

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. Vol. LVIII.-No. 25.]

NEW YORK, JUNE 23, 1888.
[$\$ 3.00$ per Pess.
 RATTLESNAKE. somewhat like the first named, they will be of greater little vessel, is constructed to "stow away" a marvel-
Torpedo gunboats and torpedo cruisers are the order tonnage, and, instead of carrying but one, will mount ously large quantity of material in the shape of enof the day everywhere. It is now a long time since our naval authorities first came to the conclusion that, though we must be possessed of some big ships with heavy armament, both offensive and defensive, at the same time a large number of smaller light and swift craft were absolutely indispensable. Not a few critics of distinction have ayain and again urged that the larger vessels were too costly, and that a million sterling spent on one of these might be much more advantageously laid out on several second or third rate vessels of greater speed. Swiftness -is everything as regards torpedo warfare. When one comes to think that a fare. When one comes to think that a
class of vessel of which the subject of class of vessel of which the subject of
the sketch is a type can be made to reach a speed of over twenty knots an hour, and that with a comparatively small consumption of fuel, the deduction must be that perfection has been almost attained. A score, or even a dozen, of these little vessels, under the cover of a dark night, would prove a deadly foe to grapple with. Armed with the "search light," they could make a dash on an enemy from different points simultaneously.
The Rattlesmake (twin screw steel torpedo gunbost, 450 tons, 2,700 horse power) is one of four in process of completion, the remaining three being named appropriately, as is the first, the Grasshopper, Spider, and Sandfly.
So pleased were the Admiralty with these boats, that they determined at onve to auginent the number by seven,

THE RATTLESHAKE MAKITG 23 HIMSS AT HOUR.
cines, coal, etc., and it is wonderful how sufficient space could have been found under the circumstances for found under the circumstanoes for
cabin accommodation, yet there is just cabin accommodation, yet there is just
enough room, and no more. One may enough room, and no more. One may
call. her, indeed, a multtum in paroo. call. her, indeed, a multum in parvo.
Eighty tons of coal, her complement, will take her at the highest speed 1,500 miles, whereas the same quantity of fuel, at fifteen knots, will last over 2,500 miles.
The "dynamo room" in the bow presents an interesting study, the space being very linited, and there may.be truly said to be hardly "room enough to swing a cat." In this compartment, not only are torpedoes stored and fired, but the principal portion of the electric apparatus is also kept. The "conning tower" inust not be passed over. It is there that the chief offlioers direct the movement of the ship, while taking sight of the enemy, by telegraphic communication to all parts of the vessel. Guns and torpedoes are also fired by wire from the same spot. The commander's cabin, in the stern, has likewise a very limited space, having room only for a bed, washing stand, and a sideboard, the remaining area being entirely taken up by the torpedo "gear." In the " mess room," Jack's life lies in a nutshell. The sketch gives only one-half the compartment, namely, that on the starboard side, looking "for'ard." At night time, when the hammocks are all slung and occupied, there is not a (Continued on page 390.)

THE TORPEDO BOAT RATTLESNAKE-MAIN DECK VIEW.

\%ricutifir ghmmican.

HESABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

O. D. MUNN.	A. E. BEACH.
TERMS FOR THE SCIENTIPIC AMERICAN	
Une copy, one year. for the U. S. or Canada.... One copy, alx months, for the U. S. or Canada. One copy, one year, wany foreign country belonging to Yostmi Union, Kemit by postal or express money order.	
Anstralia and New Zealand.-Those who desire to recelve the cientipic anemican. for a little over one year, may remit si in current Colunial bank notes. Addrems	
- Seiontife American Supplemout	
ls a diatinot paper from the scientipic am raican. THE SUPPLEMENT Thk to the Poatal Unlon.	
The nmfest way to remit is by draft, pontal order, exprese money order, or rexistered letter.	
Amatralin and New Zoalapd.-The 8Cirntipic AMRRICAN and rent Colonial bank notes.	
Addrese MUNN\& CO., 301 Brondway, corner of Frankilin street, New York.	
EW YORK, SATURDAY, JUNE 23, 188	
Conteric.	
(Illustrated artucles are marked with an asterisk.)	
Aloohol.......................... 388	
Americun Åsociation for ine	
Anthropology.international, con-	
Artessan weil, iargeet in the	
Artillery, beary. modern........... : wo	
Beil, catomink. In Calaily Harbort 386	
Brask and pubicatione, new..... 838	
Clouds, helixhts of needed\qquad appli1 mpratink	
Copy hoider, improi......... Coupling for cars, steam, im-	
Crulsers, Britisio........................ 8887	
Departuent of Labir $\begin{aligned} & \text { Di.......... } \\ & \text { Edion's buby and bis phono- }\end{aligned}$ Edigon's buhy and bis phono-	
miectrical patenta................... 880	
Emperor of Germany	

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT INO. $6 E 1$

For the Woek Rndiug June 23, 1888.

Price 10 cents. For sale by all newadealers.

 Huenier iec freu

- FORT1FICATION.-Portamoath and tita Forrreaseos-The Brition
 V. ECONOMIC GKORAPHY-Central Asial Mount Godmin

 VIL HYGIENE.-HIIts on the Rellef of Toothache.-Remedies or

the ripprior of grrmant

On June 15, the Emperor of Germany. Frederick III. passed away. On March 9, three months and six days before his own death, his father, William I., died, leaving his son and heir-apparent suffering with cancer, an incurable disease that threatened his death at any moment. He was born October 3, 1831, in the palace at Potsdan, a castle which was built by his ancestor, Frederick the Great. He was an only son of the Emperor William. His mother, the Empress Augusta, had been Princess of Saxe-Weimar. He visited England when but seven years old, and there made the acquaintance of Victoria and her family, among whom he met his future wife. In 1855 he was betrothed to the Princess Victoria, and three years later he married her. His return to the Continent with his bride was made the occasion of great rejoicings and ovations.
He served in the army with wuch distinction through the campaigns of 1868 and 1870-71. Though apparently a born soldier, and acting no perfunctory part when in the field, he is said to have been greatly opposed to war not recognizing in it a path to glory, but a painful necessity.
He had been troubled for some years with his throat when, in 1887, the cancerous symptous developed tha have been the premonitors of his death. Attended by the best physicians, he was an invalid at San Rerno when the news of his father's death reached him. He at once returned to Berlin and was crowned Eumperor. Thus he secured the imperial status for life of his wife, which, had he never been Enperor, inight have been endangered. His proclamations and all that he has done in the few months of his tanure indioate a man of the best motives, and make it probable that Germany, in his death, has a cause for true grief. He was personally very popular, and duriug his father's life
was called by all "Unser Fritz" (Our Fritz). In our was called by all "Unser Fritz" (Our Fritz). In our
issue of March 17,1888 will be issue of March 17, 1988, will be found some notes of his blended, and the phich his son was so nuccessor Prince William, will be found in the Scientific American Supplement, No. 643. The later, whom we soon may see Emperor of Germany, was born January 27,1859 , and hence will ascend the throne a a comparatively early age, prepared for a long reign.

the international comaress of anthropology

On Monday, June 4, the International Congress of Anthropology began to hold its first annual meeting. Columbia College was the scene of the initial gather ing. The congress is the outgrowth of the New York Academy of Anthropology, an organization that has been in existence four or flve years. The meeting of
the present year lasted until Thursday evening. The science to which the association is devoted has of late years received such extension, and its methods have been so systematized, that the new congress seems to have chosen a fitting time for organization. One of the leading papers, by Dr. Henry Maudsley, of London, dealt with the tendency in some quarters to treat criminals as insane. The paper was an earnest protest against the sentiment as applied to all criminals, and main tained that we all have within us the potentiality of crime. Yet the "essential criminal," the author be lieved, might be considered as mentally defective. No theories of criminal anthropology are so well proved as to justify their introduction into criminal law. Allied topics were discussed by others.
The discovery of America before Columbus was the subject of a paper by Mr. James Phinney Baxter. He presented the latest grounds for the claim of the Norsemen to the discovery. Prince Roland Bonaparte, in discussing the paper, claimed an earlier discovery by the Chinese. The subjects of alcohol, vaccination, and general topics were considered in other papers. Mr Geo. F. Kunz exhibited some remarkable jade carv ings. On Thursday, June 7, the congress adjourned to meet again in 1892. The interest throughout the sessio was maintained, and on the last day increased, and there is every reason to predict a long and useful future to the association.

apparatus for coolimg air in thratrrs.

