\cdots
[Entered at ihe Post Ollice of New York, N. Y., as socond Clase Matior. Copyrighted, 1809, by $\frac{1}{2}$ mn \& Co.]
A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, APRIL 20, 1889.	

THE RLECTRIC BUBWAYS OF THE CITY OF NEW YORK. Control has supervision over both aerial and under-
On July 5, 1887, at the office of the Mayor of the city ground lines, and hardly anticipates success in having of New York, the Board of Electrical Control was all wires placed underground, because in some parts of organized, which.is the successor to the Board of Commissioners of Electrical Subways. The name indicates its function; it is charged with the regulation of the distribution systems of the electrical supply, telephone, and telegraph companies of this city.
Both these organizations are the outcome of legislation looking to the placing underground of all the electric wires in this city. The Board of Electrical
tances throughont the streets where the conduit is to be placed, manholes are established. These are generally square or rectangular excavations lined with brick or iron. They are about 5 or 6 feet in diameter, and vary in depth according to the needs of the locality. There about 700 in the city, and hardly any two are identical in all respects. Some are rounded, six-sided, or diamond shape, although the rectangular outline or diamond shape, although the rectangular outine
prevails. A typical brick manhole is shown in Fig. 9. They are capped with a heavy iron curb, and pro(Continued on page 246.)

Fig. 2.-FEEDING ELPCTRIC LIGHT CABLES INTO THE DUCTS OF THE sUBWAY.
Fig. 3.-WORKING THE OAPSTAN FOR DRAWING CABLE INTO THE DUCTS.

Fig. 1.- RLEOTRIC sUBWAYS OF IEW YORK OITY, FOR TELEPHONE, RLECTRIC LIGHT AND POWER, AND TELEGRAPH sERVICR,

ESTABLISHRDD 1845.
MUNN \& CO., Editors and Proprietors. published werkly at
No. 361 BROADWAY, NEW YORK.

O. D. MUNN.

NEW YORK, SATURDAY, APRIL 20, 1889.

Contents.	
	ogr
	Poirioum. dangers of.,...ure
Busines and perronal.	ma
Comert	Roarink, oure for................. 2
bition, Bram	Stretenr,
	sapport, itook
J.Joseph M................ 23	

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 694.

 Ebtimo-cimautritas..

V. NAVAI, RNGINRERING, Alternative Designs Ror Frit Clase

At a recent meeting of the Engineers' Club of Phila delphia, Prof. L. M. Haupt presented some notes upon the permeability of cements and mortars, with a view of bringing out a discussion of this subject. He quoted rom the recent report of the Board of Experts on the Washington Aqueduct tunnel. That report says :
"If all of the work could and would be faithfully fulfilled in accordance with the later specifications requiring backing by masonry laid in cement mortar, it would make the tunnel reasonably water-tight; yet it would not prevent all leakage absolutely, and it is
difficult to foretell how much water would pass through.
"The head of the water in the tannel varies from about 75 to 175 ft ., and the pressure due to this head from 82 to 76 lb . per square inch. This is an interna pressure, tending to burst the tunnel outward-a direc tion of force which the tunnel lining is not well adapted to resist; and in an inelastic material like brick o cement, cracks are liable to be developed on the least yielding-which would be almost inevitable if any weak points were left in the filling. But even if it were all filled, it must be remembered that both brick and cement are permeable to water. Mr. James B. Francis inade some recent experiments on the percolation of water through cement mortar, a record of which was presented to the American Society of Civil Engineers May 16, 1888. These experiments showed that bout 1714 gallons of water per square foot of surface passed through a thickness of nearly 16 in . of cement 24 hours under a pressure of 77 lb . per square inch.
" Mr. Stauffer's experiments, made in the Dorchester Bay tunnel, serve to throw light on the leakage through brickwork. He constructed a bulkhead of brick, laid in cement, 4 ft . thick, in a tunnel 10 by 10 ft . He found that under a pressure of 72 lb . per square inch the water percolated through at the rate of 120,000 zallons per day, or 1,200 gallons per square foot.

The experience on the Boston main drainage work proved that it was not practicable to build brick ma onry that was
"At the new Croton reservoir, New York, wate under 36 ft . head was found to percolate through 26 in . of brickwork and 4 ft . of concrete."
Mr. Marichal said that the imperviousness of cements is a question of the greatest importance ; yet it seems that no steps are taken by manufacturers to improve their products in that direction. The fineness is one of the most important considerations, and wherever percolation is prejudicial-as is the case in aqueducts subjected to pressure, in dams, and in works exposed to sea water-care should be taken to select a very finely ground cement. The manipulation of the mortar will also affect its imperviousness.
When asked whether it was possible to make cellare water-tight by means of cement, if the level of the water was, for instance, generally a couple of feet above the floor, Mr. Marichal answered that some years ago he succeeded in rendering perfectly water-tight, by means of cement, some cellars which used to contain abont 6 ft . of water.

The Hantinge Tolencope.

Professor Charles S. Hastings, of Yale University, New Haven, Conn., has discovered a method of fiuding practicable combinations of three kinds of glasses to produce objectives without secondary aberration. Some of the results of his new method, as applied in making a telescope of small size, are described by him in a recent number of the American Journal of Science as follows:
The largest objective which could be made of the pieces in iny possession was of $2 / 4$ inches clear aperture. This, though smaller than desired, was sufficient to give a fairly satisfactory answer to the questions. Accordingly the glasses were worked accurately to the curvatures and thicknesses corresponding to the computations and mounted for use. The astonishing beanty of the images in the new telescope was its most surprising feature at first. The familiar purple was wholly wanting, or, at least, could only be recognized with the closest attention, with magnifying powers greater than forty to the inch aperture and on objects most suitable to its exhibition. But the moment that the instrument was applied to astronomical use it was also evident that its defining power was remarkable. The companions to Polaris and Rigel, instead of being objects which require somewhat careful looking, as is the case with iny eye and an ordinary achromatic of the same aperture were strikingly plain. More difficult. but certainly soen, was the fifth star in 9 Orionis. The binary star η Orionis was so well elongated that its position angle Was estimated to within 5° of its true value. On th present a separation of $1 \cdot .7$, was divided only with dif ficulty on a fairly good evening, though it was sup posed that it would be easy. Saturn showed all that I have seen with an admirable telescope of considerably greater apertures, including more than half of Ball's division, the ring \mathbf{C}, a single belt, and five satellites,
though Tethys and Dione have not been seen unless they had an elongation equal or greater than that or
the end of the ring. Rhea has been seen in conjunc tion. By reference to the records of many observations which I have made with various telescopes, the power of the new telescope was estimated as equivalent to a 31/2 inch objective of the ordinary construction. The powers used varied from 58 to 285 diameters, with 194 as the most satisfactory for Saturn and for double stars.
Another method of determining the relative power the telescope was by comparing the distances at which a table of logarithms could be read with it and a very perfect telescope of $25 /$ inches aperture made a number of years ago, and with which I have observed a great deal. Allowing for the 5 per cent increase in size in the new instrument, the mean of five tolerably accordant determinations indicated a gain of 23 per cent. or that the new objective was equivalent to a $33 /$ inch objective of the ordinary construction. This ratio of improvement is doubtless higher than would generally be admitted as possible by most opticians, but it must stand for the present as the best value attain able.
[In view of these surprising results, a new era of interin the science of astronomy seems about to open. of the new system to large telescopes.-ED.]

A Fast Train.

Mr. Geo. J. Lunn gives the programme of one of the runs of the vestibule trains from Savannah to Jacksonville, on February 7 last, when the distance of 172 miles was done at the average rate of 52.4 miles per honr. Several runs aggregating 60 miles were made at the rate of 60 miles per hour or over, 12 miles at over 70 miles per hour, and one run of flve miles was made at 75 miles per hour. This run was made by Savannah, Florida, and Western engine 80 , built by the Rhode Island Locowotive Works, Providence, R. I. Cylinders, 18 in. by 24 in.; driving wheels, $725 / 8 \mathrm{in}$. diameter ; gauge of track, 4 ft .9 in .; driving wheel base, 9 ft. 1 in .; fuel, coal ; boiler, of steel, 62 in . diameter ; number of tubes, $239,2 \mathrm{in}$. diameter by 11 ft . long ; fire box, 78 in . long, 34 in . wide, 66 in . high ; weight on drivers, $71,300 \mathrm{lb}$.; weight of engine, $105,400 \mathrm{lb}$.; weight of tender, $76,420 \mathrm{lb}$.; total weight, $181,820 \mathrm{lb}$.; is thoroughly equipped with the Westinghouse brake for the whole train steam brakes on the drivers, weight of the train without the engine being about $340,000 \mathrm{lb}$., a total, including the engine, of $521,820 \mathrm{lb}$.

The Chignocto Marinc Hallway Company.
The company formed to construct this application of the late Captain Eads' plan for passing ships over land by railroad, instead of by canal, issues a prospectus in the London papers of March 18 and 19, from which we learn that Sir John Fowler and Benjamin Baker, with Mr. H. G. C. Ketcham, of Fredericton, are to be the engineers.
The share capital is divided into $£ 300,000$ preferred shares and $£ 100,000$ common. The preferred shares to have 7 per cent cumulative, after which the common shares are to receive 7 per cent. The Dominion government guarantees an annual subsidy for 20 years, payable half yearly, of $\$ 170,602$, as long as the capital does not earn 7 per cent, after which excess earnings are to be divided between the government and the share holders. The company is also authorized to issue £700,000 5 per cent bonds.
The railroad, which will be 17 miles long, is expected to save from 300 to 500 miles for vessels that would have passed through the Straits of Canso, and 700 miles for those that would have rounded Cape Breton, and the total sum to be estimated at 2 d . per ton on cargo and 6d. per ton on hulls. The directors have contracted with Messrs. John G. Meiggs \& Son, contractors in the Argentine Republic and elsewhere, to complete the work for the share and debenture capital. the contractors to pay interest on preferred shares during construction.

Trial Trip of the Ferry Boat Borgen.

The screw ferry boat Bergen, of the Hoboken Land and Improvement Co., which was illustrated and de scribed in the Scientific American of December 8 1888, had her trial trip on March 30. It consisted of a run down New York Bay and up the North River. The appearance of the boat, with her llong cabins and comparatively unencumbered sweep of deck, is far superior to that of other boats of the side wheel type Her engines developed about 900 horse power, dis tributed as follows: High pressure cylinder, 298 H. P intermediate cylinder, 293 ; low pressure cylinder, 303 This was indicated at 140 lb . boiler pressure throttled down about 20 lb . She made $158-160$ revolutions. A measured mile was run with and against the tide, giv ing an average time for the mile of $4 \mathrm{~min} .191 / \mathrm{sec}$., or a rate of 13.85 miles per hour. The trip was a perfect success in every way, and augurs a successful issue to what is.aniexperiment as yet untried in this vicinity The marine engineering profession was well repro sented among the guests invited.

The Parte Elhibition. Chion our apecinl oorbsspondint.]

Paris, March 15.
So far as the principal buildings are concerned, the machinery department will be one of the least decorated in the exhibition. This occurs because of its grea size and the fact that it cannot be subdivided by par titions as other departments are, these subdivisions af fording excellent scope for decoration. Nevertheless, the machinery department has a good deal of orna mentation and decoration, since both sides of the roof are used for this parpose.
The spaces between the roof girders form panels about 25 or 30 feet deep, which extend up to the glass part of the roof. On one side of the building these panels contain cornucopis and the arms of the various towns, departments, etc., in France, the paintings beneath showing their productions. The other side of the roof is similarly decorated, but devoted to foreign countries. Here, for example, is a description of two of these panels
In the center and at the top, in large letters, is "America," and beneath it, in a raised oval frame or panel, is a portrait of General Washington, beneath which is a shield, on which is painted the United States fag. On each side is a cornucopia filled with fruits, ete. On the right hand side is the word "China," and beneath it a shield having the armorial bearings of the city of Pekin, beneath which is a spray of a tea plant On the left is "Autriche," with a shield with the armo rial bearings of Vienna, and beneath it ornamentation, among which is a spray of hop vine. On the left hand of this, and between the two next roof girders, is a crown, and beneath it "Londres" and the English standard, with cornucopi* as before. On the right of the crown is Denmark, with the armorial bearings of Copenhagen, beneath which is painted decoration, whose most prominent feature is a horse's head. On the left side is "Italie" and Rome with its shield. The cornucopi* are raised in zinc, but of course painted.
The English are said to be spreading themselves in the matter of decorations, and here is a description of their section of products of woods and forests. First of all, let me remark that in this section of the exhibition buildinge the departments are divided by par titions that do not extend to the roof, so that when you stand at the door and look into a department, not only its own roof but those of neighboring departments are in view. This, from the great taste displayed in the coloring of the roof, gives a very fine coup d'cil as on enters. Looking straight down one of these departments, one sees that it is divided off by partitions tha do not extend higher than the side partitions, so that the full length of that section of the roof is before the eye. The glass extends down about one-third of the depth of the roof and is painted a very pale blue. Below the glass are two rows of panels, extending from one roof girder to the next and one panel being beneath the other. The stringers of the roof are painted crimson, and the upper panel is of pine stained a deep rich yellow. At the point where the roof glass meets the panels there are suspended and looped up heavy, rich silk cord (crimson and white), with huge tassels to match, and strung upon the cord is ornamental bead work corresponding in color.
The side partitions have a maroon ground, with a dado at the top, the feature of the pattern being yellow and pale green. The partitions between the sections of this department are not completely decorated yet, but here is an idea of one of them. The open arch way, through which one passes from section to section, has the letters indicating the character of the section and
nambers to identify the section in the catalogue. The decorations on the archway are scarlet edges, white ground, and scroll green leaves gilded on their edges The cases in this department are so far a plain black.
One of the most striking features of this part of the decorations is the charmingly subdued effect that is obtained, notwithstanding the employment of many positive and striking colors, for there is not a trace of the "Dutch" effect one so dreads where any of the reds and other strong colors are employed.
Some of the iron columns used in the buildings are similar in construction to the rectangular columns of parts of the New York elevated roads, but there is more open space between the ironwork. This space is, however, filled in with fancy tile work, one layer being composed of tiles about 8 inches deep and the next about 2 inches deep. These tiles are not all one plain color, but mottled, as it were, the reds running up or fading off rather into yellows and ochers of various shades.
In some cases, where the uatural construction of the building is not considered to afford safficient scope for ornamentation, a little art is brought into play. Thus I saw an artificial column formed by a square wooden framework, on which at intervals were nailed segments making a round collar on which laths were nailed, thus forming a round column, which will appear as a necessary part of the building, and which when ornamented or decorated will add greatly to the effect.
Some of the machines are, I am informed, to be to the interest in the exhibition, and ensble a much
more thorough examination of the merits of the exhibits. American screw-cutting machinery in opera-
tion would certainly bring the exhibitor considerable tion would certainly bring the exhibitor considerable here, for I have seen them at Elders', on the Clyde, and in other large shops, but they are not generally known, and much inferior machines are in general use. I am of decided opinion that in all branches of thread cut ting they are behind here. Not long ago, indeed, a member of one of the largest pipe manufacturing firms of Great Britain came out to New York to inquire into American methods, and in consultation told me that they had been unable to make their pipe threads and Ittings taper, and to discover how it was done was the object of his visit. I referred him to some back numbers of the Scientific American, to a paper read before the American Society of Mechanical Engineers, and to some trade literature got up, I believe, by Mr. M. D. Luehrs, of Cleveland, Ohio, and to whom many of us are under obligations for information on screw-cuting matters. Most of the American bolt cutters I find adelphia, and this undoubtedly arises from the judges report at the Centennial Exhibition, Wm. Anderson an eminent English engineer (formerly of the Wool wich Dockyard), being one of the judges.
American sandpapering machines there is undoubted I a good field for here, especially to some of the ship building yards; and as I have seen the mortising machines of J. A. Fay \& Co., of Cincinnati, here, I have been surprised at not finding their sandpapering machines, especially as I have seen as many as ten men sandpapering by hand at one time. Of course it is only a matter of time when such machines will either be im orted here or copied
One thing I am pretty well convinced of already, and hat is that you can find a great many more American machines, or copies of them, in either France or Eng and than you can find of foreign machines or copies of them in the United States (some Amercan máchines have been more successful here than in the United States); one of the most recent examples in point being the Worthington steam pump, which has become very popular in England since the English government or dered them for the Soudan. It is an open secret now, I believe, that when those pumps were ordered, the Worthingtons tried in vain to persuade the English engineers to have componnd condensing pumps, and that it was afterward discovered that in consequence of this advice not having been followed, the pumps themselves would have about consumed all the water the ipes w
pamp.
I find a good many firms here using the emery wheele of the Tanite Company, of Stroudsburg, Pa., and machines using them in a novel manner are to be exhib ited. I also find wooden wheels, leather covered and coated with very coarse emery, being used where, it seems to me, solid wheels would be better, that is, if a proper cementing material can be found for such very coarse emery when used on such comparatively smal wheels as 6 inches diameter.
In the matter of drilling machines, the French and English manufacturers do not approach the American. They do not, indeed, seem to understand the advan tages of the American form of construction, such, fo example, as the quick retnrn motion of the spindle and this recalls to my mind the fact that an tngisi agineer of very high standing stated, in hisaricles on Philadelphia, that he was of opinion that these motions would be short-lived. As a matter of fact, however the tendency has been and is to widen the range of feed and to provide all machines of any size, or rathe all machines having an automatic feed, with a quick return motion. "You Americans," said an English en gineer I met in the machinery department, "seem to as to be in a chronic state of change. Why, it is not long ago that I used to read in your papers about the clumsy, heavy English lathes, when all at once you turn about face and pat more iron into some of your lathes than we English would ever think of. During the last year or two you have run off into a groove in quick return planing machine beds, shooting them back a if out of a catapult; but just you wait a little while and see, when the rack and pinion teeth get worn, what a rersea It inump you'll have every ing a dead ft, but two or three years will tell the tale." Now it is quite true that we did suddenly begin to put more iron into the framework of our lathes and planers, but not one jot of their handiness was sacrificed, whereas the English lathes, and the French ones too (so far as I have as yet seen the latter), are the perfection of clumsiness; but as I shall probably go into this part of the subject somewhat in detail in connec tion with the exhibits, I withhold any further remark at present, more than to say that while I have seen the
English form of lathe, and some of them of English make, in several large shops in the United States, as a R. Hoe's, at the Betts Machine Works, Wilmington only one firm that I know of consider them superior to
will modify that opinion. While on this subject I can not refrain from mentioning a piece of botch work saw in an English shop a short time back. A piece o 4 inch shaft, about 6 feet long, had a keyway chipped in it for about half its length, and the man was trying to save flling by putting it in the lathe and using the slide rest as a traveling tool carrier or ram. He lastened a tool in the required (sideways) position, jammed the shaft tight between the centers, and putting on a feed with the cross feed screw, moved the slide rest along carrying the cut along the keyway. But the tool cut deepening, he could not move the slide rest, so he first got a man to help him and then he got a piece of tube as a lever to move the slide rest with. A more mechanically murderous piece of work I never saw, and the result was just what I expected, for out came a tooth from the pinion, and a moment after out came another from the rack. If such a thing as that had occurred in an American shop, the man would soon have found the outside of the door ; but as it was, they coolly went to another lathe of the same pattern and that was not being used, took out its pinion, put it in place of the broken one, and started on anew with the tube lever, one of them remarking, "Something has got to go. I don't know whether it will be the tool or the pinion." To make matters worse, there was an unused plening machine standing idle in the shop.

