18
 CIIENTIIFIC

Aone MEITICAN
a WeEkly jotpral of practical information, art, science, mechanics, chemistry, and mantiactures.

$\underset{\text { ESTABLIEHED }}{\text { Vol }} \underset{1845 .}{\operatorname{LI}} \text {. }]$

SEABURY BREECH MECHANISM FOR RAPID FIRING AND OTHER GUNS.
For the past few years foreign military nations have been carrying on extensive experiments with quick firing guns of various calibers, from one inch to six inches, and their conclusions point to the adoption of a gun having a caliber between four and five inches as the one giving the most satisfactory results. In this country we have pinned our faith for the present, or

Fig. 1.-ORIGINAL DESIGN-REAR VIEW, MECHANISM CLOSED.
perhaps restricted our orders would be the better expression, at least as far as the naval branch of the service is concerned, to the four inch caliber as the extreme size of rapid fire gun, and several of that class of weapon are now in course of construction, and will be completed before the expiration of the present year. Facility for loading is, of course, a prime requisite of the quick fire type of guns, and in order to contribute to this result the projectile and powder should be contained in one cartridge, and be as light as is consistent with the necessary ballistic power. Metallic cartridges are used, and experiment has proved that the fixed ammunition cannot conveniently be handled when the caliber exceeds four inches. The cartridge then becomes so long and the weight so great that one man can no longer handle it with alacrity. The struggle, therefore, at present seems to have centered itself about the breech of the four inch gun, and with a view toward introducing mechanism at once strong, light, safe, and simple, Lieutenant Samuel Seabury, of the

United States Navy, turned his attention, some two years since, to the subject, with the result as illustrated on these pages.
Figs. 1 and 2 represent in perspective the closed and open positions of the breech mechanism as originally designed. Figs. 3, 4, 5, and 6 are sections, etc., of the modified mechanism of the same type. Fig. 7 is rear view of modified type, having the handle and wiper combined, and Fig. 8 shows the method of handling by gearing the heavier calibers. Simple and ingenious as the original design, Figs. 1 and 2, appears in the modified form, Fig. 7, there is even greater simplicity, with a lessening of weight, increased strength, and a reduction in the number of parts. The breech plug is on the slotted screw system, that has already stood for many years the test of actual service, and which is, mechanically considered, the best known method for closing the breech of the gun. The points of resistance applied at three evenly divided parts of a circle, as in the slotted screw, are much nearer mechanical perfection than is attained by the side systems of closing the breech; besides which, the work of cutting the screw box is very much simpler. Greater length of bore is obtained for guns having the same external length, and hence greater power for the same weight of metal.
The feature of quick loading is also enhanced by the fact that it is not necessary to push the cartridge away forward to its seat before closing the breech. As much as seven inches of the cartridge can remain protruding from the seat, in the case of the four inch caliber, without interfering with the closing of the plug, which, upon being closed, shoves the cartridge forward to the firing position. The cartridge case extractors, as originally designed, consisted of a pair of spring actuated hooks, as appears in Fig. 2, which, on closing the block, grasped the head of the cartridge, as is usually done in small arm systems.
A great improvement over this method has been made by the adoption of the extractors, as shown in Figs. 3, 5, and 6. This extractor consists of a plate sliding longitudinally in a recess at the bottom of the screw box, and having at its inner or forward end an upturned plate, so formed as to err brace a portion of the head of the cartridge, while a lug near this up turned portion, Figs. 5 and 6, serves to engage a corre sponding recess at the forward end of the breech block Figs. 4, 5, and 6. At the rear end of the extractor plate is a transverse slot engaging the upturned pin of the long arm of the extractor lever. The advantage of this method lies in the great power produced by the unscrewing of the breech block to loosen the empty cartridge case in the bore, while the rapid rearward motion imparted by the subsequent impingement of the mechanism against the short arm of this lever serves to eject the case effectively, as is done in the maller types of rapid fire guns.
In the latest modifications of this mechanism the firing pin is made in one piece, and the coil spring around the firing pin, as shown in the illustrations, is replaced by a leaf spring secured to the retractor box This renders unnecessary having so large a hole drilled in the center of the block for the firing pin
Another improvement which will, no doubt, com-
mend itself to ordnance men consists in changing the locking device from the handle of the mechanism to the rack which turns the block, thus reducing the number of parts through which the tendency to un lock on discharge acts. The new device consists of a strong pawl pivoted on the rear face of the gun, which by gravity drops into a recess on top of the rack when in the locked position.
To operate the mechanism as illustrated, grasp the handle, squeeze the movable plate in the handle so as to release the catch to unlock from the gun, and pull the breech plug around to the position indicated

Fig. 3.-MODIFIED MECHANISM-REAR VIEW OF BREECH CLOSED.
in Fig. 5, where it stands clear of the bore of the gun ready for the insertion of the cartridge. The various cperations of unlocking the block, A, withdrawing it nto the tray, N, and swinging the whole clear of the bore, are performed in this one movement, and herein hies one of the strongest points of the Seabury system and one in which it possesses great advantages ove he other metods in use with the slotted screw, as they require two and three motions to accomplish the same hing sacrificing thereby some of that greatest of es sentials in rapid firing systems, the element of time. During the first 75° of the revolution of the handle the wiper, E, acts upon a projection on the slide bar, D, Fig. 4, which, through the pin, M, pushes the rack, F, to the left on its guide, thereby turning the circula rack rigidly secured to the block, A, through an arc of 60 , unlocking it from the threads in the screw box of he gun. As soon as this is done, the shoulder on the wiper, E , comes in contact with the projection, H , on the retractor, G, and movement is imparted to it, thereby pulling the block to the rear into the tray, \mathbf{N}, through the slipper guide acting in the horizontal slot cut in the retractor box, B, secured to the rear of the (Continued on page 328.)

Fig.2.-original design, breech open.

Fig. 4.-HORIZONTAL SECTION OF MODIFIED MECHANISM ON AXIS OF GUN,

Šrientific esmericam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

profits 0 T THE PARIS EXPOSITION.

M. A. Neymarck has recently made an interesting communication to the Chambre Syndicale des Industries Diverses of France, on the subject of the profits of the late exposition to France in general. These he considered frow the most varied standpoints. A resume of his work is of special interest now.
The gold reserve or balance in the Bank of France was enormously increased. On October 25, 1888, it was $1,021,641,845$ francs. A year later, as the exposition was on the point of closing, it had increased by 272 ,640,240 fraucs. It was calculated that Americans brought over and spent 350 millions of francs in gold. During the exposition one and a half willion of foreigners visited France; the greater part were distributed thus: Belgians, 255,400; English, 380,000; Germans, 160,000 ; Swiss , 52,000 ; Spaniards, 56,000 ; Italians, 38,000 ; Russians, 7,000; Swedes and Norwegians, 2,500 Greeks, Roumanians, and Turks, 5,000; Africa (principally Algerians), 12,000 ; North Americans, 90,000 South Americans, 25,000; Oceanica, Java, etc., 3,000.
The gold reserve of the Bank of France was not the only gainer; the other banks of Paris showed an increase of 86 millions of francs. The receipts of the railroad companies were 66 millions of francs larger than for the corresponding period of the preceding year. The omnibus company running stages through the streets of Paris reports an increase of receipts over the same period of 1888 of four millions of francs. The cab company transported 29,097,112 people from The cab company transported 29,097,112 people from
January 1 to November 1, 1889, instead of 12 millions in the same period of 1888 . This brought an increase o revenue of $1,558,000$ francs. Four free stages run by the Louvre stores carried $1,320,000$ passengers gratis. Spring vans were utilized, and as an example of their profits, it is said that the conductor of one of these vehicles acknowledged he had made 33 trips on the day of the closing, carrying eight people at one franc apiece each trip; giving as receipts for one day 264 francs or about fifty dollars. There were about 300 o these vehicles in use.
The tramways from May 6 to October 31 carried 6.342,670 people, giving over a million and a half france receipts. Sometimes they transported 10,000 people per hour from the Place de la Concorde to the Machinery Hall. The cars running around the city car ried 30,00 people a day more than in 1888 .
The octroi or internal revenue of the city of Paris felt the effects of this increase of visitors. For the first ten months of 1889 it showed an increase of $10,398,72$ francs over the estimates, and an excess of $9,946,551$ referred to the same period of 1888. The excess of wine drank in 1889 over that drank in 1888 was $3,162,227$ gallons; the excess of meat eaten was $3,278,871 \mathrm{lb}$. The total consumption of wine was $31,586,189$ gallons; of meat, $94.680,630 \mathrm{lb}$.
The theaters showed an excess over 1888 of $10,867,555$ francs receipts after payment of the droit des. pauvres (poor tax) of $2,045,398$ francs in place of 958,643 francs in 1888.

The restaurants on the Champ de Mars (bouillons Duval) received six millions of france, $1,640,000$ more than in 1888. A single restaurant toward the close of the exposition served 20,089 meals varying from less than a franc in cost (of which latter 267 were served) upward, only 95 exceeding five francs. The greatest number cost between 2 and 3 francs each.
The Eiffel tower, costing 7,514,095 franes, had a gross income from May 15 to November 5 of $6,459,584$ francs.
The exposition proper showed a profit of eight millions of francs agaiust a profit of $4,130,840$ francs a the exp
francs.
Adding together the increase of the bank balance, of the receipts of railroads, of the revenue, etc., a total gain not far short of five hundred millions of francs will appear To this must be added the strictly private receipts. Allowing one million and a half of foreign visitors spending an average of 500 francs each, and six millions from the provinces of France spending an average of about 100 francs each, 1250 millions appear as the private receipts, giving a total of 1750 millions of francs direct monetary gain, or about 350 millions of dollars.
america's testimonial to france.
The National Society of the Sons of the American Revolution has inaugurated a movement intended to give expression in the form of some suitable testimo nial of the deep sense of gratitude which the people of the United States cherish toward the people of France for the magnanimous aid, naval, military, and financial, rendered by the French to this country a the critical moment of our revolutionary war.
From the beginning of the struggle the active sympathy of the French was extended to our countrymen which found expression in supplies of money, of arms and of men. In 1778 treaties of amity, alliance, and commerce with us were signed in Paris. In the sum mer of the same year a large French fleet was sent to our assistance, and from that time until the close of the war and the signing of the final treaty of peace at Paris,
September 3, 1783, the French continued to be our faith
ful allies, assisting us in every posssible way, supplying us with arms, munitions, soldiers, and ships of war Among the practical fruits of this timely and most gen erous assistance was the capture of Lord Cornwallis with 106 guns and 800 men , the veterans of the British army, at Yorktown, October 19, 1781. On this glorious occasion the French were on hand with a fleet of 37 war vessels and $7,000 \mathrm{men}$, the Awerican forces under Washington numbering 9,000 men. This practically ended the war, and peace soon followed. The bless ings which have ever since ensued to us may be attributed in a high degree to the aid thus given us. We may never hope to repay these benefits, for thes are priceless ; the most we can do is to ask the accep ance of some souvenir indicative of the obligations which as Americans we owe to the people of France.
In money alone the French expenditures on our behalf are estimated to have been between ten and twenty millions of dollars; say fifteen millions-a sum which if put at interest would probably by this time have amounted to over three thousand millions of dollars.
Cowing now to the practical business of the pro posed testimonial-the matter is in the hands of a committee of eminent gentlemen resident in different parts of the country, as follows
Chairman, William Seward Webb, cor. 44th and Vanderbilt Streets, New York City.
Hon. Chauncey M. Depew, New York City
General W. S. Stryker, Trenton, N. J.
General W. H. F. Lee, Burke's Station, Va
Governor S. B. Buckner, Frankfort, Ky.
Mr. Goldsmith Bernard West, Jacksonville, Ala.
Judge Lucius P. Deming, New Haven, Conn.
Hon. Clifford Stanley Sims, No. 242 South 3d Street, Philadelphia.
Mr. H. B. Ledyard, Detroit, Mich.
Mr. Wm. O. McDowell, Newark, N. J.
Mr. E. S: Barrett, Concord, Mass.
Rev. Charles Pinckney; Charleston, S. C.
W. H. Brearley, Detroit Journal, Detroit, Mich

Treasurer, Mr. James Otis, No. 22 East 10th Street, New York City.
The committee has suggested that individual sub scriptions to the amount of $\$ 1$ each be solicited by those who take interest in the matter, to be forward ed, with the names of the subscribers, to the treasurer as above. A large amount has already been received We hope every reader of the Scientific American will do his share in promoting this most noble and patriotic euterprise. Let each one open a subscription list in his own family and extend it, as time permits, among his neighbors. Any further information may be had from members of the committee.
We believe no definite decision has been reached as o the exact nature of the proposed testimonial. For ourselves, we wish it could take shape in something grand and useful, worthily representative and perma nently commemorative of the gratitude of a great people toward the greatest of benefactors.
We propose the erection in France, wherever the people of that country shall designate, of a ouilding which in exterior form and dimensions shall be a copy of the Capitol at Washington, with its stately dome and statue of Liberty ; the building to be constructed of materials and filled with objects from this country, exemplifying within and without, in the most interest ing manner, the richness and variety of our resources the walls to be adorned with sculptures and painting by the ablest masters, commemorating the heroe and achievements of the French, both in the early his tory and settlement of this continent as well as in the later period when they came to our aid in the war. In brief, we would build, endow, and present to the French people a museum of America, great, complete, and substantial, a worthy and perpetual token of the incere regard and grateful veneration with which the people of France are held in the hearts of the American people.

The idea of an American testimonial to France ap pears to have originated with Mr. W. H. Brearley, of he Detroit Journal, and he made the appointment of the chairman, Dr. Webb

Electric Welding of Shells.

Modern Light and Heat says there is another electrical ndustry about to be established at West Lynn, Mass or the manufacture of welded shells. The Thomson Electric Welding Company is pressed beyond its capa city in the demand for welding machines, which will be used extensively in the new enterprise. The gov ernment has already given an order for 100,000 shells for the Hotchkiss gun and Shrapnel shells as soon as facilities for their manufacture, under the patent of Lieutenant Wood, U. S. N., are ready. By the new process the shells, instead of being made of cast iron and boxed as formerly, are made by welding the chilled point and butt to a section of soft iron pipe, and, in the case of Shrapnel shells, the trouble of graduating the thickness with calipers, after boring and adjusting the delicately poised diaphragm between the powder and the bullets, is greatly diminished.

Recent and Needed Improvements.

 The steam hamwer has given such perfect results in the cushioning effects of steam that a substitute in the form of compressed air must be employed where other motive power than steam is used.There is quite a tendency among inventors and mechanics to bring into use the driving effects of hydraulic power whenever a steam plant is to be called upon to operate the machinery, and the mill privilege, with its never-failing steam, must be utilized in compressing air, that the machinery may have some of the expansive benefits that are to be found in the steam engine.
The exhaust from a steam boiler should step right back into the boiler as readily as if the engine was simply an exhaust injector, and the units of heat that pass up the smoke stack should be dispensed with at once by firing up the plant on the principle of the soda engine. It would seem quite easy to construct a boiler with the fire box in the same compartment with the steam room, and the fuel as well as the draught supply pumped in with the feed water, and allow the engines to make use of all the gases, as well as the mechanical unison of heat and water known as steam. If fears are entertained for the air pump when the condenser
is in use, a highly hydrogenous fuel should be used, which will leave the greater part of its own product of courbustion the same as that obtained by evaporating the feed water.
Where a battery of boilers are kept under fire, the engine must keep a set of pumps at work, that the freight as well as the passenger elevator may be driven by hydraulic power. Speaking of boilers, how an inventor must shake his head when he examines the amount of waste found in a modern steam plant, and what a wonderful chance there is for an improvement! Will some inventor take notice?
We shall expect before long to find in the list of patent improvements a substance or a compound ground up and sold in the form of corn cakes that will disintegrate spontaneously, similar to sky rocket powder, which will only need to be thrown into a soda tank to supply an engine with driving power for ten hours.

A novelty in the manufacture of steam pipes consists in the fact that a core of some kind has been invented which may be thrust through a mass of melted steel after it has been poured into the mould. The utility of such a device goes without saying.
A machine has been devised that separates quartz sand into different grades from 4 to 60 by simply allowing the sand to drop or rain down on to a revolving cylinder. Every grain receives the same velocity when it leaves the cylinder, and the simple resistance of the air effects the separation-so it is claimed.-Mining
and Scientific and Scientific Press.

Cost and Productiveness of Labor.

The U.S. Commissioner of Labor is preparing to transmit to Congress his first report on the cost of production. The commissioner has been engaged on the report for several months and has obtained some very interesting and valuable material. The purpose is to ascertain all the elements that enter into the cost of
production of a manufactured article, and Congress extended the inquiry to foreign countries, in order to obtain facts bearing upon the tariff question. The commissioner's report will embody data that have never been presented in any official report in any country. It will undertake to give with precision not only but the efficiency of labor in different countries and in different lines of industry and the relations between efficiency, wages, and manner of living. The labor will be reduced to the hour basis, and it will be possible to determine, by an examination of the tables, the precise relation between the wages in the United States
and European countries and the relation between the work performed in each country for those wages. The cost of management, the cost of repairs, the interest on invested capital, will all be set forth with a fullness which will admit of the most searching comparisons. Where a product is composed rial, each of the raw materials will be followed to its
source, and the cost of producing it set forth. The report on iron and steel will be sent to Congress within a few weeks, and those on cotton and wool will follow soon after. The other reports upon which the commissioner is at work are on glass, linen, silk, and lumber. These facts will be of use from a theoretical stand point and in tariff and industrial discussions. They are so full and precise that they are likely to have a still fur ing the statements for different establishments he can learn what others in his line of business are spending for the different elements that enter into their products, and can correct his own methods by the study of those of others. The hours of labor, the wages paid, the cost of raw material, the cost of subsidiary materials, the cost of management, will all be set forth and can be
stullied by the intelligent business man.-American Awalyst.

Party Walls.

A case which recently came up in Washington, according to the American Architect and Building News, suggests a question in regard to party walls which is of very great importance as a matter of construction although it has, so far as we know, never been men-
tioned in a court. It seems that the regulation in retioned in a court. It seems that the regulation in recomposed, or perhaps copied, from some regulations existing in Philadelphia by no less a person than President Washington, and his rule has been the law ever since. Under this, if a person puts part of the foundation of his wall on his neighbor's land, that neighbor is entitled to use the wall aboveground as a party wall, even though the wall above the foundation may be wholly on the land of the one first building. To architects, this view of the matter will seem very reasonable, and it would certainly be of advantage to the art of in certain localities, every wall built within two feet of the boundary line between two adjacent properties should be built with its center on the boundary line and made a party wall. The reason for this is, of course, that no wall is properly built, the center of which does not stand over the center of its foundation; and that, where two independent walls are built on adjoining properties, close to the boundary line, both of them must, under the most favorable conditions, stand on the extreme edge of their foundations, at the imminent risk of causing the footings to tilt, or "roll," producing settlements and cracks, and
timately the destruction of the wall.
In practice, however, the first comer always gets his ooting stone a little over his neighbor's line, and, when the latter builds, he is obliged to have either the first footings cut off, endangering the old wall, or to set his own footings back, and build his wall overbanging them, at the great peril of his own construction. The matter is particularly serious with pile foundations. In this case the first to build always drives a row of pides tangent to the boundary line, and his wall above ground rests vertically over this row of piles, the second
and third row of piles, driven parallel with the first, and third row of piles, driven parallel with the first,
helping to carry the load, but in an indefinite degree, depending on the bonding of the footings and other circumstances. When the second proprietor comes to
build, however, and finds the first piles driven close to the line, he is prevented from following a similar cours on his own side. Not only does the form of the piledriving machine render it impossible to get it near enough to the existing wall to drive piles vertically within six or eight inches of the line, but it is difficult and dangerous to drive even so near as this, and, in practice, the nearest row of new piles is of ten driven a foot or more back from the boundary line. When the
remaining rows are driven, the footing courses laid, and the superstructure begun, the new wall, if it is built close to the line, as it usually is, stands over nothing, the nearest row of piles of the three which are sup posed to support it being some distance back from the ine of the wall. It is marvelous that walls constructed in this way, of which there are hundreds, stand at all, and they would probably not do so, except the support which the second wall gets from leaning against the first; yet the only alternative is to drive the piles for the second wall obliquely so as to crowd them in among those intended for the first wall. This method, although of ten followed, is, in most cases, even worse than the other, as it brings the new wall on an inclined support.
The best course in all such cases, and the one which should be required by law, is to arrange the piles and the footings as if for a party wall, building the wall bove ground on the party line or not, as circumstances may require. The last comer, in case he wishes to erec a heavy building on his side of the line, can drive ad-
ditional piles, and, by the arrangement of the footings, utilize them, as well as those already there, to support his wall, which will thus rest nearly on the middle of the foundation, and be under conditions favorable for stability.