An apparatus has been introduced in the Standar Theater, of this city, which in a very simple way is de signed to solve the problem of securing a cool audito ium in summer. A fan is placed in the basement which draws air from outside the building and delivers it through the furnace pipes and registers to various parts of the auditorium. The air before it reaches the fan is drawn over ice arranged on shelves. This cools it so that a temperature of 70° is easily attainable. While the fan situated in the basement is delivering cool air a second fan on the rool exhausts air from the interior thus maintaining a constant change of atmosphere The arrangement, in atilizing the furnace connections, and in general detail, is remarkably simple, and could be readily applied to many places, such as hospitals, where coolness is all important. For a single evening's
"ARE FAET OR sLow straicres the sapget?" In the current number of the North American R. oiew, the masters of the Atlantic "greyhounds" re spond over their signatures to the question: "Are fast or slow steamers the safest q " and, as might be expected of seamen, every one of then engaged in an attempt to shorten the voyage, devote themsel ves with unanimity to commending high speed. Like Samuel Weller in the now historical case of Bardell vs. Pick wick, they remember everything favorable to their own side, but are as obscure and uncertain as the for they are wont to race through as to the merits of th other. The nautical reader, especially. will regret that the coasters, both steam and sail, and the Banks fisher wen were not invited to speak to the other side of the proposition, for, like the question, "Is fox hunting a healthful amusement?" in which the fox's opinio differs very materially from the huntsman's, the ques tion as to whether fast or slow ships are the safest de pends a good deal upon which you are on ; that is to say, from what point of view you look upon it. If the intention was to inquire into the dangers which come from a desire to make quick trips-and it would seen to have been this-another form of question suggesta itself as being better calculated to produce the required result-such, for instance, as this: Is it not unsafe a well as unlawful to run at full speed in foggy or thick weather?
We don't have to go to the mariner to learn whether or no fast ships are safe. The record shows beyond peradventure that they are, when they are run in clear weather. But the record doesn't say how many slow vessels have been run down by fast ones during thick weather, or how soun we may expect to hear of a dread ful accident as the direct result of the wanton violation of the international sailing directions. Surely the ex perienced navigators who framed these laws had some good reason for insisting that steam vessels should slow down while running through the fog. It is not so long aqo when the Clyde Maritine Association, made up of experienced steamship builders, rejecting the claim set up by the officers of the Cunarder Oregon that she was run into, decided that, on the contrary, she got her fatal injuries by striking a sailing vessel while running at full speed in thick weather.
Here is the gist of what the masters of the fast boats say:
Captain Brooks, of the Guion steamer Arizona: "If you have a danger to encounter, the sooner, you get over it the better; and if one steamer takes aeven and another ten days to cross the Atlantic, it Berident that you have three more days of risk on the slow ship." He would run fast in the fog because the ship going the fastest gets the least injury.
This is all very well for the Arizona, but not so well or sinaller vessels that may be in her track; and what is likely to be the consequence when she may happen to strike a ship of her own weight running at the same rate, or a lighter one that has a still greater momen tuin ?
Captain Perry, of the White Star steamer Britannic, says that, after forty years' experience, he has con cluded that, in a collision between two ships at sea he'd liever be on the faster one; but in striking ice or rock he would prefer to be going slow.
Captain Murray, of the Guion steamer Alaska, says you can run out of a storm quicker with a fast ship than a slow one, and mayhap save a daylight or a tide in entering port by the difference of time between a fast ship and a slow one
The master of a ship that had been running slow through the fog might very reasonably respond to this that he was as likely to strike daylight or a high tide, on sighting port, as if he'd been running faster. Captain McMickan, of the Cunarder Umbria, says he believes in slowing dowa in thick weather.
A glance at his uninterrupted series of fast trips shows, however, that he doesn't practice what he preaches, or else that there is never any thick weather at sea when he's afloat.
Captain Lewis, of the Inman line City of Chester, says: "A steamer that goes nine knots in fine weathe would find it hard to keep her head up to the gale in boisterons weather, especially if lightly loaded, and would be in danger of falling into the trough."
But if she were capable of making 18 knots, and with full head of steam on could only then eat into the gale, she would not be "going fast in thick weather. and consequently not be endangering human life so far as reckless speed was concerned.
Captain Kennedy, of the White Star steamer Germanic, deplores the fact that while speed on the ocean has increased, the science of sound signaling, so im portant in preventing collision, has not advanced, and he thinks that if a good system of sound signaling was in use, there would not have been any collision between the Britannic and Celtic
Captain Frangeul, of the French line steamer La Bourgogne, says: "My opinion is that while ex tremely fast ships lessen the duration of dangers, they augment their number.
This is the most striking remark in the whole serie of interviews, and it is obvionsly true.

Captain Land, of the Inman line City of Berlin, say fast-going ship is safer in a fog than a slow-going one because she can be turned quicker.
Perhaps a fair answer to this would be that if not going so fast, you'd have more time to turn in.
One captain complains that the Board of Trade (English) orders you to go slow in a fog, and the government (the post office) offers you a premium for making short passages.
Another, a clear-headed old mariner, declares with great truth that the question of fast or slow sailing re solves itself into a question of fogs.

IISCELLANEOUS EOTES.

The Senate of the United States has passed a bill for the purchase of three squares of ground near the Capitol, for the erection of a Supreme Court building. It will be a large and magnificent edifice.
An expedition for the exploration of the site of the ancient city of Babylon is now being organized under the auspices of the University of Pennsylvania. The staff of the explorers consists of the Rev. John P. Peters, of Philadelphia, for director; Dr. R. F. Harper, of Yale College, and Prof. E. Hilprecht, of the University of Pennsylvania, as assyriologists; Prof. John Henry Haines, photographer; and Mr. J. D. Prince, of Columbia College, as architect and physician. It is expected that they will begin work in cian. It is expected that they will begin work in
the autumn, as no digging can be undertaken before the autumn, as no digging can be undertaken before
November. This expedition is the result of a former effort in the same direction which was made in 1885, under the auspices of the American Archæological Institute, and for which the late Miss Catherine L. Wolfe gave the sum of $\$ 5,000$. The subscribers to the fund of the present expedition embrace several well known citizens of Philadelphia, among whom are Messrs. Geo. W. Childs, H. C. Lea, H. H. Houston, Joseph B. Potts, Stewart Wood, W. W. Frazier, and C. C. Harrison. It is said the expedition will be very completely equipped, and the most interesting results completely equipp
The presidential address before the Alumni Association of Stevens Institute of Technology, on June 13, was delivered by Alfred R. Wolff, M.E. It contained many suggestions of interest. He thinks there might be advantageous changes from some of the studies which now occupy considerable time. Some abstract developments now dwelt upon at length, he thinks, might be advantageously omitted, while physical experiments and applications in heat, electricity, and the like might be more copiously introduced as exercises, both with the view of imparting a fair hold on the abstract taught and also as imparting requisite information
and methods of procedure. "Better acquire some and methods of procedure. "Better acquire some superficially, for only in a thorough acquirement can a correct and mature judgment be formed."
The statistics of the production of coal in the United States for the year 1887, prepared by Chas. A. Ash burner, have been issued by J. W. Powell, Director of the United States Geological Survey. From these statistics it appears the total production of coal was 123 . 965,255 short tons, valued at the mines at $\$ 173,530,996$. Of the above, $89,506,255$ tons were anthracite, valued at $\$ 79,365,844$, the remainder being bituminous, brown, lignite, etc. It appears that coal is found in about 30 different States and 7 Territories. The little State of Rhode Island supplies 6,000 tons of coal.
Dr. Hobart Cheeseman, N. Y., states that the oxalate of cerium has been proved a remedy for cough in every stage of phthisis. He has had an extensive experience stage of phthisis. He has had an extensive experience
with the drug, and speaks of its utility in the highest with the drug, and speaks of its utility in the highest
terms. Dr. W. H. Gardner, surgeon in the United terms. Dr. W. H. Gardner, surgeon in the United
States army, recommends the oxalate of cerium in seasickness. He says: "I do not think I exaggerate when I state that it will cure or materially relieve 75 per cent of all cases." It is administered in doses of ten, fifteen, or twenty grains every two or three hours, in about one tablespoonful of water. He also says he has used it in hundreds of crses of sick headache with marked success. Healso confirms Dr. Cheeseman's experience in regard to its useful effect in relieving cough.
Dr. Thomas Addis Emmett, of this city, describes his method of tracheotomy without the cannula. He uses a silver wire which is passed through the skin and the trachea, so adjusted as to turn the edges of the skin over into close contact with the edge of the opening in the trachea. He thinks it a comparatively easy matter to obtain an early uniou between the edges of the skin and the lining membrane of the trachea, and at the same time to preserve the necessary opening
into the air passage. He thinks the cannula can never into the air passage. He thinks the cannula can never
be so perfected that its presence in the trachea will avoid irritation.
A Reckenzaun electric boat has lately been constructed in Newark, N. J., and a successful trial trip from that place to New York recently took place. She is a trim little lannch, 28 feet long, 6 feet beam, and 3
feet deep. Two long benches run fore and aft in her, feet deep. Two long benches run fore and aft in her,
back to back. Under them are storage batteries. The back to back. Under them are storage batteries. The
motors are aft under the deck. A trap door opens
and revealk a 7 horse power motor for full speed and reveals a 7 horse power motor for full speed
and a 2 horse pow 3 r motor for half speed. They are regulated by a handle convenient to the steersman, or whom there is a comfortable seat in the stern, and they drive a screw propeller. A handsome canopy covers the little boat, and from each of the eight posts hangs an electric lamp.
Gen. W. B. Franklin, of Connecticut, has been ap pointed by the President as Commissioner-General of the United States to the Paris exposition of 1889, and has accepted the office.

The Department of Labor.

The bill creating a National Department of Labor has become a law. The head of the department will be known as the Commissioner of Labor, and his salears. and diffuse duties of the commissioner are to acquire formation connected with labor in the most general and comprehensive sense of the word, and especially in relation to capital, the hours of labor, earnings of working men and women, and the means of promoting working men and women, and the means of promoting
their material, social, intellectual, and moral prospertheir material, social, intellectual, and moral prosper
ity. It is especially charged to ascertain, whenever in dustrial changes shall make it essential, the cost of producing articles at the time dutiable in the United States in leading countries where such articles are pro duced, under a classification showing the different elements of cost of such articles of production : to establish a system of reports by which, at intervals of not less than two years, he can tell the general condition, so far as production is concerued, of the leading industries of the country. He is also to investigate all contries of the country. He is also to investigate all con-
troversies and disputes between employers and emtrovers which may tend to interfere with the welfare of the people, and report thereon to Congress. The aw virtually expands the present Bureau of Labor Statistics, which is a branch of the Interior Depart ment, into a division of the government.

