

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE FORTH BRIDGE

We give on our first page this week a general view of this most remarkable structure, which has lately been completed, and is now receiving the finishing touches, preparatory for opening for travel.
The Forth Bridge is the most important link in the direct railway communication which the North British Railway and their allies, the Midland Railway Company and the East Coast Companies-the Great Northern and the Northeastern Railway Companies-are seeking to complete between Edinburgh on the one hand and Perth and Dundee on the other, which will enable them to compete with the West Coast Companies for the North of Scotland traffic on equal if not wore favorable terms.

It was in 1882 the plans were adopted. The total feet in diameter at the top, and 36 feet high, which rest length of the viaduct is 8,296 feet, or nearly $15 /$ wiles and there are two spans 1,710 feet, two of 680 feet, fifteen of 168 feet girders, four of 57 feet, and three of 25 feet being masonry arches
The clear headway for navigation is 150 feet for 500 feet in the center of the 1,710 feet spans. The extreme height of the structure is 361 feet above and the ex treme depth of foundations 91 feet below the level of high water
There are about 53,000 tons of steel in the superstructure of the viaduct, and about 140,000 cubic yards of masonry and concrete in the foundation and piers.
The main piers, three in number, consist each of a
rest either on the solid rock or on concrete, carried downin most cases by means of caissons, of a maximum diame ter of 70 feet, to the rock or bowlder clay, which is of almost equal solidity
The stresses to be provided for are those arising from the weight of the structure itself, the rolling load. and wind, as well as from change of temperature.
The rolling load had been taken as 1 ton per foot run on each line of rails over the whole structure, or a train on each line consisting of sixty short coal trucks of 15 tons each, headed by two locomotives and tenders, weighing in the aggregate 142 tons.
The wind pressure provided for is a pressure of 56 (Continued on page 24.)

THE FORTH BRIDGE-LARGEST VIADUCT IN THE WORLD

srientific chmericam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.

O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S. Canada or Mexico....
One copt, six month, for the U.S. Canada or Mexico.
Onecopy, one sear, to an yforeign country belonkink to

The Scientific American Supplement

Building Edition

Spanish Edicion of the Scientific American

NEW YORK, SATURDAY, JANUARY 11, 1890.

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT NO. 732
For the Week Ending January 11, 1890. ARCHoto .

IN IRON AND STEEL OUR COUNTRY NOW LEADS THE WORLD.
The United States may now be said to be independent of other countries both in the mining of its ores for steel and iron and also in the manufacture of the finished product. Heretofore it has been asserted and believed that this country could not furnish the required ores for steel, and resort has been had to imported ores; but the great demand for this important mineral has stimulated new researches and efforts, which have been crowned with success.
The Lake Superior region, for example, has been so greatly developed that the larger proportion of the supply now cowes from that source.
The output of Superior ore for 1889 is stated to have been seven millions of tons, and the estimate for 1890 is nine millions of tons, of which three millions have already been sold at an advance of 75 cents to $\$ 1.25$ per ton above last year's rates. It is understood the entire product will be taken by Western iron men. This may make almost an ore famine here in the East; it is not believed the Cuban ores can be supplied in sufficient quantity to meet the steel demand of this region. There is hope of steel ores in the Southern States. As for Spain, its whole product of seven and a half millions of tons is required for England, France, Belgium, and Germany. All these countries depend largely upon foreign importation for the best steel ores. This country alone occupies the satisf actory position of possessing its own steel ore beds. Many of the Southern mines now worked, although yielding excellent ores for iron, contain too much phosphorus for raking the best steel. It has however been ascertained that by the adoption of the basic process, now extensively used in England, the irons from most of the Southern coke furnaces can be made to yield excellent steel. The introduction of the basic process is now in progress at the South and prospects fora large production of good steel in the near future are cheering. In addition to this there are other mines more recently opened that are beginning to furnish first-class steel ores.
The prices of iron and steel have advanced in Europe to a greater extent than in this country, and consequently, except in filling back orders, there is at pre sent little or no market here for the foreign production. Americans now have almost exclusive possession of the American market. This state of things is likely to continue so long as high prices are kept up in Europe; but when a decline takes place, and English iron makers are willing to sell without profit, and their steamers return to the old practice bringing orer pig iron without charge as ballast, and rails for a trifle
above nothing, it is possible they may work into the market again to a small extent.
The great progress which has been made in this country in mine development and in the manufacture of steel and iron will be evident when we consider that it is but a little more than twenty years since the manufacture of steel rails was begun in this country. In 1867 our production of steel rails was only 2,550 tons. In 1887 it was $2,355,000$ tons, or double the quantity made in England. As to pig iron, we are now produc ing in the aggregate about eight millions of tons a year, all of which we consume, and England produces about the same, of which she exports much. In steel pro duction the United States is ahead of Great Britain, our production being about three and a half millions of tons per annum against three and a quarter million larger than that of the royal kingdom, ours bein about two and a half millions of tons against one mil lion eight hundred thousand tons English produm mil The advanced prices for iron and steel are having a bad effect upon the British shipbuilders, and unless a , lowering soon comes, many of them will suffer loss on existing contracts.

The Total Eclipse of the Sun.

On December 23, 1889, a total eclipse of the sun occurred. The path of the total eclipse pursued a rather unfortunate course for observation. As our map shows, Africa was the favored continent, the region of totality crossing it obliquely from east to west. Hence the path was across the South Atlantic to South America. It formed a species of tangent to the latter continent, touching it in Brazil and Guiana. It took in some of the islands, notably Trinidad. In South America the eclipse was total in the early part of the day, in Africa it was visible in the afternoon.
The physicist and astronomer have of late become more closely related in their work. In old times the obsenvations of eclipses were principally for the determination of data of time. Recently the constitution of the sun and the corona surrounding it have been one of the principal objects of eclipse observation. Recent progress in photography lends itself admirably to this line, and the work done during the present eclipse has been largely accomplished by photographic methods. The corona is the circle of raysthat is seen emanating from behind and all around the moon when the sun is totally eclipsed. Its exact nature is uneven been attributed to a lunar atmosphere. It is,
however, tolerably certain that it has a real and objective existence. It cannot well be regarded as a reproach to modern science that we know so little of it. We are on the average granted but a few hours in a century in which to see it.
Two American parties were in the field. The government party, for which $\$ 5,000$ had been appropriated by Congress, under charge of Prof. David T. Todd, of Amherst College, established itself about 100 miles south of St. Paul de Loando. This place is near the mouth of the Congo River. The other party, under the auspices of the Lick Observatory, and directed by Profs. Burnham and Schoeberle, went to Cayenne, French Guiana, on the northeast coast of South Amer. ica. Unfortunately, the oceanic path of totality made he establishment of satisfactory intermediate stations impossible. Moreover, there is no telegraphic communication possible between the extreme points of obervation.
The English expeditions selected a point near St. Paul de Loando as one station, and established another one upon the island of Trinidad.
At Cayenne the period of totality was only one minute and forty-seven seconds. At the African station it lasted three minutes and fifteen seconds. Between the two stations a period of difference of time of eclipse of two hours and forty minutes intervened. This would have been of special value as a factor in determining the invariability of the corona's aspect were it not that the phenomenon was witnessed under such different conditions as regards the earth's atmo sphere as to deprive this feature of much of its value.

The accounts from the American party in Africa indicate fair success. Seventy pictures were secured be fore totality, and a lesser number after it. During totality clouds interfered with the work. While this work was in progress, the United States Navy ship Pensacola was at sea with a party on board, who also secured a few pictures. The great efficiency of modern "methods of attack" was well demonstrated. With good meteorological conditions it is said that many hundred successive views could be secured, wer it an object to obtain so many. Twenty-two inch plate were used, and on each of them ten views of the phe nomenon were obtained.
The scenic effects are described as most impressive. No perceptible darkening occurred until totality, when at once a strange and portentous semi-obscurity cov ered the landscape. Several minutes after this period i:e lowest temperature was recorded.
The English party report from St. Paul de Loando hat the weather prevented any useful observations.

The New Industrial Era.

Eighteen years ago, a commission was appointed in Great Britain, to investigate the question of the pro bable duration of the coal supply of the kingdom. Some of the results of this official inquiry, given in a paper read before the Statistical Society, suggest some tartling probabilities. At the average rate of increase and consumption which has been going on for the past twenty years it is computed that the Newcastle coal district will be exhausted in 94 years, the South Wales district in 79 years, and the remainder in even less time.
Nothing in the future appears more probable than that within the lifetime of persons now living theindus rial su premacy of Great Britain will passaway with the exhaustion of her coal fields. Switzerland, Italy, and the Scandinavian peninsula are destined to become the great mauufacturing districts of Europe. This extraordinary industrial re volution will be brought about by the transmission and distribution, by electrical means, of the inexhaustible and permanent water power which is now running to waste in those countries. Indeed, this power is already beginning to be successfully utilized by the skill of the electrical engineer. More than a year ago we visited in Switzerland a woolen manufactory of 36,000 spindles, with the usual complement of auxiliary machinery, which was operated wholly by electric power conveyed from a distant stream, deriving its never-failing supply of water from the melting of Alpine snows. To an electrician, the sight was an inspiring one and full of significance. In the new era which is advancing with such rapid strides, the Swiss republic may not improbably become the foremost industrial nation of Europe. Nothing is more certain than that the next quarter century will witness amazing changes in the commercial relations of the nations of the earth, in consequence of the de velopment of the conception of the electrical distribution of energy.The Electrical Engineer.

The Malvern Hill Marl and Phosphate Company is a w organization which has an unusually rich deposit of marl at the historic farm of "Malvern Hill," in Henrico County, and have already commenced operations on a large scale. The marl beds abound in bones, pet. rified, fossilized, and also decayed, of all shapes and sizes. The beds are situated on Turkey Island Creek, 170 fibutary of the James, and are at the head of a bluft s, patch.

SECOND ANNUAL MEETING OF THE AMERICAN GEOLOGICAL SOCIETY.

The sessions of the above society began, according to previous announcement, on Thursday, December 26 , at $10 \mathrm{~A} . \mathrm{M}$., and occupied six hours a day, besides an extra session on Friday evening. About one hundred members were in attendance. The meetings were held in the new lecture room of the American Museum of Natural History, this city. The hall seats 1,000 people, in which the small company seemed almost lost, and its acoustic properties are such that little could be heard. except by those quite near the speaker. To this may be added the fact that, for some inscrutable reason, most scientists spurn the graces of elocution, seeming quite willing that the best results of their investigations should be warred by defective enunciation. On the other hand, it should be said that the Museum placed every facility at the disposal of the geologists, including the use of two pairs of fine stere opticons.
An address of welcome was made by Morris K. Jesup director of the Museum, in which he predicted that New York City was destined to become the center of science as well as of art and literature. This was responded to by the retiring president, Prof. Jawes Hall, of Albany. Official reports followed, presenting highly encouraging facts. Prof. J. D. Dana was elected president, Prois. J. S. Newberry and Alexander Winchell were chosen vice-presidents, and Profs. Steven son and Williams were re-elected secretary and treasurer. Profs. J. W. Powell, G. M. Dawson, and C. H Hitchcock were made the executive council. Fifteen new fellows were admitted, making the entire number enrolled 188. Three fellows have died during the year, namely: G. H. Cook, State geologist of New Jersey, Rev. D. H. Honeyman, of Halifax, N. S., and C. A. Ashburner, the celebrated mining expert, of Pittsburg. Biographical notices of them were read, and suitable resolutions passed.
The titles of forty-three papers were entered with the secretary for reading, of which less than half were read in full ; partly because the fellows who got the floor aluost in variably exceeded the time which they themselves had set for their communications, thus crowding out their less fortunate brethren. Another, and better, reason was that nearly every paper was vigorously discussed, and in the most friendly temper, which greatly augmented the interest of the meeting. Stenographic notes were taken of these discussions, which will appear in the published proceedings

Among the eminent geologists present were: Dana Marsh, Chamberlain, Gilbert, Lesley, Orton, Proctor Shaler, Cope, besides those whose names have already been mentioned, and others.

The sum of $\$ 1,000$ was appropriated as a nucleus fo a $\$ 10,000$ publication fund. It was decided that the proceedings should appear in an annual volume, to be called "The Bulletin of the Geological Society of America." This is to contain abstracts and discussions copies. The memoirs are to be issued separately as occasion offers and funds permit. The first y ear's bulletin is almost ready for distribution, and the first letin is almost ready for distribution, and the firs
part of the second bulletin, to cover the New York part of the second bulletin, to cover the
meeting, will appear as soon as practicable.
The historical address by Prof. Hall was given in familiar way, reviewing the important labors of pio neer geologists, running back for a hundred years. Special tributes were paid to Prof. Eaton, who was wonderful for inspiring his pupils and auditors with love for science, and who started the idea of summer schools of philosophy, by taking classes on excursion of a scientific nature. Prof. W. B. Rogers, one of the
earliest geologists of Pennsylvania; Dr. Samuel L. earliest geologists of Pennsylvania; Dr. Samuel L.
Mitchell, a man of wide attainments, who made the Mitchell, a man of wide attainments, who made the
first mineralogical survey of New York; Louis Agassiz, ranked among geologists, though a zoologist, whose very presence was a source of strength and courage to
the scientists of this country; Logan, Emmons, Sillithe scientists of this country; Logan, Emmons, Silli-
man, Hitchcock, Gibbs, Vanuxem, and many others were sketched in a masterly way, and the addres closed with a graceful recognition of the labors of Prof. J. D. Dana, who sat by his side.
The intervals between the leading Glacial epochs were treated by Prof. Chamberla in, who held that the continent was low during the first epoch, rose during the interval, and was high in the second. The "orange sands" of Mississippi were really of pre-glacial origin Erosion along the Allegheny, Ohio, and Mississippi Rivers, varying in depth from 200 feet along the Alle gheny to 300 feet south of Cairo, and reaching a breadth of sixty miles along the Mississippi, indicates the length of time between the two epochs. The second glacial epoch did not reach as far south as the Ohio. In the discussion, Prof. W. J. McGee, of the U. S. G. S., supplemented the paper by remarks on phe nomena supporting the same conclusions from regions farther south.
The paper by Prof. Shaler showed that in Eastern Massachusetts there has been a large amount of true mountain building since the Miocene age. This Gay Head. A cloud burst over Martha's Vineyard, a
year ago, let fall five and a half inches of rain in two hours, and washed the cliffs away so as to facilitate in vestigation. The basal formation is Cretaceous; the portion is Pliocene. The same evidence of mountain building can be seen at Block Island. The foldings of these clays surpass in degree those of the Appala chians, though far less in magnitude

