a WeEkly journal of practical infor Mation, art, science, mechanics, chemistry, and manuractures.

	NEW YORK, AUGUST 4, 1888.	Ear.

THE ITALIAN WAR SHIP ITALIA.

In our paper for May 26 last we gave an engraving of the gigantic Italian war ship Italia. We now present an illustration showing how her great guns are arranged, for which, and the following particulars, we are indebted to Engineering :

Length between perpendiculars.
Breadth of beam at water line.
Breadth of beam at upper dec
Draught of water forwa
Draught of water mean.
Area of immersed midship section
Displacement at load draught..
Length of armored tower on fore and aft line. Breadth of armored tower across ship (extreme) Length of armored tower perse.
Breadth of armored tower
Distance of stem from armored tower
Thickness of side of tower, including armo
Thickness of armor on tower..
Height ofs of armor on breastwork
Helght of tenter of heavy guns above water line.
.iph of top of tower above water line.
Height of upper deck above water line, forward
Height of upper deck above water line, aft. .
Height of upper deck above water line, amidships
Height between upper deck and battery deck Height between upper deck and battery deck
Height between battery and second deck Height between battery and second deck..
Depth lower deck below water line, amidships, sides. Depth of hold under lower deck..
Extension of ram beyond forward perpendicular.
Distance of point of ram below water line.

NEW YORK, AUGUST 4, 1888.
There are four torpedo ports arranged on the broad-

Number of engines	4 se
Number of cylinders.	12
Number of propellers.	ft. in.
Diameter of propellers.	
Number of boilers.	26
Number of furnaces (three to each boiler).	
Total grate area.	1,521 sq. ft.
Length of ship, fore and aft, occupied by engines coal, and boilers.	$\begin{aligned} & \text { ft. in. } \\ & 250 \quad 0 \end{aligned}$

The estimated weights of the hull, armor, etc were given approximately as follows

Tons.

Hull
Armor of armored deck
Armor of citadel.
Armor of ammunition shaft
Armor of chimneys..

Total weight of armor

Teak backing
The total weight of the machinery is about
The armament consists of four 43 cm . (110 ton) R. L. R. guns supplied by Armstrongs. . There are eight 15 cm. (6 in.) Armstrong breechloaders. Six of these are carried on the upper deck, two being respectively bow and stern chasers. There are six smaller quick-firing guns of 57 mm . caliber.
There are machine guns, comprising twenty-two Hotchkiss and quick-firing guns for the boats and landing parties. There will also be a number of Maxim guns.
side, two ahead and two astern.

Remarkable Tunnels.

Among the great tunnels which have been excavated, says a writer in Scribner's Magazine, the St. Gothard is the most remarkable. It is 9,4 miles long, with a section $261 / 4$ feet wide by $192 / 3$ feet high. The work on this tunnel was continuous, and it required 914 years for its completion. The Mont Cenis tunnel, $81 / 3$ miles in length, was completed in twelve years. The Hoosac tunnel, $43 / 4$ miles in length, 26 feet wide and $211 / 2$ feet high, was not prosecuted continuously; it was completed in 1876. These tunnels are notable chiefly on account of their great length; there are others of more moderate extent which have peculiar features; one is unique. This tunnel is a portion of the St. Gothard railway, and not very far distant from the great tunnel referred to above. In the descent of the mountain it was absolutely necessary to secure a longer distance than a straight line or an ordinary curve would give. The line was therefore doubly curved upon itself. It enters the mountain at a high elevation, describes a circle through the rock, and, constantly descending, reappears under itself at the side; still descending, it enters the mountain at another point and continues in another circular tunnel until it finally emerges again, under itself, but at a comparatively short horizonta distance from its first entry, having gained the required descent by a continued grade through the tunnels.

THE ITALIAN WAR SHIP ITALIA,

§rimutific gelmetian.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMEIRICAN.

 Remit by postal or express money order.
 MUNN \& CO., 361 Broadwa

The Scientific American Supplement
Is a distinct paper from the SCIENTIFIC AMRRICAN. THE SUPPLLEM LNT
is issued weekly. Fivery number containg 16 octavo pages. uniform in size
 Giombincd Rates.-The SCIENTIFIC AMERICAN and SUPPLEMENT
will be sent for one year, to any address in U. S. or Canada, on receipt of seven dollars.
reghe sisterst way to remit is by draft, postal order, express money order. or
retter. Australia and New Zealand.-The Scientific American and
SOPPLEMENT will be sent for a ittle over one year on receipt of
E2 current Colonial bank notes.
Addrebs MUNN \& CO., 3 Bl Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, AUGUST 4, 1888.

Contents.	
arked with an asterisk	
Apparatus, boat detaching*...... 666 Military notes....	
Balluons, paval war.......... 69	
Barometer, new -iteries,	
infa	
and	
ine	aph, Edison, in England***
	Platee, photographic, inproved.: in 2
	Rails, vibratory motions of. dur- ing running of trains*
Culverts and	Rats, a stopper for............... 72
e.cir	Rivers vs. railroads............... ${ }^{71}$Rods, lightning
der, boiler. 1 mprov	
	Roof, tin, panting. ${ }^{\text {Rect......... }} 64$
Firecracker.	Salt at Salt Late, Utah............64 68
Flash, lightning 70	
mmmo	Sleep, causes, degrees, and meansof........ 69
	Tangent, longest in the worid.. .. 63
Keely outdone . .	Vinegar. well of of 67
	Warmer, foot, improved.........: 67

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

NO. 657

For the Week Ending August 4, 1888.
Price 10 cents. For eale by all newedealers

11. CHEMISTRY.-Osmium.- Redetermination of the atomic weight
of this element, with the method of analysis emploged.......... 1049

1II. CIVIL ENGINEERING.-The Canadian Pacitic Railmay.-Elab-
orate discossion of the of the zreat enterprise..............

VIL. MECHANICALENGINEERING.-How to Prevent Boiler Ex

 X. MISCELILANEOUS-A Model Poultry Marm-The largest poul-

 purifying sewate.

artesian wells in otah

It has of late been discovered that flowing wells of water can readily be obtained by boring from one hundred to two hundred feet in depth in all that part of Utah lying northerly about one hundred miles and southerly about two hundred miles from Salt Lak City, and in the San Pete Valley.
This part of the Territory is thickly settled. Towns of from 500 to 5,000 population are numerous, and farmers and town residents are availing themselves of this abundant and easily obtained supply to the partial neglect of the old method of irrigating ditches.
A good flowing well will irrigate five or six acres, saving the expense of a yearly water tax and having the water daily at command, to be turned on or off as desired.
Nearly every residence in the beautiful city of Provo has its own artesian well, part of which is frequently utilized in a fountain in the front yard, throwing a co pious jet thirty feet into the air, while hydrants are stationed at intervals in the garden, barn, and else where about the grounds. For farmers and others it could also be used where light power for churning, sawing wood, thrashing, etc., is needed.
A stranger passing through a village, and not knowing the source of supply, would attribute it to a system of water works. The water is turned off and on by faucets, and is easily controlled.
The green lawns, the luxuriant gardens, and abundance of thrifty fruit and shade trees are in marked contrast to regions dependent on rainfall for their water supply.
These wells are being rapidly extended, and it is hoped that much of the Territory heretofore considered out of the reach of irrigation will soon be brought under cultivation.

SALT AT SALT LAKE, UTAH.

The manufacture of salt around the shores of Salt Lake, Utah, is an important and growing industry Nearly all the land adapted to the purpose has been appropriated by settlers.
A level meadow is usually selected, a few inches above and adjacent to the water of the lake.
The surface of the soil is scraped and made level and hard like the floor of a brick yard.
A storm or high wind will drive the water in from the lake and cover it, and a slight dam prevents its return. It quickly evaporates and leaves a residue of solid salt six to ten inches deep, that is shoveled into farm wagons and marketed.
This salt, owing to the considerable percentage of soda it contains, is not considered desirable for meat and butter, and does not command the price of a purer article, but is in general use in the Territory.
Its preservative qualities once cost a life insurance company $\$ 5,000$.
A well-known resident of Salt Lake City, meeting with financial reverses, thought, it was supposed, to benefit his family by drowning himself in the lake. No trace of him could be found. The insurance company refused the insurance to the widow and orphans, as no proof could be brought of his death.
Three years afterward some hunters discovered the remains in a remote inlet at the westerly end of the lake, in a perfect state of preservation. They were easily identified by his friends, to the discomfiture of the insurance company.

MILITARY NOTES

An interesting bit of news that crossed the ocean last week in the military journals was that concerning the new magazine rifle invented by Lieutenant Dohet, of the 14 th regiment of the line, of the Belgian army. 0 Save in length, it has much in common with our own "Colt" revolver, there being a revolving drum at the base of the barrel ; the mechanism for loading, throwing out the empty shell and recharging being, however, quite different. The drum contains eight cartridges, according to I'Avenir Militaire, and the action of recocking the piece throws out the empty shell, turns the drum, as is the case with the ordinary revolver. But no sooner has the empty receptor clicked home in its new position, when, from a magazine in the small of the stock, a fresh cartridge is automatically shot into it, and so on till each of the remaining seven cartridges has been duplicated. This, as will be seen, makes the gun's total fire without reloading 16 shots, a veritable pepper box indeed; and when we remember that every man in a line of battle where such arms were used could fire sixteen shots in quick succession and then fall back to reload, only to make way for a second line similarly armed, the formidable character with a pocket magazine under the breech has the maxwith a pocket magazine under the breech has the max-
imum been more than six shots, and unless the average soldier is able to detach the empty magazine and clap on another in very quick time, it would seem that this new Belgian piece has a palpable advantage. Indeed, should it prove as efficient as is promised, a dash through Belgian territory by either French or Germans may come to be looked upon as quite impractimans

The Austrians are astonished at the remarkable ac omplishment of the Maxim machine gun. The Wiener Militar Zeitung, commenting upon some recent tests made by the general staff of the Austro-Hungarian army, says of this gun
It's more like a human being than a gun, and even this seems only scant praise, so accurate is the auto matic apparatus; for indeed the average soldier could not be trusted to throw out the empty shells, put oaded ones in their places, and keep the cooling mechanism so constantly and evenly at work as is done with the power gathered from the recoil. Here is the record of the tests, the distances being given in meters

Distance.	No. Shots Fired.	Time in Sec.	No. Shots to the Min.
200	30	$3 \cdot 0$	600
400	30	$3 \cdot 0$	600
600	40	$4 \cdot 3$	558
800	40	$4 \cdot 3$	558
1,000	40	$4 \cdot 0$	600
1,200	40	$4 \cdot 0$	600
1,400	60	$5 \cdot 8$	620
1,575	60	$6 \cdot 0$	600

The deliberate opinion of the Austrian officers mak ing the test is reported by the authority quoted to be that this machine gun is superior to all others in quickness of firing and loading, though not so accurate as some others.

The sham battle between two British squadrons under the respective commands of Admirals Tryon and Baird is now, and likely for some time to be, the chief topic of discussion between artillerists as well as naval officers. The fighting capacity of the present type of armored ship may fairly be called an unknown quantity, for there lave been no maritime wars since they were designed. It is, therefore, left for the judges to decide arbitrarily as to how near one ship may approach two of the same type without getting her coup de grace. But, aside from the pounding and ramming power of these great ships, which must needs wait for eal war to find their exemplification, the steaming qualities, the facility in turning, in getting the guns to bear, in keeping the line of battle and in general ma neuvering, may readily be measured in the present shain fight. The squadron under Tryon is constructing a great boom across the approaches to Berehaven, which recalls the really formidable boom the Confederates threw across the Mississippi above the bend a portion of it being made of chains with links of three inch iron, and welded across the center. The present boom is not likely to be stronger than that and one torpedo boat or a steam launch with a few spar torpedoes and a skillful man to handle them will probably have little trouble of a dark night in cutting any temporary boom that can be constructed over deep water.

As usual in these sham engagements, the work of the torpedo boats is likely to be discredited, so that Jack may not have his confidence shaken in the invulnerability of the ship he sails in. Indeed, already comes the report from Lough Swilley, North Donegal, Ireland, that the torpedo fleet " behaved very badly on the way out;" only one out of the six getting in withont mishap. But considering that these are not sea-going torpedo boats, being too short and too narrow for such service, it is saying much for them that they all got in, for there was a rough sea on the passage and more than half a gale behind it.

A New Barometer.

A uniform glass tube is sealed at one end and a thread of mercury introduced, inclosing a quantity of air. An observation is taken by noting the volumes, A and B, of the inclosed air (as indicated by the divisions on the scale), when the tube is placed vertically with its closed and open ends upward respectively. The height, H, of the barometer is given by the formula-

$$
\mathrm{H}=\frac{\mathrm{A}+\mathrm{B}}{\mathrm{~A}-\mathrm{B}} l
$$

where l is the length of the mercury column in the tube. For convenience l is made 10 inches. The whole instrument is very portable, weighing only six ounces, and measuring about 18 inches long.-By Mr. T. H. Blakesley, M.A.

Painting a Tin Roof

Messrs. Merchant \& Co., the extensive dealers in tin, recommend the following as an excellent paint for the purpose of painting tin roofs: 10 lb . Venetian red, 1 lb. red lead, 1 gallon pure linseed oil.
The substitution of benzine or fish oils for the pure linseed oil should not be allowed.
The roof will last longer and be less liable to rust if painted on the under surface before laying. It is a good plan to put one or two layers of felt paper under the tin to serve as a cushion for same, and to deaden the noise made by the rain falling on the tin.

A year after the first coating the roof should be painted again, and then a good roof will only require painting once in four years.
A roof of first-class material well soldered and properly laid should last forty years.

Sending Live Lobsters to California.

The United States Fish Commission shipped from Wood's Holl, June 16, 600 live lobsters and 250,000 lobster eacgs. Of the former, 350 arrived safely in Sacramento, Cal., June 22, and they have been deposited in the Pacific north and south of San Francisco. Several previous attempts to take live lobsters across the continent have failed. Of those sent only as far as Chicago, packed in seaweed in crates, only one in four survives.

Colonel McDonald, fish commissioner, personally superintended the packing of the lobsters lately sent to California. A crate or box devised by the late Captain Chester was used. This was placed within another larger box, the intervening space being filled with pounded ice. In the inner box the lobsters were placed between layers of rockweed, which at times was moistened with sea water. Each box had an independent drain, so that the fresh water from the melting ice could not enter the lobster box. The temperature of the latter was kept at $45^{\circ} \mathrm{F}$. A fish commission car was used, the boxes along the side of it serving as the outer box of the combination described above; one hundred crates, each containing six lobsters, being placed in them, and surrounded with ice. Each morning before sunrise a careful inspection of the lobsters was made, and those that had died were removed. The first day 45 died; the second day, 55 . After that the mortality was much less. All of those that died were in an advanced state of shedding, and were in poorsondition when they started.
One-half of the 350 lobsters that arrived safely on the Pacific comst were placed in the ocean north of San Francisco, and the other half south. It is hoped that this experiment may demonstrate the feasibility of stocking the waters of the Pacific on the California coast north of Monterey with this delicious shell fish. The condition of the water in that region is quite similar to that of the Atlantic off the Massachusetts coast. The temperature is about the same, except that it is more constant. The lobster on the Massachusetts coast crawls out into deep water in the summer, where the temperature is low, but it is thought that the equable temperature of the Pacific will enable the lobster in those waters to spend the whole year in one spot.
Hatching apparatus was taken to California with the 250,000 lobster eggs shipped. The young lobsters produced by these eggs will be deposited in the sea at once. Although a fair trial will be made to determine the possibility of stocking the Pacific by artifiGfal propagation, much more confidence of success is expressed by Colonel McDonald from the introduction of mature lobsters. The young lobsters have to be placed in the sea almost as soon as they are hatched, and begin to feed most voraciously, even devouring each other. For a few days they swim on the surface of the water, where they find food suited to their requirements, but where they also encounter millions of enemies. After their walking or crawling organs are developed, they sink to the bottom, which they then make their home. One of the problems which the United States fish commissioner is now attempting to solve is the invention of some method of keeping the little lobsters in confinement and safety after they are hatched until they have attained sufficient strength and size to enable them to protect themselves. The importance of such an invention will be appreciated when it is known that, from the 12,000 to 15,000 eggs produced by a female lobster in a year, not more than two lobsters, when left to nature, become full grown. Not only are almost all the little lobsters destroyed by their enemies, but a large proportion of the eggs are devoured by fish and sea birds before they are hatched. If, after artificially hatching the eggs, the fish commission could protect the young lobsters until they arelarge enough to take care of themselves, the supply of lobsters, which is now hardly equal to the demand, and would not one-half supply it if the price was reduced, might be increased almost indefinitely.Seience.

Aztec Mummies.

Sig. S. Marghieri, the well known archæologist, discovered and explored a hermetically sealed cave, at an elevation of nearly 4,000 feet, on the eastern side of the Sierra Madre Mountains in Mexico, about 200 miles south of Dewing, between Coralitos and Casa Grande, about two years ago. The floor was nearly smooth, the sides rough and rugged, and the vault covered with stalactites. In the far end of the cavern were found four desiccated human bodies.

The bodies were in a sitting posture, with the hands crossed on the breast, and the knees approaching the chin, with the head inclined forward. They were carcfully shrouded in their burial garments, and placed facing the rising sun. The male and female were seated side by side. The older child, a boy, was at the right of the father, and the younger child, a girl, at the left of the mother. In addition to the funeral shrouds, the little girl was enveloped in the skin of an animal, similar to the method used in the island of Fuerte Ventura, the better to preserve its tender frame.