PHOTOGRAPHIC HOTES.

How to Ascertain the True Focus in a Lens.-One plan, described by Mr. Thomas Grubb, which we take from the British Journal of Photography, is as follows:
On the ground glass of the camera draw two vertical lines with a pencil, say one each an inch from the side, although this is not important, so long as both are of equal distance from the margin. Now place the camera on a large sheet of paper on a table facing a window and focus sharply any very distant object-a chimney or a tree-which is so placed as to cut one of the lines drawn.
Then run a pencil along the outer side of the baseboard of the camera, thus drawing a straight line on the paper underneath. Now rotate the camera as if the center of the lens tube was on a pivot, so as to have the object fall upon the line at the opposite margin of the ground glass, and draw a second line on the paper along the other outer side of the baseboard of the camera. Now remove the camera, and by means of a long, straight rule carry these two diagonal lines forward until they meet or intersect each other. Then where they diverge connect them together by a cross line equal in length to the distance apart of the two parallel lines on the ground glass screen. Draw a center line at right angles to the cross line, bisecting the angle formed by the intersection of the two side lines, and measure the distance from their intersection to the cross line, which represents the equivalent focus of that special lens.
Another method intended to find the precise focal center of a lens is described by Mr. Mathiot. First, a very distant object was accurately focused; then the position of the ground glass was marked on the base position of the ground glass was marked on the base
frame of the camera by drawing a line on it. Next an object was focused full size, and the position of the focusing frame was a gain marked.
By pushing in the camera bellows two marks are seen on the camera bed. Twice the distance between these two marks was then measured from the focusing surface and the distance marked upon the brass mounting. This last mark corresponded with the position of the point, once fixed, serves as a basis for all subsequent operations.
Mr. Mathiot focused by measurement, not trusting his eyes.
Having found with his lens, to reproduce an object the same size, it should be distant 6 feet 5 inches, then to obtain an image one-eighth its full size it would have to be placed 11 feet 3 inches from the optical center of the lens. Thus different distances from the lens would produce proportionate images on the ground glass, Diffculty in Stripping Films from Paper.-It is claimed by James McGlashan that the insoluble sensitive film which is flowed over the soluble gelatine film renders the latter insoluble after a time, because of its absorption, by dampness and other causes, of a portion
of the chrome alum in the sensitive film.

Paper recently coated, he found, stripped perfectly, but after it had stood seven or eight months, although kept in a dry place, it would not strip. Films should also be stripped from the paper immediately after development and fixing.-Photo. News.
John Jackson, in the Br. Jour. of Photo., states that he has been able to strip the films, no matter how old, provided they have been kept dry. Immediately after development is finished, the negatives should be soaked for about one minute in a bath of weak hydrochloric acid, strength one drachm to twenty ounces of water, then well washed to clear them of acid before immersing in the hypo. bath. After fixing, the negatives should be rapidly washed in running water, or several changes of water, for half an hour, after which time they should be put down on the prepared glass and stripped after having been under pressure for twenty minutes. On no account should they be left soaking for a protracted time in water. If the stripping cannot be perforined at once, the negatives ought to be taken out of the water and dried on sheets of vulcanite. When required to be stripped, which can be done at any future time, it is only necessary to soak them in an acid bath, as above given, wash the acid from them, and proceed to put them down on the glass, and strip as usual.
Orange Glass Substitute.-Mr. J. B. Huffiman, of Chillicothe, Mo., sends the following substitute for Chillicothe, MO., sends the following substitute for
orange glass for dark-room work to the St. Louis Phoorange glass for dark-room work to the
togrupher. It is simple and easily tried :

Asphattam.. 1 parts. 1 part. Spirits of tarpentine........

Coat the glass plate from one to four times, as desired, flowing the same as if it were collodion.
Preventing Halation.-In some kinds of gelatine plates, especially those coated with a thin emulsion, it frequently happens that a certain anount of disagreeable halation or fogginess is observed, where, for instance in a landscape view, the dark limbs of trees appear against a bright sky, or when an interior is taken pear against a bright sky, or
with windows facing the lens.
Mr. A. A. Pearson, in a communication to the Leeds Photographic Society, which is reported in the Br. Jour. of Photo., speaks of a remedy as follows: It is necessary to cover the back of the sensitive plate with
a substance that will reflect non-actinic light. He prefers the old fashioned burnt sienna, as the rays it reflects are orange and non-actinic. This pigment can be obtained at a paint store ground in water to an impalpable paste free from grit, and it is only necessary to thin it with a little strong dextrine solution and glycerine with a drop of liquefied carbonic acid or oil of rine with a drop of
cloves to preserve it.
The sensitive plates are brushed over the back with it, put into an ordinary drying rack with films facing each other, and a large space between the wet backs, and stood on a metal plate which has been heated, and carried into the dark-room. They will dry in half an hour. In developing, the halation will be still further reduced and even cured by taking the plate out of the dish as soon as the windows appear (supposing it to be an interior) and carefully painting them with a fifty or sirty grain solution of bromide of ammonium or potassium, then returning it to the dish. He preferred to do it with a camel's hair brush.
Combining Developing Material with Sensitive Plates.-According to M . Vidal, plates are being made in Belgium prepared with a coating on the back which contains the proper amount of pyro. and alkali in a dry state to develop it. It also acts as a preventive of halation. After exposure in the camera the sensitive plate is placed in a tray of water. Soon the backing is dissolved, and, mixing with the water, forms the developer of proper strength for bringing out the pic-
M. Vidal suggests that a more simple plan would be to prepare sheets of paper in this way. After the plate was inmersed in the tray the sheet of paper could then be plunged in over it, and as its salts impregnated the water the image would be gradually brought out. If it developed too fast, the sheet of paper could be taken out. Some such simple plan would be quite convenient to the traveling photographer.
An excellent way is to have the dry salts measured out and put up in small homeopathic bottles. To form the developer, simply dissolve in the requisite amount of water.

Mr. Edicon's Baby and Fils Phonograph.

According to the New York Herald, Thomas A. Edison, the inventor, has been interesting himself with his new baby and a phonograph at his home. When
the baby crowed with glee, the crow was registered on the phonograph; when it got mad and yelled, its piercing screams were irrevocably recorded on the same machine. That phonograph is now a receptacle of every known noise peculiar to babyhood. It is Mr. Edison's intention to take a record of the strength of the baby's langs every three months. "I will preserve the record," said he, " until the child becomes a young lady. Then the phonograph can be operated for her benefit, and she can see for herself just what kind of a baby he was, and won't have to take her mother's and the uurse's words for it."

bURNING RATURAL GAs.

We are indebted to Prof. Henry L. Mott for a de scription of a new burner for burning natural gas un der steam boilers now extensively used at Toledo, Ohio and in other places. We give herewith an illustra tion.
The boiler is set in the usual manner. A series of
The boiler is set in the u
grate bars, A, are arranged grate bars, A, are arranged
above the ash pit, their rear above the ash pit, their rear
ends being inclined and terends being inclined and ter-
minating in the fire wall, B. minating in the fire wall, B
Upon the tops of the bars is aid a sheet iron covering, C which extends in height to about three-quarters of the ength of the rear parts of the bars, the remaining portion of the bars being uncovered. On the top On the top of the sheet iron covering is placed a thin laye of fire clay, and upon the fire clay is placed a series of clay pipes, six inches in diameter Above the inner ends of the lay pipes is a fire brick wall A sheet iron cover, D, extends across the tops of the two walls. The gas is delivered through the pipe, E, to the horizontal pipe, F, which is urnished with a series of per forations which are arranged opposite the outer extremities of the clay pipes.
In operation, the air enters through the ash pit and rises into the chamber above the rear ends of the grate bars, where it strikes against the iron plate. D, which is at all times highly heated. The contact of the air with this plate heats the air to a high degree. It then passes on in the direction of the arrows through the clay pipes to the gas burner, F, where the hot air becomes mixed with the incoming gas and the latter is inflamed, producing almost perfect combustion a a high heat.
The products of combustion pass over the fire walls, under the boiler to the rear thereof, thence through the tubes of the boiler to the up-take, G. The arrangement is very simple, highly effective, and is being very extensively adopted.

CATCHING BAIT IN CALAIS HARBOR.