In a valuable contribution on Cretaceous plant from Martha's Vineyard, C. D. White, of Washington, D. C., describes tossils, a few of which had been known for a hundred years, but had never been syste matically studied till last summer. His conclusion, in which he was sustained by Newberry and Ward, was that at least the lower clays of the Vineyard series are having revealed a rich flora of that age.
The Larawie group has been bandied about between the Cretaceous and Tertiary ages, by ewinent authori ties, on account of its floral remains. But the confu sion has arisen by adding in the Fort Union group of
the Upper Missouri region, which belongs in the middle Eocene period. Prof. New berry, in his paper on this topic, showed that Clarence King, the original ob server, was right in placing the Laramie with the Cre taceous, because none of the rocks described contain a species which has been found in the Tertiary rocks of Europe. The Fort Union group should be regarded as an entirely distinct formation from the Laramie. The latter contains the coal of Western Colorado. In the discussion following, the important concession was oade by Prof. Ward, the eminent paleobotanist, tha ven the Fort Union might be included in the Creta ceous.
The
The gist of Prof. Emmons' paper on "Orographic Movements in the Rocky Mountains," was that, from observations made during the last ten years, previous opinions must be modified, and two highly important and widespread wovements be added to the list, that had not hitherto been recognized. These occurred the one during the Carboniferous, and the other in Jurassic times. The latter was of such vast dimensions as to have affected the greater part of the continent.
The serpentine of Syracuse occurs in a well-marked dike, cutting directly across the Onondaga limestone The strata near the serpentine are much disturbed, and show the intrusive rock forced out laterally be tween thew. Prof. G. H. Williams, of Johns Hopkins University, gave as further evidence of its eruptive origin the fact that the serpentine is full of inclusion of the country limestone, and of Utica shale, which oc curs 1,000 feet below the surface there, and of granite, which must be still deeper down. The rock is of in erest as being almost the only eruptive rock in the horizontal strata of New York, and is the third known occurrence in the world of the rock in which the Kim-
berly diamonds of South Africa are found. No diamonds have yet been found in it.
One of the most instructive papers of the meeting was by Prof. Orton, on " The Rock Pressure of Natura Gas in the Trenton Limestone of Ohio and Indiana. y the term rock pressure is meant the showing made y a gauge after a well has been shut in by pipes. This determines the size of pipe to be used and distance of market which can be reached. The highest recorded pressure in Ohio is 650, wany being less than 300 pounds; while the range in Indiana is from 350 to 225. The depths of the wells vary from 1,500 in Tifin, O.,
to 850 in Marion, Ind. A table was exhibited showing the close approximation of the estimated pressures to the pressures actually observed in a series of principal wells over a wide area. The basis of calculation was he hydrostatic pressure of a column of salt water tanding 600 feet above tide, plus the distance of the as-bearing Trenton limestone below tide. There is o danger of a cave-in in the gas region, for the gas will not go out of the rock until the salt water forces it out and takes its place. The supply is not unlimited, s so many seem to think. The present reckless waste ful calculations, gas is simple vandalism. According to careful calculations, the supply can last but a few years longer, at most not more than nine. All the fuel and most of the light for 400,000 people in Ohio and Indiana come from this source. Forty glass works, besides
 on natural gas entirely. Prof. I. C. White confirmed he views of Prof. Orton's paper as absolutely true from his own observations in Pennsylvania. The statements of these gentlemen have especial weight
from the fact that we owe to them mainly the great progress made in our knowledge of the geology of the gas-bearing rock during the past few years.
The term "Appomattox formation" was applied in 1888 to a widespread deposit of orange-colored sands and clays in eastern Virginia and widening and thickening south ward. This w as described by Prof. McGee of United States Geological Survey. He stated that the same formation had been recently traced through the Carolinas, Georgia, Alabama, and Mississippi, constituting the pre vailing surface deposit in these States. Although its age has not been determined, it lies beween the Miocene and Pleistocene deposits. By rea-
datum from which the stratigraphy of the coastal plain may be reckoned. It also shows a rather short age of continental depression.
Dr. J. S. Diller, of Washington, D. C., described, and illustrated by lantern slides, the distribution of re markable sandstone dikes in Tehama and Shasta Counties, in California. They occur in joints of Cre taceous shales, and contain fragments of the same They vary in width from a mere film to eight feet The longest one is nine and a third miles in length They are evidently filled from below. The geologica tructure of the country is especially favorable to th formation of such dikes, by the welling up of sand in issures made by earthquakes. It will be remembered that sand spouts are common seismic phenomena. Regions studied by Prof. G. H. Williams in Norway were described and illustrated in a paper by him. They show remarkably the effects of contact and of regional metaworphism. From rocks most diverse in origin the same kind of metamorphic rocks have been produced; so that it is not always safe to state that a ertain metamorphic rock came from a particular un rystalline rock. The regions visited were those in which are exposed the famous mica schists, containing corals, trilobites, and other fossils, as described by Rausch, Toernboehm, and other Swedish geologists. In the ensuing discussion, Prof. Emerson, of Amherst called attention to the fact that Profs. Hitchcock and Dana described almost exactly similar rocks from Bernardston, Vt., previous to those described by Euro pean authorities as types of metamorphism.
Several kengthy papers of great value were presented by different members, on the A rchæan rocks of Minnesota and Canada, presenting many facts new to sc ence and having an important bearing on the ques ion of the taxonomy of the rocks, and giving rise to varying opinions as to the correct correlation of the trata. The most noteworthy of these were offered by Profs. Winchell and A. C. Lawson, the latter of the Canadian Geological Survey.
Four papers were presented regarding Alaska and the Canadian Northwest. The first was by I. C. Russell, U. S. G. S., on the "Surface Geology of Alaska," from recent data. The observations of this expert in glacial geology failed to support John Muir's theory of a southward-moving glacier through Behring Straits. The northern part of the peninsula shows no evidence of ancient glaciation, but the ancient as well as the existing glaciers were confined to the mountains of the southern part of the territory and the Aleutian Islands. In Mr. McConnell's paper it was shown that east of the Rocky Mountains the ancient continental glacier extended as far north, at least, as the wouth of the Mac kenzie River, the bowlders of the drift showing that the ice came from the east and southeast.
The next paper, by J. B. Tyrrell, of Ottawa, showed an immense amount of work concerning the "PostTertiary Deposits of Manitoba and the Adjoining Territory." It was quite technical, and confirmed the theory that the ice came from the east, and not from the mountains, the general movement being changed oward the south after fairly getting into the great valley. The evidence of two glacial epochs is not known in Canadian territory. The fourth Alaskan paper was by Prof. A. S. Bickmore, of the Museum, on the "Glaciers of the Selkirk Mountains and Alaska." It was profusely and magnificently illustrated by original and unique views prepared under his personal diection.
On Friday morning, before the regular session, a meeting of state and government geologists, including hose of Canada, was held to devise some method for a nore rapid and satisfactory interchange of ideas concerning their special department of work. No formal organization was effected, but it was desided to hold an annual meeting in connection with that of the G. S. A. Prof. E. Orton was selected to take measures for he next meeting.
On motion of Prof. W. M. Davis, a committee of rom was appointed to confer with similar committees from the naturalists and the physiologists as to the three pree societies at the same time and place for the purposes of mutual convenience. Late on Saturday afternoon, after a most successful series of meetings, the American Geological Society adjourned to meet again at Indianapolis during the sessions of the American
Association for the Advancement of Science next August.
municating the Bouquet of a Wine of high Ferment.
It appears that the flavor of a wine depends less on the nature of the soil in which the vines have been grown than on the ferment employed. The wine ferments which have been hitherto supposed identical and which have received the name Saccharomyces ellipsoideus, are various, and communicate different qualities to the must in which they set up fermentation. The juice of the "chasselas" grapes of the south of France can. hy a change of ferment, be made to yield high class (grands crus) Burgundies.-A. Rommier.

A LOW WATER ALARM FOR STEAM BOILERS. A simple device for indicating low water in a steam boiler is illustrated herewith, and forms the subject of an invention of Mr. E. Kildoyle, of the Yokohama adapted for connection with the boiler at the water line is furnished with pockets projecting downwardly into the pipe, and open at the top, there being at the bottom of each pocket an ear to which is pivoted a

KILDOYLE'S LOW WATER ALARM FOR STEAM BOILERS
T-lever, as more plainly shown in the small view. One arm of the lever carries a weight and its other arm is connected with a wire, thus forming, with a contact point arranged below the weight, and a battery and alarm apparatus, an electric circuit, which remains normally open when the T-lever is in a vertical posi tion, this lever being so held by fusible metal cast in the pocket. The several pockets contain fusible metal adapted to melt at different temperatures, so as to insure certainty in the action of the apparatus. When the water in the boiler drops below the mouth of the pipe, the steam, taking the place of the water, melts the fusible metal in the pockets, allowing the weighted levers to topple over and cause the weights to strike their contact points, thus completing the circuit and giving the alarm.

THE SULZER ENGINE AT THE PARIS EXHIBITION. One of the engines which drove the line shafting in the Machine Hall of the Paris exhibition was supplied the Machine Hall of the Paris exhibition was supplied
by MM. Sulzer Brothers, of Winterthur. It is, as seen
in our perspective view, for which and the following particulars we are indebted to the Engineer.
The steam is admitted into the jacket of the smal cylinder before it reaches the cylinder itself; and the exhaust passes directly to the jacket of the large cylinder, which thus acts as a reservoir, because the firm has found by experience that nothing is gained by a separate receiver. The diameters of the high and low pressure cylinders are respectively 500 mm . and 800 mm ., or $195 / 8 \mathrm{in}$. and $311 / 2 \mathrm{in}$., while the stroke is 1.4 m ., or 4 ft .7 in . The normal speed is 75 revolutions; and, with an initial pressure of $71 / 2$ atmospheres, or 112.5 lb ., per square inch, the engine will indicate 315 horse power at 10 per cent admission, 420 horse power at 20 per cent, 510 horse power at 30 per cent, and 585 horse power at 40 per cent. The engine at the exhibition was working at a disadvantage, as it was only making 70 revolutions; but some trials made this year with an identical engine erected at Narano, near Milan, show a consumption of only 6.35 kilos , or 14 lb ., of steam at 6 atmospheres, or 90 lb . boiler pressure per indicated horse power per hour, the engine only indicating 267 instead of 400 horse power. The distinguishing feature of the engine is its high piston speed, $31 / 2 \mathrm{~m}$. or 11 ft . $53 / 4 \mathrm{in}$. per second, due to the long stroke, and giving the following advantages : Great reduction of the clearance spaces in proportion to the total content of the cylinder; reduction of piston area, and conse quently of the effect of any leakage which may occur reduction of area of cylinder, and consequently of abstraction of heat from the steam by radiation.
In the perspective view at the end of the valve-controlling shaft may be seen a small horizontal pump worked by a crank; this is for drawing a drop of oil as its falls from the sight feed lubricator, and forcing it into the cylinder. A small pipe admits steam into the lubricator in cold weather, for keeping the grease in a liquid condition. The oil falling from the main bearings is raised by a rotary pump for use over again The pistons have Ramsbottom rings; and all rubbing surfaces are very large, so as to reduce the pressure per nit of area. The horizontal double-acting air pump is worked by a connecting rod and bell crank off the main crank at the large cylinder end of the lay shaft and ample dimensions are given to the cellar contain ing it, so as to afford easy access. The castings are rewarkably smooth, being only covered with a thin coat of dead black paint. The turned parts, such as cylin der covers, are so bright that it is difficult to believe hey are not nickelized, even when nearthe brass part o treated. Since the first Sulzer engine was started the Par the firion 1807 no less the first Paris exhibition in 1867, no less than 1,223
horse power on this system have been ordered since the opening of the present exhibition. Messrs. Sulzer Brothers have been awarded a grand prix for their engines by the international jury.

AN IMPROVED BOILER

A boiler in which the inside of the fire box is pro vided with one or more coils of pipe, to insure the generation of a greater amount of steam, is illustrated

ROBERTS' BOILER

herewith, and has been patented by Mr. John N. Rob erts, of the N. P. \& M. R.R., Winnipeg, Manitoba Canada. Each coil has on its lower end a block set against the inside of the shell, with an opening regis tering with a corresponding opening in the shell. In the inner end of the block a plug is held on a screw od passing through the openings and through the rod passing the water space to block against the inside of the inner shell, and into an opening of the block opens one end of a curved pipe connected at its top with the lowermost elbow of the coil. The pipe and elbow are preferably so connected as to permit an extension of the coil without injuring the connection of the pipe with its block. Each col of pipe extends along the inside of the fire box shell and then along its top, the upper end of each coil being connected by a suitable joint with a pipe lead ing to the water pace on the top of the fire box. The water thus heated in these coils, and discharged into the water compartment on the top of the fire box, is

THE SULZER $£ 00$ H. P. ENGINE AT THE PARIS EXHIBITION.
designed to insure the generation of sufficient surplus steam to enable steam to be supplied by the locomotive for heating cars, etc., or to heat buildings connected with a stationary boiler having this improvement.

AN IMPROVED MIDDLINGS PURIFIER

The accompanying illustration represents a machine patented by Mr. John A. Wahlstrom, of Wakefield, patented by Mr. John A. Wahlstrom, of Wakefield,
Neb., designed to purify widdlings with very little Neb., designed to purify middlings with very little
waste, and at the same time to produce middlings of a waste, and at the same time to produce middlings of a
higher grade. In the illustration the casing is represented partially broken away upon one side to show the interior arrangement. The main driving shaft is connected by a belt and pulleys with a second shaft carrying eccentrics, whose rods extend to the interior of the casing and are connected with the shaker or bolt, the frame of which is so supported that the bolt may be raised or lowered, and may be adjusted longitudinally forward or backward, as desired. Above the bolt are located two inclined dustconveying troughs, to which a shaking motion is imparted by the eccentrics. The troughs discharge at their lower ends into a spout passing through the end of the casing. Into the dust troughs lead the lower ends of dust catchers, preferably six in number, each representing a slightly inclined inverted cone, having at its front end an upwardly ex-

WAHLSTROM'S MIDDLINGS PURIFIER.
tending slot, wide at the bottom and narrowing toward the top. In the front and near the bottom of the hopper is the usual opening with an adjustable gate to regulate the a mount of material passing on to a shak ing bottom and from thence into the interior of the casing, into which it is moved by the operation of the fan wheel in the top part of the casing, sucking air between longitudinally arranged slots in the sides of the casing, forming openings sufficiently large to admit air to the under side of the bolting cloth. On the under side of the bolt operate a number of brushes, whereby the bolt cloth is kept constantly cleaned. The dust and other impurities pass upward on account of their lightness, and finally settle into the top or wide ends of the dust catchers, being thence conveyed by the dust-conveying troughs to the discharge spout, the shapeand position of the dust catchers and their slots being such that only the dust will be likely to be passed through. The draught in the interior of the casing is regulated by gates, and the stock passes downward through the bolt cloths in the usual manner to discharge spouts at the bottom, while the discharge from the end of the bolt passes into channels and troughs leading to the outside.

A NEW TELEGRAPH REPEATER.
A telegraph repeater having several novel features has been patented by Mr. Richard J. McIlhenny, of Wilmington, Delaware. One of the principal objects Wilmington, Delaware. One of the principal objects
of this invention is to simplify the mechanism and of this invention is to simplify the mechanism and
circuits of the repeater, so that any operator without

mollhenny's relay.

special training can operate it, also to provide means for preventing " kicke" in the instruments. This ap paratus also permits of interrrupting the sender of a message without rendering the line inoperative
We give an engaving of the relay used in the system. The vertical armature lever, K, is pivoted near its center to a fixed support, and is provided with two
armatures which are arranged upon opposite sides of the lever, above and below its pivot. The magnet, I, is supported by standards resting on the base, C, with its poles opposite the armature, K, on the upper end of the lever. This end of the lever extends between the contact points $i i^{\prime}$, and the part which engages the contact, i^{\prime}, is insulated so that this point serves merely to limit the rearward motion of the lever
The magnet, L, is mounted on the bed plate, C, op posite the armature, K, on the lower end of the lever, K. The magnets, I and L, although upon different sides of the lever, K, will draw it in the same direction, and if a current is sent through one wagnet and then the other in succession, the second wagnet will tend to hold the lever from falling away frow the first magnet when the current through the latter is broken. A spring, K^{2}, holds the lever, K , normally away from both maguets. The transwitters are constructed something like an ordinary telegraph sounder, with the armature lever prolonged at each end and provided with contact points for making and breaking circuits.
The operation of this improved system cannot be adequately described without a full diagram of the two transmitters, the two relays of the station, and the local and line circuits. We will say, however, that the inventor appears to have overcome some of the principal difficulties met with in repeaters of the ordinary type.
partments. From the top of each compartment lead a number of heat escape pipes to a continuous main heat pipe, held in the outer wall of the kiln, dampers controlling the escape of the heat from the compartments to the main pipe. By the movable partitions, the draught in each compartment may be made independ ent of that of any other
In commencing, the green bricks are usually set in about eight compartments, and a wall built across the first one, which is set with arches or fire holes, as in the old-fashioned kiln, and fired with wood until the bricks are hot enough to permit of burning coal. The arches are then closed and the compartment fired from the top until the bricks are thoroughly burned. The draught is opened into the compartments ahead according as the burning proceeds, the movable shutters enabling different compartments to be shut off forsetting with green brick, which are then first dried and heated br the heat from the continuous main heat pipe in the outer wall of the kiln, so that none of the heat given off by the burned brick is lost, as their temperature falls. The process is continuous, one compartment after another being burned, and the heat conducted ahead, so that the kiln can be kept constantly run ning, filling in green bricks and rewoving finished burned bricks.

A SOAP AND BRUSH HOLDER.

A simple attachment which can be readily placed upon a pail, to hold a brush and soap, conveniently for use in scrubbing, etc., is shown herewith, and has been patented by Mr. Wm. P. Stott, of No. 4745 Tacony Street, Frankford, Philadelphia, Pa. Its two sides are connected by a slightly inclined bottom in seg mental shape to conform to the shape of the pail and each of the and each of th sides has near it front end a slot ward to the under side of the bot tom, by means o which the holder can be readily placed on the pail To the inner edge of the bottom,
 of the bottom, secured a plate to hold a piece of soap, and adjacent thereto is a lug serving to hold the brush in place, the back of the brush being of a form to be readily thus held.

sufficient sleep.

In this age of hurry and worry, with its consequent nervous exhaustion, of which so much is now heard, the necessity of taking sufficient sleep cannot be in sisted upon too forcibly. To lay down any hard and fast rule for its regulation is not possible, for, naturally, brain workers require more than the drones of society; in fact, every brain worker, if he wishes his powers to last, should take from eight to nine hours sleep out of every twenty-four. Charles Lamb did not think eight hours enough, whereas Sarah Bernhard finds six hours a sufficient quantum of sleep. -Hospital.

AN IMPROVED ELASTIC CHAIN

The accompanying illustration represents a chain which will yield longitudinally when subjected to ten sion, one of the
 views represent ing the chain as it appears when the other show ing the links in normal position The invention has been patented by Mr. Charles Red wood, of Denison City, Texas. Th chain is m ade
with flexible wire loops, having eyes at their ends, an bulging or bowed at the middle, the body of one loop being passed through the eyes of the adjacent loop and a

There is a large number of public libraries all over the country that would be glad to receive and store copies of all documents published by either House of Congress, or by act of Congress itself. These public libraries are multiplying to an amazing extent. Nearly every town, small or large, in my neigh borhood has now its public library, established either by the munificence of some native of the town who has gone elsewhere and gotten rich, or by public contributions municipal or personal, and there is scarcely any docu-
ment published by Congress or either House of it, ac cess to which is not essential to a complete investigation of some historical problem, the creating of some measure of proposed legislation.-Senator Hoar.

A STORM COAT AND VEHICLE APRON.

A garment designed to protect the clothes or person whe in a venicle from rain, snow, with the and

HORN'S STORM COAT AND VEHICLE APRON.
board, is represented in the illustration herewith, and has been patented by Mr. Schooler C. Horn, of Bladens burg, Ohio. The garment is made of any suitable waterproof material, and is open behind throughou its length, but adapted to fasten about the neck or up per portion of the person by buttons or otherwise. It is of a length designed to take in the whole person, and to reach to or over the dashboard of a buggy when the wearer is seated therein, thus presenting a close front and constituting also a vehicle apron. Th sleeves are in two sections, the lower one of which i extended to form a glove or mitten, while its other end telescopes into the upper section at a point between the elbow and shoulder, where it is attached by elastic cords or straps and hook and eye fastening. The bot tom front portion of the garment, forming the vehicle apron when attached to the dashboard, is readily se cured to the latter by light sliding spring hooks, se cured to the apron portion by eyes or staples, riveted to the garment near its lower front end, this portion being laid over the dashboard and the spring hook pressing it down in position thereon, regardless of the width of the dashboard.