Securing Immediate Suction in Denture
Some years ago, somewhere in dental literature, I came across a suggestion for securing immediate suction in a new dental plate or a newly repaired one. It has been of so much use to me that I herewith submit it, and advise its trial. The plate is moistened, and then simply sprinkled with fine powder of gum tragacanth. The plate is then pressed in place, and no matter how good or bad a fit, it will hold firmly for a day under almost any use or abuse. The advantage of this will be apparent to any one; for the first half hour or few minutes after a plate is put in for the first time makes or mars the reputation of the dentist, for the time being, in the estimation of the inexperienced patient, whose efforts to "suck up" a plate, if not immediately successful, are at once discontinued, the plate is taken out, and the invariable remark is, "It don't fit."
A patient will bring a rickety, ill-fitting plate, and after being without it the few hours necessary to repair it, will insist that the plate fitted perfectly before it was confidingly submitted to our care, but now it feels
as though it had been made for another party. A thin coating of tragacanth will even up all irregularities soothe the wounded sensibilities of the patient, and prevent the plate wounding the sensitive membrane of the mouth
Tragacanth is a white gum like arabic, but has special advantages for this use, as it swells when wet by the fluids of the mouth, becomes sticky and of the con sistency of jelly, but does not dissolve or wash out for hours. It should be kept in a salt or flour shaker with fine perforations in the top, and should be sprinkled on the surface of the plate, shaking off all the free powder after a moment. Having no odor and little taste, it is in no way objectionable. It might be put up in suitable perforated boxes and flavored with wintergreen, or otherwise made more elegant, mysteri ous, and costly. If the dentist is of the opinion that time and use will improve the general adaptation of the plate, a small box of tragacanth should be presented to the patient with directions for use when there is a varying atmospheric pressure which may possibly affect the suction of the plate! Its use will also obviate the necessity for labored explanations as to the cause of certain plates only resting on certain prominences of the maxillary and certain other tender places on the mucous membrane. It will also be a relief to the patient, for the mental effort necessary to he intellectual digestion of these scientific disserta tions, and to retain a credulous expression of counte nance, is often evidently as painful as the sharp edges of the plate.-L. C. Bryan, Dental Cosmos.

Electricity as Manufactured Article.
At Harrisburg, Pa., Judge Simonton handed down two opinions recently in the Commonwealth of Penn sylvania cases against the Philadelphia Electric Light ing Company and the Brush Electric Light Company of the same city. Both of these companies claim to be manufacturing concerns, and, as such, exempt from taxation under the recent act taking the tax off from manufacturing companies. The opinions discuss at reat length the means by which electricity and electric light are produced, and quote extensively from the testimony of Professor Henry Morton, President of the Stevens Institute of Technology, whose testimony as an electrical expert was taken in these cases.
But Judge Simonton adheres to his opinion, reached in a similar case about a year ago, that producing electric light is not a species of manufacture. He held that neither electricity nor electric light was a material substance; that there could be no manufacture unless some material substance was produced. It is expected that these cases will be argued in the Supreme Court on appeal at its meeting in June. In these cases a great deal of evidence was taken to show the unequal operation of the present tax laws upon different corporations. The lack of uniformity, it was claimed, made the tax unconstitutional. Judge Simonton, however, sustains the constitutionality of the tax, except as to the amount involved on patent rights granted by the United States, which he holds are not subject to taxation. Upon this point the Attorney-General may possibly appeal. The full amount of the Commout wealth's claim against the Philadelphia Electric Lightwealth's claim against the Philadelphia Electric Lightin the case of the Brush Company the amount is largely reduced by the decision as to the invalidity of the tax on patent rights.-The Electrical Engineer.

The Nadria Aqueduct

The great Nadria Aqueduct in India carries a canal 150 feet wide or thereabout across fifteen arches of 60 feet span. In an account by the correspondent of Engineering, it is stated that the foundations, which are on circular wells, all go down some 55 feet below the bed of the river which the aqueduct crosses. The fifteen arches are divided by abutment piers into groups of five spans each, the abutment piers have each two rows of wells, and the single piers one row. Thanks to the simple expedient of building the work in a pit dug out of dry land through which the river was subsequently diverted, the work of sinking the 268 wells went on without interruption throughout the year. It is probable that no other well-sinking job has been so systematically worked out-and, indeed, in the beds of active rivers there is no such chance of careful administration; for as the river rises and falls, the conditions to be dealt with change completely. The aqueduct carries the Lower Ganges Canal across what is known locally as a nuddee, i. e., a watercourse that draws its water supply from the plains of Hindostan, and not like what are here known as the rivers proper from the mountains. The canal that goes over the top draws, in ordinary years, a revenue from the land it waters of some $£ 50,000$ sterling a year, and a work that secures that revenue at a cost of $£ 300,(000$ sterling has much need to be pushed on with the utmost expedition. Fortunately, owing to favorable rainfall during the four years that the aqueduct was under reconstruction, the loss of revenue actually experienced was but a tenth of the total. Had the case been the other way, the loss of food crops in even one year would have far overtopped the price of the work.

an improved car coupling.

The illustration shows a device adapted for use with passenger as well as freight cars, and which can also be applied in connection with the ordinary link and pin coupling, the hook being locked in place to prevent its displacement when the cars are coupled and prevent their accidental uncoupling. The in vention has been patented by Mr. Simon J. Freeman, of Bradford, Pa. The drawbar is pivoted to the under side of the car, a spring holding it in normal longitudinal position, but allowing some sidewise movement. The hook pivoted on the front end of the drawbar is always held in horizontal position unless swung upward by the operator by the means shown, and is adapted to engage a corresponding hook part on the coupler of the opposite car. In the hook end of the hook is a slot adapted to receive

freeman's car coupling.

the ordinary coupling link, to be engaged by a vertically sliding pin. On top of the drawbar is pivoted a locking plate, extending over the pivoted end of the hook and abutting against a lug thereon, thus preventing the hook from accidentally swinging upward. An eye on the free end of the locking plate is connected by a short chain with the chain for raising the coupling hook, whereby the locking plate is raised out of contact with the lug as the hook is swung upward. To one side of the coupling hook is arranged a sliding hook having on its rear end a longitudinally extending shaft, around which is a coiled spring, the projecting ends of the sliding hooks yielding as the cars come together in coupling, and then being pressed forward by their springs to surround the ends of the coupler hooks, and hold them in place against accidental disengagement.

AN IMPROVED PADLOCK.

The illustration represents an inexpensive and novel form of lock and key which has been patented by Mr. Woodson Mosley, of Toledo, Ark., the sectional view showing a trans verse portion ex-
posing interior parts with the key in position. At the rear of the case are the usual parallel ears, to which is pivoted the curved shac

MOSLEY'S PADLOCK.
kle bolt entering a socket orifice at the front of the case, the shackle end being transversely perforated to align with a longitudinal charmel in each half section of the case. The rear of this channel is curved downwardly and widened to provide for the movement of the downwardly curved inner end of the bolt, and is connected with a recess in which slides the bolt head, spring holding the bolt in locked adjusire a spira key consists of a spirally formed wire rod adapted for insertion in a corresponding passage in the lock body, and designed to abut against a cupped end of the bolt head, forcing it back and releasing the shackle. Between the front end of the lock case and the bolt head is a rectangular cavity dividing the spiral passage into two divisions, to prevent the use of an ordinary piece
of wire for a key, as such piece of wire adapted to take the form of the spiral would be likely to abut against the rear wall of the cavity, and thus be prevented from entering the rear section of the key passage, the key itself being made of correct pitch and unvielding material. In a circular recess in the front face of the lock is an adjustable sleeve, in which is a rotatable solid cylinder with a spiral key passage, there being on the outer end of the cylinder graduations, a slight deviation from a correct adjustment of the cylinder and sleeve preventing the complete introduction of the key. The sleeve and cylinder are also adapted for adjustment revolubly and longitudinally, the graduations on the exposed ends furnishing means therefor to cause the spiral passage in the cylinder to assume a proper relative position with regard to the similar key passage in the body of the lock for the introduction of the key.

Testing Cast Iron.--In the case of those foundries which obtain their pig directly from blast furnaces the testing of cast iron is especially important, as charcoal blast furnaces are very sensitive to any accidental change in the mixture. The metal, which is taken from the furnace by means of a ladle, the matter from the furnace by means of a ladle, the matter
floating on the surface being removed, is poured into floating on the surface being removed, is poured into
an open sand mould in the form of a cavity of about an open sand mould in the form of a cavity of about
twenty centimeters in diameter and seven or eight centimeters in depth. Iron which is rich in silicium and carbon becomes rapidly coated on the surface with a dull glowing cover of oxide formations. These dull formations also indicate an iron too rich in graphite. Bright and long lasting formations distinguish the iron best adapted for casting purposes. If the iron in a little time becomes rapidly blistered, or if it throws off hissing sparks, it is a proof that it is poor in silicium and hard. A practiced eye will readily perceive the peculiarities in the nature of the iron by carefully observing the formations.

AN IMPROVED BLANKET HARNESS,

The illustration represents an improvement in blanket stays, whereby stable blankets especially may be securely held in place, and the blanket worn with comfort. The invention has been patented by Mr. John Grim, of No. 323 Diamond Street, Philadelphia Pa. A saddle is employed consisting of a single piece of soft leather curved to fit the back of the animal near the crupper, and to the upper face of the saddle are at tached parallel billets, one of which is made to form a loop adapted to be engaged by a tie strap secured to the inner face of the blanket. The billet ends of two back straps are also secured to the forward end of the blanket and made to lap over its outside. At each side of the saddle are hip straps of a loop form, each having a sliding cross strap limited in its downward movement by stops, the cross straps serving to regulate the width of the loops and contacting with the outer upper por tion of the animals hips when the blanket is in position Upon the inner face of the bow portion of each hip strap, or that part adapted to lie in the crotch, is a pad to prevent chating, and there are connecting straps secured to each hip strap at this portion, forming a compensating attachment, whereby the animal will not be in the least incommoded by the harness when walking, the hip straps automatically adjusting them selves to every movement. This harness may be quickly and conveniently attached to or detached from any blanket.

AN IMPROVED KNIFE GRINDING MACHINE.

The accompanying illustration represents an auto matically acting machine designed to rapidly and accurately grind straight-edge knives to a bevel edge. It has been patented by Mr. William D. Graves, Jr., of Presque Isle, Me. A cylindrical shaft is held to rock and slide in suitable housings in front of the grindstone, and below the shaft are grooves in the boxes for loosely supporting a rack held in place longitudinally by the hub ends of a knife-supporting frame. A skeleton knife-supporting frame is attached to the shaft, nea its ends, by set screws, and the boxes in the uprigh housings have their horizontal bores in alignment fo the revoluble support of the driving shaft, upon which are mounted two transverse rock arms, perforated to fit and rock upon the shaft, the rock arms carrying short journal shafts, on which are worm sleeves and pinions, the worm threads on the sleeves being pitched in opposite directions, and arranged with such relation to the teeth on the rack bar that the worms may be successively caused to engage the rack teeth by a half revolution of the rock arms on their support. In the upper part of each flange piece or lateral brace on the upright housings are open guide slots to receive a com posite tappet bar and loosely support it to move end wise, this bar having on its side shifting dogs, which, in connection with movable abutment collars mounted on the body of the sliding rack bar, outside of the sup porting boxes, are designed to limit the longitudinal movement of the rack bar. The abutment collars ar so adjusted to the length of the knife to be ground that
the latter will be made to traverse the stone or emery
wheel from one end to the other of the knife and grind it to a true bevel edge. These collars are adjustable in such manner that the reciprocal travel of the knife-

Graves' knife grinding machine.

carrying frame may be shortened to suit knives which do not require the full longitudinal movement of the machine.

A SLAG ESCAPE FOR TUYERES

A simple form of slag escape and alarm, for use in smelting furnaces, to keep the blast pipe and tuyere open and give an alarm when the slag rises above a normal level in the furnace, is shown in the accompanying illustration, and has been patented by Messrs. John C. Bansemer and Edwin L. Davies. In the reduced end of the blast pipe, where it passes into the furnace through the usual water jacket, is formed an opening leading to a downwardly extending pipe or nipple, on which is secured a flange. On this flange is hinged a

BANSEMER \& DAVIES' SLAG ESCAPE FOR TUYERES.
centrally apertured plate, and between the flange and plate is placed a destructible cover, of muslin, canvas paper, thin sheet metal, or other suitable material uch covering resisting the force of the blast and nor mally closing the aperture. When the slag rises in the urnace sufficiently to flow into the end of the blas pipe, and drop into the opening, the temporary cover of the aperture therein is quickly burned or melted a way, so that the slag flows out without settling in the pipe and clogging it up, while the blast, following the slag, rushes through the opening, making noise enough o give an alarm.
For further information relative to this invention address Mr. Charles E. Beers, No. 262 South Second West Street, Salt Lake City, Utah.

GRIM'S BLANKET HARNESS.

A LESSON IN REPOUSSE.

This art, as practiced by the silversmith and artist is almost entirely dependent upon the manual dexte rity of the operator. A kind of repousse is here sug gested which depends inore upon appliances than skill.
at these points, they may be run through with a V-tool. Dots are picked out with a small gouge or the point of a revolving drill. In all these cases the metal is a tached to the block and treated as shown in Fig. 1.
In Fig. 3 is represented in side elevation and in sec-

Detecting Leaks in Underground Gas Pipes.
A German paper thus describes a method of det A German paper thus describes a method of detecting leaks in underground gas pipes :
Test holes are sunk in the ground along the lines of the gas mains, and half inch wrought iron pipes about

Fig. 1.-EMBOSSING THIN METAL.

Fi-. 2.-basket pattern.

Fig. 3.-ROPE PATTERN

It is not, however, assumed that any set of devices can tion a die formed of a smail rope glued in a semicircube made to serve in lieu of taste and judgment.
To carry out this method, a piece of heavy cotton lace, or heavy openwork fabric, or a piece of a basket may be glued to a block of hard wood to serve as a sort of die for producing the impression in the metal. The fabric or basket work is not only attached to the block by means of glue, but its finer interstices are filled with glue, so as to present a surface resembling the original fabric only in the most general way. When the glue is perfectly dry and hard, the die is laid upon a solid foundation, and a piece of very thin soft copper or brass is secured to the block so as to cover the lace, as

Fig. 4.-VASE FORMED OF EMBOSSED PLATES
shown in Fig. 1. A piece of cork about one-quarter inch thick and about three inches wide and six or eight inches long is laid over the metal, and struck with a mallet, as shown. The cork yields sufficiently to push the metal down upon the die, and cause it to take the pattern of the lace or whatever is used in forming the die. A piece of rather hard rubber packing will answer this purpose equally as well as the cork.
Designs may be cut from strong paper or pasteboard and glued to the block, or a stencil design may be sawed from hard wood. The lines and scrolls are dis continued in places, so as to cause the wood to hold together. If it is desired to render the lines continuous

Fig, 5.-A BASS-RELIEF IN LEAD, COPPER, OR BRASS.
lar groove in a bar of hard wood. The embossing is done in the manner before described. In this case a thick piece of soft rubber is preferable to cork for forcing the metal into the depression of the die.
Either panels or continuous strips may be embossed in the manner described, and these are to be used in making frames, vases, and various ornamental objects If the metal is too thin for a certain case, it may be trengthened by flowing soft solder over the back of the plate by means of a soldering iron.
The vase shown in Fig. 4 is formed of four embossed plates of copper, fastened to the back of four vertica brass strips by solder, the whole being secured to th bottom piece in the same manner. The bottom con sists of a disk of copper soldered in. The base is formed of a brass stovepipe collar soldered to the lower part o the body of the vase. The rim around the top consists of a strip embossed on the rope die.
As to finish, any of the several well known methods of oxidizing or lacquering may be employed. This vase is especially adapted for containing a palm or other large foliage plant. The earth and roots may be placed directly in the vase, or they may be contained by a pot which is inclosed by the vase.
It is obvious that vases of other forms and other em bossed designs may be made on this plan.
Bass-reliefs may easily be made by a method which is a modification of the one described. Fig. 5 shows such a relief, and Figs. 6 and 7 illustrate the tools required for making it.
To the wooden frame, A, is fitted a board, B, upon which is drawn in outline the design which is to be produced in relief. The board may be of pine or any close-grained, soft wood for lead work; but for brass or copper, the wood should be hard. To the frame, A is attached the plate of metal by means of screws.
The board, B, is removed from the frame, and the portion of the design which is to form the most prominent feature of the relief is sawed out of the board, when the latter is replaced in the frame, and the metal is forced into the opening of the board by pressing upon the surface of the lead opposite the hole in the board, or by pounding it by means of the mallet, C, shown in Fig. 7. As soon as this feature is complete the next in order is sawed out of the board, and the operation is repeated until all of the general feature are developed. The progress of the work can be ob served at any time by removing the board, B.
The features may be corrected or modified by work ing from either side of the plate by means of the con vex mallet and the wooden punches and chisels, D Fig. 7). If a support is desired for any part while the work is progressing, a stout bag filled with sand may be placed under the part. A few verysmall bags, say 1 inch or $11 \frac{1}{9}$ inches in diameter, will be found convenient. If desired, the drapery or the background may be chased by means of hard wood or metal punches, bearing on their faces the desired figures.
The relief, if of lead, looks well with an antique finish. This may be secured by rubbing the prominent portions of the relief with fine emery cloth, then going over the entire surface with a swab formed of a small roll of cotton cloth encircled by a coil of copper wire, the swab being dipped in dilute nitric acid before ap plication to the relief.
The copper is dissolved and deposited upon the bright prominent portions, while a dark deposit is made in the hollows, which when dry has a green tinge.
To give the work the appearance of antique iron the surface may be blackened by the application of a solution of sulphuret of potassium and the prominent portions may be semi-polished by briskly rubbing the entire surface with a piece of canvas or Brussels carpet.
three feet long are inserted. In the upper ends of these pipes small glass tubes are placed, each tube containing a slip of paper moistened with chloride of palladium. The test papers turn black under the influence of illuminating gas, the rapidity and distincthess of the reaction depending upon the strength of the palladium solution and upon the volume of escaping gas. Under the most unfavorable conditions, however, an exposure of the test paper for a period of fifteen minutes is considered long enough to show whether or no gas is present. The test holes should be placed about six feet apart, and should not reach below the line of gas pipe. The main object is to penetrate the more or less compact surface material of the

Sarpm.N.
Fig. 7.-WOJden tools for repousse.
street, so that the gas in the ground has a direct and convenient means of escape. In many of the streets of Frankfort-on-the-Main, especially those having asphalt pavement, one inch pipes lead through the asphalt and the underlying layer of beton, their lower ends extending to within a short distance of the gas mains. These escape pipes are filled with pieces of songe and are closed with cork stoppers. The pieces of sponge are renewed from time to time. The pipes have been found to overcome to a considerable exten the annoyance of digging up the streets for long stretches with the view of locating leaks in the main. -Boston Transcript.