The floor of the cavern and the remains were covered with a fine dust, but no footprints of man or beast
could be found. The bodies were carried to San Francould be found. The bodies were carried to San Fran-
cisco by Signor Marghieri, and were purchased by J. z. Davis, President of the Board of Trustees of the State Mining Bureau, and by him presented to the Bureau.
No embalming process was used in the preservation of these bodies. They were dried by the air alone. The bodies are not like those of the Indians of the present day, because the fingers and hands and feet are smaller than the average, and the woman's hair is brown and silken, and of the Caucasian type. The body of the man must have weighed in life from 180 to 200 pounds, but it now weighs only 14 pounds, while the body of the woman weighs only 12 pounds. In the lobe of each of the small and well proportioned ears is a piece of hollow bamboo or reed as an ornament. The woman had a large forehead and well developed easoning powers.
The little boy weighs but three pounds, and the girl only four and a half pounds.
The burial shrouds on the bodies are composed chiefly of cotton, hair, hide, grasses, and the bark of willows.
The bodies may now be seen at the rooms of the State Mining Bureau.-San Francisco Examiner.

Electric Welding.

At the recent annual meeting of railway telegraph superintendents, the following paper on "Electric Welding," by Otis K. Stuart, was read :
The process of electric welding which was discovered by Prof. Thomson some eleven years ago, while lecturing at the Franklin Institute of Philadelphia, has been developed in the past two years to a far greater extent than is generally supposed. We started in with the welding together of small wires of iron and copper, and have been so successful in the development of apparatus that we are now able to weld bars of a very large size and of almost any shape or metal.

The principle involved is that of forcing through a conductor an amount of current that the conductor will not carry without heating. Any conductors, when placed in abutment, have as their point of greatest resistance the point of abutment or contact, and conse-
quently it is at this point that the heat is first generated; and, as is well known, this heat increases the resistance of the conductors at that point so greatly that more heat is developed at a remarkably rapid rate.
A consideration of the above facts will prove at once one of the advantages of electric welding, as practiced by Prof. Thomson, namely, the localization of the heat to the points or point at which it is desired, thus saving an enormous amount of energy which is usually wasted in welding with the forge or flame. So absolutely is the heat localized, that pieces of iron 3 inches long and an inch in diameter can be welded together and then held in the hands for some time without any danger of burning, the only heat which is felt at all being that which is conducted along the metal to the hands after the welding is completed.
A further consideration of these facts will also demonstrate that it is possible by the Thomson process to weld any metal, including even those which melt at a very low temperature, such as lead, zinc, and tin, and those which melt at enormously high temperatures, as, for instance, iridium, platinum, etc. Of course it goes without saying that we can weld any of the metals used in ordinary manufacture.
It is plain that if the heat is developed so rapidly, a very delicate means of controlling it must be provided, and we are glad to say that we have been able to provide arrangements for this purpose which are almost absolutely perfect-I am inclined to say absolutely perfect for the reason that the control of the current can be made entirely automatic.
We are able to take a bar of inch iron, 4 inches in length, raise it to a dull red in 20 seconds, and hold it there for an indefinite period; to increase the heat to a bright red in a very few seconds and hold it there, then to still further raise the temperature to a welding or vaporizing point in a remarkably short space of time. This indicates the delicacy of this apparatus, and I would add that no very great skill is required to operate the machine, a boy learning to weld iron and steel with great facility in a week or two. The time required to weld metals depends, of course, upon the
power of the apparatus and the skill of the operator. We have made strong and practically perfect welds in half inch round wrought iron in 6 seconds, in inch round wrought iron in 45 seconds, and so on. Experiments have proved to us that the power required to weld is proportional, or very nearly so, to the area of cross section of the pieces. This is true of nearly all the metals, though, of course, the relative resistance and
welding temperature of the several metals may interfere with this ratio.
For welding small wires, such as telegraph or telephone, and the smaller sizes of electric light and power lines, the power required is very small indeed, the momentum of heavy machinery being more than enough to effect the weld. In this connection I desire
to say that we are now working to perfect an apparatus
for welding telegraph, telephone and electric light wire, and lines of pipe on the line. Our experiments in thi direction have been successful, and we now think it possible to construct an apparatus which will be capable of being moved about by one or two men, which will make joints in wires correctly and durably, the energy used being supplied by storage battery or batteries, forming a part of the welding outfit. For repair work and in general construction it is our belief that this apparatus will be found very useful and effective. In fact, we hope to do away entirely with the ordinary solder and link joints used at present.
The policy of placing an apparatus on the market has been adopted for the reason that our patents cover not only the apparatus for electric welding, but the art or process as practiced by Prof. Thomson. It is hardly necessary to add that by the same process we can solder and braze, and anneal and temper, and do other heating, local or otherwise, which cannot be done eco nomically by present methods. All these operations can be performed with the same apparatus, though, of course, it is better to have machines especially constructed for particular work.
Mr. G. L. Lang stated that he had seen one of these machines in operation when a bar of caststeel and one of copper were welded together. One would suppose that the metal most easily fused would burn away before the other was brought to a welding heat. This is not the case, however, and it is very simply provided against. The current is brought to the bars through clamps which grasp the bars near to the ends to be welded. Where copper and steel are to be welded together, the clamp is placed about 6 in . back on the copper bar, while it is only about 1 in . from the point of contact on the steel bar. In this case the heat is diffused through a large body of the metal which is most fusible, so that they are both brought to a welding point at the same time. 'The process is something really wonderful, and promises to revolutionize the ordinary method. The system is now in constant use at the Thomson-Houston factory in Lynn, Mass.

Improvement in Saccharin

A great objection to saccharin is its very sparing solubility when pure. The defect is corrected by the addition of an alkaline bicarbonate, but it is often at the expense of the sweetening properties of the chemical, which sometimes acquires almost a bitter taste. Flies, bees, and other insects will not touch saccharin n any shape, but as man, who is not so good a judge of sweets, likes it, let it at least be cooked up and served to his taste. M. P. Mercier recommends the following process : Take of-

The bicarbonate is to be added by small portions to the saccharin mixed with the water, about half án hour being allowed to pass between each addition, and the mixture being stirred occasionally to hasten the com bination and the evolution of carbonic acid gas. It is important to cease adding bicarbonate before the saccharin is entirely saturated. The operation requires ten to fifteen hours. Next the alcohol is added to the mixture, with the effect of throwing down most of the soda saccharinate, and holding in solution the excess of saccharin and impurities; and, finally, the magma is thrown on a vacuum filter, where it is washed, first with more alcohol, and lastly with sulphuric ether. On drying in the open air, a white, exceedingly sweet, and soluble crystalline powder is obtained, which possesse all the properties of saccharin. Some of the chemical features of the foregoing processes may be briefly aluded to.
It will be noticed, for instance, that no heat is employed. The reason is that under the influence of heat soda will readily transform saccharin into salicylic acid. Then the use of bicarbonate instead of carbonate of soda is not indifferent, as the presence of caustic soda, always to be feared in carbonate, will turn the saccharin into a para-compound possessing no sweet ness. Lastly, the use of alcohol as a precipitating agent renders heat unnecessary, and removes many impurities to be found in the purest commercial sac-charin.-Chem. and Druggist.

Circulation of the Blood in the Eye.

"At Professor Hirschberg's clinic, in Berlin," writes correspondent of the Kansas Medical Index, "my attention was called to the fact that the circulation of blood in the blood vessels of the cornea affected with pannus can be seen. If one could not see this in America, it might almost be worth a trip across the ocean. By the aid of a strong lens one sees the circulation here almost as well as in the web of a frog's foot or in a fish's tail."

Turpentine and black varnish, put with any good tove polish, is the blacking used by hardware dealers for polishing heating stoves. If properly put on, it
will last throughout the season.

AN IMPROVED BOAT DETACHING APPARATUS.
An apparatus which can be adapted to a boat in any position on the side, quarter, or stern of a vessel, for detaching boats to be launched, and for again reattaching them to the hoisting tackle, is illustrated herewith, and has been patented by Lieut. Alexander McCrackin, U. S. navy, steamship Pinta, Sitka, Alaska. Arranged for connection with a hoisting sling, a shackle is employed which carries a loose hook that is mounted to turn upon the bow of the shackle, the hook having a straight point or end that fits into a keeper formed

HCCRACKIN'S BOAT DETACHING APPARATUS.

upon a sliding bar or bolt, which passes beneath a transverse barsecured to the arms of the shackle. A key is arranged to fit within an aperture of the sliding bar or bolt, by which the latter may be locked to place upon the shackle to hold the hook in closed position. Two such devices are employed, connected by a small chain or its equivalent, made in two parts, joined by a slip hook of novel construction, the arrangement being such that when two sections of the chain are connected by the slip hook, and the chain is drawn taut, the two bars or bolts will be held in posi tion, and prevented from slipping outward to release the hooks turning on the bows of the shackles. When a boat is to be lowered and detached, the lanyard used in connection with the slip hook is cast off, and, the keys locking the sliding bars in the arms of the shackles having been previously removed, the weight of the boat and crew will turn the hooks to allow the boat to drop freely into the water, both hooks being released instantly and simultaneously, and their connecting chain dropping harmlessly on the thwarts, out of the way of the masts and oars.

AN IMPROVED CLAMP.

A hand clamp in which there are no projections from outside the fixed jaw to be in the way, and in which there is no twisting strain on the screw rods, enabling them to withstand the strain of heavier work, has been patented by Mr. Wendell P. Tarbell, of Milford, N. H., and is illustrated herewith, Fig. 2 showing a vertical section on the line of the inner screw rod of the clamp

TARBELL'S CLAMP.

Two screw-threaded rods are socketed in the fixed jaw of the clamp, the movable jaw moving freely on these rods, on each of which a thumb nut is mounted, on the outer rod above and on the inner rod below the movable jaw. The inner screw rod also passes freely through a hollow screw with an operating thumb nut mounted in a screw-threaded socket piece of the movable jaw. The hollow screw is formed with a pitch differing from that on the rod, so that the screw will travel faster or slower than the thumb nut on the same rod, giving a differential movement between it and the
nut, affording a greatly increased leverage. With the parts in position as shown in Fig. 1, the article to be clamped being between the jaws, the thumb nut on the outer rod is first screwed down against the movable jaw and the thumb nut on the inner rod is moved up against the end of the hollow screw. The jaw can then be tightened by operating the hollow screw by its thumb nut, which causes the nut bearing against its end to be turned by frictional contact, forcing the hollow screw upward, and exerting a lever action upon the movable jaw, causing it to tilt on the rod, and further tighten the clamp made between the jaws. In a modified form of this device a friction lever is used in place of the hollow screw to tighten the nut. Any desired clamping power can be had from this construc tion without the use of a wrench or other outside appliance.

A Smoke Filter

There was recently an exhibition, on a piece of land adjoining Victoria Mansions, of Loeb's appliances which are designed to enable the wearer to breathe and work with comfort in dense smoke, and also in poisonous gases. The device consists of a respirator with an india-rubber mouthpiece. The respirator is held by two projections, which are grasped between the teeth and a flange which lies between the teeth and the lips, additional security being provided by an elastic band passing round the head. The air is drawn in by the wearer through a series of small filters, containing respectively wet sponge, cotton wool, cotton wool damped with glycerine, and animal charcoal
These filters are very lightly packed, so that there is no resistance to the act of inspiration, and they are provided with valves which direct the air expired from the lungs into the external atmosphere. The entire apparatus weighs less than a pound, and can be used without previous practice. When it is to be employed in an atmosphere which is deadly in its character, as in the choke damp of mines, the air is drawn from some place where it is pure through a light india-rubber tube. The filter is then strapped to the waist of the wearer, and the respirator merely contains the valves which cause the air to be drawn through the pipe and then to expire into the atmosphere. A tube up to 100 feet in length can be manufactured with facility. Protection is afforded to the eyes by a pair of spectacles with india-rubber rims, which press tightly on the cheek and brow, and exclude all smoke. Mechanical wipers are added to enable the glasses to be cleaned without removal
At a recent trial in London, says Engineering, a man wearing the respirator spent half an hour in a building filled with dense smoke of a most pungent character, without any difficulty, and afterward the inventor's representative, with the aid of a flexible air pipe, entered a room containing a dish of burning sulphur and remained there some time. It was clearly demonstrated that the respirator would enable the wearer to enter a building filled with sinoke and discover the exact position of a fire. A few buckets of water promptly applied under such circumstances will do more good than the jet from a steam fire engine directed at random. On board ship, where the result of a fire is to fill the hold with smoke, this respirator would be most useful, and this fact has been recognized in the German navy, where Loeb's respirators form part of the official equipment. Many of the German fire brigades have also adopted them.

Constant Pressure when Distilling under Reduced Pressure.
The essential parts of the apparatus are a barometer tube in connection with the exhausted apparatus, and a valve through which air is admitted when, by the action of the pump, pressure becomes reduced below the prescribed point. A copper rod armed with a platinum point passes through the upper end of the barometer tube, and can be adjusted at any desired height. So soon as the mercury rises and touches the point of the rod, an electric circuit is completed and the valve is raised and air admitted. The valve is a glass sphere in a glass seating, the sphere being suspended from thearmature of an electro-magnet. The sphere has a weight attached to it, which causes it at once to fall back when the circuit is broken. Even under a pressure of 60 mm . -the lowest obtained with the water pump used-the apparatus renders it possible to maintain the pressure constant to within. a millimeter.-W. H. Perkin, F.R.S.

For Swollen Feet.

Policemen, mail carriers, and others whose occupation keeps them on their feet a great deal, often are troubled with chafed, sore and blistered feet, especially in extremely hot weather, no matter how comfortably their shoes may fit. A powder is used in the German army for sifting into the shoes and stockings of the foot soldiers, called "Fusstreupulver," and consists of 3 parts salicylic acid, 10 parts starch and 87 parts pulverized soapstone. It keeps the feet dry, prevents chafing and rapidly heals sore spots. Finely pulverized soapstone alone is very good.

AN IMPROVED DOOR LATCH.

A door latch so arranged within an ordinary lock casing that the latch bolt may be easily operated by handles, so placed that the action of pushing down the handle is such as to cause the door at the same time to be pulled open as soon as the latch is disengaged from he keeper, is illustrated herewith, and has been patented by Mr. Latimer S. Shelly, of Steelton, Pa. A dog is mounted on the spindle to which the handles are attached, having an angular projection at one end adapted to bear against a stop pin projecting

SHELLY'S DOOR LATCH.
from the side of the casing to limit the movement of the dog. The lower end of a lever pivoted to the side of the casing is held to bear against the lower end of the dog by a spring, there being a stop pin secured to the casing which limits the return movement of the lever, to the upper end of which a sliding latch bolt is pivotally connected. Fig. 3 represents a perspective view of the keeper containing the recess for receiving the latch and also one for the regular locking bolt.

AN IMPROVED SLAUGHTER HOUSE HOIST.

A hoist in which the weight of a heavy animal is employed for raising the weight of a lighter animal is illustrated herewith, and has been patented by Mr. Jules H. Tardy, of Glencoe, Minn. It is made with drums of two diameters, the smaller to be usually employed for raising the heavier animals, and the larger for raising the lighter ones, the ropes or chains on the large and small drums being wound oppositely with respect to each other. The windlass shaft is operated by a pinion on another shaft, which carries a grooved

TARDY'S SLAUGHTER HOUSE HOIST.
wheel for receiving an endless rope employed in working the hoist, this rope being held to prevent movement of the load by introducing it between parallel pins projecting from the framework of the hoist. When large and small animals are to be killed, by the using of the larger drum for raising the smaller and the smaller drums for raising the larger, whereby, in the various manipulations, the weight of one animal is made to counterbalance that of the other, the work is rendered lighter and the different operations facilitated.

Culverts and Bridges.

From data furnished by Mr. D. J. Whittemore, chief engineer of the Chicago. Milwaukee \& St. Paul system (which had a total length of 5,688 miles on January 1, 1838), the length of open bridges on these lines was 115 91-100 miles, and of culverts covered over with embankment 39 2-10 miles. "Everything," says Mr. Whittemore, " not covered with earth, except cattle guards, be the span 10 or 400 feet, is called a bridge. Everything covered with earth is called a culvert. Wherever we are far removed from suitable quarries, we build a wooden culvert in preference to a pile bridge, if we can get six inches of filling over it. These culverts are built of roughly squared logs, and are large enough to draw an iron pipe through them of sufficient diameter to take care of the water. We do this because we believe we lessen the liability to accident, and that the culvert can be maintained, afterdecay has begun, much longer than a piled bridge with stringers to carry the track. Had we good quarries along our line, stone would be cheaper. Many thousands of dollars have been spent by this company in building masonry that, after 20 or 25 years, shows such signs of disintegration that we confine masonry work now only to stone that we can procure from certain quarries known to be good."

A Well of Vinegar.

A dispatch from Vincennes, Ind., says: "The mysterious vinegar well which was dug on the farm of S. W. Williams, just east of this city, has been accounted for, after much discussion by chemists and others. Some twenty years ago the farm was owned by F. M. Fay, who had an extensive orchard. The apple crop was large, and he made several hundred barrels of cider, to be converted into vinegar. While the fluid was fermenting, about one hundred barrels burst and their contents were lost. The cider sank into the ground until it reached an impervious strata of clay, where it lay until the well was dug on the same spot."

AN IMPROVED FOOT WARMER FOR? BEDS.

