

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS, CHEMISTRY, AND MANUFACTURES.

| NEW YORK, SEPTEMBER 29, 1888. | [${ }^{3.000}$ WALELTAR. |
| :---: | :---: | The city of Bilboa is on the northern coast of Spain, situated about 12 miles from the mouth of the river of same name. At the river entrance, on each opposite side, are the enterprising towns of Arenas and Portugalete. Although each town has its railway and tram car line to Bilboa, no steam ferry or bridge exists to estahlish communication across the stream. One diffculty as to a bridge has been the great expense, having in view the arrangement of the proper grades. The problem, however, has been lately solved by a talented problem, however, has been lately solved by a talented

architect, M. Alberto Palacio, who has designed a architect, M. Alberto Palacio, who has designed a
movable bridge, of which we herewith give engravings movable bridge, of which we he
from La Ilustracion Espanola.
The structure is on the suspension principle. At the dock line on each side of the river are two iron piers, on which the bridge cables are supported as shown. The towers and cables need only to have strength enough to support themselves and a suspension platform or car on which the traffic is carried. Hence the construction is much lighter and less costly than an ordinary bridge would be. Between the towers two pairs of rails are arranged, as shown in our cross section, on which runs a truck, pendent from which, by means of a skeleton frame and guy ropes, is a platform for pasa skeleton frame and guy ropes, is a platform for pas-
sengers, carriages, horses and carts, etc. This platform sengers, carriages, horses and carts, etc. This platiorm
is hauled back and forth across the river by means of an endless cable worked by steam engine at the base of one of the towers. The platform moves on a level with the street grade on either side of the river, and is, therefore, very convenient of access for all kinds of traffic.
The height of the bridge at the center of the span is about 150 leet above high water, thus allowing plenty of clearance for vessels. The estimated cost of the work is $\$ 75,000$. It is expected the bridge will be soon

erected. This structure is on the same general plan as that of Mr. John F. Anderson, of this city, which was designed to span the Hudson River betwee New York and Jersey City. The Anderson bridge was on a much larger scale, and the platform or novable floor was intended to carry a full railway train. It was illustrated and described in the Scirntific American of January 24, 1885.

Quillaya Bark in Catarrm.

Dr. Trechinski writes in the Ejenedelnaya Klinicheskaya Gazeta that he finds powdered quillaya bark of great service in both acute and chronic catarrhal rhinitis. It is put in a paper bag and the patient directed to shake it up and snuff up the dust from it every few minutes. At first the secretion is increased, and is of a brownish or yellowish color from the admixture of pus cells. After a very short time, however, it diminishes in quantity, and becomes quite colorless. The nose then becomes dry, and the passage through it clear. If the use of the quillaya is prolonged, the secretion is continued, but is quite colorless. The powder, when introduced into the nares and pharynx, appears to increase the secretion from the mucous membrane, but at the same time to remove all the pathogenic matter existing there.

The Australasian Aseociation for the Advancement

 or selonceThe formation of this association, which already gives promise of being a great success, was first suggested by Professor Liversidge, of the Sydney University, during the exhibition in Sydney in 1879.
The first general meeting was fixed at the Sydney University, for August 28.
The number of members at the end of July exceeded 400.

§rieutific glmericam.

ESSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. PUBLISHED WERKLY AT

No. 361 BROADWAY, NEW YORK.
-

TERMS POR THE SCIENTIPIC AMERICAN.

 Remit by postal or expreas money order.

MUNN \& CO., 861 Brondway, corner of Franklin Street, Now York.
The solentifc american suppiemont

The anges. way to remit to by draft. postal order, express money order, or
realicterol leturr.

NEW YORK, SATURDAY, SEPTEMBER 29, 1888.

Contonts.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT INO. 665.
For the Weok Ending September 29, 1888. Price 10 cento. For eale by all newsdealers.

 111. CH KMISTR Y,-Dotection of Fahiberg's Saccharino in Articies
 IV. CIVIL RNGINERRING.-Your Handred Miles in Fight Hourf:

V. MLECTRICLTY.-Deacription of Wn Undenfound Condolt-By

The National Electric Light lishing a permanent headquarters in New York City a practical electrician having already been appointe at a handsome salary to give his entire attention to the laudable project it is designed to carry out. Only these who have had to do with electricity and its ap plications can be fully aware how hard it is to keep up with the times in other departments save your own, and indeed even in that one must needs do a deal o reading and not a little travel. At the last convention one of the best known electrical engineers in the coun try innocently claimed as his own invention a con trivance that, in some parts, has been in use for nearly three years; there had been so much to read, so many new things to study and ponder over in applied elec trics, he had not yet "got round" to what was really an anticipation of his own mechanism. It is now but a few weeks since the electric light men met and dis cussed some few of the most important matters, and yet he would be a bold man who should to-day at tempt to describe the best known means of construc tion and of operation, of stopping leaks, of locating in terferences amid counter-interferences, and the like.
Indeed, so much has been done in each particular department of electrical projection, that it is not pos sible in the three days sitting of a convention-no! no in 80 days, or a whole year-to go over all the nore or less valuable experiments that have been made and recorded ; for, fortunately enough, all the big com panies have careful records made of what is done in the way of experimentation in their machine shop and laboratories. Experiments innumerable have been made which, though proving of no value to those making them, are valuable to science and invaluable perhaps, to those operating in other directions. No is there any let-up. Experience, experiment, and dis covery are increasing rather than diminishing as time goes on, and it is becoming more and more difficult to keep informed of all that is being or has been done, and, consequently, men undertake great tasks in laboratory and workshop only to learn what was long since known, but hidden away among the musty records of a great workshop.
The permanent headquarters now being established by the National Electric Lighting Association will contain copies of all the records that can be borrowed for the purpose. Information will be asked for in every department, with description of experiments, whatever was their result, and an attempt will be made to index all these, so that whatever is wanted may be readily found. Let us say a subscriber wants to know what has been done in the way of looking for endur ing filaments for incandescence lamps, or what experi ments have been made with certain kinds of insulating material. He has only to send to or call at the headquarters, and every facility will be given him for finding what he wants to know.
Again, experimental results that are not any use to a man furnishing light might be of great service to one selling power, and vice versa. Did you ever make a laboratory experiment with a distinct purpose, and discover that though you had not progressed your own work, you had gained some apparently important
information in another direction? One of the duties information in another direction? One of the duties
of the new establishment will be to make known of the new establishment will be to make known such "finds" to those likely to be benefitedmany other ways to lighten the labors and inform the minds of working electricians.

POSITION OF THE PLANETS IN OCTOBER.

 venusis evening star. She is plainly visible in the southwest soon after sunset, setting on the 1st, about an hour after the sun, and on the 31st a little more than a hour and a quarter. She must be looked for about 8° south of the sunset point. She is in conjunction with Beta Scorpii on the 26 th , being nearly 2°. south of the star. Venus sets on the 1st at $6 \mathrm{~h} .26 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31 st she sets at $6 \mathrm{~h} .11 \mathrm{~m} . \mathrm{P}$. M. Her diameter on the 1 st is 11^{\prime}, and she is in the constellation Virgo.

MERCURY

is evening star. He reaches his greatest eastern elongation on the 8th at 11 h. A. M., being $25^{\circ} 14^{\prime}$ east of the sun. He may then be seen with the naked eye in the west, three-quarters of an hour after sunset, but will be difficult to find on account of his southern declination, as, at that time, he is 11° south of the sunset point. He retraces his steps toward the sun after elongation, and meets Venus on the 9 th at 6 h . P . M.. passing $3^{\circ} 9^{\prime}$ south. Observers, who can easily find Venus, may pick up Mercury with the aid of an opera glass, knowing his distance and direction from the larger planet. One other incident marks the course of the swiftly moving planet, for he is in inferior conjunction with the sun on the 31st at 7 b. P. M., and becomes morning star. Mercury sets on the 1st at $6 \mathrm{~h} .19 \mathrm{~m} . \mathrm{P}$. M. On the 31 st he rises at 6 h .27 m. A. M. His diameter on the 1 st is 6° and he is in the constellation Virgo.

JUPITER
the 24th, being 5° north of the star. He is near Venus at the close of the month, being $1^{\circ} 30^{\prime}$ northeast. Both planets set then about 6 o'clock, an hour and a quarter after sunset. Jupiter sets on the 1 st at 8 h .1 m P. M. On the 31 st he sets at $6 \mathrm{~h} .23 \mathrm{~m} . \mathrm{P}$. M. His diameter o the lst is $32^{\prime} .2$, and he is in the constellation Scorpio.

MARS

is evening star. He pursues his eastward or retrograde course, diminishing in size and ruddy light, and increasing the distance between Jupiter and himself. Mars sets on the 1st at $8 \mathrm{~h} .80 \mathrm{~m} . \mathrm{P}$. M. On the 31st he sets at 8 h .3 m . P. M. His diameter on the 1st is $6^{\circ} .8$, and he is in the constellation Scorpio.

urands

is evening star until the 10th, and after that time morning star. He is in conjunction with the sun on the 10 th at $8 \mathrm{~h} . \mathrm{A}$. M. Uranus sets on the 1st at 5 h . 55 in . P. M. On the 31st he rises at 4 h .47 m . A. M. His diameter on the 1st is $3^{\circ} .4$, and he is in the constellation Virgo.

sATURN

is morning star. He may be easily found, in the northeast, in the small hours of the morning, and may be known by his serene light and his position, about 11 northwest of Regulus. Saturn rises on the 1st at 1 h . 28 m. A. M. On the 31 st he rises at 11 h .42 m. P. M. His diameter on the 1st is 16^{\prime}, and he is in the constellation Leo.

NEPTUNE

is morning star. He rises on the 1st at $8 \mathrm{~h} .1 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31 st he rises at 6 h .1 m. P. M. His diameter on the 1st is $2^{\circ} .6$, and he is in the constellation Taurus.
Venus, Jupiter, and Mars are evening stars at the close of the month. Mercury, Uranus, Saturn, and Neptune are morning stars.

A Ruined city in Trexas.

The surveys at present being made for the Kansaa City, El Paso and Mexican Railroad, at a point north latitude 83 degrees and west longitude 106 degrees. have passed along the lava flow which by the loca population is called the Molpais. It consists of a sea of molten black glass, agitated at the moment of cool ing in ragged weves of fantastic shapes. These lava waves or ridges are from ten to twelve feet high, with combing crests. This lava flow is about forty miles long from northeast to southwest, and from one to ten long from northeast to southwest, and from one to ten
iniles wide. For miles on all sides the country is the niles wide. For miles on all sides the country is the most desolate that can be imagined. It has been liter ally burnt up. It consists of fine white ashes to $a \mathrm{ar}$! depth which, so far, has been dug down. To the north of the lara flow, and lying in a country equally deso late and arid, the surveyors have come upon the ruins of Gran Guivera, known already to the early Spanish explorers, but which have been visited by white men less often even than the inysterious ruins of Palenque. in Central America. Only a few poople at Socorro and White Oaks have been at Gran Guivera because it is at present forty miles from water. The rarveyor found the ruins to be of gigantic stone buildings made in the nost substantial manner and of grand propor tions. One of them was four acres in extent. All indications around the ruins point to the existence here a one time of a dense population. No legend of any kind exists as to how this great city was destroyed or when it was abandoned. One of the engineers at tached to the surveying expedition advances the theors that Gran Guivera was in existence and abundantly supplied with water at the time the terrific volcanic eruption took place.

The Eloctric Are Light.

Talking and writing about the discovery of the electric arc light, we rightly ascribe it to Sir Humphry Davy. But we nearly always give the date as 1809 . It seems, however, that if Davy did not actually hit the bull's eye in 1800 and 1802, he got at least within the center circle.
Nicholson's Journal for October, 1800, contains a letter signed by Davy, which states that he has discovered that " well hurned charcoal possesses the same properties as metallic bodies in producing the shock and spark when made a medium of communication between the ends of the galvanic pile of Signor Volta" And in the Journal of the Royal Institution, vol. i. of 1802, Davy describes some experiments upon the sparks yielded by the voltaic pile, and states: "W hen, instead of the metals, pieces of woll burned charcoal were employed, the spark was still larger and of a vivid whiteness." One is inclined to think that this spark was a true arc as now understood.-Electricai Engineer.

Heary calendered paper should be used, or in a few days your fly paper will be sticky on both sides.

Electrical Tranmmisalon of Power.

The flour mill at Laramie, Wyoming Ty., driven by an electric motor, which has been widely advertised in milling and electrical journals, is a novelty which has excited considerable interest, and prompts an inquiry as to what extent electricity may be made avail able for transmitting power from inaccessible points or poor locations to sites which offer superior advantages aside from the power required.
In considering the transmission of power either by electricity or otherwise, the items of cost and efficiency are all-important in determining whether it can be made a commercial success. A water power may be of large amount and easily controlled, but if only a fraction of the power can be delivered at a distance of a few miles, and that at a cost per horse power equal to or in excess of the cost per horse power developed by a good steam plant, it will not be utilized. In this connection, the data given in Kapp's "Electrical Transmission of Energy" are of interest. The comparative commercial efficiency of electric, hydraulic, pneumatic, and wire rope transmission is shown in the following table :

Distance.	Electric.	Hydraulic.	Pneumatic.	Wire Rope.
${ }^{828}$ feet,	$0 \cdot 69$	0.50	0.85	0.98
${ }_{8,900}^{1,23}$	0.68 0.88	O.50	0.55	0.88 0.90
8 milles.	$0 \cdot 60$	$0 \cdot 40$	$0 \cdot 50$	$0 \cdot 00$
${ }^{6} \times{ }^{6}$	$0 \cdot 61$	035	$0 \cdot 50$	0.38
18 -	$0 \cdot 38$	0.30	$0 \cdot 40$	$0 \cdot 13$

For three miles or less wire rope transmission is the wost economical, and for longer distances electricity is the most economical, but at a distance of twelve miles only one-third of the power developed can be delivered at the receiving station. The relative cost per horse power at the receiving station, as compared with that of steain power, will, of course, depend upon the capital outlay requirad, cost of fuel, maintenance, repairs, etc., and would vary widely in different localities. As the efficiency rapidly decreases with increased distance, it would seem that electrical transmission cannot be employed profitably at distances of over ten or fifteen iniles, and then only where the power is largely in excess of the requirements at the receiving station. As the commercial efficiency of electrical transmission, even at short distances, will not average a delivery of over sixty per cent of the power developed at the priwary station, and as the water powers within short distances of flouring mills are generally linited, it is not likely that the experiment at Laramie will be often repeated. Even at that point. it was made, not because it was economical, but as a curiosity. In this connection it may be added that much is hoped, in the way of electrical transmission, from the Tesla alternating current motor. If it performs all that is promised for it, it will extend the linit of distance and decrease the cost of wires for transinission. but even at the best it does not appear that any great distance can be cov-ered.-Milling Engineer.

Bltumon from sludge Acld.

W. P. Thompson, in the Journal of the Soc. Chem. Industry, gives some account of Rave's process for obtaining valuable products from this waste material. The tarry acid is kneaded with iron borings or fllings copper or zinc or other metallic cuttings, the material preferred being iron cuttings or borings. After inore or less prolonged contact, depending upon the nature of the metal and its degree of fineness, the sulphuric acid will be found to have combined with the metallic base. The mass is now introduced into heated receptacles and boiling water is added. The metallic sul phate dissolves and separates from the black mass, and the latter melts and rises to the surface. It is withdrawn from the receptacle, and is found to have all the mechanical properties of the hest purified soft bitumen. It is well washed with hot water to remove all traces of salts, and the wash water used to dissolve out fresh quantities of salts in a succeeding operation. Any uncombined metal falls to the bottom. The watery solution containing the metallic sulphate and other salts is drawn off into crystallizing reservoirs.
The black mass, or bitumen, being too soft for many purposes, is placed in a still and heated until it assumes the required degree of hardness. The hydrocarbons given off in this operation are collected and used as naphtha. The resulting bitumen is very pure, and can be used for almost all purposes for which the purest native bitumens are used, while at the same time it is so elastic and malleable as to strongly resemble India rubber. Hence it is largely sold by the Societe Oleocraisse, who work the Rave process under the narue of "mineral caoutchouc-bitumen." One ton of acid tar produces about ten hundredweight of this purified bitumen. If the distillation of the soft bitumen be carried farther, a material soluble in naphtha, but nearly as hard and tough as ebonite, is obtained. This is an extremely good non-conductor of electricity, is unactedupno by acids or alkalies, and is therefore adapted for unaking galvanic batteries, for coating acid tanks, con-
ducting wires and cables, for insulation plates, and the ike. It can be made of all degrees of hardness an noulded by heat, either pure or admired with fibrou and strengthening materials.
If the mineral caontchonc-bitumen be mired with about forty per cent of sawdust and a little lime; heated in an iron vessel and pressed into moulds, it makes an admiruble fuel burning well in fireplace withon welting and with little ash.
The " mineral caoutchouc-bitumen" diseolves readily n petroleuin, naphtha, and other light hydrocarbons, and forms an excellent tough black varnish. This varnish is waterproof, and adheres very tightly to netal, not chipping or soratching oll so easily as Bruns wick black or japan varnish. The bitumen also forms compounds with resin, wax, pitch, and other like ma erials, with qualities intermediate between those of heir constituents.
To sum up, at the expense of the requisite quantity firon cuttings or oxide the entire sulphuric acid in the naterial is obtained as green vitriol. One-half the weight of the original acid tar is utilized as soft bitu wen, or this is still further differentiated by distillation and this fifty per cent is converted into seventeen pe cent light naphtha and burning oils, eight per cen heavy lubricating oils, and twenty-five per cent metallic carbon.

oblenary.