Jobsua Rosir.

Expanation of Timber due to the Abmorption of

ar izor. de voleor wood
It is stated by some writers upon the properties of building materials that timber shrinks but little in the direction of its fibers from being thoroughly dried, or expands but little in the same direction from the absorption of moisture; but the amount of these changes was not given in any work that I examined. Desiring to get some definite knowledge upon this subject, I
caused to be prepared some pieces of pine, oak, and chestnut. The pieces selected were from lumber fairly seasoned, and were afterward kept in a dry room for three weeks before any measurements were made. The pieces were straight-grained, free from knots or other defects.
In order to secure accurate measurements brass pins were driven near the edges and ends, opposite to each other, and a fine mark made in each. The measurements were made to the nearest half-hundredth of an inch. The pieces were about five-eighths of an inch thick, thirty-six inches long, and five and one-eighth inches wide.
After the first neasurements were made, the pieces were put into a vessel of water and allowed to remain there thirty-seven days, at the end of which time they ere measured again. The measurements were made on one side only. The following are the mean of the results

specimen.	Pine.	Oak.	Chestnut.
Initial length, inches	5805	88572	
Final lengt,	3888	38.808	35840
Elongation,	0.017	0030	0.058
Per cent of elongation...	0.05	0.085	$0 \cdot 18$
transverse measurements.			
Initial width, inches.	. 4470	4.464	$4 \cdot 4$
Final	4558	4623	4:445
Expansion,	$0 \cdot 116$	$0 \cdot 188$	$0 \cdot 104$
Per cent of expansion.		85	88
Rate of lateral expansion		41	22\%

It will be seen that the chestnut expanded laterally and longitudinally more than the oak or pine, that the rate of longitudinal expansion was about three times that of the pine, and the lateral expansion was about one and four-tenths that of the pine. The expanion n the direction of the fibers was larger than I anticipated, especially in the oak and chestnut.

The Use of the Telophone on Rallwayn

A novel application of the telephone has been made on the railway between Naint Valerie-sur-Somme and Cayeux (France), with a view to facilitate communication between a train broken down on the line and the nearest station. Industries says the stations on this ine are already in telephonic communication by means of an overhead wire, and in the guard's van of an experimental train was fitted up a telephone, with battery of ten Leclanche cells and call bell. One pole of the battery is put to earth by being connected to the framework of the guard's van, and the other is joined in the usual way to the telephone, the other terminal of the atter being connected with a wire, by which conneotion with the existing telephone line can be made at any point. To facilitate this operation the wire is inclosed in a light steel tube, long enough to reach the overhead wire from the roof of the van, and provided at the end with a hook for attachment. Upon ringng up, the stations in front and rear of the train recoive the signal, and conversation can be carried on with both simultaneously. The object of this arrangement is to enable the guard of a train, delayed or broken down on the line between two stations, to call for assistance. The apparatus carried in the guard's van is self-contained, inclosed in a box, and weighs only about 25 pounds.

EXPERTMGRTS IT MAGIRTIGM.

st amo. n. Hopsims.
Nature furnishes permanent magnets "ready made," the lodestone being an example of such a magnet. She is able to induce magnetism in magnetic bodiea, the

Ifs. 1.-MAGEETIEIE BY inddUCTION FROM THE EABTH.
earth itself being the great magnet by which the induction effects are secured. It is to the directive force of this great magnet that the compass owes its value.
The magnetism of the lodestone is due, doubtless, to a long exposure to the inductive influence of the earth's magnetism. Any body of magnetic material becomes temporarily magnetized to some extent when placed in the magnetic meridian parallel with the dipping needle, and if it be a body like soft iron, without coercive

Fig. 2.-DEVELOPICRITT OF MAGRETIEI BY TORSION.
force, it loses its magnetism when arranged at right angles to this position in the same plane. This may be readily demonstrated by placing a rod of well annealed wrought iron in the magnetic in an inclined position, as indicated in dotted lines in Fig. 1, with its upper end in close proximity to the end of a compass needle. The needle will be instantly deflected, showing that the red has become magnetic. When turned in the plane of the magnetic meridian to a position at right angles to its former position, it will lose its

Fig. 8.-MAGNETIZATION of BARs.

Fig. 4.-MAGNETIZATION OF U-8HAPED BARS.
magnetism and will therefore be no longer able to repel the needle. By placing a bar of hardened steel in the magnetic meridian and striking it several blows on the end with a hammer, it becomes permanently magnetic, not strongly, but sufficiently to exhibit polarity when presented to a magnetic needle.
By twisting a rod of soft iron having one of its ends in proximity to a magnetic needle, it is shown by the deflection of the needle that magnetism is developed by torsion. By this and similar experiments it may

Fig. 5.- motion produced by a permanent MAGNET.
be shown that stress and compression favor magnetization.
Artificial magnets are produced by the contact of hardened steel with magnets or by means of the voltaic current. The latter is the more effective method provided a strong current and a suitable helix or electro-magnet is available. For the magnetization of bars of steel a helix like that shown in Fig. 2 is needed. Its size and the amount of current required will, of course, depend upon the size of the bar to be magnetized. For all bars up to $5 / 8$ inch diameter, a helix 5/8 inch in internal diameter, 2 inches external diameter, and $21 / 2$ inches long, made of No. 16 magnet wire, is ter, and $8 / /$ inches long, made of No. 16 magnet wire, is
sufficient. A current from five or six cells plunging sufficient. A current from five or six cells plunging
bichromate battery is required, or in lieu thereof, a similar current from a dynamo.
The bar to be magnetized is hardened at the ends and placed in the helix, the current is then applied, and the helix is moved from the center of the bar to one end, then to the opposite end and back to the center, when the current is discontinued, and the bar is removed. If several bars are to be magnetized, they may be placed end to end, and passed through the coil in succession. The magnetization of U-shaped bars may be accomplished by means of an electro-magnet formed of two coils above described and a suitable soft iron core. The U -shaped bar is placed on the poles of the electro-magnet as shown, when the current is sent through the coils for a short turn and then interrupted. Another method, which is perhaps more effectual, consists in drawing the U-shaped bar several times across the poles of the electro-magnet.
In the search for perpetual motion, vain efforts have been made to discover a substance which could be inter posed between the magnet and its armature, and removed without the expenditure of power, and which would intercept the lines of force, so as to allow the armature to be alternately drawn forward and released, but no such substance has ever been discovered The lines of force may be intercepted by a plate of soft iron placed between the magnet and its armature. hut it requires more power to introduce the plate into the magnetic field, and withdraw it therefrom, than can be recovered from the armature. Fig. 5 illustrate an experiment showing how motion may be produced by the force of a permanent magnet. An armature is suspended by threads in the field of a permanent map net. The magnet attracts the armature, slightly de flecting its suspension from a true vertical line. The in troduction of a soft iron plate between the magnet and its armature intercepts the lines of force, thus releasing the armature, when it swings back under the in fluence of gravitation. If at this instant the iron plate is withdrawn, the magnet again acts upon the armature drawing it forward. Another introduction of the iron plate into the field again releases the armature, when it swings back, this time a little farther than before. By moving the iron plate in this manner synchronously with the oscillations of the armature, the armature may be made to swing through a large arc.

A Rival to Western Union.

The South Atlantic Telegraph Company, of Balti more, Md., has been incorporated with a capital stock of $\$ 50,000$. It is said that the new company is to form a link in the Mackay-Bennett and Postal Telegraph Cable Company system, and is for the purpose of purchasing and owning the lines of that system in Maryland, which are now only leased. The scheme embraces an amalgamation with the Southern Tele graph Company, of Virginia ; the Southern Telegraph Company, of North Carolina; and the Southern At lantic Telegraph Company, whereby lines of wire may be secured extending to New Orleans and covering the entire South and Southwest. This entire system is t be controlled by the Mackay-Bennett management.

IMPROVED STRUCTURE FOR UBE AS A SILO.
The construction herewith illustrated is designed to be erected on the surface of the ground for use as a silo. It has been patented by Mr. James E. Rankin of Elk Rapids, Mich. The preferred size is about six teen feet square by sixteen feet high, the structure con sisting of horizontally arranged and spaced rectangular frames, with vertical linings secured to their inner faces, and a diagonally arranged sheathing attached to faces, and a diagonally arranged sheathing atached to
the outer face. The inventor styles this structure a the outer face. The inventor styles this structure a
straw stack silo, as it may be built with only the inside straw stack silo, as it may be built with only the inside
lining, by using the refuse straw therewith, although a waterproof material may be secured to the diagonal sheathing, with clapboarding outside thereof. The rectangular frames are preferably about nineteen inches apart, sixteen inches wide, and one inch thick. affording large air space between the outer and inner walls, Fig. 2 showing the relative position of the frames and Fig. 8 the manner in which they are joined at the corners by means of an angle bar having its ex tremities bent in opposite directions to embrace the edges of the approaching sides. There is a door with a three-foot square opening in the center of one side such door being adapted to be closely sealed, while the roof is supported some three feet above the walls of the structure by means of posts bolted to the frame.

AN ITPROVED WIRE STRETCHER.

A device of simple construction, which may be readily attached to a post and engaged with fence wires it is desired to tighten, the device being one which may be applied with equal convenience to either side of the post, is illustrated herewith and has been patented by Mr. George R. Hughes, of Savoy, Texas. It is of metal, with the exception of an atlachable wooden handle, and the body of the device is essentially T-shaped, the members constituting the head being slightly inclined and provided with teeth on their inner face. Fig. 1 is a view of the device in which the dotted lines indicate the relative position of the stretching lever to the other parts after it has been thrown forward to stretch the wire and draw it against the post. On the other end of the main member is a

HUGHEB WIRE ETRETCHER

hook or eye through which the wire is first passed, and near it is pivoted a lever with jaws, similar to those shown in Fig. 3, the space between the jaws being just sufflieient to receive the wire. Near the head is pivoted a plate with enlarged oval end having aper tures in each extremity, adapted to receive a bolt or screw for pivoting the plate to one of the arms of the head, according to the side of the post it is desired to operate upon. The same plate is also pivotally connected to the lever to which the handle is attached, there being also pivoted to this lever a clamping lever having a hook, as shown in Fig. 8. The wire having been passed through the eye and the first clamping lever, the latter is carried around in parallel position to the left, and the jaws of the next clamping lever are engaged with the wire, which is drawn taut, after which the handle lever is carried to the left to the position shown in dotted lines. Great tension is thus obtained, while the wire is firmly held against the post, in position for tacking or making fast in the usual way.

Danger: of Petroloum.
It is remarked by Colonel Majendie that the risk from fire and explosion is not limited to cases in which whole or considerable cargoes of petroleum spirit are shipped. A few barrels, or even one, may suffice. One gallon of petroleum spirit, it has been shown, is enough to render 16,000 gallons of air inflammable, representing a space exceeding 2,000 cubic feet. The penetrating arture of the vapor increases the risk-a fact which has been proved by direct experiment, as well as indicated by actual misfortune. This quality, combined with the high specific gravity and flame-carrying power of the vapor when combined with air, renders its pres ence highly dangerous, even when the quantity may be small.

RANEIF'S ETRUCTURE FOR UGE AS A EILO.

AN ICPROVED BOOK BUPPORT.

A stand for supporting dictionaries, large works of reference, etc., and holding them in either closed or open position, has been patented by Mr. James W. Coultas, of Clinton, Ill., and is illustrated herewith

COULTAE' BOOK SUPPORT.
The standard is vertically adjusted, and has at its upper end a serrated disk fitting against and clamped to another disk carrying the book support, in such way that the inclination of the support may be changed to suit the convenience of the user. Between a plate which receives the back of the book and a frame plate are clamped the shank plates of hinges which carry the sides or leaves of the book support, the hinges being adjustable in or out to adapt the book support to receive different thicknesser of books. A spiral spring is arranged parallel and adjacent to the axial line of the two hinged plates, one end of the spring being attached to one plate and the other end of the spring to the other plate, link bars connecting loosely the opposite ends of the spring and the hinged plates, whereby the axis of the spring is thrown away from the axis of the hinge when the latter is opened and the hinge locked in open position. The book, when open, thus rests upon a solid surface, fitted to its back and sides, and is not held open by snaps or hooks.

AN DCPROVED ROCKING CHAIR.

The accompanying illustration represents a rocking chair forming the subject of a patent recently issued to Mr. Lewis C. Gunn, of Seventh and Beach Streets, San Diego, Cal. The base consists of two boxes or casings connected together by cross bars, these casings providing an interior space in which is held the rockers, the several inclosing parts being so finished as to represent a solid piece of wood. The rockers are centrally pivoted on bearings in the sides of the casings, as shown in the sectional view, the shape and size of the interior space being such as to allow iree movement of the rockers, the legs of which are so curved as to permit of their free movement in slots extending up through the casing near either end. The rockers are provided with a stop, in the form of a vertical projection extending upward in a central recess of the casing. This projec-

GUNR'S ROCKITG CHALIR.
tion has a central vertical opening at the top, in which is held a brass wedge, in a groove in the top of which rests a central cushion spring, the spring moving partly through the opening below betwegn the sides of the projections. This spring is a narruw strip of steel, so bent that the sway of the projection backward compresses one side of the spring and opens the other, and vice versa, when the projection moves forward.
To further aid in giving the rockers an easy and yielding movement, an elastic bearing is located beneath them, consisting of a main spring with a broad fold at each end, there being a fulcrum beneath the fold at each end of the spring, where it is made fast. The length of the spring is thus made to conform to that of the curved rocker by reduction of the fold at each end. There is a strip of rubber or leather underneath the whole length of the rocker, as a sole, preventing sound and wear of the parts in moving over the spring below. It is the design of the inventor to avoid all unnecessary weight in the manufacture of this chair, the rocker being made not to exceed three-fourths of an inch in width, of a malleable casting, with long recesses to be filled by tightly-fitting wooden strips. Each end of the rocker is solid, with a hole drilled from the top to admit of a threaded bolt by which the leg is attached, the latter being of hollow wrought iron pipe.

AN IMPROVED POCKET KIIFE.

A pooket knife so constructed that the blades may be moved into position to be seized by the fingers without the use of the finger nails is illustrated herewith, and forms the subject of two patents issued to Mr. Arthur Wilzin, of No. 207 Center Street, New York City. The knives are not complicated in construction, and their general appearance and the form and action of the spring are very nearly analogous to those of ordinary pocket knives, the illustrations showing both two and four bladed knives. The pivotal portion of the blade has a projection, and a receding part terminating in a point or heel, their relative positions to the pivotal point of the blade being such that the projection and the beel will bear against the blade spring in the back of the knife to hold it slightly open. To hold the blade in closed position, when pressed into the handle, a locking device is provided consisting of a pin mounted on a spring arm, the pin projecting through an opening in one of the end tips. After the blade has been slightly opened by moving the pin laterally, which is done by pressing back the tip, the blade may be seized by the fingers and pulled
to fully opened position, when the pin will rest against the side of the pivotal portion of the blade.

AN ITPPROVED BITIDER.

A binder or portfolio in which sheets of a newspaper, pamphlet, etc., may be conveniently bound and quickly romoved when desired, and in which a sheet containing an illustration may be extended across the fold in such way that all parts will be visible, is illustrated herewith, and has been patented by Mr. Emil Wansleben. The portfolio has angled bracketa attached to its inner face adapted to hold a longitudinal bar in fixed position, from which bar a series of pins is projected. A second detachable bar of equal size is provided with apertures corresponding with the pins, and upon the outer face of this bar springs are held to slide, their movement being limited by studs integral with the bar, projecting through elongated apertures in the springs. One spring is placed between each two apertures in the detachable bar, and a semicircular recess is formed in each extremity of the spring adapted to bear against the pins on the fixed bar when the device is in use. The springs are slightly bowed, and are ex panded by sleeves sliding over them upon the detach able bars. The needle employed consists of a strip of wire bent upon itself to form a series of staples corresponding to the number of pins on the fixed bar
For further information relative to thisinvention ad dress Mr. Henry Rohr, St. John, Kansas.

Mr. Joseph M. Grigas, general ticket agent of the Boston and Albany for about 24 years past, has resigned, and is succeeded by his son, George B. Griggs, who has been in the service for several years. The re tiring general ticket agent has been in the service of the Boston and Albany and its predecessor, the West ern Railroad, for 47 years, having begun in 1842. He was for a long time cashier of the road, and before that was local ticket agent.

ICPROVED PROTECTOR FOR DIKES OR LRVEES.
A removable shield or protector, which may be placed at points of danger in dikes or levees in times of high water, in order to prevent disaster, is illustrated here with, and has been patented by Messrs. James M.

Melemore a jones' levee protector.
McLemore and Charles D. Jones, of Coushattan La. The shield is made in sections of cast or wrought iron, bolted together, each of the sections being formed with a rabbet, on which the overlapping section fits to make a smooth front and a water tight joint. This shield is applied to and extends below the water front of the applied to and extends below the water front of the
levee, as shown in the sectional view, where four of levee, as shown in the sectional view, where four of
these sections are used. The shield is backed by the front wall of the levee, but extends above the crown o the latter, where it is strengthened by braces firmly bolted or otherwise anchored. This shield can be used upon either old or new levees, and when used in new constructions allows a much smaller quantity of mate rial to be employed than ordinarily.

AN IICPROVED ROPE CLAICP.
A simple form of clamp, especially adapted for use on clothes lines, tent ropes, etc., is shown herewith. It has been patented by Mr. S. William Conklin, of Yonkers, N. \mathbf{Y}.