A foot-warming apparatus designed to circulate warm water through a chamber or casing disposed at the foot of the bed, and intended to be wrapped with woolen or other cloth, is illustrated herewith, and has been patented by Mr. James A. Lewis, of St. Clairsville, Ohio. Three separate receptacles or liquid tanks are employed -a receiving tank, a heating vessel, and a foot warmer, the receiving tank resting above and supported from the heating vessel by guide clasps embracing vertical rods. From the receiving tank a hose or other suitable flexible conduit passes to the lower part of the heating vessel, from near the top of which a similar conduit passes to one end of the foot warmer, another hose connection passing from its opposite end to the supply tank, whereby a free flow and circulation is secured between the receptacles. If desired, check valves may be employed whereby the heated water will always pass in the direction from the heater to the foot warmer, etc., and be prevented from any return flow. The flexible conduits, near their connections with the foot warmer casing, have short internal re-enforcing tubular sections, as shown in the small figure, so that the pressure of the bed clothing will not prevent or retard the circulation of the heated water. The funnel-shaped outer

A BARREL STAVE HAMMOCR.

We illustrate in the cut a simple method of constructng a hammock. But little explanation is required, as, owing to the simplicity, the illustration explains itself. The material used includes a number of barrel stave and some rope. The latter should be about one-half inch in diameter. It should be doubled and loosely twisted. Then a second doubling without twisting leaves it in condition for the introduction of the staves

A BARREL STAVE HAMMOCK.

These are taken from ordinary flour barrels. Two such barrels give material for a good sized hammock. Near each end of each one of the staves a hole about one-quarter inch in diameter is bored. The ends of the staves are then inserted, as shown, in the lays of rope, between the two pieces on each side. The object of the loose twisting is to provide places for the introduction of the ends of the staves. Care must be taken to tion of the ends of the staves. Care must be taken to
have enough twists to receive all the staves, and not to have enough twists to receive
If preferred, the ropes may be twisted as the staves are introduced. This gives a more certain method of securing the desired mean between tight and loose twisting.
To prevent the staves from slipping out, each one is tied in place. A short piece of string is wound at each end of the stave around both ropes, passing through the hole already mentioned, and is then tied. The ends of the suspension ropes are now secured and tied or spliced into loops, and the hammock is complete.
The staves may be used of their original width, or may be split. Probably the most generally satisfactory method is not to split them. The weak point in the construction is the liability of the staves to bend and pull out of place. This, of course, is more liable to pull out of place. This, of course, is more liable to happen with split
When such a hammock is provided with a heavy rug and pillow, it surpasses in comfort the ordinary type. It can be made in a half hour, and we believe that the half hour will generally be considered well spent by the maker. Various other methods of securing the staves may suggest themselves, but the above

LEWIS' FOOT WARMER FOR BEDS.
passage into the receiving tank is closed by a removable ball valve or spherical stopper. It is designed that the lamp by which the water is heated shall have a chimney of metal or opaque material, that the room may not be lighted.

Fabric and Fibre mentions an electric picking motion for looms, which is to do away with all the present mechanism called a picking motion. Should this prove true, and there is no reason why it should not, it will cause a revolution, and greatly simplify the loom.
but one in is given as a simple and effective form. but one in the fors of copper of the same weight, form of a ribbon, by which it is shown that the flattened form of conductor has the advantage over a mere round section for carrying off a charge, and with least liability to side-flash. As to the deflagration of the conductor, Mr. Preece has found that ribbon and wire are equally easy to be destroyed by a flash. Experiments have also shown that straight conductors have a tendency to side-flash, however thick they may be. No conductor, Professer Lodge says, is able to pre
in which case it is found to have practically no self induction, and side spark is nearly stopped.
It must also be remembered that a rod of iron carries off a discharge better than a rod of copper. The discharge probably penetrates iron deeper than it does copper. Its inferior conductivity is considered even an advantage in rendering the flash slower and less dangerous. When galvanized, it can be made almost as durable as copper, and its liability to get magnetized is no objection. Prof. Lodge thinks the use of copper for lightning conductors is doomed. The lectures are full of interest for the architect. The liability of objects to be struck is shown to depend upon certain con ditions-for example, whether the flash occurs from an already charged surface which has strained the air close to bursting point, or whether the flash is produced by a rush of electricity into a previously uncharged conductor too hastily for it to prepare any chosen path. These are considered, and the results of experiments given.

To Build a Chimney.

To build a chimney that will draw forever and not fill up with soot, you must build it large enough-sixteen inches square; use good brick, and clay instead of lime up to the comb; plaster it inside with clay mixed with salt; for chimney tops use the very best of brick, wet them and lay them in cement mortar. The chimney should not be built tight to beams and rafters; there is where the cracks in your chimneys come and where most of the fires originate, as the chimney sometimes gets red hot. A chimney built from cellar up is better and less dangerous than one hung on the wall. Don't get your stovepipe hole too close to the ceiling-eighteen inches from it.

AN IMPROVED CAR COUPLING.

A coupling designed to be operated without requiring trainmen to go between the cars, and which permits of cars provided with it being also coupled with those haring the ordinary link and pin drawhead, has been patented by Mr. Francis L. McNab, and is illustrated herewith. At the back end of the link socket of the drawhead is a shoulder limiting the in ward movement of the link, and behind this socket is a longitudinal recess, prolonged inward by a bore, receiving a trip block and its stem, the latter surrounded by a spiral spring, as shown in Fig. 2. The forward end of the trip block is rabbeted out transversely at its lower part to provide a recess to receive the inner end of the coupling link, which thus rests beneath a tongue or lip of the block, and is held up at its outer end prior to coupling to another car, the lip also serving as a support to the curved coupling pin. The latter is pi votally connected to a pivoted drop bar, whose outer end is connected by a chain to the central cranked part of a shaft journaled across the end of the car body and provided atits outer end with crank arms, hinged to the ends of the shaft, so that when the shaft is turned to lower the coupling pin to couple two cars, the arms may be placed in latch hook supports fixed to the car body, and when lifted or disengaged from the latches the arms will swing down at the side, as shown in dotted lines in Fig. 1. the weight of the pendent arms then being sufficient to hold the coupling up to prevent coupling while shunting the cars, etc.

MCNAB'S CAR COUPLING.
For further particulars with reference to this invention address the inventor, or Mr. James Playfair, Sturgeon Bay, Ontario, Canada.

The Rosedale, an iron ocean-going steamer, has been the first to make the passage between London and Chicago, proceeding up the St. Lawrence and through the ship canal to the lakes. Though a certain amount of her cargo had to be removed to permit her to pass through the St. Lawrence Canal, yet the vessel was still drawing 14 feet on her arrival at Chicago.

Yellow Fever in Florida.
The United States Marine Hospital Bureau is informed that, about the middle of June, yellow fever reappeared at Plant City, Fla., and there was one death therefrom, June 22. Another case in the vicinity, four miles and a half from Plant City, died on the 26th. There have been several mild cases in the village, which contains less than 300 inhabitants, but for the present trains will not stop at Plant City, and it is understood that mails will be delivered at Cork post office, five miles west of Plant City. In the meantime, by the direction of the Governor, the most active measures are being taken by the president of the county board of health, Dr. J. P. Wall. The board have promulgated the following regulations concerning the epidemic :
"The board of health of Hillsborough County adopts and promulgates the following rules to prevent the spread of yellow fever at and from Plant City:
" 1. Railroads passing through or into Plant City are prohibited from carrying passengers and baggage to or from Plant City, or from delivering or taking on freight, or transferring freight from the cars of one road to cars of another road at or near Plant City, except the delivery of the necessary supplies for the people living in the place. Said railroads are also prohibited from delivering or taking on the United States mail at Plant City.
"2. All employes of the railroads living at or near Plant City must be acclimated to yellow fever by a previous attack of the disease, and such employes should be enjoined to keep away from the sick, if any, and aloof from all places suspected, of being infected with yellow fever poison.
" 3 . These rules are substituted for rule 2 of the rules adopted and promulgated April 24, 1888."
The president of the county board of health states that
"In explanation of the foregoing stringent rules, it is necessary to say that the board of health of Hillsborough County believes Plant City to be infected with the poison or germs of yellow fever, and inasmuch as expensive efforts to disinfect the place and stamp out the disease have failed, it is due to the public safety and welfare of the State to isolate the place and have it shunned as an infected place until such time as the board of health may deem it safe for people to go there. It is deemed absolutely necessary to suspend all business and cut off all communication with Plant City to prevent the risk of a widespread epidemic of yellow fever this summer. It is true that there is not much sickness there, and happily the large majority of the residents in the place are acclimated by a previous attack of the disease, but by visiting the place or commingling much with the people who still reside in Plant City, there is unquestionably great risk of spreading the disease. The summer is here, and the time for temporizing measures has passed. It is probable that Plant City will remain infected for some time, if not for the whole season, and hence the necessity for these stringent measures."

The Markings on Mars.

The observations of M. Perrotin at Nice, and M. Terby at Louvain, and, in England, of Mr. Denning at Bristol, have confirmed the presence on the planet of most of the "canals," or narrow dark lines, which were discovered by M. Schiaparelli in 1877, and at subsequent oppositions. M. Perrotin has also been able to detect, in several cases, the gemination or doubling of the canals, and M. Terby has observed the same phenomenon in one or two cases, but with much greater difficulty than in the opposition of 1881-82. But some curious changes of appearance have been noted. An entire district (Schiaparelli's Lybia) has been merged in the adjoining "sea," i.e., its color has changed from the reddish hue of the Martial "continents" to the somber tint of the "seas." The district in question is larger than France. To the north of this district a new canal has become visible, and again another new canal has appeared to traverse the white north polar cap, or, according to M. Terby, to divide the true polar cap from a white spot of similar appearance a little to the south of it. With the exception of these changes, the principal markings, both light and dark, are those which former oppositions have rendered familiar.

Resorcin in Diarrhœa.

A case of severe diarrhœa controlled by the administration of resorcin is reported by Mr. G. E. J. Greene (Lancet, June 23, p. 1277). The patient was a boy seven years of age, and there was a history of gastric trouble and tormina on the first and second days, for which catechu, opium, chloroform, and chalk had been prescribed without benefit. A ten grain dose of resorcin in half an ounce of water every hour was then ordered. and after the fifth dose the motions were reduced in number, and from having been very offensive were rendered odorless. The dose was afterward raised to fifteen grains every third or fourth hour, and in three days the diarrhœa was completely controlled. No disagreeable after-effects were noticed.

AN IMPROVED HOISTING MACHINE.

A hoist in which an endless rope is employed for operating the hoisting wheel, and the latter is so constructed that the rope will be prevented from slipping, and will also take a hold upon the wheel to assist in hoisting, is illustrated herewith, and has been patented by Mr. Fridrich H. A. Peters, of No. 372 Bronson St., Detroit, Mich. The hoisting wheel has forked arms Detroit, Mich. The hoisting wheel has forked arms
cast on or secured to its rim, these forks being procast on or secured to its rim, these forks being pro-
vided with sliding blocks or jaws, each block having a projection adapted to slide in a slot in the arm of the

peters' hoisting machine.
fork, and be secured in place by a screw-held plate
overlapping the slot. The length of the slot is such as to permit the blocks to slide from the base of the forks to their extremities, and in operation the blocks in the forks at the top of the wheel rest at the bottom of the forks, while at the bottom of the wheel they are at the outer ends of the arms of the forks, the hoisting rope being gradually wedged in between the blocks or jaws in traveling toward the top of the wheel, and as gradually released therefrom in its descent on the other side, the rope being thus automatically clutched and released. The machine is provided with a check cord and pawl and ratchet, for use when it is desired to release the hand hold on the hoisting rope while raising a heavy weight.

AN IMPROVED BOILER FEEDER.

A boiler feeder designed to provide for the automatic maintenance of the water in the boiler at a certain predetermined and required level is illustrated herewith, and has been patented by Mr. John E. Winder, of No. 120 Plum Street, Cincinnati, Ohio. It is made to withstand a steam pressure equal to that of the boiler. Upon a rod mounted vertically therein, and extending out through a stuffing box, is arranged a float, to move up and down upon the rod, between an upper and lower collar. Upon the top of the feeder, as shown in Figs. 1 and 3, is mounted a short shaft, supporting a double-armed lever, the extremities of the arms being connected by rods to crank arms car-

ried by the stems of valves, one of which is in the supply pipe and the other in the pipe through which the water passes from the feeder to the boiler, the arrangement being such that when one valve is open the
other will be closed. The valve in the pipe leading to the boiler is represented as closed, when, the other valve being open, the water in the feeder will continue to rise, lifting the float against the upper collar on the vertical rod. This rod has a stud bearing against the lower section of an S-shaped arm, connected to a weighted lever carried by the short shaft on top of the feeder, and the vertical movement of the rod by the float carries the arm and its weighted lever upward till
the latter passes the center, when the weighted lever will drop upon the other side of the double-armed lever closing the valve in the water supply pipe and opening the one in the pipe leading from the feeder to the boiler. A spring-pressed vent plug is provided on top of the feeder, for the escape of air from the entering water, and there is a settling chamber at the bottom, tapped by a blow-off, for the removal of impurities. To heat the water in the feeder, prior to its introduction to the boiler, a coil pipe is arranged in connection with the feed pipe, as shown in Fig. 2, the inner end of the pipe being bent upward and surmounted by a cap or housing, the steam thus diffused tending to precipitate any lime in the water. After the feeder has been filled, and the water in the boiler has reached a level lower than the feed pipe, the valves being reversed, steam passes through into the feeder, equaliz ing the pressurein the feeder and boiler, and putting a supply of hot water into the boiler. When the water in the feeder is lowered till the float rests upon the lower collar of the vertical rod, the other section of the S-shaped lever will be moved to throw the weighted lever upon the other side of the double-armed lever, thus closing the valve leading from the feeder to the boiler and opening that in the water supply pipe.

On the Diameter of the Fixed Stars.

As there appears to be no method known of obtaining the diameter of the fixed stars, the way is open for my suggestion, which I submit for the opinion of practical astronomers. I think I am right in theory, but the difficulties in the way of its accomplishment may be too great. The rays of light which come to us from the fixed stars must be regarded as parallel. The stars have no apparent diameter in consequence of their renoteness. Therefore angular measurement is not possible. We can imagine the existence in space surrounding every star, countless bundles or cylinders of parallel rays of light. Our aim in attempting to measure the diameter of a star must be to find the thickness of one of these bundles or cylinders, which found will ob viously correspond with the diameter of the star.
The way I would suggest to do this is to utilize the motion of the earth in its orbit round the sun. A long tube or telescope must be pointed in the direction of the star whose diameter we want to measure, and must be kept parallel by suitable mechanism with its first position. I suppose it would have to be kept in this position for some weeks or months, according to the size of the star, which will very likely be something within the diameter of the earth's orbit, judging from the size of our own sun. If this can be absolutely accurately accomplished, then, when the earth arrives at one certain point in its orbit, the star will leave the field of vision. The point in the earth's orbit where observation commenced, and the direction in relation to some fixed line from earth to sun, must be noted, also the point where the star leaves the field of vision. Then the distance between the parallel lines from the star passing through these two points will be the diameter of the star.-Capella, English Mechanic.

Photographing the Sun.

Mr. J. C. O'Loan, of Liverpool, writes : While experi menting with a ray of sunlight in a darkened room, I had my attention directed to pinhole pictures, and am of the opinion that startling results can be obtained in photographs of the sun or moon in this way. In a room darkened by blocking up windows with thick paper, make a small hole in the paper with a "darning nee dle," so as to admit. a ray of direct sunlight. Hold a piece of white paper in the path of the ray, 12 in . from the hole, you will have an image of the sun $1 / 8 \mathrm{in}$. in diameter, at 4 ft . an image of $1 / 2 \mathrm{in}$., and at the distance of 8 ft . from hole a 1 in . image, and so on. The size of opening used as lens does not alter the size of image at any given distance, but only its sharpness and brightness. Say the opening is 1-16 in., and gives a sharp picture at 4 ft ., by enlarging the opening to one-eighth the size of the image at 4 ft . would be still the same, but unsharp, so that the screen or plate must be removed to twice the distance to obtain equal sharpness. In a room 100 ft . long, a 12 in . picture of the sun could be had, and of the moon one very much larger. A series of pipes 100 yards long for camera would give a 3 foot photograph of the sun. In fact, there is no limit to size of image but the length of camera. Perhaps some one who has more time and space at their disposal than I have may take the subject up.

A correspondent of the Army and Navy Journal asks: "What is the longest piece of ordnance that has ever been successfully fired ?" and receives the following answer: "If you include in the term ordnance everything that carries a projectile, we should answer fourteen miles. This is the straight tube conveying natural gas from Murrayville to Pittsburg. To clear this tube out, a projectile known as the 'gum ball' was inserted in the end at the gas well, closely fitting the interior. The gas was then turned on full force and the gum ball fired through its full length, coming out
at the further end in a few minutes." at the further end in a few minutes."

Sorrespondence.

Connecting Telegraph Wires to Water Pipes. To the Editor of the Scientific A merican:
During a thunder storm, does enough electricity pass through the ground wire of a telegraph office to make the connecting of said ground wire with a water pipe dangerous to persons drawing water from the pipe?
As an explanation of the above rather ambiguous sentence, I beg to state that in a certain telegraph office the ground wire is attached to the water pipe which supplies the building. Would it be dangerous to touch the pipe during a severe thunder storm?
During a recent storm, in which the lightning was very severe, striking a number of places within one-half mile of the office, reports as loud as those of 22 caliber cartridges appeared to come from a water faucet in the store next the telegraph office, and continued at short intervals during the entire storm.
Glens Falls, N. Y.
H. P. Boyd.
[The occurrence you describe suggests an element of
danger. In grounding by water or gas pipe, care danger. In grounding by water or gas pipe, care
should be taken that the wire is soldered to a part of should be taken that the wire is soldered to a part of
the pipe near the water main. The pipe intervening between wire and main could readily give aerial discharges under certain conditions.-ED.]

Keely Outdone.

