loading coals into vessels, by lifting the railway wagons in a cradle, and occasionally loading and discharging boilers and other heavy pieces as required. The special feature is that these cranes are semi-portable and self-contained, including their foundation seat, and could at little expense be removed to another site.
The seat of the carriage is constructed according to Mr. Russell's patent. It is 4 feet deep, of plates $11 / 2$ inches thick, and angles of steel riveted together. One side rests on, but is not fixed to, the quay wall. The other side rests on a concrete block, to prevent sinking into the ground. The bearing on the quay wall is 17 feet long and 12 feet broad, measured at right angles to the edge of the quay. The seat carries a forged wrought iron post, with Russell's patent bearing and inclosing jacket. The advantage of this arrangement is that the surfaces on which the crane revolves are protected from dust, while the bearing surfaces are adjustable and removable without disturbing any other parts. The jib is 47 feet long, with a radius of 27 feet, and is fitted with a pair of railsinside, on which a weight travels on four flanged wheels. This weight is attached to the end of a cradle by a chain which passes over a pulley near the top of the jib, so that while the cradle is being raised the weight travels down the jib, and vice versa.
The tipping of the cradle is controlled by the driver of the crane by a catch worked from the platform, which fixos the tipping chain from lowering, while the main chains are lowered out sufficiently to allow the coals to slide out of the wagon. This arrangement dispenses with the man usually employed to wind up the tipping chain. There are two pairs of engines-those for hoisting having 9 inch cylinders, while the turning engines have 6 inch cylinders, all fitted with link reversing motion. The driver's platform and coal space are covered by a neat wrought iron house, with lockup door, and the handles are all arranged near a window in front, from which the driver has a full view of the load. All the parts have a very abundant margin of strength. The toothed gearing is of cast steel, and altogether these cranes are specially well adapted for continuous heavy work, with a minimum expense of tear and wear. The weight of each is 92 tons.

Processes for Preserving Iron from Rust.
Besides the Bower-Barff furnace process for protecting iron by covering it with a deposit of the black or magnetic oxide, which is not liable to corrode, and the numerous copies of this method which have come before the public, the same object is alleged to be attained by the De Meritens electrolytic process. In this method the object is immersed near the anode in a bath of distilled water heated to $80^{\circ} \mathrm{C}$.; a plate of copper being the anode. The action that goes on results in the formation on the iron of a layer of magnetic oxide, which is treated afterward in the ordinary way by oiling, etc., according to the style of surface required. Peroxide of lead can also be used for the same purpose; it gives a black, very adhesive deposit by the electrolysis of an alkaline solution of litharge. According to La Lumiere Electrique, an analogous process, the invention of a
Mr . Haswell, has recently been experimented with in Mr . Haswell, has recently been ex
Vienna. In this process iron or steel is plunged as an anode in a bath containing from 0.5 to 5 per cent of chloride or sulphate of manganese, with from 5 to 20 per cent of nitrate of ammonia. The electrolysis is ef fected in the cold bath, with carbon cathodes. -Feeble currents of from 0.1 to 0.2 of an ampere cover the iron with a deposit of peroxide of manganese, which adheres well and is not subject to further oxidation. In view of modern revival of artistic blacksmiths' work, there is likely to be a brisk demand for these preserv ative processes, which, while they do not hide the ham mer work like paints, shall be even more effectual in preventing rust.

The Birch.

London Garden speaks as follows regarding a valu able hard wood: "The birch is capable of suipporting a much greater degree of cold than any other tree. In the old world its northern limit is 71 degrees upon the west and 63 degrees upon the east coast; in America its northern limit is 64 degrees upon the west and 58 degrees upon the east. In Germany the highest elevation at which it is found is 5,200 feet above the level of the sea; in Sweden at 3,900 feet, and in Lapiand at 1,722 feet. It is worthy of remark that this tree decreases in size not only as it advances toward the north, but also as it proceeds southward beyond the limits of its native region. It attains its highest perfection and greatest height in Germany and southern Sweden. The birch is not particular in its choice of soil or situa tion, and will grow almost equally well in sandy, rocky dry, or damp soil."
©arrespondence.
The Hydraulic Rem.
To the Editor of the Scientific American:
In your notice of Ribes hydraulic ram in your issue of July 5, you state that in the "old style of ram it is necessary to take off the air chamber at least once a month to exhaust the air." You should have said " in order to replenish the air," which will become exhausted in. less time than that, unless some provision is made to keep up the supply, and this can easily be is made to keep up the supply, and this can easily be
done by drilling a very small hole (about the size of a horse hair is right) through the brass flange ring by which the drive pipe is attached to the ram. Have this hole in top when the pipe is connected, and it will furnish a constant supply of air to the ram, and do away with the necessity of taking off the air chanber, or pulling out plugs and getting wet, with the thermometer at zero. The manufacturers of rams are probably ignorant of the fact that their rams will not work without air, or they would put something in them to fur nish it.

George Q. Peyton.
Rapidan, Va

COMET BROOKS 1 OF 1890.

To the Editor of the Scientific American
The comet discovered by me on March 19, in the eastern morning sky, is now in a very favorable position for observation in the evening. Although it is hecoming fainter, it is still nearly three times brighter than at discovery, and can be readily picked up with telescopes of moderate aperture
I give herewith its telescopic appearance on June 15,

COICET BROOKS 1 OF 1890-TELESCOPIC VIEW.

which was about two weeks after its peribelion passage The head of the comet was surrounded by a heautiful semicircle of telescopic stars, as shown, presenting a
fine field indeed. ine field indeed.
The comet is situated well up in the northwestern heavens. It has recently passed between the last two stars in the handle of the "Big Dipper," and is moving present atherly course through Canes Venatici. Its drawn south from the star Mizar-the middle star in the handle of the Dipper-to a point two and one-hal egrees above the star Alpha Canum Venaticorum
To enable any one to easily locate the comet, I will say that on August 1 it will be about eleven degrees south of Mizar, and on August 10 the comet will be about three degrees south of its place on August 1. On August 20 it will be about two and one-half degrees above the star Alpha Canum Venaticorum, and on the position. These positions will indicate its course, so that the comet may be found on any intermediate date, or traced still further in its celestial journer.

William R. Brooks.
Smith Observatory, Geneva, N. Y., July 23, 1890.

Invention Greatly Needed.

To the Editor of the Scientific American:
Another of those frequent kerosene oil tragedies has just occurred in West Ringe, N. H., nd child have been burned to death.
Being in the lamp and of stove business, I think it advisable to furnish a few hints in connection with the immediate cause of such disasters. Before proceeding further, I must remark that the present system of
burning oil, both in lamps and oil stoves, seems like a burning oil, both in lamps and oil
satire upon this progressive age.
A flame oxygenated by air currents to the fiercest heat is placed directly in contact with a brass tube
through which all the oil consumed has to pass. Of
course this tube, being always made of brass, is one of the most rapid conductors of heat, and soon becomes excessively hot. A better device for generating explosive gas could hardly be conceived.
The worst of it is that the gas thus rapidly generat ed falls into the oil font and is all ready for an explosion the moment that the smallest part of it comes in contact with fire. A slight current of air will often convey some of this gas to the flame, when the conflagration or explosion is almost sure to follow.
If the numerous inventors who read your instructive journal could substitute some device for the present mechanical and scientific outrage, something not too complicated and expensive, I risk nothing in assert ing that such a device, if brought before the public in a business way, would become universal.
The horrors just referred to have now become so frequent that they receive only a brief and passing notice in the daily papers.

Kerosene.
Charlestown, Mass.
How a Snake Climbe a Tree
To the Editor of the Scientific American:
As a reader of the Scientific American for the last twenty years, I have often read very interesting articles on the above subject, but have found little real information as to how the feat is actually performed ; that is, in regard to the climbing of large trees without limbs, and trees with smooth bark. Many writers have described snakes found in situations indicating have described snakes found in situations indicating that they must have climbed so and so, to reach such
and such positions, but on the 7 th day of this month I was treated to the actual observation, with my own eyes, of not only the climbing, but the descent, which I will try to describe as near accurately as it is possible for a man to tell a snake story.
While exploring in search of ferns a very deep and thickly wooded ravine with tall trees above on either side and underbrush almost entirely shutting out the light of the sun, and rendering the place cold and damp, yet almost stifling for want of a circulation of air, I suddenly. came upon a common black snake about four feet in length sticking fast to the side of a tree. My first impulse was to stop short and see all I could before he should take fright and drop, but after watching him until tired, I began to try to disturb him, thinking he would let go the tree and drop to thground, as his head was but about six feet above the ground. This he did not intend to do; it was not bis style of doing business, as I afterward became convinced. Nor would he move until all the sticks and stones at hand had been thrown at him, but one, however, having touched him about the middle of the body, causing him to loosen from the tree about one foot of his body, which he carefully replaced. The tree, I should state, was a cottonwood about 15 inches in diameter, with the ordinary rough bark common to this tree when of this size, very perpendicular and straight, and with a distance of about 35 feet to the frst limb.
Failing to bit him further, I next cut the longest stick near me (abgut 10 feet) and getting a little closer by climbing upon a fallen tree top, I tried to touch him, but the limbs settling down with my weight, put me again out of reach. I climbed the steep hillside and came down directly in front and within six feet of him, where I stood for some time taking a more accurat survey. I found him in almost a perpendicular position, but with very short and abrupt curves in a number of places in his body. The straight places in his body were fitting very closely in the conjugations in the bark for six or eight inches at a stretch, and taking advintage of every offset in these conjugations, both to the right and left, yet with no intention whatever to encircle the tree, which could have been easily done by snake of his size
After a long examination and study of these traits, at last resolved to make him do something, so I touched him gently with my stick, when he began moving his entire length, flrst turning his head downward. He carried his head and some three or four inches of his neck erect, the same as if crawling on the ground, and picked out a route down to the ground, not more tban six inches from where the rest of his body was going up. He lost no advantage he had already possession of, and taking things very deliberately he thus gained the ground, notmoving the length of himself in less than one minute. I thus had before me the very rare spectacle of a snake climbing both up and down a tree at the same time. I have no doubt but that he could have gone to the very top of the tree just as well as six feet, and have conse down as well, had he so desired. I do not think his object was to sun himself nor to catch birds, as the dead tree top close by offered Ω better poeition for either, but to get in a position to catch flies, in which the place abounded, probably attracted by the coolness of the glen on a very hot July day.

John E. Garside.
Peoria, Ill., July, 1800.
To kill blue grass growing between bricks around the lawn, wash the bricks with salt water or strong solution of soda

THE CHICAGO WORLD'S PATB.