Henry Carvill Lewis.-Professor Lewis, of Philadelphia, died at Manchester, England, on the 21st of July, in his thirty-fifth year. He was a graduate of the University of Pennsylvania, an active member of the Academy of Sciences of Philadelphia, and in 1888 be came Professor of Geology in Haverford Collepa. One of his earliest papers, if not the first, is a notice of the Zodiacal Light, giving the results of five years' obserations; it was read before the American Associatio in 1880, and appeared in vol. IX. (1880) of this Journal. He commenced his glacial investigations in 1879, in counection with the Geological Survey of Pennsy vanik worked on the same subject in 1885 and 1886 in Great Britain and had intended to make observation the present season in Norway. The investigation of the "Terminal Moraine" from the eastern boundary of Pennsylvania (to which point it had been traced across New Jersey, by Professor G. H. Cooke), wes ward across Pennsylvania, occupied him until the autumn of 1882, when his report, of about 300 pages was presented for publication. It appeared in 1884 as No. Z of the Geological Series of the Pennsylvania Survey. In 1886 he read his paper on Glaciation in Great Britain before the British Asbociation.
Professor Lewis was aiso a zealous mineralogist, and antil recently had editorial charge of the mineralogical department of the American Naturalist. In 1886 h brought out his paper on the "Genesis of the Diamond," tracing it to eruptive rocks, and basing his view principally on the published accounts of the diamond elds of Southern Africa.
Mr. Lewis was an enthusiastic and energetic worker in science, and promised to do much for its progrems. He leaves a wife and one child.
James Stevenson.-Col. Stevenson died on the 25th of July. He was born in 1840, at Maysville Kentucky. He was an early explorer of the Rocky Mountain region, and accompanied Dr. Hayden in his expedition as executive officer and manager. In 1872 he ascended the highest of the Teton Range, the Great Teton. He has been, since 1879, connected with th J. S. Geological Survey, engaged in making ethnological invertigations and collections in New Mexico and Arizona A very valuable report by him on the col lections obtained in 1879 and 1880 is contained in the report of the secretary of the Smithsonian Institution or 1881.
Albert D. Hagrr.-Mr. Hager was associated with Professor Edward Hitchcock and Mr. C. H. Hitchcock in the Geological Survey of Vermont. Since 1872 he has lived in Chicago, where he died, on the 29th o July. He was born at Chester, Vermont, in 1817.Amer. Jour. Science.

Why Deee the sholl of the Lobster Becomel Red on lolng Bolled !

The answer to this question in general terms is that the salts which go to make the color in the shell under go a chemical change by being subjected to the action of hot water. This answer can hardly be a satisfactory one to a person seeking specific information on the subject. It is, however, the only answer that can be given at present. The matter is one which has ap parently excited more popular than scientific curiosity for whereas the question has often been asked, it has oot as yet received a satisfactory-that is, a specificanswer. It is a question for the chemist rather than for the naturalist, and that, probably, is the reason
why it has not recived more attention. why it has not received more attention.
It is not only the lobster, but all crustaceans that undergo this change of color on being boiled. Salt water crustaceans become redder in the process than table salt to the water in which the creature is boiled
will conduce to greater redness. Whether it is the so linm or the chlorine in the salt that helps to this result I do not know. The creature itself has nothing to do with the change in its shell, for if the shell be taken rom the living crustacean and then boiled, the result will be exactly the ssine. It has been suggested that red may be the basic color of the shell, and that the chemical change which takes place is merely the elimination of the other colors. The objection is hat there is no evidence of removal of color shown in the water. The objection is not vital, however.

Dampneas in Foundationk.

A wall constructed of brick or stone of any quality whatever will be subject to the damp which exists in the soil, and which will enter in all directions and in all parts where the wall is in inmediate contact with the ground. The extent to which this damp will penetrate cannot be determined, and it may rise to a very great height above the level of the soil ; and if it be arrested more or less, that will be caused by the influence of the neutralizing power of the temperature of the atmosphere ; so that a wall which may be very damp at the beginning of summer will be much less so at the end of the dry season, and particularly so if immediately exposed to the sun, but the following winter the damp will return, unless the original causes of hamidity be subdued.
It is desirable in all and every class of soil to have a ubstratum of concrete under the footings. For the purposes of damp this need not be very deep, perhaps not excending a foot high. As soon as the footings and ower part of the wall are carried as high as the level of the ground inside, it will be well to introduce a thin sheet of lead the whole thickness of the wall, or a layer of bituminous substance as thin as possible, so as to penetrate the brick and stone and fill the pores, or a double course of thick slate set in cement. The purpose of the sheet of lead and of the bituminous subtance, and the slating, is to prevent the wet from rising up from the footings. But other precantions are ecessary to prevent the access of damp from the surface of the ground nert the outside face of the wall. A facing of stone is the best remedy. It need not be very thick, but it is well for it to be at least two or three feet high; and if a small interval between this facing slab and outside surface of the wall, so much the better, provided a circulation of air be kept up in the space. By this provision neither the rain beating against this part of the wall, nor the water returning from the pavement or ground, will be able to reach the main substance of the wall; for although the facing slabs may be temporarily damped, they will soon be dried rithout communicating the damp to the body of the wall.
The inside of external walls should never have the plastering applied immediately on the face. They should be battened by means of long narrow slips of wood attached by holdfasts to the inside face of the wall. These slips or battens receive the laths upon which the plastering is applied. The space formed by the battens between the wall and the lathing effectuaily keeps out the humidity. No impervious covering shonld be laid on wooden floors in the lowermost story, such as oil loth for instance ; a certain inoist air always rises from theground and escapes through the joints of the boards, but if this be intercepted by an oil cloth theair will rot he boards and oil cloth in a very few months. But it is important to keep the damp from the floors which come upon the ground, that is, the floors of the lowermost story.
It is evident that the timber of stone slabs should not be in immediate contact with the soil. For this purpose let a stratum of concrete be laid over the whole urface of the house, six or nine inches thick at the least. Upon this form sleeper walls or piers up to the necessary height, and on them lay the plates or paving labs. As an additional precaution, a thin sheet of lead might be laid under each pier on the bed of the sleeper walls. In palaces, as a greater precaution, and in buildings where expense is a secondary object, a thickness of asphalt might be laid on the concrete. In the dwellings of the poor it is expedient at all events to have the sleeper walls or piers, which need be only half brick wide and one course high, without the cement, and generally that will be a sufficient precaution. Where tone paving forms the floor, bricks must be laid under all the joints. Thus will the humidity be more or less prevented from reaching the floors. But of all precau tions to prevent damp entering by the face of the wall, the best remedy is to have an area, which, by keeping the soil at a distance, precludes its fatal effects on the wall. These areas may be three or more feet wide, and may serve as a passage all round the building, and aflord access to cellars outside, as in the London houses; or if this, from want of space or the expense, be impracticable, it will be sufficient to have what are called blind areas, with convex walls against the earth, the points of contact with the outer wall of the house being s small as possible, to diminish the possibility of the communication of damp.

AN IXPROVED CARPENTER'S RULE.
A carpenter's rule so constructed that it may be used as a bevel or square as well as a rule has been patented by Mr. Michael H. Walsh, of No. 9 Gloucester Place, Boston, Mass., and is illustrated herewith, Figs. 1 and 2 showing a plan view and horizontal section. The

WALSH's CARPENTER'S RULE.

joint consists of a circular projection on one leg of the rule centrally pivoted between two projections on the other leg, a pin or screw passing through a slot in one of the outer projections, and through the inner projection, with a countersunk nut resting in the slot, whereby the two legs of the rule inay be set at any angle desired, for use as a bevel or square, according to the graduation marks on the projection. In Figs. 3, 4, and 5 a modifled form of the improvement is shown, wherein the inner projection is formed with a beveled edge, and a pin with beveled projection is located in the inner end of one of the legs of the rule, the pin having a thumb nut and screw-threaded end, so that by screwing up the nut the projections are clamped together and the rule is held firmly in adjusted position.

AI IMPROVED DRAFT EQUALIZER.

A simple, cheap, and efficient equalizer for perfectly equalizing the draft of three or four horses is illus-

Dillon, of No. 17 Garden Street, Poughkeepsie, N. Y. and is illustrated herewith, Figs. 2 and 4 being front views, and Fig. 3 an end view of the holder. A seg mental plate, from which projects radial arms, is se cured to the frame upon each side of the stone. The base of the holder, which is slightly greater than the width of the stone, is adapted to be secured o either set of the radial arms by set screws. The end pieces of the body of the holder are pivoted to end projections of the base, so that the body may have an easy rocking movement, but an essentially U-shaped spring is secured to both the base and the holder, to normally give the latter a forward inclination, there being a catch to retain the holder in horizontal position when desired. The tool clamp is a rectangular block grooved to slide on the inner faces of the upper bars of the holder, and provided with a thumb screw to engage and hold in place the tool to be ground.

The Aeration of Sewage

Some correspondence recently printed by the London Metropolitan Board of Works, at the request of Dr. Dupre, possesses considerable interest in relation to the treatment of sewage by aeration. It now appears, says the Engineer, that Dr. Dupre addressed a letter to Sir Joseph Bazalgette
as far back as 1882, suggesting that the metropolitan sewage should be mechanically aerated between the pumping stations and the reservoirs, and perhaps again between the reservoirs and the river. The proposal made thus early has remained in abeyance until now, except so far as the floating fire engines are concerned, but is once more made prominent.
In his letter of July, 1885, Dr. Dupre puts the case very clearly by saying: "The destruction of organic matters discharged into the river in the sewage is, practically, wholly accomplished by minute organisus. These organisms, however, can only work in the presence of oxygen, and the more of that you supply, the more rapid the destruction." On the reality of the effect we have the testimony of Sir H. Roscoe, in his report of December last, where he states: "The rapid purifying effects of aeration on the sewage have been repeatedly observed in my laboratory experiments. The actual nature of the process is very remarkable. Sewage contains virtually no dissolved orygen, and in this state serves to nourish only such organisms as are associated with putrefactive results. But where free oxygen existe there arise s class of may be termed "healthy" organisms, and these dispose of trated herewith, and has been patented by Mr. A. F. the organic matter in the sewage in such a manner as Gillet, of Burlington Junction, Mo. It is made with a to render it inoffensive. Sewage poured into a river tripletree having a central draught hook, a three-armed rapidly absorbs the free orygen contained in the water, or T-shaped lever being beld by a bolt or pin to the and if the quantity of sewage is in excess of a certain tripletree at one side of its center, and so that the extremity of the long arm of the lever reaches about to the center of the tripletree, where it is provided with a draught hook to which the singletree for the middle horse is hitched. This equalizer does away with a great deal of cuinbersome weight, admits of a short hitch, and by means of adjustable rods the equalizers may be easily and quickly adjusted to increase or decrease the draught on either of the horses, or adjusted to suit different kinds of work, such as from a plow to a lister equalizer, or to any implement having a tongue.

AN IMPROVED TOOL HOLDER FOR GRINDSTONES.
A holder with which a number of tools may be held at an angle to and in rigid contact with the periphery of a grindstone has been patented by Mr. James M.

DILLON'S TOOL HOLDER FOR GRINDSTONES.
proportion, the dissolved oxygen is so largely absorbed that the healthy organisms perish, and the putrefactive process sets in. The use of aeration is not to oxidize the organic matter, but to supply the free dissolved oxygen needed for the respiration of the healthy organisms.

A sAFETY gHOE FOR CAR TRUCES.

An invention providing means whereby, should the wheels of a car or locomotive jump the track, neither would be derailed, but would slide upon the track until the brakes could be applied and the wheels returned to their proper position, has been patented by Mr. Abram M. Woodraff, of Superior, Neb., and is illustrated herewith. To the central transverse timbers and to a longitudinal brace forming a portion of the truck frame is secured a head block positioned between the wheels, a shoe being firmly secured to the head block, as shown in the bottoin plan view, Fig. 1, and the side elevation, Fig. 3. The shoes have downwardly extending side flanges, widest at their central portions and tapering toward each end, and between the flanges is a central horizontal flat bearing surface, with two inclined end surfaces, imparting to the bearing surface of the shoes the equivalent functions of a sleigh runner. The position of the shoes with relation to the rails when the wheels have jumped the track is shown in Fig. 2, the width of the shoe being enough greater than the width of the rail shoe being engal wheels be thrown a considerable distance. A modified form is made which is adapted for attachment to the locomotive. The shoes are made of metal, while the head blocks may be of any suitable material, as hard wood or metal.

AgAINST MOSQUITOES.-Take a small quantity of a 2 per cent carbolic acid solution, and sprinkle sheets, coverlet, pillow, and bolster, on both sides, the edges of bed cartains, and the wall next the bed. The face and neck may also be slightly wetted.

AT IMPROVED READUNG JESR

A light and simple reading desk, which is readily adustable to any desired position, is illustrated herewith, and has been patented by Mr. Andrew J. Williford, of Nokomis, III. Its principal parts are preferably made of wire, a vertically adjustable inverted U-shaped bar

WILLIFORD'S READLNG DESE.
having its ends passed through eyes in the standards, where they are engaged by set screws, forming a support on which the book rest is mounted to turn. On the underside of the book rest, at each ond, is secured a semicircular bar, these bars passing through eyes in the side supports, where they are adapted to be engaged by set screws to adjust the book rest to any desired angle.

AR MCPROVRD ERAL LOCK.
A lock especially designed to secure and seal the doors of freight cars is illustrated herewith, and has

GODWIN'S EEAL LOCX

been patented by Mr. Le Roy C. Godwin, of Porte mouth, Va. A frame is held to slide in a casing secured to the car door, the frame having slots for the recep tion of a ticket or card, a tumbler plate being pivoted in the casing and passing through the frame. A cam turns on the pivot of the tumbler plate, and is adapted to be engaged by a lug on one side plate of the frame. The sealing card is water proof, and when locked in place in the slotted fraine cannot be removed without being cut or torn in pieces. The lock is made of malle able iron, has no spring to get out of order, and is designed to be very simple and durable in its construe tion.

WOODRUFF'S SAFETY BHOE FOR CAR TRUCEB.

AN IMPROVEMENT IT MANTEL CONETRUCTION. A method of constructing mantel frames whereby one size may be readily and accurately fitted to fire places of different sizes has been patented by Mr. Robert B. Thompson, and is shown in the accompanying illustration. A wooden or other lintel having a longi-

1
2

THOMPBON'S MANTEL

tudinal groove in its lower edge is fastened along the back of the frieze, with its lower edge extending enough below it to make the opening the desired height, as shown in Fig. 1. Jambs having tongues on their upper ends to fit the groove in the lintel are cut to the desired length, and fastened to the backs of the side col umns at the desired distance from the center line of the fireplace. The inner erges of the jambs and lintel when properly adjusted, are lined with fire strips.
For further information relative to this invention address Messrs. Schuette \& Co., corner of 18 th and Mary Streets, Pittsburg, Pa.