The frame of the clamp is preferably made of malleable cast iron, in one end of which is pivoted a clamping le-
 ver, formed with CONELIT'S ROPE CLAMP. an eccentric notched upon its lower surface to engage the rope. The clamping lever has an inclined slot for its pivotal pin, so that any strain upon the rope will tend to draw the lever forward and force it downward upon the rope, thus increasing its holding action. The op posite end piece is formed with a ring by which the clamp is secured to one end of a rope, and also a lower ring through which the opposite end of the rope is passed after being drawn through the open space back of the clamping lever

Is a recent lecture at the Society of Arts on the Forth Bridge, Mr. B. Baker described a practical method he had adopted for the purpose of determining the effective area of the bridge exposed to a wind pressure striking the work at different angles. A model of the bridge was made and towed in water at different angles to the stream ; the area of a flat board normal to the current was then determined, which exerted the same drag as the model. This area was then taken as the effective area of the bridge for the particular angle at which it was towed.

WANSLEBEN'S BITDER

Do Machines Hurt a Trade

Machines finurt a Tr

There seems to be an uneasy feeling among compositors about type-setting machines. It is true that only three of the many recently invented are at practical work, but all of them give a promise of usefulness, i not in all fields, at loast in some tield of composition It is certain that the machines have come to stay. Compositors fear that they will reduce the price of labor, and will indirectly drive them out of business.

Much of this disquietude is unneceasary. That typesetting machines may or will reduce the cost of the work on reprints and cheap books and papers is probable. That it will ever drive any large body of good workmen out of business is absurd. The machines will surely make more work for workmen. So far from de creasing the standard of workmanship, they will elevate it. This conclusion is warranted by a review of the changes in the trade made by inventions in another department-that of presswork.
Fifty years ago the advantages of machinery in presswork were recognized in this country, but they were not fairly tried. Stereotype, composition rollers, cyl inder presses, and Adums presses had then been in vented, but were little used. The New York Sun and New York Herald were trying to print growing editions of their then petty sheets on hand presses. Harper \& Bros. and other book printers in New York were doing their presswork on hand presses. Books werecheap and editions were small; pressmen were abundant and wages were low. Journeymen piece compositors were paid an average of twenty-four cents per thousand ems, and earned seven dollars a week with difficulty. Weekly wages for time compositors were nine dollars, but this sum was earned only by the more active and expert. The average wages of piece compositors, and occasional time hands was not over seven dollars a week. Hand pressmen, paid almost entirely by the piece, had to do an amount of hard labor to earn nine dollars a week which the modern power pressmen would regard as ex cessive and unreasonable.
Although work was hard and wages small, there was even then a dislike to machinery-a dislike which seems to have been imported from abroad. Johnson, an emi nent printer of London, had already denounced the printing machine, then in use in London, as the de stroyer of the living of pressmen, and called upon Par liament to impose a tax on machine presswork, so that machines could not work for a lower price than hand presses. In 1830, and even as late as 1848, the journeymen printers of Paris destroyed printing machines in the Royal Printing Offlce of that city as well as in other offices, because they said that these machines were taking the bread out of their mouths. Stereotyping, invented by Ged in the last century, had been delayed more than fifty years by the opposition of hand pressmen, who secretly battered plates in the supposed interest of compositors. Master printers were afraid to use the new process. Composition rollers were opposed by pressmen, because they enabled a boy to do the work of the extra man, who wielded the old-fashioned inking balls. The first inking machine attachment was found more objectionable, because it enabled the mas ter printer to dispense with this extra roller boy or this extra man who had been regarded as necessary to the working of the hand press. Every invention or process that increased production was regarded by working men as an evil agency.
In this conntry there has never been any active hostility to new machinery in the printing business. There have been no mobs or strikes against inventions, but workmen look on all new devices with suspicion and unfriendliness. They do not see that the invention which temporarily throws one man out of work ultimately makes work for two or more men.
What would have been the state of the trade if we had no stereotype or electrotype, no composition rollers, and no printing machines? The daily newspaper, as we now have it, would be an impossibility. An edition of two thousand or twenty-five hundred copies of 8 small sheet would be the highest performance of the hand press, and what severe work this paltry performance would impose on the wretched hand pressman who had to print this edition in a hurry! The illustrat ed magazine of large edition and low price, filled with fine wood cuts, could not exist at all in days of hand presses. One could go on and show how hand presses
would curtail the production not only of the popular but of the artistic forms of typography.

Processes and machines that were once dreaded are now used by every printer, and they are welcomed as
much by the journeymen as the master. No one will much by the journeymen as the master. No one wil Where there was one printer fifty years ago, there are at least twenty printers now. Instead of driving hand pressmen out of the trade, the printing machines have really brought more pressmen in it, and have enabled an employer to pay them hetter wages. The machines our large cities the expert hand pressman is in active de mand. He does but one-half the labor of his predecessor, yet he is paid twice as much and has steadier work. For some forms of printing the band press is more economi-
cal than any machine, and if there were more men who could use them skillfully, they would be more generally mployed. They are not used because it is difficult for an employer to get a boy to learn this branch of presswork. He objects, because the work is hard. Not even for double or treble the old pay will a pressman in 1889 undertake to do on a hand press the work done by all pressmen in 1840.
The journeyman book compositor of New York, who works by the piece, now earns an advance of seventyGive per cent on the rates of fifty years ago. The time hand gets t wice as much. Expert machine pressmen in the larger New York book offices are paid $\$ 20$ and 22 a week-an advance of more than one hundred per cent. If they are specially skillful or active, they are cheerfully paid a good deal more. They have steady employment and comparatively easy work. It should be noted that the highest wages are always paid in those offices that have the most and best machinery. Low wages are the rule almost without exception in all offices that have little or no machinery. Instead of throwing men out of work, machinery has made a demand for more work. Instead of lowering the price of labor, machinery has raised it.
It will be noticed that the prices of composition have not increased as much as those of presswork. The compositor's advance is seventy-five per cent or less; the pressman's is one hundred per cent or more. The reason is plain. Composition has not as yet received any appreciable benefit from type-setting machinery. Nearly all of our composition is done by hand, as it was done fifty years ago, but the piece compositor who works in an office that has many printing machines earns more than he does in an office that has few machines. Indirectly he obtains advantages from machinery, which he personally does not manage.
As a rule, the average piece compositor is a better educated man than the average pressman. Under equal conditions he should and would earn higher wages, but his superior intelligence and education do not increase his production. This production is limited by the slowness of his hands, which is now as it was afty years ago. If the compositor was employed on a ype-setting machine, he would get some of the benefits of the increased production. With more machines there would necessarily be more composition; there would be more compositors, and they would be better paid.
One reason why the modern pressman is better paid than the old pressman is because he is a better workman. The machine is more complex than the hand press, and it compels the pressman to exercise more orethought and intelligence. He has to keep it in order and to get a fixed quantity of work from it within a imited time. To accomplish this he does not have the hard stretching of the muscles that was called for by the hand press, but he does have to do twice as much work with his brains. It is this work of the brains more than that of the hands that earns him higher wages, but it is the machine that spurs him up to this increased mental activity.
As a rule, the mechanics who most bitterly decry nachines are those who have been found incompetent to handle them. The men who refuse to learn the theory or the practice of new processes-who are content to do work as it was done when they were boyswho "don't want to be bothered" by the study of new problems in handicraft-who evade or shirk responsi-bilities-are the very men that employers don't want to employ upon their machines. That they may and probably will suffer for their persistent refusal to adapt themselves to changed conditions is much to be regretted; but are they blameless? Is it the fault of he master, or the machine, or the workman himsell? It is probable that many employers will at first try o get composition done on machines with the cheapst labor. Many of them will employ poor workmen, nexpert boys and girls. They will sophisticate themselves with the notion that a cheaply paid helper will soon be taught to do as much as an expert workman. This is the error that was made when power presses were first introduced. There were employers who reasoned, "It is the machine and not the man that does the work. The machine is the first consideration and the man the second, a cheap man can be made to do as much work as a high priced man." This fallacy is no longer believed. Every master printer who does good presswork, or even tries to do a large amount of of presswork in a given time, regardless of quality, knows that an expert workman at high wages is always nore economical than the cheap workman. He takes better care of the machine, he gets more work out of it. The same conclusion will be reached after a long trial of type-setting machines. The expert man who thoroughly understands his business will always be in demand. He never need to fear the competition of oys, or girls, or amateurs.
It is really amusing to refiect on the cheerful shortsighted stupidity of the earnest trade union men, who 30 violently opposed all improvements in typography. Really meaning to beneflt the trade, they were actually doing their best to destroy it. If they had carried their point, if they had suppressed all labor-saving de
vices, if they had kept the trade in the same narrow rut it was in ffty years ago-what would be the present condition of most of the men who are now earning fair wages in pleasant situations in our trade? It is plain that if these improvements had been prevented they would not be in the trade at all. There would be no place for them. The limited amount of work that could be done on hand presses would have kep them out. They would have been obliged to find employment in other fields. Most of them would have had to do hard manual labor, or accept inferior situa tions in which they could with diffeulty earn nine dol lars a week. In view of the enormous blunder then made by sincere men, a thinking compositor may now well question the wisdom of the policy that oppresses type-setting machines. - National Publisher and Printer.

Now Baromotor scale

by jamisb abhir.
Instead of saying the air supports a certain height of mercury, I state the ratio of given pressure to standard I say pressure is 1,000 thousandths of normal in place of saying it sustains a thread of mercury 760 mm . high The point 760 in barometers will be marked 1,000; divisions 0.76, usual length.

ADVANTAGES.

1. Scale tells fraction of normal pressure in decimals. 2. Divisions are shorter, hence greater accuracy with integers.
2. Using it with my milligrade thermometer scale (see Scientific American, Nov. 26, 1887), we can correct bulks of gas to normal pressure and temperature with elegant simplicity. In correcting to standard temperatare, 1,000 is numerator and temperature de nominator ; and to standard pressure, 1,000 is denominator and pressure numerator : 1,000 cancels. Hence the brief
Rule.-Multiply by pressure and divide by temperature.

Ex.-Barometer shows 983 thousandths, thermome ter $1,065^{\circ}$ milligrade; what will 648 c. c. of gas be at normal ?
Solution : $\frac{983 \times 648}{1065}=598.1$ c. c.
4. With equal ease we find weight of bulk, given pressure, and temperature.
Ex.-A gramme of H at standard flls $11 \cdot 19$ liters; what will 43 liters weigh, barometer 1,018 , thermometer $954^{\circ} \mathrm{M}$?
Solution: $\frac{1018}{954 \times \frac{43}{11.19}}=4.08$ grammes.
Problems need a third of usual time.
5. Aneroid and sympiesometer in graduations will be independent of mercurial barometer.
[The above is an excellent suggestion and well in line with the milligrade thermometer scale. The present barometric scale is so awkward that Prof. Bunsen, in his gas analysis calculations, reduces all volumes in his formule to a pressure of 1,000 millimeters. -ED.]

Remarkable Runs by the strong Locomotive.
In our issue of January 12 of the present year, we gave an illustrated description of the Strong locomotive A. G. Darwin. At that time the engine was doing express service on a New England road, which was not a fit place for the developinent of the locomotive's capacities. In order to test these to the uttermost, two trial runs were made upon the New York, Lake Erie, and Western Railroad, between this city and Buffalo. On April 1, at 9:24 A. M., the engine left Jersey City with six cars. Other cars were picked up en route, so that at one time nine cars were attached. Over part of the route a speed of 65 miles an hour was maintained with this heavy load. Several delays occurred, one near Callicoon, where a derailed train was in the way, and another of equal duration at Hornellsville. These delays the engine made up with out difflculty. Between Hornellsville and Buffalo snow was encountered. At 10:27 P. M., three minutes ahead of schedule time, the engine reached Buffalo, an unbroken run of 423 miles. This made one of the most remarkable runs on record, eclipsed as to length by the famous Jarrett \& Palmer train, which, in 1878, was taken to Pittsburg, 444 miles, by a single engine. This train, however, only consisted of three cars.
A special party accompanied the Darwin, including representatives of various railroad interests, and the inventor, Mr. George F. Strong. It was driven by Mr. George McRae, an engineer of the Strong Co. Erie R.R. engineers accompanied him as pilots. It now remained to show that this remarkable run was made without undue effort; accordingly, in a snow storm on the morning of April 2, the same engine started from Buffalo on the return trip. With a load varying from nine to eleven cars, the return was made on exact schedule time, the train reaching Jersey City at 10:55 P. M. A special interest attaches to these runs, in view of the fact that the road traversed is of about the same length as the famous London-Edinburgh roads on which the fast running occurred last summer.

PHOTOGRAPHIO HOTES,

Adhesives for Mounting Purposes.-Many photo graphers use nothing but rather thin glie, which,how ever, should be made from a material free from any ele ments of patrescent fermentation, and not acid. The glue sold as French medal glue is generally clear, not in a state of incipient decomposition, and free from acidity. Half a pound in a quart of water is a conven ient strength. Milk may be used instead of water, and is said to keep the glue from becoming brittle. An addition of sugar-say one-fourth of the weight of the glue-is perhaps more effective. The use of glycerine is open to objection. The following preparation is use ful for gumming large sheets of paper, which may be kept on hand ready for nse; when wetted they will stick well on glass : Starch two drachms, white sugar one ounce, gum arabic two drachms, to be boiled with a sufficient quantity of water. The same mixture can be used in making adhesive mounts upon which moist prints will adhere by pressure only.-Photo News.
Mounting Prints.-There are three systems by which prints may be mounted, all of them possessing advantages peculiar to themselves.
That in general use is the time-honored one of applying paste by means of a brush to the back of a wet pile of prints placed one on top of the other as a matter of convenience, and then deftly transferring each print thus treated from the top of the pile to the mount upon which it is laid down in position and pressed into contact by a pad or rubber. No special precaution or care is requisite in carrying this system into effect beyond seeing that the paste is free from hard particles and ie freshly prepared. Glue or gelatine, which is employed by some as a mountant in prefer ence to starch or paste, requires more dexterity in it employment.

A second system, introduced about sixteen years ago, consists in sizing the mounts with any suitable adhe sive of the gum or dextrine class, these being kept in a state of preparation always ready for use. The print requires no pasting or other treatment, but may be taken while simply in a wet or moist state and laid down in its place on the dry mount, followed by the rubbing requisite for insuring contact. This system is very convenient in many cases, especially for one who desires the occasional mounting of a few prints without having to experience the trouble of preparing paste and going through the whole operations conse quent upon the act. We are glad to know that mounte ready gummed are now commercially procarable. Those who desire to prepare mounts for themselves must be careful in selecting a gum of a suitable nature. It may be applied by a sponge or large flat brush, although preferably so by a little machine for the pur pose, introduced by a Halifax firm, and exhibited a some of our societies a few years ago.
The third system is one which is adopted much more extensively in America than in this country, and is highly suitable when large quantities of prints are to be mounted. As witnessed in operation in the States six years ago, when many thousands of prints were undergoing this process, we specially noticed its neatness, the rapidity of its action, and the impossibility of producing cockling. The backs of the prints are coated with ordinary starch paste and allowed to dry. The prints are then trimmed and laid in sit on the paper (or card) mounts to which they are thence forth to be permanently attached, which mounts, however, have first been rendered slightly damp. A number of prints thus prepared are then ran through the rolling press, and the operation is complete.

Arrival or Great steamnhip.

The new and magnificent ocean steamer City of Paris arrived at this port on the 11 th inst., on her first trip, having made the voyage from Queenstown in the remarkably quick time of 7 days, 11 hours, 39 minutes. It is believed her speed will be increased after a few more voyages have been made and her machinery be omes a little worn. As it was, the vessel inade 498 miles as her fastest single day's run. The Paris is a younger sister to the City of New York, which was finished, and made her first voyage last season. Both ships are substantially similar in size, construction, and
machinery. Length over all, 580 ft ; length on water line, 525 ft . breadth, extreme, $631 / 4 \mathrm{ft}$.; and depth, moulded, 42 ft . the gross registered tonnage being 10,500 tons. The vessels have very fine and graceful lines, and their beautiful appearance is in nowise impaired by the clipper bows with which they are provided. Each ship is propeiled by two sets of triple expansion engines, and they are supplied with twin screws, so that if one engine or propeller should become disabled, they can proceed with the aid of the other. This provision bas already been found of great value.

THE Electrician reports a rumor from Berlin to the effect that a means has been discovered of using electric ity for ascertaining the true north, instead of the mag netic needle; that, in short, the new means will b superior to the compass and is likely to supersede it.

Garrespondence.

The Firat Inventor of the Honitor Turrel

To the Editor of the Scientific American.

Paragraphs substantially the same as the one published under the above head line in your issue of April 6, p. 216, have appeared at intervals since January, 1863. Had you not expressed your approval of assertions made by a correspondent of the Washington Star, who "rightly says" that "Theodore R. Timby is the real inventor of the monitor revolving turret,' and that large royalties were paid " for the use of his invention," ndicating that even you entertain a mistaken notion, no notice, just as in the recent past, would have been taken of the erroneous statements.
The following extract from one of Captain Ericsson's ontributions to historical literature, bearing on Mr. Timby's claim to priority of invention, is instructive:
"The most important object, namely, the rotating urret, will now be considered; but before describing this essential part of the Monitor system, it will be well to observe that the general belief is quite erroneous

Elevation of a Floating Revoiving Circuiar
Pablished by Abraham Bloodgood in 1800 .
that a revolving platform, open or covered, is a novel design. So far from that being the case, this obvious device dates back to the first introduction of artillery. Sixty-four years ago the writer was taught by an intructor in fortiflcation and gunnery that under cerain conditions a position assailable from all sides should be defended by placing the guns on a turntable. Long before building the Monitor I regarded the employment of a revolving structure to operate guns on oard ships as a device familiar to all well informed aaval artillerists. But although constructors of revolving circular gun platforms for naval purposes, open or covered, have a right to employ this ancient device, it will be demonstrated further on that the turret of the monitors is a distinct mechanical combination differing rom previous inventions. The correctness of the assumption that revolving batteries for manipulating guns on board floating structures had been constructed nearly a century ago will be seen by the following reference to printed publications.

The Nautical Chronicle for 1805 contains an ac count of a movable turning impregnable battery, invented by a Mr. Gillespie, a native of Scotland, who completed the model of a movable impregnable castle or battery, impervious to shot or bombs, provided with cannon and carriage calculated to take a sure aim at any object.' It is further stated that 'the invention proposed will be found equally serviceable in floating batteries. Its machinery is adapted to turn the most ponderous mortare with the greatest ease, according to the position of the enemy.' Again, the transactions of the Society for the Promotion of Useful Arts in the State of New York, 1807, contains an illustration representing a side elevation of a circular revolving float ng battery constructed by Abraham Bloodgood.