The Detroit River Bridge.

The Secretary of War has sent to the Senate the re port of a board of army officers upon the practicability of and necessity for a bridge at Detroit. The board condemns a tunnel on account of cost and objections to operating it, reports against a suspension bridge of one span and a drawbridge, and recommends the plan of G. Lindenthal of a bridge 140 feet above water, with one central span of 1,000 feet clear opening and two side spans of 750 feet each, as offering the minimum impediments possible in the present state of the art of bridge building to lake traffic.

AN IMPROVED FINGER NAIL KNIFE,

In the knife shown herewith, the blade has in its back serrations, or file teeth, which lie within the edges of the handle when the blade is closed, whil the handle has a concave recess in its back, with a throat extending through the handle, and a cutter is inserted in the back, withits edge projecting into the throat, and adapted to pare the edge of the nail. Tb invention has been patented by Mr. Samuel E. Jones, of Canon City, Colorado. The upper picture repre sents the knife closed, with one side of the handle re moved, the other view showing the knife with blade partly open. By the concave plane shown in the firs figure the nail may readily be shaved smoothly, and with the proper curve, while in using the file on the back of the blade, the knife being closed and the blad being sunk below the handle, the nail is kept on the file

jones' finger nail knife.
and any danger of wounding the finger is prevented. The same principle may also be applied with twobladed knives.

Antibakierikon.

Under this name a Berlin chemical factory has produced a new kind of ozone water, which is said to be distinguished from other liquids of the kind by its freedom from lye of Javelle and by its durability. It is manufactured as follows: Oxygen gas is made o chlorate of potassium and pyrolusite, and conducted into a pressure gasometer, whence it is sent through a series of so-called Siemens tubes. With the help of a strong electric stream, produced by a machine similar to that which gives the electric light, a secondary stream is produced in these tubes, which discharge itself slowly but constantly, and converts the oxygen gas into an ozone solution oi about 10 per cent. Dur ing this process various substances are added to the gas to prevent its evaporating. Dr. Otto Ringk, of Berlin, the inventor of this new preparation, declares that it possesses extraordinary sanative virtues, not only producing a good effect in cases of tuberculosis, cholera nostras, typhus, diabetes mellitus, toothache, etc., but also destroying the virus of diphtheria and scarlet fever with absolute certainty

AN IMPROVED PAPER CLIP

A paper clip which way be formed from a single piece of wire, if desired, and is designed to afford a simple and improved form of wall pocket, is shown simple and improved form of wall pocket, is shown
herewith, and has been patented by Mr. Frank A. Ruggles, of Three Rivers, Mass. The wire is bent upon itself to form an essentially U-shaped back frame, in the top of which, at each side, a loop is made. At the lower ends of the members of the back rame the wire i formed intocoi prings and coil prings and then pward prally and hor ontaly until th nds meet, to form ront frame, also es entially U-shaped The ends of the wires, where they abut, may be attach d in any suitabl manner, and a knob rlink secured ther o form a hand hol to form a hand hold
y

PLUMBAGO PACKING.

The packing of piston, valve, and pump rods, and similar parts of steam and hydraulic machinery, is watter deserving of a great deal of attention. The old methods of packing are entirely discarded by intellient engineers, and improved means are employed which prevent grooving and cutting, in many cases rolonging the use of the parts from a period of ew months to several years
The Manhattan packing, made by the Manhattan Packing Co., and sold by Greene, Tweed \& Co., 83 Chambers Street, New York, has proved its superior ity by long use in large and small manufacturing es tablishments, in water works, upon steamboats, and elsewhere.
The packing is formed of a braided strip-either with or without a rubber center-filled with the finst "floated" plumbago, and with an oil of very high fire tect, which can not char or ignite and which is free from acids.
The packing is made in almost every imaginable size and shape, and adaptd to every purpose for which packing can be used. It is particularly useful on steam hammers
 where it is desirable to avoid a leakage of steam or water. It is in successful use on rotary bleach boilers, where it has proved of great value. It is, perhaps, needless to say that the packing is self-lubricating, and continues to act uniformly until entirely used up.
The Manhattan packing is an old and reliable article which continues in use wherever introduced.

A THOROUGH washing out with clean water will often prove the best cure for a foaming boiler. A little common soda may be added where grease is suspected to be the cause of foaming. This will saponify the grease and make the foaming worse at first, but after blowing out and washing out the builer, a cure will probably be effected. A direct exhaust feed-water heater or injector is often a cause of grease in a boiler; really no exhaust steam should be allowed to mingle with the feed water until it has passed through a suitable grease extractor.

Lack of Foresight in Engineoring.

Serious errors, involving trouble and expense, occur more frequently than is generally supposed, through inattention or the want of foresight on the part of architects to make proper provisions for the location and erection of steam plants. It seems to be very often the case, says the American Engineer, that architects design and erect buildings for manufacturing and business purposes without consultation with the superintending engineer, or even with the manufacturer of machinery who is to construct and erect
the boilers, engines, elevators, and shafting, with all other details of pumps, blowers, and auxiliary adjuncts that are to be placed within the walls of those buildings. Many architects are, again, not sufficiently careful in considering contingencies that may be needed in case of repairs or removal of machinery. Engineers in charge of steam plants will constantly point out the difficulties they encounter and the inconveniences they have to tolerate through lack of foresight in the planning and locating of the machinery.
Basements seem to be considered the proper place for boilers in nine cases out of ten, because there water and coal can be brought close to them, and they are more easily put in, bricked up, and taken out again. Here good foundations and plenty of room can be secured, but artificial light has to be depended upon, during day and night. It is here, however, that soot, ashes, and dirt will accumulate and be both an annoy ance and a source of danger if provision has not been made for their regular and entire removal. But how many basements can we find where special provision has been made for this purpose? How many archi tects consult with a superintending mechanic in regard to this when planning a building where steam power is to be used? But the basement is no place for an engine, unless completely. separated frow the boiler room by a well-ceiled partition.

An engine room requires ample space, plenty of light, and good ventilation-space for repairs, light that will enable the engineer to take in the condition and situation at a glance, and ventilation so good that he will not hate to stay in his engine room on account of heat and suffocating smell.
This cramping, crowding steam machinery into dark, ill-ventilated cells and damp basements is all wrong It is false, mistaken economy; it is inhuman, and dis tressing to engineer and fireman both physically and morally; and is in every respect wrong and hurtful. We find boilers and engines hissing and pounding under our sidewalks, in narrow, foul-smelling corners and recesses; in places where we least expect to find them, and what is as bad, if not worse, men in attendof the machinery so long as it works without making too much noise.
A very great deal of this state of things is owing to oversight and want of proper thought in planning for have ample room, plenty of light with suitable ventila tion, and also have competent, intelligent engineers to take charge of it We do not expect professional archi tects to be practical engineers, but we do maintain that in planning buildings to receive steam machinery the professional architect will do well to consult with
the practical constructing or superintending engineer the practical constructing or superintending engineer
as to how far the greatest facilities and convenience can be provided for.

The Electric Motor for Domestic Purposes.
Mr. H. B. Prindle, writing on this subject in a recent issue of Building, asserts that when the use of the electric current was confined to lighting, at first in public squares and important streets, then gradually extending to cover the entire city or town, and into stores and houses, we were content to know that electricity produced the light in some way, and there our investigation ceased, until, at last, its use became so general as to induce a study and knowledge of its principles. That the same subtile something should become a most powerful agent for the transmission of energy was not for a moment suspected That it has taken
an important position in the world of power can no longer be questioned. Unquestionably the world has longer be questioned. Unquestionably the world has
never witnessed such remarkable progress in the intronever witnessed such remarkable progress in the intro-
duction of power-transmitting agencies so radically at variance with previously existing forms. The facts are not to be wondered at when the advantages of electric power are fully considered. The electric motor in its present form is efficient, economical, safe, and sure; yet all these advantages would amount to but adaptability of the motor is so wide. The comparison with a steam plant may perhaps show this clearer. The installation of a steam plant requires heavy foundations, expensive boilers, with their auxiliaries, coal bins, which are a source of heat and dirt. The engine requires the best skilled attendance, and, owing to its complicated nature, necessitates repairs to which the electric motor is not subject.
The electric motor is complete within itself requiring no auxiliaries-except the wire for supplying the cur
without noise. While there is competition between steam and electricity for isolated plants, there is no direct antagonism between the two, as, with the excep tion of cases where water power is used, steam is
necessary factor in the generation of the electric cur rent. Electricity, therefore, advocates concentration of steam plants, an arrangement the economy of which cannot be denied, and distribution by means of wires or cables, which has been found by thorough practica ial to be the most economical method yet devised.
In applying the motor to domestic uses, it has found a ready adoption for freight and passenger elevators, possessing as it does such marked teatures of superi ority over an isolated steam plant.

upply and Use or Nickel and its Ateys with Steel.

The most interesting paper and the most instructiv excursion of the recent meeting of the American Insti tute of Mining Engineers at Ottawa related to the Sudbury, Ontario, copper-nickel deposits. The paper was read by Dr. E. D. Peters, manager of the Canadian Copper Company at Sudbury, and it covered an ex haustive description of the deposits, which were originally thought to be of such importance as a source of copper supply that apprehension was felt in some quarters that they would affect the price of the metal Such, so far at least, has not been the case, though the workings have proved immense bodies of nickel bearing pyrrhotite, with occasional pockets of copper pyrites. In places this bed has been proved to be 100 feet thick, and its limits have not yet been ascertained. The three mines in the district belonging to the Cana-
dian Copper Company are not uniform in character, and vary considerably in the amount of nickel con tained in the ore. The Stobie mine, which possesses the largest bodies of ore, and is worked by open cast, as much as 560 tons being thrown down by one blast recently, is low in nickel, but is fuable from its iron ing a higher percentage of nickel and copper, but more mixed with gangue.
Mining on this system means cheap production, and we can quite believe that Dr. Peters is correct in his estimate that he can produce from this mine 80 tons a day, at 30 to 35 cents a ton. In the Copper Cliff mine the ore occurs in irregular masses, but is very rich in nickel, and large bodies are developed, carrying from 8 to 10 per cent in that metal. The Evans mine also has a large body of pyrrhotite, but is more highly nickeliferous than the Stobie. This mine produce about 60 tons of first-class ore a day.

The roasting and smelting arrangements, as might be expected under Dr. Peters' management, are models of ingenuity and efficiency, and the result is that about 40 tons of matte are produced a day, averaging about 27 per cent of copper and 15 to 18 per cent of nickel. The furnace work is worth recording, one smelter a veraging for months of continuous work 125 tons of ore for
24 hours and having gone as high as 156 tons. Fuel seems to be the only disadvantage, Connellsville coke being used at the somewhat high cost of about $\$ 7.25$ a ton, but against this is to be set the judicious handling of the ore and its fluxing qualities, which enables the fuel to carry a burden of 8 to 1 .
The result of these operations at Sudbury will be an enormous increase in the world's supply of nickel. The supply hitherto has been principally from the mines of the French Company in New Caledonia, and this supply has been regulated to a great extent by the demand, at about 1,000 tons a year, maintaining the price at what the company considered a profitable basis, or rather as high a figure as it could without decreasing consumption, for it has never shown very reat profits. The Sudbury production already exceed the world's consumption, and Dr. Peters has no doub hat he can produce 2,000 tons of nickel a year.
The important question is, will there be a market or this increased supply of the metal even at consider ably lower prices than those at present ruling? Mr. of the Steel Company of Scotland, in a paper prepared by him at the request of the Council of the Iron and Steel Institute of Great Britain on tests made by him of alloys of nickel and steel, furnishes data which convince him that there will be such a market. It appears that in France a patent has been taken out for these alloys, and Mr. Riley visited the works at which!the process was carried on, and continued his tests at his own works in Scotland with most remarkable and satis factory results. His data, as usual, are clear, and the several series of tests involving a very large number of separate experiments are necessary to a full investigation. We have not space to give in detail here the actual tests carried out, but some of the conclusions arrived at will be sufficient for our steel makers to The alloy can be made in any subject.
ace working at firly in any good open-hearth furbe made in as short a time as an ordinary "scrap" charge of steel-say about seven hours. Its working demands no extraordinary care, in fact not so much as
the composition being easily and definitely controlled If the charge is properly worked, nearly all the nicke will be found in the steel-almost none is lost in the slag, in this respect being widely different from charges of chrome steel. Any scrap produced in the subse quent operations of hammering, rolling, shearing, etc. can be remelted in making another charge without loss of nickel.

The addition of 4.7 per cent of nickel raises the elas tic limit from 16 up to 28 tons and breaking strain from 30 up to 40 tons per square inch without impairing the elongation or contraction of area to any noticeabl extent. With only 3 per cent of nickel somewhat simi lar results are found, combined with an increase in the carbon to 0.35 per cent.
The hardness increases as the nickel is increased, until about 20 per cent is reached, when a change take place, and successive additions of nickel tend to make the steel softer and more ductile. In Mr. Riley's hard ening and tempering tests he shows the possibility of very largely raising the strength and elastic limit, and the hardness of these alloys, but he is not yet prepared from lack of time, to say to what extent. He has however, gone up to 95.6 tons breaking strain and 54 tons elastic limit. With regard to torsion tests, it is not necessary to have a steel high in nickel, as those containing only 1 per cent gave the best results.
In the very important matter of corrodibility, the teels rich in nickel are practically non-corrodible, and those poor in nickel are much better than other steels. The theory of the inventors, from which many metal urgists dissent, is that steel is composed of crystals of metallic iron, cemented together by carbide of iron, and the extra strength given is by the nickel alloying with this carbide of iron to form a stronger "cement; that the space between the crystals of iron is thus more completely filled, and the cohesion between them ren dered much more powerful.
The applications and uses of such an alloy are bound less. Its vast increase of strength and elasticity over ordinary steel, its non-corrodibility and hardnes alone, open for it a field in engineering that will render possible what was previously nearly impossibie from the masses requisite to attain the object. For example, it seems to bring quite within the bounds of practicability a cantilever bridge over the North Rive between New York and Jersey City that shall exce even the Forth bridge with its 1,710 feet spans and 150 feet elevation, as a work of engineering skill and beauty. It is only necessary to remember the differ ence between 30 tons and 95 tons breaking strain, and 17 tons and 54 tons elastic limit.-Eng. and Mir. Jour.

Sponge Trade of Cuba.

Sponges are found both on the northern and south ern coast of Cuba, but the chief ports to which they are brought for sale are Batabano on the south coast and Caibarien on the north.
Consul Little, of Havana, says that the classes in cluded are sheep wool, velvet, hard head, yellow, grass, and glova. Very little reef, if any, is found in Cuba. On the south coast, sheep wool and velvet are more abundant than on the north coast. Cuban sponges find a market chiefly in England, France, and th United States. The island itself consumes about one enth of all the sponges brought in, and these are used especially for the damping of tobacco and for cleaning entrifugal machines on sugar estates.
The sponge fisheries employ about 1,000 hands, chosen exclusively from among the matriculados, o eamen who have served on Spanish men-of-war, and are still bound to serve when called upon.
On the south coast are employed vessels ranging rom about five to twenty tons, carrying from four to eight men, and each vessel is provided with from three o six small boats. On the north coast, open boat with one or two men each are used. The annual value of the sponges brought in by these vessels is between $£ 160,000$ and $£ 180,000$.

Without Friction.

After showing that friction makes perpetual motion impossible, Professor Hele Shaw reflects upon the stat of affairs that would follow if friction were to cease to act. The whole force of nature would be at once changed, and much of the dry land and most of our buildings would disappear beneath the sea. Such in habitants as remained a short time alive would not only be unable to provide themselves with fire or warmth, but would find their very clothes falling back to the original fiber from which they were made; and if not destroyed in one of the many possible ways-no onger dissipated by friction through the air, or by falling masses of water no longer retarded by the atmo shere and descending as rain-would be unable to obtain food, from inability to move themselves by any ordinary method of locomotion, or, what would be equally serious, having once started into motion, from being unable to stop except when they came into col lision with other unhappy beings or moving bodies. Before long they, with all heavier substances, would disappear forever beneath the waters which would now cover the face of a lifeless world.-lron.

THE FORTH BRIDGE. (Continued from 1st page.) pounds per square foot striking the whole or any part of the exposed surface f the bridge at any angle of the bridge at any angl with the horizon, the tota amount on the main span being estimated at nearly 8,000 tons.
The material used throughout is open hearth or Siemens Martin steel. That used for parts sub ject to tension is specified to withstand a tensil trength of 20 to 33 nis strength of 30 to 33 tons to the square inch, with an elongation in 8 inches o not less than 20 per cent That subject to compres sion only a tensile stress of 34 to 37 tons per squar inch, with an elongation in 8 inches of not less than 17 per cent. Strips of each class $11 / 2$ inches wide are to bend cold round a bar the diameter of which is double the thickness of the strip. The tensile strength of the rivet steel is 26 to 30 tons per square inch.
The superstructure of the main spans is made up of three enormous double cantilevers resting on the cantile enting on the three piers before wen tioned. Those on the shore sides are 1,55 feet and that on Inch Garvie (an island fortuitously dividing the deep water space into two channels of nearly equal width) is 1,620 feet in length. The effective depth over the piers is 330 feet and at the ends 35 330 fet, and feet. The 1,710 portions of the two 1 on each side of Inch Garvie are formed by two lattice girders 350 feet in length and 50 feet deep in the center and 37 feet deep at the ends.
The compression members of the cantilevers are, as a rule, formed of tubes either circuflar in form or circular with flattened sides.