AN IMPROVED FILTER FOR WASTE OIL. A convenient filter for oil as it drips from bearings or oil that has been made impure by the admixture of any foreign substance, has been patented by Mr. George W. Gallaway, of No. 322 Pearl Street, New Pearl Street, New
York City, and is ilYork City, and is il-
lustrated herewith, lustrated herewith,
the main view also the main view also
showing the shipping box, which is adapted to serve as a stand on which to set up the filter. As shown in the sectional view, there are two al view, there are two removable filtering pans in the top of the can, the bottom of the upper pan being perforated and covered with cot-| the vessel, and on their outer ends are up and down ton, held in place by a metallic ring. Around the bot- flanges, on which vertical steel paddles are hinged, one tom edge of the lower pan are two flanges, adapted to hold in connection with rings two parallel layers of felt in position, the felt being firmly secured by thumb nuts and bolts. A partition with central depression separates the upper part of the can from the bottom, a centra bottom opening in such partition leading through a pipe to an outer cock for the discharge of water set

tling to the botton of the flitered oil. Two stand pipes in this partition allow for the overflow of oil into the lower compartment of the can, when the oil rises sufficiently. The pure oil is withdrawn through the lower cock in front, the bottom cock being for the removal of water, should any pass into the lower com-
partment, or for cleaning the filter. A class gange at partment, or for cleaning the filter. A glass gauge at the side indicates the amount and purity of the filtered oil standing in the filter. As the waste oil is poured on the cotton in the upper filtering pan, all the larger foreign particles of matter are retained there, the re maining finer particles being removed by the felt. The construction allows for the ready removal of the filtering material for cleansing.

Ballooning with Natural Gae

The first balloon inflated with natural gas ever sent up arose from Riverside Park, near Anderson, Ind. August 14. It has been a question as to whether or not natural gas would float a balloon to any considerable height says a writer from that town. This one was flled from a pipe from a well until the gaune indicated Alled from a pipe from a well until the gauge indicated that the silk, which was inclosed in a strong netting, was bearing twenty pounds pressure, when George Ayers, an amateur aeronaut, climbed into the basket, and the balloon was cut loose. It rose steadily until an altitude of about 2,500 feet was reached, when a current of air was struck which bore the balloon and its single passenger away to the southeast, since when nothing has been seen or heard from him.-Pro gressive Age.

A NEW KETHOD OF BOAT PROPULSIOR.

The system of propelling boats herewith illustrated has been devised by Mr. J. Eckhardt, corner of 25th and Palm Streets, St. Louis, Mo. Four cylinders, each connected with an engine in the vessel, are mounted to be reciprocated through a waterproof packing in recesses made below the water line in each side of the hull, and extending a short distance forward from the
bush of black hair pushing out below the helmet, and strongly accentuated features combine to form an appearance singularly resolnte and martial."

AI IMPROTED GEARING FOR TRANEMITTITG MOTIOR In the gearing herewith illustrated, which has been patented by Mr. Ole O. Kravik, of St. Carl, Dakota Ter., a short shaft, having on its outer end a crank arm, is mounted in a suitable frame, a gear wheel on the shaft and next to the crank weshing into an inter-

kratik's gearing.

mediate gear wheel mounted above on a stud, the latter wheel meshing into a higher gear wheel on a shaft rotating in the end gtandards, and carrying on its inner end a bevel gear wheel. The latter meshes into a bevel gear wheel secured to the lower shaft held in inclined position and secured at its outer end to another shaft mounted to rotate in suitable bearings. The inner end of the lower inclined shaft has its bearing in a lug secured to the face of a large gear wheel rotating loosely on the shaft carrying the higher gear wheel above the crank arm, this large gear wheel meshing in a gear wheel secured to the inner end of the shaft operated by the crank arm. A very rapid rotary motion can by this construction be given to the
first or lower inclinfirst or lower inclin-
ed shaft, to be used for driving suitable machinery, or the s.ame arrangement as shown to the right in the illustra tion, may be dupli cated as represented in the standards to the left and the upper inclined shaft giving proportion ately accelerated speed to the operating shaft.

AN IIPROVED SAW

 MILL DOG.The simple and ef fective device here with shown, which has been patented by Mr. John B. McRae, of Mount Holly, Ark., has an upwardly project ing knee in the forward end of a suitable base, a seg mental rack being attached to the opposite end, or cast integral therewith. Fig. 1 shows aligning blocks pivoted to one face of the knee, their contiguous surfaces hav ing intermeshing teeth, and their outer ends being recessed to receive outwardly extending curved dogs secured by keys. From the lower block extends a secured by keys. From the lower block extends a
lever arm adapted to slide upon the side of the rack, and having at its handle end a spring latch adapted to engage the recesses of the rack. Fig. 2 shows a modifled form of the device, in which the intermeshing teeth on the blocks are dispensed with, and the blocks have on their contiguous portions lugs, between which a link connection is formed.
The frieze of the archers of the guard which M. and Mme. Dieulafoy brought from Susa is composed of bricks 14 inches by 7 and 9 inches thick. They were cast in moulds, and perhaps worked on while still moist. The glaze on their faces has not always held, and it was necessary to subject them to treatment, or they would never have reached Europe. The frieze once decorated a wall in a side porch of the throne room of the palace of Darius. A correspondent of the Athenœum writies: "The warriors are portrayed marching in single file, each holding a spear, as in the attitude of 'attention,' and having large quivers slung at their backs, and their bows at their left arms. Their close-fitting helmets are bound round with a roll of green linen. They wear tunics reaching to the ankles, also an inner garment with long sleeves, and laced shoes. The color of the dresses varies, a white tunic and yellow underdress alternating with a yellow tunic and manganese purple underdress. The tunits are and elaborately that the white tunics are sprinkled with a design representing a castle (the citadel of Susa ?), the triangular battlemented towers being yellow on a parple ground. The guards wear gold earrings and bracelete They are brown-skinned. Their curled black beards,

Maras's sawithl dog.

Fant. Time on Amorican Rallionde.

The liveliest interest was manifested by railroad men in the recent account of the race between the "Flying Scotchman" and the "West Coast Flier" from London to Edinburgh, in which 400 miles were covered by the winner in 7 hours and 25 minutes. This was an average of something over $531 / 2$ miles an hour. There was a general jogging of memories and overbauling of the general jogging of memories and overbauling of the
records of fast railroad trains on American lines. And records of fast railroad trains on American lines. And
uuch couffort was found by many in going over those unch coumfort was found by many in going over those
records. For they show that, although the British and records. For they show that, although the British and
French roads admittedly make wuch better time French roads admittedly make much better time
habitually than is made on any of the American lines, some astonishing and sustained rates of speed hav been attained here, when special efforts were expended with that end in view.
The best run on record in this country which can be Pairly compared with the English ran was made ove the West Shore road, from Buffalo to New York, on July 9, 1885, when 428 miles were covered in 7 hour and 27 minutes. Quite a large number of railroad men including officials of the Baltimore \& Ohio, Wabash Grand Trunk, and West Shore roads, happened at Buffalo together en route for New York. It was decided to see how quickly they could move over the new road. At the start the railroad men had their watches out and soon the mile posts were flying past every 43 seconds. That speed was held so steadily that the greater part of the run was made at the rate of 45 seconds to the mile, or from 70 to 83 miles an hour. From East Buffalo to Genesee Junction, 61 miles, took 56 minates : from East Buffalo to Newark, $93 \cdot 4$ miles 97 minutes ; from Alabama to Genesee Junction, $36 \cdot 3$ miles, 30 minntes. The 97 minutes to Newark included stops of 9 minutes, making the actual running time for the $93 \cdot 4$ miles, 88 minutes. From Newark to Frank fort, where the conditions for running were not so good as before, the run of 108.3 miles was made. in 134 minutes, including 17 minutes for stops. From East Buffalo to Frankfort, 202 miles, the time was 240 minutes, of which 35 minates were consumed in stops. There was only a eingle track at that time on the road a good part of the way between Buffalo and Syracuse, and that journey had to be made at reduced speed, especially over the switches. The journey was timed with the utmost care for the purpose of tabulation In the table there are marked several iniles which were made at the speed of 78 miles an hour, one at 84 miles, and the next, between Genesee Junction and Chili, at 87 miles. New engines took the train at Buffalo, Newark, Frankfort, and Coeymans.
On October 8, 1885, over the same road, a burst of speed was tried for 11 miles, between Genesee Junction and East Buffalo, to satisfy Superintendent J. E. Layug, who was on the train. The run occupied 512 seconds, an average rate of 74 miles an honr. Three of the miles were made at the rate of 80 miles an hour, 1 at 77 , and 1 nt 75.

On the New York Central road a newspaper train with two cars, weighiug 80 tons, hauled into Syracuse Sanday morning, August 8, 1886, at ten o'clock, an hour late. The train was booked to go from New York to Buffalo in $91 / 2$ hours. Orders came to try to make
up the time on the further run of $148 \cdot 7$ miles to Buffalo. up the time on the further run of $148 \cdot 7$ miles to Buffalo. John W. Cool, one of the best engineers on the road, mounted his cab, bound to obey the order. He started out at $541 / 2$ miles an hour. At the end of the three miles his speed increased to 68 miles an hour, and then to 741/2. He stopped at Rochester for water, and slowed up after passing Crittenden. His average speed from Syracuse to Rochester was $67 / 4$ miles per hour, from Rochester to Buffalo 63.72 miles per hour, and from Syracuse to Buffalo $65 \cdot 6$ miles an hour. The run of 148.7 miles was made in 138 minutes.

The most remarkable long distance run on record was when the Jarrett-Palmer combination went from New York to San Francisco in half time, or 33/2 days. Their train left the Pennsylvania station in Jersey City at 12:53 on the morning of June 1, 1876. They were not to make a stop until they reached Pittsburg. An engine and bagage car, on the approach of the special
to Harrisburg, got up a speed of abont 50 miles and to Harrisburg, got up a speed of abont 50 miles and joining track for several miles, while the mail bags were thrown from train to train. The run to Pittsburg, 4381/2 miles, took 10 hours and 5 minutes, an average of $431 / 2$ miles an hour, notwitbstanding the Alleghanies. From Pittsburg to Chicago, 458.3 miles, took 11 hours and 6 minutes, an average of $42 \cdot 1$ miles, including 25 stops and 4 changes of engines. From Chicago to Council Bluffs, 491 miles, took $111 / 2$ hours, an average of $42 \cdot 6$ miles, although there was a record for part of this journey of 62.2 miles. Over the Union Pacific the ran of $1,032 \cdot 8$ miles from Omaha to Ogden was made in 24 hours and 14 minutes, at an average of 41 miles and a maximum of 72 miles an hour. The brakes became worn at Ogden and hand brakes had to be used, retarding the onward journey somewhat, as the men feared they might lose control of the train. San Francisco was safely reached at $12: 57$ on June 4, quite in time for the dinner that had been ordered for the company for that day. The last stage of the journey was run at an average of 37 miles. During the entire ran

20 engines were used, there were 72 stops, and the run ning time for $3,3131 / 2$ miles was 84 hours 17 . minutes, an verage of 40 miles an hour.
On the Pennsylvania road 45 miles an hour is no ancommon, and there are level stretches where a speed of a mile a minute is attained. Samuel Carpenter, the general agent of the road for this city, said recently, that if there was any need of making time to compare with the new English schedule, it could be done. On the New York Central road the run of 80 miles from Rochester to Syracuse has been made in 80 minutes when it was necessary to make up lost time. Asistant Superintendent Voorhees, of the New York Cen tral, said that he stood ready any day to send a party rom New York to Buffalo, 440 miles over that road, in the same time made by the English racer for 400 miles, if the party would pay $\$ 2$ a mile to get ther in 7 hours and 25 minutes.-N. Y. Times.

mik for Iurants.

roak.

A problen which occurs to every general practitione o solve, with greater or less frequency, is the success ful rearing of children which have been, from some canse or other, deprived of the maternal nourishment to this end various foods have been devised-some good, others bad, and all expensive.
After experimentation with, and trial of, most o these, I have come back to 00w's milk, properly pre pared, as the best substitute at our command.
This summer the bottle-fed children under my car have, with the exception of an occasional slight diar rhoes, done uniformly well, and this has tested, to my complete satisfaction, the method employed to render heir food digestible and aseptic.
Since the publication of Dr. Jeffries' *interesting ar ticle, I have caused the milk consumed by all my arti ficially reared children to be prepared in the following manner : Into an ordinary cooking steamer, which can be bought at any hardware store, a couple of inches of water is put and brought to the boiling point; the milk which is the infant's allowance for the next twenty-four hours is placed in as many nursing bottle as are used during that length of time. These bottles, having been previously placed in an oven for a quarter of an hour, are now stoppered with cotton-wool, and put on the perforated plate in the steamer, not touch ing each other, the cover shut tightly down, and the whole allowed to steam for half an hour.
As will be readily seen, by this method all germs ar destroyed, and if the milk is left stoppered and in a cool place, it will keep a long time. In the course o some experiments which I have been waking, I find that, to-day, milk which was steamed exactly tive weeks ago is perfectly sweet and good.
When feeding time comes, the woolen cork is re moved and lime water and sugar of milk are added. A nipple taken out of boiling water is put on, the bottle warmed, and the child's food is ready for administra tion.
Until six weeks old the proportions of lime water and milk are half and half, with a teaspoonful of sugar o milk. A bout three ounces of this mixture will be taken every two hours; from six weeks to three months, one third lime water, and from this time gradually dimin sh the amount. I prefer using the ordinary cooking seamer to the somewhat elaborate and costly appara tus of Soxhle tfor the sterilization of milk, for the rea son that it is inexpensive, easily kept clean, and doe not bewilder the overtaxed mother or nurse with elab ration of detail
In closing, I wish merely to emphasize the fact tha bottle must be used but once; immediately after the child has nursed all it will, the remainder of its conplaced in the sun and air.--Medical Record.

Inoculation for Cholora.

Dr. Gamaleia, of Odessa, who has studied the pro phylaxis of hydrophobia in Paris under M. Pastear and under whose direction several institutions for the treatment of that disease have been founded in Russia, (through M. Pasteur) a paper on the cure of cholera by inoculation. The procedure is similar to that adopted by M. Pasteur in hydrophobia, and experiments with the choleraic virus upon animals have been successful. As M. Pasteur himself has apparently concurred in the value of the results obtained by Dr Gamaleia, the procedure in question may be assumed to be more firmly supported by rigid scientific fact than were the inoculations with which a few years ago Dr. Ferran's name was associated. It will be remem bered that, although De Ferran averred that his
method was based on Pasteurian principles, M. Pasteur himself did not concur in his practice, nor had any practical result followed from the investigations pursued in Egypt by the French commission, one of whose members, Dr. Thuillier, lost his life from cholera during the inquiry. Moreover, in course of time it was
abundantly proved that Ferran's inoculations were un trustworthy. Dr. Gamaleia's method is based on his discovery that pigeons inoculated with the blood of guinea pigs which have been inoculated with cholera virus die from "dry cholera," with detachment of the intestinal mucosa, and that, moreover, the virus which has thus passed through the pigeon gains in intensity. so that it will kill pigeons in from eight to ten hours and even destroy guinea pigs. But when a pigeon was inoculated with the uncultured virus in the breas and in the abdomen, it became refractory to the culti rated virus of the highest intensity of virulence. By heating the culture broth to $120^{\circ} \mathrm{C}$., and inoculating pigeons on successive days with small quantities, they became refractory to cholera. "The vaccine is sure and inoffensive when given in small doses and suc cessively, and it is to be hoped that whole populations may be saved by this method from Asiatic cholera." The Times correspondent (August 21), in forwarding an abstract of Dr. Gamaleia's paper, adds the following interesting details: "M. Pasteur, after reading the note, stated that Dr. Gamaleia had expressed his readiness to repeat the experiments at Paris, in presence of a committee of the Academy of Sciences, and to try on himself the inoffensive and sufficient dose for human vac ination. He is ready to undertake a journey into countries where cholera pre vails to prove the efficacy of his method. M. Pasten added that he need scarcely say that he accepted with the greatest satisfaction, the offers to conduct the experiments in bis laboratory made by Dr. Gamaleia. The letter was referred to the committee which has a prize of 100,000 . In its hands for a cure for cholera, and it was arranged that the experi ments should be postponed till November." It will be interesting to hear what Professor Koch has to say upon these experiments, and the sanguine anticipa tions based on them.-Lancet.