Fig. 6.--FRAME AND FORM FOR MAKING BASS RELIEF.

A nother Great steamer.
The Normannia is the latest addition to the fleet of
twin-screw steamers of the Hamburg-American Packet Company, and was built by the Fairfield Engineering and Shipbuilding Company (John Elder \& Co.), at Govan, on the Clyde. She is 520 feet long, has a width of 60 feet and a depth of 40 feet, and is of 8,500 tons gross register or 10,000 tons displacement. In appearance she is similar to the other two fast boats of the Hamburg line, the Augusta Victoria and Columbia, having a straight stem and round stern, three huge smokestacks, and two polemasts.
Internally the ship is divided by eleven transverse bulkheads, which are carried to the upper deck, and the twelve separate compartments thus created do not communicate with each other, except on the main deck, which is far above the water line.
The wachinery has 16,000 indicated horse power, there being two engines of 8,000 horse power each, which are separated by a longitudinal bulkhead. The engines are constructed on the triple-expansion plan, and have cylinders of 106,67 and 40 inches diamete respectively, the piston stroke being $51 / 2$ feet. The boilers are also placed in separate compartments. The screws have a diameter of 18 feet and are of manganese bronze.
The promenade deck is 400 feet long and has 18 magnificent staterooms, and also the ladies' saloon, music room, and smoking room, fitted up in the most luxurious manner. The main saloon is on the upper deck. This is a magnificent apartment 72 feet long, decorated in sumptuous style, the wost ornate and ar tistic effects being gained by a combination of rare wood earvings and beautiful panel pictures by well known artists.
The steamer accommodates 325 first class, 175 second class, and 175 steerage passengers. Most of the state rooms are on the main deck, a large number of them being furnished in splendid style. There are besides suites of rooms, with private bath and toilet rooms. The conveniences in the second cabin are also excellent and rival those of the first cabin on many other steamers. The steerage is unusually high, well lighted, and divided into small roous. There is no doubt that the Normannia is one of the finest vessels ever floated. She recently made the trip from Glasgow to the

Government Test of woods.

In compound columns care should be exercised in selecting the sticks which are to form the column. Of course, it would be useless to place a poor with a strong stick, but it is best to place the good together and the inferior by themselves. To make the ef fects of knots in the resistance of short posts to compression more apparent, some columns, after having been tested and their resistance determined, were cut
up and specimens of shorter length taken and tested; up and specimens of shorter length taken and tested the difference in strength was very marked, as was to yielded at 4,953 pounds per square inch, showed in a specimen 52 inches long cut therefrom 8,450 pounds per square inch, and another 7,794 pounds per square inch, which then gave way at a knot. Another post 164 inches long failed at 3,432 pounds per square inch, but a piece 32 inches long was cut from it, which gave 6,230 pounds per square inch. A yellow pine post, 143 inches long, gave a resistance of 4,663 pounds per square inch, but a specimen 32 inches long was taken from it which had a resistance of 6,230 pounds per square inch. Pieces of smaller size could doubtless have been cut from each of these which would have shown still greater strength as they might have been obtained more free from imperfections of all kinds. Knots of even suall size, firm and sound, exercise an injurious effect upon timber. This was shown in a piece of spruce, from which two samples were cut, one having a uniform, straight grain, the other two small knots; the strength of the former was 11 per cent greater than the latter. "When we come to determine the resistance of specimens having
knots to forces of compression at right angles to fibers of the wood, we find the resistance much increased and this increase should be taken into account when selections for this purpose are possible. The resistance of specimens of a given wood, as compared with others of its kind, is generally indicated by its specific gravity, but this does not always hold good. In yellow pines, some of those rich in turpentine have a high specific gravity, and yet are not the strongest. The rapidity of growth will sometimes give indications of the strength. A rapid growth in oak is apt to be accompanied by an increase of strength, while the revers
often true in yellow pine."-Southern Lumberman.

A Mechanics' Fair.

We are informed that the prospects for a successfu exlibition of the Massachusetts Charitable Mechanic Association in Boston, which opens October 1, are very
flattering. Space is being rapidly taken up by some of flattering. Space is being rapidly taken up by some of
our finest manufacturing concerns and machinery our finest manufacturing concerns and machinery
builders. Those who desire to place their products before a New England audience will find this a very fav orable opportunity.

The Kangaroo.

The great island continent of Australia, from its firs discovery, has been known as the home and headquar ters of marsupial animals; creatures not alone interest ing from their peculiarities of form and habits, but for their high geological antiquity. They were among the nodon and other monsters, and were a prominent feature in America and Europe for ages. During the triassic, jurassic, and great reptilian periods they were numer ous, from the giant dipropon, as big as an elephant, to the little antechinus, the smallest of known animals. Like so many other creatures whose race was run out, so the marsupial mammals became almost extinct,leav species of kangaroos in Australia and New Zealand species of kangaroos
principally the former.
The two largest species are called by the natives the "koorah" and "wallaby." and they are the only large wild animals known there. These are being driven back by constant hunting, till they are becoming scarce in the eastern districts. There are said to be over twenty species of pouched animals in that coun-
try, but it is of the above mentioned I propose to try, but it is of the above mentioned I propose to speak principally.
The habits of the kangaroos resemble those of the sheep and deer. They are very shy, and have the senses of hearing and smell very acute. They are gre garious, and are seen in droves of 20 to 50 , but are then very difficult to approach. They are entirely terrestrial, and when alarmed rise on their hind feet and look about them. When they discover danger, they start off, leaping from fifteen to twenty feet at a jump.
They are herbivorous, and during the warm, sultry They are herbivorous, and during the warm, sultry
hours of the day resort to cool, shady bush or forest, where they sleep, sallying forth in the evening for food.
In ordinary weather, the large kangaroos (Macropius giganteus) are seen feeding in the daytime, the drove led by an old buck. They eat principally grass, heather, and tender shrubs. The latter they browse on
by standing erect on their hind feet. They are especially fond of what is called kangaroo grass, but will also eat barley, oats, or rye if they can get them.
Their ordinary position is a crouching one, on account of the disproportionate size and length of the hind and front legs. When they rise on the powerand they use their forepaws as handily as a squirrel does to convey food to the mouth. They can go a long time without water and are often found miles away from any rivulet.
A doe has but one young at a birth, although she has three teats concealed in her pouch. About thirtynine days after conception, the embryo, while still of very small size and the limbs only in a rudimentary pial pouch, where it is attached by the mouth to one of the nipples, and there it remains till large enough to leave the portable nest in which its foetal growth is accomplished. The feeble offspring continues to increase in size, from sustenance exclusively derived from the parent, for a period of eight months. After his time its small head may be seen protruding from the pouch and cropping the long grass at the same
time as the mother. It lives thus till it is able to run time as the mother. It lives thus till it is able to run
alongside of her, but the instant she scents danger he little one is quickly thrust back into the pouch for safety. The natives call the young joeys, and they are pretty little creatures, with their soft silvery fur, sharp ears, and bright eyes.
The kangaroo can be easily tamed, and though a ormidable animal to encounter in its wild state, when domesticated it is inoffensive and a very cleanly one. Since 1865 considerable attention has been given
to its economic value as regards the use of its meat and skin. In 1874 an attempt was made to domesticate some in England, but being kept cooped up in pens like those of a menagerie, it totally failed. The problem of their acclimatization has however at length heen solved, and
At Tring Park, the residence of the late Baron de Rothschill, a number of kangaroos were brought from Australia and turned loose into the park and woods in hopes of breeding them. Unfortunately a male and young one were poisoned from eating the pernicious
Portugal laurel. Fresh ones were imported, and the greatest success has crowned the efforts to breed and acclimatize in England. They have done so well that
there are now in Tring Park twenty-eight or thirty there are now in Tring Park twenty-eight or thirty Bennett's wallaby, the black wallaby and the large Macropius or giant kangaroo.
Now, as this curious and valuable animal has been so successfully bred in England, it is astonishing some enterprising American has not already introduced it into the United States. There is no doubt that with the same care that has naturalized the ostrich, kan garoo farming would be equally profitable. It would
pay the government to place a few pairs in the Yellowstone Park, where they would be unmolested, and
our large Western cattle farmers would do well to try them. It is surprising how little is generally known of the value of kangaroo skins as an article of commerce. Yet in Newark, N. J., 6,000 skins are said to be rethe making of fine shoes and other articles.
Up to 1869 the animals were only killed for their Up to 1869 the animals were only killed for their
meat, and the skins cut up into shoestrings and leather meat, and the skins cut up into shoestrings and leather
thongs, etc. An Englishman about this time discovered the valuable quality of the leather and brought ome skins to this country. The tanners fought shy of such hides, and he at last got rid of them to a bookbinder for corners for ledgers and commercial books. The valuable qualities soon after this began to be recognized, as the grain prevents its absorbing water, but then it was found very difficult to procure euough skins. Three years ago the establishment now working them in Newark sent out agents to make arrangewents for a continuous supply
It was very soon found that kangaroo hunting was a dangerous business, as when brought to bay it fights bravely for life and leaps like a flash on the hunter, trying to tear open the chest with the terrible claws of the front feet. Seven or eight men go out together, and wear a strong protection on the chest. Then the heat on the plains where the greater species congregate, whose skins are most valued, is often 140°. It is a profitable business all round, especially to the hunters if they escape accidents, as they realize about 70 cents a pound for the hides when sold at the seaports by auction for shipping to America. The trade is at present in the hands of the Newark tannery, who supply all the European markets with the leather, even sending the article back to Australia itself in another form. Not only are the hides of such value, but its flesh also. The hind quarters of a large buck often weigh over eighty pounds each, and the hams find a ready sale. The tail and head are especial epicures' favorites. The flesh is dark and gamey, and though perhaps not equal to that of our deer, steaks from young animals are juicy and tender and much sought after. As we have every climate within our boundaries, it is quite ertain we have all that is required for the kangaroo, and as they have not all the diseases sheep are heirs to, so much the more easy and profitable would be their rearing. As they have such decided grain-eating proclivities, we have another chance in our favor, as every cereal grows in abundance with us.
Since writing the above, I see in the Scientific American of April 26 there is a short notice of the scarcity of the kangaroo in Australia at the present day, and the rapid strides a great buffalo is making in the northern districts of the country.
The former animal has been as ruthlessly slaughtered there as the latter has been here. Formerly, kangaroos were killed in sport (so called), and in later years from their enormous consumption of grass. The latter fact, to an essentially sheep-producing country like Australia, where wool is their staple product, is of ourse a great source oi trouble to sheep farmers.
The uncertain climate and frequent droughts render the preservation of extensive tracts of grass land of vital importance. Hence we can hardly blame those who kill the interlopers, that are each said to eat as much grass as six sheep.
Now we possess conditions decidedly favorable to the rearing of large herds of kangaroos. We have
vast ranges of grass land in many States still, and vast ranges of grass land in many States still, and likely to be only sparsely populated, where they can roam at will. They are easily tamed and become accustomed to their keepers, so they can be trained to return at night for grain food. Just here our illimitable grain crops will come in, and help to make kangaroo raising rewunerative where there is a difficulty in realizing fair prices for cereals in the ordinary way, from freight expenses, etc.
How we wonder over the marvelous changes that have taken place in the dissemination and then extermination of so many races of animals! Yet here even in our own day there is a chance that the great bisons, so nearly. extinct in America, where they roamed in countless herds, should be flourishing in far-off Australia. There is a likelihood that the descendants of the giant marsupials, once as common here as deer, but that fled from us as the ages rolled away, may become denizens of the very plains these far-off ancestors ranged over at will, but left no trace save a few fossil bones to be unearthed in our own times. Now the curious animals will be side by side with the horse, sheep, and cow, instead of the ferocious reptiles their co-mates in those myriads of years ago.

A number of capitalists of Seattle and Minneapolis contemplate the building of an immense flume or tunnel from Lake Washington to the shores of Seattle Harbor for the purpose of furnishing water power for manufacturing purposes. The level of Lake Washington is nearly twenty feet above that of the bay at high tide, and the plan, as proposed at present, gives eighteen feet of fall, which is sufficient for all purposes, as it is proposed to put in a tunnel large enough to carry water in sufficient quantities for the needs of the largest factories.

Sorrespondence.

How to Break Bowlders.

To the Editor of the Scientific American:
In your issue of April 26 a correspondent asks how o break large bowlders
Some ten years ago I superintended the sinking of a large well in which we got great quantities of very hard granite bowlders, varying from 100 lb . to $1,500 \mathrm{lb}$. in weight. The heaviest sledge we had brought to bear on them by a powerful man had little or no effect on them, but we broke them easily by means of giant powder without drilling holes into them.
We placed from one to eight sticks of $7 / 8$ giant on a bowlder, according to the size, and put a shovelful of moist earth on the powder, just to keep it in position, fired the charge, and never failed to break our bowlder If the pieces were too large to handle, and would not yield to the sledge, we repeated the operation until they were small enough.
Monero, N. M., April 30, 1890.

Bricks from Coke.

The use of coke, coke dust, or graphite from gas retorts in the manufacture of refractory bricks for lining iron furnaces seems like a contradiction of nature; but it appears from several communications to a recent meeting of the Society of German Iron Manufacturers that an industry in the manufacture of such bricks for ironworks is actually established, and is growing. Hitherto nothing has been found capable of withstanding the corrosive action of blast furnace slag, which is alternately acid and basic, and carries away the lining of the hearths of the furnaces as though it possessed no resistance, although, as a matter of fact, everything is done to prevent this action.
The best refractory materials, if placed in the way of a current of slag, will completely melt away in an hour or two. The observation that slag runs kest in a channel of coke or coal ash turned attention to this material for lining furnaces ; and Mr. F. Burgess, of Gelsenkirchen, states that in his first experiments, in 1883, he tried a combination of coal, coke dust, graphite, and clay, moulded in the form of bricks. Unfortunately, in the process of burning these carbon bricks, the carbon largely burnt out; but even so, they gave satisfactory results. The process could not be patented because it is on record that furnaces in the Hartz Mountains have been lined with a similar combination of coke, dust, and clay.
It appears, also, from a paper by M. Purcel, that in a certain district of France the hearths and bottoms of furnaces have for some years been lined with graphite brick.
The raw material of these bricks was gas retort graphite ground and mixed with tar and then calcined. graphite ground and mixed with tar and then calcined.
Part of the tar is coked, and binds the graphite into Part of the tar is coked, and binds the graphite into
hard and durable bricks. Coke, poor in ash, treated in the same way, yields good results. These bricks give satisfaction in furnaces which are severely pushed. The cost is about £5 per ton in Germany.-Journal of Gas Lighting.

Chemical Exhibition at Manchester.

A permanent chemical exhibition has lately been inaugurated at Manchester, England, which already contains a large number of interesting objects, and it is expected the collection will constantly grow in value and extent. Among the novelties is a show of ozonized products from the St. Helen's Ozone Works, Plaistow. Among them is esparto pulp bleached by ozone. Where this agent is employed there is said to be absolutely no "going back:" in fact, an imperfectly bleached material will become whiter by standing, as though some residual ozone were slowly spending itself, and thereby gradually bleaching the fibers. Ozonized water, suitable for killing microbes, and for sterilizing purposes generally. Ozonized oil. This is available either for medical or manufacturing purposes. Ozone ammoniated lime, the peculiarity being that a considerable quantity of nitrogen is said to be fixed in combination with the lime. Ozone oxidized mangan, a high oxide of manganese, formed by the action of ozone on a lower oxide. A bleached solution of sugar. Before treatment with ozone this liquor was jet black. The bleaching may be performed either before or after boiling. It is also applicable to dry sugar of all grades.

Secrecy and silence.

Aristotle, when asked the most difficult thing to exe cute, replied : "To be secret and silent."
It has so happened, sometimes, that the secrets of great discoveries have been so carefully guarded that for a season the most curious eye has been defeated in its efforts to pry into the shops and laboratories where the process of manufacture was executed. But seldom
do manufacturers nowadays trust their secrets to the protection bolts and locks give them. They have found out that the best protection is a patent, which gives them a weapon with which to defend their interests which secrecy fails to do.

A New Helper in Photography-Acid-Sulphite.
We have now presented to us in a very convenient form a very strong solution of acid-sulphite of sodium, that in the compounding of developers will prove extremely useful. The material is in the form of a pale, yellowish fluid, smelling strongly of sulphurous oxide gas, with which it is saturated, and containing over fifty per cent of acid-sulphite of sodium in solution. That is to say, it contains half its weight of acid-sulphite of sodium, while ordinary sulphite of sodium in crystals contains half its weight of normal or neutral
sulphite of sodium. From the nature of the two salts sulphite of sodium. From the nature of the two salts
the acid-sulphite solution contains therefore twice the amount of the preserving element, sulphurous oxide, which the ordinary sulphite crystals contain. This would be true if the ordinary sulphite crystals were pure, but it is next to impossible to make them so, for they usually contain from four to six per cent of sulphate of sodium, and two or three per cent of carbonate of sodium. The new acid-sulphite solution contains a little sulphate of sodium, but the excess of sulphurous oxide gas with which the fluid is charged compensates for this.
Such is the new material placed in the hands of the photographer. Now a few words as to its uses.
The first important application of the new fluid is in the fixing bath. If to a quart of fixing bath (1 to 4) we add about 2 ounces of the acid-sulphite solution, the bath is rendered acid, but no change takes place otherwise. In this bath any negatives can be fixed, and with a rapidity and clearness that is really startling. Some of the slow varieties of plates are remark ably long in the ordinary bath before they are fixed nicely; but in the new acid-sulphite and hypo bath they fix in about one-fourth of the amount of time ordinarly taken. And what is yet more pleasant to note, they are remarkably clean and free from stain. In fact, they look exactly like plates developed with ferrous oxalate after they come out of the new bath, although they may be badly stained before fixing. The new fixing bath is beyond question the best remedy for stained plates from organic developers. One thing must certainly be remembered at all times, the fixing bath must be kept acid ky the addition of new acid-sulphite solution from time to time, in order to have it maintain its efficiency as a clearing bath. If the proper care is exercised, the use of the alum clearing bath can be entirely omitted when the new acid-sulphite solution is used; thus eliminating a step in the present negative process when clear, crisp, and quick negatives are de sired.
We must now say something about the application of the acid-sulphite to the developer. With pyrogallol the application is very simple; to every grain of pyro in solution add one drop of the acid-sulphite solution as a preservative. Thus, you may take-

Pyrogallol.