Several newspapers have referred to a new invention by one William Timmis, which, if successful, will revolutionize motive power. The inventor is an unpretentious English mechanic residing in Pittsburg, Pa.; who claims to have invented a machine by which untold motive power can be stored or used without the expenditure of fuel. The story goes that he has been engaged for years in perfecting the invention, and is now negotiating with the governments of England, Russia, and the United States for the sale of the right to use his discovery, which, if after examination it proves to be what he claims, will revolutionize the motive powers
of the world. He claims to be able to create a pressure of the world. He claims to be able to create a pressure
of 20,000 pounds per square inch-more than sufficient to propel the largest ocean steamer afloat or to move eighty laden freight cars in one train.

The machine seems to be simply an air compressor of the simplest sort. It consists of one small cylinder (six horse power), with a balance weight of 75 pounds, which runs the entire apparatus; another small cylinder, 5 inches diameter, with 7 inches stroke, compresses the air into the tank from which the power is utilized. Under the piston plate the inventor has placed two layers of bars containing eleven different minerals, the magnetic influence of which is the secret of the inventor. The advantages he claims are durability, economy, and simplicity. Experts have examined the machine and pronounce it a success.

In submitting his design to the governments named, Mr. Timmis claims that the pneumatic generator can not only be applied to war vessels as a motor, but can air chambers placed behind the armor plating.

Naval War Balloons.

Captive balloons are to be employed at sea during the next stage of maneuvers by the Toulon evolutionary squadron, under Vice-Admiral Amet. The aerial machines and necessary material will be sent to the fleet from the Army Aerostatic School at ChalaisMeudon, near Paris, where a party of seamen from the Amet squadron, under Flag-Lieutenant Serpette, have been under instruction for ballooning duties for some time past. Preliminary trials with the marine aerial machines are to be made from Toulon harbor, and the balloons and inflating appliances will be subsequently sent to sea on board of a pontoon, in tow of one or other of the vessels belonging to the squadron, and from which the ascents will be effected.
This completes the realization of the picture joke given in our paper of July 21, and the publication of which, in 1801, so frightened the English. In that engraving the French were represented as crossing to Britain with a great fleet, by tunnel under the channel, and also, dreadful to relate, in balloons.

How a Hedgehog Kills a Serpent.

The Arch. de Pharmacie of May 5 describes the proceeding as follows: The hedgehog cautiously approached the sleeping reptile and seized the end of his tail between his teeth. Then he rolled himself up into a compact ball and a waited developments. The snake, awakened by the pain, turned upon his enemy and fought with his fangs. The hedgehog, retaining his fought with his fangs. The hedgehog, retaining his
hold, allowed himself to be dragged back and forth during the struggle, and, meanwhile, the serpent's jaws had become lacerated and useless from constant assaults upon the spines of its enemy. In a few minutes the serpent had become exhausted with his efforts, and the pent and ate his meal. In this case the hedgehog does not kill the serpent directly, but obliges him to kill him-

Precious Aluminous Stones.*
The wonderful fact that the common charcoal is substantially the same material as the diamond has a parallel in the equally wonderful result of the chemical analysis of the ordinary red and yellow clay, so common and abundant, which is shown to have for its base the same material-alumina-as the group of minerals to which the general name of corundum is applied, including the incomparable stones, the ruby and the sapphire, which have the highest rank among colored gems. The various forms of corundum are found by the chemist to contain more than half their weight of that peculiar metal widely known as aluminum, which much resembles silver in color and luster, yet is very different from it in its extreme lightness The oxide of this metal is called alumina, which in its natural state forms the mineral corundum. The transparent crystals of corund um present the alumina in a state of purity, with just a trace of certain metallic oxides, from which the exquisite tints of color are derived.
The name of each variety of the corundum is determined by its color-the red being known as the ruby, the blue as the sapphire, the yellow as yellow sapphire or Oriental topaz, the green as green sapphire or Oriental emerald, and the purple as Oriental amethyst.
All varieties of the corundum can be scratched by the diamond, but by no other mineral, and its extreme hardness has suggested the theory that the adamas of the early Greek writers was not the true diamond, but a form of corundum. In such a passage as the following, "The sin of Judah is written with a pen of iron and. with a point of a diamond," the original word translated "diamond" no doubt refers to emery or some similar form of corundum, which has been used for ages as material for polishing other minerals. Although specimens of various colors have been found in many parts of the world, and during the last ten years
in Nor th Carolina especially, the chief source of supply is India. The red variety of corundum is known as the ruby.
The kingdom of Burma furnishes the greatest number of rubies, and, by the command of its king no Europeans are ever allowed to visit the mines. They are a royal monopoly, and the rarest and finest specimens are rotained for the king's own use, and one of his titles is the "Lord of Rubies." One of the former kings had a wonderful ruby of the size of a pigeon's egg, which he wore as an eardirop. By a law which compels, under the penalty of death, the giving up of all rubies of over a certain size to the financial department of the government, many rubies of large size are lost, because the finder of them will break them up into smaller pieces in order to retain them. Very few persons are aware of the great value and rarity of really fine rubies. From the beginning of civilization to the
present time the ruby has been the type of concentratpresent time the ruby has been the type of concentrated preciousness : "Her price is above rubies." About fifteen years ago the financial necessities of the Burmese government caused the appearance in Europe of two of the finest rubies of their size ever seen. After being recut one weighed about thirty-two carats, and was sold for $\$ 50,000$, and the other, weighing about forty carats, found a purchaser at $\$ 100,000$. Two such stones were not to be found in any European regalia, and their sale caused intense excitement in Burma, a persons conveying the package to the vessel.
Rubies vary in color from the lightest rose tint to the deepest carmine, and are occasionally approached so closely, both in color and general appearance, by the spinel as to render a close examination necessary to
distinguish them apart. The spinel is composed of distinguish them apart. The spinel is composed of
alumina and magnesia, and has a wide range of color. The Rev. C. W. King states that "all the great historic rubies now extant are pronounced spinels by modern mineralogists."

The blue variety of corundum is known as the sap phire, and differs from the ruby only in its color. It is very slightly harder than the ruby, and occurs in much larger crystals. They were originally obtained from Arabia and Persia, but now come principally from
Ceylon and Burma. The characteristic color of the sapphire is a clear blue, very like to that of the blossom of the little "corn flower," and the more velvety its appearance, the greater the value of the stone. The Oriental sapphire retains its exquisite color by gas light, while that of the inferior specimens becomes dark. The ruby and sapphire form a distinct class of the corunduus by their being alumina in a pure and unmixed
state crystallized, while the other varieties present the state crystallized, while the other varieties pres
alumina in combination with other substances.
The true chrysoberyl is almina combined with glucina. The colors range from light asparagus green, brownish yellow, to columbine red. Of the three varieties, the best known are the cymophane, or true Oriental catseye, and the alexandrite. The catseye is found in Ceylon, is always cut in a highly convex form, and hasa remarkable play of light in a certain direction,
resembling a drop of water or the pupil of an eye moving about inside of it, or a band of light floating on its surface, ever shifting, like a restless spirit, from side
to side as the stone is turned. No wonder that an imaginative and superstitious people regard it with awe
and wonder, and, believing it to be the abode of some genie, dedicate it to their gods as a sacred stone. The particular variety of chrysoberyl which was originally found in the Ural Mountains, and owes its celebrity to its remarkable transformation of color from green to red as viewed by natural or artificial light, was named alexandrite after the former Czar of Russia.

The Causes, Degrees, and Means of Sleep.

The probable causation of sleep is a subject which has often in the history of physiological research attracted the efforts of scientific speculators. It cannot be said that, after all, we are now able to define the processes involved in its restorative influence; but some suggestion of its nature is, nevertheless, within the reach of rational explanation. Mostof our readers have doubtless, formed some opinion on this subject, and have, perhaps, accepted as a provisional creed one or other of the theories advanced with regard to it. To some it may appear that the accumulation of waste products in the brain is enough to account for sleep. Deficient oxygenation offers another tempting hypothesis. Each of these processes, no doubt, may exert a certain soporific power, and probably thus operates in its degree; but it is difficult to see how either can be taken to afford the sole interpretation of that state of rest which comes with singular regularity of recurrence to all more or less, whether sick or healthy, idle or actively employed.
There is something to be said also for the theory that sleep is a consequence of cerebral anæmia. The pathological drowsiness of hemicrania, of epilepsy, and some hysterical states favors this view, as does also the fact that pallor of the fundus of the eye hess been noted in connection with natural sleep. These observations d, not, however, settle the question whether such anæmi: is commonly a cause or merely a part of the general relaxation of energy implied in the soporific process. So far, we can only say of sleep that, following and preceding a period of wakefulness and constant stimulation of the senses, it represents a transient interval of rest from the activities of tissue change. It, therefere, cor responds with the quiescence of every organ, and more especially of the nervous system, and with a timely languor of circulation in the resting tissues. By the gradual changes of evolution it has now virtually become a mere habit of mind and body. At first it was doubtless the outcome of exhaustion and an expression of the well known law, which it still fairly illustrates, that action is balanced by reaction.
The opposite condition of sleeplessness will commonly be found to originate in some continually acting cause of nerve excitement. This may consist in the presence of a local irritation, or very usually in the abnormal irritability of a sensorium overwrought and unduly sensitive to the most trifling impressions. We have already spoken of morbid somnolence in its relation to certain diseases, and have alluded to its connection with defective cerebral blood supply. We might also refer to instances of an altogether different condition, in which anæmia and sleeplessness are closely associated. This fact is sufficient to show that healthy sleep requires a certain due nutrition of brain tissue, and that cere bral anæmia or hyperæmia has with respect to it only a relative significance. The influence of various toxæmic states must also be remembered in dealing with this subject. Whether due to impairment of function in the lung, liver, or kidney, the only reliable remedy for inconvenience thus caused is, of course, to be found in correcting the failure of excretion. Whatever, indeed, the form of error, be it the want or the excess of sleep relief by means of so called sleeping draughts and the like is and must be only palliative. The one effectual means of cure in any case is no mere drug, but a method, and consists in the detection and removal of the source of mischief by a well considered system of treatment. - Lancet.

The Longest Tangent in the world

The new Argentine Pacific Railroad from Buenos Ayres to the foot of the Andes has on it what is probably the longest tangent in the world. This is 340 kilometers (211 miles) without a curve. In this distance there is not a single bridge and no opening larger than an ordinary culvert, no cut greater than one meter in depth, and no fill of a height exceeding one meter. There is almost an entire absence of wood on the plain across which the western end of the road is located. This has led to the extensive use of metallic ties, which will be employed on nearly the entire road.

An Improvement in Photographing.
A German photographer. Herr Ottomar Anschultz, has succeeded in preparing photographic plates so sen-
sitive that an exposure of $1-5000$ of a second is sufficient. A very small lens must be used, so that the pictures are generally only $7-16$ of an inch in length and breadth. Enlarged to an inch and a half on glass plates and rotated in series of twenty-four before a Geissler tube, the pictures are used for reproducing the motions of an

AN EFFICIENT AND ECONOMICAL STEAM LAUNCH.

The great objections, heretofore to the more The great objections, heretofore, to the more genera use of small stean yachts and launches have been the difficulty in carrying fuel to run them, coal being principally used, and the cumbersomeness and want of adaptation of the engines, which required a trained engineer to operate the machinery. These difficulties have been largely overcome by the introduction of the Shipman automatic steam engine, using kerosene for fuel, of which we published a description in September, 1884, and an in proved form of which, styled the Bos ton model, is illustrated herewith.
The boilers of these engines are made of wrought iron and steel, tested up to 350 and 400 pounds hydrostatic pressure, and designed to be absolutely safe against either fire or explosion The fire is formed by steam and oil discharged together in a very fine spray through an atomizer into the fire box, and the supply of kerosene is automatically controlled by the stean pressure in the boiler operating upon a diaphragm, which may be set at any desired limit, so that when the pres sure reaches this limit, the supply of oil is entirely cutoff until the pressure drops again.
The oil tank is placed at any conve nient distance from the fire box, and there is not as much danger in using petroleum, in the way it is supplied by this system, as in its ordinary burning in lamps. The water supply is also automatic, the feed water pump bein, in operation whenever the engine is in motion, and a ball float connected t the cut-off valve in the pump regulat ing the supply
The combustion is as perfect, and ordinarily as free from smoke, as that of a well trimmed lamp. Until steam pressure is obtained in the boiler, an air pump is worked by hand to feed the fire, which never requires more than a few minutes, the fire thereafter taking care of itself, just sufficient oil being then automatically supplied to keep the steam pressure within the limit which has been set. This arrangement secures perfect economy in the use of fuel, as the supply of oil fed to the fire box is always controlled by the amount of steam taken to work the engine, the engine itself putting out its fire when no steam is taken, and relighting it again. The average quantity of oil used per horse power per hour is said to be about two quarts, of a quality equaling 110° to 115° test.
The simplicity of construction and the excellence of material used in this engine, with its automatic water and fuel feed, requiring no attention at any time, admirably adapt it for all uses where it is desired to dispense with the services of a fireman or engineer, while its compact form renders it especially available for use on small steam yachts and pleasure boats.
The Shipman engine, since its first introduction, has been steadily growing in favor for all uses where only a moderate power is required, but it has been an especial favorite as a means of affording power to propel small boats, which has led the company to design and construct a series of launches especially calculated to attain the greatest speed with safety. These launches, of which our illustration shows the design, are made in four different sizes, from 22 to 32 feet long to b propelled by engines of one horse to six horse power They have a composition metal propeller, copper oi and water tanks, filter and steam condenser, and all other parts necessary to a complete equipment, and the engine and machinery are fitted to each boat by
lost all in a few moments, had not their infantry come up. At Gravelotte, four batteries of the 7th corps advanced up close to the French line, but were almost annihilated. Toward the end of this same battle the French advanced on the Prussian infantry line with a mitrailleuse battery and were actually driving it back, when the field artillery was brought up and checked it. This is a truly remarkable case where an infantry attack was repelled by artillery Now, however when machine guns have been improved and provided with shields to guard their gunners, it is thought that such occasions will not be so rare in the future, indeed, that the advance of artillery (a rapid-fire battery) close up upon infantry will be neither impracticable nor uncommon.

The Fire Cracker.

The importation of fire crackers this year will amount to 300,000 boxes, an increase of 100,000 boxes over las year's importation. It is a little curious that the scientific knowledge and inventive genius of this country have proved inadequate for the suc cessful manufacture of these explo sives. All attempts to produce them in this country, so as to compete with the imported article, have failed. They are made exclusively in China and Japan, and the importation of las week in June was 14,415 boxes, valued at $\$ 34,255$. What a large sum to be thrown away on such trash! What annoyance also will be inflicted on a large part of the public, and especially on invalids, when these crackers go off! What risk of calamity, also, for we are reminded that the great fire in Portland-July 4, 1864-was occasioned by a fire cracker. Yes; they are dan gerous playthings at the best, and ought to be used, when used at all ought to be used, when used at all,
Children, indeed, should not be

> widely, nor may it be said that, even when opportu nity offered to answer the objections raised to his con
clusions, was he able to clear up the uncertainty as to where quickness of fire should give way to weight of projectile. He cannot see, he says, any advantage in increasing the projectile beyond 8 pounds-his greatest caliber ; for then, though you get more effectiveness, there is a recoil that throws the carriage out of position and seriously disturbs the range once got; the gun, too, being heavy and awkward to handle, and requiring the use of a hand spike in the hands of him laying it, while now he may readily follow, while firing, the movement of the enemy's line, and judge from the effect of one shot how he ought to lay the gun for the next. The feeling among artillerists, however, seems to be that the machine gun's caliber should be into be that the machine gun's caliber should be in-
creased to fire 12 pound projectiles, like the horse artil-

NEW MODEL STEAM LAUNCH FITTED WITH SHIPMAN ENGINE.

 tion.-Mail and Express.To all of which we say amen, except as to the imposibility of successfully manufacturing fire crackers in this country; that is to say, if our neighbor lays it to a lack of scientific knowledge or mechanical ability. As matter of fact, the reason that we import Chinese crackers is that, living as he does upon nothing a day the Chinaman is enabled to turn out the sinaller of the explosives for about two cents a pack-a price against which the American manufacturer and workman find t useless to try to compete. The quality of the ware made here is equal to or better than that of the im portad article. Of the larger, orso called cannon crack ers, great numbers are made and sold here, and no one who has ever had one of the wretched, incendiary, murderous nuisances explode anywhere about his feet will deny that in the mat ter of detonation they ac complish all that the mak ers could wish.---Fire and Water.

A Lightning Flash.

In the Elektrotechnische Zeitschrift of March last, W. Kohlrausch has given some estimates of the cur rent and quantity of elec tricity in a lightning flash He calculates that it would take 9,200 amperes to melt a copper rod of 2.5 centi meters diameter. Preece's constant-Proc. R. S. March, $1888-\mathrm{makes}$ i 10,244 . Such a current con centrated in a flash would contain from 52 to $2 i 0$ cou lombs, which would de compose from 5 to 25 milli grammes of water and from 9 to 47 cubic centi meters of explosive gas. I this energy were stored up and distributed for electri lighting, it would require from 7 to 35 such flashes to trained and experienced workmen. The United States \mid lery arm. As to handling them in the future, it is keep one incandescent lamp alight for an hour. supervising inspectors of stean vessels have approved likely there will be great changes, for now the gunners the use of this petroleum engine on vessels, and its use on all government waters is readily allowed.
This engine is popular and efficient for all stationary purposes as well as for marine work. The main office of the Shipman Engine Company is at No. 92 Pearl Street, Boston, Mass., with a New York office at 12 Cortlandt Et .
are protected. In the Franco-Prussian war, where the machine gun, the mitrailleuse, of small bore was used, it was found impractical to attempt to bring up oven these quick firers in the face of infantry fire. It is true that at Spicheren two Prussian batteries were advanced to within 800 yards of the French infantry line, but they lost half their men, and would have

ONE of the new applications of a waste product to a useful purpose is the manufacture of paper out of cedar wood pulp, for underlaying carpets, wrapping of wool furs, etc. The paper makers procure the cedar chips of pencil manufacturers, and the paper made of this material will, it is claimed, preserve articles wrapped in it from the moths.