The City Council of Chicago has passedan ordinance granting the use of the lake front as part of the site for the World's Fair. This is an admirable location, and will greatly add to the interest and success of the noble enterprise.
The ordinance pledges the city of Chicago to pay for any piling or filling in of the lake that may be required to the extent of $\$ 2,000,000$, and after the fair is ended returns the made ground to the city, to be used for ever as a public park. Not less than one hundred and fifty acres of the lake front are to be utilized for World's Fair purposes. It is stipulated that no bargain of any sort is to be entered into between the Fair Directors and the Illinois Central Railroad for the control of that portion of the lake front occupied by the Illinois Central tracks, unless such bargain shall be first approved by the City Council. In case the city of Chicago loans or subseribes $\$ 5,000,000$ to the stock of the exposition, the directors guarantee that the amount of money returned to the city shall not be less than the cost of whatever piling or filling in of the lake may be done. The ordinance does not-fix any maximum number of acres to be utilized of the lake front, but the greatest amount obtainable by any of the plans thus far informally outlined is 250 to 300 acres.
monuments, towers, arches, gates, and palatial structures, and many of them are of a highly creditable character.
" The Graphic artist has been permitted to inspect the plans and drawings of some of these proposed structures, and to acquaint the public with their general character has grouped within the area of the expo sition site, as contemplated, some of the more important commemorative features.
"The most conspicuous object in the foreground from the southern view will be the water tower. This will be an indispensable adjunct to the new south side water works, furnishing water for the exposition. The exposition may require more water daily than a city of five hundred thousand people, and the new works will furnish, through the new tunnel, the purest and coolest water from the depths of Lake Michigan, six miles out.
"The second imposing structure is suggestive of the Art building, intended as one of the permanent and most attractive features of the exposition. It will be of classic design, as the drawing indicates, and of a capacity for affording the most advantageous display of the most magnificent, rare, and costly productions of all nations contributing to the exhibit.
" North of this, connected by an annex, appears the National Museum, arranged upon the plan of the
"North of the colonnade, connected by annexes, will be erected the permanent exposition building, the plan of which has been described in a former number of the Graphic.
"It is axpected that the projected government build ing will be placed next north of the permanent exposition, and that the appropriation therefor, already made, together with that fow contemplated by Congress for a new federal building in Chicago, may be applied to this purpose. Such an act would be a splendid stroke of economy for the government, as enabling it to secure a valuable site for a permanent building without cost, and at the same time furnish a valuable contribution in aid of the exposition. No better site could be desired for the federal offices than in the vicinity of the docks and railroads converging at the lake front.
"the esplanade.
"East of this line of noble structures will be found the grand plaisance or esplanade, a mile long and five hundred and-fifty feet wide, ornamented with statues, cascades, fountains and picturesque architecture, and presenting from either north or south a scene of unequaled beauty. The plaisance, 150 feet wide, rises gently to the promenade, decking the railway right of way. Between the plaisance and the subway passes

DESIGN FOR COLUMBIAN EXPOSITION ON THE LAKE FRONT, CHICAGO.-[From The Graphic.]

Isength of extended Lake Front Park to Park Row, $11 / 4$ miles; area, 375 acres. Length of Park from Sixteenth Street to Twenty-second Street (not shown in

A recent number of the Graphic, of Chicago, contains a spirited sketch of the great fair as it will or ought to look when in full operation. We give a reduced copy of the picture, and also the following observations from our enterprising contemporary :
" From its very inception, the Lake Front appears to have been the predestined site of the great Columbian fair. From its original presentation months ago, u pon the plans submitted by Messrs. Telford Burnham and James F. Gookins, it has irresistibly grown in public favor. The first report of the Committee on Buildings and Grounds of the directors of the Columbian exposition was practically unanimous in its choice. The partisans of other sites have steadily fought its accept ance, and though a concerted and organized attack succeeded in creating a transient gust of sentiment in lavor of Jackson Park, the public feeleg
"The structural features of the fair will be the next most important consideration, and some of the more prowinent. and costly of these have already received the most painstaking and critical investigation. It is needless to say there is no lack of plans and suggestions
in the hands of the directors, including designs for

South Kensington and British Museums combined. It
is expected that the Crerar Library will find a permais expected that the Crerar Library will find a perma-
nent home within the walls of this grand museum Another specialty of this department will be the Eth nolog'y of North and South America, a unique collecion, which will prove a greatatraction to the savant of the old world.
' The next special features of the fair, and permanent ornaments of Chicago, will be the two grand pavilions, one to be known as the Columbian Pavilion, constituting the great Memorial Hall, and the other to be called the Woman's Pavilion, sontaining the Hall o Isabella, and a majestic statue of the Spanish queen West of these two pavilions grand colonnades will de scribe the arc of a circle, the form of the building being specially adapted for the exhibition of sculpture. "Connecting on the north and south with the colon ades will appear the grand Triune Arch of America, constructed of bronze and marble. The central span of the arch will be one hundred feet. It will face the Congress Street entrance. Eastward of the arch there will probably be an unobstructed opening to the border of the lake, the entire space forming a pathway of flowers.
the splendid roadway extending from Michigan Avenue to the north lake shore drive. The facades of the stupendous structures as seen from Michigan Avenue will present probably assublime and beautiful an effect and architectural display as may be found anywhere in the world.
"The covered way is for the passage of the Illinois Central Railway. It will comprise a mammoth depot three hundred feet wide and over one mile long, provided with ample offices, toilet and waiting rooms, staircases, gates, etc. The only openings upon the roof or promenade are for light and ventilation.

Eastward of the promenade and driveway come the foreign buildings and pavilions of the different States, extending one and one-fourth of a mile lengthwise and covering a space of about six hundred feet in width.

Still further east appears the Grand Spa, sloping gently to the water's edge, and the landings of excursion steamers, amid a wilderuess of natural and artificial adornments in the shape of open air theaters, curiosity shops, surrounded by fountains, flowers and lawns.
trances and exits from every quarter of the grounds, but excursionists may be landed within the grounds. it will not even be necessary for visitors south of Twelfth street or west of the river to come east of the river, or for residents of the North side to come south of the river, by the usual routes, in order to visit the exposition. The existing railroad circuit will run trains every minute, from every division of the city, landing passengers for five cents at the center of the fair; and passenger boats from every landing on river or lake shore can reach the exposition water front in all weathers.
"It only remains to notice in this connection the really noblest feature associated with the fair, the magnificent bridge which is to span the Chicago river at an elevation of one hundred and thirty feet, joining the termini of the Lake Shore driveway and Michigan avenue. The bridge will begin at Michigan avenue, extending one thousand feet east on Monroe street, thence north, reaching the summit by a rise of one foot in sixteen. The bridge will consist of three arches, the central span being fifteen hundred feet. The main arch will spring from Lake to Ohio street. Curves are the most striking forms of structural beauty, and it is thought that this colossal bridge, representing the gateway of the imperial city, and sur mounted by symbolical works of art, is one of the noblest conceptions of the many that have been suggested. The estimated cost of the structure is $\$ 3,000,000$.
" The objection so frequently raised that there is insufficient time for the stupendous work of extending and flling in the lake front is negatived in the most direct and emphatic manner by the best engineering experts. President Ellsworth, of the South Park Board of Commission ers, unhesitatingly declares that the work can be accomplished in a satisfactory nanner without retarding the fair. Indeed, investigation has demonstrated that the preparation of the Lake Front as pro posed would be more economical and ex peditious than any other site that has been urged upon the directors.
" One of the most important considera tions in influencing the Lake Front seles, tion is that the Illinois Central company surrender all riparian claims and right of way between Monroe Street and Park Row, ard all right of way between Six teenth and Twenty-second Streets. Then the Lake Front will be practically wedded to Jackson Park, completing Chicago's magnificent and unparalleled park sys tem. The exposition overflow from the Lake Front will find all essential accom modation south ward. The proposition to connect Jackson Park, and perhaps Garfield Park, and the Lake Front by a railroad operated by the fair association obviates every objection to the division of exhibits. This would afford ready and free transportation to all visitors and would largely enhance the fair receipts.
"The financial problem of the fair ha been effectually solved by the selection o the Lake Front. It is a site which prac tically furnishes $\$ 25,000,000$ for fair pur poses. Any other selection would have left the directors to depend upon the meager subscription fund of $\$ 5,000,00$ and such additional appropriation a might accrue from legislative authority."

A Boillng Lake in Nevada.
Recently an item has been going the rounds in regard to a boiling lake nea Lassen's Peak, California. It is not generally known, but we have in Nevada a simila boiling lake. It is situated at the eastern base of the first large mountain range east of the Sink of the Car son. It lies on the edge of an immense desert-a desert so large and scorching that in summer the Indians never attempt to cross.it except at night, and even then they always go provided with a large supplẏ of water On three sides of the lake are rocks two or three hun dred feet high, which areperfectly bare and are burned to a deep brick red. The area of the lake is about, two acres. Though steam is constantly rising from the water, the whole surface of the lake does not boil. The agitation-boiling-is confined to the great springs which burst up at several points. These springs force columns of water from a foot to two or three feet in diameter to a height of over twenty inches above the general surface of the lake, causing a loud rippling sound and considerable local commotion. The water of the whole lake is doubtless boiling hot, though not seen to boil, for a brook flowing from it down into the sands of the desert sends up a cloud of steam for a dis tance of several hundred yards. About a mile from the
lake is a great deposit of sulphur, running through which are streaks of pure alum, from two to six inches wide.-Virginia (Nev.) Enterprise.

MAST OF A MODERN WAR VESSEL

Although modern warfare is as different from that of the days of Greek fire, the catapult and the cross bow as is our mode of living from that of the ancients, still in some of our modern appliances there is a remarkable resemblance to some of the very ancient enginery. In early naval warfare the mast of a vessel was an important aggressive point, and from the mast head were thrown javelins, arrows, hot shot, Greek fire and other destructive missiles. The masthead was then, as now, the chief lookout, and as all naval battles were at short range, equivalent almost to actual contact of the vessels, the mast was perhapseven mor

MAST OF A MODERN WAR VESSEL.
lish navy was one built by Pett, named The Sovereign of the Seas, launched at Woolwich in 1637. The length of her keel was 128 feet, the main breadth 48 feet, and the length from stem to stern 232 feet. The description of this vessel by Thonas Heywood, states that "she bore five lanthorns, the biggest of which would hold ten persons upright, had three flush decks, a forecastle, half deck, quarter deck, and round house Her lower tier had thirty ports for cannon and demi cannon; middle tier, thirty for culverins and demiculverins; third tier, twenty-six for other ordnance; orecastle, twelve, and two half decks, thirteen or four teen ports more within board, for murthering pieces besides ten pieces of chace ordnance forward, and ten ight aft, and many loopholes in the cabins for musquet hot. She had eleven anchors, one of 4,400 pounds weight. She was of the burden of 1,637 tons." On trial, this vessel was found to be too high for good service. She was therefore cut down to a deck less, and became an excellent ship.
Gunpowder was used as long ago as 1338, and it seems strange to read that at this early period of 1338
ron cannon having several chambers were used. In hese early days, arms and ordnance bore such name as these : cannon, demi-cannon, culverins, demi-cul verins, sakers, mynions, falcons, falconets, etc.; now we have rifles and howitzers, Gatling and Hotchkiss guns, the mitrailleuse, etc.
Our engraving represents the mast of a modern war ship, with its lookout and its turret. The mast is made hollow, and of sufficient diameter to allow the men toas end. The lower tower is provided with a search light. which receives its current through wires extending up the hollow mast. The turret is armed upon one side with a single piece of ordnance, and upon the other with a Gatling gun. Above all is located the lookou or watch tower. With such an auxiliary as this, a war ship can seriously harass the enemy, besides doing a reat deal of actual damage. By the aid of a strong electric light, aggressive movements may be carried on at night. Not only can these agaressive move ments be carried forward, but by means of the light the entire vicinity of th vessel may be searched for torpedoes and torpedo boats, thus rendering practical at night the means of defense agains the attacks of these wary enemies.