Acid-sulphite .
Water to make
This solution contain five to the fluid drachin and will keep along tims of pyro to the fluid drachm and will keep a long time. To develop: In one ounce of water use from one-half to one
fluid drachm of the above solution, with from one and a half to two fluid drachms of alkaline solution, made as follows :

Sodium carbonate (crystals)..
In ther to make .. 10 In the case of eikonogen it works equally as

ivirosen

Elkonogen (finely
Acid-sulphite...
Water to make
Dissolve the eikonogen first, then add the acid sul phite. This solution contains three-quarters of a grain of eikonogen to the fluid drachm, and keeps as well as the pyro mixture above. In developing, if sodium carbonate is used, to every ounce of the eikonogen solution add from one to two drachms of the solution given
above for pyro, and no water. If carbonate of potassium is preferred, use one to two drachms of the follow ing solution :

Potassium carbonate (dry).
3
10
In each case the negatives come up clear and full of detail, without any tendency to fogging. Judged by experience with the ordinary developers, these new mix tures with acid-sulphite work a little more quickly and if the negatives are fixed in the acid-sulphite fixing bath, the results leave nothing to be desired as to quality.

With hydroquinone we have not yet obtained any desirable results, the mixtures tried working much too slowly to be of practical use.
As the developers given above work more rapidly than those ordinarily employed, care must be taken in egard to the light used in the dark room, that it is of the proper non-actinic quality. It is best to use as lit-
tle light as possible under any circumstances, but, the light as possible under any circum
always enough to see what you are doing.
We are sure that those who use the new acid-sulphite of sodium will find it a great help to the production of clean, stainless negatives, closely resembling those of wet plate days,-Anthony's Photo. Bulletin.

The dividing line, says the American Aualyst, between vegetable and animal life is sometimes hard to distinguish, but the difference between average intelligence and scientitic knowledge is easily enough detected. An illustration is offered in the following sapient extract from a recent letter to the Boston Transcript:
"What are you going to designate as the point which distinguishes animal from vegetable? Locom" tion has been suggested, but that is no test. Certain small seaweeds have power of locomotion, while, on the other hand, the animal creature known as the ant's cow, from which that ingenious insect obtains its supply of milk, cannot move a particle. The more deeply science dips into the subject, the more inevitable does the conclusion become that life in the animal and the plant is precisely the same thing, and that vegetables possess in the fibers of their roots the same sort of intelligence that yourself and other human beings have in their brains. How do these root fibers know pre cisely which way to look for water? Plant instinct, perhaps, you will say. But instinct is only a vulgar term for inherited experience, which in itself implies consciousness. Oh, yes, vegetables have minds; at all events, scientific men have pretty generally come to that conclusion.'

The Edison Phonograph in the Preservation of the Languages of the American Indian
The present state of perfection of the Edison phono graph led me, writes J. Walter Fewkes, in Nature, to attempt some experiments with it on our New England Indians, as a means of preserving languages which are rapidly becoming extinct. I accordingly made a visit to Calais, Maine, and was able, through the kindness of Mrs. W. Wallace Brown, to take upon the phonograph a collection of records illustrating the language. folk-lore, songs, and counting-out rhymes of the folk-lore, songs, and counting-out rhymes of the
Passamaquoddy Indians. My experiments met with Passamaquoddy Indians. My experiments met with
complete success, and I was able not only to take the records, but also to take them so well that the Indians themselves recognized the voices of other members of the tribe who had spoken the day before.
One of the most interesting records which was made was the song of the snake dance, sung by Noel Josephs, who is recognized by the Passamaquoddies as the best acquainted of all with this song "of old time." He is always the leader in the dance, and sang it in the same way as at its last celebration.
I also took upon the same wax cylinder on which the impressions are made his account of the dance, includ ing the invitation which precedes the ceremony.
In addition to the song of the snake dance, I obtained on the phonograph an interesting " trade song," and a " Mohawk war song", which is very old. Several other songs were recorded. Many very interesting old folk tales were also taken. In some of these there occur ancient songs with archaic words, imitations of the voices of animals, old and young. An ordinary con versation between two Indians, and a counting-out rhyme are among the records made.
I found the schedules of the United States Bureau of Ethnology of great value in my work, and adopted the method of giving Passamaquoddy and Englisl words consecutively on the cylinders.
The records were all numbered, and the announce ment of the subject made on each in English. Some of the stories filled several cylinders, but there was little difficulty in making the changes necessary to pass from one to the other, and the Indians, after some prac tice, were able to "make good records" in the instrument. Thirty-six cylinders were taken in all. One apiece is sufficient for most of the songs and for many of the short stories. The longest story taken was folk-tale, which occupies nine cylinders, about "Po dump" and "Pook-jin-Squiss," the "Black Cat and the Toad Woman," which has never been published. In a detailed report of my work with the phonograph in preserving the Passamaquoddy language, I hope te give a translation of this interesting story.

Floating Batteries for Harbor Defense.
The proposition of the Pneumatic Gun Company is to utilize the two old monitors, the Wyandotte and
Nantucket, in demonstrating the merits of the system. These monitors are useless as they now stand, and are a dead expense to the government. The gun carriage company's plan is to remove the turrets and utilize the weights saved by putting in the hold high power 8 and 10 inch guns mounted upon pneumatic disappearing carriages. The guns are to be loaded, trained, and sighted below deck, and, upon command, to be thrown bovedeck and fired, the recoil sending them back in the loading position. The officers and crew are never exposed to fire of the enemy, and the guns but for a moment, when being fired.
The disappearing system of carriages has been adopted by the Board of Ordnance and Fortifications, and the plan of the company is to make these monitors moving fort:; with the same system of disappearing carriages that has been adopted by the War Department for its fortifications.

SEABURY BREECH MECHANISM FOR RAPID FIRING AND OTHER GUNS
(Continued from first page.)
block with free turning movement. When the bleck is brought up by the shoulders of the tray, it has tripped the catch from the hook on the gun, and the whole mechanism swings around on the pivot clear of the bore. Meantime, during the turning of the block to unlock, the firing pin has been drawn or pushed back against its spring by a cam secured against the inner face of the rear recess in the block (not shown

Fig. 5.-GENERAL Plan OF breech, showing block WITHDRAWN AND SWUNG ASIDE.
in the illustrations), and is caught in this position by a spring-actuated pin or trigger bolt. At the same time the projection or ring turned on the front end of the block has withdrawn the empty cartridge case from its seat by an amount equal to the pitch of the screw for that portion of a revolution- $60^{\circ}-$-about $0 \cdot 1$ inch, thus ioosening it. When the mechanism has been swung clear of the line of the bore, the handle near the pivot strikes the short arm of the extractor lever, causing it to puli the extractor quickly to the rear and eject the empty case. At the termination of the operation of unlocking the block, the retractor bolt (shown on the side of the retractor near the letter G) is brought fairly under a hole in the wiper, E, and as the circular movement continues, this bolt is drawn upward into this hole by means of a pin working in a cam slot in the upper bearing (see Fig. 3), thus locking the retractos and wiper together. Obviously this locking together is of no service during the retraction of the block, but upon reversing the operation and closing the breech, it forms the connection whereby the movement of the handle, and consequently that of the wiper, is communicated to the retractor, and through it to the remainder of the mechanism. The trigger, J, on the rear face of the gun cannot be moved by the lock string, at K, until the return of the handle to the locked position, when the pin, I, is pushed in, and thereby the bolt released.
Another safety appliance is found in the cam which
difficulties that have heretofore prevented the intro duction of rapid-fire guns on the slotted screw principle were met with in the comparative slowness of movement and the difficulty of providing a reliable and effi cient extractor. Both of these objections have been overcome in the Seabury system, as has already been explained, and loading can be accomplished as rapidly as the cartridges can be brought to the gun, with the assurance that there will never be a doubt about the old cartridge case being removed upon the opening of the breech block. The advantages of this system are that all parts are easily made, and their number is comparatively small.
While the entire mechanism is simple in character, the mechanism is equally efficient for guns of larger caliber than those now embraced in the term rapid fire guns, since the reduction to one motion in open ing and closing the breech block enables the simplest gearing for power to be employed. All parts are readily accessible for repair or cleaning. The part are easily uncoupled by simply removing the main pivot. This advantage becomes more apparent in field use when it is desirable to disable guns hurriedly before abandoning. As against side systems it permit the use of the strongest known breech closure, embody ing simplicity of manufacture, avoiding cutting through the side of the gun, with its attendant weak ness, and smaller space occupied in the breech.
We are indebted to the representative owner of th system, Mr. J. W. Wilson, of 319 Broad way, New York for the particulars from which the above article was written. The engravings were prepared from detail drawings and from a working model of the gun.

Injury to the New Cruiser Baltimore.
A report was received at the Navy Department re cently from the civil engineer of the Norfolk Navy Yard, stating that the Baltimore was considerably strained when she was placed in the new timber dock there, causing quite a leakage before the water was al pumped out of the dock. A hasty examination showed that one or two seams in the amidship bulkhead had started, and calking was necessary in order to allow the vessel to go to sea.
A question immediately arose as to the cause of this and a rapid survey of the dock was made. The civi engineer reports that, in his opinion, the bottom of the dock had settled about nine-tenths of an inch, while the Simpson Company, the builders of the dock, say they do not believe the dock has settled at all, and that if the ship was strained it was due to bad docking. This is most generally believed, for it is thought to be absurd that the settlement of a fraction of an inch, or even of two or three inches, in a dock 500 feet long would affect a vessel over 300 feet in length. A board will be ordered at once to investigate the condition of affairs. The dock was built last year and completed in September.-Phila. North American.

Utilization of the Power of Niagara Falls.

A scheme has been organized and work begun to generate electricity, by the aid of Niagara, sufficient to drive all the machinery in the mills and factories, propel every horse car, light up every street, avenue and road in and around the village of Niagara Falls, and road in and around the village of Niagara Falls,
\mid the city of Buffalo, and the neighboring towns and villages. The present plans contemplate the production of 120,000 horse power, but there is no limit to the amount of power which may be produced.
The plan is to construct a subterranean tunnel from the water level below the fall about 214 feet under the high bank of the river, extending through the rock to the upper river at a point about a mile above the falls, where a head of 120 feet is obtained. The tunnel will thence extend par allel with the shore of the river one and a half miles at an average depth of 160 feet below ground and about 400 feet distant from the naviga ble waters of the river, with which it will be connected by transverse surface conduits. The fall of the water from these conduits into the tunne

Fig. 6.-VERTICAL SECTION, SHOWING BLOCK WITHDRAWN AND CARTRIDGE CASE STARTED FROM SEAT-UPPER PORTION OF BLOCK IN FULL.
move the fring pin to the rear, for until the block is locked the cam remains under the arm and shoulde of the firing pin, and even could the latter get adrift the cam would prevent it from striking the cartridge primer.

Should it be desired to change from spring firing to an electric firing device, it can very readily be brought about without material alteration of the parts in connection with the firing device. Such a change would, in fact, be a move in the direction of simplicity, which is one of the points aimed at in this system. The chief
-simply a tail race-produces the power,
The mill use are above the village, stretching along the level ground which bounds the river to the south, and from one to two and a half miles from the falls. Here a block of land has been acquired sufficient for mills which would employ the horse power mentioned and for mercantile and other needs of a large manufactur ing town
The Niagara Falls Power Company was organized on

March 31, 1886, under the authority of the Niagar River Hydraulic 'Tunnel Power and Sewer Company of Niagara Falls ; capital, $\$ 2,000,000$; president, Chas B. Gaskill ; treasurer, Francis R. Delano ; secretary Alexander J. Porter; attorneys, W. Caryl Ely, W. B. Rankin ; resident engineer, Albert H. Porter
A contract has been signed between the Niagara Falls Power Company and the Cataract Construction Company, of New York, for the construction of the nain and cross tunnels, raceways, etc., the price being $\$ 3,500,000$. This contract calls for the completion of the work by January 1, 1892.
The company has purchased about 1,300 acres for mill sites on the river front and on the line of the pro

Fig. 7.-MODIFICATION-HANDLE AND WIPER COMBINED CAN BE USED TO WORK EXTRACTOR.
posed tunnel, with ample streets and dockage, affording facilities for approach by rail or water, to accomnodate 238 mills of 500 horse power each, or 119,000 horse power in all, which is the engineers' estimate of the capacity of the tunnel proposed to be built. Some idea of the magnitude and value of this power may be formed when it is stated that it far exceeds the com bined available power in use at Holyoke, Lowell, Min neapolis, Cohoes, Lewiston, and Lawrence, and that it can be constructed at an expense not to exceed one enth of the outlay for the development of the power at the places designated.

The Accidents on the Eiffel Tower and

 Bridge.The great monsters of mechanical skill and genius all for the sacrifice of a great deal of life and limb in heir construction. The greater the engineering feat, he more extensive is the loss of life
In the construction of the Eiffel Tower, for instance, twenty-six lives were lost, according to the official re urns of the French government, but it is said that his number would be largely augmented if the names were given of men who died from injuries received during the construction of the tower and of other who were killed and whose deaths were not reported, owing to the hue-and-cry which was raised after the first two dozen lives had been sacrificed on the great structure. The number of men who were injured dur-

Fig. 8.-GEARING USED ON GUNS OF LARGE CALIBER TO WORK MECHANISM.
ing the construction of the Eiffel Tower has been placed at 6,000 . This enormous showing is accounted or by the fact that every injury was reported and registered which received treatment from the official surgeons. When a man bruised his finger, he went to a government surgeon to have it dressed, and a clumsy workman thus got on the list a dozen or two times a year. Serious injuries were a very small proportion of the whole. On the great Forth Bridge in Scotland, hist of forty lives lost has been published, but there i no record of injuries.-New York Sun.

a modern stage trick.

Those philanthropists and legislators who have of late been making a study of capital punishment will be interested, perhaps, in seeing a performance at Barnum's circus, in which one of the performers is executed twice every day. The means employed is the old fashioned "defunct" method of decapitation, and although this lacks the re
finement and scientific precision of execution by finement and scientific precision of execution by
electricity, it avoids, on the other hand, the electricity, it avoids, on the
delays and lawsuits that ordinadelays and lawsuits that ordina-
rily attend this method of punishment.
The poor clown who suffers the death penalty twelve times a week usually enters the ring, and after performing certain acrobatic feats, commits some crime against his fellows, for which he is condemned to die. He is placed upon the block, his head is covered with a cloth Harlequin approaches as executioner, and begins to cut with a huge knife across the victim's neck. In a moment all is over, the cloth is removed, and Harlequin lifts in the air the severed head. Delighted with his trophy, he carries it about under his arm, places it in a charger in the center of the ring, and finally takes it back to the block wrapped up in the cloth, and places it by the side of the headless trunk. He removes the cloth, and then in sport places a lighted cigarette in its mouth. In a little while you notice that the cigarette begins to glow, smoke comes from the nose, and the eyes roll. Evidently the head has come to life. Not able to bear the horrible sight, he throws the cloth again over the head, seizes it, places it in its original position on the shoulders of the victim, kneads it to the body, and suddenly the figure rises, head and all, and bows to the audience-an orthodox clown. The trick is a good one, and takes with the audience. The way in which it is done is explained in the lower cut.
As soon as the clown lies on the box and his head has been covered with the cloth, he passes his head through an invisible opening in the top of the box. An assistant inside of the box passes up the dummy head, which is an exact fac-simile of the clown's head and face. This is seized by Harlequin, who makes such sport of it as he sees fit. When he places it by the side of the trunk, in reality he passes it through an opening in the top of the box to the assistant within, who substitutes his own head (which is painted to match the othertwo) in place of it. The other steps in the performance readily follow. The cloth which the harlequin always carries conceals all the sleight of hand, and the whole performance is a series of surprises.
Another performance of a somewhat similar character was recently performed at a theater in this city, in which a clown throws himself on a sofa and is cut in two by a harlequin. One part of the sofa with the body remains in one part of the stage while the other part with the legs and feet (which are all the time vigorously kicking) disappear through a wing at the other end of the stage. The action is very sud-
den and the effect startling. Of den and the effect startling. Of
course in this case there are two men similarly dressed. The head and body of one of them appears at the head of the sofa, while the body of the second clown is concealed in the box under the seat at the other end of the sofa, the feet and legs alone being exposed.

An Electric Fire Ball.
At Long Branch, N. J., April 27, during a rain storm, the 55 foot flagstaff about 50 feet away from Life Saving Station 2 on Sandy Hook was struck by a ball of fire as large as a barrel head. The topmast and main spar were shattered from top to bottom. Surfman Joseph Riddle sat at a window and saw the ball shoot from the eastern sky, preceded by a bright white light, which illuminated the vicinity of the station. Riddle noticed a black streak run down the topmast, and the ball of fire struck the mast with a report like that of a cannon. It did not linger as balls of electric light sometimes do, but disappeared like a flash of lightning. No thunder or lighting had been heard or seen before or afterward, and this did not resemble lightning.

Eugenol.
It is frequently claimed that those situated at the head of a fall have certain rights and privileges over those below them. Exceptin peculiar cases such is not on both sides of astre, a party owning and below the fall, way construct a dam and form a pond, and dispose of a certain mill site, and guarantee them certain pose of a certain mints in the use of all the water in the stream, should
right

The oil of cloves has for a long time been used as local remedy for the relief of toothache, but no scientific investigation as to the actual value of the local application of this drug has yet been reported. Lieb reich and Langgaard state that the oil of cloves applied to the uninjured skin first produced reddening and then anæsthesia. Recently Dr. Leubuscher has determined the presence in oil of cloves of an active principle which presence in oil of clos of activ number of experiments as to the practical value of this principle, of which the following present his more important results :
Eugenol is a clear, dark yellow fluid, in its chemical composition allied to the higher phenols. In water it is insoluble, but readily soluble in alcohol and ether. It has an odor like the oil of cloves, and has also been described unde the name of eugenic acid. If a drop of eugenol is instilled into the conjunctival sac of a rabbit, symp toms of irritation are first pro duced, the secretion of tears being increased, and the conjunctiva be coming somewhat reddened. After the first few minutes the sensitive ness of the cornea utterly disap pears, while the conjunctiva is greatly depressed in sensibility although not to the same degre as the cornea, the anæsthesia last ing for from ten to fifteen minutes The deeper parts of the eye and the ciliary body are uninfluenced In experiments to perform iridec tomy in a rabbit under the influ ence of anæsthesia produced by eugenol, reaction occurred at the moment at which the iris wa touched, while the division of the cornea was unassociated with any
Fig. 1.-A NOVEL STAGE TRICK-DECAPITATION.

Fig. 2.-EXPLANATION OF THE DECAPITATION TRICK.
with the privilege of drawing from the same pond, subject to the rights previously granted, and the party purchasing and accepting those conditions, which must be clearly specified in the deed, is bound to submit to those conditions; but other sites located upon lands below them and owned by other parties are in no way bound by such conditions as to the control of he water, but may demand the free and unrestricted ase of the natural flow of the stream at all times while those above them will be held to only a reason ble control of the water at any time.
The courts, in nearly every case where it is shown hat water is used in an unreasonable manner or di verted from its natural source to the damage of mill owners, have promptly awarded damages for the same,
and even the State bas no legal right to grant the privilege of taking water from such lakes as are under State control, without the consent of the riparian owners of the lands situated upon the outlets thereof -C. R. Tompkins, in the Modern Miller.

The Rural New-Yorker thinks if those who have voted for the golden-rod to be the emblematic nationa flower were compelled to work a day or so pulling the weed out by the roots, they would change their votes.
expression of pain. No after effects, with the excep tion of slight reddening of the conjunctiva, followed the use of eugenol ; the cornea remained unclouded. Similar results followed the application of eugenol to the conjunctiva of the dog, although the symptoms of irritation were here somewhat more marked than in the rabbit. The influence of eugenol was also tested on the mucous membrane of the lips, tongue, and gum of man, and at first produced slight burning, and then considerable reduction in sensibility, lasting from five to fifteen minutes. Complete anæsthesia could not however, be produced by this remedy. On the mucous membrane of the female genitals there was slight re duction of sensibility, produced through the use of eugenol, it being more marked on the mucous membrane of the vagina than else where. Applied to the uninjured skin, neither burning nor reddening was produced, but slight reduction of the sensibility was produced it from five to six minutes. Although these results are not very striking, the author, nevertheless, tested the practical value of eugenol, and found that the best results were obtained when it was combined with a seventy per cent solution of lanolin ointment; applied to the skin in eczema, it reduced the severity of the itching; second, in ocular surgery, the use of eugenol is not to be recommended, since in man the instiliation of a dilute solution of eugenol into the conjunctival sac produces severe reac tion. - T'herapeutic Gazette.