VIBRATORY MOTIONS OF RAILS DURING THE RUNNING OF TRAINS.
At the inception of railways, the manner in which tracks should be laid was determined by somewhat theoretical calculations of resistance, which since that epoch have been considered as sufficient in practice, and have been preserved without any very important modifications. The sole changes that they have undergone, moreover, are due, in most cases, to the personal estimates of engineers, rather than to the result of very accurate observations. The only experiments attempted up to the present to ascertain the stability of tracks have been made, in faet, with immovable loads, and are insufficient to permit of accurately ascertaining the state of the track, during the passage of a train, under the influence of instantaneously developed reactions of all natures, such as flexion, lateral thrust of the rails, and inclination of the ties. It is these stresses and displacements, which are infinitely small as regards duration and amplitude, and which, moreover, vary from one instant to another of the train's running, that it is important to observe and to seize in their ephemeral existence; for, although they disappear immediately, it is only to reappear a short time afterward under slightly different conditions during the passage of the succeeding train, and it is their ever repeated action that wears the track and produces permanent distortions in it. They, therefore, lead to considerable expense in the way of keeping the road in repair, and may, at a given moment, be the cause of most serious accidents.

We have here one of the most difficult subjects of research, but one which is capable of giving most interesting results, by showing the points that are most strained, the nature and extent of the distortions, and the precautions to be taken to avoid them in the laying of the track, by supporting it in the weakest places, etc.

One of the most distinguished engineers of the Lyons Company, Mr. Couard, the inventor of an ingenious signal, has not hesitated to undertake this study (which he has now pursued for five years), and has endeavored to register those continuous phenomena, such as oscillations and vibrations of every nature, that moving trains give rise to. For inscription, the graphic method was clearly indicated, and as for apparatus of observation, Mr. Couard found these in the ones that were already in use in physiolog ical studies for the inscription of analogous vibratory motions. Messrs. Frank \& Marey's sphygmograph, which is used by physiologists in the study of the motions of birds' wings, etc., has been adapted likewise by Mr. Couard to the study of the motions of the elements of the railway, of which, so to speak, it was a question of feeling the pulse. The preliminary researches were made in 1883, with instruments lent by Mr. Marey, and led the Lyons Company to decide on the construction of analogous apparatus es pecially adapted for the study of tracks.
The apparatus thus ar ranged by Mr. Couard com prises an explorer of small bulk, placed upon the rail
to be studied, and all the motions of which are trans mitted to an inscribing device placed at a sufficient distance from the track to be uninfluenced by disturbing vibratory motions. The transmitting part is a simple rubber tube inclosing compressed air. and it is the variations in pressure caused by the displacements of the explorer that act upon the inscribing apparatus. We have here, as may be seen, the principle laid down in 1860 by Mr. Buisson, who applied it with success to the sphygmograph.
The explorer, whieh is represented in place in Figs. 1,2 , and 3 , is a sort of bellows consisting of a small, round metallic box, closed by a sheet of rubber, to the center of which is fixed a rod whose rounded head bears
against the rail. A spiral spring fixed to the bottom of the box repels the rubber and prevents the box from flattening withoutexternal stress. In the bottom there is a small tubulure, to which is tixed the rubber tubing running to the receiver. This latter consists of a bellows analogous to that of the explorer, but the rubber of which supports a goose quill style as light as possible that inscribes the displacements upon a cylinder cov ered with lamp black.
Fig. 3, which gives the general arrangement, shows four receiving apparatus mounted in front of the same registering cylinder, which might take the inscriptions of each of them at once, but only one is actuated by the tube of the explorer put in place. The blackened

Fig. 1.-APPARATUS FOR MEASURING THE VERTICAL Fig. 2.-APPARATUS FOR MEASURING THE LATERAL
tions of which it undergoes. The button of the ex plorer rod rests upon the other arm and transmits the latter's oscillations to the rubber. This arrangement permits of varying at will the respective lengths of the two lever arms and to reduce the inscriptions when the amplitude of the motions of the tie displaces that of the oscillations of the explorer.
For measuring the lateral overset of a rail on a tie, the explorers are placed externally to the track with the rod horizontal, as shown in Fig. 2, and the buttor: bears with a certain pressure against the extremity of an angle iron bolted to the web of the rail, and is held by a wire in order to assure of an interdependence of the two motions. Under such circumstances, the horizontal displacements of the explorer are equal to half of those of the head of the rail, the angle iron being ixed at the center of the rail. It, therefore, suffices to double the indications of the explorer to ascertain the amplitude of the dis placements of the rail head, for it has been found that the foot does not slide upon the tie.
Fig. 3 shows the arrangement adopted for measur ing the vertical flexions of the rail independently of those of the tie. The ex plorer rests upon a lever supported by a horizontal board, which rests upon two straps attached to the ail by a bolt. A spring formed of a rubber band keeps the lever arm con tinually in contact with the button of the explorer cylinder that constitutes the registering apparatus is \mid With the apparatus just described, Mr. Couard has ob driven by a clockwork movement, the uniformity of tained most interesting data, that permit of most comwhose running is assured by a Foucault pendulum of may be given three different velocities through appropriate gearings, or be stopped instantaneously. The inscription is taken upon the blackened paper that covers the metallic cylinder, and is afterward fixed through immersion in photographic varnish. It is then used for taking copies to serve for studying the traces obtained.
As it is very important to control the regularity of the cylinder's motion, for the exact determination of the speed of the trains, Mr. Couard has completed his apparatus to this effect by a tuning fork, whose motion is kept up by an electric current, and the intersections are
In this way Mr . Couard has noted interruptions In this way Mr. Couard has noted interruptions pletely analyzing the complex motions of rails. $-L a$ Nature.

Rivers vs. Railroads.

The authorities of New South Wales, where all the railroads in the colony are owned by the government are greatly troubled by steamboat competition on the Murray River. The people on the banks of the river induced the government to build a railroad to take out their produce, and also to expend $£ 200,000$ in dredging the Murray. The steamboats then cut under the rail road, which put its freight rate down so as for a short time to take all the traffic, but the steamboats have more than met that cut, leaving the road nothing but the passenger traffic, which does not pay. As the roads were built to develop the country, it seems hard to the government that they should be called on to operate them at a loss, and it is proposed to put a river toll on the steamers that shall be heavy enough to restore the traffic to the government road. But this plan is open to the charge that the consequent increase in transpor tation rates would deprive the inhabitants of $t h e$ Bourke district of the nat ural advantage of living on a watercourse, arresting the development due to cheap transportation, and would sink the $£ 200,000$ expended for dredging. On the other hand, it may be claimed that all other districts in New South Wales should have as cheap transportation as the Bourke district; but this might involve not only the payment of interest by the imposition of direct taxes, but a part of the operating expenses as well. The Rail
nsitive that, according to Mr. Marey, it is capable of inscribing 1,000 and even 1,200 vibrations per second.
Other apparatus that it would take too long to decribe here serve for determining the precise instant of the passage of the forward axle of the train. Figs. 1, 2, and 3 show the arrangement of the explorer on the track aecording to the nature of the motion to be studied. That in Fig. 1 serves for taking the vertical displacements of the tie. The apparatus, as may be seen, rests upon a board fixed to a bloek partially buried in the earth between two ties. The board supports the axis of a lever, one arm of which is attached at the extremity to the tie to be studied, and the vertical mo-

Fig. 3.-APPARATUS FOR MEASURING THE VERTICAL FLEXIONS OF RAILS. road Gazette. looking at this matter from a distance, says: "The instance presents a curious study of the complications which may beset government control of railroads where watercourses afford opportunities for competition."

A SwISs engineer has proposed a scheme for supplying Paris with water from Lake Neufchatel, at an estimated cost of $20,000,000$. The aqueduct required would be 312 miles long, 22 miles of which would be a tunnel through the Jura Mountains. As the lake is 1.620 feet above the average level of the streets of Paris, the scheme includes a plan for using the surplus head to furnish power.

Improved Photographic Plates

A considerable time has now elapsed since the promulgation of the discovery that, by the addition of ortain dye stuff to the sensitized silver compound, a different range of sensitiveness is obtained to the various colors of the spectrum, whether in their native purity or as they are represented in the colors of natural objects which it may be desired to represent by photography; and that this range may be made to correspond far more closely with the effect of luminosity which such colors produce, through the eye, upon the mind of the spectator, than that given by the silver salts themselves without such addition.
It may, at first sight, appear surprising to many, considering how many years this idea has been before the public, and how much attention has been bestowed upon its development by leading scientific men among the photographic experimentalists in various parts of the world, that the advantage which such an approximation to a more truthful representation gives-enabling us to meet, so far as it goes, the greatest reproach which has been brought against photography-should not have been by this time so fully appreciated as to insure its almost universal adoption. As very commonly happens, several causes were at work tending to delay the general use of an improvement which may now be considered to be established as such. One of these causes was doubtless the fact that photographers had been led to expect results of a somewhat similar character from the substitution of bromide for bromo-iodide of silver, when the gelatine process came to take the place that had been previously occupied by collodion, and had found that practically there was no difference in the power of rendering colored subjects when used in the camera in the ordinary way for the reproduction of natural colors.
This disappointment naturally engendered among those who make photography their business a certain amount of disbelief and unreadiness to venture upon further trials in the same direction.
Another serious drawback was found in the fact that the earlier prepared orthochromatized plates commonly gave a somewhat veiled image, deficient in the brightness and pluck so necessary for successful commercial work. Yet a third drawback-and perhaps the most important one-was that, with orthochromatized gelatine plates as at first prepared, it was necessary, in order to obtain any very decided effect when photographing natural objects of the ordinary kind, to employed a colored screen, which at the same time introduced certain optical difficulties, and necessitated a considerably prolonged exposure. All these considerations militated seriously against the general adoption of orthochromatized plates for the ordinary work of the studio and the field, although the undoubted advantage of the principle of color sensitizing caused it to be more and more taken up, when a truer representation of the effect of various colors was most required, and when, as in the case particularly of copying paintings and other works of art, the disadvantage of prolonged exposure due to the use of the color screen was not serious.
The undue prominence of action by objects of certain colors, violet and blue, and the corresponding insufficiency of photographic energy displayed by others, green and yellow particularly, as evidenced by the want of lightness and life in the foliage of landscape photographing, and the excessive prominence given to freckles and to yellowish discolorations of the skin in portraiture, have steadily been kept in mind by scientific photographers, who have strenuously endeavored by research and experiment to remove this stigma u pon photography, as well as by those whose bent is more in the artistic direction, and who recognize only too strongly the evils referred to, and are ready to hais with delight a remedy for or palliation of it, if only it can be
shown that the remedy is a real one, and within the shown that the remedy is a
range of practical application.

Some landscape photographs which we have seen recently, and which we were given to understand had been produced without the interposition of a colored screen, upon plates prepared after a formula by Dr. H. Vogel, lead us to believe that the time is not far distant when a much more extended use of orthochromatized plates will be made than has been the case up to the present time. In landscape work generally the tendency is for trees and bushes to come toodark and heavy, relieved principally by the light reflected in a glistening manner by some of the leaves which happen to be at such an angle as to reflect the light from their surfaces. In the examples we have referred to. clumps of bushes and other foliage came out without excessive glitter, and with a beautiful light extending over the greater part of the objects, contrasting, as we see it in nature and in good paintings, with the bold, decided shadows of the stems and base; altogether giving that roundness to the object, as a whole, which is a beauty so much to be desired in the foliage of landscapes in a general way, and indeet which was in marked contrast with some other photographs of the same scenes, taken, as we understand, under similar conditions, with the exception that in the latter case ordinary unorthoshromatized gelatine plates were employed.

In the studio, too, the employment of orthochromatized plates should, besides the better rendering of draperies, tend to reduce the necessity for retouching. There is no doubt that retouching, while an admitted necessity for those who have to make a business out of photographic portraiture, has, in many cases, been made to act as a substitute for good, sound photography, and so bas been the cause of stagnation, or even deterioration, in the quality of the work produced. Retouching has been made a necessity, partly from the love of the sitter to be flattered, but partly also from the need for correcting the faults of photography itself. One of the faults, excessive blackness of the shadows, may be very much remedied by careful lighting and exposure. Another fault, that which has been referred to as the too powerful rendering of freckles and other yellowish discolorations of the skin, to which hair, may now be greatly alleviated, if not entirely removed, by the use of plates having a different range of sensitiveness and color from that possessed by the haloid salts of silver alone. There is then a prospect of real improvenent in photography, which we trust will stimulate our readers to do their utmost to help o the accomplishment of this long felt desideratum.
One thing more. The sensitizing of the silver compound for those rays which produce too little effect on the plate in proportion to their luminous power to the eye should-and we understand, does-exalt the sensi-
tiveness of the plate as a whole. So then, instead of tiveness of the plate as a whole. So then, instead of
having to do with an exposure of increased length, we may, when using orthochromatic plates that are really effective when employed without a colored screen, expect to find that we are enabled to still further shorten the exposure, and so a gain all round should
result.-Photographic News.

$\longrightarrow \underset{\text { [ScIencer.] }}{ }$

An Ariny of worms.
I am in receipt of a letter, bearing the date July 6 , 1888, from Mr. W. H. Cleaver, East Bethlehem, Pa., in which he states that the worms, specimens of which he sends, are at the present time very abundant in his
neighborhood. To quothood.
To quote from the letter, "They are traveling eastward in countless millions. They travel at night or in the cool of the morning and evening. They camp during the day by getting under sods, boards, stones, or anything to protect them from the heat of the sun. In some places during the day they are piled up in great numbers. They do not seem to destroy anything on their journey, but qo harmlessly along.
Fowls will not eat them, and birds do not appear to molest them."
The specimens which accompany the letter are, I think, the common Polydesmus erythropygus. In the absence of any complete systematic work on the Myriopoda, I am not able to identify the species with absolute certainty. The species is very common in this vicinity, but I have never before heard of its occu
rence in such numbers as reported by Mr. Cleaver.

Edwin Linton.

Washington and Jefferson College,
 Washington, Pa., July 7.

The Lick Observatory.

It is announced that Professor S. W. Burnham, of Chicago, well known as an efficient astronomer and amateur photographer, has been appointed on the
staff of the Lick Observatory staff of the Lick Observatory.
On the occasion of his departure from Chioago, where he has resided for some time, he was honored with a
farewell dinner by a few of his numerous friends and co-workers in by a few of his numerous friends and those present were Professor George W. Hough. of Dearborn Observatory, Rev. Dr. Arthur.Edwards, Dr. H. D. Garrison, G. A. Douglass, Judge Brad well, H. L. Tolman, C. Gentile, W. A. Morse, Dr. C. G. Fowler, Col. A. F. Stevenson, Professor Basten, and Lieut. Schwarka, the Arctic explorer.
The Pacific coast may well be proud in having obfanled Lick Ob-ervatory, while Chicago loses in him a noble friend of the sriences.

A Cheap Ice Chest.

Take two dry goods boxes, one of which is enough smaller than the other to leave a space of about three inches all around when it is placed inside. Fill the
space between the two with sawdust packed closelv, and cover with a heavy lid made to fit neatly inside the larger box. Insert a small pipe in the bottom of the chest to carry off the water from the melting ice, and you have a very cheap and tolerably effective ice box for family or grocers' use.

A Stopper for Rats.

A correspondent says : Soak one or more newspapers, solution into a pulp, dip the pulp in a sulpable any crevice or hole made by mice or rats. Result-a disgusted retreat, with sore snouts and feet, on the part of the would-be intruders.