The tension members are

train passing over the forth bridge at the end pier of the cantilever.
girders quadrangular in section. The booms at their corners take the strains, and the vertical and horizontal bracing of the sides keep them stiff against the effects of their own weight and wind respectively.
The steel was delivered at the works in plates cut nearly to size and as angle bars of various sizes and lengths.
Plates which had to be bent or shaped were so treated at a red heat in hydraulic presses with moulds of special construc tion, and all edges planed.
The plates and bars whether composing circu lar members or the boom of the girders, with all the required covers, etc., were, as a rule, assembled in their exact positions, and operated upon by drills of special construction which, traversing thei whole length, bored nearly all the holes required for the riveting.
Our second illustration shows the relative heigh of the great uridge as com pared with some of the notable architectural structures in varions part of the world. The follow ing are the heights, refer ence being had to the re spective structures by the numbers:

1. Porcelain Tower, Naukin, Ft.

China 20
2. St. George's Hall, Liverpool 85
3. Tomb of Theodoric, Raven-
na, about $\ldots \ldots \ldots \ldots \ldots$
4. Chichester Cathedral........ 2
5. Victoria Tower, Westmin-
5. Victoria Tower, Westmin-
6. Boston
6. Boston Church,Lincolnshire 292
f. Taj Mahal, Agra.. 220 8. York Cathedral.
9. Temple of Bacchue, Teos,
10. About.....................
10. Alesandrian Column, St.

Petersburg 154
11. Column of July, Paris..... 154 11. Column of July, Paris...... 154
12. Torre Asınelli, Bologna.... 370 13. Bell Tower, St. Marks, Venice... 323 14. Colosseum, Rome (584 ft . in leng(11).... 15. Friburg Cathedral 16. Temple of the Sun, Baalbec. 120

17. Temple on the Ilissus, Athens, about. \qquad 25	51. "Bell Harry" Tower, Canterbury.
18. Erechtheium, Athens, about 35	52. Tower of the Winds, A thens, about
Church of Ste. Genevieve,	The Cathedra
Paris.	54. Hotel de Ville, Bruesels... 374
The Monument, London.... 202	55. Mosque of St. Sophia,
Amiens Cathedral 383	
Church of St.	
Thann, about	57. Chapel of St. Pietro
Royal Albert Hall, London	torio. Rome, about
25. St. Stephen's Cathedral, Vienna.... 441	58. Choragic Monument of Lysicrates, Athens... ... 34
Torazzo of Cremon	59. Salisbury Cathedral.
Hotel des Invalides, P	60. Trajan Column. Rom
28. Temple of the Giants, Agrigentum.	61. Cathedral, Frankfort-ouMain.
29. Parthenon, Athens	62. Pyramid of Mycerinus 218
30. Second Pyramid, Gheezeh.. 447	63. Church of St. Nicholas, N
31. Strassbarg Cathedral	castle..... 201
32. Rouen Cathedral, abo	64. Temple of Jupiter
33. Eleanor Cross, Walt	Rome, ubout.
Cologne Cathedral	Mechlin Cathedr
Great Pyramid	66. Bell Tower, Florence.
36. St. Peter's, Rome........... 448	67. Tomb of Absolom, Jerusa-
37. St. Paul's, London	lem...
38. Albert Memorial	68. Norwich Cathedra
Obelisk, Luxor........... 75	69. Leaning Tower, Pisa
Prophylon............. . 70	70. Pompey's Pillar, Alexand
Bow Charch, London	71. Church of St. Isaac, St.
41. Cleopatra's Needle.	Petersburg...............
42. Old St. Paul's, London...... 508	(Central Spire, Lichfie
43. Church of St. Mary, Lubeck 400	Western
44. Abbey of St. Stephen, Caen 400 45. Church of St.Martin. Lands-	73. A rch of Constantine, Rome, about
hut, about........ 460	
The Baptistry, Pisa........ 190	
47. Tomb at Mylasa, Caria, abt.	75. Central Transept, Crystal
48. Charch of St. Peter, Ham- burg about 380	Palace Science \mathbf{S}
belisk in Piazzi di San	
Giovanni in Laterano, Rome.... 153	77. Temple of Vesta, Tivoli, about ...

0. Antwerp Cathedral...

The construction of the Forth Bridge is justly re garded as one of the greatest scientific and mechanical achievements of modern times. Those who wish to trace the full details of the work from its conception to completion will find the same fully recorded and illustrated in the Scientific American Supplement. The history is illustrated by over fifty engravings. The SUPPLEMENT numbers to be consulted are as follows : $218,229,317,354,457,478,503,510,512,51 \overline{0}, 519,590,626$ $630,667,672$, all of which may be obtained at this office.

Brazilian Petroleum.

Consul Burke, of Bahia, reports the discovery in that province of a mineral which has been called turfa, or brazolina, and which furnishes an oil akin to petroleum, a paraffine suitable for the manufacture of candles, and a good lubricating oil. It was originally discovered by an English clergyman named Wilson, but a company has recently been formed which has
bought the concession, and is now engaged in the development of the property. Petroleum extracted
frow it has already been placed on the market, and from it has already been placed on the market, and has been favorably received.

AN IMPROVED CAR-HEATING SYSTEM.

The defects of most of the present systems, and what is in many cases the lack of any system, of properly heating and ventilating railway passenger cars

NEWTON'S CAR-HEATING SYSTEM.
are obvious to any one who has much traveling to do A system designed to obviate these defects is represented in the accompanying illustration, and a patent on the construction therein involved has been allowed to Mr. Charles O. Newton, of Homer, N. Y. Fig. 1 is a sectional plan view, and Fig. 2 a vertical transverse section of a car supplied with this system, and Fig. 3 is a view in perspective, with a portion of the floor broken away, there being a lower floor supported by the transverse timbers of the car. The chamber thus formed is lined with asbestos and a sheet metal covering, and between the floors are placed latticed iron joists. Longitudinally in this chamber is arranged a steam supply pipe, surrounded by a steam discharge pipe, lateral pipes extending from the supply pipe toward the sides of the car and returning to the dis charge pipe. Opposite ends of the supply pipe have branch connections extending to the car platforms,
where flexible connections establish connections between the heating apparatus of adjacent cars, similar connections being made with the discharge pipe. In the floor are registers for receiving cold air, the regis ters having a fibrous covering, one end of which extends into a water reservoir, to impart moisture to the air. Within the inner leg of each car seat is a box register communicating with the chamber between the two car floors, and arranged to discharge warm air into the body of the car, the upper floor itself being al ways evenly heated. It is designed that the supply of steam shall ordinarily be furnished from the locomotive, each car being provided with valves by which the supply is controlled, but the invention also contemplates connecting the supply pipe with any suit able stationary boiler in the car house, or before a train is made up, that the car may be thus warmed before starting.

The Location of the Soul.

Considerable speculation has heretofore attended the precise location of the soul, but, according to the Electrical World, the mystery is now solved. Dr. A. H. Stevens, of Philadelphia, has located it in the corpus callosum, a little spongy body situated at the base of the brain, which has defied the efforts of physicians in their endeavors to ascertain its uses in the human anatomy. "The corpus callosum," says the doctor "is the seat of the imperishable mind, and is the grea reservoir and storehouse of electricity, which is ab stracted from the blood in the arteries, and conveyed through the nerves up the spinal cord to the corpus callosum.

THE NEW BRITISH WAR SHIP BLAKE, THE FASTEST
NEW BRITISH WAR SHIP BLAKE, THE FAS
AND MOST FORMIDABLE CRUISER AFLOAT.
We give herewith a portrait of the new war ship Blake, lately launched, which, it is calculated, will be the fastest war vessel afloat, and, for her class, the strongest fighting ship.
Displacement, 9,000 tons; length, 375 feet; beam, 65 feet; draught, 25 feet 9 inches; twin screws, 20,000 horse power; maximum speed, 22 knots per hour, or over 25 miles. As a ram, at this high velocity and her great weight of 9,000 tons, it is doubtful if any vesel could withstand the shock.
The Blake is constructed of steel throughout, has six-inch armored turtle-back steel deck, covering the magazines, torpedo rooms, engines, and boilers. Fuel pace, 1,500 tons. She is to carry two 9 inch 22 ton breech-loaders and ten 45 pounder quick-firing guns each capable of firing 12 times per minute, worked by two men, and will pierce 12 to 15 inches of armor plate. Cost, \$1,840,000.
Such in brief is the Blake. She is far faster and stronger for fighting purposes than any of the new American vessels so far ordered, and costs much less.

Horatio Allen.

Horatio Allen, the well known civil engineer, under whose direction the first locomotive brought to America was built and run, died at his howe in Montrose, N. J., on Tuesday evening. He had no specific disease, and retained his faculties to the last. He was the son of Dr. Benjamin Allen and Mary Benedict Allen, and was born at Schenectady, N. Y., in 1802. His father was the principal of an academy at Hyde Park, N. Y. Young Allen entered Columbia College in 1821, and was graduated near the head of his class in 1823, taking especially high rank in physics. He studied law at first, but after a short time decided to make civil engineering his work, and entered the employ of the Delaware and Hudson Canal Campany, under Judge Wright, then constructing engineer of the line. He was sent to St. George, Del., as rodman, and within two weeks was placed in full charge of a party. In the fall of 1824 he was appointed resident engineer of the Delaware and Susquehanna Canal. A year later he was appointed resident engineer of the summit level of the Delaware and Hudson Canal, under John B. Jervis, then chief engineer of the company,

In September, 1825, the first successful locomotive was put in operation on the Stockton and Darlington Railroad, in England, by George Stephenson. The news of its success reached this country early in 1826, and so greatly interested Mr. Allen that he decided to go to Europe and study the new motive power. He received an appointment from the Delaware and Hudson Company as contracting agent, to purchase in England the railroad iron required to build the sixteen miles of road from the company's mines in the Lackawanna Valley to the Lackawaxen, a tributary of the Delaware, and also authority to purchase three locomotives for the new railroad, to be built on plans to be decided on by him.
Mr. Allen, on arriving at Liverpool, made the acquaintance of George Stephenson, with whom he consulted in the carrying out of his plans. 'Two of the locomotives were ordered, from Mr. Stephenson, and one from Foster Rastrick \& Co., of Stourbridge. It was the latter-the "Stourbridge Lion"-that was the first locomotive ever run in America. The locomotives were received in New York in the winter of 1828-29, set up, and tested while suspended in the air, and it was not until August, 1829, that they were taken to the road for which they were built. This road terminated at Honesdale, Pa., and ran about 600 yards in a straight line, then crossing the Lackawaxen Creek by a sharp curve of 750 yards radius. When the "Stourbridge Lion" was swung in the air preparatory to being placed on the track, it was discovered for the first time that the axles had an unyielding paralle position and that there was no truck with king bolt that worald permit of the engine accommodating itself to the curve of the road. Further, the road had been built of green timber in long lengths, and the timbers had warped considerably in places. Nevertheless, Mr. Allen was confident that all would be well. He tried in vain, however, to get an engineer to run the locomotive, and no official of the road would risk his life in the apparently foolhardy enterprise. Mr. Allen then acted as engineer himself and ran the locomotive three miles down the track and returned in safety.
In 1829 Mr . Allen was appointed chief engineer of the South Carolina Railroad, extending from Charles ton, S. C., to Augusta, Ga., the first long railroad built in the United States. In 1834, after the road wa finished, he married Miss Mary Moncrief Simons, o Charleston. In 1835 they went abroad and spent two years in foreign travel. In 1837 Mr . Allen was appoint ed principal assistant engineer of the Croton Aqueduc Department, and on the completion of the aqueduct in 1842, was chosen one of the Board of Water Com missioners.
In 1844 he became a member of the firm of Stillman Allen \& Co., the proprietors of the Novelty Iron Works building the engines of the Collins Line of steamships. During these years Mr. Allen was at different time connected with the Erie Railway system, holding the office of chief consulting engineer for a long time, and served one term as president of the road. Mr. Allen' last official place was that of consulting engineer of the Brooklyn Bridge. In 1870 he retired from active life and building himself a fine home at Montrose, N. J. settled down to the life of a student and inventor Mr. Allen is said to have designed the eight-wheel passenger coach truck now so universally used, and is widely known

To Make Red Lines on Blue Print

C. J. Bates, in the Railroad Gazette, says: To the red aniline ink now used add about 25 per cent of a solu tion of carbonate of potash. I used a solution of 60 grains of carbonate of potash to the ounce of water. The action is evident, the carbonate of potash destroys the blue, leaving the red, which appears especially bright compared to the surrounding blue. It would probably be just as good to dissolve a few crystals of carbonate of potash in the ink, as it does not injure the ink for ordinary usage.

AN IMPROVED ANTI-FRICTION CLUTCH.

An anti-friction ring to be placed upon axles and shafts between the collars or bosses of wheels and journal boxes, to furnish a bearing having less friction than would exist between the boss, or collar, and the journal box, and intended for locomotive driving and truck axles, propelling shafts for steamers, etc., is represented in the accompanying illustration, and has been patented by Mr. Joseph J. Ladd.
Fig. 1 is a view in perspective of the clutch, and Fig. 2 shows the application of the collar to an axle, Fig. 3 being a block on the edge of the collar through which lubrication is effected. The ring fitted to the shaft is formed ${ }^{*}$ in two parts, united by right-angled hooks

LADD'S ANTI-FRICTION CLUTCH.
formed on their ends, and one of the parts having a key seat. This split ring is preferably made of hard ened steel, and upon it is fitted a collar, preferably made of Lowmoor iron, case-hardened. This cullar has upon one side a removable section of sufficient width to allow the collar to be placed upon the ring, this section being grooved, and the edges of the ring adjoining the section having each a tongue to enter the grooves, while the collar and the removable sec tion are bored to recei ve a bolt, the collar having bosse forming bearings for the head and nut of the bolt The block on the edge of the collar, shown in Fig. 3 has three chambers closed by screw plugs, below which are passages communicating with a central chambe and passage to the interior of the collar, whereby oil is radually supplied to maintain a perfect lubrication
For further information relative to this invention address the inventor, care of Messrs. Martin Reinber \star Co. Guyaquil, Ecuador.

AN IMPROVED LEATHER CHANNELING MACHINE.
A machine adapted for adjustment to produce chan nels upon round lines, reins, and traces, and for split ting straps to be used as crown pieces of bridles, etc., i shown in the accompanying illustration, and has been patented by Messrs. William M. Wright and Henry J

WRIGHT \& RODGERS' LEATHER CHANNELING MACHINE.

Rodgers, of Waverly, Ill. The base plate has integrall connected side supports, and two upwardly extending bosses which support vertical bolts carrying nuts whereby an upper crossbar is adjustably supported. The vertical bolts serve as guide for a sliding frame which is kept under an adjusted spring tension by means of coiled springs about the bolts, and the frame has two horizontal cross bars slotted to provide for the passage of the shanks of yauges held to place by nuts. Bet ween the cross bars are placed the shanks of cutter heads having recesses adapted to receive the knife blades, the recesses being such that when the knive are placed therein, the edges of the blades will bear against the faces of the cross bars, in which position they are clamped by winged nuts. Different knives are em ployed, according to the nature of the channel to be
cut. On the upper cross bar of the frame is mounted a bell crank lever, pivotally connected by means of a link with the sliding frame between the lower cross bars of which the cutter heads are arranged. If the channel to be cut is to extend inward at right angles, the knives are adjusted therefor, the lever having been thrown down to horizontal position to raise the sliding frame, and, when the leather has been placed on the base plate, between the gauges, the lever is raised to vertical position, bringing down the sliding frame in such position that the cutting edges of the blades will enter the upper surface of the leather, which is then drawn forward between the gauges to form the channel. If the channet is to enter the leather at an angle, the knives are adjusted accordingly, the channeler being designed to operate upon any thickness of leather.

Electrical Execution.

On December 30, 1889, the decision in the well known Kemmler case was rendered by Judge Dwight of the fifth department of the Supreme Court of the State of New York, in Rochester, N. Y. Kemmler is the first murdere condemned to death by electricity, and the judgment against him was appealed from to the Supreme Court on the ground of unconstitutionality of the act of the legislature prescribing that punishment. The present decision is against the appellant. The court reviews the English common law as bearing upon the case, and the prohibition of "cruel and unusual" punishment which is a provision of both the Federal and New York State constitutions. The question was thus narrowed down to one issue, whether the infliction of death by electricity would be cruel and unusual. If it is so, the act prescribing it would be unconstitutiona as regards the New York State constitution. Judge Dwight suggested that it could safely be presumed that the legislature had passed upon this question of fact. He considered it also in the light of the evidence presented to the court, and concluded that while un usual the general consensus of scientific testimon proved it not to be cruel. He stated that if the ques tion wtre of the ad visability in the change of the mod of inflicting death by capital punishment, the discus sion might be prolonged.
An appeal to the Court of Appeals is now in order as the last step upon which Kemmler can base any hope This will probably be taken at an early day.

Electric Car Brakes.