Line flishing as well as net fishing contributes largely to "the harvest of the sea," and is much used for taking cod and haddock in the German Ocean; the lines run out to a length of 300 feet, with a hundred hooks on each line, baited with mussels, whelks, or limpets, or with small pieces of herring or whiting. Eight such lines may be thrown out from one boat. So many vessels are engaged in this kind of fishing that it becomes difficult to obtain a sufficient supply of bait; and where shellfish do not abound on the shore, but must be imported from distant places, it is a costly item of expense. Mussels are largely cultivated for this purpose on the western coast of France, at Esnandes and Aiguillon, near Rochelle. Cuttlefish also make very rood bait. There is a concoderable variety of warine dellusks available for mollusk the mor empting the more valuable fish to the hook, and fish of less price can be cut up to use for bait. In Calais harbor, and in other ports of the Channel, these are obtained by large dropnets lowered from the switches fixed to the mast of a boat, or from the pier, as shown in our illustration. The produce is readly sold to fishermen, who require great quantities of resh bait. It will be renembered that in the disputes with the French about their fishery rights off Newfoundland, and with the Americans respecting their admission to the Nova Scotia and New Brunswick fisheries, the question of their being allowed to purchase bait has been regarded as an important point in the diplomatic negotiations. -Illustrated London News.
which in turn drives the screw propeller. The gas burner is now no longer supplied with gas by means of the hand pump, but with fuel from the retort by means of an injector. When once started, the engine feeds itself and performs all other necessary functions. Speed and pressure are regulated by the injector valve, which is opened to increase and closed to reduce the speed. The forward and backward motions of the engine are governed by the turning of a hand wheel. The naphtha vapor, after having done its work in the engine, is condensed and forced back into the tank to be reused. The consumption of naphths is that due to the heating burner, and with a two horse power engine this is stated to be from three quarts to one gallon per hour.
There are many advantages attendant upon this system of propulsion, which was described by Mr. Yarrow at the last meeting of the Institution of Naval Architects, and illustrated by drawings of a 40 foot launch built and engined by him on this principle. In the first place, there is more room for passengers than in an ordinary steam launch, as the engine and retort occupy so small a space. Then there is rapidity in getting up power, starting and stopping, and great cleanliness, which is due to the absence of the dirt and dust accompanying the ase of coal

RRANGEILENT FOR BURNING NATURAI GAS

The launch is 18 feet long by 5 feet beam, and 2 feet |The lannch being exhibited in a house there was of
inches deep, and is fitted with a two horse power naphtha engine driving a screw propeller. She will carry from six to ten persons at a stated speed of from six to eight miles per hour. In her bows is a stone tank capable of holding between 30 and 40 gallons of deodorized naphtha. Close in the stern of the boat are the engines and vaporizer, which only cover an area about 18 inches square, thus affording far greater space for passengers than in a steam launch of the same size.
The oil vaporizer or retort, which corresponds to the steam boiler of an ordinary engine, is a coil of tubing, and to start the engine this coil is first heated by a burner placed beneath it. By means of an air pump fixed near the engine, and worked by hand, air is forced into the naphtha tank and returns thence to the into the naphtha tank and returns thence to the
burner in the form of a gas, which is ignited and heats

CATCHING BAIT IN CALAIS HARBOR.

up the retort. When sufficiently heated, which will be in the course of a few minutes, a naphtha pump is
started by hand, and naphtha is pumped from the started by hand, and naphtha is pumped from the porized, and when the pressure is sufficiently high, as indicated by a gauge, the vapor is admitted to the cylinder of the engine, which is now driven by it, and

The launch being exhibited in a house, there was, of
course, no opportunity for testing any of her working course, no opportunity for testing any of her working
points. If we assume all that is stated on this head points. If we assume all that is stated on this head
to be correct, however, the system would appear to have a very promising future before it, particularly for pleasure craft.

Minoralogieal Notos.

At the last meeting of the New York Academy of Sciences, Mr. George F. Kunz exhibited some of the finest red corundum (ruby), from within twenty miles of Atlanta, Ga. This was in pieces weighing one pound, and was part of a mass weighing 350 pounds which was found on the surface. He also exhibited gold quartz from Dutch Guiana (gold formerly found there only in placer deposits had been traced to the vein by a brother of the United States consul, Mr. vein by a brother of the United States consul, Mr.
Thomas Brown), and exhibited specimens said to have assayed $\$ 450$ to the ton. The mines are situated our miles from Parimaribo, and the ore is sent to the coast by natives, who carry it on their heads in ffty pound bags, making two trips a day.
He also read a paper entitled "List of Diamonds Found in the United States," which will be published later by the society, and stated, in reference to the diamond weighing 41/3 carats, exhibited and reported by him two months ago as having been found near Morrow Station, 13 miles south of Atlanta, Ga, that he had recently heard of a two carat stone which was brought to Mr. L. O. Stevens, of Atlanta, Ga., by a colored man, who found it in his garden a few miles from the city, but who would not sell it or allow it to be sent North. It was imperfect and off-colored. Mr Kunz also Mr. Kunz also said that ive topaz for the first time in Maine, at Stoneham, and ever since then he had been on the lookout for the rare gem phenacite, crystals of which he had the pleasure of showing on that evening. This was the first time it had ever been found in the United States outside of Colorado, where it was first discovered in 1882. In Maine, a number of superb light green and sherry colored topaz crystals were found. They were several inches in length, but of little gem value.

AN IEPROVED BTEAY COUPLING FOR CABS.
A coupling for antomatically establishing or breaking tubular connection between the cars, or engine and cars, of a train, for conveying steam, air, or water, etc., for warming, ventilating, or analogous purposes, is illustrated herewith, and has been patented by Mr. James I. Collins, of No. 53 Willow Street, Amsterdam, N. Y. Two Y-shaped conductors, A, B, are emdam, N. Y. Two $\mathbf{Y} \cdot$ shaped conductors, A, B, are em-
ployed, one member of which, a, is tubular, the other, ployed, one member of which, a, is tubular, the other,
b, being made solid to serve as a bearing for connecb, being made solid to serve as a bearing for connec-
tions. The tubular member is carried inward to align tions. The tubular member is carried inward to align
with the outer end of the solid member, and is received in one end of an L, held to turn freely in a packing gland, making a hinged steam tight connection. The shanks of the Y conductors are connected by a nipple in such manner that one will occupy a horizontal and the other a vertical position under the car platform, as shown in Fig. 1, both sections being made alike. Into the outer end of the L is screwed a tubular rod, C, surrounded by a spiral spring, the unattached end of the rod being closed, but having a conical enlargement, with a side aperture, and being received and packed to slide in a sleeve, D, to act as a valve. A section of tubing, E, is screwed into this sleeve, having on its outer end a disk with small central aperture, there being on the outer face of the disk a rubber or other flexible packing ring, to wake a close joint whon brought in close contact with the similar disk of another coupling. The periphery of this disk is furnished with projecting tooth-shaped guides, F, so that when the disks of opposing couplings are brought together, they will be automatically lings are brought together, they wided to their proper relative position to insure firm guided to their proper relative position to insure firm
contact. The coupling is supported at its outer end by contact. The coupling is supported at its outer end by
a chain attached to the sill of the car, its inner end a chain attached to the sill of the car, its inner end
being sustained by a staple, G, from a bracket bebeing sustained by a staple, G, from a bracket be-
neath the car. When the disks of these couplings, fitted on opposing cars, are brought in contact, they

gann
COLLIN' BTEAY COUPLING FOR RAILROAD CARS.
are each forced backward, causing the sleeve to slide back upon the rod, C, whereby communication will be opened for the passage of steam, hot air, etc., from one car to another, the uncoupling and separating of the cars causing the automatic closing of such communication, as the spiral spring then forces the valve sleeve and disk outward.

AN IMPROVED COPY HOLDER.

A device which can be readily attached to and detached from either the upper or lower type case, to hold copy in position to be easily read hy the compositor in setting up type, is illustrated herewith, and has been patented hy Mr. Hugo F. Maas, of Egg Harbor City, N. J. It has a double U-shaped clamp, of wire or sheet metal, with a medial spring plate so dividing the clamp that it may be attached either to the partitions between boxes or to the outer thick frame of the case. A bent arm projects upwardly in double curved form from the clamp, such arm having a flat socket at its

upper end to receive tightly a flat tongue, fixed to the lower edge of a copy-supporting rack, made with a lower back plate and skeleton frame, across the upper part of which extends a longitudinal wire. The ends of the back plate have lugs in which is journaled a longitudinal rubber-covered roller, so close to the back plate that copy passed under it may be moved up or down by turning the roller, which has on one end a milled disk for such purpose.

AN IEPROVED FAN FOR CABS.

A fan attachment for cars or other vehicles, adapted to be operated by the movement of the car, and

Le BEAU'S FAN FOR CARs.

capable of being readily made inoperative at will, is illustrated herewith, and has been patented by Mr. J M. Victor Le Beau, of 51 North Peters Street. New Orleans, La. On one of the wheel axles is a pulley which, by a belt, drives a pulley on a vertical shaft having suitable bearings on one end of the car, adapted to be clutched with and unclutched from another shaft in line therewith and extending to the top of the car. Upon the upper end of the latter shaft is a pulley, a belt from which operates a horizon tal shaft mounted transversely in the upper part of the car, carrying a fan. One or more similar fan shafts with fans may also be operated by belts or cords from the first fan shaft. The preferred connecting means between the ends of the vertical shafts communicating power from the car axle is by having their adjacen ends squared, and sliding thereon a square apertured sleeve. This sleeve has an eye at its upper end adapted to engage a spring ${ }^{\circ}$ hook on the upper shaft, to hold the sleeve away from engagement with the squared portion of the lower shaft, when the fans will not be operated, but on releasing the hook the sleeve will slide down far enough to embrace the end portion of the other shaft, when the fans will be set in motion.

Unlooked-for Results.

How slight a circumstance may determine a man's destiny! It was Darwin's voyage in the ship Beagle that, without doubt, laid the foundations of his narvelous success as a naturalist, and ultimately gav to the world "The Origin of Species." Had he not had the wonderful opportunities, suggests the Western Druggist, which this trip around the world afforded him for the observation and study of natural phenomena, he would probably have been known to the world only as a somewhat heterodox clergyman of the Church of England, who had little love of theology but a kind and generous heart and a passion for the tudy of beetles and plants. His father's opposition at first led him to decline the proposed voyage, and when afterward he was led to reconsider the matter and nake a visit to Capt. Fitz-Roy, the commander of the Beagle, that disciple oi Lavater came very near reject ing him, as was afterward confessed, on account of the shape of his nose! The commander had grave doubts whether any one with a nose like Darwin's could posess sufficient energy for such a voyage.
According to Sir John Lubbock, the great physio ogist and physicist Helmholtz dates his start in science to an attack of typhoid fever. This illness led him to he acquisition of a microscope, which he was enabled vacationase, owing to his having spent the autumn acation of 1841 in the hospital, prostrated with typhoid ever, bing a pupil, he was nursed without expense the savings of his slender resources.