The Art or Living to a Great Age
The enchanters of China promised the emperors of that country to find an elixir of long life that should efface the ir reparable inroad of years. The astrologers and necromancers of the middle ages flat tered themselves to have discovered the fountain of youth, in which a person had merely to bathe in order to recover his youth. All such dreams were long ago dispelled by the progress of science. Yet in the heart of most men there is such a desire to prolong their stay upon the earth that the art of living for a long time has not ceased to impassion a large number of persons who would be willing to endure all the evils of an indefinitely prolonged old age.

One of the perpetual secretaries of the Paris Academy of Sciences has written a volume to prove that man should con sider himself young up to eighty years o age. A noble Venetian named Cornaro spent twenty years in a scale pan in order to ascertain what a limentary regimen was best adapted to him. We have known old men who, having learned that M Chevreul had never drank anything but water, took the resolution to abstain wholly from wine, hoping in this way to exceed a hundred years. Fortunately a rag gatherer, who reached the same age as the celebrated academician, spared them this sacrifice by informing his confrere in longevity that he had never drank anything but wine.
The Societs of Hygiene, Vienna, has just started an extensive investigation in order to determine what it is necessary to do in order scientifically to prolong life beyond the ordinary limits and to riva the patriarchs of the Scriptures, as com pared with whom M. Cherreul bimself was but a child. The society has there fore drawn up a circular which it has sent to all the old men of Germany and Austria occu pying a certain position in the world, and which contains a multitude of ques tions about their regimen, their habits the duration of their intellectual work, the nature of their recreation, their manner of clothing themselves, etc. The good Viennese hope in this way to get up a practical manual designed for those who wish some day to double their formidable cape of eighty years.-IVon.

Cment for Iron Ralling.

For the cementing of iron railing tops, iron grating to stoves, etc., the following mixture is recommended; in fact, with such effect has it been used as to resist the blows of a sledge hammer. The mixture is composed of equal parts of sulphur and white lead, with about one-sixth proportion of borax, the three being thoroughly incorporated together, so as to form one homogeneous mass. When the application is to be made of this composition it is wet with strong sulphuric acid and a thin layer of it is placed between two pieces of iron, these being at once pressed together. In five days it will be perfectly dry, all traces of the cemont having vanished; and the work having every appearance of welding.

The manufacture of cotton goods in Ceylon has for the last few years made remarkable progress. The island promises to become as dangerous a rival to India in that industry as in the cultivation of tean

Oanse or the Constantly Decreasing Mil Freight Carre on Home Roads.*

That it is true that the general average performThat it is true that the general average perform-
ance of freight cars is constantly decreasing there is scarcely any doubt, although there are no available statistics of a general character to prove the conclusion as an estabiished fact. At the same time it is true that on a majority of the railroads the methods of handling cars, distribution, supervision at stations, records, train services, etc., have been greatly improved during the past ten years; but in spite of this fact ed during the past ten years; but in spite of this fact This leads to the apparently paradoxical state of This leads to the apparently paradoxical state of
things that upon the whole the efforts of our associathings that upon the whole the efforts of our associa-
tion to improve the administration of the car service office have been successful, but that the most important results, i. e., increasing car movement, have not been accomplished.
In the year 1878 the White Line comprised 3,520 cars, the performance of which averaged 70 miles per day. In the same year the Union Line comprised 3,828 cars, and the average performance was 78.82 miles per car per day. At the present time the White Line comprises per day. At the present time the White Line comprises
13,000 cars, and the average mileage is 29.9 miles per car per day. The Union Line now comprises 9,015 cars, and the average mileage is 36 miles per car per day. Other fast freight lines and railroads show similar flgures. This condition is not due to any decline in the method of handling cars, so far as the efficiency of the car service office is concerned.
The car service office has not reached a state of perfection, of course, hut it is not less efficient than it was ten years ago. There are, however, forces at work influencing the decrease in the service of cars which are not affected by the most thorough office system. If these forces have any effect at all, it is to reduce and not increase the average car performance, as the more thorough and efficient the office work (from a mileage standpoint, which is the controlling factor at present) the less will be the movement of cars empty, the loaded movement being controlled by the quantity of traffic. . . . The trouble is that new cars are being built faster than new tonnage is developed, and consequently a decrease in car movement is inevitable. In the year 1888, according to Poor's Manual, there were 70,423 millions of tons of freight moved one mile by all of the railroads in the United States, and the number of freight cars owned by them was $1,005,116$. Estimating 15 tons per car, the tonnage was moved with a car performance of 4,695 million miles. At 20 miles per car per day, $1,005,116$ cars wonld in one year run $7.337 / \frac{1}{6}$ million miles, which, after moving the ton cent. to spare. Certainly an allowance of 36 per cent. for the empty movement is sufficient. There can, therefore, be no increase in the average car movement therefore, be no increase in the average car movement
so long as the increase of equipment keeps pace with so long as the increas
the growth of traffic.
If there are sufficient cars for the legitimate wants of traffic, why are more being built? There can be but one explanation, and that will show that the freight car has become so great a factor in the competition for traffic that the number of available cars, instead of their performance, is the desideratum. Railroads have been so multiplied that nearly all traffic is competitive, ling factors, neither can avail without the support of a full supply of the most improved kind of cars. 1 em phasize the words "of the most improved kind," be cause the car of 20 tons capacity has not more than forced the 15 ton car from through service, when its owe usefulness is threatened by the appearance of the
25 ton car. Not only this, but special cars are being built for different classes of traffic; for instance, furni ture cars (the larger, the more favored by shippers), ostensibly intended especially for furniture, but which are an active factor in the competition for all bulky shipments, of light weight, such as carriages, house hold goods, hay, baskets, empty crates, etc. Specia horse and cattle cars, refrigerator cars and ventilated
fruit cars are also playing well their parts as missionfruit cars are also playing well their parts as mission
ary agents for competitive traffic. A new road is open and puts on a line of new cars, built after the most approved patterns, and begins to compete for business and the older lines must have cars equally good or lose their traffic. When the crops are harvested, an immense quantity of freight is at once offered for ship ment, and the road which has the most cars generally secures the most tonnage. The great delay to the foreign car (the car away from home), both under load
and empty, breeds a fictitious demand for more cars, and empty, breeds a fictitious demand for more cars,
and they are built, when the real, practical need is more movement of the cars already built. Under these conditions the equipments of the railroads ars rapidly increasing, and thesituationis further aggravated by the great influx of cars belonging to private car companies and shippers of special commodities. Many of the former are turned loose to earn what mileage they can, and, being exceptionally good cars, have an advan taxe over many cars belonging to railroads. Shippers
cars find their way into service by reasonof the traffic that they bring to the line hauling them, and it is fast becoming the rule that every shipper of considerable
traffic has his own cars. These cars do not increase the traffic has his own cars. These cars do not increase the
aggregate tonnage, but decrease the service of the cars of the railroads. Competitive passenger traffic has already reached a most expensive state-gilt edged ser-
vice with vestibuled cars or no business-and to the vice with vestibuled cars or no business-and to the observing mind it must be plain that competition fo freight trafic is fast tending in the same extravagan direction, and that feature which incites th
go freight cars is the principal factor
There are, however, other minor causes influencing the over-production of freight cars, and consequently the decreased general arerage performance, which are directly attributable to the car service office. I refer to the general indifference with which foreign cars and the requests of their owners for their return are treated. We devote almost all our entire energy to following up our own cars away from home. We know that this is mostly wasted energy. When we remember that our own car is the foreign car when it gets away from home, the effect of this principle in the service may be apprecisted. It is well enough to talk about delays by reason of billing " to order," overcrowded yards, etc. but the principal cause of delay to the foreign car is that car service officers are dividing their energy among all the other railroads of the country, instead of concentrating it for the movement of cars on tha home line. My company has now a number of cars on one of the important lines, and they have been there since last February, notwithstanding our repeated efforts to get them home. The cars have been empty for at least two months. During this time we have ruceived quite a number of cars belonging to the road in question, and tracers have followed them thick and
fast. It is a great mistake to allow cars to stand around loaded or empty unnecessarily, as the cost of the stand ing room and the retarding of trafic in transit far transcends the mileage consideration. The mileage system of settlement for service of cars interchanged is also a fruitful cause for the building of new cars and the consequent curtailment of the service of the old ones, as the preference of shippers for the new, strong cars so swells the mileage as to return a handsom rate of interest on the money invested, to say noth ing about the earnings from the increased tonnage ecured.
This question is a vital one in dollars and cents Placing the low water mark of acceptable service a 40 miles per car per day, a surplus of 500,000 cars above the requirements of the service is shown.: This repre sents a needless investment of about $\$ 250,000,000$. In stead of a return upon this enormous investment there is a further outlay for maintenance of $\$ 40$ per car amounting to $\$ 20,000,000$ per annum. The surplu cars must also have standing room, which means 3,310
miles of side tracks, representing an additional investment of about $\$ 49,650,000$. This side track must alway be maintained, and another annual expenditure of about $\$ 3,310,000$ is involved. Altogether a permanent and More locomotives are required and the whole operatin serviceassumes greater proportions than would other wise be necessary. The question therefore involves the consideration of an interest of vast magnitude, and it solution is to be had only through a complete change practice in supplying and moving cars.
The improvement of car eervice is not, in its mos mportant sense, a question of operating details, bu ne of administrative policy. What, therefore, wil be the outcome? The tendency of the time is towar consolidation. Will the car Bervice evil reach such proportions as to render the consolidation of indivi dual equipments under independent co-operative com panies for various geographical districts the only means of survival? Or can such a move be forestalled by the determined and united efforts of this associa tion to reduce the detention of the foreign car both under load and empty?