The guns of this battery, as the inventor points out, 'would be more easily worked than is common, as they would not require any lateral movement.' It is also stated, as a peculiar feature of this floating battery, that 'its rotary motion would bring all its cannon to bear successively, as fast as they could be loaded, on bjects in any direction; and that 'its circular form would cause every shot that might strike it, not near
the center, to glance.' Thirty-five years after the publication of the illustration and description of the circu ar floating revolving tower of Abraham Bloodgood Theodore R. Timby proposed to build a tower on land or coast defense, to be composed of iron, with several floors and tiers of guns, the tower to turn on a series of friction rollers under its base. The principal feature of Timby's 'invention' was that of arranging the guns radially within the tower, and firing each gun at the instant of its coming in line with the object aimed at during the rotary motion of the tower, precisely as inented by Bloodgood."
It is interesting to learn that Mr. Timby got his idea of a revolving tower from seeing the land defense on Governor's Island, and, perhaps, it will interest your readers to be informed that Captain Ericsson's conception of what became the Monitor was during a visit t Portsmouth (1828), when being rowed past the wooden walls" which were regarded as England's bulwarks, he remarked to his companion, Count Adolf E. Von Rosen: "It has just occurred to me how all these stately ships could be at the mercy or destroyed by a single opponent," and got the curt response : "Then, for God's sake, keep it to yourself if you want to succeed in England." This mind image was never lost sight of ; it was simply held in abeyance for opportune dovelopment

The statement that $\$ 5,000$ was paid to Mr. Timby or the use of his invention in the construction of that vessel" (the Monitor), "and a like sum for each turret constructed
in building of the other ironclads for the government, ${ }^{n}$ is erroneous.
The Monitor engaged the Merrimac March 9, 1808. Previous to the issue of the first patent to Timby (dated July 8, 1862, the last being dated September 80 , 1862) Mr. John A. Griswold and others made a discre tionary agreement with him by which they could purchase at a stipulated price his patents for the United States, should he obtain any. Having in view their im portant contracts, they felt bound to protect them selves against any delay in the completion of the moni tors, then graatly needed by the government, should legal complications arise. October 6, three patents were assigned to Mr. Griswold, and Mr. Timby was ulti mately paid $\$ 15,000$
Captain Ericsson frequently had occasion to refer to this transaction, and maintained that the principa object of the preliminary arrangement to secure the Timby patents was to enable Mr. Griswold and others (not including himself) to control the erection of revolving forts on the coast of the United States, and that his (Captain Ericsson's) strong opposition to the scheme and its failure, attributed to his interference, was the cause of a somewhat unpleasant feeling between him self and one of the associates in the Monitor undertak ings, and he emphatically denied that Timby's patent claims in any manner affected the principal or detail of the monitor system, and that Timby did not receive to the amount of one cent royalty on account of the original Monitor, nor on the monitors that immedi diately followed.
Now fifty-six turrets were built by the different con tractors, hence, according to the Washington Star correspondent, Mr. Timby received the handsome. sum of $\$ 280,000$ for his embryo
The numerous communications on this subject re ceived by Captain Ericsson and the claims' of a host of inventors made him somewhat callous. He was, however, once much amused by the extraordinary demand of a colored man for compensation, because he had, he said, suggested the Monitor, both turret and hall, by the peculigr manner he folded a table napkin when waiting upon Captain Ericsson, at a dinner in the old Moffat House restaurant.
S. W. Taylor, Private Secretary.

New York, April 6, 1889.

Harvey F. Gaskill.

It is with profound regret we learn of Mr. Gaskill's decease, at Lockport, N. Y., on the 8th inst., at the age of 44 years. Mr. Gaskill was a distinguished engineer and inventor, the active head of the Holly Manufacturing Co., and the real author of the well known Holly water works system.
Among the thirty or more patents secured by Mr. Gaskill, and which are of indispensable value to the Holly Manufacturing Company, are the Gaskill horizontal and the perpendicular engines, the Gaskill triple compound pumping engine, a number of water meters, conceded to be the best in use, stean pump, puinp valves, engine valves, motion water mo tors, Gaskill hydrants, etc. The Lockport Daily Union says: "When it is taken into consideration that one single individual is the inventor of a set of water works and pumping machinery that beyond the power of contradiction excel all other inventions in this or any other country, it is wonderful, and in the demise of Mr . Gaskill not only Lockport, but the rorld at large has lost one of its greatest benefactors. Untold wil lions of property have already been saved by this superior class of pumping marhinery, and its value is all the time increasing, as new works are being completed in all parts of the country."

Electrical and Induatrial Exhibition at

An electrical and industrial exhibition is to be held Birmingham during the months of August, September, and October. A very large amount of sup port has been promised for it, and there is every prospect that it will prove a success. The electrical department will be divided into three sections, the frat including all kinds of machinery and apparatus for electric lighting, the second relating to complete displays of electric lighting on various systems, and the third comprising telegraphs, telephones, phonographs, electric bells and clocks, electric welding and smelting, electrotyping, telpherage, and miscellaneons apparatus. The industrial section will consist largely of Birmingham manufactures and manufacturing pro cesses, although it will include many other subjects.

Eatimated Amount of Fire Hose Plpe Now in
Use in the United staten.

THE ELECTRIC SUBWAYS OF THE CITY OF REW YORE.

(Continued from first page.)
vided with a double lid. The lower lid is held down in place by a gun-metal cross-bar and screw, and is provided with a tubular India rubber gasket, which is held in a groove and never leaves the lid. (See Figs. 2 and 3.) This gasket bears against a lip on the curb, so that

1. Kight-lead arc light cable. 2. Incandescent lig.it cable. 8. Single-lead arc light cable. 4 and 6. Fire depart-
ment cables. 5. Telegraph cable. 7. Splice in arc light cable. ment cables. 5. Telegraph cable. 7. Splice in arc light cable.
Fig. 4.-DIFFBREIT FORIE OF sUBWAY CABLES.

Solpury
Fig. 5.-TELEPPHONR CABLE OPEIEDD
FOR BPLICITG.
be given. Its direction is first determined, and the pavement is removed over the line; a trench is then excavated in the street to a depth which may vary from 3 ft . to 5 ft . The bottom of the trench is first leveled to the determined grade. This, of course, is subject to wide variation, because the streets are at present so occupied with gas mains and water pipes
when the lid is in place and the fastenings screwed, the hole is almost or quite hermetically closed. Above this inner lid comes the second lid, which is loose, and which lies flush with the pavement of the street. These manholes are placed about 250 feet distant from each other. They average one for each street block.
From manhole to manhole a number of pipes are carried, $21 / 2$ to 3 inches in diameter. These pipes are generally of wrought iron of the type of gas or steam pipe. They are asphalted inside and out, or coated with some equivalent protective material. On each end they are threaded, forming slightly tapering screws. They are connerted by means of sockets as usual in steam or gas fitting, and are screwed up powerfully, so as to bring metal against metal, forming the most perfect joint that can be made in this class of pipe. When in place they are embedded in concrete. Thus, taking the system as a whole, we find at every block a manhole, the iron or brick lined excavation already described, and connecting the manholes are a number of wrought iron pipes embedded in concrete. As a matter of nomenclature, the pipes are called ducts; the system of pipes and the concrete in which they are embedded is terined a conduit; and the whole system of ducts, conduits, and manholes together is, termed an electric subway.

The method of laying the concrete conduits may now

ME. 7.-DIETREUTIOI EOXES FOR UEE III MAMHOLES
that very wide departures from what would be the normal level have to be made to meet these exigences. The bottom of the trench is then well rammed, and planks are laid against the side, in order to prevent it from caving in. A layer of concrete is put in place and rammed home. On this is placed a horizontal series or row of the iron pipes, which in turn are covered with a second bed of concrete. A second row of pipes is placed upon the new concrete base, and they are covered with a third bed of concrete. Any number of pipes may thus be embedded. A typical subway would

The cables have now to be drawn into the conduits. This operation is illustrated in Figs. 1, 2, and 8. The workmen are supplied with a number of rods of wood, each about 3 feet long, and tipped with brass male and female screws at the ends. Entering a manhole, the workman pushes one of these into a duct into which a cable is to be introduced. He screws another rod to it, and pushes it about 3 feet farther, or its own length, screws another rod to that, pushes it in, and so on until a line of rods screwed together reaches through the conduit to the next manhole, perhaps 250 feet distant. These rods are shown in Figs. 1 and 3. A small line is attached then to the last rod introduced, and a workman at the further manhole withdraws the rods, un screwing them as they come out, antil he gets the end of the small line. To this a strong rope is attached, which is drawn through. The end of the cable is fitted with an iron loop screwed fast to it. Brass bushings are placed within the end of the duct, provided with shoulders to prevent their being drawn into it. These prevent the sharp edge of the iron pipe from marring the metal coating of the cable. The rope is now fastened to the loop, attached to the cable, the end of the cable is passed down into the manhole, and made to enter the duct through the bushing, and the rope is drawn through from the other end, the cable following it. Of course, great power is required to do this, on account of the stiffness of the cable, and we illustrate in Fig. 3 the form of capstan used in drawing the cable into the duct. It will be seen that the power of four or more men may be required in turning the drum. Where care has not been exercised in laying the pipe, burrs may exist at the couplings. These materially increase the friction where they exist. The ends of the pipes should be smooth internally, and any projecting metal should be removed by flling or reaming. As a general rule, the cable is cut in pieces, so that a single length is enough to reach from manhole to manhole, length is enough to reach from manhole to manhole,
with an allowance for splicing. In many cases the cable is of double length, when it is fed into the manhole, both to right and left, its loop or bight gradually disappearing into the manhole, and being gradually straightened out in the operation. It is often necessary to use a blower, to expel gas and bad air while work is going on. This plan is adopted when a manhole contains 80 much gas as to render work in it difficalt. It is seen in Fig. 1.
The ends of the lengths of cable thas introduced have now to be joined. To do this, they are opened, the wires for a few inches are stripped of their insulation, and connected. The joints thus made are wrapped, in

| $\left\lvert\, \begin{array}{l}\text { wh } \\ \text { ma } \\ \text { mi } \\ \text { di } \\ \text { ha } \\ \text { wi } \\ \text { an }\end{array}\right.$ |
| :--- | our a breadth of five lines of pipe and a height of When the cement, which is the best Anerican cement that can be procured, has set, so that the concrete is hard, the whole forms a homogeneous monolithic mass. The concrete on the bottom, sides, and top of the sub way is far thicker than between the pipes, 80 as to form

a better protection. Above the concrete, 8 inch yellow pine planks are laid, which have been creosoted with rom 12 to 16 pounds per cubic foot. This is designed to protect the structare from injury by pickaxes or crowbars in the hands of workmen excavating for any purpose. When it is considered that the pipes used are lap-weledd, and can with stand an internal pressure of 500 pounds to the square inch, and, naturaily, a very much higher ex ternal pressure, the great strength of the conduit will be apparent at a glance.
The conduits being laid and man holes built, completing the subway, the next problem is to introduce the cables into the ducts. These cables vary greatly in size and ar rangement of wires, and we illustrate a number of sections in the cuts, Figs. 4 and 5.
In Fig. 4 the general type will be seen to comprise the conductors surrounded with insulating and wrapping material incased in a pipe of lead or of lead and tin alloy The arc light cable contains sometimes eight leads. The incandescent cable is of very large capacity, consisting of a multiple wire conductor insulated and protected with the lead coating. The Fire Departinent cables are fluted in outline and one rib is pointed or angular on one shoulder. This gives a means of identifying the leads; calling the one under the angular rib No. 1, the others in regular order are de signated as No. 2, \&, etc. Th method of splicing are light cables is also shown in the cut No. 7 and in Fig. 9. The end are brought together and lapped and wound with wire and solder is applied to secure the most perfect electrical contact. A telephone cable is shown in Fig. 5. It contains wires that are individually insulated only. Dif ferent colored wires are used to facilitate identification. These admit of easy separation for splicing purposes or for making side connections. The Metropolitan Tele phone Co. generally uses a cable containing the wires arranged in pairs and each pair twisted. The ultimate use of these is for metallic circuits, the twisting tending use of these is for meta
to diminish induction.
 SYSTEM OF DISTR
DISTRIBUTION BOX
the case of telephone or telegraph cables for each individual wire, with insulating tape, and a lead sleeve previonsly passed over the cable is slid over the joint. Wiped joints are now used to secure the whole, so that the joint is as strong and water-tight as any other part of the cable. The operation is shown in Fig. 9. This provides for transit lines. It will be seen from the cuts, Figs. 6 and 7. how the cables lend themselves to lateral leads. The cable can be opened and any desired wire picked out for side connections. For use in the manholes, distributing boxes, shown in Fig. 7, are provided, which allow perfect freedom for the with-
drawing and distributing of specifle wires from the manhole as a center. Hand-holes, shown at bottom of Fig. 7 , are used for distribution from a single cable only. The transit ducts included in the conduits, as do scribed, are supplemented by external lines of pipe, laid above the creosoted plank work, directly in the earth, which are termed distributing ducts. These are to provide for local service, and at intervals they have hand-holes, which are hollow castings similar to the lower box in Fig. 7, giving access to the wires, to which castings pipes are connected ieading into the separate buildings or to the different lamp posts. These last named pipes are termed service pipes.
For private house distribution, the house top or back yard aystem is adopted. For the first named as many leads of cable or wire as requisite are taken out of the manhole and carried up the front wall of a building to its roof and thence distributed where needed. The back yard system, shown in the cat, Fig. 8, involves the erection within the block of a aingle distributing pole. The cable is brought to it from the manhole, preferably by an underground and cellar route, and carried up to a distribution box shown in the same cut. Entering this box the cable is opened and its wires distributed and carried to the cross arms of the pole and thence to the houses requiring the service.
The kinds of current to be provided for resolve themselves into two-high and low tension. The low ten sion represents telephone and telegraph service; the high tension, the electric power and light leads. When it is necessary to have both kinds of current in the same street, two main conduits are laid, one for each type of service, and they are placed on opposite sides of the street. Furthermore, the rules of the Board of Electrical Control do not permit the use of wires in the same cable which differ in potential from each other more than 500 volts.
Other forms of subway are in use. The Dorset conduit.* made entirely of asphalt concrete without iron ducts, was one of the earliest forms laid. This presents the peculiarity of insulating the cable covering. The regular conduit grounds it, through all that lies within the ducts. The Johnstone subway, seen in Figs. 1 and 2, made of sectional iron castings for conduits and man holes, has also been used, and is approved of by the commissioners. It grounds the cable coverings. Wooden pipes have also been used in the concrete ducts instead of iron onee. On account of the recent cas explosions the manholes will probably be venti lated, so as to permit any accumulation of gas to escape into the air through a pipe reaching well above the street attached to an electric light pole.
These conduits have been laid by a construction company, as the Board of Electrical Control and their predecessors bave had no authority to spend money for such purposes. The construction company, for its return on the investment and general expenses, relies on the revenue received for the use of these ducts. The rental has been based on the use of a single duct per annum and per mile. It will be clear that as each duct can carry six electric light wires, when each wire is in a separate lead-covered cable, and that when the wires are in a single cable eight wires can be contained in a $21 / 2$ inch duct, a fairly remunerative rental will not be extravagant. As regards telephone service connection, the cable introduced containing some fifty double wires arranged to provide for through metallic circuits, it follows that on a ground system 100 telephone wires can be provided for by a single duct. The entrance of the telephone cables from the subway ducts into the central station building in Cortlandt Street is shown in the Scientific Ambrican of March 30, 1889.
To give an idea of the extent of work, the flgures from the report of the Board for the past year may be quoted:

TICERL EUGEISE CHEVREUL
descent conduit is separate, and represented 338,376 feet, with over a million feet of conductors.

40,155 feet of trench have been excavated, giving ,287,880 feet of single duct transit and distributing and central station connections. Allowing 80 wire o the duct, this gives a capacity for telephone and

Fig. 9.- BPLICTNG wires and connecting cables.

telegraph service of nearly 35,000 miles of wire, long enough to go nearly one and a hall times round the earth. For lighting and power service, 316,796 feet of single duct, with a capacity of 600 miles of wire. had been laid by the end of 1888 . The Edison incan

IICHEL EUGENE CHEVREUL.

This distinguished French chemist died in Paris on Tuesday, April 9, at the great age of 102 years 7 months and 9 days. His strength had been failing for some months, but his friends had not been without hope that he would live till the 31st of August next, to celebrate the completion of his 103d year. His son, Henri Chevreul, died a few weeks ago, 70 years of age.
© The date and place of M. Cherreul's birth are well authenticated. He was born at No. 11 Deux Haies Street, Angers, an old city of France, at 8 o'clock in the evening of August 31, 1786, the record bearing the attestation of many witnesses. The parents were both persons of some distinction, the father being a physician and a professor, and living to the age of 91 years. The mother died at 93 years of age. M. Cherrenl's memory of his early life was also remarkable, and he used to relate having been the witness of the guillotining of two persons in 1793, when he was but seven years old.
M. Chevreul studied at a central school in Angers from the age of 12 to 17 years, thence going to Paris, where, in 1797, he was admitted to Vaquelin's laboratory, taking his place among several students who were afterward to win a high place as chemists. At the same time Chevreul was giving instruction in another college, and four years afterward became preparator at the Museum. At the age of 30 be was appointed director of the dyeworks and special professor of chemistry at the Gobelins. In 1814 he demonstrated that oils and fats were formed of a mixture of several peculiar principles, including margarine, oleine, and stearine, the latter furnishing stearic acid, and giving rise to the industry of making stearine candles. M. Chevreul's further labors upon fatty bodies and saponification aided also in creating other new industries, besides much enlarging the field of organic chemistry.
In 1842 M . Cherreul assumed charge of the dyeing operationsat the Gobelins and Beauvais establishments belonging to the government, and his researches and valuable discoveries touching colors have been almost continuous from that time to this. He has shown that the harmonies of colors are submitted to immutable laws, which may be demonstrated by calculation. His laboratory was a vast rom surrounded by show cases, in which were kept specimens of his work, and numerous parcels sent him by various industries, with closets containing various specimens of coloring matters, test tubes, graduates, glass rods, balances, etc. It is not too much to say that there was but little work of much importance, during the past half century, touching the dyeing industries, which his researches did not cover in the extraction, fixation, and observation of colors.
He was examiner for many years at the Polytechnic School, and had always been president of the National Agricultural Society. Up to 1855 he had been a member of the jury of every French exhibition. A member of the Legion of Honor, commander in 1844, grand offleer in 1885, grand cross in 1875, he has had all the grades that any scientist could be covetous of. The foreign decorations that he received would cover his entire breast. Buthonors never elated the indefatigable worker, who was ever studsing, and remained more than ever, at the age of over one hundred, the dean of the stu dents of France and of the entire world. The life of the centenarian was passed be tween the Museum of Nataral History, the Gobelins, and the Institute of France. He never failed to be present at the Monday sessions of the Academy. The number of memoirs that he presented to his colleagues is almost incredible. He was never desirous of being a politician, but during the Franco-Prussian war (187071), at the age of eighty-bix he willingly endured the pri-
vations of the siege, and did not leave the conflnes of Paris. He lived at the Museum while more than eighty Prussian bombs were shattering the glasses and breaking the cases.
Of his works several have been translated into English, German, and other languages. The best known are: "Lectures on Chemistry Applied to Dyeing" (2 vols., 1828-81) ; "On the Law of the Simultaneous Contrast of Colors and the Distribution of Colored Objects Considered in Relation to Painting" (1889), ascompanied by a splendid atlas; "On Colors and Their Applications to the Industrial Arts by Means of Chromatic Circles"(1864); and a "History of Chemical Rematic Circles" (1864); and a "History of Chemical Re-
search," begun in 1856. He also wrote on sanitary search," begun in 1856. He also wrote on sanitary
subjects, on organic analysis (1824), on the optical effects of silken textures (1848), on the divining rod and table tipping (1854), on scientific method (1855), and on the prescription of drugs in medicine (1865). He wrote all the articles on chemlstry in the "Dictionnaire des Sciences Naturelles," and edited with comments the "Photographic Researches" of Niepce de St. Victor (1855). It was at his suggestion the practice of char(1855). It was at his suggestion the practice
ring the interior of water casks was adopted.
M. Cherreul is reported to have left a large fortune. He was tall of stature and well formed, baving a vigorous and healthy constitution, which, under his methodical way of life, although he was always an energetic worker, preserved him for a vigorous and healthy activity throughout all his long years.