A Caution to Hard Drinkers.
Inebriates are always dangerous subjects to administer ether or chloroform for anæsthesia. In all cases the heart is weakened, and fatty degeneration of various degrees is present. Any substance which lowers its action is perilous because of the inability of the heart to recover, and the tendency to paralysis. But drinkers have always fatty hearts, and sudden paralysis is likely to appear with the first inhalation of chloroform. In chronic cases of inebriety, where extensive organic changes have taken place in the brain and spinal cord, paralysis of the respiratory centers occurs first, and respiration stops before the action of the heart. In such cases artificial respiration may prevent death if promptly used. In all cases a sudden check ing in respiration and heart beat where ether or chlo roform are used is a danger signal of the gravest im portance.-Quarterly Journal of Inebriety.
A. VENOMOUS CEYLON SERPENT (Daboia Rusielli) The accompanying photograph presents one of the most deadly of the Indian serpents.
It belongs to the genus Daboia, sub-order Viperida, and was named for its chief investigator, Dr. Russell, Daboia Russelli,* although it is also known by local synonyms as tic polonga, uloo-bora, jessur, and sea chunder.
Sir Joseph Fayrer, as well as Dr. Russell, places it next to the cobra de capello in lethal power, and it is certainly nearly as venomous as that more famous Naja tripudians.
The Daboia is a very beautiful snake. Its groundwork of color is light chocolate brown, and down the body length run three parallel successions of black diamonds, slightly elliptical, edged with white and retaining the brownish yellow groundwork in their centers. Upon the head, the snout is marked by two lateral converging yellow lines. The labial and rectal shields are yellow, with brown margin, and behind the eye a triangular brown, black-edged spot; ventral surface yellowish, or marbled with more or less numerous semicircular brown spots on the hinder margins of the ventral shields. For a part of the above description I have used Sir Joseph Fayrer's admirable article in the January Eclectic ("The Venomous Snakes of India," page 90).
This deadly viper was killed in a hedge near my room on the north side of the American mission compound in the Tamil village of Batlicotta, Jaffna, Ceylon.
It struck furiously at the attacking long pole, and hissed and blew vigorously. A subsequent examination proved the Daboia about 35 inches in length, a female with young. The fangs were about $1 / 2$ inch in length, white, recurved, movable, set in the maxillary bone, and tubular with involuted edges, and openings at the base and apex of the fangs, respectively triangular and circular, but very small.
The poison is known as " venom globulin," of which it may contain 25 per cent. It is a fatal blood poison, producing complete fluidity, early paralysis, and intense respiration, which continues longer than in the case of an organism venomized by the cobra, however, whose lethal power is nervally terrible. Daboia venow causes convulsions, but does not select nerve centers immediately. Turkeys and hens have died in less than 60 seconds when bitten by this reptile, and men in less than an hour. The best antidotes are probably potassic permanganate, sodic hydroxide, ferric perchloride, and hydrofluoric acid. In India and Ceylon invariable caution is positively imperative at night in field or room. This can be easily apprcciated when I state that in a period of fourteen months I have killed twentyeight serpents.
W. D. Marsh.

Jaffna College, Ceylon.

AN IMPROVED PETROLEUM CAR.

The invention herewith illustrated is designed to provide a car with a series of connected metal tanks so braced that their walls will not bulge when heavily loaded, while the bulk of the weight is over the car trucks, and the tanks are capable of rigid attachment to either a flat or gondola car. The invention has been patented by Messrs. William H. Hill and Charles W. Bender. The tanks are ordinarily arranged in sets of three, the outer tanks being the largest, and, to prevent their sides from bulging outward, each tank ha
side two interior stay rods, secured to the sides and bottom of the tank. The ends of the tanks are also braced on their outer faces, the upper ends of the brace rods being bolted to re-enforcing plates as well as to the tank, while their lower ends have a horizontal section attached to a connecting plate, which connects the bottoms of the tanks and virtually forms a portion thereof. There are two sets of connecting plates secured to the car bed in any suitable way. The end tanks are connected to the intermediate tank at or near the bottom by horizontal tubes. On the top of each tank are one or more air vents, and each end tank has a large top opening, with tightly fitting cover, whereby all the tanks may be quickly filled or emptied when desired. The central tank also has a top opening with a hood-like hinged cover, there being in the bottom of the hood a tube to admit of the application of a pump to the central tank, whereby the liquid may be discharged from all the tanks, or hrough which the tanks may all be filled.
For further information relative to this invention ddress Mr. William H. Hill, No. 35 Taylor Avenue, Utica, N. Y.

The Jourral de la Chambre de C'ommerce de Constantinople says a company has been formed in Paris for working products derived from chestnuts, an chiefly the production of alcohol from chestnuts. ${ }_{\text {viper. }}$ In

On the Census of Manufactures.
On day of June the work of collecting statisics of manufactures for the report of the eleventh census will be inaugurated throughout the entire country. The value of this report must depend wholly upon the accuracy and thoroughness with which manufacturers answer the questions propounded.
The personal interests of every manufacturer are in-

VENOMOUS CEYLON SERPENT (DABOIA RUSSELLI.)
It will be quoted for the next ten years as the officia announcement of the exact industrial condition of the country, and will be the basis for any future legisiation that may be enacted in regard to the wants of our peo ple, whether engaged in agricultural or mechanica pursuits. Therefore it is of vital importance to each manufacturer that an accurate report shall be made. The superintendent of the census has taken every possible precaution in the preliminary work to mak this census complete and satisfactory, and the earnest co-operation of those engaged in productive industry is all that is now necessary to secure valuable results.
Every manufacturer should bear in mind that his answers to the questions relating to his business are held strictly confidential, are not disclosed to any competitor or to other persons, and are not used by the government as predicate for the purposes of taxation or license, or in any way to adversely affect his individual business. This assurance is printed on each schedule over the signature of the superintendent of census.
The expert special agent in charge of this branch of census work, Mr. Frank R. Williams, has personally isited the principal manufacturing centers and con sulted representative manufacturers, the publishers of trade journals, and.practical business men generally, for the purpose of ascertaining the proper scope of the inquiry for each branch of manufacture. The questions contained in the census schedules are those sug gested by the manufacturers and other persons most interested in the progress of the country, and cover ground absolutely essential to the proper presentation of its industral conditions and resources.

The Mechanic Honored.

The following epigrammatic paragraphs are selected from the Iron Industrial Gazette: Let mechanics cease to bewail the obscurity of the mechanic. Today, even in Europe, let the question be asked: "Who are the most remarkable men in the United States?"

The mechanic who is looking for outside things to lift him to success is looking for the improbable and the impossible. It is inside things that count in the problem of a worker's life, thought, careful planning intelligence, and knowledge. These things are at the command of all. The workers who refuse to use the weapons cannot expect to win the spurs.
Generally, the more a mechanic works his chin, the
less he works his hands. The more he knows about the best way to manage the universe, the less he knows about his lathe, his drill, or his planer. The wore perfectly he could run the govern ment, and the more money he could save the country, if he had charge of the whole business, the less likely he is to be a good workman. The more he prates about the terrible dishonesty of the public servants, the more incapable will he be of understanding that it is dishonest in him to rob his employer by wasting in idleness the time which he is paid to spend in labor, or by wantonly wasting stock, or needlessly injuring a valuable machine by careless handling. If I had the hiring of a million workers, I would try to find out which of them were agitators, orators, socialists, anarchists, and talkative cranks in general, and I would pay them a salary to remain away from my shops rather than have them around talking my plant, my other employes, and my business to death. Some inventor ought to bring out a patented talk squelcher. There ould be millions in it.

John T. Wood.

Mr. John T. Wood, the explorer of Ephesus, died recently in London at the age of seventy. Mr. Wood was trained as an architect, and had won a considera ble reputation, when he was engaged as architect to the Suyrna \& Aidan Railway, and, in that capacity took up his residence in Asia Minor. Here he became interested in the antiquities of the country, and, after a year's service with the railway company, resigned his position to devote himself to antiquarian research His most noted work was the excavation of the Temple f Diana at Ephesus, one of the most splendid and amous structures of antiquity, and, although the in cendiary Herostratus and the pillagers who succeeded him had done their work effectually, he found remain enough to determine the arrangement of the building and to restore much of its detail. The manner in which this investigation was carried out gained Mr Wood a high place among archæologists, and for many years he has been, perhaps, the principal authority on the architectural work of the Asiatic Greeks. Amer. Architect.

Use of Flax Straw

The Standard Fiber Ware Company was organized at Mankato, Minn., late in 1885 , with a capital of $\$ 50,000$ or the manufacture of flax fiber into pails, wash basins, and like articles; a plant was built, and goods began to be turned out the following year. It required some two years of experimenting to reach satisfactory re sults, but these were finally attained, and the goods are now said to be very satisfactory. They are light strong, handsome, and cleanly. The wash basins do ot rust out or slip from the finger; and break. The water pails, in the language of those who use them, are the "only pails fit to hold drinking water." The dairy pail will not taint milk, get sour, or need scour ing. The slop jars never lose their paint or decora tions like tin, or break llke crockery. The spittoons are serviceable and easy to clean. The inside finish is paint (without white lead) or Japan finish, according to the us it is to be put to. The outside finish is such as to suit all tastes, in colors and decora tions. All paints, japans, copals, and deco rations are baked on to stay. The process of manufacture starts with raw tow from the Dakota prairies, passes through the beaters, bleach tubs, pail machine, presses, calenders, trimmer, corrugator, bottomer hooper, the intensely hot water-proofing bath, the bakings and rebakings, of waterproofing, paints, japans, decorations, and copals; all of which unite to make ware with a body and a finish that is practically per-
and the answer will be, not the statesmen, not the millionaires, the two classes generally most envied be cause the least understood, but the "mechanics," th Edisons, the Roeblings, the Westons, the Westing houses, and others who have made the name "Ameri can mechanic" so great a title of honor, so pronounced a synonym for progress, power, enterprise, and utilit hat, when the American mechanic goes to Europe, he oes as the guest of rulers, as the lion of society, as the hero of the learned.
Any mechanic who feels like despairing because the world has not gone well with him should try, first of all, to figure out to what extent the world is to blame for his failure, and to what extent he himself is to blame. If he has not fitted himself for success, it his own fault that success has not come to him.

!HILL \& BENDER'S PETROLEUM CAR. fect ; in the words of andic "the fect; in the words of an enthusiastic salesman, "the
ware of the future."-Paper World.

The Weisswasser paper and cellulose manufacturers have just introduced into the market, under the names of uni-colored and two-coiored water-tight cellulose papers, a cellulose material that can be applied to the nost varied purposes. The cellulose paper can be used for book backs, table cloths, and as a temporary covering for roofs, as well as for packing goods. It can be aid on da.u) walls and as a coating for maps, in short, its applicability is extraordinarily manifold. This cellulose paper is far cheaper than parchment. It does not become sticky through heat, nor does it crack from the cold, as is the case with oil cloth. The disagreeable asphalt odor is not perceptible.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.

Car Coupling. - Marion M. Green County Line, Tenn. This invention covers a nove combination and arrangement of partsdesigned to form and quickly operated either from the top or sides of the car, thus okviating the necessity of going between the
cars to couple them.
Pneumatic Railway. - George W. King, Washington, D. C. This is a system in which compressed air conduit is buried between the rails, having on its upper face a continuous slot, with devices
between the car and the air tube whereby a continuous between the car and the air tube whereby a continuous
air pressure is supplied to the motor and undue friction
de.
Hose Coupling for Cars. - Conrad Eckhard, Friend, Neb. The drawheads are provided
with transverse passages registering with each other when the drawheads overlap. and there are valves in the passages with laterally extending automatically operated arms to project over the meetung edges of the
drawheads, and other novel features, whereby the evice automatically couples the ends of the hose whe

Catch for Car Door Brackets. Ferłinand E. Cancla, New York City. This is a gravity atch pivotally connected to a bracket arranged for con Gage the ordinary bottom door track, which in this cas bviate the difficulty sometimesexperienced in openin eight car doors when the freight is lodged against the inner face of the door.

Mechanical.

Combination Tool. - Marion M Green, County Line, Tenn. This is an implemen wire cutter, leather punch, hammer and nail extractor grippers for horse shoeing, wrench, pipe cutter, screw ars, etc., all in one tool, particularly adapted for us strongly and cheaply made.
Saw Mill Dog. - Alfred K. Miller, Millersport, Ohio. This device consists of a bar mounted to slide on a frame and carrying an adjustable
hook, a gear wheel being mounted on the sldiding bar and rack, being fastened on the main frame in which the gear wheel meshes, the dog when set being adapted to hold the \log
mill carriage.
Can Capping Machine.-Simon Lake, Raltimore, Md. In this machine the cans are fed to place and the caps held on them while the solder is cut
and delivered to irons heated by a gasoline flame which distribute the solder along the margin of the cap an the surface of the can with which it contacts, the
design being to greatly facilitate the work and reduce labor of capping.
Boring Machine.-Charles H. Irwin, Friederich Mill, and John E. Hitch, Wilmington, Ohio and carrying two gear wheels, a second shaft carrying two gear wheels being adapted to be thrown alternately in contact with the first gear wheels by shifting one of
the shafts, to change the speed of the machine, to run slow when a large auger is used and run fast with

Bolt Heading Device. - Emil Hubner, New York City. This is a device for use in
connection with any bolt-making machine operated by lever or treadie, bolt with the least possible manipulation of the rod
from which the bolt is formed, while the sections of the gripper are interchangeable a
stgned to be of maximum strength
Clamp. - William Carroll, Columbus, Ohio. This is a bench clamp for pattern, cabinet and
box makers, and also for the use of stool makers, to box makers, and also for the use of stool makers, to
hold the doors and other parts in place while fitting on pintles, hinges, etc., and consists of a spring.ppressed
rod held to slide in a casing, a head held on the rod, nd a table held on the casing.
Bolting Reel. - Riley A. Stubbs, Greenville, Ohio. Combined with the reel are transverse dividing boards through which the reel passes
freely, there being a fixed rail on which the hoards freely, there being a fixed rail on which the hoards
travel longitudinally, and gates held below and actuating the dividing boards, with other novel features,
designed to prevent the accumulation of flour in the designed to prevent the accumulation of
hopper and prevent leakage from the gates.
Loom Mechanism.-John Riddiough, Bloomington, Wis. This is a take-up mechanism in
which the cloth beam has a ratchet and there is a breast which the cloth beam has a ratchet and there is a breast
beam in front of a reciprocating lay, combined with a lever having a pawl engaging the ratchet and a laterally
extending pin, a rod being pivoted at its forward end to extending pin, a rod heing pivoted at its forward end to the lay and having a slot at its rear end to receive the
pin, while a spring or weight throws the pawl lever forwardly to rotate the cloth beam.

Harrow.-William S. McCord, Gratz, Ky. This invention is in the class of soil pulverizers
having a series of convex-edged cutting blades instead of teeth, the improvement consisting in the form and arrangement of the blades or cutters, whereby they are adapted to cut, pulverize and turn the soil in a superior
ader

Band Cutiter and Feeder. - Mike Ryman, Warner, South Dakota. This is a device for attachment to the rear end of a thrashng machine, em-
bracing a knife shaft with fast rotary motion and a feed bracing a knife shaft with fast rotary motion and a feed
shaft with slow mution, and other novel features, to shaft with slow mution, and other novel features, to
conveniently cut the bands of the sheaves of grain and distrib:te the latter equally to the beating drum of the

Center Cut Mowers. - George W turm, Dana, Ind. This is an attachment especially seep the heads and leaves for a time out of contact wit upon the ground in complete condition for the huller

Miscellaneous.

Metallic Buggy Bed. - William L Dearth, Frankfort, Ind. This buggy bed is formed aingle piece or sheet of metal, cut at the corners, and
the ends and sides bent up and the corners lapped and the ends and sides bent up and the corners lapped and
fastened oy being brazed, riveted or bolted, being designed to stand hard usage better than is possible
with a wooden vehicle bed.
Operating Gas Engines. - John J Pearson, New York City. This invention covers valve in the passage between the power cylinder and the reservoir when no explosions are required, and rendering the igniting apparatus inoperative, so that
he contents of the power cylinder may pass freely into and out of the reservoir when the engine is runing by its own momentum, thus avoiding undue absor ver in the compression of the gas
Gasoline Tank. - Charles A. Rice, Philadelphia, Pa. This is a tank especially adapted or use as a reservoir for gasolne stoves, preventing removed from its casing for refilling, the valves will be atomatically closed, and when the section is replaced the valves will be automatically opened to the feed

Anti-Friction Bearing. - Seely W. Ashmead, St. Louis, Mo. This is a ball bearing in which the base has recesses, each shaped to a section of base allowing a small section of the ball to project through each opening, the device being designed for
use with railway rolling etock, on turntables, and with use with railway roll
general machinery.
Tile Kiln. - Henry Moehle, St. Mary's, Ohio. This is a kiln in which the deflecting and burner walls are connected with a series of burners burner walls being extended the entire width of the kiln transversely to the burners and connected with the deflecting walls, the burners extending outside of the main walls of the kiln, the fires being allowed to burn until the "water smoke" is seen, when the fires at the
burners are weakened or strengthened as deemed

Vehicle Hay Loaders. - William a. Barber, Savanna, Ill. This is a device adapted for at be coupled thereto or uncoupled thereffom by may erator when upon the load, whether the team be moving features of construction and combinations various
Heating Tires. - Luther Simmons, Buckner, Mo. This invention provides for a circular he tires to be heated, and adapted to be readily located in proximity to a forge flre, with a hood and pipe to
receive the blast from the fire and convey the gases and receive the blast from the fire and convey the gases and chamber, discharging them thence through the forge
ue, and is designed
Tire Tightener.-Williain A. Mayo, Paris, Texas. This invention consists of a aplate having
wedge-shaped projecting fingers and a rearwardly apertured extension, with other novel features, their socket connection with the felly, they may be quickly tightened witho
from the felly sections.
OAR Lock.- -George N. Spaulding and Charles H. Eaton, Harrison, Me. This invention which the oar may be readily locked in place to prevent longitudinal slip, while allowing a free sweeping
action as well as a proper locking of the blade to father it when necessary
Store Service Apparatus.-Edward A. Rorke, Brooklyu, N. Y. This is a buffer for double
track store service railways, consisting of an autotrack store service railways, consisting of an auto-
matically closing stop located between the track rails, and mechanism for opening the stop, by means of which the carrier will be effectively stopped and re-
eased to proceed on to an elevator or switching shelf. Mail Bag. - Charles Van Inwegen, Mongaup, N. Y. This is a pouch having a draw strap
applied to its center, in combination with a grip comprising two blocks, each attached to the bag and hinged to each other and formed with square meeting faces normally held in contact with the draw strap by orings applied to the block
Lead Pencil. - Lewis H. Sondheim, New York City. This invention relates to a class of
pencils in which the lead or crayon is projected by a "step by step" movement crayon is projected by the invention being designed to provide a simple, efficient, and easily adjusted pencil of this kind.
Pipe Organ. - Romaine Callender, Brantford, Ontario, Canada. This is an instrumen designed to permit the performer to set consecutive
combinations of registers preparatory to execution of combinations of registers preparatory to execution of binations can be produced consecutively without much physical exertion by the performer, so that the lat
Finger Rings.-Joseph B. Bowden, and Hermann V. Bernhardt, Brooklyn, N. Y. This invention covers a machine for rapidy and accurately
shaping finger and other rings to any desired size, the invention consisting of a grooved circular die mounted to turn and adapted to engage the outside of a ring to ential rate of speed, adapted to engage the inside of the