The expression electric brake is now often heard and requires a word of explanation. There are various forms of so-calledelectric brakes which are practicabl and even efficient working devices. In none of them however, does electricity furnish the power by which the brakes are applied; it merely puts in operation some other power. In one type of electric brake the active braking force is taken from an axle of each car A small friction drum is made fast to the axle. An other friction drum hung from the body of the ca swings near the axle. If, when the car is in motion these drums are brought in contact, that one which hangs from the car takes motion from the other, and may be made to wind a chain on its shaft. Winding in this chain pulls on the brake levers precisely as if it had been wound on the shaft of the hand brake. The sole function of electricity in this form of brake is to bring the friction drums together. In a French brak which has been used experimentally for some years with much success, an electric current, controlled by the engine driver, energizes an electro-magnet which forms part of the swinging frame in which the loose friction pulley is carried. This electro-magnet bein vitalized is attracted toward the axle, thus bringing the friction drums in contact
In an American brake lately exhibited on a long freight train, a smaller electro-magnet is used, but the same end is accomplished by multiplying the nower by the intervention of a lever and wheel. The other typ of so-called electric brake is that in which the motive power is compressed air, and the function of the elec tric device is simply to manipulate the valves under each car by which the air is let into the brake cylin der or allowed to escape, thus putting on or releasing the brakes. All of these devices have this advantage that whatever the length of the train, the application of the brakes is simultaneous on all the wheels, and stops can be made from high speed with little shock. Scribner.

The Sankton Artesian Well.

Gray Bros. \& Co., artesian well borers of Milwaukee have just completed a well at Yankton, Dak. It is a six inch well, 1,500 feet deep. It throws a solid stream of water 9 feet straight up before it is broken. The discharge of water amounts to 4,000 gallons per minute. There are now about twenty-five artesian wells already in Dakota, and more are being drilled. The wells vary in depth from 900 to 3,000 feet. The firm has thirteen gangs of men constantly employed in diferent States. Two artesian wells are being sunk for the city of Kaukauna, Wis., and one in Milwaukee, at the plant of the Milwaukee Car Wheel Company, at North Avenue.
recently patented inventions. Engineering.
Locomotive. - Anthony H. Rank Philadelphia, Pa. This locomotive has high and low
preseare cylinders supported side by side in the front end of the main frame, and the front and rear wheels: each have a crank arm and are connected by pitmen,
links connecting the arms, while crank dieks are links connecting the arms, while crank dieks are
mounted on the axle between the front wheels, whereby both sets of wheels and the front axle are balanced.
Furnace.- Joseph H. Behee, Leavenworth, Kansas. This invention provides a form of
urnace designed to afford increased radiating surface, and so arrange the several parts of the furnace that the draught may be regulated according to the weather, while the flues are soarrauged that they may be quickly nd readily cleaned.
Traction Engine.-Albert J. Hart, Cromwell, Ind. This invention provides a mechanism or balancing the machine, at the same time gearing the four independent wheels with each other, whereby the weight will be equally distributed, and the machine can be easily turned around.

Railway Appliances.

Train Signal.-Daniel S. McElroy, New York City. The cars are provided with electric
conductors and keys, whereby the circuit extending through the train may be opened, ground wires running to the axle boxes, and having a ewitch, whereby the train circuit may be grounded in any car, to enable the causing an automatic signal in case of the separation of the train.
Railload Switch.-John M. Kincade, Westville, Ohio. A switch is pivoted between the
tracks and a crank shaft connected with the switch rails, a trip port being connected with the crank shaft, making an automatic attachment adapted for conuection with any switch, whereby the switch may be operated from the train
Station Indicator.-James N. Winn, Darien, Ga. This is a device to be located in the cars of the train and be under the control of the engineer or
fircman, to be operated by compressed air or steam transmitted through a continuous pipe, the invention covering novel features
Car Step. - James F. and John F. Wood, Wilmington, Del. This invention covers an improvement on an estensible car step formerly patented reads working in connection with e fromen in a cylinder in connection with a compressed air reservoir,
Coal Tipple.-Thomas Walkins and James H. Brown, Coal Bluff, Pa. This invention provides devices whereby clear coal, three-quarter coal, or the run of the mine may be loaded in cars on two con-
tiguous tracks, or clean coal and nut coal, or mixed nut coal and slack, may be looded at the same time in the clear coal may be weighed and the delivery chutes manipulated to load either open or box cars.
Cable Grip Center Bar. - Vernon T. Lynch, Chicago, Ill. This invention consists of two parallel steel bars and an iron head cross piece extend-
ing over their ends, with two iron plates placed on op. posite sides of the bars and cross piece, and fastened thereto, forming an effective and cheaply made center bar, which can
or wears out.
Axle Lubricator. - Isaac B. Abraham, San Fraucisco, Cal. This invention covers a
lubricating collar for car axles, there being combined lubricating collar for car axes,
with the box a apring presser for feediug the lubricating material to the axle and wear blocks operating within the box, the blocks being automatica
contact with the axle by the spring presser.

Mechanical

Loom Picker. - Cornelius Chippendale, Auburn, Me. This invention consists of a hous-
ing and means for connecting it to the picker staff, the ing and means for connecting it to the picker staff, the
housing being formed of layers of leather or other yielding material adapted to strike against the shuttle, dispensing with the ordinary picker lonp and the screw by means of which pickers have heretofore been astened to their staffs.
SAW. - George N. Clemson, Middletown, N.Y. The saw blade, according to this invention, is formed with oblong tapering apertures at its ends, the apertures being rounded at both ends and free from blade, whereby the saw may be retained firmly in its frame, so that
screws or pins.
Ladle Carrier. - Jacob Kitzinger, Buffalo, N. Y. This carrier is made with a handle its ends, an inverted cup at its outer end, and a ball arranged to turn in the cup, the ball being mounted to turn in a traces laid in the foundry from the cupola to he moulds. permitting the moulder to pour the metal without additional help.
Nut Lock. - Jacob M. R. Gedney, Little Falls, N. J. The washer is formed with a boss
or projection having an undercut groove adapted to reor projection having an undercut groove adapted to re-
eeive a head formed upon a shank made integral with eeive a head formed upon a shank made integral with
the nut, the bolt being formed with a squared or irregularly shaped shoulder, making a simple and durnection with rail joints.
Pulp Screening Machine.-Edmund Victory, Watertown, N. Y. Combined with a series of
separate screens is a series of independent bellows plates having flexible bellows joints at their sides and
ends, the drive shaft baving eccentrics alternately a paper pulp is drawn down through the screen plate apon the concave face of independently working

Auger Bits. - Robert Crichton, Par sons, Kansas. This invention covers a machine making drills or auger bits, a tube being mounted to turn and carrying a pair of twisting rollers and travel ing grippers for palling the bar to be twisted through of any desired length into an auger bit or twist drill.
Shifting Eccentrics. - Jesse M. Mranch (Emma L. Branch, administratrix), Gaylord, the main shaft, with inclines mounted to slide and passing centrally through the diek and turning with the mann shaft, the eccentric being designed to cut off at any desired point, or for stopping or reversing the motion of the machine whenever desired.
Sawmill Planer.-Hirain N. Berry, Meridian, Miss. This invention provides a planer adalso adjustable verticty toward and from the log, and slightly incline the planer head, to cut off any thickness one plde dresed or

Crosscut Saw.-John Flesher, Edging on, Ontario, Canada. This saw has a central drag ooth, with a recess at each side inclining in opposite ooth being inclined in the direction of the end of blade.
Rib for Saw Gins. - Thomas H. Abernethy, Beam's Mills, N. C. This is a rib having a protecting shoe or wear plate, the shoe protecting the
rib from being worn away by the action of the saw, the mproved rib being also adapted for insertion in place fone ordinarily worn out, while ribs the
Shoe Burnisher. - Walter Lawes, New Bedford, Mass. This invention provides a too having twin burnishers, each section capable of burnishing the heel or sole, and the wax being automatically ed, the machine burnishing the dry blacking, waxing he sirface burnished, and burnishing the wased surWagon Wheel Machine. - John L. Zesiger, Switzer, Ohio. This is a machine for dishnng wheels and cooling tires, havig an open metal frame giving room to operate with the tongs and seize over
the felly and tire, with a water tank sinking down bout six inches below the open frame on which the wheel rests, while the immediate and complete cooling of the tire is effected when the tank 18 raised, prevent ing the burning of the felles.
Ore Stamp. - George E. Smith, Cooney, and Charles E. Wilkie, Silver City, New Mexico. This invention covers an attachment for the
stamps of quartz mill batteries, forming a strong and imple device capable of communicating a positive otary motion to the stamp stem during the entire drop, wherety the capacity of the battery is greatly
increased.
Stone Crusher. - Williain H. Howand, Bergenfield, N. J. Combined with a fixed jaw is a movable jaw and a driving shaftformed witha section
the axis of which is at an angle to that of the shaft, the movable jaw being mounted upon the section, whereby the stone between the two jaws will he subjected to a coustantly varying pressure, and the pressure upon the Soldier's Cart. - Herman Gentzen, Fort Ringgold, Texas. This is a light, strong cart, adapted to carry the rations, baggage, etc., of one man, and adapted also when two or more are coupled together for the safe carriage of disabled men from the field, or
to be so coupled that one animal will draw the baggage o be so coupled that one animal
of from six to ten or more men.
Feed Regulator.-Marcus A. Swing, Washington, Ind. This is a device for regulating the feed of roller mills, designed to do away with all the
small pulleys and belting heretoforeused on theoutside of the roller frame or casing, this feed regulator being driven from and off the mill roll on the inside of the roll frame or casing.

Agricultural.

Cultivator.- - Jasper Roberson, Tarkio, Mo. This cultivator has four wheels and a
front section capable of being readily turned at the end of the row and yet rigidly held when the row is being cultivated, the invention covering novel details in the construction and combination of part
durable, and economical implement.
Cutter Bar.-Francis E. Parker and Roswell M. Clark, Kansas City, Mo. This invention provides means whereby the necessity of riveting or away with, and the knives may be quickly locked to or detached from the cutter bar, the construction being imple, cheap, and very effective
Wire Fence Tightener. - Dwight H. Scott, Flora, South Dakota. Thisis a tension device
for expeditiously taking up the slack in wire fences and retaining the wire under tension, and has a tubular body with a fange at one end through which extends a
diametrical slot, a series of teeth radiating from the diametrical slot, a series of teeth radiating from the
opposite end of the body and inwardlyand laterally inclined over the body, the device being substantially in of metal spool cast in one piece
Dust Conveyer.-William S. Miller, Meyersdale, Pa. This isa constructiou for employment in connection with thrashing machines, to clear the
fan blades and distribute the suction, clearers being arranged in connectoon with the fan, and a casing forming a conduit or way from beneath the fan chamber to he induction ports leading to the chamber
Digging Machine. - Willia m J. carriers of /stubble digging machines, providing means
whereby broken teeth may be readily removed, or teeth which become bent may be quickly detached and straightened.
Poultry Vermin Exterminator.Elhanan Roop, Centre View, Mo. This invention covers a closed feed box with a feed opening in one side
near its top, and an elastic absorbent material over the near its top, and an elastic absorbent material over the opening, adapted to hold the insect exterminating compound, whereby, when the fowl pushes in its head, the
vermin exterminating compound will be applied to its head and neck.

Miscellaneous.

Strainer.-George W. Rush, Bridgeon, N. J. This strainer is made in egg shape, in two parts of steel wire ganze, and is designed for use in an orinary coffee or teapot, the full aroma and flavor
being extracted from the coffee or tea placed in the strainer, while the fluid is kept clear and free from sediment.
Safety Gas Burner.-Ray P. Williams, Boise City, Idaho. This invention covers an attachment for gas burners and flxtures, whereby the gas
will be immediately relighted should the flame from the will be immediately relighted should the filame from the
burner be blown out, an auxiliary pipe holding a small burner be blown out, an auxiliary pipe holding a smalip
lighted tip a distance above the main burner, the tip being necessarily lighted when the mann burner is.
Self-Loading Dirt Cart. - Samuel M. Stevenson, Bastrop, La. This invention covers an improvement on a former patented invention of the pivotally mounted and rearwardly extending levers formed with side flanges, in combination with double
lever arms rigidly connected to the wheel boxes, the lever arms rigidly connected to the wheel boxes, the
object being to distribute the strain incident to the rais. ing of the loading scoops.
Valve.-John H. Daly, Portage, Wis. This valve is adapted to be seated on the under side of
a movable cylinder open at both ends, nounted independently, and is especially designed for catch basins, permittinga ready emptying and cleaning of the basin and of the sewer
Suspender Buckle. - Jacob Myers, Eureka, Cal. This is a clamp-like device of novel
form, to be used as a buckle, but having no teeth to cut form, to be used as a buckle, but having no teeth to cat Toy Appliance. - James E. Gause, Brownsville, Tenn. This is a guideway for traveling toys, vehicles, etc., which may be readily laid and when not in use, and one which will direct the toys in both straight and curved d.rections for any desired

Liniment. - Joseph G. and Peter H. Knipper, Rochester, N. Y. This is a composition for use in the treatment of sprains, bruises, swellings, etc., and is composed of tincture of myrrh, tincture of
henbane, and other ingredients, compounded and apied as specifled.
Tricycle. - Leonhard Levin, San Francisco, Cal. A large front wheel is jonrnaled in the
frame, in which also are journaled drive shafts, frame, in which also are journaled drive shafts, while a
rear axle carrying small wheels 18 swiveled to the rear portion of the frame, a hand rod being attached to each drive shaft, levers fulcrumed on the frame attached to the hand rods, and a link conuection between the levers and the rear axle.
Bicycle Brake.-John J. Astor, Jr., New York City. This invention covers a brake shoe made of spring metal and slotted longitudinally to
cause it to adapt itself to the periphery of the tire with out regard to the cross sectional shapeof the latter.
Gate Latch. - Samuel Corrothers Grafton, WestVa. This invention consssts in provid-
ing one of the panels of the fence section adjacent to ing one of the panels of the fence section adjacent to
the latch post of the gate with a wooren bar secured the latch post of the gate with a wooden bar secured
thereto, and having a free elastic end arranged to pro ject in the path of the front bar of the gate, and adapted d by the bar to hold the gate closed.
Silk Winding Swift. - William F. and Louis P. Hochspeier, Union Hill, N. J. The hub be projected and held extended from the hub as desired to hold and spread out the skein thereon, so that it may be readily and quickly loosened, and can be beaten to ,
Lace Tucks on Fabrics. - Jean Wiget, New York City. This invention covers a
method of producing needle lace embroideries on muslins or like vegetable fiber fabrics not affected by chemical solution, which will cut away or remove animal fiber fabrics on which embroidery patterns

Table. - Joseph Cornell, Potsdam, N. Y. This is a table of the class generally known as knockdown" tables, the invention covering a con-
struction of the frame to which the table top is attached, whereby improved clamping sockets are pro vided for the legs.
Egg Case. - Ebenezer Butterick, Brooklyn, N. Y. This invention relates to a class of detachably secured within a transporting frame, each pocket consisting of a series of complete cells arranged end to end, to be filled before placing the pocket in the frame, the invention providing a carrier in which the eggs can be safely transported, and one which can b Shickly
Shipping or Receipt Book. Grattan H. Wheeler. Tacoma, Washington Ter. This is a hook in which the leaves are separately bound together in a manner described, and copies can be readıy
made by the interposition of carbon sheets, the leaves and the carbon paper being readily secured to their places in the cover, and the receipts being detached

Automatic Fan.-Frank Comminge, Houston, Texas. This is a fan designed for use on electric motor, a pitman extending between the fanshank and the crank of the motor, while the fan rod it adapted to be adjusted in any desired position.
Explosive Compound. - John F. A. Mumm, Dayton, Ky. This is a composition of matter designed to be more powerful than ordinary gunpowder. glycerine, and consists of chlorate of potash, antimony, charconl, flowers of sulphur, glycerine, collodion, sulphuricacid, and other ingredients, in specifled propor tions.
MANUFACTURE OF EXPLOSIVES.Wilbraham E. Liardet, Cambria, New South Wales.
This invention covers a process designed to secure This invention covers a process designed to secure
absolute safety in the manufacture of an explosive compound of great power, and safe for the purposes of storage and carriage, the compound containing as ingredients picric acid combined with nitrate of potash or other similar substances.
Knapsack.-Charles D. Weldon, Mica, Washington. This is a knapsack adapted to carry part
of the wearer's load in front of the body in a pocket over each breast, thus distributing the load more un1formly on the shouraers.
Shoe.-Christian Wurtele, St. Joseph, Mo. This is a shoe having a vertically extending side
opening in one side, with its opposite ride closed, and a opening in one side, with its opposite ride closed, and a
transversely divided sole, whereby the heel part may be swung laterally away from the opposing parts of the shoe.
B U
Buckle. - Louis Hausmann, New Orleans, La. This is an improvement in suspender buckles having inwardly bent perforated ears and a
toothed gripper or jaw, the invention providing ears toothed gripper or jaw, the invention providing ears with openings and narrow slots leading to them, the
gripper with its trunnions being adapted to pass through the slots, whereby the plate and jaw may be quickly connected and disconnected.

SCIENTIFIC AMERICAN

bUILDING EDITION. DECEMBER NUMBER.-(No. 50.)