The Timany Exhible of American Jewel Minerale. Tiffany \& Co., of this city, have prepared an exhibit of minerals to accompany their collection of jewel and art work to the Paris Exposition. It is designed to cover the field of American jewel minerals only, and the endeavor has been to keep it as compact as possible by only including remarkable and unique specimens. Among the specimens of native gold is some of John Marshall's "find" of 1849 at Souter's Mill, the first gold found in California. Native silver is shown in some very beautiful specimens, in one associated with native copper. The last is of special interest, it having been pronounced Praudulent by some English authorities, although really authentic. The first sapphire found in the United States, from Jenks mine, Franklin, Macon Co., N. C., and the first sapphire ever found in its matrix are included.

Beryls, blue, green, and colorless, are shown, including a cut specimen (aquamarine) of 133 karats, from Stoneham, Maine, and emerald crystals from 1 to 83/4 oz. weight. The latter are of greater value as crystals than could be anticipated from them if they were cut. Garnets are present in perfection. Ruby garnets from Fort Deflance, Arizona, and Navaho Reservation, New Mexico ; the first samples of cut spessarite garnet, and the great 14 lb . crystal with all faces perfect-a slightly distorted or elongated dodecahedron-and a two inch garnet cup are typical of the character of this mineral as shown. Red, green, and colorless tourmalines from Maine localities are extremely beautiful, and are both cut and in natural crystals.

A number of very beautiful associated malachite and azurice specimens are shown, embodying Ruskin's idea of the green of the earth and the blue of the heavens. lt would be hard to find in all mineralogy a more exquisite combination of colors.
Among the quartz minerals are a quantity of crystale, curious on account of their minute size and perfection, there being 7,500 to the ounce.

Crystals of amethysts, smoky and rose quartz and rock crystal, and quartz, jasper, and other arrowheads, some unique, are included. Some of the rose quartz is
cut into cups, spheres, and other shapes, and a mass of cut into cups, spheres, and other shapes, and a mass of
rock crystal is considered one of the finest shown. An rock crystal is considered one of the finest shown. An
interesting exhibit is olivene from meteorites, two being cut into jewels (chrysolite), forming gems of true celestial origin. An Oregon opal is the first found in the United States. A superb block of amber is shown which is dichroitic or fluorescent, and a massive piece of jet is near it, both illustrating organic jewel material. Pearls from different sources are included; some from Indian mounds, others from the clam, common oyster, and other mollusks. Mottled and black obsidian and the first samples of pectolite and wollastonite ever cut are of interest. The exhibit, which is in part a loan collection, is in charge of Mr. Geo. F. Kunz, who is to accompany it to Paris. By the time this reaches our
readers it will probably be on its way across the ocean.

Cure for Roaring.

It may interest owners of horses to know that the mare ridden by Colonel Edwards in the Old Berks Hunt Club race, and who finished second, was a very bad roarer (hence her name "Aroara"), but was operated upon by Mr. Jones, of Leicester, who inserted a
tracheotomy tube. Considering the length of the tracheotomy tube. Considering the length of the
course, a long four miles, the pace, the holding ground and big fences, her perforinance was a wonderful testimony to the efficiency of Mr. Jones' operation. The tube which is inserted in the trachea of the throat is the race was nineteen minutes-Land and Water.

THE REV. J. G. WOOD.

The Rev. John George Wood, who did more to popularize the study of natural history than any writer of the present age, was the son of a surgeon who was at one time chemical lecturer at the Middlesex Hospital. He was born in London in 1827, and was educated at Ashbourne graminar school and at Merton College, Oxford. After being attached for two years to the Anatomical Museum at Christ Church, Oxford, he was ordained in 1852 as chaplain to the Boatmen's Floating Chapel. This post he held for four years, and in 1856 he was appointed assistant chaplain to St. Bartholomew's Hospital. This post he resigned in 1862, and from 1868 to 1876 he held the post of Precentor of the Canterbury Diocesan Church Union. Want of apace forbids us to mention more than a few of Mr. Wcod's numerous works on natural history. Among them are "Common Objects of the Seashore," "Homes without Hands," "The Natural History of Man," Our Garden Friends and Foes," and his larger "Natural History," in three volumes, enriched by excellent illustrations from animal painters of the highest rank. He also for some time edited the Boy's Oron Magazine. In 1879 he projected a series of "Sketch Lectures" on zoology, illustrating them himself by drawings in colored pastels on a large canvas. These lectures have been delivered in all the principal institutes of England and Scotland. His last lecture-on ants-was given in London only a few days before his death, which took place on March 3, at Coventry, from an attack of peritonitis. Sad to say, despite his energy and

THE REV. J. G. WOOD, NATURALIST. Born 1827. Died March 3, 1890.
industry, Mr. Wood was unable to make any provision or his family, and he has left a widow in very ill health, with six children, absolutely destitute. Donations on their behall will be received by the Rev.
Alfred Whitehead, Vicar of St. Peter's, Kent, and Rural Dean of Westbere.-The Graphic.

Carions Facts an to Wheels.

The product of the cycle manufacturers for 1888 exhibits little departure in types of bicycles, tricycles, and safeties, but a number of quite noticeable improvements in details, in the direction of strength and lightness, simplicity, and ease of use. As usual, the old New England makers have the lead in the finer machines.
The cycling industry is still comparatively young on both sides of the metropolis. It began at Hartford about eleven years ago, and took root in other places two or three years later. From the first the New Eng land bicycles were built for men's use, first class me chanically and first class in price.
Whether it is impossible or inconsistent to make both high and low grades of bicycles in the same factory, or whether there is some other local or trade reason for pear from the same factory with the cheaper and inerior grades.
It may be worth observing, in connection with the fact that the high grade bicycles continue to be made by the two or three leading makers of the East, that there is a difference in the average grades of workinen, often quite apparent. Talent and skill are not only cumulative in the same factory by years of practice, but also go soinewhat from generation to generation. so much to the productive power represented on any pay roll, are found at a higher average in our older manufacturing centers. Articles and machinery of accuracy or delicacy, or complexity or difficulty of con struction, like bicycles, guns, and watches, require in
their production just this sort of superskilled labor and steadiness of force, especially in the finer grades. Manufacturers of experience take this into account in ocating.
The difference in grade and construction of machines
machines that are used in the different sections. The sale of fine grades in all sections is very large and increasing. While the East may not lose its excellence or prestige in cycle making, it is quite likely that the West will gain, until its marks may be as good as a Boston, Hartford, or Chicopee Falls mark. It took Birmingham some time to equal Sheffleld, and then some time longer to overcome the "Brumagem" reputation ; but it got there, and, as every one knows, is now a center for really fine manufactures.

Of course not all that is made in the East in this line is best, since wherever a successful business is founded imitators spring up; but generally speaking in design of machines, in material used, in workmanship and finish, in substantial improvements over last year's productions, in all that goes to make up the best bicycle, tricycle, or safety, the old New England makers still hold the lead.

The Tobln Eroneo.

The Tobin bronze is a metal recently placed on the market by the Ansonia Brass and Copper Company, of 19 and 21 Cliff Street, New York. It possesses many remarkable characteristics. Among its leading qualities are great torsional and tensile strength, with corresponding high elastic limits, as will be observed in the recorded tests by N. O. Olson, Esq., engineer of the department of tests for Fairbanks \& Co.

$\cdot \mathrm{Mr}$. Olson says it is far superior in point of strength to any bronze or metal of that kind he has ever tested. Chief Engineer Hine, U. S. Navy, after making tests, found the metal to withstand the action of certain acids with a loss that was infinitesimal. It can be forged into bolts with great facility, and is used in large quantities for this purpose in several of the naval steamers now in course of construction for the navy, and for various other purposes, such as dye house and sugar machinery. It has been used successfully for cylinder linings and pump rods by some of the leading pump makers of the country. Owing to its non-corrosibility and bigh torsional elastic limit, which is equal to that of the toughest grade of machinery steal made in this country, it is being generally used for steam launch and yacht propeller shafting. Another important feature is that it can be drop-forged in the same manner as steel, making it essentially valuable where strong and intricate bronze pieces are required that cannot be obtained by casting. It has been carefully tested, and found to withstand the action of sea water in such a manner as to commend it to favorable notice for sheathing ships and spiles. The ingot metal is adapted for railroad car journal boxes and bearings of all kinds, for land and marine inachinery, and, in point of endurance and anti-frictional properties, has given results equal to the best in use.

The company's pamphlet, just issued, contains testimonials from many of the leading firms of the country.

Hanging Doors and Blinds.

In hanging a number of doors which are of the same size, the time expended upon measuring the correct position of the hinges may be, according to the California Architect and Builders' News, saved in a very simple manner, which is as follows: Take a lath and mark upon the top and bottom the exact position where the hinges should come, drive in at these marks sharp-pointed brads, and you have a gauge which may be used in hanging all doors of the samesize. In using it, all that is necessary is to place it against the edge of the door with the top of the lath on the level with the top of the door, give it a sharp tap of the hand, when the brads will mark the exact position of the hinges. The same gauge lath may be used in marking out the position of the hinges of the stile of the door frame, excepting that a nail should be driven in the bottom of it, so that there may be sufficient room left at the bottom to allow proper play of the door. The use of a gauge lath in the case referred to is an example of its use. It is of equal utility in hanging many other pieces, such, for instance, as inside and outside blinds, shutters, etc.

Mr. 1. P. Allis, the head of the Reliance Iron Work at Milwaukee, one of the largest foundries and manhine shops in the country, died very suddenly April 1. He was a man of cultivated tastes, a liberal patron of the arts, and had amassed a large fortune.
begintil patemted invertions. Enginoering.
Steam Boilerr. - Samuel P. Hedges Greenport, N. Y. Combined with opposing series or horizontally non-ailiguling manifolds or headers are iu manifolds of each series, with other novel featuree designed to secure perfect circulation, and whereby a single tabe or section of tabes may be readily removed
and repluced, and the tubes be conveniently cleaned.
Pressure Regulator. - Charles Dubols, Leadville, Col. The valve casing is provides valve having a epiral port extends through its walla, spring beling arrangod to bear upon the platon valve,
and a valveoperating cap connected with the valve and a valveoperating cap connected with the valve
epindie, making a simple and efficient valve for regulat ing the preesare of steam or ait
Stupfing Box.-William E. Brockett, Berlin, Wis. This invention covers a novel construc tion and arrangement of parto whereby the packing stem, while the casing is moanted yiedingly apon a spring or springs to permit a vibrating motion of tho of the stem or parts of the stuffing box.

Eloctrical.

Regulating Electric Currints. Joseph W. Balet. New York City. This invention pro. vides a method of regulating the current in dynamo and
motor circuits by which any sarplus will be sent into storace batieries for nase as needed, and to control the charging of the secondary batteriees, so that the charging carrent shall cease in a particular battery when the battery when it is discharged.

Rallway Appliancen.

Locomotive axle Box.-Ransford T. Chase, Houston, Texas. Combined with a podestal an axle box mounted to sllde vertically therenin, a
second axle box being moanted with one side in bearing in the pedeesta, and a connecting rod secured the latter axie box and pivotaily connected with the arrs named axle box, whereby the centers of the axle
Railroad Snow Plow.-Charles A McCarthy and John P. Moran, Sault de Ste. Marie Mch. The body of the plow is made sumiliar to a a box
car, and has a vertical wedge-shaped mould board at its front end, in combination with vertically rotatinz amaller vertically rotating snow wheels in front of and above the lower wheels, the mechanism being driven by an independent engine, and designeed to throw the son a a great distance from the track:
Car Coupling. - Isaac L. Whiddon and Jalian 8. Bashaw, Clipley, Fla, The drawhead aliding and rotary catoches mounted therevin, with apring for holding the catches in engagement, and other novel reatares, the object belng to provide
couplling which will coaple automatically, and which may be woupled from eithe
Car Coupling.-Wiley M. Grisham, Winchester, III. In this coupling the drawhead has Way for the coopling hook formed with an Incline, ap Which to direct the hook, witt a traneverse horizontal
opening for the coupling pin, the latter baving a fange or wing arranged in the closed poostion of the pin the coapling hook, the coapling pin having a rack oper ated by a toothed wheel.
Rail Tif and Fastening. - Jacob Fower plate--lile bars and an intermediate ed gewise ans posed plate-lilie bar let into grooves or channels of the apper and lower bars, the chairs onsisting of clamp
plates reating noon the noper bar and held in place b plates resting apon the apper bar and held in place
bolts pasesing through the upper and lower bars.
Car Siat.-Edward B. Goelet, For Worth, Texas. This is a car eeat of simple constraction, wherein the parts are so arranged that the back o
the eeat may be adjusted to almost any angle deefred the eseat may be adjusted to almost any angle deeired adapted to be adjusted to the convenience of the occuadapted to be ad
Car Door.-Edward B. Goelet, Fort Worth, Texas. This le a silding door for nes on the ing vertical posts, and a rall or track below and above ing vorical postis, hich the coor is sapported by hangere the tracks having an inclined surface and axtending oatwardly in a horizontal line with the car, in sach way that when the door is opened it is carried a dise tance ontward from the car, and when closed it comee quickly and conventently to place.

Agricaltural.

Corn Plow. - William Quillen and Francis A. Dake, Almena, Kannas. This is a machine deeigbed to cantivate both silaes of a row of corn or other plants at one paseage, and is made with apwardly
arched end frames, longitudinal side bara arched end frames, longitudinal side bars, , tandards
Fith runners at their lower ends, longitudinal suard frames and shovels, with other novel features, the plow belng designed to run steadily and stay in the ground cleaning out all weeds and grass in the row, and loosen ing ap the dirt close to the corn.
Harrow for Land Rollers.-James W. Weir, Princeton, Ind. This is a device for harrowIng adapted to be astached to land rollers of ordinary conseraction, being rendily attachable to the front on
ane of dirt clods, that the roller may more effectually mstritouit of operative permitting the driver

Hochanical

Cuttrer Head. - Henty I. Haskell, adington, Mich. In this derice the knife holder has a ing alot, a threaded aparture extending ap throngh the base and head into the knife sot, and enlarged at ite ower end. the invention relating especially to the
nives and manner of secaring them to the contrer knives and manner of seca
Ore Crusher - Jacob Rodermond, Uw York city. tia a sulable receptacle, to which the ore to be crashod is fed, it journaled a vertical ahaft with bifurcated apper end, cruabing rollers with indoendent arles being pivoted in he bifarcatod siaft end, whie opposing horizontal arms carrying ado follow the rollers are secured to the ehaft between the rollers, the apparatus being deeigned as an n mill
Rice Holukr.-Henry Scholfield, New Tork City. This machine hasa tabolar sectional body ath and a ection beling secured in an arc of a circle to the hab, with guide platee between each set of rubbera, wheroby he hall will be completely removed from the grain, and each grain will be rubbed or recoured.
Middintas Purifier. - George W. Eell, River Falls, Wis. This machine is designed to pariry middlings or doorr by means of currents of air,
and the invention covers novel features of constractlon and the invention covers uovel featares of constraction and arrangement of parts whereby all the inner and Printing Presses.-Touro Robertson, New York City. This invention provides a numbering itachment for printing presese, whereby bonde, checks, cckets, etc.., may be nambered consecatively, or one or no the numbering head or cementially altering its

Hiscollancous.