Indaration of stone

The rendering soft stones hard, and the protecting the surfaces from the weather when worked and set has been the sabject of great investigation. A. Ashpitel in the Architect (London), says:
The idea of the latter seems to have originated with the late well known John Sylvester, who tried the method of washing over the faces of stone walls with method of washing over the faces of stone walls with
first a solution of soap and then of alum. Another method was that of washing with what was caller water glass, or silicate of potash, both of which are said to have failed. The next idea was to soak the stone, or in some way to cause the surface to imbibe a quantity of oily or fatty matter, to throw of the wet as well as to harden the stone itself. The first patent was taken out by Mr. Hutchison, at Tunbridge Wells, in 1847, and was applied to the new sandstone there. The stones, when worked, were boiled in a 80 lution of resin, turpentine, wax, oil, etc., and some times, we believe, pitch, till they were impregnated a sufficient depth from the surface.
In 1851 Mr . Barrett took out a patent something like the preceding, but far more elaborate. The main lements, however, were resing, fats, and tallows, some of which were mixed with gutta percha, on slaked lime, copperas, and a number of other ingredients. In April, 1856, Mr. Daines took out a patent not so much to indurate stone, but to preserve stone or cement walls from damp and effiorescence. His pro cess was to apply, first, a solution of sulphate of zinc or solution of alum, to the wall, and then a composi tion of sulphur dissolved in oil. In the same sear and in the next month, Mr. Page took out a patent for a similar purpose. His material was wax dissolved in coal tar, naphtha, or, for more delicate work, in cam phine.
Mr. Ransome's process was deduced from his experiments on the artificial stone. It consists of treating the surface of the stone, first, with a solution of silicate of potash or soda and then with a solution of the chloride of barium, or chloride of calciurn, by which means an insoluble silicate, either of barium or lime, is deposited in the pores of stono. The most ex traordinary results, however, are promised by Mr. Szerelmey's process. It will not only entirels protect the surface of stone or brick or cement, but of iron. As a proof, au anchor coated with it was sunk in the sea for many months, and raised again without trace of oxidation.

Clearing Negatives.

Sometimes by prolonged development negatives become stained, and usually clearing solutions are em ployed after the negative is fixed.
Mr. T. Bedding, in the British
Mr. T. Bedding, in the British Journal of Photography, advises the use of an alum and citric acid bath, one part of citric acid to thirty of alum ; before fixing. When the developer has been poured off the negative, the latter should be washed in a couple of changes of water, and the clearing solution applied for a few minutes, after which it may be returned to the bottle for future use. It is then important that the negative be carefully washed prior to immersion in the fixing be ca
bath.

Qarrespondence.

Fast Traina.

To the Editor of the Scientific American:
By some oversight, your art'cie in last issue on "Speed of Passenger Trains" makes no reference to the three fastest trains which are scheduled in the Travelers' Offlcial Guide. The Pennsylvania and Philadelphia \& Reading railroads each have a train which leaves Philadelphia at 7:30 A. M. and arrives at New York exactly two hours later. Including ferries and stops, this shows an average speed exceeding 45
miles per hour for each train. The Pennsylvania R.R. miles per hour for each train. The Pennsylvania R.R. train makes one stop en route to Jersey City, and- the Reading train four stops (including one for change of engines), and as the distance traveled that the Reading a fraction of 90 miles, it would sow that the Reading rain is the lhe mile of ferry it makes an average speed of 47.4 miles per hour, including stops. While speed of $47 \cdot 4$ miles yer hour, including stops. While
traveling on this train, I have timed a mile in 48 traveling on this train, I have timed a mile in 48 seconds (a rate of 75 miles per hour), and either train
will usually run several miles at the rate of 67 miles per will usually run several miles at the rate of 67 miles per
hour or better every trip. The Baltimore \& Ohio R.R. hour or better every trip. The Baltimore \& Ohio R.R. between Baltimore and Washington at the rate of 53 miles per hour.
G. H. S.

Franklin, Pa., September 11, 1888.

Homiock Lumbor and Bark

To the Editor of the Scientific American:
In your issue of the 15 th inst. you publish an article on "Hemlock Lumber and Bark," written by Jackson S. Schultz, and copied from the Shoe and Leather Reporter, which contains much that is true and interesting, yet some things which are erroneous and misleading. What he says of the use of bemlock timber is, in the main, true ; and he might have added that it is superior to pine and spruce for frames where other work must be fastened to it with nails, as it is well known that it will hold nails equal to any other known, so called, soft wood. In addition, it is equally as fine grained and suitable for interior oil finish as the popular Georgia pine.

But he errs when he says its use for railroad ties is prevented mainly because it does not hold spikes as well as oak and chestnut. It will hold a spike as well as chestnut, and a hemlock is as good as a chestnut tie as long as it is sound. The trouble is it will not last when exposed. Five years is about as long as you can depend on bemlock when used for ties, trestles, or other exposed structures, while the average life of oak and chestnut in like situations is about ten years. Mr. Schultz wust be misinformed of the length of timeeighteen years-that hemlock ties have lasted in the railroad named. I do not believe a hemlock tie, without artificial preparation, ever did fairly safe service for eight years when placed in the roadbed of an American railroad.
Mr. Schultz is far from the facts when he states that "the counties of Elk, McKeon, Sullivan, Warren, and Forest are substantially intact." Of course he is not
supposed to be personally acquainted with the actual supposed to be personally acquainted with the actual state of affairs. Not all the forests are hemlock. There are large tracts known as beech, maple, or chestnut addition, the lumberman's ax, followed, as it almost addition, the lumberman's ax, followed, as it almost
invariably is, by fire, has ruined thousands and thouinvariably is, b
sands of acres.

The immense tanning establishments in Sullivan, Lycoming, Tioga-in which is located the largest one in the world, owned by Hoyt Brothers-Potter, McKeon. Elk, Forest, Cameron, and Warren, show what is being done to the hemlock forests of northern Pennsylvania. Mr. Schultz certainly cannot mean that the present supply can be kept up for any great length of tiune. It must not be expected when such destraction is going on. Already bark is being hauled eight or ten wiles by teams to supply the various establishments.
The prices named by him- $\$ 5$ and $\$ 6$ per cord or ton of 2,200 pounds-do not, as a rule, prevail. The insane desire of the lumberman to cut down every tree he can reach has had its legitimate effect, and the average price is from $\$ 4$ to $\$ 5$ instead. Probably more is purchased at $\$ 4.50$ and under than otherwise. Let twenty years roll by, and we shall see a much altered state of affairs. Considerable hemlock timber land has been purchased by the heavy operators, but those who shall not own their own bark will, in the near future, pay all that Mr. Schultz names, and more too.
The child Mr. Schultz mentions will not necessarily have to reach fourscore years of age to see a greatly lessened sapply of hemlock bark ; and before he shall be one-half that age be will have seen the decay and abandonment of a large portion of the existing establishments without a corresponding increase of new
ones.
S. B. Elliotr.

Du Bois, Pa., Sept. 18, 1888.
Frkse meat beginning to sour will sweeten if placed out of doors in the air over night.

The Panama Rock

The Deronian rocks of Pennsylvania and vestern New York are topped by five distinct conglomerate formations. The oldest of the five is in the Upper Che mung group, and its southerninost exposure is in a harming little valley, through which meanders the Brokenstraw Creek, a tributary of the Alleghany River. From its location near the village of Panama,
in Chautauqua County, N. Y., it is called the Panama conglomerate, and its typical ridge is known as the Panama Rocks, and has for many years attracted the attention of the inhabitants of the region. Professor Starr called my own attention to it during a recent out ing at Lake Chautauqua, and with a party of explorer we visited the place. The owner is Mr. G. W. Hub bard, who has expended a considerable sum in opening the grounds, without in any respect impairing their aatural wildness, so that all parts are readily accessible to visitors, of whom, as he informed me, there have een more than 10,000 this year, coming from nearly very State in the Union, as well as from other lands. On examining the ridge, we found that it is underlaid by a bed of arenaceous shale, that has been much roded by the water soaking through the conglomerate. s the shale gave way, the superincumbent conglome rate broke by natural jointage into square masses, which were left to slip apart, leaving spaces between the huge blocks. The general appearance may be innagined from the local term of "Rock City," which is certainly very appropriate. We were told that there certainly very appropriate. We were told that there
were a number of such rock cities in the region, and were a number of such rock cities in the region, and
that some of those in Cattaraugus Connty and in Alleghany County were quite as remarkable as the Panama Rocks.
The impression left with almost every visitor is that these rocks have been thrown to the surface by some subterranean force. And yet, any one who has ever visited the canons of Colorado or Ausable Chasm, N. Y., or the caverns of Kentucky, can testify that rocks of equal magnitude may be tossed about in an extraordinary manner by simple erosion and undermining. The Brokenstraw Valley, a mile wide, has doubtless known mightier flood than the little mill stream that now winds through its channel. This is proved by the conglomerate itself, which is a peculiar mass of tiny white quartz pebbles, each pebble being a true oval, and all of them, as they repose in the strata, being pointed in the same direction. These were, of course, parts of larger fraginents detached from primitive ledges, and subjected to long continued attrition and polishing by flowing water, until, in time, heavy beds of uniformly fine gravel were formed overlying beds of sandy mud. They were then cemented together by a calcareous deposit, and were finally broken into blocks by the washing out of the shale underneath. These blocks present perpendicular faces varying froin twenty to sixty feet n height, and about the same in breadth.
The fissures between them reach from top to bottom, generally giving room for a narrow pathway. In several instances the summits were in contact while the bases were spread apart, thus forming caverns of considerable size. One of these is called "The Counterfeiters' Den," because actually resorted to as a hiding place by certain manufacturers of spurious bills and coins, who are now serving their time in prison for their misdeeds. Various fanciful names have been given to other grottoes. The "Ice Cave" is a cleft in whose deep recesses the snow is drifted in winter in such quantities as to remain through the summer, not melting till autumn. Inquiry satisfied me that this phenomenon has nothing in common with those mysterions freezing wells and ice grottoes whose waters freeze in summer and thaw in winter. Indeed, the conditions are totally unlike, and the ice cave of Panama may be set down as merely a natural ice house, and, as such, a remarkable curiosity.
By a descent called "The Natural Stairs," a fissure is reached that may be entered from the suminit, followed for a long distance between rocks forty feet high, and under a rocky roof until the winding tunnel opens at the foot of the rocks. Those who persist in regarding the whole ridge as the result of upheaval rather than
subsidence called my attention to the fact that the stratified conglomerate, after running in a uniform di rection for a considerable distance through this issure, suddenly changes to an obtuse angle. But this tilting might have been due to the disturbance caused by the erosion of the underlying shale, which could hardly have gone on at an equal rate every where.
There is abundant evidence of the powerfal action of huge volunnes of water at some former period. The sur faces of the conglomerate masses are frequently polished, so as to make it necessary for one to be somewhat eareful in walking over them, lest a slip should be followed by a fall. The corners are nicely rounded, as if by running water; and to the same cause may be as-
cribed the numerous round pockets worn in the face of cribed the numerous round pockets worn in the face of the rocks.
"Cradle Rock" rests on a ledge a little below the top of one of the many precipices, weighs several tons, and stepping upon it will cause it to rock to and fro, as if
about to topple over into the chasm below. Yet the danger is imaginary, and probably nothing less than a charge of dyamite would dislodge the stone from the shelf on which it rests.
Although the surrounding region is under cultivation, the original forest has never been removed from the Panama Rocks, and the grand old trees so completely hide this remarkable formation that one might pletely hide this remarkable formation that one might
ride through the valley below without suspecting what a romantic region was thus concealed. Indeed, it is not easy to explain such a luxuriant growth of forest trees where there is so little soil to support plant life. I noticed particularly a large pine growing on the sum mit of an isolated mass of rock, the surface of which was nearly bare, while the perpendicular sides were fully forty feet high. Large birches cling to the sides, whose enormous roots rival the trunks in size, and run down in fantastic spirals to reach the rich soil covering the floor of the various fissures. On one large rocky fraginent we noticed two great trees, one at each end of the rock, whose spreading roots had completely enwrapped it, some of them being at least thirty feet long. These are but specimens of the hundreds of trees that grow here in a manner almost aerial, and wholly unlike anything I should look for anong the sober, steady old trees of this temperate zone.
In conclusion let me suggest the propriety of having this extraordinary region, which after all covers only a few acres, secured us a State park. Its present owner (as has been already stated) takes pride in keeping it in its primitive condition, except as it has been necessary to do a little clearing in order to make its intricate passages accessible. But the place is sought by speculators to whom it might not be safe to trust such a peculiar treasure of nature. The time has cone for the State to get possession of all such places, which are not only attractive as resorts for tourists, but are also richly instructive in both botanical and geological science.

The End of the Great Eactern.

Although there are still some persons who believeand perhaps the wish is father to the thought-that this great vessel, designed by Brunel, will not cowe to such an inglorious end, there is very little doubt that she will be broken up, and her fragments sold as old iron. After having passed through so many vicissitudes for the thirty years of her existence, the Great Eastern was successfully beached near New Ferry, on the Cheshire shore of the Mersey, on August 25. The previous Wednesday at noon she was got under way, and started from the Clyde on her last voyage. With her own steam she could make a speed of between 4 and 5 knots, but she was also towed by the powerful tug Storincock. The weather was bright when the vessel started, but next morning the wind freshened, while dark masses of clouds presaged the bad weather that followed. The gale was at its highest when the vessels were off the Isle of Man, about six o'clock on Thursday evening. The tug cast loose the hawser, which seemed an impediment to navigation, and while the engines of the big ship were stopped for a while, she became practically unmanageable, the gale having full play against her hull, which was very high out of the water. For four hours she was rolled about at the wercy of the seas. Heavy goods on board were dashed about below, while the funnels swayed as if about to be dislodged. Notwithstanding that she stood 40 feet out of the water, some of the seas swept over her, and a large gangway was torn from its chains and carried away. At length she was got to windward, and the course directed to the Irish coast ; but the gale moderated, and on Friday morning the Stormcock, which had kept near, resumed the towing of the ship, which reached the bar of the Mersey at five o'clock on Friday evening. There may be many who, but for the loss of life it would have involved, would have been glad to hear that the Great Eastern had foundered in the last gale she rode through, rather than that she should undergo the last indignities of a breaking up. After all, however, many a valiant battle-ship, with a large roll of honor, has shared the same fate. Sic transit gloria inundi-Iron.

Clags Cloth.
Mr. Dubus Bonnet, of Lille, France, has invented a process of spinning and weaving glass into cloth. The warp is composed of silk, forming the body and groundwork, on which the pattern in glass appears, as effected by the weft. The requisite flexibility of glass thread for manufacturing purposes is to be ascribed to its extreme fineness, as not less than from 50 to 60 of the original strands are required to forin one thread of the weft. The process is slow, for no wore than a yard of cloth can be produced in twelve hours. The work, however, is extremely beautiful and comparatively cheap. A French paper, commenting on the discovery, says: "When we figure to ourselves an apartment decorated with cloth of glass and resplendent with light, we must be convinced that it will equal in brilliancy all that the imagination can conceive and realize; in a word the wonders of the enchanted palaces mentioued in the Arabian tales."
this absorption of water, acting through the lapse of ages on organic matter, often aided by heat and pres sure? If such be adinitted, it would account for the frequent association of salt with hydrocarbons.-IF Maxwell Lyte, F.C.S., in Chem. News.

THE WATERHOUSE INSTANTANEOUS REGULATOR.

 The Waterhouse Electric and Manufacturing Com pany, of Hartford, Conn., has established a large business on the basis of a system of electric illumination including a new dynamo, a new type of arc lamp, and an automatic current regulator, which is sufficiently quick in its action to completely control the current, so that a full complement of lamps or only a single lamp may be placed in the circuit, as circumstances may re quire, the automatic regulator adapting the current to the load, so that the current is always proportionate to the number of lamps in the circuit. This system of automatic regulation effects a great saving in power, and insures uniformity in the light.The dynamo shown in perspective in Fig. 1, and diagrammatically in Fig. 2, has a closed circuit armature and is provided with three commutator brushes, a, b, c. The brushes, a, b, are arranged at dianetrically opposite points on the commutator cylinder, the brush, a, being connected with the field magnet conductor, and the brush, b, with the outside circuit. The third brush, c, is arranged in advance of the brush, a, and is connected with one end of the resistance, R, the opposite ond being connected with the remaining terminal of the field magnet. The resistance is made variable by the slide, which is controlled by the solenoid in the outside circuit. The current passes from the rein the outside circuit.
sistance to the outside circuit conductor through the slide. The brushes, a, b, c, are supported in a fixed position, the brushes, a, b, being arranged at the point of maximum commutation for the normal current.
It will be observed that by this arrangement the current passes from the arinature to the outside conductor through the brush, c, and resistance, $\mathrm{R}_{\text {, }}$ directly and indirectly from the brush, a, through the conductor of the field magnet and resistance, R. The sum of the currents passing over these two paths will

equal that used in the outside circuit, the current varying in the local and field circuits according to the position of the slide on the resistance and the resistance of the outside circuit.
By this arrangement, when the resistance of the outside circuit is decreased, the point of maximum commutation is carried forward toward the brush, c, and the current passing around the field magnet is diminished, thus reducing the pressure in the circuit, so that
troleum in the same doposits has ofter likely to lead to the development of some probable theory as to the formation of these hydrocarbons. Almost all specimens of rock salt, when struck or rubbed, give off more or less the characteristic odor of bitumen. Beds of rock salt are often colored brown by the bitumen they contain, and petroleum, on its emergence, is nearly always associated with brine. Deposits of rock salt are, as a rule dry and anhydrous, though salt itself has a considerable attraction for moisture. But more than this, those salts of potassium and magnesium often occurring with it are still more greedy of water.
If the seemingly probable theory that all formations of rock salt are due to the evaporation of sea water be correct, then these deliquescent and hygrometric chlorides would almost always have been the last part deposited in every bed of rock salt; and though, owing to their great solubility, they may have been denuded and washed or melted away perhaps long afterward, it is probable that they generally formed the final layer at first. These would, by their affinity for water, both during their formation and subsequently; tend to withdraw that liquid from all surrounding substances.
Now wost organic matter may be looked upon as a hydrocarbon combined with the elements of less power is required to drive the dynamo, at the water. Withdraw the water, and the hydrocarbon re- same time a constant current is maintained on the mains. Mptallic iron, if present, might modify the lamp circuit.
reaction. Is it not, then, a probable theory that nost The Waterhouse regulator varies the electromotive natural deposits of hydrocarbons owe their origin to force directly with the resistance of the outside cir-
cuit, maintaining the standard current on the lamp line by balancing the field circuit and the ontside circuit. This system, which is the invention of Mr. A. G. Waterhouse, is now lighting a large portion of the Centennial Exhibition at Cincinnati, Ohio. The plant consists of 240 arc lamps and a corresponding namber of dynamos.