Now British Cruisers.

The British government have now in course of construction five fast craisers. These vessels are to be of a new type, their leading feature being a combination of high speed, quick-firing guns, protective deck, and moderately heavy armor. Three of the vessels of this new class are being built in royal dockyards at Chatham and Portsmouth, and two of them are being built by the Fairfield Shipbuilding Company, Glasgow. The first of the fleet to be launched was the Magicienne, which left the ways at Fairfield on the 12th of May which left the ways at Fairfield on the 12 th of May.
The vessels are of a displacement of 3,000 tous, and The vessels are of a displacement of 3,000 tons, and
their engines are of 9,000 horse power. The speed extheir engines are of 9,000 horse power. The speed ex-
pected to be obtained is 20 knots. The engines are being made by Messrs. Hawthorne, Leslie \& Co., New-oantle-on-Tyne.

The hull is 265 feet long, 42 feet broad, and the moulded depth is 23 feet. It is divided into seventy-five watertight compartments, the engine and boiler space consisting of four of these. The steel protective deck is 1 inch thick in the center and is 2 inches thick in the angles. There are two complete decks running fore and aft. The vital parts are all below the water line The stem consists of a casting of phosphor bronze, the tern post being made of the same material. The armament will consist of nine 6 pounder Hotchkiss guns, a number of Nordenfelt guns, and six 6 inch 5 on Armstrong guns. The engines will consist of a pair of horizontal surface-condensing engines, the dimensions of the cylinders being respectively $341 / 2$ inches, 51 inches, and $761 / 2$ inches diameter ; stroke, 36 inches. There are four double-ended cylindrical boilers to work at a pressure of 155 pounds, with a grate surface of 456 square feet. There are twenty-four corrugated furnaces.

AN IEPLEMENT FOR TRANSPLANTIITG PLANTS.

A simple and easily manipulated implement, by the use of which plants may be removed from the ground without disturbing their roots, and by which also holes may be made for the reception of plants, is illustrated may be made for the reception of plants, is illustrated Coon, of Hood River, Oregon. It is made with an annular band form of earth-cutting blade, combined with the jaws of a tongs. The tongs are so arranged that their handles when closed will close the inner aws, to which the ends of the band-shaped blade, of pring steel, are attached, the bottom of the blade being beveled or sharpened, and its upper edge embracing a smaller circle than its lower edge, making he central opening slightly cone as it is the ar in losed. The manner of using such an implement in different kinds of soils will vary somewhat, according

coon's transplanting mipleigent.

o the facility with which more or less soil may be re moved with the roots of the plant.

AN IIPROVED BELL COLLAR FOR CATTLE.

A simple and efficient bell collar for carrying cattle bells, which may be worn by the animal with more comfort than the leather straps ordinarily used, is illustrated herewith, and has been patented by Messrs. John R. and Elijah R. Hill, of New Albany, Miss. The oke is made of bent wood, having projecting staples near its extremities, and to its lower end is fitted a metal plate clasp having rectangular perforations for receiving the staples the ends of the arms of the clasp being bent outward to form fasteners for a T-sbaped eather tongue, which is slipped to place within the staples underneath the curved extremities of the arms of the clasp. The bottom part of the clasp, between ts arms, has a leather covering for receiving the wear f the staple of the bell.

hillg bell collar for cattle.

Wort and Wagce in Holland.

A royal commission, composed of seven members one of whom was a working carpenter, was appointed in Holland about two years ago to inquire into the condition of the working classes in that country. The commission sat for about eighteen months, and their preliminary report has recently been published. The eport states that in Amsterdam the bakers work from ourteen to sirteen hours a day, in some cases for wenty-six hours at a stretch, this excessive labor being due to the competition of the large bread factories which have recently been opened, and in which the labor is from twelve to fourteen hours.
There are 5.000 working tailors, nearly all of whom work in their own homes, only one merchant tailor having shops in which the sewing machines are driven by steam, and give employment to 200 women and girls. Foreign competition is very great in the tailoring trade, and the Dutch tailors have to work very hard aring the season, which lasts only three months. The workmen employed in diamond cutting-of whom there are 5,000, nearly all Jews-at Ainsterdam are the best paid, as they earn from $\$ 16$ to $\$ 18$ and $\$ 20$ a week working twelve hours at a stretch. In the factories for making bread, vinegar, sugar, etc., in the breweries, sugar refineries, and steam mills, work is carried on both by day and night, there being, of course, two sets forkmen, though when a man belonging to one set is ill or absent, his place is taken by a man of the other et, who is thus obliged to work for 24 hours at a stretch. The royal commission, while admitting the dificulty of obtaining accurate information in all cases, tates that, as a rule, adults work from thirteen to ourteen hours a day, and that out of 11,156 workmen in the province of Lemburg, which is taken as a typical case, 7,011 were men, 240 married women, 733 unmarried women, $\mathbf{3 6 5}$ girls between sixteen and eighteen, 14 girls between twelve and sirteen, and 2,198 boys ander eighteen, 89 per cent of the total number being winors. A law passed in 1874 prohibits the employ ment of children under orts that it is not very strictly enforced, and, moreover that children are made to work almost as long as adults Nor does public instruction appear, despite the law passed in 1874, to have made much progress, for in Am terdam alone 4,606 children did not attend any schoo the beginning of last year, while the mean average of persons unable to read or write in Holland is 10 per ent, as against about 2 per cent in Germany. The com mission states that the rates of wages may be taken at 4 c . an hour for men, 8c. for women, and 2c. for children in the linen trade: while bakers earn 4c., paper makers 5 c ., sugar refiners 6c., painters and compositors 7c., for certain painters 12c., and engravers 16c. per hour. For ordinary workmen 6 c . an hour may be taken as a naximum, which is 56 c. a day, or $\$ 2.50$ a week, supposng the man to work ten full hours. There are a good any mutual relief societies in Holland, especially in he factories, and the employers themselves subscribe in several cases. A Dutchman working twelve hours a day produces much less and is not nearly so well paid as an Englishınan working fewer hours. The commission concluded its report by recommending the govern ment: 1, to provide fur the inspection of factories 2 , to execute more strictly the law relating to infant abor: 8, to prohibit women and children working by ight or on Sunday : 4, to make periods of rest for both of them compulsory; 5 , to prohibit women working for at least a month after their confinement. The Dutch government has introduced a bill which, in some re pects, goes beyond, but in others does not come up to the recommendations made by this commission.

Aluminum.

The process of Professor Curt Netto, of Dresden, now n experimental operation at Krupp's works, Essen, and in London, is a chemical process based on the displacement of aluminum from its ores by metallic sodium. The ore used is cryolite, a double fluoride of aluminum and sodium. This is ground to a fine powder and is fluxed with common salt. The ore is then melted n a reverberatory furnace, and when quite liquid is un into a ladie. When in this condition ingots of solid codium are forced to the bottom of the ladle, and are here held until they become volatilized, the work of a ew moments only. The gaseous sodinm rising through the molten cryolite displaces a part of the aluminum which collects in a metallic form at the bottom of the adle. The greater part of the slag is then skimmed ofr, and the remainder poured into an iron crucible to cool. When the mass is turned out, a solid ingot of aluminum is found at the bottom. The whole of the aluninum in the original charge of ore is not obtained t each operation, and the slag is therefore returned to the furnace with wore cryolite. After the first charge the addition of salt is not required, as the slag serves the purpose of a flus
For each pound of aluminum obtained there is required about $31 / 2$ pounds of sodium, so that it is import nt that this metal should be obtained cheaply. The Alliance Company. London, manufacture it at their orks, the process, as described to us, being as follows, mays Engineering: Pure caustic: soda is melted in a
pan, and then ground coke is stirred into it ; $\mathbf{1 0 0}$ pounds of the mixture are ladled at a time into a long, narrow retort, lying in a furnace. The carbon effects the re duction of a part of the soda, metallic sodium being dis tilled off and caught in a condenser, while carbonat of soda is left in the retort. When the reduction is complete, the carbonate of soda is run off, and a fresh charge introduced, and so the process goes on. We were not informed what was the cost of the metal obtained, but it should not be greater than that obtain ed by the Castner process, which is stated to be 18 ound. Possibly it is less.
We saw a 5 pound ingot produced, the time occupied rom charging the furnace to weighing the ingot being ess than an hour. The cast was one of a series which had been going on all day, and was carried out by unkilled workmen with a small experimental plant. It is claimed that the metal produced is pure, and that in this respect it has an advantage over that obtained by the various electric processes. The cost of its produc tion is set down at 68. ($\$ 1.50$) a pound, while the present selling price is 48s. (\$12) a pound. Since aluminum bronze requires only 5 to 10 per cent of aluminum while steel and iron only need to be alloyed with one tenth per cent to obtain the full benefit of the combi nation, it is evident that aluminum at 10 s . (\$2.50) a pound would be a commercial article for which there would be a large demand.

AN ICPROVED ANIMAL TRAP

A trap designed especially for use as a mouse or rat trap is illustrated herewith, and has been patented by Mr. Charles H. Mittler, of Marthasville, Mo. Within the box is mounted a tilting platform, to be turned either way by a slight touch from the animal, thus releasing a hooked catch and freeing an arm which holds down levers, by which the sliding doors, closing open-

mittler's amithal trap.
ings at both ends of the trap, are held up. A pin on which to place bait is fixed in the face of the tilting block. These traps may be made of either wood or metal.

[Siderbal Misegenger.]