TABLE OF CONTENTS

Elegant plate in colors of a cottage for $\$ 1,000$ Perspective elevation. floor plans and details. Plate in colors of $\$ 1,500$ cottage. Floor plane, per
spective elevation and details. spective elevation and details.
3. View in colors of the residence of C. W. Miller Esq., Tompkinsville, N. Y. Cost about $\$ 20,000$.
Plans, elevations, details, etc. E. A. Sargeant, architect.
Colored plate of the residence of E . Bridgeman Esq.., Staten Island, N. Y. Cost about $\$ \$ 8,006$. architect.
cost of $\$ 1,500$ complete. Perspective elevation and floor plans.
The new Bourse or Commercial Exchange at Paris,
designed by M. Berteault; interior and exterior designed by M. Berteau
viewf. Cost $\$ 1,400,000$. A cottage recently erected at Larchmont Manor, N . Y., at a cost of $\$ 3,000$. Floor plans and perspecCottage at Larchmont Manor, N. Y., erected at a cost of $\$ 4,500$ complete. Hoor plans and perspec A very attractive cottage at Iselin Park, New Rochelle, N. Y., at a cost of $\$ 3,400$ complete
Plans and perspective.
10. Residence at Holyoke, Mass. Cost $\$ 5,500$ com plete. Perspective elevation and foor plans.
11. Engraving and ground plan of a church at Ruther ford, N. J
12. Residence at Larchmont Manor, N. Y. Cost $\$ 5,800$ complete. Plans and perspective. Plans and perspective.
A dwelling at Roseville, N. Y., recently erected at elevation.
15. A residence at Bedford Park, N. Y. Cost $\$ 6,600$ 16. Design for a library and reading room for a country
17. Design for a cottage to cost about $\$ 3,000$.
18. Elevation and plan of two workmen's houses at Paris exposition.

England.

20. Design for a house at Woodlands, Thames Valley. Miscellaneous Contents : Artistic wood decora-tions.-Improved wood-working machinery, illus-
trated.-The Caldwell sash balance, illustrat ed.-An improved sash chain, illustrated.-Dec orative household work.-The Fuller \& Warren warming, ventilating and sanitary construction.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies cents. Forty large quarto pages, equal to about wo hundred ordinary book pages : forming, practi-
ally, a large and splendid MAGAZINE of ArchitecTURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
of any Architectural publication in the world. Sold by
all newsdealers.
MUNN \& CO., Pububrers.
361 Broadway, New York
\mathfrak{D} Business and 2 ersonal. The chargefor Insertion under this head is one Dollar
a line for each insertion: about eight words to a linke Advertiements must be recesived at publication offic

Amateur Lathe, costly equipment; 3 elide rests, 5 cut
 Business Opportunity-A party manufacturinga first-
class automatic and side valve engine, in an adjolving stare, having aul facilties for increasing business, bu lacking necessary capital,destres to opena salesroom and
azenery in New York Cits. A party already established in the machinery line and can make advances on sam
ples preferred. Address " "Busineess," careof this paper street lamp. Needs no care but once in ten days. Now In use on he streets in Branford. Address B. B. Bun-

Wanted from Manufacturers-New and useful novel ties to handile through azents in Canad
$\&$ Co.., 50 Kink st West, Toronto, Ont.
ties, according to price. Samples paid tor at market Wanted-Heary and light machine work and speciallties to manufactur
New Haven, Conn.
We defire to receive communications from those who contemplate patenting any new method or material for
the covering of steam pipes. boilers or other heated surfaces, and mill pay for raluabole suggestions. or unpatent ed formula, if aceepted. tending to improve the product
of this class, now on the market. Address, B. C. D. . Box 773, New York City.
Wanted: Mechanical engineer experienced in design ing ana building modern automatic high speed engines
(Plain and compound), one who is capable of taking
 of ofice and shops. Location, Southern Peonsylvani-
Address . Mechanical Engineer," care of this paper.
Machine tools, catalogue No.47-B; wood-working machinery. catalogue No. 5 -A A steam power, catalogue
No. t8. Larrest lines ofrered bs ang frm in this country.

Best Iceand Refrigerating Machines made by David
Boyle, Chicago, Guild \& Garrieon, Brooklyn. N. Y., manufacture steam pumps. vacuum pumps, vacuum apparatus, at
 For the latest Improved diamond prospecting drille
address the $\mathrm{M} . \mathrm{C}$. Bullock Mfk. Co., Chicano, All.
 The Holly Manufacturng Co.., of Lockport, N. Y Till send their pamphiet, deseribibn water works ma-
ehinery, and containing reports of testa on application. Tuerk water motors at 12 Cortlandt St., Jew York. Screw machines, milling machines, and drill presess. The Garvin Mach. Co., I Iaikht. and Canal Its., New York,

The Improved Hydraulic Jacks, Punches, and Tube | Expanders |
| :--- |
| Hoisting |

Hoisting Engines. TheD. Frisbie Co., New York city.
Tight and Slack Barrel Machinery a apecialty. Jobn For steel castings of best quality, write the Buffalo Belting.-A good lot of second hund belting for sader
heapp. Samuet Roberts, 30 Pearrl tr.. New York. eap. samuet Roberrs, 30 Peari st.. New York.

HINTS TO CORRESPONDENTS.

(1675) J. M. B. asks for some kind of so lution to be put on soft rubber goods, such as small
tubings and sheeting, to hide the smell of the rubber. have tried shellac, hut that will crack and wear off soon, and spoil the rubber. A. We can recommend
nothing that is very effectual. Possibly celluloid variish or simple collodion might answer. Where an unapplication.
(1676) J. N. H. asks : 1. How are tubes of different kinds bent so as to have a curve without
عeam or wrinkle? A . By flling with melted resin, and Ream or wrink eofla. By filing with metted resin, and
bending when cold. 2 . Is there any machine for bend bending when cold. 2. Is there any machine for bend
ing samee A. A fiexible mandrel, made of coiled stee wire, is sold for this purpose. 3. What is the E. M. F.
of Smee battery with carbon instead of platinized siver of Smee battery with carbon instead of platinized siiver
plate? A. $0-47$ volt with silver platinized plate; about plate? A. $0 \cdot 47$ volt with silver plat tinized plate aboo
the esame with carbon, but in the latter case liable to rapid polarization. 4. How long will it last with one charge in constant uses A. This depends on the work. It will run down in half an hour, owing to polariza-
tion. With platinized plates it will remain constant for many hours. 5. Whatist the E. M. F. F. of waller mercury
michromate batteryy A. 18 volts. 6 . I want to uee feld blchromate batterys A. $1: 8$ volts. . . I want to uee fild
magnets in an electric motor of a shape that makes it magnets in an elec.rric motor of a shape that makes it
troubbesme to nue wrought iron cores. What can Id do

Anneal them by heating to redness and burying in pow dered quicklime or forge cinders. Tht
(1677) C. M. asks : 1. Was any apparatus ever invented which would generate perpetual mo
tion? A. No. 2. If not what forms did the ton? A. . . . 2. If not, what forms did the most pra
tical of attempta in this direction take, and on what prin iple did they act? A. Dierck's "Perpetual Motion, 4, gives many of the absurd vagaries of inventors in this direction. 3. Is there any substance known whose
traver
graity will be lessened or increased by entering alter gravity will be lessened or increased by entering alter ately two elements of different degrees of density, a liquid or gasare buoyed up hy the weight of the medium hey displace Hence there io wament change as you seem to mean. Cork floats in water. but not in ir. 4. Is there more than one way of producing sul illation of sulphate of iron is the simplest. Perpetua motion is regarded as an impossibility.
(1678) J. W. S. writes (1) for a receipt for making a frrst class silver polish. A. Use infusorial
silica. 2. Also a qood polish to clean store windows show cases, etc. A. Use whiting. Both are to be ap plied wet, allowed to dry, and then polished off. For deneral metal polieh, putz pomade is excellent. It
said to be thus made: Oxalic aciil 1 pint, oxide of iron (crocus) 25 parts,rotten stone 20 parts, palm oil fiv parts, th a rag, rub hard, an of bitter almonds. Apply
wipe off with a clean cloth.
(1679) G. W. B. - Soaking the plate in water 10z., bichron.
(1630) S. S. B. writes: What is the na ure and use of the alkali or lye of anthraciteashep? poured water upon apan of 4 shes which, when settec
ave a specife gravity of 55° Baume, und the enuggestio comes to me that this alkali should be utilized in som way-but how? A. The alkali, consisting of soda salt
principally, is of no value. Wood ash lye derives it lue from the potasium carbonate which it contain
(1681) W. L. W. asks (1) how to make uminous paint. I do not mean the kind that they put on cheap match safer, but eomething that will show up
distiuctly in the dark. A. Balmain's luminous paint is distiuctly in the dark. A. Balmain's laminous paint is
generally considered the most succeseful. and is the the generally considered the most succeseffil, and is the
faintly luminous color you fail to appreciate. See our
 tense light by phosphorescence. 2. Are there two kinde of substances, such that if a stick be dipped in each
and then held together or againet each other will and then held together or againet each other wil
cause ignition? A. This class of preparation is alway angeroia. A little sodium or potaseium on a sitax ouchinc with a secoud stick that is wet Pe done by the surest, but most expensive and dangerons. The end of the esodium stick khonuld be wrapped with paper
dipped in alcohol, to become ignited from the sodium.
(1683) R. E. P. asks: How the tips of certin his ascertained and explained? A. The process b which they are made is not disclosed. They are baked like pottery. A three foot or four foot burner is sup-
posed to beone consuming three or four feet per hour. but as this factor varies with the pressure, and as the pressure is not stated for each burner, the designation pecial search answer your other query
(1683) J. P. asks : What substance is sed for coloring tinned salmon, and what used to one oond preparations. Annatto may be usecd for salmon i
for ood preparations. Annatto may be uecc for 8 .
nantity sufficient to 0 impart the desired color.
(1684) L. W. G. asks (1) for some way to soften hroom corn brush, so as to prevent shrinkage
when ied to o broom. A. We advise thorough season
ing of the corn before making up, Giverine ad water ing of the corn before making up. Glycerine and water
mixed in equal parts might be sprinkled upon it. 2. The proper method of bleaching the bush to make it nice bright green? A. Cat before it is too ripe, and dry out of sun. 3. Can common India rubber be melted amd 252, for India rubber manufacture.
(1685) A. G. P. R. asks (1) for a recipe or a goodimitation razor hone. Also in which book 1 razor strop composition mix 18 parts of fine paper pulp with 3 of flour of emery and 2 of starch. For stone composition use four of emery 3 parts and shellac 1
part, melted together, and preesed into shape while part, melted together. and presed into shape en
warm. We recommend the Techno-Chemical Receip Sook, which we can supply for $\$ 2$.
(1686) B. H. M. writes : I have a medal sout the size of a haif dollar, which I wish to copy in
sotal like lead. How can I make a mould? some soft metal ine lead. How can 1 make a monlap
A. Use a mixture of plaster of Paris and sifted cooal ashes or ground pumice stone in equal parts made into a paste with water. Or soak paper in water and press it in suc
cessive layers, with Hour paste between down coin, beating it in with a stiff brash. Let either mould dry, bake in a rather cool oven, and cast at a low temperature.
(1687) W. D. asks: 1 . What is the weight of acubic foot of air? A. At 62° Fah. and 31 inches barometer 0.076097 pound or $53267-100$ grains.
2. The weight of a cubic foot of water? A. At 392° 2. The weight of a cubic foot of water? A. At 39.2°
Fuh., 62425 pounds. 3. The weight of a cubbic foot of Fah., 62425 ponnds. 3. The weight of a cubic foot of
gae. A. It depends on the gas. For ordinary coal gas about 475 , or 253 grains,
(1688) O. S. D. says : Please tell me how to remove a large kerosene spot from black woolen
cloth. A. Hold the cloth near to a hot coal five until the oil evaporates. Take care and not set fire to the
(1689) J. H. N. asks for a process to oxidize small articles in white metal, now so fashionable. sium in solution in water.
(1690) A. A. asks for a cheap prepara tion to dye brown straw that will not wash of and that
will not affect the straw. Walnut or tobacco color preferred. A. Try diamond dyes as they are called or anidissolve in water and immerse the straw mended as more permanent.
(1691) H. G. writes: How can I reduce as hardafter it has been softened. disk for a battery that will be acid proof. A. You can not treat India rubber as you describe. Use guta
percha, soften it in hot water, and mould it by pressure between warm dies.
(1692) H. D. B. asks for a method of preserving cider sweet. A. Add $3 / 4$ ounce sulphite o
(1693) A. T. L. asks: Could you tell me something about foxing in ScIENTiptc American. which
used in dyeing sking? A. You undoubtedly meas is used in dyeing skins? A. You undoubtedly mean
fuchsine, which is a dye called anline red, or rosaniline e of the coal tar products.
(1694) M. N. asks for a receipt to prepare something that will clean wall paper and fresco
painting. A. Use fresh bread crumbs or India rubber
${ }_{(1695)}$ T. H. W. writes: What will remove smoke discoloration from a white marble
mantel, immediately over a coal heater! A. We fear mantel, immediately over a coal heatery A. We fear
you will have trouble in doing this. Try washing with you will have trouble in doing this. Try wasking wash-
soap and ground pumice stone. Try a paste of washing soda 1 oz. and whiting 141 lb ., soft soap 341 lb ., and a lump of buestone the size of a walnut. Apply; after an hour wash off. Or use whiting mised with benzine,
(1696) L. D. L. asks: Does air cause lecay? That is, if there was no air, or nearly so, would fish, eggs, etc.., keep fresh forever? If air does
not cause decay, what does? A. The question is a very not cause decay, what does? A. The question is avery
broad one. Decay is generally supposed to be started yy some germs of bacteria from the air colonizing o decay properly spenking may be indefinitely reterded Such germs cannot exist without air, so in that sense the action of air may be said to be generally essential Yet some products might decompose without air, and wonld not be safe to say that absence of germes and of oxygen would prevent all decomposition. easy to see that chemical decompositione may occur
that air has nothing to do with, that one may be brought about by the low afmities of the elements for each other in that combination yielding to stronger affintie ght out by other gronpings.
(1697) G. H. F. writes: I have an in duction coil having a brass spring as a "make and
break" piece, and on this spring (where the the tightening screw touches it) there is a piece white metal glued or stuck in some way to the brass
epring. Is this emall sheet of metal platinum? If se epring. Is is this email sheet of metal platinum? If so,
how is it fastened to the brass spring? A. The metal is platinum. It is fastened to the spring by means of large fat head, and this is fastened by riveting
(1698) McG. writes: I have a white cockatoo set up, which has become much soiled an discolored by dust and fy specks; what will clean it
withont injury to the feathers? A. Use a broad camels hair brush dry, and afterward wet with a little alcohol. You will probably
original brightness.
(1699) A. D. M. asks : 1. What is the ratio of the tensile strength of malleable iron to trength of $56,000 \mathrm{lb}$. to equare inch; wrought iron, 45,000 to 76,000 . 2. Recipe for making a gum such

Dextrine....