AN IMPROVED CHARCOAL BURIEER.

A novel description of oven for burning charcoal in chamber separated from the fire chamber, designed

sCHERFFIU8' CHARCOAL BURIING APPARATUR

to continuously use the heated air, while gathering and condensing the products given off by the wood during the processes of charring, is, illustrated here with, and has been patented by Mr. Jacob Scherfina, of Winona, Minn. The fire chamber is surrounded by an inclosing case, and above the fire box is a box-like structure, with grates to receive the wood to be charred, a pipe leading from the chamber around the fire bor nearly to the top of the charring oven, the latter having a jacket that is connected with the outlet of the fire-box by two or more pipes, with dampers, whereby the direct products of combustion pass through partitions in the jacket around the charring oven to the smoke pipe. A branch smoke pipe is connected with the fire box, whereby the products of combustion may the fre box, whe pass off outside the jacket. The charring oven has two or more bottom outlets, to which pipes are con-
nected by slip joints, these pipes on either side leading through water troughs, and being connected to the lower portion of the inclosing jacket of the fire chamber, in order that all moisture and other products driven off from the wood in charring may be condensed, and all cool air from the outside be prevented rom entering the charring chamber. The discharge nozzles from the pipes leading through the water troughs on either lower corner dip within tanks, whereby a seal is formed preventing the admission of outside air. In commencing the charring procers, the dampers are at first arranged to conduet dampers are at first arranged to condac the jacket of the charring oven, and the pipes leading to it from the jacket around the fire box are disconnested, whereby the moisture first driven off from the wood will be expelled and pass to the outer air.

Chinese Have No Norvea.

 The North China Herald says the quali ty of "nervelessness" distinguishes the Chinaman from the European. The Chinaman can write all day, work all day, stand in one position all day, weave. beat gold, carve ivory, do infinitely tedious jobs for ever and ever, and discover no more signs of weariness and irritation than if he were a machine. This quality appears early in life. There are no rest less, naughty boys in China. They are all appallingly good, and will plod away in school without recesses or recreation of any kind. The Chinaman can do without exercise. Sport or play seems to him so much waste labor. He can sleep anywhere-amid rattling machinery. deafening uproar, squalling children, and quarreling adults. He can sleep on the ground, on the floor, on a bed, on a chair. in any position. It would be easy to raise in China an army of a milliou men-ney of ten millions-tested by competitive examiuation as to their capacity to go to sleep across three wheelbarrows. head downward like a spider, their ruouths wide open and a fly inside.
THE GLASGOW EXHEBITIOT.

The International Exhibition at Glasgow, opened by the Prince and Princess of Wales on May 8, is the largest that has been held in the United Kingdom since the London International Exhibition of 1862. The buildings and Park, the main entrance, facing northeast, being nearly it light in the evening.
opposite the Glasgow University buildings, which are on Gilmore Hill, on the other side of the stream. From that direction the grounds are reached by a grounds are reached by a
broad esplanade from a broad espianade from a
gateway in Bank Street, gateway in Bank Street,
Hillhead; but the ExhibiHillhead; but the Exhibi-
tion Palace can be entered immediately either on its east side, in Gray Street, or from Sandyford Street, in the center of its south side. The building is 1,300 feet long and 265 feet wide, comprising a nave and comprising a nave and
transepts, with an iron dome 170 feet high and 80 feet in diameter, and with feet in diameter, and with
ten towers, which are 200 ten towers, which are 200
feet high, and are partly of brick. The remainder of the building is chiefly wooden.

It is in the Saracenic or Moorish style of architecture, with arches of horseshoe form, polygonal domes or cupolas, minarets and pinnacles, and approand pinnacles, and appro-
priate decoration, painted priate decoration, painted
interinally with a rich internally with a rich
cream color, relieved by cream color, relieved by
deep red and rich dark brown, except the dome, which is painted red, blue, yellow, and green, and its framework apparently gilt.

Gallery occupying a substantial brick-walled part of Gallery occupying a substantial brick-walled part of
the building, made fireproof, and which may be perthe building, made fireproof, and which may be per-
manent. At the west end of the main avenue, beyond manent. At the west end of the main avenue, beyond
the principal building, and north of the line of its front, is the Machinery Annex, 830 feet long and 286

The buildings altogether cover a space of 474,000 square feet, of which 268,000 feet are devoted to general exhibits of the various classes (manufacturing and commercial and articleg of produce), 87,500 feet to the Fine Arts, 16,000 feet to the grand hall, 23,000 feet to dining and refreshment rooms, and 140,000 feet to machinery, boiler sheds, and the like. Messrs, Cainpbell, Douglas \& Sellars, architects, of Glasgow, and Mr. James Barr, C.E., furnished the design for these buildings. Messrs. W. Shaw \& Sons, of Glasgow, were the contractors.
The different classes of articles in the Industrial Exhibition follow much the same order as that with which everybody is now familiar. For example, agricultare, mining and quarries, engineering, shipping, machinery, carriages, cutlery, chemistry, food and liquors, textile fabrics, paper and printing, furniture, pottery and glass, jewelry, clocks and watches, fisheries, education, and musical instruments, each subject with others allied to it. We give an illustration of carpet weaving, as shown in practical operaeast to west, is more than a quarter of a mile long, 60| At the east end of the main avenue is the grand hall, |tion at the exhibition.-Illustrated London News. four substantial towers, is well proportioned. Its converging arches are adorned with the armorial bearings of Great Britain, France, Germany, the United States, Canada, Australia, South Africa, and India, and on circular panels below are four allegorical figures-Science,
that has been held in the United Kingdom since the Lon-
don International Exhibition of 1862 . The buildings and
grounds occupy sixty-six acres, in the Kelvin Grove over the four great arches under the dome.
In the a
around it. A chandelier with eight electric lamps gives
grands occupy sixty-six acres, in the Keivin Grove around it. A chandelier with eight electric lamps gives

THE GLASGOW EXHIBITION-CARPET WEAVING. feet wide. feet wide, and 43 feet high. The transepts, from the 200 feet long, 96 feet wide, and 60 feet high, with side grand entrance to the south entrance, are 215 feet, and galleries, an orchestra, and a fine organ, built by of the same width as the nave. The dome, rising from Messrs. J. W. Walker \& Sons, of Iondon. The decora-

Art, Industry, and Agriculture. Scripture texts, speaking of the manifold works of God, and acknowledging that the manifold works of man are the gift of God, are that the inanifold works of man are the gift of God, are
inscribed over the four great arches under the dome. tion is in red and yellow, with festoons of red and blue
cloth, fringed, heraldic shields and trophies, and cancloth, fringed, heraldic shields and trophies, and can-
vas panels, filled with colored ornamentation of Moorish patterns. To the south of the grand hall is the Fine

A feature of building construction at the present ime is the extensive employment of enameled brick. These are used in places exposed to moisture, or where contaminating vapors are present in the air. The great superiority of such brick to painted brickwork in kitchens, laundries, courts, areaways, etc., is unin kitchens,
questionable.

Comparicon botwoon the Britioh and Fronch Navies.
Lord Wenyss has just issued an interesting and im portant document, in which a comparison is instituted between the British navy and the French navy. The papers have been drawn up by Sir Spencer Robinson, and one of the appendices has been annotated by Admiral Sir Thomas Symonds, whose interest in this subjeet is well known, and who has himself contributed to the dissemination of information upon it. The method adopted in the tabular statements which form the main part of the papers is to divide the armored fleets of either country into four classes. The
of this division may be generally summarized :
Class A.-Ships universally considered fitfor purposes
of modern warfare at sea.

Class B.-Ships fit for coast defense, but not for sea.

The text of the memorandum contains a number of criticisms upon the existing naval administration. Some of the points, with added comments by Sir Thomas Syinonds, are amply confirmed by the results of the naval maneuvers, as, for example, the criticism that a blockade is only effectual with a very superior force and a grand reserve. When one comes to compare the amount of protection afforded by the British navy to British commerce with that afforded by the French navy to French commerce, one arrives at the startling result that the proportion of war steamers to merchant steamers is in Great Britain 1 to 90 , and in France 1 to 10. In the beginning of this century, the proportion in Great Britain was about 5 to 90 instead of 1 . The conclusion of the whole matter is that Sir Spencer Robinson and Lord Wemyss recommended the
addition to our navy of at least six battle ships (Adaddition to our navy of at least six battle ships (Ad-
miral Symonds says eighteen), sixty tirst-class swift craisers (Admiral Symonds says one hundred), a host of colliers, and an extension of electric cables. No estimate is given of the cost of these additions, but, for the sualler figures, it may be set down roughly at somewhere about $\$ 100,000,000$ on the lowest estimate. Industı ies.

Electric Light Patent.

United States Circuit Court, District of MassachuUnited States Circuit Court, District of Massachusetts, in Thomson-Houston Electric Company os. Citi-
zens' Electric Light Company et al.. decided August zens' Electric Lig
14, 1888. Holt, J.
This suit is brought for the infringement of letters patent No. 238,315, granted Elihu Thomson and Edwin J. Houston, March 1, 1881, for improvements in current regulators for dynamo-electric machines. The specification says :
" The object of our invention is to provide improved means for controlling automatically the strength of an electric current flowing over a circuit composed of a dynamo-electric machine and one or more electric lamps or other appliances, through which the current passes, and to obtain said control without the introduction of resistances as such, and without varying the speed or field of the dynamo-electric machine, and at the same time, if desired, to utilize the reaction principle for the magnetization of said dynawo-electric machine, or in other words, to cause the current generated to pass the field magnet coils. We accomplish these results at the same time that the power expended to drive the dynamo-electric machine varies directly in accordance with the changed resistance of its circuit, being less as the resistance is less, and greater as the resistance is greater.
" In the improved system of operation provided by our present invention, we possess the ability to cut out lamp after lamp from circuit, and yet maintain a uniform current strength in the rewaining lamps and economy of motive power proportional to the diminished resistance, while the normal light-giving power
of each lamp not cut out is maintained, and an absence of beating or necessity for any other adjust ments than those at the commutator of the machine obviated. These adjustments are preferably made automatic, for we find that with the commutator used by us, as hervin specified, a proper adjustment of the commutator being effected when a certain resitance ance is changed, give the same current. In our system we have employed a dynamo-electric machine in which the commutator is constructed of three insulated segments of a ring connected to three armature coils. The collecting brushes applied to said commutator are supported so as to be movable around the commutator without changing the relative positions of the two collectors. This movemen
brushes is well known in the art.
" We find in practice, moreover, that we obtain with this automatic regulation of the current strength an inependence of speed variations in the machine, it being nly necessary to so adjust the speed of running that When the speed is at its lowest, the machine shall yet be sufficient in power to maintain the number of
lights placed in its circuit. We are therefore able to operate successfully under conditions of motive power variations that have hitherto been recognized as fatal to steadiness of light obtained.
"In United States patent No. 223,659, January 20, 1880, before referred to. we have described a means of automatically adjusting the commutator collectors of dynamo-electric machines, which method is adaptable to the present case of current regulation.
"Our present method of operating, therefore, so far as it relates to automatic regulation, is based upon the same principles of operation as our previous invention, and it consists in an improved construction and mode of use of the apparatus employed in patent No. 223,659. "We claim :
' 1 . In a current regulator for a dynamo-electric machine, the combination of a device responding to changes in the main or generated current, a shifting commutator for said machine, and mechanism controlled by said responsive device to shift the commu said commutator shall be constant.
'2. In a carrent regulator for a dynamo-electric machine, an electro-magnetic device acted upou by varia tions in the main or generated current, an adjustable or shifting commutator for the machine, and mechan ism controlled by said electro-magnetic device to ad just the commutator to those positions where the main or generated current taken up by said commutator shall be constant."
The main defense in this case is that the prior patent, No. 223,659, issued to these complainants, is an antic pation of the patent in suit. Upon careful examination of the two patents in connection with the testimony of experts and the able arguments of counsel, I cannot agree with the position taken by the defendants. The object of the two patents, as disclosed by their titles is different.
The patent in suit is for a current regulator for dynamo machines, the earlier patent is for an automatic adjuster for commutator brushes on magneto-electric machines. Current regulation, or "to provide improved means for controlling automatically the strength of the electric current," is the object of the patent in suit, while the object of the prior patent was the construction of an automatic adjuster for commutator brushes, "whereby an automatic adaptation to variations of circuit resistance is secured, and the burning and destructive effects of false adjustments obviated." The design of the present patent is to adjust the commutator to those positions which shall keep the current constant, the design of the prior patent was to adjust the commutator so as to keep the current at its maximum value, or in other words, to adjust the brushes so that their contacts with the commutator segments should be at the neutral points. by which means the difficulty from sparking would be reduced both panm. To a close relation to each other. The patentees declare that the earlier method described is adaptable to the present case of current regulation, but they also say that their present method consists in an improved construction and mode of use of the apparatus employed in the prior patent. To construct an automatic adjuster which shall avoid sparking or leakage by bringing the brushes in contact with the commutator segments at the neutral line, or the points of the maximum difference of potential between the segments, and, therefore, of maximun current, way be an important invention, but it is certainly quite a different invention to adjust the brushes of the commutator to positions which shall keep the current constant, independently of the question whether the brushes touch the segments at the neutral points, or whether sparking is voided.
It is said that the present invention is shown in Figs. 1 or 2 of the earlier patent. The testinnony of
defendants' experts seems to find the invention described in Fig. 1, while the learned senior counsel for
defendants appears to reject this contention and turns o Fig. 2 as an anticipation of the patent in suit. I do not find in Fig. 2 of the earlier patent the combina tion of mechanism which forms the subject matter of the claims of the patent now under consideration. I do not find that which constitutes the important thing n the present invention, namely, the responsive device responding to changes in the main or generated current. In respect to Fig. 1, the wost that can be said is that it imperfectly describes that which was perfected in the subsequent patent now in controversy. It seems to ine in other words that the language of the pecification is strictly accurate wheresit declares that he present invention "consists in an improved construction and mode of use of the apparatus employed n patent No. 228,659."
Upon the subject of infringement I have no donbt. The question is not as to the form of dynamo the deendants may use or whether their machine may be adjusted by hand to avoid sparking, but the question is whether they use the complainants' invention by the mployment of substantially the same means to accomplish the same result, namely, the regulation of the urrent by means of a device responding to changes in the main or generated current, and this the complainants have shown.
Let a decree be entered as prayed for in the bill.
Decree for complainants.
It is said the right to use the dynamo regulator, which was the bone of contention in the suit won by the Thomson-Houston Company against the American Company, is worth $\$ 1,000$ a day.