Mars' Satellites.-It may be interesting to some of our readers to kuow how the tiny satellites of Mars look in the great Lick equatorial, as they have been observed night after night by Assistant Keeler, during the month of May. In conversation with a friend he recently said these minute bodies looked in the great efractor as bright as the companion to Polaris does in three inch telescope. Mr. Barnard's estimate of their brightness in April was that they were equal to Jupiter's satellites when viewed with a glass of $11 / 2$ inches aperture. They are evidently easy objects to observe the world's greatest refracting telescope.
Map of Solar Spectrum.-At the April meeting of the National Academy of Sciences, Professor Rowland, of Johns Hopkins University, presented two brief papers, giving further studies on certain spectra. With new and improved instruments, made at the university, it is claimer that he has succeeded in making a much more perfect map of the solar spectrum than his former one. Definition of the lines is better, and some single lines have been divided. He also claims the discovery that carbon is much more widely distributed in the sun thian has previously been known

Dearborn Observatory.-In a recent letter from Pro lessor Hough, we learn that all the astronomical instru ments belonging to Dearborn Observatory have been removed to Evanston, the new site of the observatory Plans for the new building have been adopted, and its erection was to begin about the 1st of May, but the 181/2 inch equatorial will not be mounted before January, 1889. The meridian circle has been placed in emporary building, located 250 feet from the shore of Lake Michigan. Professor Hough says the lake seems o have no effect on nadir observations, at least a moderate storm does not disturb the images perceptibly. In case of a gale, he thinks it is possible that tremors
would be felt. The site of the new observatory is to be 250 feet from the lake shore.
Professor Hough is new arranging for the time ser ice for Chicago from his new location.
Denver University Observatory.-A recent letter from Professor H. A. Howe, of Denver University, Colorado, discloses the interesting fact that the observatory a that place is to ha
scope, the aperture of whose object glass will be 20 inches. This is good news for the university and for Professor Howe, who well deserves the recognition it implies. For so young a man it is a noteworthy stride in his favorite science to have a telescope that ranks fifth in size and power in the United States ; for those at Lick Observatory, Washington, University of Vir ginia, and Princeton only now are larger. Another significant fact in this new enterprise is the altitude of the site, which has been chosen on the new "campus" of the university, about seven miles from the city of Denver, and is 5,000 fest above sea level. If meinory serves us rightly, this site is higher than that of any other large telescope in the United States, the Lick site being next, at an altitude of 4,200 feet. The name of the generous donor of this large instrument is Mr. H. B. Chamberlin, of Denver, Colorado.

Paper Palp from Cotion stalke.

For several weeks, says the Atlanta Constitution there have been on exhibition in the office of the clerk of the Superior Court samples of pulp made of the hulls and stalks of the cotton plant. The pulp is as white as snow, and can be converted into the finest writing paper. It is regarded as valuable, and is the product of parts of the cotton plant hitherto deemed valueless.
The process by which it is made is new. It is a process by which the ligneous substances of the hulls and seed are dissolved. By this process over fifty per cent of the fiber is extracted from the hulls, which have been regarded as fit only for fuel in the mills or for feed and fertilizing purposes, and which were sold for four dollars a ton. These, converted into pulp, will be worth about forty dollars a ton. From the stalks usually left to rot in the fields this new process utilizes about thirty-eight per cent of fiber at a very small expense. It has been settled that there are fertilizing properties in the oil of the cotton seed, and it is asserted that the fiber will not decompose for six years and can not be used as a fertilizer. This is why the woody matter eliminated from the stalk and hull is much more valuable as a decomposing fertilizer than the entire seed. By the same process the ramie plant and its troblesome cousin, the bagasse stalk, is met and over come. By the decorticating process the fiber was crushed and torn out by a slow and expensive process.
In the new process the ligine is simply dissolved out and the snowy films of the ramie and the tawnier threads of the sugar cane are coared out as easily as threads of the sugar cane are
the infantile kitten to its milk.

Alcohol

Among the curious side issues of the current temper ance discussion is the question whether alcohol is natural product. This is, I believe, vigoronsly denied in some quarters. Alcohol, like bread, is manufactured artificially from a natural product. In each case fermentation, a natural process, is made use of. But while bread is known only as a product of manufacture, alcohol appears to be very widely distributed in nature, though in extremely minute quantities. Nor is this at all surprising. If grapes or apples, or their juice, be exposed to the air, fermentation sets in, and the sugar and other carbohydrates are changed to alcohol. The ferments which cause the change are afloat in the air all about, and might not unnaturally attack similar compounds in other vegetable substances. Professor Muntz, of the National Agronomic Institute, in Paris, has, by refined chemical tests, discovered evidences of alcohol in cultivated soils, in rain water, in sea and river water, and in the atmosphere. He finds that vegetable moulds may contain considerable quantities, and it appears probable that the alcohol "originates in the soil, from the fermentation of the organic matters in it, and is thence diffused as vapor in the atmosphere." Another side issue of our temperance discussion is the so-called "Bible wine" theory, which maintains that the wine used in Palestine in the time of Christ was not alcoholic. I have been unable to find evidence that the composition of the juice of the grape, the laws of fermentation, or the practice in the making and using of wine were different in that country at that time from those in other countries, or in that country at other times; and believe it safe to say that the theory that Bible wine was different from other wine, that it had not the alcohol which other wines contain, is without any basis to support it, in the opinion of the is without any basis to support it, in the opinion of the
student of science.-Professor Atwater, in the Century.

Moeting of the Amorican Agsociation for the

Advancoment or selence.

The American Association for the Advancement of Science holds this year its thirty-seventh meeting at Cleveland, Ohio, from Wednesday worning, August 15, to Tuesday evening, August 21. The date of meeting has been advanced one week from that decided upon at the last assembling, on account of a gathering of Knights Templar to occur in Cleveland the third week in August. For all matters relating to membership, papers, and business of the Association, the permanent secretary should be addressed at Salem, Mass

Pobble Beach, Pescadero, Callfornia.
Officers of the coast survey have characterized the famous Pebble Beach of Pescadero as one unique of its kind and without a counterpart on the whole extent of our Atlantic and Pacific coast lines.
Its distinguishing feature is the mass of highly pol ished, pure silicious gravel bordering the sea at this locality, in which the topaz, carnelian, onyx, chalce dony, turquoise, agate, and jasper pebbles are found buffed and perfected by ages of wave action as if by a apidary.
Wave action has also eliminated all soft and angula minerals from the mass, save occasional fragments o abalone shells and chalcedony, and only the hardest tones survive the surf's eternal attrition.
Many of the topazes and carnelians are of rare clear ness and beauty, and may be matched by patien search in size, form, and color for jewelry or for display in mineral cabinets.
Some fine pebbles of milk and fire opalescence are found ; and the surf-polished crystals of pure, pellucid quartz gleam like dewdrops in the multicolored gravel
The carnelians are of all tints, from blood-red to the palest pink or purple ; and in some rare specimens the color is singularly contined to the iniddle of the stone while the exterior is perfectly limpid.
Here, too, are found agates of every color and combination, the choice of which make handsome bracelets watch charms, and other personal trinkets when cut and set. The smaller gems, however, of clear tint, per ect form, and suitable size, need no touch of art or lapi dary's wheel, but in their natural state, set in con trasted colors, are jewels at once unique and of specia interest. Stones of this class are generally small.
But chief among the mineral curiosities of the beach are the so-called "water drops," which are wost abund ant on a piece of sea marge north of the main deposit known locally as "Agate Beach." These are chalce dony pebbles, more or less translucent, and usually about the size and form of a lemon drop, having a globule of water imprisoned in a central cavity, and an air bubble which, when small, looks dark by transmit ted light and moves within like a living insect.
They are highly prized and much sought after by mineral and curiosity collectors. Mrs. General Di mond, of San Francisco, is accorded the credit of being frst to discover and direct attention to these curios of the beach.
To the non-scientific the stone-imprisoned water is a nystery not less puzzling than the milk in the cocoanut. If it had percolated from without, it should be sea water; on the contrary, it is perfectly fresh.
The explanation is that the aqueous drop was inclosed by the silica during the process of crystallization.
These curios, though rare, are not unknown in other parts of the world. And they are occasionally met with in the vugs or cavities of quartz veins during mining operations.
It is evident, however, that only under exceptional conditions of temperature can they exist on the sur face of the earth as at Pescadero, since either a tem perature below 30° would freeze or powerful sun rays would expand the water within and fracture the silicious bulbs
On other sea beaches, washed crystals of smoky and limpid quartz occur. Such crystals are plentiful at Long Branch, but I found there no other varieties worthy of note, and though many of these are beautifully clear while wet, they lose their limpidity when dry, owing to forcible impact one with another in the strong surf, which, as microscopic inspection shows, covers their surfaces with minute fractures.
At Pescadero, however, the silicious gem materials occurred in extraordinary variety and profusion. The sea floor and beach contour favored accumulation and a gentler attrition, and we have there in the fine lapidary finish of these lustrous stones the ultimate product of patient nature and the tireless sea toiling through untold lapses of time.
Pebble gatherers are enthusiastic in their pursuit, and return again and again to the charmed precincts of the beach for new varieties, more perfect specimens, or to complete "sets."
And surely no hobby could be more innocent, more full of restful enjoyment and physical good than the sathering of these pleasing and imperishable memen toes in the exhilarant sea air and clinnate of the Pacific coast, and in so delightful a locality
But beyond its distinguishing feature, the Pescadero beach is otherwise interesting and picturesque. The receding tide leaves wide stretches of kelp-covered reefs, where fine sea inosses and the beautiful abalone univalves may be obtained by the more adventurous visitor. Here, alsc, are things of interest to genlogis and naturalist in the lithology of the shore, the lantas paved pools and basins in the uncovered sea floor, hol paved pools and basins in the uncovered sea floor, hol
lowed as if by art, fit baths for the sea nymphs or fabled Amphitrite, and natural aquaria rife with fabled Amphitrite, and natural aquaria rife with
varied sea life, lined with mosaics of purple-spined sea urchins, limpets, and many-tinted sea anemones.
The botanist, too, especially one unfamiliar with the California flora, will find mueh of special interest in the
wild flowers, grasses and shrubs of the immediate coast line, if he times his visit rightly, say in the period be. tween March 1 and the close of July.
A mile in lineal extent north and south will embrace nearly all of the Pescadero beach deposit ; and "Pebble Beach" proper is but a part of this, a crescentshaped sweep of sea marge sheltered between rocky promontories and backed by arenaceous bluffs.-Min. and Sci. Press.