THE EDISON PHONOGRAPH IN ENGLAND

The phonograph, which has nothing to do either with the telephone or the telegraph means of instanta eous communication, is a wonderful instrument for preserving, and for repeating in any place, from a permanent acoustic record, the tones, accents, and articuate syllables uttered by the human voice, perfect discourse in its original pronunciation, as well as every ind of musical and other sounds, after conveyance of he inscribed record, by ordinary carriage, to within hearing of a future auditor. Professor Edison, of Orange, N. J., in the United States of America, renowned for his improvements of the electric light apparatus and other most valuable scientific contrivances, is the inventor of the phonograph, a rudimentary form of which, exhibited in London ten years ago, then excited much public curiosity. He has, during the past twelvemonth, brought it to a degree of comparative perfection, which was practically tested, on June 25, by experiments at the house of Colonel G. E. Gouraud,
the agent in London for Mr. Edison's inventions, residing at Little London for Mr. Edison's inventions, resid on June 29, in the press gallery at the Handel festival, in the Crystal Palace. Our illustrations represent the scenes on these two occasions; in the first instance, a private family party at Norwood listening to the tones and words of Mr. Edison's roice, ten days after he had spoken in America, at a distance of nearly three thousand miles--the "phonogram" having been sent Statew York on June 16, with the regular United tates mail, by the German Lloyd's steamship Eider, to Southampton ; in the other case, during the grand performance of Handel's music, the phonograph reporting with perfect accuracy the sublime strains, vocal and instrumental, of the "Israel in Egypt," received by a large horn projecting over the balustrade in the vast concert room in the north transept of the Crystal Palace. The machine was worked by Mr. De Courcy Hamilton, one of Mr. Edison's assistants, who had brought it from America. The "phonograms" being sent to Mr. Edison, all the Handel choruses, as sung here by four thousand voices, with the orchestral and rgan accompaniments, will be heard in New York and in other American cities. They can be repeated to a hundred different audiences for years to come.
We can only give a brief account of the essential parts of the phonograph. There is a disk of bright netal, rather larger than a shilling piece, so poised as to vibrate in correspondence with any sound that is re ceived by the instrument. Below, and attached to this disk, is a minute point of metal, like a fine pin, which, as the diaphragm or disk vibrates, cuts an exceedingly delicate, sinuous, hair-like line into a revolving cylin der of wax. When the record is once engraved on the cylinder, we can, by reversing the movewent, get back from the instrument the sounds that were put into it. In the phonograph first exhibited in this country ten years ago, which was illustrated in this journal on August 3, 1878, the sound marks were made, in a similar manner, on tin foil; and their tone was metallic, aasal-sometimes a squeak, indeed-very often ludic rous or miserable; but Mr. Edison has now constructed a phonograph which, by substituting a composition of wax for the tin foil, and by other important contriv ances, has entirely got rid of any harshness or weakness of tone.
In external appearance, Mr. Edison's wax cylinders are like ivory napkin or serviette rings, only rather larger, and about three inches long. They fit on a small iron rod, which is put in rapid motion when wanted by a little bichromate galvanic battery, seen in our illustration under the table. When Mr. Edison, in the earlier period of.his experiments, desired to use one of the cylinders over again for new matter, much time was wasted in passing it through the apparatus. He now arranges a minute knife upon the same arm which bears the diaphragm stylus. The knife cuts off a shaving, and the diaphragm stylus follows in its wake; both operations being accomplished at once. Wax cylinders are made thick enough to allow the indented surface to be planed off twenty times or more, so the same cylinder can be used for as many different transcriptions. Another new device perfects the method of duplicating phonograms containing matter which may be worth selling, such as books, music, sermons, speeches, or plays. When a phonogram of special interest or value is obtained, which it is desired to multiply, it is coated
electrically with nickel until a thick plate is obtained. This plate, when detached from the wax and pressed against a fresh sheet of warm wax, gives an exact reproduction of the original phonogram ; and such duplicates may be made so easily and rapidly as to cost carcely anything. To obtain the first phonogram of the book or of a piece of music may require care and special skill. Once obtained, a million can be made from this one nickel mould. So far as countless experiments in the laboratory show, there is no perceptible or audible wear in the wax phonogram, no matter how frequently it is made to repeat a message.
If Colonel Gouraud wants to phonograph a dispatch to New York, he talks into the mouthpiece, the cylinder is turved round by the electric current, the repeating disk vibrates in harmony with the voice, and the
minute point below traees, on the wax surface of the pianoforte, cornet, and other instruments, sung or est sort of a monopoly. They have fixed the capital cylinder its invisible curves, and that is all. The played in America, have been repeated in England by stock, as a starter, at the modest sum of $\$ 6,600,000$, and message is done, you can now take it off and post it the phonograph. A poetical ode, of four verses, dic- will doubtless increase the amount, if the invention -at the ordinary letter rate-to America. In those tated by the Rev. Horatio Nelson Powers, D.D., of succeeds as well as they expect. The company profour inches he has a thousand words, which would be Piermont on the Hudson, has also been spoken, in the poses to follow the footsteps of the Bell Telephone a very long letter. Probably he does not wish to send author's own voice, through this marvelous machine. Company inscooping in money. That is to say, the

EDISON'S PERFECTED PHONOGRAPH IN ENGLAND-EXHIBITION AT THE CRYSTAL PALACE.
more than 250 words. If so, a corresponding length Many of the most important parts of the phonocan be cut off and dispatched by post. The phono- graph are concealed in a sinall metal-covered box, but gram produced would in New York be placed on a as Mr. Edison has expressed a wish for the present to corresponding machine, and exactly reproduced. We keep secret the details as to some new points in the have a copy of the first phonogram, which was a pri- construction of the phonograph until his patents have vate letter from Mr. Edison to Colonel Gouraud, con- been obtained, we therefore omit further description sisting of about two hundred words, treating of busi- of its interior workings. - The Illustrated London News. ness and family affairs. Mr. Edison's voice was re- [In the United States, the Edison and Tainter patcognized by every hearer in Colonel Gouraud's house, ents on the phonograph have been purchased by the including a child seven years old. Several pieces of North American Phonograph Company, of New York music, vocal solos and duets, and performances on the and the corporation expect to make of it the strong-
phonographs will be rented, not sold, the rental each year being say $\$ 40$, or say five times more than the first cost of the instrument.-ED.]
M. H. Wuilleumier has recently made a redetermination of the true value of the ohin, using Lippmann's method. He concludes from his experiments that its value is the resistance of a column of mercury of a square inillimeter section, 106.27 centimeters long, this result being practically the same as that obtained by Lord Rayleigh and others.

ENGINEERING INVENTIONS.

A locomotive fire box has been patented by Mr. Charles W. Hullings, of Burlington, N.
J. An arched and detachable hollow baffer extends through the upper end of the fuel opening into the fire through the upper end of the fuel opening into the fire
box, the interior of the baffler connected with the box, the interior of the baffler connected with the
water section of the obiier, white it is of a shape
designed to prevent cold air entering from striking the crown sheet
A stove for heating railway cars has been patented by Mr. Edwin W. Luce, of Bolivar, N. casing, a portion of which consists of a suspended drop cacing, a portion of whic
secton, whics, in case of accisident, is releneased and and
drops to close the stove and prevent all escape of fire, drops to close the stove and prevent all escape of fire,
even if the stove be upset or turned wholly upside even if
down.

A gas engine speed regulator has been patented by Mr. John Bradiey, of Philadelphia, Pa.
This invention covers a novel construction and arrangement of parts in a device to be connected with the gas supply valve, whereby the supply of gas may be decreased to almost stop the engine when the power is abled to gain full speed in less than half a minute.

agricultural inventions.

A potato planter has been patented by Mr. John H. Priestley, of Meriden, Iowa. It has a hopper-shaped seed box with downward projections
and spouts, in connection with a coverer and marking and spouts, in connection with a coverer and marking bar, and other novel features, whereby potatoes may be
planted rapidly, economically, and evenly, in straight

A weed cutter has been patented by Mr. Gustavus Hauschild, of Topeka, Kansas. It is intended for use as an attachment to cultivators, as a
substitute for some or all of the cultivator blades, to substitute for some or all of the cultivator blades, to
throw the weeds to or from growing plants, and cut throw the weeds to or from growing plants, and cut
them off above, at, or below the ground surface, also them off above, at, or below the ground
stirring the ground close to the plants.

miscellaneous inventions.

A match making machine has been paented by Mr. Karl Peukert, of Durlach, Baden, Germany. It is for laying out the inished matches out of no dood order with the heads all in one direction, and thus substituting machine for manual labor.
A combination pocket tool has been patented by Mr. William R. Buzzell, of Shelburne, Mass. The invention consists in a holiow handle pro-
vided with a tool-receiving socket, and having a vided with a tool-receiving socket, and having a
pivoted cover adapted to hold the tools in the socket, pivoted cover adapted to hold the tools in the
and to confine them in the hollow of the handle.
A thread unwinder for sewing machines has been patented by Mr. Albert J. Hart, of
Brooklyn, N. Y. This invention provides a novel spool Brooklyn, N. Y. This invention provides a novel spool
frame, provided with a fier, so that the thread may be frame, provided with a fier, so that the thread may be
drawn off from the spool without revolving on a stud drawn off from the spool without revolving on a stud or spindle, whereby large spools may be used with any
sewing machine and a uniform tension maintained.
A thread unwinder has been patented by Mr. Thomas Handley, of Willimantic, Conn. This invention provides a fier of simple and cheap construction capable of use with spools revolving at high
speed, wherein the thread may be taken from the spool peed, wherein the thread may be taken from the spoo or middle of the spool.
An ironing table has been patented by Mr. Samuel H. West, of New Orleans, La. It is designed to be mounted on the edge of a table, and has
a swinging clamp and jointed brace, with spring for a swinging clamp and jointed brace, with spring for being such that the piece
A baling press has been patented by Mr. George Ertel, of Quincy, Ill. It is for baling hay
straw, and similar materials, by successive charges in the bale chamber, the invention providing a construc tion designed to secure the proper retraction of the plunger while pressing light, medium, or heavy bales in the same machine.
A thill coupling has been patented by Mr. Andrew J. Spicer, of Portland, Oregon. A clip vertical groove, in which fits an arm jointed to the thill irons, a screw in the arm engaging the clip, the outer
end of the screw having an eye aud a strap attached to end of the
A lamp shade has been patented by Mr. Louis Michael, of Leavenworth, Kansas. It is a
device capable of adjustment to shade one part of a device capable of adjustment to shade one part of a
room while the rest is fully lighted, or it can be used as reflector, while it is designed to be particularly usefu in sick rooms, to protect the eyes of an invalid or
infant.
A milk can has been patented by Mr. John H. Bassler, of Myerstown, Pa. The can has double walls, with a binding ring between having latera connection with a detachable flanged capping ring, being intended to withstand the wear and tear of trans. portation and rough usage.
A nut lock has been patented by Mr. Hiram P. Pruim, of Grand Haven, Mich. This invention covers a washer having a projection engaging the
nut, and a V-shaped key engaging the bolt and a pro ection on the washer, being a peculiarly constructe washer and locking pin, whereby the nut is prevented from becoming loosened on its bolt.
A shaft coupling has been patented by Mr. Robert J. Stuart, of New Hamburg, N. Y. The inclined ribs projecting from its inner wall, combined with two opposite wedges and screw bolts for drawing the wedges into the casing, making a coupling that is
cheap and strong and easily applied and removed.

A process of dyeing has been patented for the dyeing of cotton or other vegetable fibers, in raw or finished state, by the formation thereon of the colored products of the combination of the nitroso
compounds of alpha or beta naphthol with metallic xides, such as iron chrome and copper.
A burglar alarm has been patented by Mr. Thomas J. Brough, of Baltimore, Md. This invention covers a novel construction and combination of parts in an alarm which is simple in construction and portable articles as well as doors, windows, etc., and is esigned to be produced at a very reasonable cost.
A bracket has been patented by Helen M. Humphrey, of Clayville, N. Y. It is made of a rod with clamping device and lazy tongs attached, in com bination with an adjustable plate and set screw, being especially designed for shaving and toilet mirrors and
adapted to be attached to a window or other convenient adapted to be attached to a window or other co
support, and readily foldable in small space.
A whiffletree coupling has been pa tented by Mr. Lafayette A. Melburn, of Denver, Col
Its construction is such that when the Its construction is such that when the parts are ad-
justed to position for use, the clip serves as a brace to justed to position for use, the clip serves as a brace to
prevent forward tilting of the whiffletree, the clip being prevent forward tilting of the whiffletree, the clip being
tightened by a nut to take up wear, so that there will be tightened by a nut to take up wear, so that
no looseness and rattling of the coupling.
An automatic fire lighter has been pa tented by Mr. Frank J. Berg, of Dubuque, Iowa. novel mechanism is arranged in connection with a latch
arm or bar fitted to an alarm clock, whereby, as the arm or bar fitted to an alarm clock, whereby, as the
alarm is tripped, a match will be rubbed over a piece of alarm is tripped, a match will be rubbed over a piece of
sandpaper and dropped into paper prepared or other material for kindling a fire at the time set.

A medicated or tonic beer forms the subject of a patent issued to Mr. Moses H. Kluber, of Dodge City, Kansas. It is composed of malt, rye flou
calamus, spearmint, hops, alcohol, lemon extract, yeas and other ingredients, compounded in certain propor-
tions and made up in a manner specified, for a healthful, palatable, and not intoxicating dripk.
A saw handle has been patented by Mr. George N. Clemson, of Middletown, N. Y. The with vertical extension in its back, while the handle has a slot to receive the blade, with a transverse pin and bolt to engage the nick and slot of the blade, mak-
ing an inexpensive and easily applied handle for long ing an inexpensive and easily appl.
saws for cutting logs and timber.
A nut lock has been patented by Mr William H. Van Wart, of Stonington, Conn. It is fo preventing the accidental turning of the packing nuts of valves, and differs from a lock nut formerly patented by the same inventor, having an open or split ring with a rigid arm projecting from the ring at one side to with a rigid arm projecting from the ring at one
engage one of the flat sides of the packing nut.
A combination pool and billiard table has been patented by Mr. Richard L. Rink, of New York City. This invention provides a removable sec
tion of cushion rail for insertion at the pockets, where by the ends of the cushions may be carried back to form the open pocket, or formed in a straight line as carrom cushion, the invention covering novel features of construction and combination of parts.
A process of drawing on marble has been patented by Mr. Reuben Durrin, of Clay Centre, Kansas. It consists principally in soaking a thin sheet
of marble in water, then applying the black-such a crayon sauce or ivory black-upon the dressed surface where the picture is to be drawn, and grinding or cut-
ting away with pumice or other suitable material, until ting away with pumice or other suitable material, until

A hame tug has been patented by Messrs. Stephen H. French and William J. Maltby, Baird, Texas. This invention covers a tug having chambered carrier with coiled spring, designed to tak up slack when the team is standing or descending grade, to enable the team to start the loud withou jerking, and to prevent the collars from working for
a ra
A grater has been patented by Flora Pollock, of Baltimore, Md. It is for lessening the labor
of comminuting horse radish, cocoanut, dry bread, etc., a can or hopper containing the grater proper, which i the can has depending therefrom a ring or circula the can has depending therefrom a ring or circular
frame supporting a bowl or vessel to receive the grated

ubstance.

A rotary pump has been patented by Mr. William B. Allyn, of Boston, Mass. This inven tion covers an improvement on a formerly patented in-
vention of the same inventor, designed to avoid undue friction between the sliding abutment and the bearing surface of the slot receiving it, and to obviate the necessity of forcing an opening in the web of the
piston, which is liable to become choked by sediment. A tobacco hanger has been patented by Messrs. Thomas Y. and Leo J. Allen, of Skipwith, Va. It is made of wire, bent to form a loop of any desirable shape, with projecting, needle-pointed arms, the loops being adapted to go over the stick or bar, affording a means of hanging the tobacco whereby the
breaking and tearing of the leaves is avoided in stripping them from the wires after curing.
A water cooler has been patented by Mr. Solomon Gluck, of Temple, Toxas. It has an outer
casing and central ice receptacle with perforated bottom casing and central ice receptacle with perforated bottom
surrounded by a water reservoir, with a packing of surrounded by a water reservoir, with a packing of
filtering materialin the bottom, and other novel features, the arrangement being such that the water does not come in contact with the iee and the w
before passing to the discharge faucet.
Boat construction forms the subject of a patent issued to Mr. Joseph H. Hunt, of West Troy, the bow and stern with upright timbers having beveled matched edges of such pitch as to conform to and shape
the bow and stern lines, the end timbers being fastened
by spiking
A retort gas furnace has been patent d by Mr. Dudley D. Flemming, of Jersey City, N. u Each bench is formed into two combustion chambers ith a eneratortical partition wall, in conculiar eatures, whereby, through a simple and inexpensive alteration of furnaces now used for direct firing, the ddvantages of more costly
furnaces may be obtained.
A rectifying column for the distillation of liquids and gases has been patented by Mr. Walte . Colwell, of Cincinnati, Ohio. This invention cover a reduced number of sections in the column suffices, increased facility is afforded for varying the capacity of the column, aud economy is secured in the use of cooling water, in stills especially designed for the distillation of ammonia gas, and for
solutions of ammoniacal salts.

SCIENTIFIC AMERICAN

BUILDING EDITION.

JULY NUMBER. - (No. 33.)

TABLE OF CONTENTS

Elegant plate in colors of a cottage of moderate cost, with floor plans, details, etc.
Plate in colors, with floor plans, details, etc., for
suburban dwelling. Cost, six thousand dollars.
. Floor plans and perspective view of a suburban cottage erected at Fordham Heights, New York City. Cost, five thousand dollars.
A Queen Anne, lately erected at Asbury Park, N. J.
Cost, complete, fourteen hundred dollars. Per spective and floor plans.
5. Design and floor plans for a carriage honse and barn.
Perspe
Ga.
Design for a small cottage costing two thousand dollars. Perspective elevions and floor plans. 8. A church at Nashville, Tenn.
9. Illustration of the Chapel of Pocito, Mexico. 10. Lich gate or cemetery entrance.

1. Page of engravings showing some attractive dwelı ings in Connecticut.
2. An attractive cottage lately erected at Asbury Park, N. J., at a cost of eighteen hundred and fifty dollars, complete. Plans and perspective.
at Kingsbridge, New York City. Plans and per spective.
Troy, N. Y.
Design for the new U. S. Court House and Post Otfice at Williamsport, Pa.
Engraving of the new U.S.
Offlce, Chattanooga, Tenn.
3. View of the oldest cottage at Asbury Park N. J.
4. Plans and perspective view of a cozy little seashore cottage lately built at
four hundred dollars.
5. A modern house built at Asbury Park, N. J., at a cost of two thousand dollars. Plans and perspec-
6. Illustration of the new U. S. Court House and Post Office at Oshkosh, Wis.
a pleasant cottage dollars.
7. A cottage lately built on Monroe Av., Asbury Park, and perspective.
8. Perspective view of a design for a museum, Pelz ravaph, illus-trated.-Areas of different parks.-Paint work.-awdust.-The chimney shaft.-The age of stars. Wood that will not blaze.-Bricks of blown jlass.-Turning and polishing marble.-Decorative respass.-Water for household use.-Hydraulic nortars and cements.-The Durango tunnel.-Slate ement-Ancient and modern mortars.-Treatment of hardwood floors.-A selection of lilies.Undesirable town houses.- Richmond's Victor steam heater, illustrated.-Cheap buildings in China.-Improved fans, ventilators, etc., for buildomical steam and hot water heating boiler, illus trated.-An improved dumb waiter, illustrated.-A composite steel wire door mat, illustrated.-
Domestic conveniences possible with a hand force pump, illustrated.-New variety moulder and shaper, illustrated.-How to fit up a recess.-The Boynton furnaces, ranges, and heaters, illus-
rated.-Cook's new extension beam trammels illustrated.
The Scientific American Architects and Builders
Edition is issued monthly. $\$ 2.50$ a year. Single copies, cents. Forty large quarto pages, equal to about wo hundred ordinary book pages; forming, practically, a large and splendid Magazine of Architec-
ture, richly adorned with olegant plates in colors and with fine engravings, illustrating the most interesting allied subjects.
The Fullness, Richness, Cheapness, and Convenience of any Architectural publication in the world. Sold by all newsdealers.
mUNN \& CO.. PUBLIseers,
361 Broadway, New York.