The Leper Settlement on the Island of molokal. It is probably known to every one that leprosy exists to a considerable extent in the Sandwich Islands, but few, except those specially interested in the subject, know to what an extent it exists there, or what are the measures in force to isolate the sick and prevent the spread of the disease. In the biennial report of the president of the Hawaiian Board of Health we find an account of the leper settlement by Mr. R. W. Meyer, agent of the Board of Health in Molokai, from whici the following facts are taken.
The settlement is on the island of Molokai, to whit all lepers are sent as soon as their disease is recognize. On the first day of April, 1888, the number of lepen on the island was seven hundred and forty-nine, of whom four hundred and ninety-two were men and two hundred and fifty-seven women. It is carions to note that among this number were six British sabjects, two Germans, one American, one Pole, one Belgian, and one Russian. Custom, and a bad eastom it would seem, allows the relatives and friends of the sick to live in the settlement as long as they desir, and to leave it whenever they tire of their surroces. ngs. Of these relatives and friends, called "kokuas: there were one hundred and forty-four. In additiot to these there were forty-nine of the original inhat: tants of the island or their descendants, calicd "kamaainas," who had not yet been driven away by heir unwelcome neighbors. The entire population of Molokai, at the time of the report, was, therefore, niue hundred and forty-two. Of the buildings on the island in addition to the cottages of the residents, there ar twelve hospitals, two dispensaries, one house for the resident physician, one prison (with accommodations or two inmates), one receiving house for new coluen one store, and five churches, of which two are Catholic, two Protestant, and, curiously enough, one Morinod. The total number of buildings is three hundred and seventy-four, of which two hundred and sixteen are owned by the sick or their friends.
The lepers, and the children born of leper parents at the settlement, are supplied with rations by the gorernment, and also receive a bill annually which enables them to obtain at the store six dollars' worth of clothing, which is probably sufficient for the necessities of a warm climate. They are allowed to compound their rations for cash, if they so prefer. They also re ceive each half a bar of soap a month, and to every house or family is given one quart of kerosene oil per month.
There are certain defects in the management of the settlement which, if leprosy is a contagious disease (and the weight of medical opinion is in favor of that view). are to be accounted very serious and call urgently for remedy. The most important of these is the fect that "kokuas," the friends and relatives of the sick, are allowed to reside on the island as long as they choose. and then to leave whenever they desire to return to their homes. In this way, assuming that the disease is contagious, they spread it about and render null all the efforts made to repress leprosy in the islands. Another reform that is called for is the removal of paid nurses and attendants, and the substitution for them of sisters and others who are ready to devote their lives to the care of the sick, with no thought nor desire of returning to the outside world after having amassed a comfortable sum by the accumulation of their salary. That the management of the lepers, as far as they are
themselves concerned, is to be commended, is evideoced by a letter addressed to Father Damien by Dr. Woods.
in which be says that, after having visited every one of those places where the disease prevails, he has not found the people so happy, so well taken care of and attended to as the leper settlement on the island of Molokai.-Medical Record.

The sound of Thunder.

One of the most terse and succinct descriptions of a natural phenomenon is that recently given by M. Hirn, in which he says that the sound which is known as thunder is due simply to the fact that the air traversed by an electric spark, that is, a flash of lightning, is suddenly raised to a very high temperature, and has its volume, moreover, considerably increased. The column of gas thus suddenly heated and expanded is sonetimes several miles long, and as the duration of the fiash is not even a millionth of a second, it follows that the noise bursts forth at once from the whole column, though for an observer in any one place it commences where the lightning is at the least distance.

In precise terms, according to M. Hirn, the beginring of the thunder clap gives us the minimum distance of the lightning, and the length of the thunder clap gives us the length of the column. He also re-

TWO HOVELTIES DI THR 2OOLOGIGAL GARDETS.
The young chimpanzee, one of the most recent ad ditions to the Zoological Gardens, London, arrived from Sierra Leone some weeks since. It has been deposited with the society by Mr. Swanzy, Mr. Clarence Bartlett, the assistant superintendent of the gardens, going to Liverpool to meet his new charge and bring her to London. On her arrival in the gardens she was placed in the apartment adjoining that occupied by the well-known "Sally." Although the society at various times has received nearly forty specimens of thi species of anthropoid ape, nearly all of thein have arrived in such a sickly condition that they have been unable to withstand the rigor of our climate for more than a few days. About fourteen years ago one known as "Joe" lived for three years, and "Sally" has been in the gardens for five years. These two cases, however, are very conspicuous exceptions, and all interested in the matter will therefore be glad to hear that "Jennie" arrived in good health and spirits, apparently none the worse for her journey. If her owner intends leaving ber with the society, which, as her chances of life are greater under the experienced care she will there receive, it is hoped he will do, the keepers, having such a good start may succeed in the keepers, having
tors" having "sat upon" it, it was decided to bring it up on raw beef juice, on which diet it apparently thrived. It had for some time as its playfellow a little pariah puppy, which was called " the poor companion." The dog was not in the least af raid of the cab, although the latter often jumped on its playmate as if about to kill it. The little puppy, however, would drive the aggressor off with a snap and a yap, and showed itself the uaster. The cub was brought to England by Mr. E. J. Buck, of Dhariwal, Punjab, in the P. and 0 . steamer Ballarat. It is quite tame, and was an imnense favorite and pet among the passengers, one Anerican gentleman offering a large sum for it. It was first taken to Dr. Buck's house at Clapton, where it played with his children in the garden, and on the 13th of Augast was conveyed to the Zoological Gar-dens.-London Graphic.

Death of the Central Park Chimpanzoo.
Remus Crowley, the remarkably intelligent monkey Central Park, New York, died there on the 31st of August last, greatly to the regret of the children and he thousands of people who were in the habit of visiting our city zoological collection.
The animal evinced great aptitude in acquiring

TIGER CUB FROM INDIA.
human habits. He was taught to sit at table, partake of his meals, use the plate, fork, tumbler, etc. In his actions he sometimes displayed a wonderfully close ro lationship to humanity.
Mr. Crowley was born in June, 1883, in a remote part of the Congo country. W. H. Smyth, United States Minister to Liberia, bought him just as he was leavng Sierra Leone for home. The little chimpanzee stood the long voyage to Liverpool well, and when he arrived here in a White Star steamer, be was chipper and healthy. The city paid Mr. Sinyth the $\$ 125$ it had cost to bring Crowley to New York, and Supt Conklin carried the stranger uptown in the pocket of his overcoat. He was then a little bit of a baby weighing fifteen pounds or less. Supt. Conklin had a special cage made for him in the monkey house, and made Jake Cook his keeper. Jake named him, and began to train him at once. In a week he had taught him to sit at a table, and within a few months he had nitiated him into the use of knife, fork, spoon, dish and napkin.
Crowley spent his first winter in Mr. Conklin's office where he ripped up lots of valuable books and had any amount of fun. As he grew bigger, he had to be moved from house to house, in order to accommo date the immense crowds who visited him. Last date the immense crowds who visited him. Last
spring a cage was built for him, at a cost of $\$ 500$. In spring a cage was built for him, at a cost of $\$ 500$. In one compartment of it lived Kitty, a chimpanzee, now
two years old. Her native village is Banana Point. two years old. Her native village is Banana Poin' mate, but his death came too soon.

ENGIMERRITG ITVENTIONS.

A car coupling has been patented by Mr. Lee P. Alden, of Tastin, Mich. This invention provides a coupling designed to be aimple, durable, and
effective, and in which the coupling may be antomatically made and the cars uncoupled without the operator golng between them.
A railroad switch has been patented by Mr. John S. Meyers, of has been patented tion covers an improved switch adapted for nase with axed rails and points, designed to be simple and reliable, and capable of being operated by a lever locate ear the track or antomatically from the engine
A rotary engine has been patented by mr. Charles F. Sleigh, of Fort Wayne, Ind. It has cylinder having an outer steam chainber separated by annular inwardly extending flanges from an inner chamber in which a piston is held to rotate, provided at each end with a bub torning in suitable be
A lubricator for car axles has been pa tented by Mr. Benjamin E. Dapont, of Lexington, K Chis invention covers an improvement on a former p e being distribated to the bearing by a saturated wast packing, the present invention covering means to facilitate the introduction of the labricating att
and more equal distribation of the lubricant.

AGRICULTURAL invertions.

A stalk puller has been patented by Mr. John T. Whilden, of Stockton, Ga. A vertical shaft is sapported by an axle platform, a wheel on the
shaft having V-shaped teeth for holding the stalks, shaft having V-shaped teeth for holding the stalks,
while a clearer is held above the wheel, so that as the while a clearer is held above the wheel, so that as the
machine advances the stalks will be palled up by their machine advances the stalks
roots and fall to the ground.
A churn has been patented by Mr Nelson Smith, of Kearney, Neb. It has two sets o paddles, so arranged in a casing as to present their
blades at an obtuse angle to each other, the lensth the paddles being sach that when revolved they will just clear the top, bottom, and ends of the case, and the paddle shaft adjacent, thus rapldly acting on every portion of the milk or cream.

hiscelllaneous inventiots.

A combined latch and lock has been patented by Mr. Albert A. Kellogg, of Clinton, Mo. bination of parts in a device which can be used for elther or both purpoees, and is durable and simple in construction and effective in operation.
A lock for sliding doors has been patented by Mesers. John M. Tunis and William F. Bedford, of Madison, N. J. This inventlon combines both a latch and lock, designed to be simple, darable, and ineispensive, which will not be unlocked by jarring, and applicable to rolling doors of all kinds.
A friction clutch has been patented by Mr. William E. Talcott, of Croton Landing, N. Y. It is especially adapted for use in connection with brickface with ondercut groove, in which ride the beads of face with ondercut groove, In which ride the heads of for clamping the sections together quickly and readily. A brick machine has also been patented by the above inventor. The invention provides means for starting, driving, and stopping the operating portions, Improving the constraction of the press box with yieldingly mounted traps, providing for adjusting the planger when the machine is in operation, with ther nov
An elastic pump rod has been patented by Mr. George D. Plerce, of Shelby. Iowa. The pamp rod has a novel construction of springs and slidtions of the pump rod, to cashion the stroke and thu educe wear and tear by lessening the hammering an.
A roll paper holder and cutter has The construction Mr. John Zerr, of Keokuk, Iow out in front of the fixture, is separated into the desired engths by a slight pull sidewise over a suitable cutte the free end portion of the roll being thrown up read or the Angers to take hold of again.
A device for increasing the speed of vessels has been patented by Mr. Henry C. Smith, of
Brooklyn, N. Y. A jacket is provided into rookiyn, N. Y. A jacket is provided into which the blades of the propeller discharge water, which is forced
into violent and constant contact with the back water, in a manner designed to aid the propeller in propelling he vessel.
A chicken brooder has been patented Mr. John D. Wingert, of Fayetteville, Pa. It has metal plate with central opening, tasevers of a sheed lefecting plate, in connection with a special construc lon of box, ewinging gang board, ventilating opening and other novel features.
An apparatus for grinding button edges Veisee, Bohemia, Austria-Hangary, This inventoncovera a novel construction and arrangement of parta In a machine for grinding the edges of buttons into a cylindrical or conical shape, the machine being adapte to grind several buttons at the same time.
A rod joint has been patented by Mr. John G. Spear, of West Winsted, Conn. This inven ods, and is designed to cimplify the sections of gin rods, and is designed to simplify and strengthen the
mounting of the spring boit in the rod section and to acilitate the disengagement of the bolt from the to in the sleeve on the other section.
An escape attachment for vapors and
bella and Martha A. Kelly, of Holman Station, Ind. From each cooking vessel a bent pipe leads to a dact
along the under side of the long or main croes bar of the atove top, and leading to the smoke pipe, whereby oboxlous fumes or vapors will be conducted away.
A tailor's square has been patented by Mr. Herman A. Sens, of Cincinnati, Ohio. This inven
tion provides an instrument wherein messares may taken from the true angle of a square in any direction being especially adapted for use by merchant tailora, ress and mantua makers, for establishing accuratel he essential lines of a garment.
A music rack holder has been patentd by Mr. Albert W. Utzinger, of Astoria, Oregon. I masic on a clarionet piccolo, nate, or other masical instrument, having rings adapted to the body of the
natrument, and eyee to which a bar is fitted, with nstrument, and eyes to which a bar is itted, with

An attachment for window frames ha , patented by Mr. Valdy C. Overton, of Mobile, Ab It has revolving stops, which may be turned into when it is desired to remofe the door or window sash phereby such removal will be facilitated for cleaning, when they are replaced.

SCIENTIFIC AMERICAN

buildina Edition
SEPTEMBER NUMIRER.-(NO. 85.)

TABLE OF CONTENTS.

Elegant plate, in colors, of a dwelling lately erecter on Jersey Ctty Heights, N. J., with tioor plans, dollars.
Elegant plate, in colors, of a comfortable dwelling costiug nineteen
plans and details.
. Perspective view and floor plans of a beantifal residence at Rochelle Park, near New York. Our specialls for the Scisvitific Ansicican Buile ine Edition.
Perspective and foor plans of the residence
I. C. Goodridge, Eseq., at Rochester
A Queen Anne cottage lately erected in Rochelle Park, near New York. Perspective and foor plane, A beantiful seaside cottage, at Bath Beach, Long two thousand ive handred dollars.
modern cottage for eighteen handred dollars, lately buill, at Asbury Park, N. J. Perspective and fioor plans.
8. A beantiful hoase in the colonial style, lately
erected, in Rochelle Park, New Rochelle, N Y rected, in Rochelle Park, New Rochelle, N. Y. sand dollare complete. and dollars
Engraving showing perspective, with accompanying plans, of a six room cottage, lately erected on
Hancock Avenue, Bridgeport, Conn,, at a cost of slateen hundred dollars.
10. A one thousand dollar cottage, bullt at Bridgeport nd plans.
a cottage for two thousand eight hundred dollars,
built at Bridgeport, Conn. Plans and perspective Bective Long Island, at a cost of two thousand thre bundred dollars, complete. Floor plans and per
spective.
3. Page of

Page of
hotels.
Photographic illustration showing a cottage for two thousand ive handred dollars, built at Bridgeport Conn. Perspective and floor plans.
A residence at Nangis. Plans and perspective. A A beantiful double hoase for four thoasand ave Conn. Perspective view and floor plans.
Miscellaneons contenta: Ancient ase of bronze.-An
experiment in optics.-Planting - Disinfection optics.- Planting ornamental tree - Disinfection of sewers.-The rose jar.- Etifect
of time on slaked lime.-How to build a barn with plans. - Interior finish. - Seamless eavee
troughs with mitered corners (illastrated). The os troughs with mitered corners (illustrated). The os
cillation of high chimneys. Imitative and concillation of high chimneys.-Imitative and con-
ventional ornament.-A model Boaton kitchen.ventional ornament.-A model Boston kithen.
Weeds. - Artistic furniture (illustrated. - Im proved ventilating fank (illustrated).-Bent glase and tinting mortar.-Roof painting.-The Florida steam and ho
erable larch.

The Scientific American Architects and Bailder cents. Forty monthly. $\$ 2.50$ a year. Single coples wo handred ordinary book pages : forming, practically, a large and splendid Magazine or Architre URE, richly adorned with elegant plates in colors and with ane engravinge, illustrating the most interesting illied subjects.
The Fullnees, Richnese, Cheapness, and Convenience of thls work have won for it the Largzer Criculation
of any Architectural publication in the world. Sold by all newadealers.

MUN
GUNN \& CO., PUBlishrrs,
801 Bromima

Ə)usiness and Personal. 2
The charge for Ineertion under thes head is One Dollar
a line jor each insertion; about eight words to a line. a line jor each insertion; about eight woords to a lin as early as Thureday morning to appear in next iesuc.