The Largont Artesian Well in the World.
A recent number of the Melbourne Times, Australia contained an account of the opening of an artesian well at Barcaldine, in the interior of Queensland. The locality where the well has been sunk is far removed rom any watercourse, and has frequently suffered severely from drought. The boring operations were comnenced some time ago by Mr. J. Longhead, managing director of the Federal Boring Association, and no sign of water was met with till the 16th of December ast, when the drill suddenly dropped 7 feet. Within a few ninutes the water ascended the bore, rose several feet into the air, and then fell away into the form of a large glass dome. Its temperature then was 120° Fah. but soon afterward receded to 102°, and Mr. Longhead anticipates that it will go down to about 90°. Before the rods were removed, the bore was continued to a total depth of 691 feet 9 inches, so as to forin a receptacle for any sediment, and prevent its interference with the course of supply. The rods were then lifted, and some additional casing was put in to preserve the sides of the bore where any weakness had been revealed. A pipe 17 feet long was inserted into the bore, and carried up to the top of the derrick, which had been used in connection with the boring plant, and over the top of this the streain of water, 12 inches in diameter, has seemingly been allowed to run to waste. The pressure indicated that had the piping been carried a much greater distance into the air, the streain would not have reached its natural level. It is supposed that the water is issuing at the rate of 400 gal lons per minute, or 576,000 gallons per day. Mr. Long head is of opinion that the supply is inexhaustible, and that its soft nature clearly indicates that it originally came from some snowy ranges.

Now York Technical school for Girle.
We imagine that it will surprise most people to learn hat there is a technical school in New York, excluively for girls, which has been in existence fourteen years, and graduated this year a class of nine hundred
and twenty-four members, or more than the united members of the graduating classes of boys in all the technical schools in the western hemisphere. It is true that the sciences taught in the school are not of a very abstruse character, but they are of the sort est adapted at present to help girls to earn an honest living, and many a woman must bless the thoughtfu charity by which she was put in the way of independence. There is still something strange to an Annerican the modern movement by which women have en tered into nearly all the departinents of industry and
trade which were once monopolized by men. It is not many years since a young girl's face was a rather rare sight on Wall or State Street, and those that were
seen generally belonged to persons who were shyly hurrying by on their way to a ferry or railway station. Now nearly every broker's or lawyer's office and mer chant's counting room has its gentle, industrious bookkeepers and typewriters, and in many cases these modest and faithful assistants are intrusted with very great responsibility. All the girls who wish to be employed, however, cannot find places as typewriters or bookkeepers, and it is a matter of much importance to
the welfare of the sex-to increase the number of occupations in which it can be of service. This sort of work is just what a technical school can do, and those who would like to see the weaker class of their fellow citizens placed in a position where they need not be dependent for support upon the uncertain mercies of their male relatives will do well to keep the New York axample in mind.
Among the subjects taught in the school are stenography and bookkeeping, mechanical and free hand drawing, sewing both by hand and machine, cutting and fitting, music, designing, as applied to textile fabrics, wall papers, and tiles, and modeling. All the instruction given is free, and the salaries of the twelve teachers employed, as well as rent and other expenses,
are paid by subscription, under the care of the Young Women's Christian Association. So far as the public is concerned, the education of women in all these, as well as other kindred subjects, is an unmixed advantage. Not only are thousands of intelligent persons changed from idle and often very poor consumers to industrious and comparatively affiuent producers, but the introduction of so much trained skill into the practice of the domestic arts must before long show itself in the development of those arts. The manufacture of wall paper in this country certainly owes to a few clever women a great part of the extraordinary artistic suc-
cess which it has achieved; and to take another examcess which it has achieved; and to take another exam
ple, the decorative embroidery of the Associated Art
ists, and of Mrs. Holmes before them, give a promise for the future of American art which is hardly to be found in the painting or sculpture of the country.
If we could suggest anything which might, with advantage, be added to the curriculum of this or similar schools, it would certainly be the development of the actual practice of artistic industry in other ways besides embroidery. There is no reason, for instance, why women here should not be as successful in decorative painting as the Misses Garrett and their rivals are tive painting as the Misses Garrett and their rivals are
in England. Most women are somewhat sensitive to in England. Most women are somewhat sensitive to
color, but are so persuaded of their natural gift in this color, but are so persuaded of their natural gift in this
direction that they scorn to learn anything about the direction that they scorn to learn anything about the
subject, and make, in consequence, laborious attempts subject, and make, in consequence, laborious attempts
at decoration which, to everybody except themselves, appear painfully ignorant and bald. If the same women would get rid of the notion that heaven has already taught them a business which their brothers spend years in learning, and would, like men, make themselves acquainted with the observations of such masters as Owen Jones, Dr. Dresser, and Williain Morris, and study and compare the work of different ages and countries, the beautiful forms of the antique and the countries, the beautiful forms of the antique and the
Renaissance, the brilliancy of the Japanese, and the ineffable coloring of the Chinese, they could, more easily than most men, acquire a resource and certainty which would make them the best and most rapid of decorators. The same sort of training would fit them for other artistic professions. We cannot say that we think the system of making designs for tiles and similar things, for indifferent workmen to carry out, is calculated to develop the highest artistic capacity or produce the most beautiful art. The highest beauty can only be added by the artist's own hands, without the intervention of mechanics, and there is just now a wide field for the use of works of decoration which shall be as much autographs of the designer as an easel picture could be. To take a single example, a great deal of mosaic for the adornment of buildings is now made in Venice by an association of girls of good family, who draw and color the designs, pick out the bits of glass or stone, and send them to be put in position. Although mosaic is now a rare luxury with us, it might be popularized in this way to the general advantage. There is a sort of mosaic, useful either for floors or walls, which is made by gluing the bits of marble or glass on brown paper. The paper is then sent in sheets to the place where it is to be used, and laid with the bits of marble downward, on a bed of fresh Portland cement. When the cement has set hard the paper is washed off, and the mosaic finished by polishing with a stone. For the ornamentation of our vestibules and hearths very effective use might be made of this means. The broken bits of tile from the tile layers answer an admirable purpose for mosaic, and give far more richness of color than can be got with marble. These might be glued on sheets by a skillful hand in such a way as to form designs of a value infinitely superior to anything yet attempted in floor or permanent wall decoration, and at a price by no means extravagantly high.-Amer. Architect.

Helghts of Clonds.

The cloud illumination caused by the electric lights of Detroit and Ypsilanti is occasionally so well defined in outline, as seen from this observatory, that it occarred to the director to inaugurate a series of altitude measurements for the purpose of determining the heights of all forms of clouds visible at Ann Arbor after twilight.
The central portion of Detroit is about 35 miles from the observatory, while Ypsilanti is only 5.8 miles distant. The azimuths of the two cities differ about 30 degrees, so that the conditions for determining the heights of the upper and lower clouds can always be made favorable when the atmosphere is sufficiently transparent. When the clouds are very high, the Detroit illumination is so well defined that the probable error of a single measurement of an altitude is only a few ininutes of arc. When the clouds are low, the nearer illumination is well defined and the farther one either invisible or coincident with the apparent horizon. The greatest and least beights recorded up to the present time are respectively 17,080 and 770 feet.Amer. Meteo. Jour.

Electrical Patents.

The number of applications for patents on electrical appliances is phenomenal. During the week ending May 29, seventy-three patents were issued from the Patent Office. A general subdivision into various recognized departments is interesting, as showing those in which inventors are most busily engaged : There are 14 patents relating to instruments and devices of measurement and testing, 2 to telegraphy, 2 to the telephone, 8 directly to the motor, 4 directly to the galvanic battery, 4 directly to the secondary battery, 1 to a thermo-electric generator, 26 to dynainos and electric light apparatus and the transmission and distribution of electricity for parposes of light and power, 17 to miscellaneous applications. Among those relating to electric light apparatus are quite a number covering a whole alternating current system.
meside and outside of a torprdo vessel- H . . s. RATTLEBMAEE.
(Continued from first page.)
cubic foot to spare. The men are then packed like "herrings in a barrel" from deck to ceiling. one over another. But "Jack" doess not seem to be at all unanother. But "Jack" does not seem to be at all unhappy in his quarters, and, as has al ways been from time
inumemorial with him, he good-naturedly shakes down inmemorial with him, he good-naturedly shakes down
and accommodates himself as circumstances will allow. and accommodates himself as circumstances will allow. The after-dinner hour is employed in various ways, such as writing, reading, singing, etc., as the spirit moves him. With all the sparse accommodation, it must be borne in mind that the vessel would seldom be long or far away from land, so that many of the crew would be, as a rule, on leave. Take her for all in all, the Rattlesnake is a smart, serviceable little craft. Her dimensions are : Length between perpendiculars, 200 ft.; extreme breadth, 23 ft .; mean draught, 10 ft .; depth, 16 ft . Her engines are very powertul (2,700 horse power), and the tonnage 450 . She was built and furnished with engines by Messrs. Laird, of Birkenhead.-The Graphic.