Improved Arrangement of Marine Enginem.
The steamship City of Vienna, which was built by Messrs. Workman, Clark \& Co., Belfast, and engined by Messrs. John \& James Thomson, Finnieston Engine Works, Glasgow, to the order of Messrs. George Smith S Sons, Glasgow, went out on her official trial on the Firth of Clyde recently. The City of Vienna is a ves el of 5,000 tons register, 412 ft . long, 46 ft .4 in . beam by 29 ft .3 in . depth of hold, and is a splendid addition to the fine fleet of City Line steamers trading between the Clyde and India. She has three decks, the upper and main being steel, covered with teak. She is fitted throughout with all the latest improvements, and is of the highest class, every modern requisite for the com fort of passengers and the expeditious handling of the cargo having been adopted. The propelling machinery of the City of Vienna is of special interest, and par ticularly the main engines, which are a complete de parture from the previous arrangements of marine engines of high power
Howden's system of forced draught, of which the
owners had previously acquired a very satisfactory ex perience, has been adopted, also Weir's patent feed pumps and evaporating apparatus; and to the engines has been fitted Morton's patent valve gear, Toms' pa tent slide valve being fitted to the low pressure cylinder. The engines of the City of Vienna are the larges to which this system of valve gear has been hitherto applied. They are of the triple expansion type, on three cranks, having cylinders $32 \mathrm{in} ., 53 \mathrm{in}$. and $871 / 2 \mathrm{in}$. diameter respectively, and 5 ft . stroke, working at a boiler cressure of 160 lb . per square inch, and a piston speed of 700 ft . per minute. The difference in the speed of 700 ft . per minute. The difference in the longitudinal engine room space occupied by the new
engines, as compared with that which would have engines, as compared with that which would have been occupied by engines of the ordinary type, with
the same diameter of cylinders and ordinary link motion, designed to occupy the shortest space con sistent with having the crank shaft interchangeable, as in the presentcase, is over 4 ft ., which in a ship of the dimensions of the City of Vienna represents a large and valuable increased cargo space, while with the new engines there is also the additional advantage of increased longitudinal main bearing surface, al though there are fewer bearings, consequent upon the reduced length of the sole plate, every working part of the engines is open and free of access, the valves being on the cross center line of each engine, thus leaving clear space from back to front between the engines.
Special attention has been given by the engineers to the design and flnish of the whole engines, ample bear ing surface having been provided in the working parts, with the means of easy and efficient lubrication avail able for the engineers in charge. The performance of the engines on the preliminary and official trials was in every respect highly satisfactory, a speed of fifteen in every respect highly satisfactory, a speed of fifteen
knots per hour being attained, the engines working smoothly and no heating. At the conclusion of the trial the Messrs. Thomson were cordially congratulated on the success which had attended this new departure from their usual design and practice. Messrs. Thom son have in course of construction four sets of triple expansion engines, which are also to be fitted with Morton's patent valve gear.

Water Power and Electric Motors.
The census of 1880 placed the number of water wheels operating as motive power in the United States at 54,404 This tally represented a total of $1,225,379$ borse power The later association of water power with electric mo tors has developed a source of force that is destined to be of eminent service in industrial life. The distribu tion of this new energy by means of wires and motors ver areas tributary to our water courses will add new chapter to the story of industrial development It has been computed on the best data obtainable that the rivers and streams of this country areraged throughout the year over $200,000,000$ horse power. The electric utilization of this power opens a field of mag ificent opportunities.
The Niagara project is in correspondence with the possibilities of this new energy in motive power. In Rochester, Kearney and Spokane Falls we have practi cal examples of its use.
The lower falls of the Genesee River are utilized by the Rochester Brush Electric Light Company, and it has 500 motors already in active service. It furnishes power to 108 tailor shops, charging at the rate of $\$ 18$ perannum for one-eighth horse power. Fan motors are kept in continual motion from June 1 to October 1 or $\$ 15$. For 25 cents a day a small manufacturer or torekeeper has one horse power at his service, with no rouble or care of his own. Its work is steady and continuous, and its easy command in small units at nominal cost will make its use general and probably work some important changes in our industrial facili ties.
The rate for two horse power is $\$ 120$ per annum, $\$ 250$ for fire, $\$ 300$ for six, $\$ 400$ for eight, $\$ 475$ for ten and $\$ 700$ for fifteen. The power applied at these rates is economical and steady, and involves no attention beyond the closing of a switch, and that the work of a second. It can be carried any distance in large or small quantities.
The Ordnance Department of the national govern ment is constructing a dam at Rock Island, Ill., in which some forty-one wheels, connected with dynamos, will carry the electric current to motors distributed in its various departments. The Des Moines rapids at Keokuk will furnish $\mathbf{6 0 , 0 0 0}$ horse power with the necessary machinery and appliances. There is practically no computable limit to the possibilities of this motive power, and its development will in time change many of the old and cumbersome conditions of our varied in-dustries.-The Age of Steel.

The new Croton Aqueduct, New York, was opened on the 15th July, and water from the Croton Lake, after running 30 miles, was admitted to the reservoir in Central Park. The opening of the new aqueduct is the cause of much rejoicing among the people. The supply of pure water will be much more abundant than it has been for ten years past.

Electric Lawn Parts.

Mr. Edward H. Johnson, the president of the Interior Conduit and Insulation Co., has a fine country residence, "Alta Crest," at Greenwich, Conn. His house is situated about four miles from the Sound, in the center of a plot of ground of $\mathbf{3 3}$ acres, which, according to the United States geographical survey, occupies the highest point of land between Maine and Florida, a like distance from the coast. On account of the electric light and the electrical proclivities of its owner, the place has been very appropriately nawed "Electric Hill." The house itself is of the colonial "Electric Hill." The house itself is of the colonial style, and from its spacious porticoes a magnificent view
on all sides is spread before the observer. The lighthouse off Bridgeport shoals is plainly visible 33 miles distant-such is the vista. The house stands on the apex of the hill, and the broad winding driveway which leads up to it by a circuitous route is lighted by numerous incandescent lamps on ornamental poles. An Edison plant supplies the light and power for the house as well as for the spacious stables and lawns.
Within the house itself Mr. Johnson has carried out many novel ideas in regard to lighting as applied to decorative effects, as well as in regard to the useful ap plication of electric power for household work.
In the groined, oaken hall a large handsomely finished organ pours forth melodious music by the hour, by the simple manipulation of an ordinary electricswitch. An apartment over the porte cochere, known as Mr . Johnson's "Den," contains trophies from all parts of the civilized and uncivilized world. An electric cigar lighter lies 'handy to'an open box of cigars on a table. Two electric cookingstoves keep the late supper warm, while an electric teapot simmers on the sideboard and has been found convenient in supplying other warm decoctions besides the five o'clock cup. A huge horned owl blinks electrically, with large yellow eyes, from his perch in one corner across the room at a hideous beard ed Chinese mask, which emits the red fire of passion from its open eyes, mouth, and nostrils. Between the two is suspended in midair a large specimen of porcupine fish, within whose transparent and bristling skin is concealed an incandescent lamp sufficient by itselfto light the room. Electric fan motors cool the air when nocessary. On one side of the room stands a relic-one of the first phonographs now be termed a relic-one of the first phonograph
ever made, a monument to tinfoil, lung power, and muscle; while on the other stands the very last instru ment, especially constructed for Mr. Johnson, at the phonograph works. The drawers of the cabinet contain a choice selection of musical cylinders, which prove an endless source of entertainment to every one.
Lately Mr. and Mrs. Johnson received some 300 guests at their annual lawn party, given in honor of the birthday of their daughter. For this occasion large rancing platform, 40 by 25 feet, was erected on
the lawn in front of the house, covered with crash, and the lawn in front of the house, covered with crash, and
illuminated by strings of Chinese lanterns, each with an incandescent lamp within, suspended in festoon from decorated poles at the corners. Outside the house the decorations consisted principally of artistic effects produced by an elaborate arrangement of incandescen lamps of all colors. Between each post of both the upper and lower porticoes encircling three sides of the house were suspended flexible pendants bearing alter nate colored lamps of red, white, and blue, while from each of the third story windows hung lamps of like solors, and, surmounting it all, making one huge pyra mid of light, was a varicolored cluster of lamps in th cupola.

From beneath the ivy which climbs thickly round about the stone tower containing the gun room and telephone room, peeped forth also many red and blue lamps. The flag poles, 75 feet in height, floated the stars and stripes, surmounted; not by the conventiona eagle, but by a pin-wheel five feet in diameter, contain ing oven a dozen red, white, and blue lamps, and rap idly revolved by an eight horse power motor
The engine room, with its two Edison dynamos storage batteries, engines, and various regulating ap paratus, proved to be a place of endless entertainment and instruction. The pumps operated automatically by Sprague motors, and forcing water from wells 1,200 feet distant, as well as the electrical dampers and other heat-regulating apparatus, automatically and electric ally operated, were thoroughly inspected. The electric organ in the hall entertained great numbers, while the phonograph in the "Den," with its popular vocal and instrumental music, was the center of a delighted au dience. The idea of lighting carriages by electricity recently mentioned as new and just accomplished in England, has been in operatipn on Mr. Johnson's seve ral carriages for a number of years, and was aleo illustrated. The feature of the evenfog, however, was a grand display of Pain's Manhattan Beach fireworks, which were ignited by electricity direct from the light ing circuit, a suggestion from Mr. Johnson, and som thing, we believe, never attempted before.
The fireworks, some one hundred and fifty yard from the house, were ignited from the piazza by the turning of a small electric switch in the hands of a lady. A tiny electric bell at her side gave the signal
that all was ready; the switch was then pressed and that all was ready; the switch
the rockets and bombs exploded.
The modus operandi, as conceived and carried out by Mr. Johnson, was as follows : For skyrockets a bat tery (not electric) was constructed of six pieces of one inch tubing of the Interior Conduit Insulation Co.'s underground tube-another new application for this useful article. Upon the upper ends of each tube, which were cut squarely, were driven two French nails about one inch apart, one side of each set of nails connecting with copper wire to one pole of the circuit (taken from an adjacent lamp post) and the other side taken from an acjacent lamp post) and the other side
of each set to the other pole. Each pair of nails were of each set to the other pole. Each pair of nails were fuse wire of small capacity immediately under the touchpiece of each tubed rocket. Accordingly eaet fuse was thrown directly auross the line and all in mul tlple on the moment the switch on the piazza was made to close the circuit through a flexible cord across the lawn, thus effecting the simultansous explosion of the rockets. The bombs and other pieces were touched off in a like manner, to the delight of an admiring audience. As the evening drew to a close all seemed re luctant to depart from this veritable fairy land.-Elec trical Engineer.

CRYSTALLIZED ORNAMENTS.

A beautiful ornament, which is very easily made, con sists of a wooden cross covered with Canton flannel

Fig. 1.-GROTTO.
with the nap side out, and crystallized by immersion in a solution of alum. The nap retains the crystals 80 that they are not readily loosened or detached. The flannel should be attached to the wood by means of brass wire nails, and the cross should be suspended in a solution formed by dissolving a pound of alum in a gallon of warm water. The cross should be suspended in the solution while it is still warm and allowed to re main in until the solution cools, when it will be found covered with bright crystals.
Fig. 1 is a perspective view, and Fig. 2 a longitudinal section of a grotto formed by crystallizing alum in a flannel or wrapped about in various directions with

Fig. 2.-INTERIOR OF GROTTO.

coarse thread or twine. The box may be of wood or metal. It should have apertures in the top, ends, and ides. These apertures are stopped with corks, while he box is filled with the solution. After the crystal ization tie corks are removed, and the holes in the top sides, and one end are covered with colored glass, and over the front aperture is secured a convex spectacle lens, having a focus about equal to the length of the box. When the interior of the box is illuminated by a strong light passing through the colored windows, the effect is fine.
The solution used in this case is the same as that given for the cross. After the crystals are formed and the liquid is poured from the box, the interior should be allowed to dry thoroughly before closing the aper tures.

Cellulold Litigation.

Judge Lacombe of the United States Circuit Court for this district has lately rendered a decision advers to the validity of the Hyatt patents, which cover the manufactures of celluloid. The substance known as celluloid qonsists usually of dissolved paper, although cotton or other vegetable fibers may be used. In the manufacture tissue paper is treated with nitric and sulphuric acids, the product is then, washed and camphor added. The mass is then ground. Coloring matter is now added and the mass is made into a paste with alcohol, it is then pressed and broken between rolls. The finished mass is very plastic and may be moulded and pressed into any desired shapes, drawn
into tubes, eto. into tubes, eto.