Gate Valve.-Charles H. Shepherd, New York Citty. This is a removable gate valve for tomporary appilication to drain and sewer plpee, and ormed integrally therewith with aperlured eara, vaver adaptod to close the slot of the pipe, and a gal provement being intended to avold the difically from ordinary forms of corrosion,
Tag Fastener. - William H. D. radiow, Teccumsel, Nob. This device is somewhe lad a pair of sclusorb, haring at the end on one of ite ye for carrying the tag, thread or cord, for putting tags on goods of llight and heavy textare, and drawing he string through the goods for the attachment of the
Suspender Buckle.-Louis Stein beriger, New York City. The body of the buckle is in
he form of a dat plate bent over at tos sides of orm he form of a nat plate bent orer at its sidee to form grooved gaidee to recelve margins of the strap, and aliso
dotted to recelve croeswise a looee spring gripping plate or bar, between the inner facce of which and the back surface of the body the main strap paseses, the backle being readily slld in elther direction and automatically effecting tos own engagement.
Letter Clasp. - Louis Steinberger, Vew York City. This is a clasp made of a piece of ing and closing tramea, to be ueed for holding letters of Lose papers in the pocket or elpewhere, for carring at rached single or donble tableta, or for holding books pen while being read, etc.
Poison Distributer. - Wiley P. Towne, Deita, La This is a machine having a powder scoptacle, with openings connected with fiexible ns the receptacle, whereby the poivder is distribated in lose proximity to the plants to be treated, the wind not blow
Sofa and Bed.-Charles T. Hard, East Liverpool, ohio. This is an article of furniture
 when nased as a bod the bottom will be amply supported and elevated essentially the same distance from the coor as the equivalent portion of an ordinary bed.
Ega Count Register. - Alvin F. Hartison, Greeley, Kansass. This regibter consists of a lapping each other, the disks having a pin and pivoted lever with spring arm, with otber novel featares,
vereby a party counting exgs can leave the work 0 whereby a party connting eggz can leave the work of countling at any time
register of his connt.
Figured Wooden Plates. - Robert Himmel, Berlin, Germany. This invention covers a nethod of prodacing rancy agured wooden plates, for ine instead of iniald work in fruniture, etc., and coniots in irrat barilag and presing the wooden plate be en smoothing and polishing the embosed sarrice of he plate.
Hack Saw. - George N. Clemson, IIdaletown, N. Y. This saw has every third tooth arremaining teeth being set in the nsaal way to give the aw clearance and prevent it from pinching in the kerf, whereby lateral vibration will be prevented, more perect work secured, and the nesefulness of the saw pro-

Medicated Bodaie.-Thomas Christy, London, England. This is a wire instrument, with
stem of stralght wire bent at one end to form a ring andee, and haring a wire extend beyond the straight end and biging in the midale, the instrument beting
designed to faclitite the local treatment of various

Umbrella Holder. - Augast Den ara, Bonn, Germany. This holder consists of a mall small compases, and is adapted to be attached to the clothing, and formed with a fastening device or projec Hion at lts apper end, combined with a clamp for grasp.
ing and Armly holding an umbrella handle.
Hamмоск.-Herbert M. Small, Bald Hinsilie, Mase. This hammock. has a ent and bact portion, with hooks at the apper end of the latter and ooped rope secured to the forward corners of the seat with adjustable hooks on the parallel parts of the rope.
etc., whereby paseengers who have io travel in ordinary etc.., whereby paceengers who have to travel in ordinary
pasenger and comport.
Index.-John P. Findley, Blanchard Pa. This index is formed in sections on opposite sides
of a central tarting polnt of the book, the leaves of the sectlons befing cut away from this point Lo expose portions of the leaves corresponding to each desired divislon of the subject matter, making
method of forming the fudex of booke.
Billiard Table.-Charles G. Brockway, Pine Blaff, Ark. This improvement covers hereby a better ventilation and adjastment is ecarrei whereby a better ventiantion and ajaustment is socured
between the bed, the rall, and the cushion, whlle a solld bearing is obtained for the rail to hold the partu armly to the adjustment to which they are set.
Telescopic Mirror.-August Janzon, Iron Mountain. Mich. This so an attachment consistinn of a metal or other sattable plate, having a central conwhold it upon the onter end of the telescope, with its contracted aperture over or on the oateide of the objec lene, while a mirror is hinged to one eide of the plate, the device belng also intended for use with oper glasees, etc.

SCIENTIFIC AMERICAN

BUILDINGEDITION.

APRIL NUMBERR.-(NO. 42.)

table of contents.

Plate in colors showing elevation in perspective and fioor plans for a dweling costing
thoasand dolliars. Sheet of detalla, etc.
. Flegant plate, in colorss, of a residence
ate coet, with floor plane, details, etc.
Perspective and floor plans of a modialed Queen Anne cottage, at Enatt Orange, N. J. Cost, alx thousand five hundred dollars.
A cotlage at East Orange, N. J. Plans and per-
Page engraving of a stairway in the Chatean do
Chantilly. By Mr. H. Danmet. Scenees at Zasandam, Holland, where the
Peter the Great learned shipbailding in 109 . Engraving of the new station and omices of
Great Indian Peninusular Rallway, Bombay.
Porspective and plans of the new Biol
Laboratory, Princeton College, New Jersey.
A reeidence at Rooerille, New Jersey, cooting five thonsand dollars. Plans and perspective.
10. A cottage at Roserlile, New Jerrey, cooting seven
thoonsend dollarg. Perspective elevation and floo plans.
11. The Orange Valley Church. Cost, sixty thousand dollara. Perspective and groond plan.
18. A restidence at Fordham Heights. Cost, thirtyfour thousend dollars. Elevation and floor plans.
Perspective view of the new Trinity Nethodist Episcopal Church, Denver, Colorado.
14. Designs for wall paper decorations. Flower scroll, deeignod by A. F. Brophy. Strap ceiling, de
signed by G. A. Audiley. Arabeague panel decorations, paper for stalrcases, deeigned by Lewie F. Day.
15. Perrpective and floor plan of an attractive carriago house in the Queen A
drod and ifty dollars.
16. Miscellaneooas Conten and bullders to remember.-Interior Anish.ton of charches.-On eatilinating.-Cruabing of masonry. -The oldest architectural drawing. -Ma a hogany.-Flexible fonndations.-Treatment of the cellilng.-The teredo. The oldeet timber.Compresive strentth of bricks and piers.-Repe
tition of ornament. - The Thomson-Houston elec tition of ornament.-The Thomson-Houston elec
tric syytem for street railways, illustrated.-An tric system for street railways, illustrated.-An
excellent system of heating.. The Ball high ppeed excelient syetem or heating.--The Ball high speed
engine.- Beadilig,
rabeet, ilitting, and matching plane, Illastratod.-The sturtevant syatem
heating and ventilating, tllustrated. - H.
W. Johns' 1 lquid paints.-Soapstone laundry tabe and kitchen sinks, nlustrated.-Carpenter's vise,
illuatrated. - Metallic hip shingles, illustrated. Corrugated iron lath. - Weather vanes, roof orna

Scientifc American Aroillocis and Builder ceition is isesued monthly. $\$ 2.50$ a year. Single copiee centa. Forty larke quarto pagees, equal to abou call, a large and splendid Manea, irmag, prach TURE, richly adorned with elegant plates in colors and with Ane engravings, illnstrating the most interating xamples of Modern Architectural Constraction and

allied sabjects.

The Follinese, Richnese, Cheapness, and Convenlence of any Architectural pabilication in the worlid. Sold by an newidealers.

MUNN \& CO. P PVBLBBER\&,

ねusiness and Personal.

The charge for Insertion wnder thes head is Ons Dolla

 a line for each inssult, about agin words to a line. as carly as Thuroday morning to appear to neret iesue.Situation Wanted-By druggist and jeweler. 8 years For Sale or Royalty-Exxclusive right to Varnum's entering tool. No mechanic would do
once using it. Dr. Varnum, Kisinore, Cal.
Scrow machines, milling machines, and drill presses Wanted-A first clans man for foreman of brass oundry manufacturing plumbing and steam nitting
oods. Address, stating terms and referances, to box S8, Milwaukee, WIs.
Practical Books-Leading books on electricity and (ind mail. Jas. Moore,
 For the latest improved diamond proapecting drills, Rasess the M. C. Bullook Mif. Co., Chicago, III.
Wanted-Superintendent to take charge of a wood-
vorking machlnery manufactory. Muat be versed in do gning, pattern making, and the handiling of men. Ad dress For best casehardening material, address The Rogers Water purifcation for cities, maunfacturers, and private users. The only suoceasful leattimate system.
Hyatt Pure Water Co., $16,18 \& 20$ Cortlandt St., Now York.

Antomatic cat-off. Ball Ehoina.- Ball Engine Co., Erie, Pa. For the best Hoisting Engine for all kinds of work Prese Dle Mrate

Co., Bridgeton, N. J. Perforated metals of all kinds for all purposes. The The Holly Manufacturing Co., of Lockport, N. Y. ill send their pamphlet, deecriblng water works ma No. 11 planer and matcher. All kinds of woodworking Nachinery. C. B. Hogers \& CO., Norwioh, Conn.
Beach's Improved Pat. Thread Catting and Diamond The I The Improved Hydraulic Jacks, Punches, and Tub Inveetigate Fison's Reconding Steam Ganges. Bave aveotigate Edaon's Recording Steam Gauges. Bave coal safety Veneer machines, with latest improvements. Farrel Tight and 8lack Barrel Machinery a apecialty. Joh Rotary venear baoket and froit package machinery Rotary veneer basket and fruit package machinery

I. E. Merritt Co., Lookport, N. Y.

Belting.-A good lot of second hand belting for sale Patent swing cut-off saw, with patent shield for saw. Patent swing cat-off saw, with patent
Rollstone Machine Co.. Fitchburg, Mase.
Manufacturere Wanted at Lyons, N. Y. 5 railrosds, tary Board of Trade.
The Star Fountain Gold Pen. The best made stylo rice. 81.00; fountain, 81.50 and up. Send for circular C. Ulirich \& Co., 106 Lilberty St.. New York.

ET send for new and complete catalogue of Scientitic and other Books for sale by Munn \& Co., 281 Broadwa

NEW BOOKB AND PUBLICATIONS.

Transactions of the American In STITUTE OF ELECTRICALENGINEERS
Vol. V. Meetings of September 20. 1887. October 11, 1887, November 90
and 15, 1887, Decemer and 15, 1887, December 6, 1887, Decem
ber 20, 1887, January 10, 1888, Febru ber 20, 1887, January 10, 1888, Febr
ary 14, 1888, April 10,1888 , May 16
1888, June 19, 1888, and October 1888. New York City : pu

In the present age of electrical engineering it is imreading the proceedings of the socleties devoted to the subject. In this volume the proceedings of ten mee ings held in 1887 and 1888 are given. It is needless to emphasize their value. Illastrations are given when
necessary. The concluding section of the work is devoted to an index of current electrical literature, divide into months, beginning with December, 1887, and ending with September, 1888 . The volume has as a frontispiece
an excellent photogravare of F. L. Pope, the well known rical expert.
SEA Side AND WAY Sidf. No. 3. By
Julia McNair Wright. Boston: D
Julia Heath \& Co publishers. 1889
C. Heath \& Co., publish

This is the third of the well known nature readers cotten ap very handeomely, and from the interest of it topics and the pleasing way in which they are set forth may be recommended to teachers.
Sugar: A Handbook For Planters
AND REFINERS. By Charles G.
Warnford Lock, F. L. S... Benjawin
E.R. Newlands, F.I.C.i. F.C.S.: \&nd
John A. R. Newlands, F.I.C., F.C.S.
E. \& F. N. Spon, London and New
York. 1888. Pp. xxiv, 920. Price $\$ 10$. This exhaustive work treats of the titular subject ! sugar cane, the work is carried down through the pro cesess of the extraction and parification of the juice, the reduction of augar therefrom, the analytical methods,
and patented and other procesees. The mechanical treat-
ment, as for the production of cabe sugar, is given, with appropriate illuatrations. The polariscope receives full civen to aloobol. Its prodiction and distillation. The given to aloobol. Its prodiction and distilation. The work is well indered, and forms a standard contribution to the
of sagar.
A New Principle in Heliochromy. By Frederic E. Ives. Philadelphia. printed by the author. 1889
This is an edition do hure among photographic works. It treats of the posesibility of producing photographs in natural colors. It is prefaced by the portrait of the anthor, which. in view of the repatation he enjoys in the photographic world, will be considered an interesting
feature of the work. A comparison and criticiem of featare of the work. A comparison and criticiem of
the method used, by Dr. H. W. Vogel, completes the book
Thi Volitaic Accumulator. By Emile Reynier. Translated from the French
by J. A. Berly. E. \& F. N. Spon,
125 Strand, London: New York: 12 125 Strand, London; New York: 12
Cortlandt ${ }^{12}$ Street. 1889. Pp. xv, 202. Price \$4.
The title of this book, brief as it in, describes its conIt is a treatise on storage batteries, and gives in
monch detail the theory of their action, their merita their defecta, and a large amount of valuable practical information. A thorongh review of the book would be imposesibie in the space at disposal, but it is enough to may that the subject is admirably treated, and the conconts are arranged in the systematic manner the
A Laboratory Guide in Chemical ANALYSIS. By David O'Brine, E.M.,
M.D. D.Sc., Professor of Chemistry and Geology in Colorado State Agri-
tirely rewritten and revised. Now 287. Price $\$ 2$.

This work is intended for the use of stndente, and is
an abetract of qualitative analytical work. The logian abstract of qualitative analytical work. The logirangement are most praiseworthy. A very valuable sec-
tion is that devoted to poisons, ptomsines, etc., to tion is that devoted to poisons, ptomaines, etc., to
which 88 pages are devoted; peneral stolchiometry is the matter of the concluding chapter.
2e Any of the above books may be purchased through this any of the above books may be purchased throngh
this ofice. Send for new book catalogue just pubAddrese Muns \& Co., 881 Broadway, New York.

HINTS TO CORRESPONDENTS.
Names and Addrose muet accompany all letters,
or no attention will be pald thoroto. This is for our
information, and not for publication.
information, and not for pablication.
Bororencos to former articles or answers should
give date of paper and page or number of question.
Inquirios not answered in reasonable time shonld some answers require not a litlue reeaarch, a
thongh we dedeavor ro reply to thl either by let
or in thio department, each mast take his turn.

seionilice A morican sapploments referred
to maj be had at the omice. Price 10 cents each.
Boolke referred to promptly supplied on recelpt
price.
Minerala eant for eramination should be distinctly
marked or labeled.
(651) H. H. A.-Salt water does not freeze as readily as fresh water, but in the case of
shallow running water, whether it be salt or fresh, shallow running water, whether it be salt or fresh,
freezing will iometimes take place arst on the bottom, whereas if the water be atlll the i
narily Arat formed on the surface.
(652) J. R. N.-We know of nothing practical but chisel and hammer for taking clinkers
from tire brick. Barning oyster shells in the Are is rom tire brick. Barning
(858) W. J. S. asks for receipt for gum-

 aceel gnns now in actual nase in the United States navy
8 inches. Some 10 inch all-ateel guns are now inlehed or partially anished at the Washington navy yard. The guns on the Boston are 8 inches; t inch guns are in conrse of construction with cast iron shell,steel tabed