Water...
Alcohol.
. After a patent has been issued in the United States Patent Office Gazette, can the inventor buy the plates from which the illustrations are printed? A. The en-
gravings are printed from stones-not plates. The only way is to have plates made.
(1700) W. E. S. asks: 1. If a cylinder holds 100 cubic inches of air at its uatural state, how many cubic inches in the cylinder will the air occupy after it has heen compressed enough to produce one
pound pressure to the square inch? A. The general pound pressure to the square inch? A. The general
rule is that the volume of a gas is in inverse ratio to its rule is that the volume of a gas is in inverse ratio to its
pressure. Thus, under ordinary conditions, air is subjected to a pressure of about 14.71 b . per square inch. If this pressure was increased to 157 lb ., the volume
would decrease in inverse ratio, so as to be $18 \frac{18}{7}$ of the original volume. 2. Would the cubic inches of space that the air would occupy in the cylinder decrease, in compressung the air to produce two or more pounds
pressure to the square inch, in the same proportion as pressure to the square inch, in the same proportion as
they did in producing the first pound pressure? A additional pressure would be t877. 3. Also any rules or information about the subject that are not generally known. A. The rule quoted may be put in the form of a proportion, thus: New pressure:original pressure: original or standard volume : new volume. Remember
to add or subtract the increment or decrement of presare to or from the standard (14.7 lb .) or original pres (1701) A. E. G. asks : 1. Are electro(1701) A. E. G. asks: 1. Are electro-
motors provided with governors, like steam engines, motors provided with governors, like steam engines,
for controlling the speed? If they are, how do they govern themselves by counter current generated within the motor itself. 2. Do they keep the speed as even as steam engines with as great variations of loads Some motors are shunt wound and some are series wound. I wish to know how the different kinds are governed. A. Yes. The shunt and compound wound
machines are governed in the mannermentioned above. While the series wound machines are generally governed
by opening and closing the crrcuit, or by throwing in or the current passing through the field magnet. 3. If all the current from one dynamo is used to run a number of small motors, to be stopped or started independently, as in running separate machines, how do they prevent short-circuiting when they are all stopped at once? A. If
the motors are run by a current from a self-regulaing dynamo the current will, of course, be regulated automatically by the dynamo itself; but if the dynamo is ce for the motor.
(1702) C. W. W. asks how to tin articles made of wire so they will not rust and have the appearcleared of grease by boiling in caustic sods water, washing in clean hot water, pickled for a few minutes in a bath of hydrochloric acid 1 part, water 5 parts, washed again in hot water, and tumbled in cleaned olution, proportionally, of 5 ounces tin salt (chloride of tin), 5 ounces alum, $3 y / 2$ ounces cream of tartar, in ased for dipping small articles. Let wire main in the bath for from 1 to 4 hours, according to the thickness of coating required. Then rirse in hot water
containing one ounce of carbonate of magnesia to a containing one o
(1703) Scholar says: Text books say that sun spots appear first on eastern limb of sun, travel and what direction does the sun rotate on tite axis? A. It is correct. The sun revolves in the same direction that the earth moves in its orbit. When their surfaces
are face to face, as at noonday, their apparent motions are contrary, the face of the sun moving westward, the spots moving with it. By making a diagram of the motions of the sun and earth, the true relation will be-
(1704) P. J. L., T. P., and W. T. R. ask . Blacking.-Ivory black 50 pound cod liver oil 1 gallon, oil of vitriol 10 pounds, powdered gum arabic or
senegal 1 pound, molasses 4 gallons, vinegar 15 gallons. Grind together the ivory hlack, gum, and oil with a portion of the vinegar, add the molasses, and while stirring pour in slowly the oil of vitriol. When all action ceases black 25 pounds, molasses 2 gatlons, oil of vitriol 4 pounds, cod liver oil 4 gallons, vinegar 6 gallons, pow dered gum arabic or senegal $1 / 2$ pound. All the ingredients except the oil of vitriol are first thoroughly mixed and ground, then the oil of vitriol is slowly stirred in. tion. 3. Liquid stain polish for shoes.-Gum tragacanth 2 ounces, ising'ass 1 ounce, beer 1 gallon, glycer ne 1 pound, extract of loywoo galls, and copperas in the beer for some days, add the glycerine, strain and dissolve the gum and isinglase in the mixture and if necessary strain again. This formula (1705) P. N. writes : 1. We have on hand some swelled canned corn; the contents do not appear to
be sour, but have a decayed or rotten smell. Could this be caused by the can in which it was packed being made of a tin plate in which too large a proportion of lead to can has nothing to do with the decay of the corn, but, if the latter sours, may affect its purity then by contaminating it with metallic salts. 2. By what process can
we determine the amount of each (tin and lead) nsed in coating any certain tin plate? A. You should submit it to a chemist for analysis. A weighed portion of the platemay be treated with nitric acid in excess and the
solution evaporated to dryness, treated with hot water, and filtered. The residue is ignited at an intense heat to constant welght, and is weighed as stannic oxide, and the tin calculated therefrom. In the filtrate the lead may be precipitated by sulphuric acid and weighed
(1706) C. M. A. writes (1) whether or not it is possibleto perform the routine of vaporizing burning kerosene oil of 150 degrees test in a burner or soot. A. Yes, but it will be difficult to start. 2. is refined? A. It may be refined up to 400° Fah. boilng point or more. 3. Has gun cotton been used as a motive power to be exploded in a receiver and used in bun co of steam in the ordinary steam engine, or has power, except for blasting and projectiles? A. It is fa oo violent and sudden, except for such A. 1 is driving up the ram of pile drivers, etc. It has never been
successfully applied as you describe.
(1707) R. C. M. asks : What kind of a
 of lenses are generally used, and if the the number the same kind of a telescope? A. Transits for astronomical pur den eyepiece, which gives an inverted image, and flat
field for better observation of the passage of the sun or star across the micrometer filaments. Transits, levels, and theodolites, used in surveying, are generally furnished with the terrestrial eyepeiece, which inverts the image from the object glass, so that objects are seen in from 25 to 100 diameters. The telescopes of surveying instruments magnify from 10 to 25 times. For a de scription of these eyepieces see Scientific American Supplement, No. 399.
(1708) F. P. D. asks how to oxidize silhow lack suchas you see upon the jewelry in the how windows. It is not obtained by sulphide of so-
dium, potassium, ammonium, or chloride of platinum I have tried all of these, and the sulphide of potaseinm. though preferable to the rest, gives only a blue black or
dark steel color, and not the jet black I dark steel color, and not the jet blark I speak of. A.
Dip thecleaned articles to be oxidized firat in a solnwith a thin film of mercury, which forms a silver amal
wite gam, and then in the sulphide of potassium or sodum,

by which a misture ts formed of mercury snlphide and silver sulphide，which is much darker than the silver silver sulphide，which is much darker than the silve sulphide alone．A few trials will give you the time of dipping for best effect．

（1709）E．H．B．writes ：My coat is of a light stone color．It is stained with lemon juice．
would like to know，by the simplest would like to know，by the simplest means to your
knowledge，if I can bring back the original color？A Try ammonia．If the stain ie old，it is probably inera
（1710）W．F．A．writes：Which will make the be objections to rubber？A．A properly made ber plate for artificial teeth is very good．If of gocd poisoning has been suggested in the case of rubber，but without proper basis in fact
（1711）Sub．R．asks：What is mixed with flour to make it self－raising，and in what quantity for any length of time？A．Use 188 parts by weight of bitartrate of potash ard 84 parts of bicarbonate of soda misture should be very thorough，and of flour．The keep for a long time．It is not perceptibly in jurious．
（1712）A subscriber asks how rubber paser of Pais Generally type are used as the original．Unvulcanized rubber mixed with the vulcan izing material（sulphur，etc．）is laid upon the mould and is by a press forced down upon it so as to enter al its interstices．The plaster surface should first be well coated with talc to prevent adhesion．Then the whol arrangementis putinto a vilcanizer which is essentiall Supplement，Nos．249，251，and 252，you will find the whole subject of India rubber manufacture admirably treated．
（1713）A．M．R．asks ：1．In making vine－ gar will it keep for a few months in a large tank as well Would it be necessary to keep it covered over the top A．It will lose strength．It should by all means be kep
（1714）W．S．asks（1）how wax is prepare and what k ind it is that is put on wood so that black lead will stick to it．A．Use no wax，but rub on with a
brush．Paraffine or beeswax dissolved in turpentine brush．Paraffine or beeswas dissolved in turpentine may be used．2．To oxidize copper black？A．Various dium in solution in water，dry at a gentle heat，and pol sh．This will give a dark bronze．For full black，was with nitrate of copper solution，heat moderately，repea if necessary，and finally polish with oil．Or wash with a misture of 1 part nitrate of tin and 2 parts chloride of gold or platinum，and after 12 or 15 minutes wipe it
off with a cloth．An excess of acid increases the in tensity of the color．
（1715）Static asks ：1．Are the effects of an induction coil controlled as mach by the state the atmosphere as in the case of frictional apparatus ent of the state of the atmosphere 2 Whepen smallest size（in length of spark）which would be prac ticable to demonstrate for a class in physics？A． coil giving a $1 / 8$ inch spark will show Ceissler tabes， A．One Grenet cell giving a current of lts will answer
（1716）A．B．F．asks ：Does oiling a rope ive it any lang elitric lamps exposed to the weathe To a certann extent it tends to，yet in practice it is not found advantageous．On ships the standing rigging is reated．A srecies of heating may be induced in the heart of an oiled rope，analogous to spontaneous com bustion．Wire hoisting ropes are now made with hem ore thatarevery durable
（1717）W．G．S．asks for a receipt for redressing rubber overshoes after the India rubber has in Maine the lime will dull the rubber long before it is orn out．A．Wiping off with ammonia or glycerine might benefit them．Oil is not to be recommended． You will not by
（1718）S．P．writes ：Can you give me a quid that will dis8olve shellar，，withoat the aid of saturated solution of borax in water．This will not give ou a very strong solution．Wood alcohol is ofte ased；it is about half as expensive as grain alcohol．To in water，add glycerine
（1719）H．B．H．asks for a receipt fo making liquid glue that will stay liquid all the time ate．In this 2 parts nitric acid with 40 or 5 －for ours，and then heat until it is all of one consistenc The quantity of acid depends on the quality of the glu
（1720）E．G．－Iodine is extracted from e mother liquors fom the nisrate of soda works in South Ameriea，and also from certan species of sea
weed，the Fucus palinatus and saccharinus．The cost extraction has so many factors that it 18 impossible
（1721）H．G．asks：How does Patti，the eatly hat no one，unless having positive information othe wise，would dream that its color and condition was anything but entirely natural．A．She probably use binoxide of hydrogen for making it light in color．What oils，tonice．and general yreparations she may emplo （1722）B．
（1722）B．D．B．asks for a formula to make a chalk engraving plate for the production of will find described several methods of making relie
plates．One formula reads thus：Sulphate of baryta silicate of eodas 180 drops； 502 ． 5 drachm The whole must be intimately pround spread in rather thick layer upon a perfectly level polisbed an blued steel plate，dried，and baked．The design is cu hrough this with a steel point，and melted type metal poured upon it to form the relief plate．
（1723）M．L．asks（1）for a formula for n experiment in making ice in a chemistry class．A hat is wet with water．Half fill the pail with ice water and stir into it with a wooden stick about $1 / 2$ its volume nitrate of ammonia．In a few minutes the board tube of ice water stinred being frozen fast thereto．A te befrozen．2．In measurng allitudes，is the barometer gradnated，or does the height have to be calculated？A．
By a complicated formula given in works on physics or 11 engineers＇hand books．In a rough way allow
one thousand feet change of altitude to one inch varia－ one th
tion．
（1794）E．L．I．asks： 1 ．What is the Solution of sal ammoniac．2．What is the best way keeping the silver chloride in contact with silver plate？ A．The chloride of silver may be melt．ed and cast in mould around the wire，or it may be inclosed in
archment bag with the wire in the center．We do no nderstand what battery you refer to in your third uery．

TO INVENTORS．

An experience of forty years，and the preparation of ents at home and abroad，enable us to understand the laws and practice on both continents，and to possess un－ nopsis of the patent laws of the United States and all oreign countries mas be had on application，and person broad，are invited to write to this office for prices， which are low．in accordance with the times and our ex－ MUNN \＆CO way，New Yor

INDEX OF INVENTIONS

Which Letters Patent of the

Docember 24，1889，
AND EACH BEARING THAT DATE
［See note at end of list about copies of these patents．］
Acid phosphate，making，C．Gla
Addink machine．E．W．Tavlor
Aerial apparatus，D．Thater．．．．．．．．．．．．．．．．．．
ir feeding device，Frodsom
McLinden．．．
Alarm lock，G．J．Keller．． Ammonia，apparatus for making，T．B．Fogarts．．．．．．．417，779 Armature for electric machines．Schmid \＆Tesl uto
 Babs walker，M A．\＆R．L．Richardson．．． Back and head rest，combined，C．E．Frick
Bale covering，W．Glover Bale covering，W．Glover． Banding．A．T．Brewer．．．．．．．．
Battery．See Galvanic batters．
Beam or girder，R．H．Cousins
Bed lounge，foldinn，E．Sprague
Bicycle．Stover $\&$ Hit．
Bit．See Bride bit．
Blackboards．chalk trough
Blacking mixture．J．G．Dr
Board．See Wash board．
Boilers．filter and heater for steam ．．．．．．．．．．．
Dougherts．．．．．．．．．．．．
Book，press，copping，L．E．

G．Raffel．．

Bootle stoe，ventilated，w．Church
Bottle stopper，M．Siersdorfer．．．．．．．．．．．．．．．．．．．．．．．．．
Botles holdink powders，liquids，or other sub－
stances，stopper for，H．

Brick．C．E．Puston．．．．．．．．．．．．．．
Brick kinn，chamber．F．H．Jung
Brick machine，White \＆Boyd．
Brick machine mould tab．White \＆Bord
Brick pressing machine，c．w．Raymond．．
Bridle bit，C．E．Guy
Broms，etc．，stick or handle holder for，H．
Gocht．．．

Buckle guard．C．I．Smith．．．．．．
Buckle，suspender，S．A．Collins
Buffer wheel．E．M．Hickman
Bufting roll，T．E．Keavs
Bullets and shot，machine for making，E．J．T．um
ley．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
burner．
Button． K ．Dieterich
Button．C．Radclife ．．．．．．．．．．．．．．．．．．．．．．．．417，939 to 417，
Camera．See Photographic camera．
amera box，J．W．Freedie
amera box，J．W．Freedle ．．．．．．．．．
Camera plate bolder，J．M．Rbodes
Can machines，delivery attachment for．J．Black
Cannon，G．B．Webb．

ar brake，cable，Bradburg \＆Griswo
ar brake hanger．F． G ．Susemihl．
Car coupling，A．V．Cronk．
car coupling，J．B．Thoma

417,911 418.059

费妴禁
． 418.100
.417 .837
418,022

418.009 418.067

Car，metallic railway，E．W．M．Hughes
Car mover，Gillham \＆Towson Car or other seat．H．S．Hale．
Car seat，H．S．Hale．
Car siknal，device for an electric．，．J．P．Runkel Car step，extensible，J．F．\＆J．F．Wood．
Car wheel，J．Dunstedter
ar Carpet holder，E．R．Barn Carriage seat，M．Cook．．
Cart，road，w．Pummill
 Cattle guard．surface．J．T．Hall．．．．．．．．．．．．． 41
Ceiling clamp，I．s．Hunter．．．．．．．．．．．．．．．．
Ceiling cornice，metallic，L．L．Sagendorph．．． Ceiling cornice，metallic，L．L．Sagen
Centrifigal machine，A．Waldbaur．． Chafe iron，vehicle，G．W．Southwick．．．．．．．．．．．．．．．
Chair．See Elevating chair．folding chair．In valid chair．
Chart，color．H．L．Turner．
 Chopper．See Cotton chopper．
Cristmas tree holder，H．W．Diek． Christmas tree holder，H．W．Diek．．．．．．
Churn operating mechanism，S．A．Ott
Circuit closer，automatic，，J．VonderKammer．．．．．
Clamp．See Ceiling clamp．Railway frog clamp

Clamp，F．Huber．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 417
Cleaner．See Rubber stock cleaner．Track
cleaner．
Clevis， $\mathbf{0}$ ．Bates．． 417

Clock Dendulums，electric synchronizing device
for，J．Hamblet．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

lier．．．．．．．．．．．．．．．．．．．．．．．．．．
Clothespin，M．Warren ．．．．．．．．
Coal tipple，Watkins \＆Brown
Coal tipple，Watkins
Cock，stop，J．Heltzle．
Cofinn，E．\＆B．Holmes．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Cooking apparatus，E．Atkin
Cooking edibes，H．Fricker．

Oops holder，M．A．Hawles
Corer and slicer，fruit，C．W．Black．．．
Corrugated furnace and flue，S．Fox
Cot．automatic rocking，A．Wainwri
Cotton chopper，©．w．Reardon．．．．．
cotton chopper，©．W．Reardon．
Cotton gin and renovator，A．M．Crooker．．．
Cotton gins，condenser for，A．D．Thomas
Cotton ging，condenser for，A．D．Thomas．．．．．．．．．
Cotton，pneumatic apparatus for handling seed，
A．D．Thomas．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
A．D．Thomas．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Cow tail holder，J．M．Ferguson．．．．．．．．．．．．．
Crade and crib，combined，C．J．Cobleigh
Cradle and crib，combined，c．
Crusher．See Stone crusher．
Cuff fustener，J．V．Pllcher．．．．．．
Cultivator，J．Shank．．．．．．．．．．
Curtain ixture．M．A．Bomar．．．．．．．．．．．．．．．．．．．．．．．．．
Cutter．Se Band cutter．Feed cutter．Stalk
cutter．Tobacco cutter．
cutter．Tobacco cutter．
$\begin{aligned} & \text { Darnink stockings，device for，C．c．Gale．．．．．．．．．．．．417，718 } \\ & \text { Dental Assure drill，A．W．Browne．．．．．．．．．．．．．．418，108 }\end{aligned}$
Die．See Wire drawing die．
Diger．See Potato digger
 Dorr indicator，H．Hinckles．
Drawer fitting machine，Bugbee \＆Danner．
Dredger．steam vacuum，C．W．Newbers．
Dredking machine，w．A．
Drier．See Clothes drier．
Drill．See Dental Issure drill．
Drum，tubular heating，G．E．Le
Drum，tubular heating，G．E．Leonara．．．．．．．．．．．．．．．
Dyeing machine，G．I．Craven．．．．．．．．．．．．．．
Dyeing or scouring apparatus，J．P．Delahunts，
Eccentric，shifting，J．M．Branch ．．．．．．．．．．．．．．．．．．
Egg packing crate and tester，combined，Brooks

Electric circuit controller，F．A．Lane．．．．．．．．．．．．．．．
Electric conductors，device for suspending，S．H．
Short ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Electric conduit，underground，J．Dell． Electic machine，mangeto，W．Gillett.............
Electro－therapeutic apparatus，F．J．Kneuper
下．96 Electrode，secondary battery，H．G．Osburn．．．．．
Electrode，secondary battery， \mathbf{H} ．G．Osburn．．．．．．
Elevating chair，combination，N．Sorenven．．．．．．．
Elevator．See Cotton elevator．Envelope ma－

chine elevator． Elevator，A．C．Newton．．．．．．．．．．．．．．．．．．．．．．．．．．．．．418，

Elevator，A．C．Newton．．．．．．．．．．．．．．．．．．．．．．．．．．
Elevator safets device，M．T．Greenleaf．．．．．．．．．．
Engine．See Gaa enkine．Gas or petroum mu－
tor engine．Hot air engine．Rotary enkine tor engine．Hot air engine．Rotary enkine．
Steam engine．

Envelope machine ele．．．．．．．．．．．．．．．．．．．．．．．．．．417， son．．．．．．．．．．．．．．．．．．．．．．．．．．．

F

Filter，metallurgical，J．s．MacArthur． Fishing rod holder，S．Dupius
Fishing tarkle box．J．C．Borcherdt．．．．．．．
Flood gate，J．H．Carawa，
Hloor arch center hanger，F．Trabert．．．．

Folding gate．A．Bataille ．．．．．．．．．．．．．．．．．．．．．．．．．
Food compound，H．E．Dennett ．．．．．．．．．．．．．
Fruit assorting and cleaning device，M．Tompkins
Fruit cutting and pitting machine，Ssanguinetti \＆
Fruit cutting and pitting machine，Sanguinetiti \＆
Sterenson
Fruit evaporator，s．．．．．．．．．．．．．．．．．．
Eurnace．See Corrugated furnac