Patont-Corn Cob Pipe.
Judge Wallace, of the United States Circuit Court, itting at Syracuse, N. Y., rendered an interesting de cision in the case of H . Tibbe \& Sons Manufacturing Company vs. Heineken. The suit was for the in fringement of a patent on a corn cob pipe, and the court held that the defendant had infringed the plaintiff's patent by filling the cells which hold the corn on the exterior of the cob with cement from the outside. Judge Wallace said in giving judgment "The claim of the plaintif Tibbe, is a The claim of the plaintiff, Tibbe, is a new article o manufacture, a smoking pipe made of corn cob, in hich the interstices are filled with a plastic, self-hard ening cement. Upon first impression it would seem that the old 'Jackson pipe' is substantially the same thing as the pipe of the present patent. But that was a corn cob pipe in which the inside of the bowl was lined with a plastic cemust to fireproof it, whereas the pipe of the patent is one in which the interstices of the cobare illed with cement. These interstices, or cells, which hold the corn are on the exterior of the cob, and although in some instances they could be filled from the inside of the bowl, that would not be a practical way of filling them, and when cobs of large or medium size are used for the bowl, as they generally are, the interstices can only be filled from the outside The specification is addressed to those skilled in the art, and the clain is to be interpreted, as its language naturally imports, as one for a pipe in which the ex terior interstices of the cob are filled with a plastic cement. Such a pipe supplies a sweet and porous re ceptacle for tobacco, having characteristics which are well understood by smokers to be desirable, and is a well understood different thing from one with a cement-lined bowl. It did not involve invention of any high order to make such a pipe, but there was enough to convert a poo article into a good one, and supply something to the trade which was new and the merits of which were in mediately and generally recognized. If the defendan chooses to sell the old 'Jackson pipe,' he is at liberty to do so, but he has appropriated the rights of the complainant by selling the pipe of the patent and must take the consequences."-Bradstreet's.

New Ronte across the Aclantic.

An Ottawa, Can., dispatch states that a company of Boston, Mass., capitalists has been quietly developing the foundations of a seaport at the east end of the Straits of Canso, N. S., and if expectations are realized it will have an important bearing upon future comnunication between Europe and America. The place, which is to be called Terminal City, is five miles east of Port Mulgrave, on the Intercolonial Railway, and the government has consented to an extension of the railway to the place, and agreed to operate the extension as part of the Intercolonial system. Terminal City is situated on one of the finest harbors on the Atlantic coast, having sufficient depth of water for the largest vessel afloat, being completely land-locked, absolutely free from ice, comparatively free from fog, and open to navigation at all times. A straight line on the map of the world from Chicago to Liverpool passes through this point, and the distance between them is 400 miles shorter than by Portland, Boston, or New York. It will take four days from Terminal City to Liverpool by the new steamers proposed to be put on the route. When the railroad is completed and wharves are built, all passengers and mails from Europe will be delivered in New York or Montreal one day sooner than by any other route. It is the most easterly port, open all the year round, and appears to be a natural shipping port year round, and appears to be a natural ship
for the products of the Dominion to Europe.

High Ratea of Speed.

One of our correspondents not long ago asserted that a speed of 100 miles an hour by steam locowotives was entirely practicable, and thought it would be attained. In a recent lecture before a scientific club, Professor Elihu Thomson declared that much higher speeds than can now be obtained with steam locomotives are to be expected by means of electricity, and he considered from 100 to even 150 miles an hour possible. While in the steam locomotive there are reciprocating parts that must be put in motion, stopped, and reversed continually, in the electric locomotive we have simply a rotary motion, which makes it possible to run with economy at much higher rates of speed. He believed that if we could come back after another hundred years, we would find 150 miles an hour to be the speed of traveling, adding, "It simply depends upon finding the necessary method of applying suffcient power, and building the locomotives to suit, arrangements being adopted to keep the cars on the track." One hundred and fifty miles an hour may be among the possibilities, but probably most people nowadays would rather leave to consing generations the enjoyment of whirling through space at that frightful velocity. To leave Chicago at night and be in New York nest morning would be a wonderful achievement, involving great increase of business facilities, but the safety of such a speed under present cilities, but the safety of such a speed under pres
conditions may well be questioned.-Railway Age.

REGENTIY PATRTED INVENTIONS. Engineerine
Safety Valve. - William C. Walda解 Wayne, Ind. The valve body of this device h central valve seat and line pipe openings leadin hrough the side walls of the seat, with a gravity valv eld open by the pressare and fitting in the seat, extenc ing past and closing both openings, the valve bein
simple and darable and designed to automatically clos a pipe when the pressure within ceases.
Register for Engines, etc. - Rudolph Ruhlman, Trenton, N. J. This is a mechanism by direct mechanical movement without the use or a springs, or registering the revolations of steam en ines or other machinery, and is designed to be ver imple, durable and effective
Flde Dust Collector. - Bernhard osing. Friedrichshatte, near Tarnowitz, . russia, Ge many. This invention covers a system of separate de penang wires suspended in the castomary fue dust ambers, in line with the carrent of the fumes, silver, lead, copper, or other metallurgical farnaces, in distinction from the gaseons constituents of the smoke

Double Acting Pump. - Joseph M. Clark, Colfax, Washington. This is a pump in whic ward, so that a continuons stream of water is forced hrough the ontlet pipe, the plangers working in th apright parts of a U -shaped barrel which can be readily take apart to get at the valves and clean the barrel.

Railuay Appliancen.

Car Coupling.-William Yates, New York City. This coupler has a spring-actusted drawhar provided on its forward edge with a locking
shoulder and on its rear edge with a boss, in line with which extends a crank with a forwardly projecting rar the device being deeigned to be thoro the draw martic in coupling, and to be operated from the top and ides of the car.
Car Coupling. - Milford B. Harriss, Greensborough, Ala. This invention consists of a which has a slot in its bottom, and adapted to support the link in or about in a horizontal position, the invention also covering novel details and combinations of parts, designed to afford a simple, durable, and very
effective construction.

mechanical.

Saw Mill Feed. - Harvey Segur, Decatur, Ind. In connection with the carriage is em loyed a cable drum having a with opera mechanism gear on the shaft of a friction palley, the friction pulley being rotated in one or the opposite direction by means of two friction drive pulleys which are rotated in opposite directions, and so supported that either wheel.
Machine for Forming and Rolling seamless Tobes.-Lyman White, Waterbary, Conn. Two patents have been issued to this inventor, one providing a roll which will simaltaneously lengthen, feed, and properly shape a seamless tube from a cylindrical
casting, with a simple, compact and durable machine adapted for use in connection with the rolls, while the other provides a machine with a series of rolls adapted for attachment thereto for reducing and lengihening the castings to produce a perfect tabe, the invention consisting in the combination and construction of the
several parts of the machine adapted to carry the rolls.

Agricultural.

Fruit Gatherer.-George W. Blackbarn, Sarasota, Fla. In connection by the operator, adapted to form receptacles for the rruit, whereby the fruit may be assorted as picked and carrled conveniently on the person, the stem being cat
close to the body of the fruit without injury from the close to
catter.
Cotton Harvester. - John H. Masters, Stockton, Cal. This invention provides a machine that is designed, when driven over the rows of plants, to blow the cotton from the bushes, the blast
carrying the cotton through a suitablenozzle and intoa bag or other receptacle, frictional contact aiding the blast in the case of tall plants.

miscellaneous.

Printing Telegraph. - William W. aylor, Mansfeld, Maes. This invention providen for an arrangement of keys similar tothose of a typewriter, and so constructed that a single tap upon one of the keys will taansmit the whole letter or character in dots and dashes and in print, these keys being connected
with a typewriter at each end of the line in such a manner that when the keye are operated the typewriters will be operated also.

Forming Rings.-Joseph B. Bowden and Hermann V. Bernhardt, Brooklyn, N. Y. This invention covers a method of frrst forming a ring with a then subjecting it to the action of a series of graduat ed swages, to insure nniform density and prevent detrimental undae compression and expansion during the

Making Bottles. - John B. a n d Robert Johns, Findlay, Ohio. To cheaply make bottles, this invention provides a method of forming a ring near
the upper end of the bottle neck at the time the bottle the upper end of the bottle neck at the time the bottle body in blown, at the same time producing recesses in
the peripheral face of the neck just below the ring, and gnally applying the bottle head, making a bottle to which the lever of a stopper bail can be quickly and
easilly secared.

Calculator for Percentages. Edwin B. Dennis, Excelsior, Mich. Combined with an
open top box having its back extended below the bottom, and with a series of numbered recesses, is a bars in the box and a series of slipe removably secared to the bars, designed to be a simple and durable device for rapidly and accurately calculating the percentage on

Flue Protector.-Joseph H. Gilbert hiladelphia, Pa. Combined with a masonry chimney is a rectangular surrounding band projecting above and below the floor line, with a box around the band of
about the same height as the floor joists, whereby prough iom the interior of the chickey cannot pass between the ceiling and the floor, or behind the base

Hose Reel. - Reuben D. Wirt, Indeendence, Mo. This is patented invention of the same inventor, in which a foo rest and a handle made of gas pipe and united by coupings were nsed to give lightness and strength, the present device being cheaper, and having running wheels or rollers independent of the reel pro
which an ordinary cross arm reel may be ased.
Heating and Settling Brine, etc. -Powhatan P. Truehart and Milton S. Kimball, Stering, Kansas. This invention relates to apparatus for juice, and other liquids, to atilize the waste heat from under the evaporating pan for heating and settling the brine, separating the imparities, so that the brine shall fow into the evaporating pan hot and pure, whereby the settling and heating will be economically effected and the quantity of brine evaporated in a given time reatly increased
Shof Last. - Bernhard Thorner, Leipsic, Saxony, Germany. This is a boot and shoe last designed to admit of the stretchiug of a boot or shoe last, which is divided vertically and horizontally into four parts, the two lower parts being hinged at their heel ends co swing horizontally apart at the toes, and orward ends to the lower members to swing vertically, with an operating mechanism.
Brick Protector. - Nils Olson, Superior, Wis, This invention provides sapporting atand-
ards carrying caps with wings hinged thereto, and a ards carrying caps with wings hinged thereto, and a
means of raising the wings, the protectors being ar means of raising the wings, the protectors being ar-
ranged in sets or series, for protecting moulded but unranged in sets or series, for protecting monalded but an-
baked brick in case of a sudden storm, where boards ank portable sheds have been heretofore employed.
Petroleum Stove. - Olivier Proust, Paris, France. Combined with a metal ount having central tabe projecting through its bottom, is a sur-
counding casing of non-conducting material forming an air space, and having openings near its bottom, with other novel features, designed to atilize the fael to the best advuntage and insure absolute safety
Album. - Christian Jaeger, New York City. Two patents have beengranted this inventor, one belng an improvement on his own former palth a fo piece and back with a book having a bottom hinged to the foot piece and backs connected to the book bottom and arranged to interlock, while the other provide a book pivoted by one of its covers to the stand, with a simple and durable construction to permit of opening the leaves of the book and inserting the pictures without injury to the book or stand, as is frequently the