(655) J. J. B. asks : What material, and how applied. is ased to coat tin diehes, to withstend
the action of chemicale noed in developing and toning the action of chemicals reed in developing and toning
photoos A. Use a quick-drying asphalt varnish, such as eold for bleyclos.
(656) W. F. L. writes for a receipt for a foor varaish that will stand hard wear. What shall I
pat in to make it a cherry color: A. Uee good hard pat in to make
drying rarolah
dragon's blood
(657) N. C.-Good machinists that are boseot and frichfal always otand high in the eatimation
of employers. The conantry has never had too many of them. The talling, sllpphod cort are in excose. We ad. Tiee yor to entar a emall shop matring any kind of ma-
(658) C. H. asks : 1. What is lock jaw and what are its canses? A. Lock jaw or tetanns is
spasmodic disease, characterized by painful, involuntary, and protracted contraction of the mascles. It although in hot climstes and particniar localities it may occur without such injury. 2. What are considered the ten greateet works of fiction? A. Opinions differ Almost all would Include "Les Miserables,"" Penden-
nis," "Vanity Fair," "Robinson Crasoe," and some nis," "Vanity Fair," "Robinson Crasoe,", and some
of Balzac's, Dickens', and Fielding's novels in sach a list. 8. Who is conaldered the world's greatent novelist? A. Here opinions also differ. Victor Hugo, T
(659) G. W. S. asks a formula for white
paint for boat work, also for hoase work inside. A. paint for boat work, also for hoase work inside. A
ZInc white with a little varnish makes the best Anish does not tarn yellow.
(660) C. H. S. asks : Can you inform me how long it takes electricity to go through the Atlantic
able? A. Practically instantaneously or in a fraction
(661) G. H. asks : 1. What is the cheap est and easiest process to convert crude pyroligneons
acid into commercial acetic acid? A. Nentralize with sodium carbonate, evaporate to crystullization, drain the crystals, heat just enough to decompose any tarry
matter, and distill with excess of sulpharic acid. The matter, and distill with excess of sulpharic acid. The How is crude creosote, as produced by distilling wood. converted into commercial creosote? A. The United
States Dispensatory gives the following method of preparation: Creosote is obtained dither from wood ta
or from crude pyrolignoons acid. When wood tar used, it is distilled until it has attained the consistence of pitch. The distilled liquid divides itself Into three layers, an aqueons between two olly layers. The in-
ferior olly layer, which alone contains the creosote ferior olly layer, which alone contains the creosote, is
separated, and saturated with carbonato of potacsian to remove acetic acid. The liquld is allowed to rest This oil is distilled, and vields is decanted from it This oil is distilled, and yields products lighter than
water and a liquid heavier. The latter alone is pre water and a liquid heavier. The latter alone is pre.
served, and after having been agitated repeatedly with weak phosphoric acid to neutralize ammonia, is allowed oo remain at rest for some time. It is next washed a
long as acidity is removed, and then distilled with fresh portion of weak phosphoric acid, care belng take to cohobate from time to time. The oily liquid thas rectifed is colorlese, and contains much creosote, bu also a portion of eupion, or light oil distillate. To of caustic potassal of the density $1: 12$, which dissolves loats above from Ite levity, is then separated, and th alkaline solation of the creosote is exposed to the air
antil it becomes brown, in consequence of the decom antil it becomes brown, in consequence of the decom-
pooition of a foreign matter, and is then saturated with sulphuric acid. This sets free the creosote, which is de canted, and again distilled. The treatment by solution of potsesa, sulpharic acid, etc., is to be repented until
the creosote no longer becomes brown by exposure to the air, but only slightly reddish. It is then dissolved in a stronger solution of potassa and distilled again, and Anally rediotilled for the last time, rejecting the first portion which comes over on account of its con-
talning mach water, collecting the next portion, and avoiding to push the distilation too fart. The product coilected in this distillation is creosote. When creosote is extracted from pryoligneons acid, the first step is to
diseolve sulphate of sodium in it to saturation. The ol which separates and floats about is decanted, and, having been allowed to remain at reet for a few days, is sat heat, and distilled with watasium with the assistance of obtained is of a pale"yellow color, and is to be treated with phosphoric acid, etc., as above detailed, in relation
to the treatment of the corresponding oil obtained from to the treatment of the corresponding oil obtained from
wood tar. 8. How is acetate of lime made and what is it used for: A. By neatralizing pryoligneons acid with lime. It ls used as a sonroe of acetic acid. The litera
ture of the subject is scattered and limited. We can supply you with the part of Spons' Encyclopedia treat ing of it for 75 cents:- In Ure's Dletionary and similar
(e82) C. W. A Bot Wh
(662) C. W. A. asks: What are the ingredients used and by what process is compressed yeas A. Previously malled barley and rye are ground ap and
mixed, next put into water at a temperature of 65° to 75° mixed, next put into water at a temperature of 85° to 75°
after a few hours the saccharine liquid is decanted from the dregs, and the clear liquid brought into the state of fermentation by the aid of some yenst. The fermentation
becomes very strong, and by the force of the carbonic acld which is evolven, the yeast globales are carried to the surface of the liquid, and, forming a thick ecum, are removed by a skimmer, then placed on cloth nitere drained, washed with a little distilled water, and next presed intoany desired shape by means of hydranill
pressure, and covered with a strong and well wove canvas. It keeps from eight to forteen days, accord
ing to the season, and is sald to be excellent.
(663) H. B. L. asks (1) the standard rail road gange of England. A. English raliroad gauge 4
$8 y^{\prime \prime}$, same as American ganga. 2 Diameter of largest locomotive drivers. A. 78 inches is the largest that we know of in the United States. 8. Why property is for 99 yeare is not confited to milinols. It is a very old crstom, in use in all the States, derived from Englieh practice. 4. How shellac is bleached. A. Shellac is
bleached by exposure in thin stripe to the is a chemical process in thin stripe to the sun. There what complex, described in the "Techno-chemical Re calpt Book," which we can mail for $\boldsymbol{\varepsilon}$.
(664) W. G. C. asks: 1. What is the beat way to ventliate a store show window to prevent
steaming of the glaes withont letting in dust on the goods? A. For a cloeed window. where lights are burning, ventilation that shall be as free from dust a
poeal ble should be provided by drawing alr from above ponalbe shonid be provided by drawing alr from above
the roof. 4 linch tin pipes from the top of the window carried ap ineide of the bailding through the roof or to a near-by face, will carry ofl the moitat foul air, while
aimilur tubee from the roof to the bottom of the window
will supply fresh air. 2. What is the best way to vent dite a bedroom with ordinary open grate. windows, and coms with doors, windows, and grates need no special rentilation when there is a fire in the room. There is eakage of air through Imperfect window casings and door crevices to keep the fire burning and sapply a chimney draught for ventilating parposes withoat no-
ticeable dranght in the room. At all other times, dropceable dranght in the room. At all other times, drop-
ping the apper sash equal to requirements is all that ping the upper sash equal to requirements is all that
may be needed. If a direct draught is felt, the curtain or a shield may be easily arranged to prevent ill effects.
(685) F. Mfg. Co. ask : Please give a few suggestions as to glaing wood on metal, for age of glycerine added adheres well to metals. A same way. Tannin added to glue makes it strong and dherent. Bichromate of potash renders glue water-
(666) A. S. writes: 1. What is the red ight used on stage made off I find some shellac in parts give the formala for the green ligh. A. hellac; do not palverize together. For green use nitrate of baryta. If you substitute an equal weight of chlorate of potash for one or two parts of the nitrate, will be more vivia. 2. Where can 1 get seven call bellis Itch, tarn off near the lip; to lower, tarn of thace the
(667) R. K.-The emery strap is made brushing good strong glue upon the leather and auckly sprinkling the sarface with flour of emery; when with a little oll and rubbed into the leather. Smooth on plece of glass.
(668) G. D. D. asks: 1. Can core of ron, welded and turned, instead of ueing iron wire, and yet be as good? A. Swedish iron will answer, but not quite as well as the iron wire. 2. Will common iron
(669) J. M.-For hardening thin sheet teel, heas in an Iron box or pan packed in sand and charcoal equal parts; dip edgwise as nearily vertical as akibie. Arter drawing the temper, the warp can be surface from oxidation, but if necessary to clean the arface, use a bath of muriatic acld 1 part, water pouts. A half hour's immersion will clean the surface, You cannot harden satisfactorily by tying the sheete
ogether. Polish with flour emery on a baff or brush wheel wet with oil, gloss with crocis on a baff wet with alcohol. The diamond is easily burned, but fused with much diffculty, losing
(670) J. B. S.-A system of Bunsen burpers may be arranged under a boiler for house heatug. Such are ased under small boilers for experimental parposes. The small jet system has also been tried. Than natural gas has heretofore been a bar to its suc-
(671) E. S. K. asks for a good recipe for naking a first-class hard labricant, suitable for heavy or light work, out of the residuam obtained by reining will heeabe odor connecled win th. A. Wo fear that you If it is not very bad, alter through boneblack, or apply he following more complicated process: Heat with team to 86° Fah. and treat with 10 per cent of sulpharic acid of 60° B. After standing and decanting reat with bichromate of potash dissolved in water. Heat after decanting to $176^{\circ} \mathrm{Fah}$. with 10 per cent bonelack, settle and filter. Yon may mix sperm oil with il with warm dilate solation of soda or lime and after ward with water, before adding the sperm oil.
(672) G. W. T.-The power of a bicycle o ascend a krade depends apon the comparative length on a large wheel does well on level grades, bat for hill riding the long crank and smaller wheel is needed.
(673) R. A. C. cannot succeed in changing blae prints to a brown according to formula given in
stead:

Borax ..
hen cool add sulphnric acid in small quantities until bue litmus paper turns slightly red, then add a few rops of ammonia until the alkaline reaction appears and red IItmus paper tarns blue. Then add to the soation 154 grains of red crune gum catecha. Allow it reep indefinitely. After the print has been washed out In the asual way, immerse it in the ahove bath a minute or so longer than it appears when the desired tone is
reached. An olive brown or a blackish brown is the salt.
(674) J. A. G.-The lactometer is used by placing in a veasel of the milk to be tested at a tempith the of 60 . If it foats with the 100° mark even red pure. The cream gauge is ased by allmg with nilk and observing what per cent of cream ries to the op. Its indications are of little value. The lactometer to indicate the percentage of pare millk. The 100 mark
(675) A. S. asks for something better (675) A. 8. asks for something better
han patty to fill up cracks in a boat. A. Melt equal parts of pltch and gutta percha in an iron pot: thor-
oghly mix by stirring. Make ap in sticks and melt into the cracks with a warm Iron.
(676) H. H. asks how to make a small celephone out of baking powder boxes. A. Remove ond of each, and attach the end of a etring to the cen-
the centor and knotting it. On strotching the etring
between the two cans, a species of acoustic telephone between the two cans,
(677) G. M. C.-After 4 to 6 days, when desquamation begins, scarlet fever is especially con taglons. Anointing of the patient with vaseline is ro-
commended as a protection against contagion from this canse. As disinfectant for clothes and other danger ons sources of infection, 1 part sulphate of zinc diesolved in 10 parts of water may be used. It is a strong poison. Fumigation with barning sulphar, with bro mine, or with chloride of lime and vinegar mixed, are
axcellent as after treatment of the room, curtaine, etc. These chemicals, however, tend to fade or bleach tisenees
(678) G. B. S. asks (1) the lifting power one cubic yard of best gas for balloon parpoee. A. A cubic yard of hydrogen gas will lift $13 / 4$ pounds. 2 The breaking strain of $11 / \mathrm{inch}$ best steel cable, and
what would a mile length of the same weigh? A Breaking strain of $11 / 4$ inches diameter steel rope, 08,000 o 70,000 poands. Weight per foot $8: 14$ poands, o
(678) A. L. writes: Can the Scientifio Ancritan or any of its readers inform me if there is violin than by ualng the bow opon it? A. Glive it new and plenty of playing. Many violins have been ruine by being tampered with to improve their tone, when : iltile patience woald have effected the same resalt. If
the violin is of originally poor quality, nothing will per ect the tone.
(680) C. J. C. asks : What method is used in transferring printed matter to glase9 A. Soak print in water, varnish glases with dammar varnish or Canada baisam; while still tacky place the print emoothly against
It and allow it to dry. When dry, rub off most of the paper with the wet finger and revarnish. The tronble is that printed matter is generally deficient in ink and ives a wenk transier.
(681) J. B. P. writes : In a recent issue, answer to what will change the odor of tarpentine of potash and salphuric acid." Can you "Bive me the proportion of each sabstance ueed for say one gallon of naphtha or kerosene, and how mixed with the oll. and also whether the mistare is to be warm or cold A. No Axed quantities can be given. To one pound o oil of vitrio add two ounces paiverized blchromato of potash, and agitato the cold solation with the benzine. Arter staudng long enoaki to sellle, decant the benzine the dust produces ulcers. Ditillation irom quicklime with rejection of arat and leat distillates is recommended (68
(682) G. J. G. asks: Is the vapor of carbolic acid injorious to the lungs? A. It is not gen
(683) W.
(683) W. J. H. asks: How steel-cased ead rife balls are made? A. The shells are presed
nto shape from thin sheets of soft steel in the same no shape from thin sheets of soft steel in the same
manner as in the making of cartridge shelle. The lead (Gi) forcal fio the shell by a powerfal prees.
(684) J. F. H. writes: Please give a receipt for preserving exge, suitable after several
months' keeping for food. A. We refer you to Supphs (GENT, Nos. $65,107,308$, and 817 , which we can supply or 10 conts eacl.
(685) W. W. G. writes : I want to know there is any icement made that will withstand color, or how to make it, or if such a cement is made but of a different color, how to color it? A. Much depends on the heat and concentration of the acid
sealing wax will stand it under ordinary conditions. but concentrated acid might affect it. The sureest thing would be enamel, if you could heat the objects enough For blue sealing wax, ultramarine and any dry whits
(680) Ios may be used as coloring matter.
(686) I. E. asks : Is there any means, besides the common method of dry scraplng, by which he old paint on furniture may be removed, leaving A. A solution of canstic potash applied to the paint will cosen it in a few hoars, or it may be burned off by blistering with a gas jet and small bellows or blower and scraping before it cools off. An alcohol blowpipe is sometimes ased.
(687) G. O. asks: 1. In winding the armature of the simple electric motorfwith $\mathbb{N N O} 20$ wire (motor to be used as a dynamo), should I wind more layers to make up the required thickness, or should I
make the polar section of the fild magnets smailer? If the space to be filled is silight, you might add mor If the space to be filled is silight, you might add more
wire, otherwise reduce the bore of the fild magnet wire, otherwise reduce the bore of the field magnet.
2. Also, how many sixteen-candle power lamps would the dynamo light? A. It will probably light one such
(688) H. G.-As manuals of shorthand we recommend and can supply Burns' Fonlc Shorthand 1, Munson's Complete Phonogrupher, $\$ 1.50$.
(689) W. N. G. asks for some reliable ecipe that will take lime stains from California red wood A. Try dilute acid, such as vinegar or lemo Jice, or one part hydrochloric acid in firty parts of
water. Experiment on useless pieces of wood antll you
(690) E. S. \& S. ask for mixture that will remain sticky on paper exposed to the weather
out of doors. A. Use a mirture of raw linseed oil and resin melted together. Vary the proportions until you
(691) C. W. B. asks at what temper ature water separates into hydrozen and oxyken. A.
It depends on the pressare. Water begins to decomIt depends on the pressare. Water begins to decom
pose at $1,780^{\circ}$ to $1,882^{\circ}$ F. It proceeds to a limited ex poese at 1,7600 to $1,888^{\circ} \mathrm{F}$. It proceess to a limited ex
tent and stops, and begins again at 2,1880 F. The tent and stops, and begins again at
trouble in these investigations is to separate the gases, them through a porombine tube, the hydrogen diffuse through the pores the quickest, and is thus partially
preventod from recombining. 2. What comparative spece to the gases occapy as. compared to the water of
whlch they are made? A. 1,844 times the volume of the Which they are made? \triangle. 1,844 times the volume of the
original water at z° and 80 inch barometer.
(692) M. S. writes: 1. Will not magpesiam ribbon, if heated, anite with chlorine, with the
evolation of beat and light? A. Yes. 2. Ayrton, evolution of beat and light? A. Yee. 2. Ayrton, Practical Rlectricity, p. 11, says: " To specify the
strength of the current by the sulpharic acid voltmeter strength of the current by the salpharic acid voltmeter, taken into account within wide limits." My experimente do not seem to condrm that. Is the statement well founded! A. You are wrong, and the authorities are right. 8. If two cylinders equal in size be allied, the one with chlorine, the other with hydrogen, placed moath to mouth, inverted a few timee, and a piece of place. And yet when a fame is applied at the mouth, the gasees explode. Why not with actinic light? A. If the experiment is properly conducted, it will succeed.
4. In Hoftmann's experiment with hydrogen and 4. In Hoftmann's experiment with hydrogen and chlorine, how are the hydrogen and chlorine made to
mix: The aperture in the stop cock $152{ }^{2} 5 \mathrm{~mm}$., and yet the gases will not mingle rapidly enongh for a clase chlorine appermost, and after a few minutes reverse it.
(698) H. D. L. asks : Will you please inorm me through your paper what is the best ligh ound? How soft can rabber be obtained, and wher Or is there any way of making it soft? Or quite pliable? A. Cork, sawdust, asphalt concrote, curled
hair, or felting are excellent deadeners of sound. Soft rabber can be procured from manafacturers. Its softibly sponge rabber, such as ased by draughismen would answer yoar parpose. Once hardened, as by rulcanizing, you cannot soften it.
(694) C. C. J. writes: I have heard that there is a kind of ink which, when you write with it, makes no mark, but when you hold the letter over a
amp, It makes it show like ordinary ink. I would like . Dilute sulpharic acid ane and how it is made A. Dilate sulphuric acld one volume, water twenty volumes, may be used with a quill pen, and will pro-
duce the above effect. The writing will be black or dark brown and quite indelible.
(695) C. G. asks : 1. What is fuller's earth, which is ased in connection with the fulling of
cloth? A. It is a white natural deposit resembling clay, and known as infasorial silica. It is made up of the microscopic slliceous skeletons of diatoms, minute form of living being. 2 . What do they nese to beach cloth? A. Chlorine, the characteristic constitaent of bleaching powder, 18 the great bleaching agent. The cloth to be bleached is subjected to quite an (696) L. B. asks : How can I melt or shape rubber to any form (I have the mould), and hav ased to do this with, and where can I get the rubber, or
 detalls of rabbor manofactare. Yon mast have pare rabber mixed with sulphar, and after preseing it into ho moupe. Any rabber manofacturer can supply the gum reedy for valcanizing. Coat the mould with soupstone, o prevent adherence of the rabber.
(697) Enquirer asks: 1. How electricity apphied to a machine to produce motion. Kindly For a description of a motor which, if understood, will probably cover your gronnd, we refer yon to our Supplemencr, No. o41, which we can send you for 10
cent. 2 We are told that the canse of the different cente. 2. We are told that the cause of the different
phases of the moon, such as new, full, gibbous, are phases of the moon, such as new, fall, gibbous, are
formed by the earth casting a shadow on ite surface. Now, if such is the case, how is it possible for the earth, which will alwaye cast a convex shadow, as in the new meon, to cast a concave shadow, as it would appear to do when the moon appears in that phase called gibbone? If you are so tola, your informant is in error. The phases of the moon are cansed by the different direc-
tions of the sun's rays with respect to the moon's sar. face. When the shadow of the earth falle on the moon, it is sald to be eclipsed. This shadow is always conver. (698) F. A. writes: I would like to know hroagh your paper whether tobacco asing (emmoking you give me an effective antidote for tobacco habit? A. Excessive use of tobacco may affect the nerves and
heark. The beat antidote is reeolation. Stop asing hear. The beat antidote is resolat
(699) J. C. S. writes: I would like to attend come good school, either in New York or Brooklyn, where I could learn how to model and
draught boata. A. Your beat plan is to enter some raught boata. A. Your beat pian is to enter some apecion of the general work in the moulding loft and yard. No achool that we know of will answer your
(700) W. S. asks if glycerine is good for the teeth and gums. A. It is not
(701) J. M. B. asks : 1. Is the spectroscope used to advantage now in analysis, and how is it in physice is ased largely in scientinc investigations, analyia it is used to a limited extent for detection of the alkalles, sodium, potaselum, lithlum, etc. The sub is examined. 2. What is the beat kind of a spectrocoope, and where can I get one! A. A good glasen prism apoctroscope is probably the best. For dealers in
acienticic apparatus, consalt our advertising columns. ecientic apparatus, consult oor advertising columns. If you wibh to make one yourself, we refer you to our
Strpiskinct, Nos. 651 and efs. 8. What work to the SOPPLLIIENT, Nos. 651 and G79. 8. What work is the
bent treadise on spectroecopic analysig, and where can I Analysin, price san 50 , Roscooe's Spectrum Analyuis, $\$ 5$. Also consalt the index of our Supplements, which
contain much matter on this sabject. 4. Can a person tall its componenent parts at once: 1 . Not generally. It ankes experience to ase it advantageonsly, and in actual
analyis its nee is very limited. In comparatively very cases it could be thus need.
(702) W. L. C. writes : I should like to caliva, if one has been made, of what ingredients it compa; if one has been made, of what ingredients it is
compoed. I anderstand that the simpleat experiment In voltalc electricity is that in which a piece of zinc io placed on one side of the tongue and a piece of copper
on the other: they touch, and a stinging sensation is felt. Now, why cannot a battory be made in which the fiul a chemical combination made to imitate saliva? This is an original thought, and I hope you will not
think it foolish. A. The saliva has been analyzed far as regards electric action, the chloride of sodinm (common salt) contained in it is the active agent, and han been very extensively need in batterios. It gives a
low voltage, and the couple dependent on it alone is low voltage, and th
(703) G. H. S.-For formula for making printers' rollers see Note and Query No. 444, In ScizN-
ripic Angrioan of March 9, 1889.- For Intensiser for wet-plate photo. in line work photo-zinc etching: Afte intensify with mercary and ammonia as follows :

Dip the plate in No. i 1 till it is whiltened, then wash,

Water.....

Water...................... 8 ounces.
Ferrid-cyanide of poteselam..... 8 parts.
Nitrate of lead........... 4 parts.
Dlseolve and Alter.

Wash well onder the tap. Then food ilm is bleached Nitric acid
Water.......
Allow this to remain on a few seconde, then wash, and Sulphid

1 part.
5 parte.
which will at once turn the Ilm an Intense black; agaln
wash, and flood with the nitric actd solation, again wash, and hood with the nitric actd solation, again
wanh, and net the negative ap to dry. We quote the etching.
(704) A Subecriber asks how the everready ink pads for rabber stampe are made. A. By
aaturating the pad with anilline colors dissolved in alcohol and mixed with gifcerine. Conault the Scrix ripio Aminican of Nov. 2h. 1888, where you will find an article on type writer rible
making inka suitable for pads.