Stamp Affixing Machine.-John M. Mast, Cambridge, Pa. This is a machine for quickly and conveniently attaching postage stamps to envelopes, etc., and has a fixed knife in the rear of a head over the strip forward at each upward stroke of the head, swinging moistening device, and other novel features
Fence Post.-William H. Thomson, FENCE Post.-W
New York City. This is a post made of T-iron and New York City. This is a post made of T-iron and
apertured to receive anchor pins, provision being made or locking the anchor pins after they have been adjusted to place, the posts benng quickly and readily set
up without much digging and rigidly held against displacement.
Shoveland Sieve.-Edward Fleming, New York City. This is a combined implement consisting of a shovel having an open work bottom and a receptacle for dust and ashes detachably held thereto,
both the shovel and ash receptacle tapering toward the both the shovel and ash receptacle tapering toward the
front, enabling them when connected to be used as a shovel.
Extension Step Ladder. - John L. Wolf, New York City. This ladder is made in two or nore sections, the extension sections of which are form a ladder of moderate length, or of sliding out
from the main section together or singly to increase the height of the ladder
Wash Tub.-Harriet Johnson, Brook yn, N. Y. This invention provides means whereby the lat houses wash tubs ordinarily in use in tenement or the partitions being milized for bath tubs when desires device and packing strip employed in connection there

Making Elongated Tubs. - Levi E. Flint, Ashby, Mass. This invention covers a method of making bathing tubs, etc.. by first turning a round tub, then dividing it through its middle and uniting the half-round tub sections with an interposed bottom
Reversible Feed Mechanism for Sewing Machines.-Adolph Pettenkofer, Brooklyn,
Y. Combined with the feed bar is a shaft heving N. Y. Combined with the feed bar is a shaft having a it automatically adjustable about the shaft, with locking device for releasing and locking the automatically movable cam in adjusted circumferential position on its shaft, whereby the direction of the feed may be
reversed without stopping the machine or altering the reversed without stopping the machine
position of the material worked upon.
Dish Washing Machine. - Thomas . and Herbert W. Pudan, Sacramento, Cal. Combined with a water-holding chamber and a support for rotary brush, and other novel features, the invention of one of the same inventors.
Burglar Alarm. - John H. Bleoo, Brooklyn, N. Y. This invention provides a spring at thus permitting the outward passage of an inmate the house, but sounding an alarm should the door window be opened after the setting of the alarm.
Trousers.-Emil E. Ehrmann, Terre Haute, Ind. These trousers have an improved back it will serve to tie the waietband to the body of the garment, and the two will not be parted when a severe

Field Mouse Trap. - Hermann Rippke, Ober-Faschkittel, near Olbendorf, Prussia, Germany. The frame of this trap has a pair of opposing spring arms and a vertical spiral spring. a plate being attached to one of the arms having a pointed for
ward end and a toothed opening, a lip at the rear end of the plate being detachably engaged with the other spring arm, the trap being readily fixed in position to prevent displacement by mouse-hunting animals and

Hectograph Printing Press. Henry H. Harrison, New York City, and Frederick C. Buffum, Stanton, Fla. This is a machine in which the hectograph material is applied to a cylinder or sleeve to against the impression cylinder, whereby new copying cylinders may be readily supplied, the paper being fed from a reel and the sheets cut by shears as the paper from the machine.
Electric Locking Attachment. Hermann J. Meyers, Brooklyn, N. Y. This invention and for quickly closing and lockiug it by a push button or circuit closer at the rear of the counter or other suit able place, whereby the means of ingress or egress will always be under the control of an ope

Portable Bottom for Coke Ovens. -David Evans and Albert W. Adams, Pittsburg, Pa This is an improvement on a formerly patented inven-
tion of the same inventors, providing a bottom which will permit the surplus water thrown upon the coke to cool it to flow off, and to facilitate the raising and lowering of the bottom, the bottom being lowered upon
a car after the charge has been coked and moved bodily

Draught Regulator for Ships Galleys.-Ali Malekh, New York City. This invention the exposed part of the galley pipe, the deflector being arranged to convert the back currents from the sails into a continuous draught, and also to catch the headway wind, giving a good draught in all directions of the

Anchor Attachment. - Howard L. Moule, Rock Creek, W yoming Ter. This is a clamping gravity block secured in place to embrace the crown and shank of the anchor, whereby the weight of the crown piece will be so increased as to insure the embedding of
the fukes and proper retention of the anchor, increasing
light anchors in weight at a point where such increase W render the anchor more efficient.
Wagon Brake.-Noble E. Thompson, New Mayville, Pa. This is a brake with which the applied draught will automatically remove the brake shoes from the wheels as the wagon is drawn for-
ward, and when descending an uneven surface the ward, and when descending an uneven surface the
action of the horses in holding back will apply the brake shoes to the wheels, the brake shoes being thrown out of contact when the wagon is backed.
Transferring Apparatus.-William C. Hanson and Leonidas C. Ferrell, New Orleans, La. straining devices, a railroad truck with vertical standards, a derrick over the railroad truck with suitable lifting mechanism, and a wagon body detachably held the wagon truck, to be bodily lifted on to the rail-
Spool Thread Cabinet.-James W. Hayden, Lewisport, Ky. This cabinet has parallel series of spool-rece Ky. Thens, with inclined chutes, and other novel features, wherein the spools
cannot jam, and so that by pulling a numbered button correspondingly numbered spool of thread will be delivered, provision being also made for the stowage of surplus spools, and conveniently returning spools that ave been withdrawn.
Sewer Gas Excludhr.-Francis B. Herbert, Hoboken, N. J. This is an attachment for wash basins, comprising a buoyant waterproof flap with he uppermost overflow apertures of a basin and hold the flap over the apertures, the flap rising to permit the overflow of
other times.
Corset Fastening. - Thomas J. Brough, Baltimore, Md. In this fastening the busk has the end eyes, with spring-actuated latches, there being intermediate locks between the end locks, with other novel features, whereby the corset may be conveniently fastened and unfastened, and will not accidentally un-
fasten, one fasteniug not being אable to loosen as the hers are being fastened
Fire Cracker Pistol. - George W. Ogle, Morgan Park, Ill. This is a breech loading toy
pistol in which fire crackers may be used to project a harmless missile, its barrel and stock being made in one piece, with simulations of a sight piece, trigger and hammer, and the bore of the barrel communicating at its rear with an upwardly and outwardly curved loading uperture of less diameter than the bore.

SULENTIFIC AMERICAN

BUILDING EDITION.

MAY NUMBER.-(No. 55.)

table of contents.

Elegant plate in colore representing a tasteful cot tage of moderate cost at Buffalo, N. Y. Perspec-
tive elevation, floor plans, sheet of details, etc.
2. Colored view of a residence at St. George, Staten
Island, N. Y. Estimated cost $\$ 20,000$. Floor Island, N. Y. Estimated cost $\$ 20,000$. Floor
3. Stone residence, corner of St. Nicholas Place and 150th Street, New York city. S. Burrage Reed, archiect.
4. New buildings at Eastgate and Bridge Streets, Chester.
5. Engravings of the residence of J. M. Johnson, Binghamton, N. Y. Perspective
floor plans. Cost $\$ 19,000$ complete.
Perspective view of the office buildings of the Gotthard Railroad in Lucerne.
An English cottage. Perspective and floor plans. 8. A cottage recently erected at Binghamton, N. Y.
cost complete $\$ 3,800$. Plans and perspective cost complete $\$ 3,800$. Plans and perspective
9. residence in the Gothic style erected at New
Brighton, S. I. Floor plans and perspective.
10. Excellent design of a country house recently erected at Belle Haven, Conn. Cost $\$ 14,250$
Oscar S. Teale of New York, architect. Perspeo tive views and floor plans.
11. A double dwelling at Yonkers, N. Y., erected at a coss of $\$ 8,000$. Plans and perspective.
12. Residence of Chas. Kapprs, Esq., at Stapleton, spective elevation and floor plans.
13. Cottage at Greenwich, Conn., erected at a cost of $\$ 7,250$ complete. Floor plans and perspective. Miscellaneous Contents: High buildings. - Bad
flues.-Imitation ebony.-Destruction of asphalt fues.-Imitation ebony.-Destruction of asphal
pavement by gas.-Art of building.-Improved dumb waiters, illustrated.-An improved skylight, illustrated.-Rogers miter planer, illustrated.Dumb waiters and hand power elevators.-A fine
window in the Convent of the Sacred Heart, illus window in the Convent of the Sacred Heart, illus hot air and hot water heater, illustrated.-Color for mortar.-Improved adjustable grooving head,
illustrated.-An improved window screen frame, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about cally, a large and splendid Magazine or Arcere cally, a large and splendid Magazine of Architec
rure, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
of any Architectural publication in the world. Sold by af any Architectura newsdealers.

Pusiness and Personal. 2
The charge for Insertion under thes head is One Dollar a line jor each insertion, about eight words to a line. Advertisements must be received at publication offic
as early as Thursday morning to appear in next issue.

For Sale-New and second hand iron-working ma For Sale-New and second hand iron-working ma-
chinery. Prompt delivery. W. P. Davis, Rochester, N.Y Tuerk water motors at 12 Cortlandt St., New York. For best hoisting engine. J.S. Mundy, Newark, N. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. Wanted-Right parties to push new patent, or will sell Best electroplating machinery.
Best electroplating machinery. Low prices. Redding
Electric Co., 48 Hanover St., Boston. Send to H. W. Knight \& Son, Seneca
catalogue of pattern letters and figures.
Billings' Patent Breech-loading Single Barrel Shot Billings Patent Breech-Ioading Single Ba
un. Billings \& Spencer Co.. Hartford, Conn. Belting.-A good lot of second hand belting fo
cheap. Samuel Roberts, 369 Pearl st., New York. Best Ice and Refrigerating Machines made by David Boyle, Chicago, Ill. 140 machines in satisfactory use. Steam Hammers, Improved Hydraulic Jacks, and Tub
Expanders. R. Dudgeon, 24 Columbia St., New York. Safety Elevators, steam and belt power ; quick and
smooth. The D. Frisbie Co.., 112 Liberty St., New York. "How to Keep Boilers Clean." Send your address Screw machines, milling machines, and drill presses Split Pulleys at low prices, and of same strenth Split Pulleys at low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shaftin Works, Drinker St., Philadelphia, Pa
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum apparatus. air
pumps, acid blowers, filter press pumps, etc.
For low prices on Iron Pipe, Valves, Gates, Fittings, Aron and Brass Castings, and Plumbers' Supplies, writ
A. \& W. S. Carr Co., 138 and 140 Centre St., New York For the original Bogardus Universal Eccentric Mil hoot and Power Presses, Drills, Shears, etc.. address,
S. $\&$ G. F. Simpson, 26 to 36 Rodney St., Brooklyn, Y . The Holly Manufacturıng Co., of Lockport, N. Y.
will send their pamphlet, describing water works machinery, and containing reports of tests, on application The best book for electricians and beginners in elec tricity is " "Experimental Science," by Geo. M. Hopkins
By mail, 44 ; Munn \& Co., publishers, 361 Broadway, N. Y. Wanted-Foreman for machine shop in large city in Wanted-Foreman for machine shop in large city in
Corliss engine emplos anding about 100 men. One posted on achines and who understands Corliss engines and ice machines and who understands
German preferred. Address Foreman, care Scientifi German preferred.
A merican, New York.
Wanted, mechanic or designer of machinery, familiar with wire bendink and paper bag machines, to design an
make an attachment to latter, to make and attach wir fasteners to paper bags. For particulars address A. G.
Blincoe, Loretto, Ky. RF Send for new and complete catalogue of Scientific nd other Books for sale by Munn \& Co., 361 Broadwa

Hints to correspondents.

(2191) F. H. W. writes : Can you tell me something that I can use to coat either zinc or wood
that will not be affected by acids or chemical action of any kind? It is for a photographer's sink that I want it A. Use wood, and smear over with 4 parts resin, part gutta percha and a little boiled oil, melted together
and applied hot to the perfectly dry wood. Do not. and app
(2192) L. P. L. asks : With what force will a body weighing 150 pounds strike a jumping net, falling from a height of 45 feet, and how many men will
it take to hold the net? Size of net 10 feet in diameter woven like a spider's web. Body falling from natural gravity. A. The body will touch the net with a velocity of $533_{\mathrm{I}}^{\circ} \mathrm{O}$ feet per second, and evolve a force of 4 foot
tons, or 8,000 pounds through a space of 1 foot. If its fall is stopped in a distance of 3 feet after touching th net, the final weight of impact on the net will be 2,666 pounds. It will take more men than can grab the net
to stop the fall.
(2193) Subscriber asks : Which is the more economical for feeding a 40 horse power tubular
boiler, a power or steam pump, and why? Said pump to be used for nothing else, and all the water to go end gine. Steam pressure on boiler, from 80 to 90 pounds.
A. The power pump is the most economical, because
the engine, if a good one, is more economical than a pump for a given power. In the steam pump the stean follows full stroke, while the steam engine utilizes the
economy of expansion and has also less clearance than a economy of expansion and has also less clea
(2194) S. P. C. asks how to prepare glue size in liquid form to keep fluid at 34° to 40° above
zero. I want to use it with resin and wood alcohol to
water with vinegar or nitric acid. Try first an equa
measure of strong vinegar. If insufficient, add some tric acid.
(2195) E. L. asks : Is there any way whereby the quicksilver can be restored or the vacant mirror! A. Take a small fragment of mirror, put mer cury on its back, push off the coating, and let it drop upon the spot, press with a piece of tin foil above it. -10G).
(2196) R. H. S. asks (1) the formula for uid that will allow the zinc to be left in a one-flum plunge battery when not in use. I have reference to a
battery for running a small motor. A. Keep zinc hartery for running a small motor. A. Keep zincs
horoughly amalgamated. Even then they will be at acked except in caustic soda batteries. In latter amalgamation is not needed. 2. Any difference between
chloride of lime and chloride of calcium? A. One conchloride of lime and chloride of calcium? A. One con-
sists of chlorine and calcium $\left(\mathrm{CaCl}_{2}\right)$, the other contains oxygen also ($\mathrm{CaCl}_{2} \mathrm{O}$ priucipally). 3. Is bichromate of soda better than bichromate of potash for a fluid in carson battery? A. It does not form the troublesome
chrome alum crystals. 4. How far would a body have chrome alum crystals. 4. How far would a body have
to be from the earth so the attractions of sun and earth to be from the earth so the attractions of sun and earth
would attract it equally? What is the rule for the above would attract it equally? What is the rule for the above
query? A. Ir general terms the square of the distances from earth and
earth and sun.
(2197) A. H. A. asks how to plate with ourteen carat gold. A. If you will mix copper cyanide node,you may get an alloy deposit. Brass can be thus deposited. The color of the deposit is the only guide and in your case this would be hardly available.
(2198) J. J. B. asks whether there is any plant or vegetable known to science that contains And if there is any vegetable or plant that contains iron, and if so, to what extent? A. Nearly all contain traces
(2199) F. A. K. asks : 1. What is terra japonica made of? A. It is an aqueous extract from
the wood of the Acacia catechu (nat. ord. Leguminose the wood of the Acacia catechu (nat. ord. Leguminos α,
Mimosece). 2. Will it injure the iron or steel of steam oilers if used as a scale remover? A. No. 3. If it not a good article for above purpose, what would you
recommend? A. Carbonate of soda may be used if the other does not answer
(2200) H. B. asks what the composition f oroide is, such as writing pens are made of, and how