Harness for Oxen or other Cat rle.-Otto R. Gottwald, Sayville, N. Y. This harness consists essentially of a head piece with straps for atwith loops apon its side, with tracea attached to the ends of the head piece and extending through the loops, making a simple and easy harness, readily applied, that able a much greater load to be drawn than can be done with the devices ordinarily in ase.
Animal Shears.-Chester M. Palmer, Lamartine, Wis. This is a device forsheep shearing horseclipping, etc., adapted to be operated by an elec rical horse shoe magnet, the armorts consisting or an elec naled hetween the arms of the magnet and carrying an armature at one end, its opposite end being connected to the cutter bars in such manner that the revolving
motion of the shaft will impart a reciprocating motion to the catters.
Animal Clipper. - This is another patented invention or the same inventor for an im proved construction and combination of parts of a ply, an arm is cansed to vibrate rapidly and properly operate the reciprocating cutter bar, the device to be grasped by the hand, the wires extending along the arm and to a belt around the waist, thence to a spring Whetstone for Animal Clippers. This is a multiple whetstone patented by the same in-
ventor for sharpening the V-shaped edges of the knives ventor for sharpening the V-shaped edges of the knive of clippers. the arrangement being as a series of parallel bars in which the body of the stones have an
inclination to one side of a vertical line and the whole inclination to one side of a vertical hene and the whore nation of the stones.
Upholsterer's Web Stretcher. William E. Morton, Flashing, N. Y. This is an implewith circular racks on the contacting faces of thei pivoted ends, and a locking device, and adapted to be employed to advantage in securing strips of webbing at each side of a line drawn through the center of a chain

Door Check. - Myron W. Wiard
holder, simple in construction and very durable, bein screws, and designed to stop the door gently and withat noise, and also to
also to swinging doors.
Pool Table. - William H. Violett Grand Junction, Col. Combined with the Doce inclined stationary carriers terminating in a single pipe, with racks arranged for one to each player, and a movwith any one of the racks, and various other novel eatures, including a device for reception of balls and oting of count from "scratch" shots.
Bubble Pipe. - Alonzo Lewis, Balti nore, Md. This pipe has a reservoir in connectio with a rubber ontlet pipe having a clamp or compres sion, means for releasing the clamp, and a blowpipe commanicating with the rubber tabe below its clamp the device holding the water so it will not be spilled.
Shodlder Brace Corset. - Andrew J. Bobbs, Cincinnati, Ohio. This invention covers arm loops, with a waist belt at the bottom, suspende straps being attached to the sides of the back piece behind the arms, and passing obliquely along the loine or connection with the trousers on each side near the front, whereby the
Perfume Holder.-Herman Tappan, New York City. This is a device designed to prevent
breakage of the bottle or flask, while being highly breakage of the bottle or flask, while being highly and provided with a neck holding a collar, bent rods being hooked on the base and the collar forming a gaard for the bottle, while a cap is held on the bottle and en
gages the collar.
DeteraEnt.-Peter K. Post, Jr., New York City. This is a new article of manufacture for oilet and laundry parposes and other ases, and is compoundedor borax with spirits, to make a paste, prepared
and used in the manner specifed. It is also designed

SCIENTIFIC AMERICAN

BUILDINGEDITION
JULY NUMBER.-(No. 57.$)$
TABLE OF CONTENTS
Elegant colored photographic plate of the residence of Henry R. Towne, at Stamford, Conn. H. H. Hally, of New York, architect. Perspective $\$ 20,000$.
2. Platein colors of a dwelling at Tremont, N. Y. Floor plans, perspect
tails, etc. Cost $\$ 6,000$.
Perspective elevation and floor plans of a residence at Monclair. N. J. J. C. Cadj,
architect. Cost complete $\$ 10,000$.
Photographic view and floor plans of a residence at West Brooklyn, N. Y. Cost $\$ 4,500$.
5. A cottage at Dunwoodie, N. Y. Flior plans and
6. A dwelling at Holyoke, Mass. Perspective and floor plans. Cost complete $\$ 5,500$.
. Sketch of a residence at Surbiton.
8. Design for a one story house to coet about $\$ 1,000$, Engravings rep
10. A dwelling erected for Mr. C. D. Dinforth, Yonkers, N. Y. Floor plans and perspective. Cost $\$ 9,000$ Photograph
neat and desirable cottage recently erected Griswold, Iowa, from plane and perspective pub
lished in the Scientric lished in the Scientific American. Cos
$\$ 1,075$.
12. A handsome residence at Springfield, Mass., erected for Mr. E. W. Sha
floor plans. Cost $\$ 15,000$.
13. Floor plans and photographic perspective of several cottages erected for the late Hon. Chas, Cost $\$ 4,000$ each complete. Mr. J. C. Brown, of Mount Vernon, architect.
14. Sketch of a chapel and village hall. Estimated
5. Page engraving of the Ripon Cathedral, Yorkshire, England.
16. Miscellaneous contents: Steam and hot wate heating.-The garden.-Earopean health resorts - Fireproof paint.-Testing well waterfor sewage -The carpenter.-Fire clay in Montana.-The
Spence hot water heater, illastrated.-Improved Spence hot water heater, illastratea.- sliding blinds, illustrated. - Prepared building paper. - An improved separator and trap for
steam boilers, illustrated. - Lyle's storm and sceam boilers, illastrated. - yle's storm and thirty-five feet high, illustrated.-A boiler for greenhouses, dwellings, etc., illustrated.-An
efflcientventilating fan, illustrated. - An improved door hanger, illustrated. - Taste in selecting

The Scientific American Architects and Builder Edition is issued monthly. $\$ 2.50$ a year. Single copies cents. Forty large quarto pages, equal to abont wo handred ordinary book pages : forming, practiURE, richly adorned with elegant plates in colore an with fine engravinge, illnstrating the most interesting examples of Modern Architectural Construction and
allied subjecta. The Fullness, Richness, Cheapness, and Convenienc of any Architectural pablication in the world. Sold by all newsdealers.

MONN \& CO., PUBLIBERE

ⓤsiness and æersonal.

The charge for Inserition under thes head is One Dollar

 a linejor each insertion: about eight words to a line. As early as Thursday morning to appear in next issue.For Sale-New and second hand iron-working ma. Prompt delivery. W. P. Davis, Rochester, N. Y. Co., Bridgeton, N riction For best hoisting engine. J. S. Mundy, Newark, N. J. For steel castings of best quality, write the Buffalo el Foundry, Buffalo, N. Y
Steam Hammers, Improved Hydraulic Jacks, and Tabe Best Ice and Refrigerating Machines made by David Bosle, Chicaro, III. 155 machinas in satisfactory use. Screw machines, milling machines, and drill presses. "How to Keep Boilers Clean." Send your address
free96 p. book. Jas.C. Hotchkise, 120 Liberty St., N. Y. First-class Marine Dranghtsman wanted. Give refer-
ence and salary expected. F. w. Wheeler \& Co., ship uilders, Weat Bay City, Mich
Split Pulleys at low prices, a a of same strength and poarance as Whole Pulleys. Yocon
Works, Drinker St.. Philadelphia, Pa,
Guild \& Garrieon, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum ap
pumps. acid blowers, flter press pumps, etc.
For lono prices on Iron Pipe, Valves, Gates, Fittings, Iron and Brass Castings, and Plumbers' Supplies, write
A. \& \boldsymbol{W}. S . Carr Co., 138 and 140 Centre St.. New York. For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc., address J
S. $\&$ G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlint. describing water works ma-
ohinery, and containing reports of tests, on application. The best book for elcetricians and beginners in elec trictty, is "Experimental Science," by Geo. M. Hopkins.
By mail, $\& 4$; Munn $\&$ Co., publishers, 561 Brosdway $\mathrm{N} . \mathrm{Y}$. standard Practical Plumbing. A complete encyclo-
 Parties having inventions for sale, or wishing to have patented koods introduced or exhibited at the coming exposition, Boston, add
A business man, who has traveled extensively, de sires a manufacturers' agency, or to assist in introducing
some meritorious invention, goods, or machinery of a na ture that will be universally salable. References. Ad dress W. Y., Grove Hall, New Haven, Conn.
Wend fornew and complete catalogue of Scientific
and orher Books for sale by Munn $\&$ Co., 361 Broadway and other Books for sale by Mun
New York. Free on application

(2356) A Subscriber writes: Will you please state whether steam is visibles A. Steam is in
visible. The white cloud seen escaping from steam pipes, kettles,
divided state.
(2357) H. H. H. asks (1) if in making wood alcohol and acetic acid they are made from the the same extractior? A. They are made in the same extraction by distillation of wood. 2 , Is tarpentin made in any other way in this country than from the exuded sap of the pines? A. In Knight's Mechanica Dictionary you will ind described under the articl turpentine still an apparatus for direct manufacture o Is there any place in this country where acetic acid Is there any place in this coantry where acetic acid
tarpentine and wood alcohol are all gotten from th same extraction of wood, that is, given say 2 gallons o wood tar, is tbere any manufactory that will take from this 2 gallons the turpentine, the alcotol and acid? A Wood tar is not generally thas treated, as it would b very poor economy to first distill the wood destructivel and then recover from the tar the other products. W
(23.58) J. P. L. asks the object in mix ing sea coal with sand, thas making what they call a facing for patterns? A. To prevent the sa
ing into the iron and forming a hard scale.
(2359) C. F. M. asks the composition of a good liquid cement. A. Soak gelatine in water, melt
at a low heat and add strong vinegar or aceticacid until it remains liquid when cold.
(2360) L. G. E. writes : I want some Pormulas for brilliant color for drug store show bottles,
A. For violet use sulphate of iron with salicylic acid, for yellow chroe sulphate of iron with salicylic acid sulphate, for red sesquichloride of iron with sulphocy anide of ammoniam, for blue sulphate of copper and ammonia.
(2361) A. E. C. asks for a recipe for making a shampoo cream. A. We give three formulæ

Fruit as food is the theme of this book. The anthor ess seems to be an enthusiast on the subject of health
ful living, and certainly appears to have succeeded in condensing in the present work a vast number of usef u

Spon's Tables and Memoranda for Engineers. By J. T. Hurst, Mem.
Soc. Eng., Mem. Phys. Soc. London Surveyor War Department, author o " Architectural Surveyor's Hand try,"etc. Tenth edition. New York E. \& F. N. Spon. 1889.

TO INVENTORS.
An experience of forty years, and the preparation of
more than one hundred thousand applications for patents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un
equaled facilities for procuring patents everywhere. synopsis of the patent laws of the United States and all
foreign countries may be had on application, and person mplating the securing of patents, either at home or which are low. in accordance with the times and our ex tensive facilities for conducting the business. Address
MUNN \& CO., office ScIENTIFIC AMERICAN, 361 BroadMay, New York.