Replios to Enquirios.

The following repilee relate to enquiries recently pab lished in Soizmtific American, and to the namber
(420) How to Perforate Glass. - For the nformation of E. P. B., (420), page 154, of your paper of Yarch 9,1889 , I woald say that I bored two $11 / 8$ inch
oles in crystal plate, without any particular tronble nd now have them moanted, and any one of ordinary iggenuity can do it in the same way. On the fly whee hant of my foot lathe there is a wooden palley, from
an which projects the crank pin to drive the hathe. The other end of the shaft corresponds. From his palley I ran an endless cotton rope (clothes line) to a of $\%$ inch pipe brace, by putting the pipe throngh hole in the center of a plece of sheet brass, woldoring it to the pipe, and screwing it to the fat side of the puliey. I supported the pipe vertically in maple-wood bearinga, and done in a rough way, bat pat ap true. Labricate witt allow by heating the wood over a are, enough to mel the the only time you need to put tallow for this job on the lower end of this small pipe solder a pieco of copper or brass pipe, of the siza you with the hole in the glaes, then pat it in the lathe and tarn your palley srove for the endiess rope, alno race the end of the
pipe true, which is to rest on the glase. In the apper nd of the pipe place a emall funnel; suspend over this a can of water having a plag by which you can let the
water drop into the fannel. Get a pound of coarse emery, 10 to 15 cents. To ix your glass, select a place other support, place it where you can run your endleas ope to it, level the box and fasten it to the floor. Make a case that will hold your glass and an inch to spare, so
as not to pinch the glass; the aides of case are of rough boards, foar inches or more high, to protect the glase haped circular plece of board, x of an inch thick turned true in the lathe. Kixactly over the center of this dome place your vertical pipe and palley, so hat it can be rassed and lowerod in its bearingg. Place prese the pipe end on to the glese, arranging a epring to sive a constants pressure. This will reep the glase level and make it bore faster. Make a ring of patty around the center of the glass, abont ive inches in diameter, to reep in the emery and water. If the rope slipe, make a ophtener with a hitie sabi or ouker palley, and give the opnnel and powt the water drip, and whery into the ning your lathe, making the rest of your machine, you ning your lathe, makiag the rest of
will be boring your glass.-C. R. W.
ETB Books or other publications referred to above soremtifio Ambrions ombe, Munn \& Co., 801 Brond way, New York.

 100,198
40,768

$$
18
$$Conduth undergricun. We. R Grahil........................ 400,014

cooler. Boe Mill coooler. 100.610
Coupling. 8ee Oar coupling. Inaulating plpe
coupling. Pipe ooupling. Thill couplong.:
Crb. C. Lavrence.........................

canvator, H. G. Emerron. | 100,539 |
| :--- |
| |
| 00888 |

Cutuer. See Chige shoval for, E. P. I.sinch.
Cutuer. See Chige shoval for, E. P. I.sinch.
Cyllnder lubricator, A. L. Fillmore.

 400,74 400,74
United statos wore Gramted
April 2, 1889,

AND EACE BEARING THAT DATE.

Asphalt coanted sheet
Anger. F. C. Gerara...
Antomatic
Disinfecting apparatua, E. Claron bach........
Dlsulling fat acida, apparatue for, P. Marix..
Disinfecting apparatua, E. Claron bach........
Dlsulling fat acida, apparatue for, P. Marix.. 100,406
100.60
400850
Door oheck, G. W. Wrikht. co0.815

 | 100,02 |
| :---: |
| conse |
| con |

 $=$
slourro, maochine, dynamo. J. B. Bnts.... 100,88

Enent C. J. Van Dopooele....400.081
400.800
400,732
100.884
co0.84
Of, W. W. Griscom....
concens
concens

lock powor engine. Traction enginge.
natine lubrionting device, steam, A. I . $10 . . .$. I.
Exienalon table, E. L.
Fauceth. W. W. Kimball.
Feed mill,Verilliser distriba
Filter, A. Wilbur..............
Filtor, wator, Blake \& Wiboo
Fin for veacele, G. W. Nepler
Fin for vesesla, G. W. Napler..........
Firearm, breechloading, C. M. RiderFirearm, breechlonding, c. M. Ride
Firoarm, maguine, Mieg \& BischofFroarm, olght. J. J. Speed
Fre eceape, J. FlynnMre eecaper. J. FIJnn.....
Mre eccape, c. A. Luce.Fire escape, C. A. Lace.
Fire eccape, c. O Roee..Fire eccape, c. o. Rove................................
FIre extinguibher, antomatic. C. W. Keriteter.Fre extinguinher, antomatic, C. W. Kerateter.....
Firepot Inlngg, Jolnt for, 8. D. Horton............
Forging machine, H. Hammond
Yurance. See Gan furnace. Hot alr furnaco.
 400.89
40000
nish
Galvana batter, E. Cosby...
Game counter, J. Hope.......... 400,087
$.00,480$
$.40,70$
.00 .000
1080

40,488
400.888
4
Gas furnace. R. Cart wrikht. 400,479
40,498
Gas likhter, eleotric, J. Y. Parko.........
Gas lighting derice, eleotria, D. Rousem
400,539
400,03
00,611
Gas outlete, formi..............
Gaspometer. W. B. Hammond.
Gate, T. Typon..
Gem,
GImes thatatoon, 8. Grosiordconvering theots or. P. Pfetier..................Gooda, appparatus for the dolivery of propald, \mathbf{W}................400,708
40,885
Gop
Gral
Gral
Grinding mer, Webor \& H. Harr
Grinding pan, W. HiluamGrinding pan, P. Hiakle...............................
Grniling ahmmer moulding bita, ete., mechine for,Grtp jeting muchine, ooln-operated...............................
Gun, magatine. L. L. Hepburn...............Gun, magasine. L. L. He, Hepra
Harneas loop, K. B. Knapp..
Harrow. P. C. Lovelan
Harrow. I. L. Mack.
Marrow and drag, comblned, G. Mol...........
Harrow attachment for land rollerh, J. W. W.Hurreeter. ootton, 8. D. T. Manning...............
Harcetara, outtling apparatus for, Bobinson \&
Collins....Collins...Hay rake and stacker W. D. Watkins.............. 400
Heat regulating dovice, antomatio. Butier \& Boo-Heator. Soe Froed water heacer.
§rientific gumerican．

40．41．			Hovextisements．
	Remen		
．			
holder．Rook holder．Book holder．Lamp shade holder．			
Hook．seos gapap hook．			
		${ }_{\text {Trate }}$	
			USE ADANANT WALL PLISTER
Hot alr Inrnace． Huller．Bee RI		Um	
aver， 8. Hower			
			TCE．HOUSE AND Cold
jolnt			
meob			
		WN	
Koter			
arer			
ap．			
	Ruie mortine machioe， R ． Atruter．．．．．．．．．．．．．．．．．mosisis	Wath	
Poxturexube			
		wold	
Lemp，eumomonotor， J			
Hob．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．			I
，			
	Soraper	me	
ate	sere		ARTLETT，${ }^{200}$ Hew＇qointer，
tines maserer，		Tood	SEBASTIAN，MAY\＆CO＇S ${ }^{\text {P }}$－${ }^{\text {a }}$
Jiahtniag rod and coupling，8．R．Laws Lock． lock．	R		
	soed	designs．	
Sumber			
ane 0 oreneling me			
St mirra			
Labricater．			
	8		
athar．			
		Orrea	
		（enter	
为		8o	
	Sole	${ }^{\text {a }}$	
	Sill	fra， S．	
a，J		trade	，
lilianm meohines，antior	Somer		
	Sole		
	Boldering I Soldering p		
			ROCK DRILLS
arem，			AIR COMPRESS
		Castung for	inc．Tun
，		col	
隹	Somen	and	RA
	48		
		anda mmonite	
mak	Senz	${ }^{\text {ar }}$	Lectrical eneineers
	Stemem trap wiA．Tyylor．．．．．．．．．．．．．．．．．．．．momis	Hatr and sasip．	
w．w．J	${ }_{\text {siod }}^{8 \text { coo }}$		
Phooon			
${ }_{\text {Ploter }}$		nem	
vela	，		
Planter Broad a			
			Soriheers ${ }^{\text {Bpe }}$
	Tineme soo		
	Sma		
tures manolios			
			Me 14 Broed
5	${ }^{20.0 .88}$		
rocout			

Founded by Mathew Carey, 1885. henry carey baird \& co.	
Wanlmut st. Phillideteloh	
CHITPCPIIRAL	
Beautiful, an	nd Chea

to examine the latest and best plans for a church, school house, club house, or any other public building of high or low cost, should procure a complete set of the Archirtects' and Builders' Edition of the Scientifio American. The information these volumes contain renders the work almost indispensable to the architect and builder, and to persons about to build for themselves they will find the work suggestive and most useful. They contain colored plates of the elevation, plan, and detail drawings of almost every class of building, with specffication a.d approximate cost. Four bound volumes are now ready and may be obtained, by mall, direct from the publishers or from any newsdealer. Price, 82.00 a volume. Stitched in paper covers. Subscription price, per annum, $\$ 2.50$. Address and remit to MUNN \& CO., Publishers, 361 Broadway, New York. OIL WELL SUPPLY CO. Ltd. 91 \& 92 WATER STREET, Pittsburgh, Ya., Manufacturers of everything needed for Tests, Boillers, Engines, Pipe, Corlage, Driling Tools, etc. lists and discount sheets on request.

ARTESIAN

 catalone. Pierce Artesin..
and oni Well
80 Beaver Street, New York.,

PETROLEUM BOAT. DEECRRPTION

NEW CATALOCUE

 The Eastman Dry Plate \& Film Co. Rochester, N. Y. 115 Oxford St., London.
Send for copy of Kodak Primer with Kodak Photograph.

 MPORTANT to Cities. Don't renew ferry licenses.
Pay armail bonusto a pontoon brige. They quadruple
travel. S. N. STEWART, Phila. and Neb. City, Nebr.

DRY AIR REFRIGERATING MACHINE.

FOREIGN PATENTS
 their cost reduced.

The expenses attending the procuring of patents in
most foreign countries duced the obstacle of cost is no longer in the way of a arge proportion of our inventors patenting their inven-
tions abroad. CANADA.-The cost of a patent in Canada is even former noludes the Provinces of Ontariu, Quebec, New Brunswick, Nova Scotia, British Columbia, and Manl-
The number of
toba,
of our patentees who avall themselves of patents in Canada is very large, and is steadily increas
ing. ENGLAN D.-The new English law, which went into in Great Britain on very moderate terms. ABritish pa-
tent includes England, Scotland, Wales, Ireland and the Ohannel Islands. Great Britain is the acknowledge financial and commercial center of the world, and her
goods are sent to every quarter of the globe. A good invention is likely to realize as much for the patentee
in Knglana as bis United States patent produces for him at home, and the small cost now renders it possible
for almost every patentee in this country to secure a patent in Great Britalu, where his rights are as well proected as in the United States.
on very reasonable terms in France, Austria, Russia, Italy, Spain (the latter includes Cuba Australia, and the other Colonies), Brazil, British India An experience of vorty years inas
publishers of THE SCIENTIFIC AMERICAN to establish competent and trustworthy agencles in all the principal
foreign countries, and it has always been their aim to have the business of their clients prome
ly done and theit interests faithfullly guarded. A pamphlet containing a synopsts of the patent laws
of all countries, including the cost for each, and othe information useful to persons contemplating the pro-
curing of patents abroad, may be had on application to this office.
MUNN \& CO., Editors and Proprietors of The Scientific American, cordially invite all persons desiring trade-marks, , in this country or abroad, to call at their
offices, 3 an Broadway. Examination of inventions, consultation, and advice free. Inquiries by mail promptly
answered. $\begin{array}{cc}\text { Address, } \\ & \text { MUNN \& CO., } \\ \text { Publishers and Patent Solict }\end{array}$ Branch ofpices: No. 622 and 64 Fradway, New York.

The Scientific A merican

Publcations for 1889.
The prices of the different publications in the United
States, Canada, and Mexico are as follows:
The Scientific American (weekly), one year $\quad \$ 3.00$ year.
She seientific American, Export Edition (monthly)
5.00
She Scientific American, Arehitects and Builders
Edition (monthly), one year.
COMBINED RATESS
The Scientific American and Ampplement,
ers Edition, ${ }^{87.00}$
The Scientifice American, Supplement, and Archi- 9.00
tects and Builders Edition.
This includes postage, which we pay. Remit by postal
or express money order, or dratt to order of
MUNN \& CO.. 361 Broadway, New York.
vewidew

WIRE ROPE

 ELECTRICITTY，PRACTICAL APPLI－

The ECLIPSE
HYDRAULIC
 Tuerk Hydraulic

FYDRRAULIC ELLEVATOR AT LES

PATENTS．

For Sheds and Poultry Buildings $\$ 2.00$ per $100 \mathbf{s q}$ ．Feet．

```
ove and protect your out－buildings，fenoes，etc．，
slate Paint．1t is durable，ornamental，easily
```

60 Cents a Callon．
INDIANA PAINT \＆ROOFINO CO． 42 WEST BROADWAY，NEW YORK
THDIANA PAINT \＆EIFFEL TOWER．－AN EXCEL

（1）

 UNUSUAL Bicrid Angeins FIRST－CLASS MACHINES AT THE PRICE OF CHEAP ONES． SERPOLLETS STEAM GENERATOR

Stienticic Book Catalopule
 MUNN \＆CO．，Publishers Socientififo American．
361 Brondwa，New Yorta

TEIF INF母V INOIN－COINITOHOIR OASBESETO－SPDANE
Sectional Pipe Coverings， ASBESTOS BOILER COVERINGS，
H．W．Johns Manufacturing Co．
H，W．Johns＇Asbestos Roofing，Building Felts，FiresProof Paints，Liquid Paints，et 87 Maiden Lane，New York． CHICAGO．PHILADELPHIA．LONDON．

THE ORIGINAL UNVULCANIZED PACKING CALLED THE STANDARD－As At th the Patking by which

TIMBER AND SOME OF ITS DISEASES J TRAMWAY，COMPRESSED AIR．－DE－

WATMER MMOTHORES

MARINE SIGNALS．－DESCRIPTION

WORKING MODELS $\begin{gathered}\text { and Experimental } \\ \text { Machinery，} \\ \text { metal }\end{gathered}$
To S．F．Werner， 62 centre street，New york．

SYRACUSGE MALLEABLEE IRINW WORKKS

SEAMLESS TUBES－－DESCRIPTION

 95 MILK ST．，BOSTON，MASS．

This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 77，No．186，787．
The transmission of Speech by all known forms of Eleetric Speaking Telephones in－ fringes the right secured to this Company
by the above patents，and renders each by the above patents，and renders each
individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor．

KEY SEATING Machines and $20^{\prime \prime}$ Drillog

Tエエ曰

§cientific smerican

ESTABLISHED 1846.

The Most Popular Scentific Paper in the World only 83.00 a Year，Including Postage．Weekly．

This widely elrculated and splendidly mustrated paper is pubisthed weekiy．Every number contains six original engravings of new inventlons and discoveries representing Engineering Works，Steam Machinery New Inventions．Novelttes in Mechanics，Manufactures， Chemistry，Klectricity，Telegraphy，Photography，Archi－ ecture，A gricuiture，Horticultare，Natural dotory，etc
Complete List of Patents each week Terms of Subscription．－One THiC Amertican will be sent for one year－ 52 numbers－ postage prepaid，to any subscriber in the United States
or Canada，on recelpt of three dollare by the pub or Canada，on reeelpt of three dollars by the pub－
Hishers；six months， 81.50 ；three months，$\$ 1.00$ ． Clubs．－Special rates for several names，and to Post Masters．Write for particulars．
The safest way to remit is by Postal Order，Draft，or Express Money Order．Monoy carefully placed inside seldom goes astray，but is at the sender＇s risk．Ad－ able to MIUIVIN \＆ 00

361 Broadway，New York．

 TIEITScientific American Supplement．
This is a separate and distinct publication from
THE SCIENTIFIC AMERICAN，but is uniform therewith in size，every number containing sixteen large pages ful of engravings，many of which are taken from foreign papers，and accompanied with translated descriptions．
THE SCIENTiFIC AMERICAN SUPPLEMENT Is published weekly，and includes a very wide range of contents．It presents the most recent papers by eminent writers in all the principal departments of science and the
Useful Arts，embracing Biology，Geclogy，Mineralogy， Useful Arts，embracing Biology，Geelogy，Mineralogy，
Natural History，Geography，A rchæology，Astronomy， Natural History，Geography，Archæology，Astronomy，
Chemistry，Electrielty，Likht．Heat，Mechanical Engi－ neering．Steam and Raifway Engineering，Mining，
Ship Building，Marine Engineering，Photography， Ship Building，Marine Engineering，Photography，
Technology，Manufacturing Industries，Sanitary En gineering，Agriculture，Horticulture，Domestic Econo－
my ，Biography，Medicine，etc．A vast amomnt of fresh and valuable information obtainable in no other pub－ lication．
The most important Enoineering Works，Mechantsms，
and Manufactures at home and abrosd are illustrated and described in the SUPPLEMENT． Canada， 85.00 a year，or one copy of the ScIentific Am erican and one copy of the SUPplemisnt，both malle tor one year for 8 ．．00．Single copies 10 cents．Addres
and remit by postal order，express money order，or check， MUNN \＆Co．， 361 Broadway，N．Y．，

Building Edition．

The SCientific Amerion Architects＇and
BULDers＇Edition is issued monthly．$\$ 2.50$ a year BUILDERs＇EDITIoN is issued monthly．$\$ 2.50$ a year．
Single copies， 25 cents．Forty large quarto pages，equal Single coples， 2 cents．Forty large quarto pages，equal
to about two hundred ordinary book pages ；forming a large and splendid Magazine of A rchitecture，rich－
ly adorned with elegant plates in colors，and with other ly adorned with elegant plates in colors，and with other
fine engravings；illustrating the most interesting ex－ amples of modern Arehitectural Construction anc A special feature is the presentation in each number of a variety of the latest and best plans for private resi－
dences，city and country，including those of very mod－ erate cost as well as the more expensive．Drawings in Plans，Speeiflcations，Sheets of Details，Estlmates，etc． The elegance and cheapness of this mapniflicent work rectural publication in the worla．Sold by all MUNN \＆CO．，Publishers，

361 Broadway，New York．

PRINTING INKS