(2201) R. H. D. asks for a formula for boiling meerschaum pipes. A. Heat wax up to boiling. lug openings in pipe, and plunge it into wax for minute. It should be done by an experienced person, of little value, as they often crack. Milk may be used
(2202) E. S. M. asks for a recipe for black kalsomine, which,when applied to a white wall
will give a dull black. For one gallon soak $1 /$ pound ood glue in water, heat until dissolved, and dilute to one gallon. Mix with this lamp black, and if desired a ttle whiting to give it a body
(2203) R. B. asks for a formula for a Iix oil of amber (refined) and olive oil, 1 pound of each with 1 ounce tincture of henna. 2. How to destroy
water bugs and other insects that are in dwellings. A. water bugs and other insects that are in dwellings. A.
Use fresh Persian powder; for water bugs use powdered bora
(2204) A. B. S. asks: Will you kindly advise me by return mail if there are any two or three kinds of metal that will form an electric current when
brought in contact with each other? A. Practically no. (2205) L. A. J. asks for a receipt for making waterproof cement, to be used in constructing aquarium. A. Take 25 parts gutta percha in shreds
and melt it carefully. Add 75 parts ground pumice stone, and then mix in 150 parts Burgundy pitch and
(2206) E. W. M. asks: 1. Can No. 24 cotton-wound copper wire be used for the secondary
coil of an induction coll? If it can, what should I use for the primary coil? Also, how much tin foil is neces. sary for the condenser of such a coil? A. Wire of this ize is not suitable for a spark coil. No. 36 should be
used. Two layers of No 16 would answer for the primary of an induction coil 8 or 10 inches long. It re
quires from 30 to 40 square feet of tin foil for the con quires from 30 to 40 square feet of tin foil for the con-
denser. 2. How many cells of Grenet battery are necessary to operate it (size of zinc and carbons $43 / 4$ by $13 /$ Can No. 24 wire be used like the one in Supplement, No. 19, page 301? A. Yes. 4. How many Grenet cells are needed to run a locomotive so made, the track being of copper and about
five feet in diameter: A. Two or three. 5. What is a good formula for blue prints on rough drawing paper A. For informat
Nos. 585 and 514.
(2207) H. H. G. says : I would like you to explain in the Scientific American why the moo
which fulled on April 5 was so late in getting up? On cording to te $\mathrm{N} . \mathrm{W}$. has caused considerable comment about here, as moon at that stage rise so much earlier than this one. A. On pril 7 the moon rose at 21 h .9 m . by our almana,
The moon is generally very steady in her habits of rising nd setting. Mankind and their time keepers are not so (2208) W. L. asks : 1. Would a cast ron ring two inches diameter, two and one-half inches for a small electric motor, or would it not be thick
enough? A. Better use a ring formed of wire. Cast
iron will not answer well in this place. A. Please tell ron will not answer well in this place. A. Please tell Something which they blow out of their mouth, which will ignite by a flame? A. A piece of lamp wick an
inch long is soaked in nitrate of soda solution. This is inch long is soaked in nitrate of soda solution. This is
lighted and embedded in tow, which is held in the mouth lighted and embedded in tow, which is held in the mouth
By blowing through this or by closing the mouth on it, By blowing through this or by closing the mouth on it,
the effects can be produced. 3 . What elements does the hew Edison battery contain, and what solution? A inc and solidine caustic potash and water. 4. If a current of 110 volts be passed through a rheostat, which will be reduced -the volts or the amperes? A. The amperes. 5 . Why is it that if a current be turned on to a motor too quickly, it will burn the armature out? A. Because the resist-
ance of still or slow-moving motor is so small as to too much of the current to pass.
(2209) S. B. asks : Is hypnotism a hum bug or not? A. Hypnotism is a legitimate subject of tudy for scientists. It is still a subject of investiga-
tion, and no very definite conclusions have been ton, and no very definite conclusions have bee rally be set down as impostors.
(2210) R. M. N. asks: 1. Please give the method of embalming flowers, and chemicals used? A. making wax imitations or copies, and this is really the best approach to the real thing. No good embalming process has been discovered applicable in all cases. 2 Give process of making India ink. A. It is made from fine lampblack compacted and cemented with
glue. The finest black is said to be derived from pork lue. The finest black is said to be derived from pork at. The glue is made from Buffalo hide. The process
is described in "Workshop Receipts," 2 d series, p. 335 . is described in "Workshop Receipts," 2d series, p. os wheel? A. A large wheel. 4. Can fish be drowned? If so, under what circumstances? A. Yes; if the actio of their gills is disturbed or interfered with.
(2211) S. B. asks : 1. How to temper a drill so it would be hard enough to drill holes in glass? A. A drill heated to a low red, and plunged in a strong solution of chloride of zinc, will drill glass. 2. electricity, so as to enable me to work on electricity or o experiment on various subjects? A. "Experimenit does not treat solely the subject of electricity. (2212) J. C. B. says : A dispute te arose valve has an outlet or a waste pipe of 3 inches in valve has an outlet or a waste pipe of inches in
diameter. As the safety valve is weighted at 100 pounds to the square inch, one person contends that a 2 inch waste pipe will give abundant outlet. Others contend that the waste pipe should be of the full dimen-
sion of the orifice of the safety valve. As the steam exhausts into the atmosphere against 15 pounds to the square inch, it seems reasonable that 22 inch waste pipe
would give abundant room for all the steam to escap would give abundant room for all the steam to escape
which would 1ssue from a 3 inch aperture against a hundred pounds pressure. A. A $21 / 2$ inch outlet is generally used for a 3 inch safety valve, although a 2 inch outlet will discharge all the steam that will escape hrough a 3 inch valve as ordmarily used. The con-
struction of safety valves does not admit of their full struction of safety valves does not admit of their ful
opening, seldom more than one tenth their capacit hen opened under boiler pressure.
(2213) W. R. writes: I have 30 cells of ravity battery, each cell having an E. M. F. of 1 volt nd what candle power battery do for electric lighting it be as good for the purpose, and give the same amount of current, as 15 cells of bichromate of potash battery, each cell having an E. M. F. of 2 volts? A. Owing to the great resistance of the gravity battery, it is not
adapted to electric lighting purposes. By applyin ohm's law, you will readily see the difference betwee the two batteries. Thirty cells of gravity battery would have a resistance of 90 ohms at least. A 30 volt
lamp has a resistance of 25 ohms. The least possible lamp has a resistance of 2 ohms. The least possibs ing to Ohm's law $\frac{\mathrm{E}}{\mathrm{R}}=\mathrm{C}$ we will have $\frac{30}{115}=0.26 \mathrm{am}-$ pere. The lamp requires a current of $1: 20$ amperes, Under the same conditions the bichromate battery
would yield a current of 0.92 , which is about 315 times greater than that from the gravity battery, but still inufficient for a single 30 volt lamp.
(2214) J. E. F. L. asks: What is the esired object to be attained in " squaring the circle" " A. It resolves itself into finding the ratio between cir-
cumference and radius. The original idea was to (2215) W
(2215) W. M. D. writes: Can you tell me of some plan for preventing the green stains on We have a soldiers' monument with a bronze tablet We have a solito monch and the marble below the tablets is streaked with green. I would like to know how to remove the stains and to prevent the formation of more in the future. A. Treat the stains by process given in query 2176. When the marble is clean, go over
it with hot paraffin. The cure will not be a perfect one.
(2216) C. F. T. writes: 1. Is there any way I could stain or color a white glass bottle to a deep ruby color? A. Mix clear dammar varnish with How can I smooth the inside of a piece of half inch gas pipe about $31 / 2 \mathrm{ft}$. long? I have neither drill nor reamer stick coated with glue and emery. The operation may
(2217) F. E. K. J. asks: How can make a fluid like binders use in ruling better paper? made same with aniline and water, but it seemed flow too freely. A. Add a little gum arabic solution to your ink. Aniline will fade. A dilute solution of sul-
phindigotic acid with gum arabic would be more
permanent.
(2218) W. H. writes : Every week I re
(2218) W. H. writes : Every week I re-
ceive an English paper containing an advertisement wherein the word "patentor" occurs. I am unable to
ind authority for the word. Will you kindly inform
me if it is proper, and if so, why is it not generally
used? A. Patentee means one who has patented, and is used? A. Patentee means one who has patented, and is
applicable to all recipients of patents. Patentor indicates one who is engaged in patenting, and while it could be used in the other sense, seems to present no particular advantage, and certainly lacks authority
(2219) G. H. S. asks: If there is any fuid or liquid in existence which always remains the same in weight and quantity, and which climate has no
influence on. A. Probably mercury comes the nearest influence on. A. Probably mercury comes the nearest
to your requirements; glycerine, or a non-dryirg oil, as olive or sweet almond oil, approximate (2220) W. H. O. writes: Is there any difference in the degree or extent to which water and (or) oil may be reduced in bulk by forcible compression under the air pump or otherwise? A. Each fluid has its
own coefficient of reduction
(2221) O. O. asks: How is it that tele graph lines make a musical sound when there is no per-
ceptible breeze blowing? A. There seem to be particular directions and strengths of wind that correpond with the natural vibration period of the wires. A strong wind out of accord may have little eff
where a slight wind in accord has a powerful effect.
(2222) A. W. G. asks : 1. A current of lectricity is said to flow, always, from the positive to the negative pole when they are connected by a conduc-
tor. If this is correct, how, in working a differential duplex, with the positive pole of the battery to the ground and the negative to the line, can the current divide at the relay so as to pass through both coils? A A current always divides in a branched circuit in pro-
portion to the conductivity of the different branches. What is meant by "counter electromotive for Counter electromoction with electric light circuits is to polarization in the lamps. It is a current which op(2223) J. B asks (1) for the form apply to the tin in making tin types. The formula and process of developing and finishing. A. The plate is
coated with a collodion made as follows, but which coated with a collodion made as follows, but which can be bought at photo dealers ready made:

Collodion.

Alcohol and ether equal parts, gun cotton sufficient to make moderately thick film, eay 5 or 6 grains to the ounce, put the cotton in the ether first, whe
saturated pour in the alcohol, to which add

Iodide of ammonium
 Bromide of cadmium

Bromide of copper
There are 8 grains of salt to the ounce. When the collodion has set, the plate is immersed in a silver bath, unce of distilled water and kept there from 2 to 5 minutes. It is then put into a plate holder, exposed for 9 seconds in the camera, and developed with the fol owing:
Water 64 oz
Protosulphate of iron................. 4 "
Acetic acid......................... 4 "
Alcoholic solution of tannin, ten grains to
the
The acid and tannin solutions should be added after iron has been dissolved. The developer has to be flowed
over the plate with one sweep. The picture is fixed by putting the plate into
Cyanide of potassium

Water

Then washed and dried. We obtain the above particulars from "Photography in the Studio," by E. M. Esthe December number work better to be of larger (2224) H. R. N. writes: I have made simple electric motor described in Supplement, No. 641. It runs finely when connected as a shunt machine
on Edison current of 110 volts. 1. Can I run it with the caustic potash battery described on page 408 of "Exper1mental Science"? A. You can run your motor with the caustic potash battery, but it will require about 20 cells
connected, 5 in parallel, and 4 in series. ells and what size should they be to run a. How many long, 3 feet broad? I have motor wound with No. 20 wire, 100 feet on each magnet coil. A. For running a boat you would require a more compact battery. Bet-
ter use a plunging bichromate battery of 6 to 8 cells, ter use a plunging bichromate battery of 6 to 8 cells,
with carbon and zinc plates 6×8 inches. 3 . What size propeller will I need to run the boat at a fair speed? A. You would
diameter.
(2225) R. A. writes: 1. I should like to now why they use permanent magnets in the telephone now in general use. A. Permanent magnets are
used in telephones to avoid the necessity of a battery, involving expense and trouble. 2. A telephone man told me that it was necessary to have the receivers exactly equal, that is, have the same size coil, core, and
tympanum. Is this true, and why? A. It is not true. 3. tympanum. Is this true, and why? A. It is not true. 3 .
If brass is made of copper and zinc, does it form a batIf brass is made of copper and zinc, does it form a bat-
tery when placed in acid and water, and is that the reason it makes a sore on the flesh by decomposing the
fuids, and they claim it cures rheumatism? A. It may diseolve, but forms no galvanic couple properly speakoxidizing cos a sore by the poisonous action of the alloy of copper, nickel, and zinc. 5. Are there more amperes given by a number of cells connected in multiple than one cell with an equal surface of carbon and . Is the chemical action of dry batteries the same as others, and why can it be restored by reversing a current through it? A. Yes; almost any battery can be restored more or less as described. 7. I find that in a pair good connection between the two poles by an iron armature, the magnetism remains after the current has ceased, this is only when there is a clean connection. If paper or
any non-magnetic metal comes between, it ceases. I

What and why is it? A. The paper breaks what ma what and why is it
be termed the ma
seasoned? A. By diction coil in the telephone instead of a direct curren I should think it would be unprofitable on account the resistance. A. To avoid the necessity for heav
(2226) A. T. O. writes: 1. I have a solid flame gas furnace. Is it a good thing to use in heating tool steel for forging and tempering? A. Yes, if the temperature is high enough. 2. What is the caustic mention lately? A Negative element iron, positive element zinc, depolarizer oxide of copper, resting on the iron plate, exciting liquid caustic soda, or caustic pot ash in'solution, E. M. F. 07 to 09 volt. Resistance very low, current very constant. 3. A ton of water falling 10 feet will do 20,000 foot pounds of work. Now, I main ain that if it be allowed to do its work by falling through the medium of an overshot or a turbine wheel provided friction be left out of account, and, in the case of the overshot, that none of the water be discharged from the buckets until it reaches the lower level. Am
right? A. It is immaterial. On the whole perhaps the right? A. It is immaterial. On the hichest efficiency though turbines have in some instances given about a good results.
(2227) L. H. asks : How many gallons of water can be evaporated with a ton of coal? Does
salt water evaporate as fast as fresh, under similar conditions, and if not, explain difference? What is the be where coal is used as a fuel, and where can I get inormation as to the cost of same? A. The evaporation power of a ton of bituminous coal is equal to about , 1,20 . As saturated brine boils at 22, Fan., instead of coal will be somewhat less for making salt. By the reenerative process of utilizing the heat of the vapor of vaporation for heating and concentrating the incoming brine, it is claimed that a much greater evaporation
effect is produced per pound of coal, a possibility early 15 pounds of water per pound of coal. By ad an you may obtain the state of New York and Michiese States.
(2228) W. D. M. asks: 1. What is the . M. F. of Fuller's battery? A. About 2 volts. 2 four to six hours a day? A. It depends on the amount of work done. Probably 4 or 5 days. 3 How many quart Bunsen battery cells will it take to run the simle electric motor, and how mauy days will they run the connected 6 in parallel and 2 in series. 4. Wi wrought iron do to wind the field magnet on? A. Yes A. It is not as good as the wire. 6. Can I use insulate iron wire No. 19 to wind the core of the armature? winding of armature and field magnet? A. No. 18. How many revolutions will it make a minute? A About 2,500 . 9. What fraction of a horse power is it
(2229) J. B. P. asks : Why does a tre row round and not square or any otber shape? here is nothing in nature on the square, except the forms of some crystalline minerals. A circle is the center, a circle becomes a natural sequence $!n$ their out ard form.
(2230) E. H. asks: Is there any agent known which will restore the ductility of sheet iron,
which has been annealed, otherwise than rolling? A Rolling or hammering is the only way of hardening inc. Its toughness cannot be restored except by rol ing at the proper temperature.
(2231) O. P. Q. asks for a rule to find the
given time. Say 2500 pounds 460 feet in one minute
A. Multiply the load in pounds by the height in feet per minute and divide the product by 33,000 . Thus $\frac{2500 \times 400}{33000}$
riction of engine and hoisting gear
(2232) G. W. T. asks : What is the dif cre of amount of yearly evaporato bedween on cre of water? A. The difference between the amount of evaporation on water, plowed land, and grass is ver ncertain, depending upon the supply of water in the , and water is greatest, amounting to about 0.08 of a pound er square foot per hour at a temperature of 50° in ght breeze. Plowed ground less and grass more ess, according to condition of soil beneath. The river basins of the northeastern part of the United States and estern Europe evaporate abont one-half the total rain all, while the great basins of the Amazon and the Mis issippi evaporate four-fifths of the total rainfal The entire Nile basin evaporates about 96 per cent o surface of the world gives an average of about 75 per nt of the total rainfall upon the land
(2233) W. E. F.-The bird is the Bo hemian waxwing (Ampelis garrulus L.) Habitat times appearing in immense roving flocks south some times to 35° " (Coues) : also "Northerly hemisphere northerly, wandering south in vast troops at irregula periods. In America, south, regularly in winter to the orthern tier of States, in the Rocky Mountains muc further, casually to about 35°. Rare on the Pacific coas to the United States border in the Rocky, Mountaing nests in trees or bushes in the crotch of a bough or sad dled on a limb " (Coues). Eggs larger than those of the cedar waxwing. Your other queries will be answered
(2234) C. H. V. asks : What will make (2234) C. H. V. asks : What wimer soft and limber, other than by immersion in eak sulphuric acid bath? A. Boiling strong solution of chloride of zinc may be tried. It 1 not easy to suggest anything that will effect the purpose without injury to the fiber.

to inventors.

An experience of Yorty years, and the preparation ot ionts at home and abroad, enable us to understand the taws and practice on both continents, and to possess un nopsis of the patent lawr of the evited States and and oreign countries may be had on application, and persons broad, are invited to write to this office for prices, hich are low, in accordance with the times and our ex
 way, New York.

INDEX OF INVENTIONS

For which Letters Patent or the United States were Granted

May 6, 1890,

AND EACH BEARING THAT DATE

Adjustable table, R. S. Car

Alarm lock, P. Francis...
malgamator, E. D. Rot
Ammonia engine, aqua, J. H. Campbell mmonia engines, apparatus for securing the ab
sorption of exhaust ammonia gas from, C.
Campbell
Cher

Anchor attachment, H. L. Moule

Anti-friction wheel, C. G. Den
A wning. T. W. \& B. T. Wood.
Ax, wood chopping, o. King............
Axle journal box, car, w. O. Dunbar.
Axle, self-lubricating, T. J. Weaver..
A xle, self-lubricating, T. J. Wea
Axle, vehicle, L. M. Doddridge.
Baby walker, A. Rosenthal
Bag. See Traveling bag.
Ball seater and capper,
Ball seater and capeling bag. combined, J. w. Carver. Band cutter and feeder, M.
Band tie. J. R. McLaren, Jr Band te. J. R. McLaren, J.
Barber's appliance, A. C. Os
Barrel machine, H. J. Gilber

Barrels, making, H. J. Gilbert....................
Basins, sewer gas exciuder for wash, F. B. He bert...........................$~$ Bathing apparatus, Swank \& Cosner.............. reloading electric car, J. C. Chumberiang, an Jr... Belt, electro-galvanic, A. Dow
 Bench. See Work bench.

Binder, tem porary, D. Moynahan

Blacksmith's tongs, J. T. Spencer....................
Block. See Fuse block.
Board. See Bulletin board. Multiple switc
board.
Boiler. See Steam boiler.

Bolt heading device, E. Hubner....
Bolt trimming machine, F . Mutimer Bolt trimming machine. f .
Bolting reel, R. A. Stubbs.
 R. Miller.
ookbinder's and printer's dry pressing, sheet t. ing, sm
Jones
Book cutting machine, E. Girtanner
Boring machine. C. II. Irwin et al..
Bottle corking machine, E. Ermold
Box. See Cigar or tobacco box. Letter box.
Brace. See Rail brace.
Bracket. See Fence bracket. Shelf br
Brake. See Car brake. Wagon brake.

Brake hose, el McIntosh

Bridge, pontoon, S. N. Stewart...........
Broiler and baker, combined, G. Milner
Brush, fountain, W. H. Heinz
Bulletin board, baseball, Grozier \& Anderson.
Burial casket, J. D. Ripson (r)
Burner. See Gas burne.
Burner. See Gas
Burner, T. Wall
Button, S. C. Howa
Button fastener, F. A. Smith
Button hole cutter, E. J. Toof
Lev
able grip carrier sleeve, J. Ste
Can, Clark \& Folsom
Can capping machine, S. Lake......
Car brake, railway, Hoadley \& Bem
Car coupling, Bacon \& Sellers
Car coupling, I. Bradfield.
Car coupling, M. M. Green
Car coupling, E. Scott.
Car coupling. Westbrook \&
Car door, T. G. Ruffhead
Car door brackets, catch for,
Car, dumpistener, H. E. Hoke.
Car, dumping, Chevalier \& Bu
Car seat, street, H. W. Libbey
Car, stock, G. D. Burton..
Car, stock, J. H. Kimball.
Car wheel, balanced, P. H. Grifini
Carburetor, J. J. Cooper....
Carburetor, w. H. Shannon
Carburetor, J. S. Tibbets..
ard cutting machine, M. Meria
Carrier. See Cash carrier. Trace carrier
cart, road, c. L. Barrett........ H. H...
Cartridge indentor, W. S. Tobie
Cash carrier, A. A. Callie.
ches, making garment or fabric holding, G.
Phelps
427,324
$\pi, 437$
$42 \pi, 182$
$42 \pi, 434$

427,426 $.427,170$.42735 4 427,258

Cement, establishing units of measure in co
pounding Portland, Trump \& Cament tubes, machine for making. D. Zisseler. Chair, desk, and table, combined, o. Fritz Chill for car wheels, P. Connelly. Chlorine, obtaining, R. Dormer Chopper. See Cotton chopper
Churn, J. M. Curtice.......... Churn, J. H. Rebok et a
Churn, P. A. Schuch...
Churn closure, H. Broka
Cigar or tobacco box. S. E. Warren

Cleaner Sarroue cleaner...................................
Clip. See Spring clip.
Clod fender, S. B. Davis
Clock winding mechanism, A. Bannatyne
Clock winding mechanism, autounatic, o. Urban
Cloth, etc., steam box for dampenin Cloth, etc., steam box for dampening, D. Gessne
Clothes rack, ironing table, and clothes drie combiued. J. S. Cole.
Clutch, Moore \& White
Clutch, friction, J. D. Ehrman
Clutch, friction, A. W. Jones......................
Coal and other minerals, separating and clean
ing, Luhrig \& Cuninghame..
Coal chute, R. A. McCauley....
Coal screen, Simpson \& Stockett
Coal separator, W. H. Sexton...
Coffin, S. \& C. A. Blodget.
Coke ovens, portable bottom for, Evans \& Adams
Moore...
Cotters to
Combustion,
ingstone........
Commutator for electric motors, A.
Cork puller, automatic, E. D. Middlekauif

Corn shocker, H. Levarn

Corset fastening. T. J. B.
Cosmetic. J. B. Strong.
Cotton cher
Ellis...
Coupling. See Car coupling. Hose coupling. Pipe
coupling.
Crane, S. Forter.
Crusher. See Ore crusher
Cuff holder, A. Goulding
Cuff holder, A. Gouldin
Cultivator, C. Albersen
Cultivator, F. C. Field
Cultivator, steam, C. R. S.
cup. See Oil cup.
Cut-off for rain water spouts, S. T. Suddick. Cutter. See Band cutter. Buttonhole cutt Damper regulator, C. G. Jewett.
Dental elevator, D. Siddall...
Dental matrix. W. H. Marshall.....
Dental plugger, electric. W. E. Gib
Ditching machine, grader, and loader, combined
w. H. Sanford

Dock, dry, O. Von Nerta....
Door, freproof, J. W. Rapp.
Door guard, trap. J. Kearney
Door lock, J. F Thompson
Door opener, A. Hotaling

Drawer equalizer, J. I. Knaus..
Drawer, furniture, J. H. Knaus.
Dredge, w. S. Fickett........
Dress form, , R. R. Hepert.....
Drier, E. R. Shaw
Drier, E. R. Shaw...
Dynamo requataor, W. H. Ekins........427.163,
Earrings, ear wire for, E. A. Lehmann

Electric loop switch, C. E. Scribner...
Electric machine, dynamo, D. B. Brac
Electric machine, dynamo, D. B. Brace.............. 427,123
Electric machine, magneto, c. E. $\mathbf{4 2 9 4}$
Electric machines, iron core for dynamo, M. De-
prez....................................
Electric meter alternating current, G. Westing-
house, Jr
house, Jo
Electric mot

Electric switch, Platt \& Orford....................
Electric switch, automatic, A. S. Kissell....
Electrical collecting device, G. Forbes
Electrical collecting device, G. Forbes..............
Electrical conduit, G. Sprague...............
Electroplating bath for copper, w. B. Hollings-

head. Elevator.