INDEX OF INVENTIONS

or which Letters Patent of the
 United States were Granted

July 15, 1890,
AND EACH BEARING THAT DATE

Actuating mechanism, system of, J. H. Dixon.... 432,158	
Adding machine, G. B. Fowl Alarm. See Burglar alarm.	
Album, C. Jaek	
cohol, purif	
Animal shears. C. M. Palmer........ 432	
Animal trap. M. 8. Miller......................... 432,498	
Are light circuits, regulat	
Armature, E. Waremann 432	
Armature of dynamo-electric machines, O. A. Enholm.	
Automatic s	
Automatic ventilator, Furey \&	
Axle box, carriage, A. \boldsymbol{G}. Hil	
Axle mnunting. M. A. Andrew	
Baking pan, G. W. LiBar. See Claw bar.	
Basins, overflow and waste for set, C. A. Blessing 48	
Bell, door, F. Sanderson.	
Bell, door, W. L. Upson \qquad 432.344 Belt fastener, C. R. Welde 432,104	
Belt fastener, C. R. Welde............................. 433,104 Belts, machine for folding abrasive, G. A. F'uller-	
vel, J. B. Brook	
Blacking and brushing machine, boot and shoe, W. B. Badger.	
Blind sliding window, G. Poppert...... Boller. See Fruit boiler. Wash boiler.	
Boiler, c. O. Toole.................................. 432,456	
Boiler furnace, steam. J. Grest	
Bolt cutting machine, E	
Bookmark, E. W. Harding.	
Bookmark and leaf holder, combined. W. C. Martineau	
Boot or shoe clasp, C. C. Hazelton	
Bottles, making, J. B. \& R. Johns Box. See Axle box. Journal box. Letter box. Paper box.	
Brake shoe, W. Lawrence. 432,277	
Brine, etc., apparatus for heating and settling, Truehearts Kimball..	
Broom, e. H. Fenton 432.130	
Buckle, M. J. Robinson 432,147	

Bureau, etc... D. C. Clapp
Burglar alarm, J. H. Pru
Burner. Bee Gas burner. Hydrocarbon burner.
Vapor burner.

 Culculator for percentages, E. B. Dennis.
Cam, J. Cam, J. Uryderman............
Camera stand, H. D. Waite.
Can. See Jacketed can. Oil can
Car brake, F. Feldhaus.
Car brake, J. F. McL Laughlin
Car construction, G. L. Harvey,
Car coupling. W. J. Harkness.......32,273, 433,275,
Car coupling, M. B. Harreiss.
Car coupling, H. H. Bchoon
Car coupling, H. H. Schoono
Car drank, Wear. G. Yates.......
Car, electric, E W. Harvey
Car araw kear. , L. L. Harvey...........
Car, electric, E. Wagemanno.........
Car, electric motor, J. F. McLaughilin.
Car, fretight. w. W. Green.
Car heater, G. A. Houston
Car heatis. apparatus, A. B. Wilson Car, metallic. C. T. Schoen.
Car. rallway, L. P. Farmer. Car. rallway, L. P. Farme
Car. street. J. A. Brill...
Cars, adjustable fender or kuard for street, \mathbf{H}. B
Cars, draukht and bumbs mechanism for railwas Coulter \& Hibbert.
ner.. Ehotingky.
Carburetor, G. Hargreaves et al.................... carriage and sleigh. combined, J. Carriage, child's, G . Marqua
Carriake, child's, J. H. $\&$ W. Toze arrt brake C Wu. Young Case. See Eyeglass case. Mailing case. Cash drawer recorder, F. R. Woodward.
Cash indicator aed rekister, R. W. Uhlig ash recording device, G. M. Enyeart. Center and aurface, F. C. Balch 48176 Chain, drive, D. J. Sheldrick.
Chair. See Folding chair Chair. See Folding c
Chair. O. E. Michaud.
Channeling machine. M. Grimn.........
Chart, genealogical, o. W. Rog
Chart, genealogical, O. W. Rog
Copper. See Cotton chopper.
Cider press, D. Whiting
Gircuits, apparatus for detecting short. H. Red
Clasp. See Boot or shoe clasp. Claw bar, F. P. Craig
Clay slug. apparatus for rounding plastic. 8.
Cleaner. See Pulp screen cleaner..........................
Clipper, animal, C. M. Palmer Cllpper sweat guard, hair, J. K. Priest.................
Cloth fnishir. machines, mechanism for guidin the edges of webs to. Shortle $\&$ Leitch.........
Clothes line prop and stretcher, c. C. Mc'गlaukhry Clothes line pulley, F. P. Skornick
Clothes wringer, A. L. Blager Clothes mringer, T. W. Stone......
Clutch, electric, J. F. McLaughin lutch, friction, J. W. Blodg Clutch operatling mechanism, W. J. Parmelee Clutch, pulley, E. Waldron. Coal breaking machine, Simpson \& Alvord.......
Cocoanuit oill, refining, A. Smith.............. Coiled steel spring, 1. A. Timmis. Coin-actuated device, P. Kennedy, J Collar fastener, horse, B. O. Bmith...
Commutator brush, J. F. McLaushin
 Corset, shoulder brace, A.............
Cotton chopper, w. E. Lindsay $\begin{aligned} & \text { Coupling. See Car coupling. Shaft coupling. } \\ & \text { Thill coupling. }\end{aligned}$
Crane and meighing apparatus, combined. J. A.
Potter................................... Poter....
Cultiv, w. Ha
Cut, w. Cultivator, A. Ellis. cultivator, D. D. Funk cultivator, C. H. Taplor...........
Cultivator feeder, ㅌ. C. Holladay Current regulator or rheostat, O. Flemming. Currett regulator or rheostat. G. B. Masses. Cutter bar, $\boldsymbol{\text { C. T. T. Bheppard }}$ Dehorning device. H. W. Leavit Desk, etc., school, Merrill \& L Die. See Wire draming die
 ing. A. McWilliams.
Door check. T. Gooden Door check. T. Goodenough Door fastening, A. Brunner.
Door hanger, C. A. Reynolds.
Dinger Door securer, G. G. Baker.
Door spring, G. Focht......
Door spring, A. D. Goodwin.
Drawer guide for bureaus or like articles of furn ture, D C. Clapp...
Drill. See Grain drill.
Drill. See Grain drill.
Drying machine. Proctor \& Knowles... Dust arrester, E . W. Hoover
Dust collector, O. Kutsche .. bust collector, A. N Wolr Eggs, composition for preserving. s. C. Matteson
Electric energy, means for generation and con version of, A. De Castro.......
lectric heater, J. F. McLaughlio Electric locomintion, means for, J. F. Mc...........
Electric machine, dynamo. F. A. Perret

 Elevator. See Sucker rod elevato
Elevator safety device, P. Schmid Engine. See Gas and atr engine. Hydroca
engine. Piston engine. Pulp engine.

2.235

	8. Ady. Faucet attachment. V an Alstine \& Munzer.	

Feed beater. rotary. F. F. Gueths..................

Learmonth Feedwater pur

Fertilizer, phosphatic, J. D. Simmons.....
Fire apparatus, locked joint for, Y. Grinne
Fire epcape, J. F. Hill.........................
Fire escape, block tackle, J. A. P. Heptin
Fire extinguisher, A. Durand..................
Fire extinguisher, automatic. F. Grinneel Fire extinguisher, chemicul, A. Dur
Fue dust collector, B. Rosing...... Flue protector, J. H. Gllbert.

Folding chair, L A. Cuicheste | Form |
| :--- |
| Frame |
| Frict |
| Fruit |
| Frut |
| ra |
| ru |
| Fu |
| Ga |
| Ga |
| Ga |
| Ga |
| G |
| |
| \mathbf{G} |

步

$$
\begin{array}{l|l}
\text { Fric } \\
\text { Frui } \\
\text { Frul }
\end{array}
$$

rurnace. See Boller furnace. Metallurgical fur

Fuse cap fastener. N. W. Moodeg.... .. Gauge. See Center and mortise gauge.

 Game appa
Smith...

```
Garment fastener, W. A. Bernard.................
```

Gas and air engine, G. B. Brayton..
Gas burner, rezenerative. T. Gordon
Gas holder, E. E. L. Pease....
lases and liquids to moving vehicles, device for
ate. See Bridge gate.
Gate, J. G. BarbGr
Gate, J. B. Eortz.
Gearing, changeable speed, Martin \& Heath...........................
Generator. See Steam generator.
Grain carrier, \mathbf{W}. H. Knapp..

Grain drill, A. J. Martin........
Grain separator, s. e. Chase.
Graphophone, J. H. White
uard. See Cattle guard. Clipper sweat guard.
Lemem shuttle guard. Snow guard.
Loom shutlle guard. Snow guard.
Halter, J. Knight.............
Handle. See Tool handle.
Hanger. See Door hanger. Shaft hanger.

Harrow, revolving, J. Shepperar...
Harvester, corn, Galt \& Tracy...
Harvester, cotton, J. H. Maeters.
Hat and coat rack, C. T. Gardner.........................
Heat, method of and means for applying the e
Hat screen, M. Thurston............................
Heater. See Car heater. Electric heater. Ho
Heater. See Car heater. Electric heate
air ventilating heater. Vehicle heater.
Heel burnishing machine, C. J. Addy....

Holder. See Fence post holder. Gas holder.
Horse tail holder. Paper holder. Pen holder
Perfume holder. Pillow sham holder. Trace
holder.

Hydrocarbon burner, \&. C. Reilly.
Hydrocarbon enkine, G. B. Brayton.
Ine harvesting machine, J. A. Mengel................
Inlines, etc., safety devie for, w. Peach......
Indicator. See Cash indicator. Letter bor indl-
Induction coil or transformer, c. к. Kammeyer...
ingots and seamless wire, manuracture ot hollow
nkstand stopple Brooder Thomas.
ron. See sad iron.
Iron ore, reducig. . J. Eames.
Jack. See Lifting jack. Nailing machine jack.
Joint. See Pipe joint. Rail joint.
Journal box, A. D. Cox..............
Jute bagging. making, A. \& B. Gratz.
Kettle, A. . Nunn
Kettle attachment, L. W. Buxton
Knitting machine, circular. J. S. Eern............
Vitting machine stop mechanism, J. Stewart.
Ladder. W. Dilts.
Lamp, W. M. Hoer

Lamp, central drauzht, C. A. Evarte
Lamp, central draukht, W. M. Hoer
Lamp, electric arc. H . C. Russell.
Lamp, electric arc. E. C. Rusesell...
Lamp, pocket, 8. W. Evans, Jr. et a
Lamp support, extension, C.
Lathin , metallic. C. Kinn
Lathind, metallic. C. Kinney.......................
Linstrom................

Lock. See Nut lock.
Locomotive, electric, w. H. Knight..................
Locomotire machinery, J. W. Shinn..............
Locomotive, multiplex electric, C. J. Van De
poele...
Loom, H. Hodgson et al...............
Loom, self-threading shuttle, J. H. Na
Loom, seif-threading shutte, J. H. Na
Loom sheding mecbanism. . Welbel
Loom shuttle guard, T. J. Benson......
Lom temple,
Loom temple, E. E. Hamilton
Lubricunt, R. Hutchison.....
Lumber strip. A. Meigs....

 INVNTTIONS WORKED OUT, Draminge and

ICE and REFRIGERATING MACHINES The Plotet Artificial lce Company (Limilted), Room 6, Ceal \& Irori Exchange, New York.

M $\frac{\text { ARCO A. FOUSECA \& CO. }}{\text { Bogota, Republic of Colom }}$ Gem

HOME-MADE INCUBATOR.-PRRACTI
 TO INVENTORS AND MANUFACTURERS 59 Grand National Industrial Exposition American Institute of the City of New York Intending exhibitors munt mase early. 2pp, 189C.
secure proper space and clasification. For blanks to
Ond
 Gates Cornish Rolls Pulverizer

By GEO. M. Hopkins. 740 Pages. 680 Illustrations.