Those in want of splendid drop forgings, send to The Diamond Prospecting Co., 74 W. Lake St., Chin The Diamond Prospecting Co., 74 W. Lake St., Chi-
cako, ull, keneral agents for khe sullivan dilamond procapo. III., rener
peecting drills.
The best Clafee roastors, coolers, stoners, separator Denberry machines: alos rioe and macaronim machinery,
are bullt by The Hungerford Co., eo Cortlandt Bt., N. Y Mechanical drawing, calculations, etc, taught correspondence. I. Donald Boyer, Dayton, Ohio.
Iron Planer, Lathe, DrIll, and other machine

Pratt \& Letchvoorth, Buffalo, N. Y.,
ialties requiring malleable gray iron, brass, or ateol cast-

lattes
lags.
For

For the lateat improved diamond pronpecting drills, Nicker
dee, pure nickel - Manufacturers of pure nickel an "Luttle Wonder." A perfect Eleotro Plating Machine. outat for plating, ete Hanson, Van Winkie \& Coo., Now ark, N. J., and 92 and 9 Liberty Bt., New York.
Perforated metale of all kinds for all purposes. The
Robert Altchison Perforated Metal Co., Chiceag, 1 . The Ralliroad Gazette, handeomely illastrated, pabThed weekly, at 78 Brondway. Now York. Speolmen The Knowles Steam Pump Works, 118 Federal aced a now catalogua, in which are many ner and to proved forms of Pumping Machinery of the single and
auplex, stoam and power type. This catalogue will be aplex, steam and power type. This catalogue will be
malled free of charge on application.
Link Belting and Wheels. Link Belt M. Co., Chicago. Presses \& Dies. Ferracnte Mach. Co., Bridgeton, N. J The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlet, deecribing water works ma,
chinery, and containing reports of tosta on application, Lockwood's Dictionary of Terme used in the practice of Mechanical Englneering, embractige thone current in
he drawing oflice, pattern shop, foandry, Atting, turnnd. smith's and boller shop, ecc., comprising over 6.000 deinitions. Ralted by a foreman patternmaker. 1838.
Price. \&3.00. For sale by Munn \& Co., 81 Broed

Ped
Pedestal tenoner. All kinds woodworking machinery Patents Bought 4 Sorwich. Conn.
A specialty made of coppe Booth $\& C$ Co., Detrot, Mich. poses. Steel Wrenches and Eyo Bolta. Billings \& Span Steam
Steam Hammers, Improved Hydranlic Jacks, and Tab Friction Clatch Pulleys. The D. Friebie No York. Veneer Clatch Palleys. The D. Frisbie Co., N.Y. city Veneer machines, with latest improvements. Far
Fdry. Mach. Co., Ansonia. Conn. Send for circular. "How to Keep Boilers Clean." Send your addree or free 88 page book. Jas. C. Hotohkise, 180 Llberty Bt .,

Lathez for cutting irregular forms. Handle and spoke hathes. I. F. Merritt Co., Lockport, N. Y.
Hodges' aniversal angle anlon makes pipe connection
at any angle. Rollstone Machine Co.. Fitceburg Mesa New Drill Chuck," holding straight teper or mase hanks. Address Standard Tool Co., Cleveland, 0 Split Pollezra low pre spit Palleys at low prices, and of same strength an
ppearance as Whole Pulleys. Yoom Worta. Drinker St., Philedelphia, Pa
Se Send for new and complete catalogue of Scientific New York. Free on application.

HINTS TO CORRESPONDENTS.
Namos and Addrese must accompang all letters,
or no attention will be paid thereto. This is for ooi
information, and not for pablication. This is for ou
Rereronncees to former articles or answers shonld
give date of paper and page or number of question.
Iuquirien not answered in reasonable time shonl
Ge repeated corregondente will bear in mind that
some answers require not
some ansere require not a little reeearch, and
thongh we endeavor to reply to all. either by lette
or in this department, each must take his turn.
special Writhen III formation on matters
personal rather than qeneral initerest cannot b
expected without remuneration.
Sclonitile A mortcan supplements referre
to may be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt
winerala sent for examination should be distinctly
marked or labeled.
(1) A. L. S. asks: Is blacklead made of carbon! If so, could not the waste carbon stubb it be snitable for moulding purposes? A. Blacklead ls mineral, and represents a modifration of carbon never practically produced artificially. It exists in cast
iron and to a certain extent in gas carbon, but battery rbons would not afford it.
(2) J. R. asks what oil of amber is, and how adulterated. A. Oil of amber is made from amber by dry dietillation. It may he rectifed by dis-
tillation from six voiumes of water, (Sp.) gr. $0.840-0.940$. tillation rrom six voinmes of water, (Sp.) gr. 0.840-0.940.
Unattacked by iodine, sulphuric acid, or potash. It is used in medicine and perfumery. It is said that kerosene, turpentine, and resin are used in falsifications of
it. We cannot give reliable formulx of proprietary it. We cannot give reliable formulw of proprietary
mediolnet.
(3) J. B. W.-The water pressure in ocks is static, and equal 100^{-48} of a pound per squer
inch for each foot in depth. Thus, at the bottom of gate 10 feet in depth, the presesure would be 408 ib. D square inch, but the average presesure against the who gate would be half the bottom pressare, as there no pressare at the top. The pressure, is mach grea: on the paddie wheels of steamers from the impect atriking of the water by the paddien. The amount
pressure varies with the relative speed of the vesel
(4). The dip of the wheels also is a factor.
(4) A. H. S. asks: If a boiler is tester to a pressure of 100 poands per square inch, cold wa: safely carry? A. Boilers, when tested by comptet inspectors at 100 pounds pressure, are allowed to ca two-thirds the test pressure. 2. The difference betwo hydraulic and steam pressare an generally used in to ing bollers. A. There is no difference between: dranlic pressure and steam p.essare, except the s
and convenience of examination. 3. Should the and convenience of examination. 3. Should the
inspector injure a boiler by patting on exceseive p? sare, would the city be responsible! A. This deper apon their motive. They are anppsed to apply i in owners desire to carry. If the bofler does not etand or is injared, the boiler must be repaired, strengthew.
(5) T. P. L.-The setting of the slide valves on a doable engine is not different from the orung of the valves of two separate engines, i. e., net $e s$ valve for its own engine. See Edwards' Practical Sicas
Engineer's Guide, $\$ 2.50$, which we can mail. Diecr: ingineer's Gulde, $\$ 2.50$, which we can mail. Diect. chased threads. The die compresees and hardens it iron in the thread.
(6) H. J. G.-Nor a free flowing solder ase a mixture of two parts tin, one part lesd. For : saturation. Then add a little sal ammoniec and diure with 10 to 20 per cent of water.
(7) F. X. B. asks: Can the best quality of imported English tool steel be manufactured in :is
country? If not, what is the reason? A. Tool eterl made In the United States folly equal to the beat Ene lish tool steel. What is atill better, it is mate it
he grades suitable for varions kinds of tooks.
(8) H. R. Y. writes: 1. Am making the Ne Holtz electric machine deacribed in Supprimin
No. 278 and woald like to know if wood poete as a substilate for glase for holding the colizy
combs. A. Wood dried and dipped in melted or thickly shelliaced will answer. 2 Winl diamert an do to cement the ansertured plate Wilh?
(9) S. E. H. asks : 1. How much wili body of air he redueed from the original volume uth A. \# of it a pressare of 30 poande to the square icc A. X of its original volume. 2. What premare : 45 pounds, s. One half the original one thir! ponnda. Th. One half the original volame: A. mand. Tressure of the atmoephere is 15 poond the no square inch, which is approximately true.
(10) W. B. C. asks: How should ago, in order to use gravity cellin? If these sone r, ago, in order to use gravity cellin? If these cass: x
used, what is the reaton? A. Gravity celle casox aned for the motor, owing to their bigh reeistepse
(11) C. H. F. asks : 1. How are steel or as well as they do? A. Their very high degree of pel ish preserves the ateel ornaments. 2. What compoos
 . Keep the paper irom discoloring without injurisg ing pads previoasly dipped in a saturated solation carbonate of soda. It should alno be kept in a d place. Prepared paper is sometimes preserved in ti:
boxce having a small quantlity of chloride of calcica
(12) A. H. A. asks for a good acid prool cement for lining storage ceilin. A. Apply to the pes
fectly dry cells a mixtire of $\&$ parts resin, 1 pert guta rectly ary celis a mixtire of a parts resin, 1 part guta
percha, and a little boiled oll, melted together and send
(13) A. C. P. writes : A bets B that the sun is nearer New York city in summer than in winter
If at same distance, bet is ofr. Who wing A or B ? A B wins. The earth's orbit is eccentric. The peribetim or nearest approsch to the san takes place during : last days of December. New York is farthest from the
(14) C. A. B. asks in what year copper toed bouts and shoes were introduced. A. The fret re ancient, bat we believe the modern mannfacture ret large way of such goods was commenced about twen
(15) Q. A. S. asks : 1. Of what should make the valves of a small alr pomp in connection with
a small steam engine? A. Of rubber pure gam. Provided the air pamp has the same stroke as the en donble and diameter shonld it be for a singte. with the diameter of the high pressare cyltnder: For equal stroke one-fifth the area of the bigh pree
sure cylinder in either case.
(16) E. G. B. asks the different ingred ans that are put into the cheap blue glase that botves are made of at the present time. A. 100 parts samd. a parts delp or impare soda, 40 parts wood ashes, 100 pars
potter's clay. 100 parts callet or broken glaes. Oxide cobalt or smalt is added to prodice the bine color.
(17) A. E. S. - Corrosive sublimate is Chlorlde of mercury, an active poison. The Mammectb Cave, in Kenticky, had a subterranean stream that way
called a river. Eyelem hishes were canght thero many
(18) W M. asks how to prepare linseedoil to give it a heary boay that will endare, foroillng toases on which the paint 18 dall A. Simmer, with
trequent stirring, 1 gallon \cdot linseed oil with $9 / 2$ pound trequent stirring, 1 pallon-linseed oil with $\$ / 3$ ponnd
powdered Iltharge untul a skin begins to form, then re move the scam, and when it has become cold and hat settled, decant the clear portions.
(19) H. C. H. asks whether, in laying out a trotting track, the distance is measured on the outalde center or ineide lines. A. All trotting and run carve or pole. No allowances are made on the track for tume or drivings. Athletic tracks are measured 18 inches from carve in America, and 12 linches in Grea Britain
(20) F. J. R. asks (1) what wash leather 18. A It is nuually split sheepskin dresed with oll, in in place of brass ones on the Carre's dielectrical ma chine with as good effect? A. Yes, except for liability
(21) W. L. A. asks how to soften light reather, such as in lines, saddles, bridies, etc., withou discoloring it. A. It is not practicable to do this after
the leather is made up Rubbing well with oil and tal. low, after a slight damping, will soften the leather but will also somewhat discolor it.
(22) U. H. P.-For soldering solution see query 6. This aleo makes a good dipping solution
for tinning everything but cast Iron. We know of no way of tinning cast iron by dipping. It can be imperfectly tinned by scraping the surface clean an asing a copper soldering iron with pure tin and sal-am
(23) J. R. desires (1) a receipt for a good ink for eoldiers' belts. A. Dissolve 8 sticks of the
best black sealing wax in $1 / 2$ pint spirits of wine; keep in a glase bottle and shake well previous to use. 2. A compound to give a darable polish. A. Pat $1 / 1 \mathrm{ib}$
shellac broken up in small pieces into a quart bottle or jug, cover with alcohol, cork it tight, and put it on the shelf in a warm place; shake it well several times a day then add a plece of camphor as large as a hen's egr, shak it well, and in a few hours shake it again and add one onnce lampblack. If the alcohol is good, it will all be dissolved in two days; then shake and use. If the materials were of ihe proper lind and the pollsh correctly prepared, it will dry in abont aive minutes
giving a gloss equal to patent leather. For a white belt use white shellac and zlac white finely powdered instead of the lampblack. 3. What should be mired with logwood to make ink? A. See recipes for inks in Solentifio Akgrican Supplement, No. 157.
(24) W. C., Jr., asks: 1. How are cattle horns, which are sild the horn to remove the core, unless it is already out. Scrape with glase or a sharp knife, dipping the horn in hot water occasionally to keep it
soft. When all the roughnees and spots are ofr, rub soft. When all the roughness and spots are off, rub
with fine sand paper or emery paper. When smooth as it can be made in this way, take powdered pamice stone or rotten stone, with a fannel cloth and linseed oil, and
rub leng thwise until all the sandpaper marks are re moved; then rab with a clean flannel cloth till fally polished. It is sald that after this a cotton cloth and anally, tissue paper will produce a atill higher polish. A pair of horns can be monnted by taking a block of wood long enough to extend into the horus, leaving them the original distance apart. Then fill the horne with wet plaster of Paris and push them on the end
of the block. When dry, they will be solid. Cover the block with satin or plush. 2. How are metal vessels glazed? A. See "Enamels and Glazes" in Spons "Workshop Receipts," 3d series, p. 204 et seq. We can send the volume post paid for $\$ 9$. 3. If rain water becomes foul in a cistern, how can it be made pure, or
how can it be kept from becoming fouls A. It can be purifed by altering through charcoal. There is no way to prevent its becoming foul except to keep the
cistern clean, and have abondant access of air to the water.
(35) G. B. D. asks how to destroy vermin in a building. The building to de vacant. I wish something which will not destroy paint or wall
paper. A. Close the windowe and doors and burn paper. A. Close the windowe and doors and barn
sulphur. It will kill all vermin, but it will also bleach obliged to fall. back on borax and insect powder Neither of which is radical.
(26) C. R. desires the receipt for preparing mocking bird food. A. Mix together 2 parts corn meal, 2 parts pea meal, and 1 part moss meal; add ture $t 00$ greasy, and sweeten with molasses. Fry in a frying pan for $1 / 4$ hour, stirring constantly, and taking
care not to let burn. This makes it keep well. Keep lis in a covered jar.
(2") A. N. W. writes : 1. My plants are often infested with green lice, and sometimes with a
small white fy or miller which remains on the under side of the leaf. WIII you kindly give measures for destroying the insecta? A. Take of quassia chipe $85 / 4$ oz., larkspur seed 5 drachms; boil these together in 7 pints When the untia the decoction is reduced to 5 pints. When the liquid is cooled, it is to be strained and ased with a watering pot or syringe, as most convenient. 2.
What will kill carpet bugs or prevent their doing misChief to carpets and clothing orevent their doing misBaffalo Mothe" on p. 112 of Scientifio Axerican for Auguat 25, 1888. 3. Pleasc give pronunciation of the word potpourri, and receipt for preparing the compound. A. Po'-poor-ee', see Webster's Unabridged Dletionary. During the rose season, gather a half peck of rose petals, take a large china bowl, strew a handful
of table salt in the bottom, then three handfals of petals, of table salt in the bottom, then three handfals of petals, main arve days, stirring and turning twice a day. They should now appear moust, when add three ounces of coarsely powdered allspice and one onnce bruised cInnamon. This forms the stock. Allow to remain a
week, taming daily from bottom to top. Then pat into
the permanent jar one ounce of allspice, and, adding the
stock layer by layer, sprinkle between the layers the stock layer by layer, sprinkle between the layers the
following mixtare. One ounce cloves, one oance cinger root sliced thin, half an ounce anise seed brulsed ten grains finest mask, half a pound freshly dried avender flowers, two ounces powdered orris root, orange and lemon peel, and such freshly dried nowers voleta, tuberoses, clove pinks or other varietles of highly ecented flowers. Then add cologne, roee or orange and Florida water and any fine extract that will
greatly add to the perfume. Shake and etir the jur greatly add to the perfume. Shake and stir the jar once ing given to the apartments. Add at pleasure the fol lowing essential olls• Jasmine, roee, geranium, vervain muak, rosemary, or neroli.
(28) T. A. S. writes: I do a great dea of plating in silver by an old process, but have forgot As soon as 1 dissolve the silver I can commence plating but the manner of diseoving the gold to make it fald cannot find. A. Gold ts dissoolved by boiling in aqua
regla and the nitric acid expelled hy adding hydrochloric. The resulting solution of chloride of gold is boile nearly to crystalizization and then is dissolved in
water. For manipulation in connection with the water. For manipulation in connection with the
battery, see the article on "Electro-Metallargy" In Scientific American Supplement, No. 810
(29) B. B. asks : 1. What will remove od liver ofl spote from fannel and cambric \% A. See No. 168, for removal of oil and other spots from vari. ous fabrics. 2 . How can I make pine or deal as whit as new A. Take one part calcined soda and allow it to stand \mathcal{x} hour in 1 part slaked lime, then add 16 parts water and boil. Spread the solution thus ob cained upon the board with a rag, and after drying, ru with a hard brush, and ine sand and water. A solutio of 1 part concentrated salphuric acid and 8 part
will enliven the wood after above application.
(30) C. L. W. asks : 1. What is the process of transferring a lithograph from paper toglass,
that it will become transparent ? A. Firet coat the lass with copal varnish, when nearly dry but still acky press on the wetted picture, face downward, amp the paper and rob it of with the finger, leaving the picture to be looked at through the glase 2. How to make imitation frosted glass. A. Make saturated solation of alum in water and wet the glase with the liquid. It is advisable to have the glase in brain oft posilion, as then the solution is not likely to lowing colors: Bright red, orange, brilliant green, blue purple: \boldsymbol{A}. The addition of anilline colors that a soluble in water to the foregoing mixtare or a var nish colored with anlinine dyes, may be used, but, of course, they are not permanent.
(31) W. J. asks : 1. What kind of tree ased in some countries :or making bread po the awdust? A. The breadfruit tree (Artocarpus incisa) fur ishes a froit that resembles bread in taste. It grow the Pacific islands and elsswhere in the tropics. The cassava tree (Manihot utiveoima) is indigenons to The root, which is taberons, contains starch and oisonous matter. The starch is separated and made nto meal, which is used to make bread. There is no notriment in sawdust. 2. Is the Shipman engine pat ted in England A. Yes.
(32) J. E. B. asks how to make a com osition for statuettes, one which has clean white color is strong, hard, and not too expensive. A. Soak plas and then grind it to a powder. In using in an oren,
mith water, and to produce cloade and veins, atir in any dr color you wish. This forms an artifcial marble, and ceptible of a high polish.
(33) J. E. D. asks: Will sound of can nons, bells, etc., break glass? Is there any case on re
cord? Will sound if confined split a doory A. The con cussion following or incidental to loud sounds has stance of such destruction by sound alone can be cited. Sound conld not spitt a door.
(34) C. L. K. asks: 1. Was an absolute vacuum ever attained! If so, in what manuer? Wa of mercury in it? A. The ncarest approach to an ab solute vacuum probably contains some vapor of mer cury. It is donbtfu) If an absolute vacuum was eve
produced, although it has very nearly been reached, so produced, although it has very nearly been reached, 80
great a rarefactlon beling obtained that the static dis charge would not pass. 2. What is the cause of the blue color of the sky ? A. This has long puzziled me fac particles of liquid water in the upper regions of the atrosphere. The question is discassed in Ganot''
Physics under meteorology, and the canee assigned is Physics under meteorology, and the cause assigned is
based on Tyndall's researches on the decomposition o based on Tyndal
(35) M. A. M. and A. K. ask how to manufacture hewng zum, such as is eold by confec ioners. A. Take of prepared baleam of tolu 2 onnces, in water bath and mix in the ingredients, then roll in (36) H (36) G. H. H.-Spence metal is composed ferroas aniphide of iron (FeS) mixed with melted iphnr. The ferroas silphide is made by roasting ron pyrites and pulverizing before adding to the in Scientific Axibican Supplement, No. 2re.
(37) B. M. asks: What should be the ricycle, on on mame plan as the one deacribed in Sct ricycle, on bame plan as the one described in scr-
entierc AnsRican, February 18. Also height. diameter, and thickness of plate for boiler, and number and size of tubes for same. A. The two cylinders should be 2 in. diam., with 3 in. stroke ; boller made of
$\$ / \mathrm{in}$. copper shell, X / in. heade, riveted and brazed, and