Fuseand taper lighter，Collins \＆Wad－El－Ward．．．．．．．．．．．．．．．．．
Gauge knife．G．M．Conover．．．．．
Galvanic battery；P．B．Delany．

417，788

48，125

417.927

417,759
447.959
417.847
． 817
7.7825

Hok．See Check hook．
Horse power，J．W．\＆F．e．Wood．．．．．．．．．．．．．．．．．．．418，102
Horses from cribbing，device to prevent，J．
Meser．．．878
Horseshoe calks．manufacture of，J．Foulks．．．417．92
Hores

Hub band，vehicle，J．Maris ．．．．．．．．．．．．．．．．．．．．．．．．
Indicator．See Door indicator．Station indi－

Hogarth ．． 418,0
48，12s
Joint．See Pipe joint．Railway rail joint．
Journal box，P．H．Grimm ．．．．．．．．．．．．．．．．．．．．．．．．．．．418，

Journal box，self－oiling，w．．．．．．．．．．．．．．．．．．．．．．．．．．． 418,128
Kiln．See Brick kiln
Labels，applying detachable，B．Glick ．．．．．．．．．．．．418，122
Ladder，extension，w．H．Mitchell．．．．．．．．．．．418，046
Ladder，extension，w．I．Mitchell．．．．．．．．．．．．．．．．．．418．006
Lamp，W．H．Wilder．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．417，964
Lamp，incandescent electric，J．w．Packard．．．．．417．89
Lamp，incandescent electric，J．W．Packard．．．．．．．．417．899
Lamp．self－regulating，V．Di Marzo．．．．．．．418，113，418，114
Lamp sucket，incandescent，J．W．Packard，

Latch，E．F．Barrows．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．447，980
Leak stopper for vessels．，W．Winchester．．．．．．．417．894
Lock．See Alarm lock．Nut lock．Permutation
lork．
Lock strike，F．P．Stone．．．．．．．．．．．．．．．．．．．．．．．．．．． 417.845
Loom jacquard mechanism，F．L．Carnell．．．．．．． 47,903
Loom shuttle tension regulating device，J．P．\＆
H．Kells．．．
417．827
Lubriactor．See Axle lubricator．．．．．．．．．．．．．．．．．．．418，020
Lubricator．C．B．Hodges．．．．．．．．．．．．．．．．．．．．．．．．．418，131

Meat tenderer，D．L．Graves．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．418，821
Mechanical rekister，H．S．Ross．．．．．．．．．．．．．．417．840
Metal box or chest，S．C．Davidson ．．．．．．．．．．．．．．．．．417，
Mill．See Grinding mill．Rubber sheeting mill．

Mustache holder，W．I．Materman．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．41，876
Napkin holder tableattachment，J．M．Hinds．．．．．418．025
Net．fy，T．．M．Mathias．．．．．．．．．．．．．．．．．．．．．．．418，038

Oil burner，injector．C．H．Clark．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．417，956 4121
Oin burner，injector，J．Girard．．．．．．．．．．．．
Oil press，w．R．Fee．
in presses，heating and crushink rolis for，w．R．R．
Fee．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
4188，116

Paper bags，making，e．E．Claussen．．．．．．．．．417，905，417，900
Paper box blanks，machine for cutting，creasing，
Pasting device，wrapper，e．E．Porter．．．．．．．．．．．．．．．．． 418
Pen and pen holder，combined，G．H．H．Clement． 417

Phosphorus，obtaining，J．B．Readman ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．943
417，871
Picture card，O．Kaufmann．．．．．．．．．．．．．．．．．．．．．．．．．．．418，135
Picture fastening device，E．T．Beaman．．．．．．．．．．417，805
Pin．See Clothes pin．
Pincushion，. ．H．King ．．．．．．．．．．．．．．．．．．．．．．．．．．417，922
Pipe sovering，steam，F．L．Bartlett．．．．．．．．．．．．417，768

G．E．Hart．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Planing and sawing machine，combined，J．w．
Fulcher．．．18，188

488,183
418,076
417.961

 48
${ }^{417}$ ． 418,096 418，132 418,06

417，956
417,947

417.946
41757
417,762

418.044
418.045
418,041

418，04

418，030
417,868
$418,073:$
418,05
417.862
417980

417,980
417,89
417,854

417,09
47,700

417,866
417,222

418，07

412,930
417,774
418．068
418,049
418,057
418,124
.417783
417,881
4
417.872
417.925

TRADE MARKS．

female wear，Hammerslough Brothers
Fertilizers，manufactured．J．A．Li．．．．．．
Hats and caps，D．D．Youmans．
Hose．fire，Gleason \＆Ryan．．．．
Lime for building purposes，
and Transport Company．．．．． E．\＆II．T．Anthony \＆Company G．W．Hoffman．．．．．．．．．．．．．．．．．．．．．．．．．．．
Rubber and oil clothing，J．T．Cunningham
Rubber and oil clothing，J．T．Co
Rubber belting，s．Ballard \＆Co
Rubber belting，rubber hose
\＆B Ballard \＆Co．．．．．．．．．．．
Rubber hose，s．Bullard \＆Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

Shoes，women＇s，misses＇，and children＇s，and boys＇，
and youths＇school，A．W．Clapp \＆Co 0 ．
silk and cotton fabrics，W．Skineer Manu
Ctarch，laundry，Wetmore \＆Pride Manufacturing
Company．．．．
Stoves，furnace
lar Stove Company
superphosphates and guano fertilizer，E．B．Free
man $\&$ Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
man \＆Co．．
Wagon brake locks，
pany
A lrinted copy of the specification and drawin this office for the foregoing list will be furnished from and number of the patent desired，and remit to Munn Canadian Patents may now be obtained by the
Inventors for any of the inventions named in the fore－ going list，provided they are simple，at a cost of $\$ 40$
each．If complicated，the cost will be alittle Pull instructions address Munn $\&$ Co．．361 Broadway
New York．Other foretgn patents may also be obtaired．

SPECIAL NOTICE！
Sizaztwos

ICE－BOATS－THEIR CONSTRUCTION

STEEL TYPE for TYPEWRITERS， Stencils，Steel Stamps，Rubber and Metal Type Wheels． 100 Nassau Street，New York． VELOCITY OF ICE BOATS．A COLLEC．

VOLNEY W．MASON \＆CO friction polleys clotches aud dievators on gas engines．－a valuable

Fine Taps，Dies．Reamers，Etc．

Lightning and Green River Screw Plates．
Bolt Cutters，Hand and Power Drilling Machines，Punch ing Presses，Tire Benders，Tire Upsetters，and ot
er Labor Saving Tools．Send for Price List． er Labor Saving Tools．Send for Price List．
WILEY \＆RUSSELL MFG．CO．，Greenfield，Mass．

RAILWAY AND STEAM FITTERS SUPPLIES Rue＇s Little Giant Injector SCREW JACKS，STURTEVANT BLOWERS，\＆c．
JOHN S．URQUHART，46 Cortandt St．，N．Y．

Useful，Beautiful，and Cheap．
To an y person about to erect a dwelling house or sta－
ble，either in the country or city，or any builder wishing to examine the latest and best plans for a church，school or low cost，should procure a complete set of the ARCHI－
TECTS＇AND BUILDERS＇EDITION of the ScIENTIFIC american．
The information these volumes contain renders the
work almostindispensableto the architect and builder， wors almostindispensableto the architect and builder
and to persons about to build fur themselves they will and the work suggestive and most useful．They contain colored plates of the elevation，plan，and detail draw－
ings of almost every class of building，with specifcea－ ings of almost every class of builus．whind
tion aind approximate cost． Eight bound volumes are now ready and may be ob－
tained，by mail，direct from the publishers or from any newsdealer．Price，$\$ 2.00$ a volume．Stitched in pape

MUNN \＆CO．，Publishers， 361 Broadway，New Yorls．

HENRY CAREYBAIRD \& CO. Indust rial Pablishers, Bookselliers, and Importe

GET IT!

The Blue Book of Trade Marks
 anufacturer, Inventor, Merchant, and Business Man.

 new haven, conn. The CHANDLER WATER MOTOR Works well on Low and His Single, Duplex, Triple, and Quad-
ruple Automatic PISTON MOORS, adapteat t o allclasses
Send for Circulars. Howard Bros., Buffalo, N. READING AS A MEANS OF TEACH

 Penberthy Automatic Injector

MI OD DTIS!
 EXPLOSIVES.- - A VALUABLE AND

 WITMYER PATENT FURNACE. BOILERS OF EVERY DESCRIPTION STMAM ROAD FOOTMERE Manufactured by FOUNDRY \& MACHINE DEPT., Harrisburg, Pa., U. S. A.

HARRISON CONVETOR!

нanding Grain, Coal, Sand, Clay, Tan B.rk, Cinders, Ores, Seeds,\&C.

Steam! Steam!
Quality Higher, Price Lower. 2-Horse Eureka Boiler and Engine, - \$135
B. W. PAYNE \& SONS, Scientific Book Catalogue

NOW READY

Fizerinetala $S_{\text {Biene }}$

By GEO. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid, \$4.00
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents.
MUNN \& CO., Publishers,
 361 Broadway, New York

DRYING PLANT FOR WET FEED.-

WORKING MODELS \& LIGHT MACHINERY. INVENTIONS DEVELOPED. Send for Model Circular

SUBTERRANEAN WATER OF THE

OIL WELL SUPPLY CO, Ltd.
 WATER SOFTEENING.-A PAPER BY

ARTESIAN

THE STORAAEE OF ELECTRICITY.-
 DERFEGTim SEAPER LE

Foreign patents

THEIR COST REDUCED.

$$
\begin{aligned}
& \text { mo } \\
& \hline 10
\end{aligned}
$$

area proportitacle of oos our in is no longer in the way of a
ars patenung their inven-
tions abroad.
arre proporit.
tions abroac.
a inal
less than the cost of of of of a patent in canada is even
Cormerncludes the
former includes the Provinces of Ontariu, Quebee, New
Brunswick, Nova Scotia, Brtish (columbia, and Mani-
toba.
The nu
The number of our patentees who avall themselves on
he cheap and easy method now offerea tor obtaining

Channel 1slands. Great Britain is the ncknow.edged
Bnancial aud commercial center of the world and
tnancial and commercial center of the world and her
goods are sent to every quarter of the globe. A good
in Enzanano as bis United States patent produces for
in alm athome. and the small cost now renders it possible
for almost everypatentee in this country to secure a pa-
Jected is in the United States.
OTH FR COU
OTH ELR COUSTRIES.-Patents are also obtained
n very reasonable terms in France. Belplum, Germany.

Australia, and the other British Co onies.
An experience of over
Forry fears bas enabled the

Poreign countries, and it has always been their aim to
have the business of the r clients promptly and proper
Iy done and their interests faithfully guarded.
A pamphlet containing a synopsis of the patent laws
t all countries, including the cost for each, and othe
information usefu to persons contemplatang the pro-
curing of patents abroad. may be had on application to
this offce. © © © .. Editors and Proprietors of THE Scl-

offices. 3 Bn Broadway. Examination of inventions, eon-
suitation, ana advice free. Incuiries by mail promptly
oficics. 31
sitatition
answed.
$\underset{\text { Addrese }}{\text { Pubishers and Patent Solict }}$

A^{\prime}NEW CATALOGUE VALUABLE PAPERS L

 or Lonse pulleys in in une.

 HE PENNA. DIAMOND DRILL \& MFG. CO. BIRDSHORO, PA., Builders of High Class Steam Engines, Diamond Drilling and General
Machinery. Flour Mill Rolls Ground and Grooved.
 INV ENTORS and others destring newa ractesmanufac. ELECTRICITY, LIGHT AND HEAT

 HOW TO MAKE DYNAMO-ELEC'TRIC

ASBESTOS Fine Fit Coverine: The CHALMERS-sPENCE CO., Mriss.
$419-425$ 8th Street, East River, $\mathrm{N} . \mathrm{y}$. 2nd Yes MACHINERY I HAVE INVENTED A MACHINE to Navifnte
 ON THE OBSERVATION OF SUDDEN

The Scientıfic 1 merican PUBLICATIONS FOR 1890.
The prices of the diferent publications in the Unitos
States, Canada, nad Mexico are as follows:
 . 5 American supplement(weeky). one 500 one fear. $\begin{aligned} & \text { onerican, smanish Edition (monthig) } \\ & 3.00\end{aligned}$
 Combined rates.

The Scientifc American, Supplement, and Arcni- ${ }_{9.00}$
This includes postage, , hich me payd Remit by postal

WゆDertisements．

Overman Wheel Co．，Maker
THE COPYINGPAD．－HOWTOMAKE

T프 KODAK CAMERA

The Eastman Dry Plate \＆Film Co． Rochester，N．V． 115 Oxford $\mathbf{s t}$ ．．．．London，
Send for copy of Kodak Primer with Koudik Photoraph If SOU Are a \quad CALPENTER，

TO BUSINESS MEN

PATENTS！

STANDARD TYPEWRITER．
Wyck off，Seamans \＆Benedict 327 BROADWAY，NEW YORK．

The MOTOR of 19th CENTURY．
 Charter cir cuars．etc．，tddres

IT POP SAFETY VALVE HOB WATER RELIEF VALVE O IMPROVED STEAM GAGE
STEAM ENGINE INDIOATOR

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent ranted to Alexander Graham Bell，March 7th，1876，No．174，465．and January 30th， 1877．No．186．787
The transmission of Speech by all known orms of Electric Speaking Telephones in ringes the rightsecured to this Company by the above patents，and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use．and all the consequences thereof．and liable to suit therefor．

THE GUTTA PERCHA \＆RUBBER MFG．CO．
\qquad The Largest Manufacturers of Mechanical Rubber Goods in
Packing，Belting，Hose，Mats，Mating，etc．

Established 3.7 years，and at present the largest Elevator Works in the world．OTIS bROTHERS \＆CO．，General Offices， 38 Park Row，New York City，and branch offices in nearly every principal city on the globe．Elevators for Passengers and Freight．They are smooth－running，eco－ nomical，and above all SAFE．

エ玒ヨ
Scientific American
established 1846．
The Most $\mathbf{P o p a l a r ~ S e l e n t i f i c ~ P a p e r ~ i n ~ t h e ~ W o r l d . ~}$ Onls 83.00 a Year，incluading reatnge．Weekly．
Thim widely circuluitel and splendidy illustrated paper is pubissted weekly．Every number contains six－
teen pazes of useful infolmation and a alarge number of orizinal engravings of new inventions and discoveriee．
representing Engineering Worss，steam New Inventions．Noveltiee in Mechanics，Manufictury Chemistry，Electricity，Tei eerraph，Photoorraphy，Archi－ tecture，A Ariculture Horticulture，Natural History，etc． Complete List of Patents each week． Terms of Su bacciption．－One copy of the sciev． postage prepaid．to any subseriber in the United States， Canada or Mexico，on receipt of three dollitum by the
publishers six monte 8.50 ；three monthe sion publishers；six montr，s， 81.50 ；three month， 81.00 ．
Clubr．- special ratee for several names，and to 0 Post Masters．Write for particulars．
The safest way to remit is by Postal Order．Dratt，or Express Money Order．Money carefuly plited inside
of envelopes，securely sealed，and correctis gadressed of envelopes，
seldom goes astray sut is seldom goes astray，but is at the sender＇s risk．Ad－
dress all lettera and make allorders，drafts，etc．，pas able to IMIUNIN \＆CO．，

> 361 Broadway, New York. TEIE
Scientific American Supplement． This is a separate and distinct publication from
THK SCINMTIFIC AMERICAN，but is uniform therewith In size，every number containiuk sixteen large pages ful of engravings．many of which are taken from foreign
papers，and accompanied with translated descriptions． The Scirntific Anarican Sulplicmint is published weekly，and includes a very wide range of contents．It presents the most recent napers by eminent writers in
all the principal departments of science and the all the principal departments of Science and the
Useful Arts，embracing Biology，Geclogy，Mineraloky， Natural History Geokraphy，λ rchæology Astronomy， Chenistry．Electricity，Likht．Heat，Mechanical Engi－ neering．Steam and Railway Engineering，Mining，
Ship Building，Marine Engineering，Photogripny， Ship Building，Marine Engineering，Photigriphy
Technology，Manufacturing Industries，Sanitary En－ gineering．Agriculture，Horticulture，Domestic Econo－ my．Biography，Medicine，etc．A vast amount of fresh
and valuable information obtainable in no other and valuable The most important Ensineering Works，Mechanisvis． and Manufactures at home and abrosd are illustrated and described in the SUPPIEment．
Canada． 85.00 a Canada． 8.00 a year，or one copy of the SCIENTIFIC AM
ELICAN and one copy of the SUPPLEMIISN，both mailed for one year for 87.00 ．Single copies 10 cents．Address and remit by postal order，express mones order，or chect ers Scientific Ambitican．
Building Edition．
THE SCIENTIFIC AMERICAN ARCHITECTS＇AND
BCILDERS＇EDITION is Issued monthly． 82.50 a year． Single copies， 25 cents．Forty large quarto pages，equal large and splendid Magazine of Architecture，rich Iy adorned with elleant plates in colors，and with other Ane engravings；illustrating the most interesting ex amples of mod
A special feature is the presentation in each numbe dences，city and country，including those of pery resi－ erate cost as well as the more expensive．Drawings in perspective and in color are given，together with fuil
Plans，Spec fication The elegance and cheapness of this inagniticent work have won for it the Larsest Circulation of any Aewsdealers． 82.50 a year．Remit to

MUN N \＆CO．，Publishers， 361 Broadway，New York．
PRINTING INKS：