PRICE, by mail, postpaid, $\$ 4.00$
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents.
MUNN \& CO., Publishers,
(0)etice of ©he \$cientitic © 361 Broadway, New York.
IDEAL MUSICAL BOX lithe tatent Inventionin 8 whis Manical Boxes

JACOT \& SON, ${ }^{\text {gonempadway, }}$ NEW YOBR.

ANEW CATALOGUF
 VALUABLE PAPERS C

FOREIGN PATENTS
 THEIR COST REDUCED.

Tbe expenges attending tive prociring of patents in
most foretgn countries having bean considerabis reduced the obatacle of cost is no longer in the way oi a
arge proportion of ourinventors patenting theirinvenarRe proporc
tions abroad.
eANAIIA. -The cost ot a patent in canada is even
less than the cost of a Onited states patent, and the formerıncludes the Provinces of Ontariu, Quebec, New
Brunswick, Nova Scotia, British Columbia, toba.
The number of our patentees who avall themselves or
the cheap and easy method now ofrered. for obtaining patents in Canada is very large, and is sceudils increas
ing. ing.解 in Great Britain on very moderate terms. ABritish pa-
tent includes Engiand, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the acknowiedged
ananclal and commercial center of the)world, and her goods are sent to every quarter of the: glohe. A good
invention is likely to realize as much for the patentee in. Knalina as bis Unteded states patent produces for Por almost every patentee in this country to secure a patent in Gireat Britaiu, where his rikhts are us well pro-
jected as in the United States. jected as in the United States.
OTHERCOUNTIRIES.
on very reasonable terms in France, Belginm, Germang on very reasonable terms in France. Belginm, Germany,
Autria, Russia, Itair. spain the latter includes Caba ano ali the other Spanish Colonies), Brazil, British ludia
Anstralia, and the otier Brtish Colonies. Anstralla, and the ot'aer British Colonies.
publishers of T'HE SCIENTIFIC ASIERICAN to estaulish competent und trustworthy ageocies in all the principal forelge countries, and it has always been their aim to
have the business of the:r clients promptly and properhave the business of ther cinents prompty and
If done and their interests fuithrully guarded.
A pamphlet containing a syinopsis of the patent laws
of all countries, including the cost for each, and othe information usefu to versons contemplating the procuriae of da
this office.
MUNN
kntific amertace Editors and Proprietors of The sciung information reative to patents, or the reasiatry of rade-marks. in this country or abroad to cull at thetr aices, 361 Broadway. Eramination of inventions, oon-
suitation, and advice free. Inquiries by mail promptly namered. Address. MUNN \&ECO..

Publishers and Patent Solicitors,
361 Broad way. New Yo

HARRISON CONVEYOR! Fan $\begin{gathered}\text { Foring Graln, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&uc. }\end{gathered}$

Notice to Electric Light Companies.

 Olar or the taxBbe property of sald village per annum
he right ir reserver to reect any and all proposal
otonk
Bo

BARREL
VOLNEY W. MASON \& CUa FRICTION PULLETS CLOTCHES and ELETATORS PROVIDENCE. R. I.

 TO THE DEAFI Ncholioor's Patan tod Arth-

TYPEWRITERS. Clarkget like extabliahment fin the world Firct

aMictuour or ititilititn,

 …
 Hes: shu bairites HARRINGTON \& KING PERFORATING © .CHICAGO. ROCK BREAKERS AND ORE CRUSHERS

 THE HAMMOND TYPEWRITER CO. 477, 449 East 52d street, made of Ironor st.eel. Our taralimpiements, preferaby
pondencesolicited. Address GoobkLL Co., Deet. Correg-

 $\frac{\text { F. 5, care LORD \& THOMAS, Chicago. } 111 .}{\text { Sl.!uation Wanted-By a recent graduate from a }}$

The Scientric American PUBLICATIONS FOR 1890.
Thibe prices of the inferen publications in the Tnitoa

The 8cientinc American (weekly one year
The Scientitc American Supplement (weekly), one $\$ 5.00$
year. The scientific American; 8 spanish Edition (monthly) ${ }_{3} 500$
The Belentulac American, Architects and Builders
Edition (monthly), one vear. COMBINED RATES.
The Scientifc American and Supplement, $\quad 8700$ The 8cientitic American and Architects and Bulld- 5.00
ers kidition, The Scientific American. Supplement, and Archi-
tects and Buiders Edition. This includes postage, Which we pay. Remit by postal
or express money order. or draft to order of MONN \& CO.. 361 Hroadway, New Yort

JENKINS STANDARD PACKING! THE TEACHING OF SCIENCE.-

NEW KODAKS

THE EASTMAN COMPANY

Vinita Planing Mill.
Engine was Set Up and Started by our Printed Directions.
VINITA, IND. TER., June 21. 1890. Charter Gas Engine Co.. Sterling ind.
DEAR SIRs:- NIG No. 4 Gascine. Engine gives entire
satistaction thus far, and I see no yea son why it should

THDF FDR[INGS

PATENTS!

 Ren T

THE BRIDGEPORT WOOD FINISHING CO
 MANIFACTURERS OF Whellers Patent Wood Tuler. BREINIGS LITHOGEN SILIGATE PAINT SILEX FLINTR AND FELDSPAR.
PAMPHLET GIVING DIRECTIONS FOR FINISHNG HARD WOOD FRIE TO ANY ADDRESS.
AUby

HWW.JOHIS' hasestas STEAM PACKING

The HARTFORD SAFETY THE BEST \$100 BICYCLE MADE. of 12 to a full-grown man.
Catalogue Free.
obscriptive price list and samples sent pree
H. W. JOHMS Mf. CO., 87 Maiden Lane, N.Y. THE PHONOGRAPH.-A DETAILED

Catalogue free. Address Typewriter Department,
POPE MFG. CO., Boston, New York, Chicago. THE GIRARD HYDRAULIC RAILWAY - Description or or railway whicubase xaited m mect tech.

Forging and welding by petroleum air blast fires. All Oil Boiob Burnors.

THE AERATED FUEL COMPAN
$\$ 85$ Lovell Diamond Safety $\$ 85$
 Strictly high grade in every particular. No better machine
JOhn P. LOVELL ARMS CO., 147 Washington Street, boston, mass.

CONDENSATION OF CARBON PAR-

CHEMICAL ICE MACHINES

manmanamanco.

95 MILK ST,, BOSTON, MASS.
This Company owns the Letters Patent

Tans Company owns the Letters Patent 7th, 1876, No. 174,465, and January 30th 1877, No. 186,787
The transmission of Speech by all known forius of Electric Speaking Telephones infringes the rightsecured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor

MALIERELS
 THOMASOEVUN \& CO:

4After being on the Market Five Years The ${ }^{14}$ ACM/E E Still Leads!
 ROCEESTER MACHINE TOOL WORKS, BTOWI's Race, ROCEESTER, N. Y

SiRndul M MLEAE ERONWORKS
 BASE BALL. -A DESCRIPTION OF
 GRAVESELEVATORS.
 Steam! Steam!

Quality Higher, Price Lower. 2.Horse Eureka Boiler and Engine, - \$135
B. W. PAYNE \& SONS,

OLDS' GA SOLINE ENOINE. C One or Two Horse Power. Don'Th fail to write for a descrip.
 P. F. ${ }^{\text {writeto }}$ OLDS $\%$.
 218 lliver St., Lansing, Mich

シrientific American

The Must Poppiar Stientifle Paper iv the World.

Thif widely clrculated and splendidly llustrated paper is pubished weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, representing Engineering Works, Steam Machinery,
New Inrentions. Novelties in Mechanics, Manufictures, Cbem istry, Electricity, Te egraphy. Photography, Architecture, Agriculture. Horticulture, Natural Bistory, etc. Complete List of Patents each week.
Torms of Subscilption-One copy of the ScIEN-
IFIC AMERICAN will be sent for one year-52 numberspostage prepaid. to any subscriber in the United States, Canada or Mexico, on recelpt of three dollinn hy the
puhlisers; six months, 1.50 ; three month, publisbers; six month:s, 81.50; three months, 81.00 .
C lubu.- $\$$ pecial rates forseveral names, and to Post Masters. Write for particulars. Thbs safest way to remit is hy Postal Order. Draft, or
Express Mon y Order. Money carafully ply ExpressMon y Order. Mones carefully placed inside
of envelopes, securely sealed, and correctly addressed of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Adseldom goes astray, out is at the sender's risk. Ad--
dress all letters and make all orders, draits, etc., pay-
able to

MIUININ \& CO.,
861 Broadway, New York.
Scientific American Supplement.
This is a separate and distinct publication from
TRE SCIE:TIFIO AMERICAN. but is uniform therewith In size, every number containing sixteen large pages full of engravings, many of which are taken from foreign
papers, and accompanied with translated descriptions. papers, and accompanied with translated descriptions,
The SCIKNTIFIC American Sulplemicnt is published weekly, and includes a very wide range of contents. It
presents the most recent napers by eminent writers in Pall the principal departments of science and the
als
Useful Arts, embracing Biology, Geccog, Minerate Useful Arts, embracing Biology, Geclogy, Mineralogy,
Natural History, Geokraphy, A rchæology. Astronomy Natural History, Geokraphy, Arcbæology, Astronomy,
Cbenistry. Electricity, Light. Heat, Nechanical Engineering. Steam and Railway Engineering, Mining.
Ship Buildiag, Marine Engineering, Photogriphy, Ship Building, Marine Engineering, Photogrilphy,
Technology, Manufacturing Industries, Santtary Engineering, Agriculture. Horticulture, Domestic Economy , Biokraphs. medicine, etc. A vast amunnt offresh lication.
The most important Ensineering Works, Mechanisms.
and Manution and Manufacturesat home and abroad are illustrated and described in the SUPPIEmeNt.
Price for the SSPPIEMENT for the United States and
Canada. 85.00 a year, or one copy of the Canada. 5.010 a year, or one copy of the SCIENTIFrc AM-
EuICAN and one copy of the SUIPLLEMLCNT, buth mailed tor one year for 8 s.i.00. Single copies 10 cents. Address and remit by postalorder, express money order, orcheck, MUNN \& Co., 361 Broadway, N. Y..
Stientiric Amelican.

Building Edition.
The Scientific American Architects' and
Builders' Edition is issued monthly. 82.50 a year Single copie es, 25 cents. Forty large quarto pages, equa to about two hundred ordinary book pages; forming larke and splendid Magazine of Architectinre, rich
Is adorned with elegant plates in colors. and with other IS adorned with elegant plates in coiors. and with other
tne engraviggs; illustrating the nost interesting ex amples of modern Arcbitectural Construction and
allied subjects. allied subjects. of a variety ot the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, togethemwith full pective and in color are given, togetheserith full The elegance and cheapness of this inarnificent work
ave won for it the Larkest Circulation of any ave won for it the Larkest Chiculailion of any
Archicecural publication in the world. Sold by all

MUNN \& CO., Publishers,

361 Broadway, New York.
PRINTIING INKS.