20 seamless copper tabes 1 in . ontaide diameter and 1.16
in. thick. Diameter of boiler, 12 in. in. 2hick. Diameter of boiler, 12 in in. height, 24 in.; Are the smallest size Shipman boiler, with 30 lb . steam oreare, and should be able to go 10 miles per hour ordinary grades.
(38) J. B.-A pendulum in a perfect vacuum and absolately free from friction shonld con
tinue to vibrate indefnitely, poseibly perpetually. Bnt a purfect vacuum and freedom from friction are im possible. Granting the posilibilty of freedom from atmoepheric and other friction, the motion of the earth around its axis, and the displacement of the center of aitraction by the motion of the moon, would anally bring the motion of the pendulum within the ahould remain any element of oecillation, it would be
(39) F. W. P. asks: How much whit (38) F. W. P. asks : How much white oak wood will make as much steam as a ton of good
soft coal, sach as is used for furnace purposesp A. One cord is the mean of many trials. Of hickory a little les is needed, and with pine a little more, white oak being a medium for steam making.

TO INVENTORS.

An experience of forty yeark, and the preparation of
nore than one hundred thourand appllications for pa tonts at home and sbroed, enable us to understand the arrs and practice on both continente, and 2 poseese un
oqualed facilities for procuring patents every where. ynopals of the patent laws of the United States and all
foreign countries may be had on application, and perion ontempuntriee may be had on applicalion, ar home or abroad, are Invited to write to this ownoe for price ensive facilities for conduoting the business. Addren UNN \& CO.. omice Scientimic Amirican, 861 broad ay, New Yort:

INDEX OF INVENTIONS

For which Lettore Patent or the United states were Granted

September 11, 1888,
AND RACH BRARING THAT DATE

[See note at end of list about copies of these patents.]

Axle lubricator, S. H. Cottrell..........................
Axle lubricator, car, B. E. Dupont...............
Axie lubricator, car, R. Fass...........38, 372,
A

\section*{| Bae |
| :--- |
| Bal |}

Baling press, W. L. WIght....
Bar. See Boritig bar.
Battery. See Secondary battery.
Beartng, ball, E. B. Latke
Bed. etc., O. Flohr
Bed lounge leg, folding. I. Half
Bevel and square, H. W.
Block.
See Meat block.
Board. Bee Drawing bo
Boat davit attachmenth C. F. Hodin...
Boller.
Botler. See Sectlonal botiter. Steam boiler.
Boot, button, M. J. Ferren........ Boot, button, M. J. Ferren..
Boring bar, Bram well \& Boyle.
Boring bar, Bramwell \& Boyle.........
Bottle stopper holder, C. A. Tatum.
Box. See Dellivery box.
Box. See Dellivery box. Joural box. Paper
Box ovener, R. A. Kilght., C. W. Lewis............
Box opener, R. A. Knight........................
Bracket for Window sllis. etc., Himmele \& Holt..
Brate
Brake. See Wazon brake.
Brick machine. W. E. Talle

Brick ma 8mith Brocer

Brooder, chicken, J. D. Wh...................
Brush, liexible back horse, W.

Brush, tlexible back horse, W.J. scott
Buaky top, F. Hill
BukRy top, F. Hi..............
Burglar alarm, M. W. Brooke.
Burner. See Hay burner. Ref
Burner. See Hay burner. Refuse burner. Vapo
burner.
Butter package, G. W. Bradiey

Button edzes, apparatus for grinding, J. Mahla.
Button fastener, T. R. Hyde, J
Button machine, J. C. F. Dict
Button shanks and fasteners, machine for con-
Calendar. W. B. Fowl
Can. Soe Oll ca
Can, I. C. Mayo
Can opener, J. F. Yrench............................. Cap threading machine. P. Kler..
Car coupler, E. J. J. Miller.
Car couppling, L. P. Alden
Car coupling. J. A. Hingon
Car coupling, J. A. Hingon.
ar, rallway. Blasell d
Car seat. R. M. Hunter.
Car, sleeplng, F. 8 . Tull

aree and lampe and operating the brakes on
Carriage canopy Jotnt, Gates \& Enell
Cart, road, s. Cralg...
Cartridge loading machine. x. A. Franklin
Case. See Plano case.
Caster, furniture. J. Toler
Chair seat and cushlon, combined. A. Morris
Chat for
Follett
Chmney cap and ventiliator, A. Martin
Churn, N. Smith
Cloaner. See Saw oleaner
Clevis and pln, W. H. Bate
Clothes drler. J. standen.

HEW AND IMPORTAMT ECHNICAL BOOKO

 HENRY CAREY BAIRD \& CO.,

LIMITTIG NUMERS OF TEETH IN

GUILD \& GARRISON

THE PENNA. DIAMOND DRILL \& MFG. CO

VELOCITY OF ICE BOATS. A COLLEC
 TALCOTT'S COMBINATION
PATENT BELT HOOKS,
W. O. TALCOTT, Providence, R. I.
PERFECTHNSPAPER

CURE ${ }^{\text {Win }}$ DEAF

BIBB'S Celdontad oridmal

GLACIAL EPOCHS AND THEIR PE

Hogshead
IVE ${ }_{\text {and }}^{\text {MACHINERY }}$
\& B. HOLMES

CASTING METALS UPON COMBUSTI

HARRISON CONVEYOR!
$\underset{\text { Handing }}{\text { Frain, }}$ Goal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&C.

SHIP WAVES.- BY SIR WILLIAM

WATCHMAKERS COMPARATIVE VALUE OF STEEAM
and hot water for transmiting heat and
elaborate discu ssion of the subject, by Charles E. Emory

2nd Mas MACHINERY ?

THE
Copying Apparatus

ECLIPSE

COSTS IN MANUFACTURES-A LEC

$\$ 10.00$ to $\$ 50.00$ R

ASBESTOS FELTING WKS. $\begin{aligned} & \text { Hair - Felt } \\ & \text { Cement Felting } \\ & \text { Coverings }\end{aligned}$ ${ }^{\mathbf{9 8}}$ Malden Lane, N. Y. \mid For Heater, Steam \& Water Pipes HYPNOTISM IN FRANCE.-A N IN

Patent Giobe Hitch-Strap Fastener
by the atd of Which Hitching

GAS ENGINEERING, RECENT PRO

CLARY'S NOISELESS RUBBER WHEELS Difirerent Styles. \quad Catalogue Free.
Geo. P. Clark, Box L. Windsor Locks, C

ICE \& REFRIGERATING ${ }^{\circ}=1$

Useful, Beautiful, and Cheap.
To any person about to erect a dwelling house or sta examine the latest and best plans for a chureb, schoo low cost, should precure ects' and Builders' Edition of the Scientifi The information these volumes contain renders the nd to persons about to build for themselves they will Ind the work suggestive and most useful. They contain colored plates of the elevation, plan, and detail draw tion and approximate cost. Four bound volumes are now ready and may be ob
tained, by mail, direct from the publishers or from any newsdealer. Price, $\$ 2.00$ a volume. Stitched in pape

MUNN \& CO., Publishers,
361 Broadway, New York.

FOREIGN PATENTS

 their cost reduced.
The expenses attending the procaring of patents is

 duced the obstacle of cost is no longer in the way of :arge proportion of our inventors patenting theirinven. CANADA. -The cost of a patent in Canada is even ormerincludes the Provinces of Ontaric, Quebec the筑unswick, Nova Scotia, British Columbia, and MantThe number of our patentees who avall themselves of patents in Canada is very large, and is stendily increas ENGL, A ND. -The new English law, which went into I Great Britain on very moderate terms. ABritish pa Chan includes England, Scotland, Wales, Ireland and the nancial and commercial center is the acknow edged goods are sent to every quarter of the worla, and he in Enzland as bis United States patent produces for or almost every patentee in this country to secure a paected as in the United States. OTHER COUNTRIES.-Patents are also obtalned n very reasonable terms in France. Belgium, Germany,
Austria, Russia. Italy, Spain (the latter includes Cuba all the other spanish Colonie An experience of rorty years has enabled the ompeten and trust anco Aus in anll to establish oreign countries, and it has always been their alm to
ave the business of the r cllents promptly and properA pamphlet containing a synopsis of the all counuries, including the cost for each, and othe curing of patents abroad. may be had on appication to MUNN \& CO.. Editors and Proprietors of THE SCIENTTFIC AMERTCAN, cordially invite all persons desiring trade-marks, in this countrio pot abroad, or the registry of at their
offices, 361 Broadway. Examination of inventions, offices, 381 Broadway. Examination of inventions, con-
sultation, and advice free. Inquiries by mail promptly daress, MUNN \& CO..

Publishers and Patent Solicitors,
3na
Broadway New Branch oppices: No. 62 and 624 F Street, Paciflo

TELESCOPE For Sale. Ten inch silver plass equaYOLNEY W. MASON \& CO FRICTION PULLEYS CLOTCHES and ELEVATORS NAVAL ARCHITECTURE.-AN IN

The Scientific American

 PUBLICATIONS FOR 1888.The prices of the different publications in the United
States, Canada, and Mexico are as follows:
The Scientifle American (weekly), one year . $\$ 3.00$
year. 5.00
Editiontiflc American, Architects and Bullders

- COMBINED BATES

D Rates.
he Scientific American and Architects and Build- ${ }^{87.00}$
The Scientific America. Supplement, and Archi- 9.00
tects and Builders Editlon.
This includes postage, which we pay, Remit by postal MONN \& CO.. 361 Broadway, New York.

Wovertisements．

The March of Progress OUR LATEST IMPROVEMENT！

 OIL ENGINES．

TELESCOPES－THEIR HISTOPS．

 dELAFIELD＇S PAT．SAW CLAMP
 ymilo history of the electrical art

TO INVENTORS avo manuriciviris
 The 57th Annual Exhibition

 American Institute of the City of New York

PATENTS．

PATEW＝2＝2

\qquad

 RR NCH Oprick
 The Baldwin＂

 Otis Brothers de OO ad Hoisting Machiner

STFRET B ATIE

HOME－MADEINCUBATOR．－PRACT

Simond＇s Rolling－Machine Co．，Fttehburg，Mane SYSTEMS OF DISTRIBUTION OF

THE COPYING PAD－－HOW TO MAKE

ICROSCOPES

THE NEW CROTON AQUEDUOT：－ Detailed description of the great aqueduct now belng
constructed to morease hhe water gupply of New Tor
Sit
Sit

PIPE COVERINGS

Absolutely Fire Proof． BRAIDED PACKING，MLL BOARD，SHEATHING，CEMENT，FIBRE AND SPECLALTIES．
 BRANCHES：Phlla， 24 Strawberry St．Chicago， 86 E．Lake St．Plttsburg， 37 Lewls Block．

A

雖INDELBLE DRAWING INKS． aut

LEAD SMELTING．－A FULL DESCRIP－

aJACKET KETTLES，

Scientific Book Catalogue

 95 MILK ST．，BOSTON，MASS．

This Company owns the Letters Patent ranted to Alexander Graham Bell，March 87，No．186，787． The trans， 787 Crms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents，and renders each
individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use，and all the consequences

HY．JOHIS＇ ASEze STEAM PACKING

Building Felt，Liquid Paints，Etc． Descriptive price H．W．JOHMS MFG．CO．， 87 Malden Lane，N．Y．

JAMES B．EADS．－AN ACCOUNT OF

RUBBER BELTING，PACKING，HOSE．

VULCANIZED RUBBER FABRICS Air Mraakze FIOse RUBBER MATS， RUBBER MATTINC NEW YORK BELTING \＆PACKING CO．，15 PARK ROW，N．Y

THE KODAK CAMERA
 Instantaneous Pictures！

 Seoa for desertip． The Eastman Dry Plate \＆Film Co．
 BRASM WORT wity
 QUARANTINE SYSTEM of LOUISI

AUTOMATIC CUTOFF ENGIIES FXYM

エエエヨ

马riuntific American

The Most Popular Scientific Paper in the World

 Only 83.00 a Year，including Postage．Weekly． This widely circulnted and splendidly Mustrutespaper is pubilisted weekly．Every number contains alf－ teen pages of useful information and a large number representing Engineering Works，Steam Maching
New Inventions．Novelties in Mechanles，Macufacter Chemistry，Electricity，Telegraphy，Photography，Are
tecture，Agriculture．Horticulture，Natural Historg． Complete List of Patents each week，
Terms of Subscription．－One copy of the Sanic
TIFIC AMERIOAN will be sent for one year－ 52 ． or Canada，on receipt of three in the Unitted Satian br the lishers；six months， 81.50 ；three months，$\$ 100$.
Clubs．－Special Masters．Write for partlculars． The safest way to remit is by Postal Order，Dmant，or of envelopes，securely sealed，and correetly sadrens
seldom goes astray，but is at the sender＇s risk． dress all letters and make all orders，drafte，eta，

MIULVIT \＆CO． 361 Broadway，New York TIET
Scientific American Supplement． This is a separate and aistinct publication frob
THE SCIENTIFIO AMERICAN，but is uniformitherevith size，every number containing sixteen large pages fill papers，and accompanied with translated deseriptios
THE SCIKNTIFIC AMIKRICAN SUPPLKMENT is publisbe weekly，and includes a very wide range of contenta presents the most recent papers by eminent writers it all the prinoipal departments of Science and
Useful Arts，embracing Biology，Gecloky，Minera Natural History，Georraphy，A rcheology，Astr
Chemistry，Electricity，Llpht．Heat，Mechant ship B．Steam and Rallway Engineering，all Technology，Manufacturing Industrles，Sanitary R my ．Biography，Medictne，etc．A vast amonnt of tren and valuable information obtainable in no other The most important Enpineering Works，Mecharinms
and Manufactures at home and abrosd are illuatrote and described in the SUPPIEMENT． Canada． 85.00 a year，or one copy of the ScIENTIFIC Az ERICAN and one copy of the SUPPLEM kNT，both mallel
tor one year for 87.00 ．Single coples 10 cents． and remit by postal order，express money order，or checls

Euilders Edition

BCILDERS＇EDITIoN is issued monthly． 89.50 a yeal to about two bundred ordinary bnok pakes ；forming ie and splendid Magazine of A rchitect tine engravings；illustrating the most ind with oth lied subjects． A special feature is the presentation in each number
of a variety of the latest and best plans for private real rate．cost as well as the more expe expensive．Drawings in
mot The elegance and cheapness of this mapniticent wurl MUNN \＆CO．，Publishers， 361 Broadway，New York PRINTING INKS．