The charge for Insertion under thes head is one Dollar a line jor each insertion; about eight words to a line. Advertisements must be received at publication office
as early as Thursday morning to appear in next issue.

Wanted-Hardware specialties to manufacture, or
ill buy good patents. Address, with particulars, will buy good patents. Ad
celsior, box 773, New York.
Dynamos of $12-16 \mathrm{c}$. p., 70 volt lamp capacity, $\$ 50$ end for terms C
ovington, Ky .
Patent for tempering, toughening, hardening, and im proving steel and other metals, and restoring burnt
teel. Greatest discovery of the age. A half or whole interest will be sold low. Good chance for a wideawake parts. Material sold in packages of 10 to 500 pounds. pqints, $17 z_{/ 2}$ N. 9 th St., Philadelphia.
For the latest improved diamond prospecting drills, Thess the M.C. Bullock Mfg. Co., Chicago, III.
The best Coffee roasters, coolers, stoners, separators,
polishers, scourers, klossing apparatus, milling and peaberry machines: also rice and macaroni machinery,
are built by The Hungerford Co., 69 Cortlandt are built b
New York.
Safety water columns. Cheaper than explosions or Sarned boilers. For illustrated price list Reliunce Gauge Co., Cleveland, 0 .
Steam Pipe Covering, Sectional and Plastic. Write
or Pamphlet. Jno. A. McConnell \& Co., 69 Water St., for Pamphlet.
Pittsburgh, Pa.
The Diamond Prospecting Co., 74 and 76 W . Lake St.,
Chicako, Ill., general agents for the Sullivan diamond cosko. III., gene
ospecting drills.
Nickel Plating.-Manufacturers of pure nickel an des, pure nickel salts, polishing compositions, etc. \$10 Luttle Wonder." A perfect Electro Plating Machine. Agents or hating, ette. Hanson, Van Winkle \&
outat for plat.
ark, N. J., and 92 and 94 Liberty St., New York.
Perforated metals of all kinds for all purposes. The bert Aitchison Perforated Metal Co., Chicago, ill. The Railroad Gazette, handsomely illustrated, published weekly, at 73 Broadway, New York. Specimen The Knowles Steam Pump Works, 113 Federal St., Boston, and 93 Liberty St., New York, have just is-
sued a new catalogue, in which are proved forms of Pumping Machinery of the single an duplex, steam and power type. This catalogue will be
Link Belting and Wheels. Link Belt M. Co., Chicago. Ton Planer, Lathe, Drill, and other machine tools of
me Jrn design. New Haven Mfg. Co., New Haven, Conn. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J. The The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlet, describing water works maLockwood's Dictionary of Terms used in the practice of Mechanical Engineering, em bracing those current in ing, smith's and boiler shop, etc., comprising over 6,000 ing, smith's and boiler shop, etc., comprising over 6,000
definitions. Edited by a foreman patternaker. 1888.
Price, $\$ 3.00$. For sale by Munn \& Co., 361 Broadway, New Yrice,
York.
Suppl
Supplement Catalogae.-Persons in pursuit of information of any special engineering, mechanical., or scien-
tific subject, can have catalogue of contents of the ScINTIFIC AMERICAN SUPPLEMENT sent to them free.
The BUPPLEMENT contains lengthy articles embracing The SUPPLEMENT contains lengthy articles embracing
the whole range of engineering, mechanics, and physical the whole range of engineering, mechanics, and physical
science. Address Munn \& Co.. Publishers. New York. Steam Hammers, Improved HydraulicJacks, and Tube 60,000 Emerson's 1887 Book of superior saws, with Supplement, sent free to all Sawyers and Lumbermen.
Address Emerson, Smith \& Co., Limited, Beaver Falls, Pa., U. S. A
Hoisting Engines, Friction Clutch Pulleys, Cut-off
Couplings. The D. Frisbie Co... 112 Liberty St, N. Y Veneer machin with Co., 12 Liberty St., N. Y. dry. Mach. Co., Ansonia. Conn. Send for circular.
"How to Keep Boilers Clean." Send your address
or free 88 page book. Jas. C. Hotchkiss, 120 Liberty St., for free
N.
Lathes for cutting irregular forms. Handle and spoke thes. I. E. Merritt Co., Lockport, N. Y.
For best quality, order your steel castings from the
Buffalo Steel Foundry, Buffelo, y
Rod, pin, and dowel machines. 1,000 to 3,000 lineal
\qquad "New Drill Chuck," holding straight taper or square mfrss. of twist drills, reamers, and special tools.

Duplex Steam Pumps. Volker \& Felthousen Co., Buf| Duplex |
| :--- |
| alo, N. |

Split Pulleys at low prices, and of same strength and appearance as Whole Pulless. Yocom \& Son's Shafting

No. 11 planer and matcher. All kinds of woodworking
machinery. C. B. Kogers \& Co., Norwich, Conn.
Send for new and complete catalogue of Scientific New York. Free on spplication.

NEW BOOKS AND PUBLICATIONS

The Ant Review, George F. Kelly, No. 31 East 17th Street, New York, is a high class journal of art, of quarto size, and published bimonthiy, on ull page etching and several photogravure illustraions, reproduced from paintings by some of our best merican artists. Photo-gelatine prints from photographs, representing varied and interesting subjects, add the value and interest of the publication. The July and a full length portrait of a lady, from a painting by we cele william M. Chase, and photo gravures from subjects by Kenyon Cox and George Hitchcock, also a "dry point" etching, by Frederick All the illustrations in this midsummer number are All the illustrations in this midsumme
the contributions of well known artiste.

Mulex Punis

HINTS TO CORRESPONDENTS.
Names and Address must accompany. all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto.: Reierences to former articles or answers should
give date of paper and paje or number of question
Inquiries not answered in reasonable time should be repeated; correspendients will bearr in mind mound that
some answers require not a little research, and
though we endeavor to reply to all, either by lett

personal rather than general interest cannot be
expected without remuneration.
Scienititc American Supplements referred
to may be had at the ottice. Price 10 cents each
Books referred to promptly supplied on receipt of
price.
Minerals sent forezamination should be distinctly
marked or labeled.
(1) J. W. B.-The standard height of drawbars on freight cars from center to rail, as regulated by the Association of Master Mechanics, is thirty-three
inches, with a variation of no more than one inch for unloaded cars.
(2) L. W. C. asks whether Babbitt or bronze is best for a bearing for a small shaft runniug 016 ounces copper makes the best bearings for small high speed shafts.
(3) U. W. T. asks : 1. What is best to clean tombstones and not spoil the enamel? A. Mix $1 / 4$ whiting, 1 ounce soda, and a piece of stone blue the ize of a walnut; boil these together for a quarter of an of flannel, and leave it on for 24 hours, ther wash it off with clean water and polish with a piece of coarse flan nel. 2. Of what can I make a paint that will not wash off, to paint the letters on a tombstone to represent
gold? A. Use the ordinary gold paint sold by art stores, gold?. A. Use the ordinary gold paint sold by art stores,
consisting of powdered brass and oil of turpentine. All unsh paints will wash off in time. 3. Of what can sach paints will wash off in time. 3. Of what can cle on " Electro-metallurgy" in Scientific American Supplement, No. 310.
(4) G. H. J.-Sulphuric ether gently applied with coto wool, away from the light, is effec tive for removing printer's ink from paper, if sufficien
pains be taken. Put bloting paper beneath the one from which the ink is to be removed, and use clean white blotting paper to absorb the color after each application of the ether. A weak solution of oxalic acid o used for removing writing ink, with some kind of which it is effective without materially injuring the
paper.
(5) A. E. B.-The saponaceous lotion of the London Pharmacopœia is used as a cosmetic, and
has the following composition: Take liquor of carbonate of potassa $1 / 2$ ounce, olive oil 4 ounces, rose water 1
unces; agitate together.
(6) L. S. J. and E. F. G.-To get rid of ants in the garden, apply a tablespoonful of carbolic acid to 64 of water to their nests, and they will disap-
pear. To drive them out of the house is more difficult, but can be accomplished by placing red pepper in the drawers with carbolic soap.
(7) F. A. B. asks how to make the composition used in the manufacture of picture frame
gilt frames). A. Various receipts are used, among others: Mix 14 pounds of glue, 7 pounds resin, pound pitch,21/6 pints linseed oil, 5 pints of water, more or less, according to the quantity desired. Several pages
are devoted to this subject in Spons' "Workshop Re are devoted to this subject in Spons' "Workshop Re
ceipts," first series, which we can send you postpaid ceipts," first series, which we can send you pors
for $\$ 2.00$.
(8) L. H. B. desires a cheap solution with which to make permanently transparent thin bond
paper, that it may be used for tracing drawings, etc.,
one that is easily applied, and of not too fatty substance, one that is easily applied, and of not too fatty substance,
that it might resist the ink. A. The paper is first treated that it might resist the ink. A. The paper is first treated
with boiled linseed oil, and the excess of oily particles with boiled linseed oil, and the excess of oily parhed in
removed with benzine. The paper is then washed chlorine bath. When dry, it is again washed with oxy
(9) M. H. C. writes : In your issue for March 17, 1888, you gave a receipt for making typ
writer inks with aniline dyes. State in what manne writer inks with aniline dyes. State in what manne
the inks may be kept from fading. A. All anlline inks the inks may be kept from fading. A. All aniline ink ment and large firms prohibit the use of aniline ink for important documents.
(10) P. J. W. asks : How is alabaster cleaned grass, and then with Venetian soap and chalk, stirred into a paste with wate
(11) J. J. C. writes : I am living in a new house and I am troubled with ants; will you please inform me what I should do to get rid of them? A.
Bunches of green tansy strewed around are said to be an effectual remedy for those pests.
(12) B. H. C. writes : 1. My son Fred, 13 years of age, has almost completed a motor accord
ing to your directions, since his vacation commenced ing to your directions, since his vacation commenced A plunging bichromate battery may be made by clamp-
ing together three plates (5 inches wide and 7 inches ing together three plates (5 inches wide and 7 inches
high,, one of zinc and two of carbon, with intervening strips of wood previously soaked in hot paraffine. The zinc is placed between the carbons, and separated from
them by strips of paraffined wood $1 / 4$ inch thick, placed them by strips of paraffined wood $1 / 4$ inch thick, placed
at the top. The plates are clamped together by two bars of paraffined wood, which project beyond the edges of the plates and are drawn together by two upper ends of the plates and the intervening wooden
strips.: Before putting the elements together, the uppe ends of the carbons should be heated and filled with
paraffine for about an inch only. This is best done by zinc should be amalgamated by dipping it into a solution of nitrate of mercury. Connection is made with the zinc and carbon plates by inserting strips of sheet
copper between the plates and the wooden clamping pieces. The zinc of one element should be connected with both carbon plates of the next element, and so on, and the first zinc plate and last two carbon plates should be connected with the motor. The plates thus tion, which is contained in glass or porcelain vessels. The solution is made in the following way: Dissolve bichromate of potash in hot water to saturation; when cool pour in very slowly one-fifth its volume of sulphuric acid. For every gallon of solution add about one drachm of bisulphate of mercury. The solution should be made in an earthenware vessel. Great care
is necessary in handling the acid and finished solution, as they are very poisonous and corrosive The ments of the battery should remain plunged only when the battery is in use. 2 Allow me to trouble you to tell me the best elementary book on electricity, to get for Fred. Not too elementary. A. Whent
Thompson's " Elementary Electricity."
(13) E. F. F. asks for a process of mak ing chloride of gold from a gold dollar, that will be suitable for photographic purposes. A. Dr. John H. ng method: Dissolve a $\$ 2.50$ gold piece in 6 drachm of chemically pure muriatic acid, 3 drachms of chemically pure nitric acid, and 3 drachms distilled water. Put the gold in a large graduate, pour on the acids and water, cover the graduate win a piece of class, to
shut off or retard the escape of fumes, and set in the sun or in a warm place. When the gold is dissolved glass rod at each addition, until effervescence h ceased and the froth subsided, and the carbonate of copper which has been formed is deposited as a green
recipitate. Now add 6 ounces of water, and let the precipitate. Now add 6 ounces of water, and let the
whole settle for not over thirty minutes, then very whole settle for not over thirty minutes, then very
carefully filter the solution. To the clear golden liquid which has passed through the filter add carefully nough nitric acid, chemically pure, to turn blue litmus per decidedly red, ther 32 fluid ounces. The solution will keep for any length of time, and one ounce will tone four sheets of paper. From Philadelphia Photographer.
(14) C. E. S. writes: I have constructed hand power dynamo as per directions in Scientific american Supplement, No. 161, and I have succeeded o. 36, to a red heat. It will bring four Edison three-can le lamps to incandescence, the armature making about 1,500 revolutions per minute. As I have several pounds No. 16 and No. 18 magnet wire on hand, I would like chine can work to advantage. Please give me the folowing information: How long and thick shonld the wire cores be, which size wire do you recommend?
winsulated with silk. I have used the same sort on the dynamo. A. Make the cores of your magnets $1 / 4$ inches in diameter and 8 inches long. Attach them
to a yoke 1 inch thick, 2 inches wide, and 7 inches ong, leaving a space of 3 inches between the cores. Wind each core in two sections, and use ten layers of ou. 16 wire in each section. Arranged connect all the sections in parallel, or all in
and two in serics.
(15) E. H. B. writes : I have just completed an electric motor such as was described in your through your paper, please answer the following queshons? 1. Can it be run by an alternating current? If o, what change must be made? A. The motor canno be run by an alteruating current. 2. What is the dif erence between the plunging bichromate battery mennoned in your paper and the Grenet battery described on page 72 of vol. i. of "Electricity and the Electric Telegraph," by George B. Prescott? A. There is es entially no difference. 3. Where can I get the carbon arbon and zinc pantew You can procure them from any dealer in electrical
(16) C. S. W. - Mr. L. O. Howard, the specimen is one of the slug caterpillars or stinging caterpillars, of which there are several species common in the eastern United States, especially toward the outh. This particular one is the larva of Lagoa oper cularis. This larva is a very general feeder, although he oak seems to be its particular food plant. It has ale been found upon apple, quince, orange, and various ther trees. It is not common enough to do any appre
(17) S. E. M. asks (1) whether a bed oom cannot be perfectly ventilated by one open win dow, the shutters being closed and the slats of the hhutters open, that is, horizontal. I am told that a
room to be well ventilated requires two openings, but room to be well ventilated requires two openings, but
do not the open slats of the two shutters afford these openings, one for the entrance for pure air, the other or the exit for respired air? A. Whether room can of the room and on many other factors. The shutters only impede ventilation. 2. Can the human voice be cultivated without a master? Are there no books, re iable and gocd, which one could follow and escape the expense of a music master? A. We believe the voice
cannot be properly cultivated without a teacher. We cannot be properly cultivated without a teacher. We
can supply you with "Orthophony, or Vocal Cnlture," can supply you with " Orthophony, or Vocal Cn
by Professor Francis T. Russell. Price $\$ 1.50$.
(18) S. S. B. asks : 1. Material saturated with soapy water will not pass through a rubbe
wringer. What shall I use to squeeze these goods? Use a centrifugal drier. This will do the work satisfac in goods Is there any way to neutralize the soapy wate repeated washings and wringings? A. We advise wash ing and wringing: chemicals would be apt to do injury. Acids will destroy the soap, but will set
harder to dispose of than the soap itself.
(19) K. B. asks : 1. How large should wire should be used,in the electro-magnet for a bell used with about forty feet of circuit? A. Use $9 / 6$ inch round ron for cores, and wind with No. 2.2 to No. 24 wire, put ing on ten or fifteenlayers. 2. I have madea little battery for experimenting, consisting of two short elec ric light carbons and one zinc 2 inches by 1 inch in solution of common salt. How many cells of thi would 1 want for the bell? A. Use four cells of bat tery with chloride of ammonium (sal ammoniac) instead
of salt. 3. Does it matter in a battery to have the carbon plate small? Does it just increase the resistance A. Thẹ large carbon assists depolarization. It dimin ishes resistance only if there is a correspondingly larg arface of zinc facing it.
(20) J. E. A. asks how much longer time resh eggs will be preserved or kept good if turned ver end for end often than if not so turned at all, and
ow long they will keep good under different circumstances. A. See the article on "How to Preserve Egg or the Market," contained in Scientific American Supplement, No. 317. Similar articles in Scientifie
(21) F. P. desires a simple recipe for making what is called small beer, in small quantities. Take a handful of hops to a pail of water, and ad pint of bran, half a pint of molasses, a cup of yeas
(22) L. K. asks the best way for mend grubber boots. A. Use rubber cement. See formu given in Scientific American Supplement, No. 158,
(23) W. H. C. asks a receipt for making invisible ink that can be developed with heat an at will fade away when the paper is allowed to coo A. A mixture of 1 part sulphuric acid with 50 parts of water. The writing is to be done with a quill, and wil eating carefully over a flame, or by laying on a ho oven, it will appear in deep black caracters. The marks are indelible. A solution of chloride of cobalt is invisible when cold, and green when hot, and fades away as it cools.