Elevator. See Dental elevato Elevator, T. P. Ford.......

Enyine. See Ammonia engine.................... Steam engine.
Steam or other engine. Vapor and ammonia
engine.
Engine reversing lever, steam, C. Phillips......... 427,268
Envelope fastener, reversible, o. A. De Long.... 422,226
Eyeletting machine, F. W. Merrick...............
Fabric. See Roofing fabric.
Fan, J. M. Curtice.....................
Fan, ventilating, Smith
Faucet, G. C. Sawser
Feed rack, J. X. Mills
Feed water heater, F. L. Mc. CGah
Fence bracket, Kramer $\&$ Gee.
Fence bracket, Kramer \& Gee
Fence, straight portable, J. W.
Fence, straight portable, J. W. Viges.
Fender. See Clod fender.
Fibrous materials, transmitter for, G. Beekman
Filtering apparatus, w. M. Jewell... .
Fire extinguisher, automatic, J. Hill.
Fire extinguisher, automads.
Fishing rod. E. W. Edwards.
Flood or water gate, C M
Flower or plant holder, M. H. Christie
Flower pot machine, C. McDonagh....
Flower pot machine. C. McDonagh
Flue cleaner. boiler. J. C. Ba
F'odder fork, C. L. Rudiger.
Forging machine, link, P. Byrne..................
Forgings by electricity, method of and apparatu
for making rolled. G. D. Burton.
Forkings, machine for making rolled, Simonds \&
Grant
Fork. See Fodder fork
Frame. See Vault light frame.
Fruit gatherer, H. D. Reaves...........
Furnace. See Hydrocarbon furnace.
Furnace. See Hydrocarbon furnace.
Furnace grate bar, bonler. J. Livingstone
Furnature clamp, J. Renedict....
Fuse block. ceiling, E. E. Erick
Gauge, J. A. Campbell.......
Gauge, J. A. Campbell....
Game or puzzle. W. E. Go

427,380
427,388

 Gas burner, E. F. Trent.............................. 427,3i9
Gas burner, natural, C. H. Carpenter............ 427,299
Gas jets, attachment for increasing the illumi.
nating power of, v. E. Cohen.................... 427,050
Gases from coke ovens, apparatus for utiling
Gases from coke ovens, apparatus for utilizing
waste. C. C. W yllie.......................... $42 \pi, 2$
Gate. See Flood or water gater. Railway gate.
Railway crossing gate. Swinging gate.
Gate. W. A. Scott..727,439
Gate hanger, Peak \&asaday
Gear wheel, C. H. Morgan.......... 477,103
Gate hanger, Peak \& Casaday................................. 427,439
Gear wheel, C. H. Morgan.......... 427,103
Generator. See Steam generator.
Glove adjuster, M. E. Towse........................ 427,133
Glove adjuster, M. E. Towse.......................................27,279
Gramophone. W. Sueis.................... 42791
Grinding machine, A. B. Landis............... 42,091
Grinding pearl, ivory, etc., machine for, J. H.
Grinding machine, A. B. Landis...................... 427,091
Grinding pearl, ivory, etc., machine for, J. H.
Lawles.................................. 427.477
Guard. See Door guard.
Gun barrel, spring air, c. J. Hamilton............... 427,313
Gun, machine, J. L. Murphy.... 427,239
Gun, quick fring, Holmstrom \& Nordenfelt...... 427,081
Hame fastening J. E. Bull................... 427,041
Hame fastening J. E. Bull............................427,041
Hammock stand, portable curtained, A. J. Wes-
ton.................................... 427,490

Heel building machine, J. E. Brown 427
Heel plate, F . H. Richards........
Malder. See curf holder. Fopowe or plant holder.
Match bolder. Paper holder. Plate hold-
er. Sponge holder. Stub holder. Tool
holder.
Hominy flake
A. Currie262, 4263
Hood, M. Frey
Hook or shackle, R. M. Ruck..................... 424,482

Horses' hoofs, tool for trimming, A. M. Roberts
Hose clamp, D. F. Toomey..
Hose coupling, C. Eckhard.
Hose reel attachment. I. H. Luther.
Hydrocarbon furnace, Rogers
Hydrocarbon furnace, Rogers \& Wharry............. 427,3;34 $47,36 \pi$
Indicator. See Steam engine indicator.
Inhaler. R. Macdonald 427,179
Inhaler and respirator, J. O. Woods. 427,247
Inhaling apparatus, R. Macdonald............ 427.178

Insulating compound, heat, N. C. Fowler.............................427.167,296
Insulator. J. F. Buzby...............
Irou. See Sad iron.
Ironing machine, J. J. Daley...................... 427,46
Ironing machine, R. H. Dusenbury......... .. 427,4
Jack. See Wagon jack.
Jigging sieve. hydraulic, o. Bilharz............... 427,
Joint. See Railway joint. Railway rail joint.
Joint. See Railway joint. Railway rail joint.
Kinn. See Tiie or brick kiln.
Knitting machine latch needle, o. Treat.......... $42 \pi, 134$
Knitting mechanism, circular, Davidson \& Dixon. 427,465

Lamp, W. W. Willts...22,207
Lamp; Argand, C. s. Upton................ 427,195
Lamp attachment, are, A. P. Seymour.....

Lathes, tool carriage for, W. F. Barnes.............
Lawn edge trimmer, H. H. Dille................
Lead and base bullion from slags mattes, and
speiss, apparatus for separating, W. B. Dev-
speiss, apparatus for separating, W. B. Dev-
ereux ..058
Leather cutting tool, H. Comstock.......
Leather cuttung tool. H. Comstock.................. 427.461
Leather scouring machine, F. Monk.............. 42.701
Letter box, s. A. Darrach.................... 427.61
Liquid asitar.
Liquid agitator, C. J. Hauck, Jr
Lock. See Alarm lock. Door lock. Mortise lock.
Lock trimming, G. R. Johnson....... 4
Locks, combination finder for, M. Jackson...... 4
Locking attachment. electric, H. J. Meyers......... 427
427
Loom take-up mechanism, J. Riddiough............ 427,.2in
Marble, polishing. Fowler \& Ott................ 427,262
Match box holder. E. C. Bachert. 427,21
Measuring device, distance, H. Emken..............
Meat casings, machine for reversing,
Mechanical movement, W. Bell.......................... 427.7496
Mechanical movement, w. . . Brock.................. $424,7,038$
Mechanical movement. J. Thomson............. 427,448
Metal rods, rolls for reducing and straightening.
W. Allderdice..288
Mill. See Rolling mill. Sawmill.
Mill. See Rolling mill. Sawmill.
Minnow trap, J. . . . Cochennour................ 427,049

Motion, apparatus for transmitting and convert-
ing, E. Wright......................................427,42
Motion, mechanism for transmitting rotative,
Smith \& Caldwell 427,
Motor. See Electric motor.
Mower, H. Lindestrom........... 427,288
Mower attachment, center cut, G. W. Surm.... 427228
Mutiple
Multiple switch boara apparatus, J. J. Carty 427,154
Multiple switch board, divided, J. J. Cart.....
Multiple switch board test circuit, C. E. Scribner. 427,120
Multiple switch board testing apparatus, C E.
Soribner
Music boxes, feed mechanism for, E. Malke..........................77,11:7
Nail. See Picture nail.
Nut lock, J. A. Bryan.
Nut lock, W. McQuiston....
Oil cup, . S. Hall........
Oil, extractink, W, T.
Oil, extracting, W. T. Forbes.............................. 4277,410
Ordnance, gas check for, H. Schneider
Orc crusher. E. D. Roth...... 427.44,
Ores, jigger for treating. O. Bilharz...
ores. percussion frame with revolving belt for
Or

Organs, pneumatic action for. V. Willis... 427,209
Packing. piston rod, F. A. Carlson................ 427,045
Padock, registering. R. G. Ward............. 427,884
Paint, hydrocarbon device for burning off, J. P.
Hayes................................. 427,474
Paper bag machines, delivery mechanism for, J.
Arkell 427,289
Paper fixture, toilet, J. T. \& W. J. Donovan..... 427,407

Founded ty Mathew Carey， 1885. HENRY CAREYBAIRD \＆CO． ndustrial Publishers，Booksellers，and Importors， S10 Walnut St．Philadelphia，Pa．．U．S．A． and circulars，the whole covering every branch of sci－ ence applied to the Arts．sent free and free of orstage to any one in any part of the world who will furnish his
 ELECTRICAL BOOKS

FOR SA工以。
Repistered DUTCH－BELTED COWS a and HEIF－
ERS，superbly marked，and of the best stock．

FOR SALE．

C．H．DE LAMATER \＆CO． have closed their extensive manufactory at the
foot of West 13th Street，New York，disposed of Hot Air Pumping Engine and Steam Pump busi－ ness to the DE LAMATER IRoN WORKS（incorpo－
rated 1889），and to close out the remainder，offer rated 1889），and to close out the
for sale a very desirable lot of
Lathes，Planers，Drilling，Shaping，Slot－ ting，Boring，Cutting Off．Nut Tap－ ping，Boit Cutting，and Milling Ma－
chines，Gear Cutters，Emery Tool Grinders，Screw，Machines．
Vises，Lathe and Planer Vises，Lathe and Planer
Tools，Drills，Taps，
Small Tools，Boiler Punching and Shear－ ing Machines，with lot of Small Tools， Blocks，Rope，Bolts，Nuts，Washers，Packing，Pipe Fittings，Brass Valves，Bar Iron and Steel， Steam Hammers，and three Rider

PHE PENNA．DIAMOND DRILL \＆MFG．CO． steam Engines．Diamond Buildris of High Class
Machinery
 Blake＇s Belt Stud Grin I

TRIUMPH WATER MOTOR Bayton，ohio Best power
and all small Power Outils．
DERFECT

aAfter being on the Market Four Years

 ROCHESTER MACHINE TOOL WORKS，Brown＇s Race，ROCHESTER，N．Y

DEARLST．OnELMST NEW YORK－

the DIRECTORY of

SAVE BELTING！	Satara Belt Dressing
SAVE POWER！	

$\frac{\text { Patent Solicitors，}}{\frac{\text { Model Makers，}}{\text { Novely Mig．Concerns }}}$
 WEBSTER＇S UNABRIDGED，

Jouman of isfitu werivors． $\$ 3.00$ per year．with above PlrEMIUMS．
$7 \leq 4$ Broad．WaJ，INew Torlz．

ROCR BREAKERS AND ORE CRUSHERS

THE＂FISHKILL＂CORLISS ENGINE | Fishkill Landing Machine Co．，Fishkill－on－Hudson，in．Y． |
| :--- |

touching，makes
vious wetting．
Manufacture
FRICTION PULLETS CLUTCHES and ELEVATORS PROVIDENCE．R．I．
WINERAL INSULATION，FIRE HOOL weidewimew in bi．
$\xrightarrow[\text { ALUMINUM，－DESCRIPTION OF THE }]{\text { method of manuiacturinc }}$

SAICEMONEX Before ound
BICYLE
or TPEWRTER，

WASTHINGTOM and Aunt Columbia think，etc．，of
S10

$\$ 10.00$ to $\$ 50.00$

Scientific Pook Catalogule
 mailed tree to any
MUNN $\& \mathbf{C o}$

Hblishers Scientitic American，
$\mathbf{3 6 1}$ Broadway，New York．
ROSE POLYTECHNIC INSTITUTE，

ICE and REFRIGERATING MACHINES
The Pictet Artificial Ice Company（Limited），Room 6，Coal \＆Iron Exchange，New York．

PROPOSALS．

NOW READY．
3 xperimental 8 cience，

By GEO．M．Hopkins． 740 Pages． 680 Illustrations．
PRICE，by mail，postpaid，．．．．$\$ 4.00$ SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents．

MUNN \＆CO．，Publishers，

IDEAL MUSICAI BOX
It the thatent Invention in swiss Musical Boxes A merica．Send 4 cent stamest for tock of Musicical Boxes in
JACOT \＆SON， $\begin{gathered}\text { BOO RRAADWAY，} \\ \text { NEW YOMEL }\end{gathered}$
FOR SALE AT A BARGAIN！

 FARMERS NATIONAL BANK，
Budson，

Gates Cornish Rolls Pulverizer

The Scientific A merican PUBLICATIONS FOR 1890.
The prices of the diferent publications in the Unite1
States，Canada，and Mexico areas follows： RATES BY MALL．
The Scientilic American（weekly
The Scientitic American（weekly one year
The Scientitic American Supplement（weekly），one
year

The Sceientitic American and Supplement，
The Scientictic American and Architects and Build－ 8 ：．00
 Proporionate Rates for six Months．
This includes postape，which we pay．Remit by postal
axpress money order，

MONN \＆CO．， 361 Brour

ゆゆDocrisements．

RBER ROOFING． UNEQUALED For Shed or Outbuilding．
cellent roof complete．Any onecanlay $\$ 2.00$ per 100 Sq Feet

INDIANA PAINT \＆ROOFING CO．
Victor Bicycles！

tion，and for anything you
could use a bicycele for． Send for catalogue． THE COPYING PAD．－HOW TOMAKE and how to use；with ane angraving．Practical directions
how toprepare the geatine pad and also the aniinenk
by which the copies are made；how to apply the writter

VOLUNTEER COLUMBIA．

Price，$\$ 90$.
A high－grade wheel in every respect，with the
essential qualities of the Expert Columbia，no THE BEST MACHINE for the MONEY． hines．Hustrated Catalogue fre
POPE MFG．CO．，${ }_{12}^{\text {branch hodsese }}$ VFranklin St，BOSTON． 291 Wabash Ave，SHIOAGO

 NEW KODAKS NEW KODAKS

You press the button，
we do the rest．＂
Seven New
Styles and
coadel with Transparent

THE EASTMAN COMPANY，

SPECIAL MACHINERY and Appliances

тим
95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 877．No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use and all the consequence

FIRE FELT．

THE TRESCOTT
FRUTT EVAPORATORS
Furnaces，Bleachers，and Packing Presses are the Best Machinss on the Marke
Send for Deseriptive Catalogue．
mecor mFl．co．，Fan
ELECTRO MOTOR．SIMPLE．HOW TO

POP SAFETY VALVE ）IMPROV RELIEF VALVE STEAM ENGINE INDIOATOR
 CROSEV STEAM GAGE \＆VALVE CO．IBosionion s．Mase

THE NEW NON－CONDUCTING MATERIAL

STRACUSE MMLLEABE ROUNWORKN

DTIS ELEVATORS
 the standard of the worlo

 otis brothers a co．
GRAVESELEVATORS

T＂

TOOLS，

 ditrot．men． CHEMICAL ICE MACHINES －．m：

Scirutific American The Most Popalar Scientific Paper in the World．

This widely circulated and splendidly 11 ustrated paper is pubished weekly．Every number contains six－
teen pages of useful information and a large number of original engravings of new inventions and discoveries，
representing Engineering Works，Steam Machinery， representing Engineering Works，Steam Machinery，
New Inventions．Novelties in Mechanics，Manufactures， Chemistry，Electricity，Te egraply，Photography，Archi－ tecture，Agriculture．Horticulture，Natural Bistory，etc． Complete List of Patents each week．
Terms of Subscription．－One copy of the scien－
TIFIC AUERICAN will be sent for one year－ 5% numbers－ postage prepaid，to any subscriber in the United States，
Canada or Mexico，on rece Canada or Mexico，on receipt of three dollinim by th
publishers；six montts，$\$ 1.50$ ；three months，$\$ 1.00$ ． publishers；six montts，$\$ 1.50$ ；three months，$\$ 1.00$ ．
Clubn－ P pecialrates for several names，and to Post The safest way to remit is by Postal Order．Draft，or Express Money Order．Money carefully placed inside of envelopes，securey sueat，at ane correctiy addressed，
seldom goes astray，but is at the sender＇s risk．Ad－ dress all letters and make all orders，drafts，etc．，pay able to MIUIVIN \＆CO．

361 Broadway，New Yark． TIEI
Scientific American Supplement．
This is a separate and distinct publication from
The Scientific American，but is unitorm therewith In size，every number containiug sixteen large pages full
of engravings，many of which are taken from foreign papers，and accompanied with translated descriptions． THE SCLILNTIFIC AMLRICAN SU＇PLILMENT Is published
weekly，and includes a very wide range of contents．It presents the most recent napers by eminent writers in Useful Arts，embracing Biology．Geclogy，Mineralogy， Natural History．Geopraphy，Archeology．Astronomy， Chemistry，Electricity，Light．Heat，Mechanical Engi－ Ship Building，Marine Engineering，Photogriphy， Technology，Manufacturing Industries，Sanitary En－ gineering，Agriculture，Horticulture，Domestic Econo－
my，Biograohy，Medicine，etc． my，Biography，Medicine，etc．A vast amount of fresh
and valuable information obtainable in no other pub． and valuable information obtainable in no other pub－
lication．
The most important Engineering Works，Mechanisms， and Mannfactures at home and abrobd are illustrated and described in the suppiement．
Price for the SCPPligMENT for the United States and Canada． 85.00 a year，or one copy of the SCIENTIFIC AM－ ERIICN and one copy of the SUPPLEM ENT，both mailed
for one year for $\$ T .00$ ．Single copies 10 cents．Address tor one year for $\$ 7.00$ ．Single copies 10 cents．Address
and remit by postalorder，express money order，or check， MUNN \＆Co．， 361 B

Building Edition

 Single copies， 25 cents．Forty large quarto pages，equal 0 about two hundred ordinary book pages，forming a Iy adorned with elegant plates in colors．and with other tine engravings；illustrating the most interesting ex allied subjects．
A special feature is the presentation in each number ences．city and catest and best plans for private rest－ erate cost as well as the more expensive．Drawings in perspective and in color are given，together with full
Plans，Spec fications，Sheets of Details，Estimates，etc． The elegance and cheapness of this magniflicent work
have won for it the Larrest Circulation of any Architectural publication in the wo

MUNN \＆CO．，Publishers
361 Broadway，New York．
PRINTING INKS：