TO INVENTORS.

An experience of forty years, and the preparation of tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. foreign countries may baws of the United States and a contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices,
which are low. in acoordance with the times and which are low. in acoordance with the times and our ex-
tensive facilities for 5 年ducting the business. Address tensive facilities for sonducting the business. Address
MUNN \& CO., office ScIENTIFIC AMERICAN, 361 Broadway, New York.

INDEX OF INVENTIONS

For which Letters Patent of the
United States were Granted
July 17,1888 ,
AND EACH BEARING THAT DAIPE.
[See note at end of list about copies of these patents.]

Air feeding device, F. Lead Alarn. See Burglar alarm.

Alarn. See Bur
Alarm, J. Israel.
Ammonium chloride, separating, G. Jarmay.
Animal trap, T. w. Conner
Animal trap, T. W. Co
Atomizer, C. Gauthier.
Auger, earth, P. Gamphe
Baling press, E. C. Sooy
Bager, earth, P. Gampher......
Baing press, $\mathbf{\text { E. . Soon...... }}$
Batters. See Galvanic batter
Bearing, anti-friction, H. Hanso
Bearing,
Bearing, anti-friction, E. Warne.
Bearing lubricator, F.S. Somes
Bearing lubricator. F. S. Somes..
Bedclothes holder, G. . Andrew
Beef
Bedc
Beef
Beer
Beer, medicated or tonic, M. H. Kluber
Bell, door, F. Sanderson.
Bell, gong, J. P. Connell
Bell, hand, w. E. Barton.
Belt tightener, S. G. Hunte
Belting, Emerson \& Midgle
Belting, Emerson \& Midgley.
Beting, manufacture of, Emerson
B Midgley
Belting, manufacture of wire, T. Midgley
Belting, wire, I'. Midgley..
Bench. See Welding bench.
Bench. See Welding bench
Bicycle, W. W. \& H. Spence
Blasting, M. Waddell.
Bleanhing edible nuts, F. M. Ironmonger
Boat construction, J. H. Hunt.......
Boiler furnace, steam, C. E. Southar
Boiler setting, J. D. Rasey....
Book, account, A. A. Whip
Bottle stopper, W. Wright
Box. See Deposit box. Locomotive fire box
Box fastener, J. Davy ...
Box or crate, C. . Parks
Brace and bit, I. Holliday
Bracket, H. M. Humphrey....................
Brake. See Car brake. Locomotive brake.
Brick machine, H. W. Mead...................
Bridge gate, Myre \& Christofferson
Brooches. safety pin for, J. Friedberge
Broom, R. D. Gallagh
Buckle. G. Bradshaw
Buckle, T. O Potter
Bulletin, electrical, P. B. D. Delany.
Bundle carrier, H. W. Vietmeyer
Burglar alarm, T. J. Brough...31, 386,133
Burglar alarm, J. Israel........
Burglar alarm, J. Israel.....................................
Burglar alarm, C. Phelps..............
Burgar alarm, H. W.
Bustle, F. M. Jeffery
Jeffery.......
Pfingst \& Bemis.
Cable grip detacher, H. C. Grawe
Can. See Jacketed can. Milk can.
Car and station, passenger, A. K. Mansield.
ar brake, G. G. Oldfeld 386,342
386,203 ar coupling, P. A. Juge.
F.
ar 386,203
386.24
386,322 ar heating apparatus, T. B. Howe................. 386,322
Cars, wheel guard and track clearer for, P. PorCarrier. See Bundle carrier. Cash carrier. 386,346 Carrier. See Bundle carrier. Cash carrier.
Cartlge shels, machine for heading, W. Mason. 386,254
Cee Needle case. Violin case. Watch case.
Cash carrier, G. F. Green........................... 386.314
Cash indicator and register, Heady \& Patterson. Cash indicator and register, Heady \& Patterson. : $3<6,401$
Casting metallic forms, mould for, J. B. Price..... 386,219 hains, sheet metal, F. Egre....................... 386,390 chair. Railway chair. chair. Gong and
hilnal
hina apparatus for firing, s. s. Frackelton....... 386,395 China, appasatus for fring, s. S. Frackelton....... 306,035
Chopper. See Stalk chopper.
Chuck, drill, J. C. Crabbs........................ ... 386,185 Chuck, drill, J. C. Crabbs............................
Chuck for turning eccentrics, lathe, W. T. Brewer................
Curn, J. E. Benjamin
Churn, J. M. Flack...
Churns, closure for,
Churns, closure for, E. P. Bryden
Chute, wagon, F. Moeller
Cider mill, M. B. Kaylor.
Cigar bunching machine, R. A. Bright................ $386,48,234$ Clamp, W. P. Tarbell.. clapboard holder, Luce \& B
Clasp or buckle, S. B. Ferris
Clasp or buckie, , B. Ferris
meyer..3866,283
Clutch, friction, H. Barnes............
Cock for water service, telescopic stop, E. Doug-
las.. 386,115
coin ,
Coke oven, portable bottom, Evans \& Adams....... 3866.427
Collar, horse, H. B. Maldeis..................... 386,409

obtaining oxyazoic, S. Forel................... 386,192
Column, plate metal, Mesker \& Edward.
convertible chair and cot, P. C. Lewis.

386,371 $386,36 i 1$
 orn sheller, H. A. Adams.
 Corn shock binder, M. Spaulding.......................... 386,3631

Coupling. See Car coupling. Pole coupling. Shaft coupling. Thill coupling. Whiffetree

 Shaft cocoupling.

Crusher and grinder, combined hand, w. R. San- ford... 38 .

```
l
```

Cuff holder, e. Pickhardt.
ultivator, J. G. Mallery.
cultivator, stehm, C. R. Sack
Cultivator, wheel, R. Cohoon
cultivators, plow carriage for steam, C. R. Sack.
cupola furnace, C. Sahler...
urrent motor, M. McCart................
Cuspidor, J. I. O'Connor.......
Cut-off valve, W. W. St. John
Cutter. See Pine
 Cutter. See Pipe cutter. Weed cutter.
Deposit box, safety, H. Gross
Digger. See Potato digger.
Distilling pine wood for the production of crude
Distilling pine wood for the production of crude
dry turpentine and pine tar, E. Koch...........
itching, dredging, or exavating machine, E. o.
Rood........ 386,138 Door, air-tight, D. O. Settlemire. 3868,43
Dredging machine, M. Gallagher....... 386,30 Drill. See Grain drill. Well drill.
Dye.. 3866,24
Dyeng, T. Holliday....... Dyeing, T. Holliday.. 386
Egg beater, $\mathbf{3 6}$
Egg beater, A. Bryant Dudley........................ Electric machinery, dynamo, G. Miot................ 386,34
Electrical conductor, E. Weston (r)........10,944, 10,945
Electrical distribution by storage batteries, G. W. Electrical distribution by storage batteries, G. W.
Walker... 386,225
Elevator safety lock, R. D. Thackston..........

 Fireplaces, natural gas heater for, I M. Elison...
Fires in theaters and other buildings, device for
extinguishing. w. Hargreaves............. Fishing rod, E. Horton... 386
Flood gate, J. Murphy.................
Freezing pan or tray for fish, etc., R. Connable... Freezing pan or tray for ish, etc., R. Connable.... 386,383
Fuel, apparatus for the manufacture of vaporous
and gaseous, , Stilwell.
Furnace. See Boiler furnace. Cupola furnace. Furnace. See Boiler furnace. Cupola furnace.
Gauge. See Hinge gauge.
Galvanic battery, A. V. Meserole.............386,149, 366,150
 Gas engine, L. H. Nash...............366,209, 336,210, 388,21
Gas engine sped rexulator, J. Bradey......... 386,233
Gas engines, igniter and supply valve for, L. H. H. Gas engines, igniter and supply valve for, L. H.
Nash..................................... 386,21
Gas engines, igniter for, L. H. Nash,
Gas engines, igniting the charges in. L. H . Nash .. $386,386,21$ Gas engines, igniting the charges in. L. H. Nash .. 338,214
Gas engines, operating, I. H. Nash........... 366,29
Gas holder guide wheel carriaze, J. F. Mayer..... 386,110 Gas holder guide wheel carriage, J. F. Mayer...... 386,
Gate. See Bridge gate. Flood qate.
Gate, M. Baker......................... 386, Gate, c. W. Benschoter...................
Glass blowing apparatus,
R. . Donovan et al..... Glass polishing machines,
Thirsk................
Globe, W. M. Goldthwaite.
Globe support, R. Jacobs.
jamin
Grain drill, c. Fockler
Grain drill, C. Fockler -
Grain drill, Hollinger \& Gillett
Grease from water, separating, J. Hughes
Hanker. See Tobacco hanger
Harvester
Harvester, cotton, Bugg \& Langley..
Hatchways self-closing. R. D. Thack
Hey
Hay elevating device, s. G. Miller
Hay knife, C. C. Brooks.....
Hay rake, horse,
Heater, A. W. Herr..
Hinge, G. Dahlman...
Hinge gauge, H. G. Fulton
Holdback, vehicle, , W. Barry
Holder
Holder. See Bedclothes horder. Clapboard hold-
1 386,225
386,367

er. Cuff holder. Tool holder.

HENRY CAREY BAIRD \& CO. Industrial Publishers, Booksellers, and Importers,
810 Walnut St.. Philadelphia, P'a.. U. S. A.

School of Pharmacy. GORNELL UNIVERSITY.

ER ENSEEIAER POLYTEGHNLC INSTI

 T HE PENNA. DIAMOND DRILL \& MFG. CO. BIRDSBORO, PA., Builders of High Class
Steam Engines. Diamond Drilling and General
Machinery Elour Mill Rolls Ground and Grouved.
\boldsymbol{V} ATPIR MNOTORES:-

ULNEY W. MASON \& CO
PRICTION PULLEYS CLUTCHES and RLEVATORS

THE INTERNATIONAL CYCLOPEDIA.

COMPREHENSIVE, CONCISE, LATE AND CHEAP. A CYCLOPEDIA OF GENERAL REFERENCE.
The most useful addition a manufacturer ever made to his office, or a mechanic to his home. Sold on
the plan of easy monthly payments. Anybody, anywhere, can buy in this way. Send for circulars Agents wanted. DODD, MEAD\& CO., Publishers, 7 Mentionthis paper. 75 Broadway, New York.
$\xrightarrow{\text { TELESCOPIC }}$ OBJJCTIVES AND MIR

GUILD \& GABRISON

OIL WELL SUPPLY CO. Ltd.

PIPE COVERINGS
Absolutely Fire Proof. BRAIDED PACKING, MILL BOARD, SHEATBING, CENENT, FIBRE AND SPECIALTIES.

 HARRISON CONVEYOR!
$\underset{\text { Handing }}{\text { For }}$ Grain, Coal, Sand, Clay, Tari Bark, Cinders, Ores, Seeds, \&C.

ETIOLOGY OF SCARLET FEVER-A

Mrang

BALL ERIE, PA..

RAILWAY AND STEAM FITTERS' SUPPLIES Rue's Little Giant Injector. SCREW Jacks, sturtevant blowers, \&c.
JOHN S. URQUHART. 46 Cortadt St GOLD MINING MACHINERY. - DE-

BARREL, KEG,

 Hogsliead,STAVE MACHINERY . $\& \begin{gathered}\text { facture by } \\ \\ \\ \end{gathered}$ GLodicity.-By Adolphe d'Assier.

NEW CATALOGUE
VALUABLE PAPERS

ICE \& REFRIGERATING

AIR, PURIFICATION OF. - BY D.

PHONOCHARGY Self-trught, Send for catalog. Address The Phonozranhic

ASSICNEE'S SALE. Smith, Beggs \& Ranken Machine Co. Properts. Embracing nearly an Eutire Block of City Real Es-

 For se LE-Candian ard English patents on hand
or power wathing machine. W. W. Venable, Christians
buruhh, Ky.
 The Scienific $\mathrm{American}^{\text {man }}$ PUBLICATIONS FOR 1888.

The prices of the diferent publications in the United
States, Canada, and Mexico are as follows.
$\underset{\text { The Scientifice American (weekly), one (ear }}{\text { The scientitic American Supplement (wekly), one }}{ }^{\$ 3.00}$
The seientific American Supplement (week 1 y), one
yent
The Scientific

The Scerentifl American and Supplement, © $\begin{gathered}\text { COMBIED RATES }\end{gathered}$ 8.00
The Sicientitic American and Architects, and Build-
ers Enition,

This includes postage, which We pay. Remit by posta
express money order, or drait to order of
MONN $\&$ CO. $\mathbf{3} \boldsymbol{3} 1$ Brondway, New York.

Dhovertisements

 receited at puthiteretion orste
ing to appear in next issue

The March of Progress

OUR LATEST IMPROVEMENT！

 hilch only a few years ago were retailed at eight or te
dollars．If you will ry on a pair，you will be convince
hat we do not exageerite．

 AMErican
James Means \＆Co．， 41 Lincoln St．，Boston，Mass．
7 JOHN ST．，
NEW YORK．

 THE COPYINGPAD．－HOW TO MAKE

LITTLE WONDERS

It． PHTHISIS．－A PAPER BY DR．H．C

Hyatt Pure Water Co．

HOW TO MAKE AN INCUBATOR．－

ICROSCOPES ${ }^{\text {Itaseopene．Spectas }}$

 thi cleshanan rex dillu chick．

HOME－MADE INCUBATOR．－PRACTI cal directions for the manufacture of an effective incu－
bator that has been carefully tested and found to per
form aill that may be reanonably

THE BACKUS MOTOR THE BACKUS
 THE BACKUS EXHAUSTER

＂The Baldwin＂

Exhibited at the late American Institute Fair，New York

Otis Brothers do OO．
38 Park Row，NLw YORE

JAMES B．EADS．－AN ACCOUNT OF

95 MILK ST．，BOSTON，MASS

This Company owns the Letters Patent granted to Alexander Graham Bell，March th，1876，No．174，465，and January 30th， 1877，No．186，787．
The transmission of Speech by all known orms of Electric Speaking Telephones in－ ringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor．

MLLEABLE AND FINE GRAY IRON ALSO STEEL．

 エエエヨ
§rientific American

ESTABLISHED 1846
The Most Popalar Scientific Paper in the World． Only 83.00 a Year，including Postage．Weekly．
This widely circulated and splendidly illustrated een pages of useful information and a large number of original engravings of new inventions and discoveries， epresenting Engineering Works，Steam Machinery， ew Inventions，Novelties in Mechanics，Manufictures， ecture，Agriculture．Horticulture，Nattural History，etc． Complete List of Patents each week． Termis of Subscripion．－One copy of the SCIEN－ postage prepaid，to any subscriber in the Unite Stas－ or Canada，on receipt of three dollurs by the pub－ Clubw．six mont bs，81．50；three months， 81.00 ． Masters．Write for part leulars．
The safest way to remit is by post The safest way to remit is by Postal Order．Draft，or
Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed， seldom goes astray，but is at the sender＇s risk．Ad－
dress all letters and make all orders，drafts，etc．，pay－

MIUMVIN \＆CO．
361 Broadway，New York． TEET
Scientific American Supplement．
This is a separate and distinct publication from
THE SCIENTIFIC AMERICAN，but is uniform therewith n size，every number containing sixteen large pages full of engravings，many of which are taken from foreign
papers \times and accompanied with translated descriptions
 weekiy，and includes a very wide range of contents．It presents the most recent papers by eminent writers in
il the principal departments of Science and the all the principal departments of Science and the
Useful Arts，embracing Biology，Geclogy，Mineralogy， Useful Arts，embracing Biology，Geclogy，Mineralogy，
Natural Historỳ，Geokraphy，A rchæology．Astronomy， Chemistry，Electricity，Light．Heat，Mechanical Engi Ship Building，Marine Engineering，Photogriphy echnology，Manufacturing Industries，Saritary En ineering，Agriculture，Horticulture，Domestic Econo－ and valuable information obtainable in no other pub－ lication．
The most important Ensineering Works，Mechanisms， and Manufactures at home and abroad are illustrated
and deseribed in the Supplement． Price for the Suppicment for the United States and Canada． 85.00 a year，or one copy of the Scientific Am－
 or one year for $\% .00$ ．Single copies 10 cents．Address and remit by postal order，express money order，or check
MUNN \＆Co．，361 Broadway，N．Y．． Scientifig amelican．

Builders Edition．

The Scientific American architects and BuILDERS＇EDITION is issued monthly．\＄2．50 a year Single copies， 25 cents．Forty large quarto pages，equa
to about two nundred oranary book pages；forming large and splendid Magazine ot Architecture，rich ly adorned with elegant plates in colors，and with othet fine engravings；illustrating the most interesting ex
amples of modern Architectural Construction and allied subjects．
A special fea
of a varie feature is the presentation in each number of a variety of the latest and best plans for private resi－
dences．city and country，including those of very mod erate cost as well as the more expensive．Drawings in
perspective and in color are given，togetherwith full The Specifcations，Sheets of Details，Estimates，etc． have won for it the Laruest Circulation of any Architectural publication in the world．Sold by al

MUNN \＆CO．，Publishers
361 Broadway，New York．
PRINTING INKS．
THE＂Scientific American＂is printed with CHAS
ENEU JOHNSON CO．，INK．Tenth and Lom．
bard Sts．，Phila．，and 47 Rose St．，opp，Duane St．N． \mathbf{Y}^{2}