Modorn Heavy Artillory.

No limit can be fixed to the possibility of science, and with increasing mechanical ingenuity and improvements on existing types of ordnance we may expect that larger and more destructive weapons than have yet been constructed will be called into existence. Thirty years ago it was considered that no gun exceeding 5 tons in weight could be worked on the deck of a ship. To-day, guns weighing 110 tons are loaded and manipulated on shipboard through hydraulic agencles with the greatest ease. Muzzle loaders have been superseded by breech-loaders, and power and range are ever increasing. The 80 ton muzzle-loading guns of the Inflexible are already considered obsolete, and are exceeded both in range and power by the newer type of breech-loading 67 ton guns carried by the Trafalgar. The Inflexible 80 ton gun is built of iron coiled around a steel tube, and is 27 feet long. The new 67 tou gun is built wholly of steel, and has a length of 36 feet, with a caliber of 13.5 inches. The charge of powder used in the latter gun weighs 630 pounds, and provides the

DYEAYO ROOY IN THE FORE PART OF THE VESSEL.
steam for Car Heating
fred from the guns of the latter ship weighs 1,800
pounds, and is capable of penetrating 35 inches of wrought iron at a range of 1,000 yards, the charge of powder used weighing 900 pounds. Our 110 ton guns have already been surpassed by the Krupp 118 ton guns, which were supplied to the Italian government a short time ago. With these guns a wrought iron plate of 41 inches in thickness can be penetrated near the muzzle, and 39 inches at a distance of 1,000 yards. Their length is about 46 feet, and weight, including

THE RATTLESNAKE LAUNCHING TORPEDOES

Mr. C. F. Choate (president Old Colony), George A Torrey (attorney Fitchburg), and Richard Olney (attorney Boston \& Maine) have printed a communication in which they severely criticise the Massachusetts railroad commissioners in requiring the heating of passenger cars by steam from the locomotive.
So far as the Boston and Albany is concerned, the general impression is that its experience during the last
winter has made it extremely doubtful whether it is winter has made it extremely doubtful whether it is possible to rely for the warm ing of cars upon steam frow the locomotive. It was said at the hearing before the railroad committee that com plaints from passengers on the Boston and Albany of the temperature of the cars luring the past winter were rery loud and very frequent It is notorious, too, that there was considerable suffering during the blizzard among the passengers on the Boston and Albany trains that were talled between stations. And t may probably be safely as serted that while the Boston and Albany is eudeavoring to make the system of heating recommended by the railroad commissioners a success, and will persevere until complete uccess or failure is assured t would abandon the system altogether and at once if it were not for the expectation that continued experiment would result in greatly inproving the particular methThe result is that the opinion brech mechanism, 118 tons. They are made entirely of od it has now in comissioners, which they propose with the ceel, and are without trunnions, the connection tions. During experiments with these weapons result were obtained which are sta to be the highest real were obtain. Which are stated to be the highest rea ized with an er likely to be Turpesed by thent duction of other monster weapons by Krupp, of Essen. Designs for a 139 ton gun already exist, the projectile from which would be capable of piercing a wrought iron plate 45 inches thick; and report says that a piece of ordnance to weigh 150 tons is in contemplation at Essen. What is the limit of weight of gun to be carried on shipboard? And when is all this rivalry in heavy guns to cease? A few months pass away, and what was new and startling becomes old. Reasoning from the past, it would seem that even our 100 ton gans may

LAUNCHING A TORPEDO FROM THE STERN.
projectile, which weighs 1,250 pounds, with as much soon fall into comparative disrepnte, and others more energy at a range of 1,000 yards as the projectile from the 80 ton gun possesses at the moment it leaves the wuzzle.
At a range of 1,000 yards the projectile from the 80 ton gun is capable of penetrating 23 inches of unbacked wrought iron, while the projectile from the 67 ton gun will penetrate rather more than 27 inches. The Trafalgar's guns are somewhat insiguificant when compared with the 110 ton gune of the Benbow. The projeotlle
powerful may hold supremacy.-Industries.

ALUMINUM is coning into use as a material for den tal plates. It is nearly as light as rubber, but little more than one-eighth the weight of gold, has neither odor nor taste, is not affected by the elements of food odor nor taste, is not affected by the elements of food
or the secretions of the mouth, and costs, bulk for or the secretions of the mouth, and costs, bulk
bulk, whout ouewixth the prewast price of willver.
or mized with the Arabian product. Of the corree sold under the name of Mocha, both in England and the United States, very little is grown in Yemen. Some comes from the East Indies, and other portions come from Africa, and even from Brazil. A British writer declares that not a kernel of the best Mocha coffee ever gets further west than Constantinople. All the best grains are picked out for use nearer home, and only the pale, shriveled, and broken seeds are left to reach any forelyn whore. - N. Y. Journal of Commerce.

A Floating sawmill

One of the greatest novelties of a practical character which ingenuity has devised is thus described by a Florida newspaper: J. L. Maull \& Son have their mammoth floating sawmill anchored off the banks of Burton \& Harrison's hammock. This structure is a marvelous piece of mechanical ingenuity, and was built by J. W. Maull and Edward N. Maull. It is $80 \times$ 40 feet, and stands about five feet out of the water, drawing only about 17 inches. It is solidly built, and according to the judgment of Mr. Carl, an old time ship builder, is capable of enduring the severe strains of even the waves of the ocean. The operation of all the machinery does not seem to move the vessel any more than if it was on the land. It has so far proved more of a success than its projector anticipated. It is equipped with a 40 horse power boiler and engine, with the latest improvements in saws and carriages. A planer box head and shingle saws are all on deck and connected by shafting concealed under deck, so that the main deck is free from machines and available for the piling up of inmense quantities of lumber. In one corner of the vessel is the cook house, where the hands board, while on the hurricane deck are the office and cabin of the proprietors and workmen. They are now so situated as to have command of an unlimited supply of the largest and finest timber, and from points heretofore practically inaccessible. A sawinill capable of moving up and down stream seeking a supply of logs, and thus bringing the mill to the product instead of vice versa, may offer very valuable advantages, especially in the South.

The Kaiser and the Steam Hammer.

The emperor displayed great interest in the working of the steam hammer, and Herr Krupp took the opportunity of speaking in high praise of the workman who had special charge of it. "Ackermann has a sure " be said "and can stop the falling hammer at any eye," he sald. and can the fallog bamer at an moment. A hand might be placed on the anvil without fear, and h
breadth of it."
" Let us try," said the emperor, " but not with a human hand-try my watch;" and he laid it, a splendid specimen of work, richly set with brilliants, on the anvil. Down came the immense mass of steel, and Ack ermann, with his hand on the lever, stopped it just the sixth of an inch from the watch.

When he went to hand it back, the emperor replied, kindly: "No, Ackermann. Keep the watch in memory of an interesting moment."
The workman, embarrassed, stood with outstretched hand, not knowing what to do. Krupp came forward and took the watch, saying: "I'll keep it for you if you are afraid to take it from his Majesty."
A few minutes later they again passed the spot, and Krupp said : "Now you can take the emperor's present from my hand," and handed Ackermann the watch wrapped up in a one thousand mark note.

A Long Tunnel.

A contract has been entered into between the board of direction of the Valley of Mexico and Mr. J. Gladwyn Jebb, representing the London-Mexican Prospecting and Finance Company, limited, for the execu tion of the work known as the Toquixquiac Tunnel. The work is to cost $\$ 2,350$, 000 , covered by 7 per cent city bonds, issued at $821 / 2$ and running for at least ten years, the ultimate period of liquidation being tixed at thirty years. A inking fund of 1 per cent per annum on the total ssue is provided for. The limit fixed for the completion of the work is two and a half years, counting from the date of the formal transfer of the tunnel to the company, but practically three years are allowd, as it is stated that each day over three years em. ployed by the company on the work shall cause a fine of $\$ 300$ to be deducted from the amount due the company on final liquidation. each day less than two and On the other hand, for company, a premiuin of $\$ 300$ shall be awarded them It is distinctly stipulated that the money raised by the enission of the bonds shall be devoted exclusively to the tunnel. The total length of the tunnel is $9 \cdot 520$ miles, of which there is already completed a trifle less than 1 mile. There are to be 23 shafts, of which 5 are already sunk. The tunnel will be brick lined throughout, with an inner cement coating, and the tipulations of the tunnel contract call for first class work.-N. Y. Evening Post.

Fig. 1.-PORTABLE LANTERN TAKEN APART.

Fig. 8.-LANTERIT ARRANGED FOR HORIROITAL PROJECTIOT.
forward through this mortise. For retaining the strip in any desired place, a hand screw, e, is placed on the side of the condenser board, which is notched at both its lower corners. A strip of brass is attached to the side of this strip for the screw to press against.
The strip carries the slide carrier, b, and lens, C. The lens is attached to a board about 4 inches wide and $51 /$ high, with a tenon projecting from its base. A mortise is cut near the end of the sliding strip to receive this tenon.
A second mortise or slot, $41 / 3$ inches long and 2 inches wide, is made in the strip, a. The slide carrier, b, is a board $6 \frac{1}{2}$ inches high by $41 / 2$ inches wide. To its base is attached a piece of wood 3 inches square. This is $1 / 2$ inch thick, and below it is a second piece of the same length, but just 2 inches wide. The second piece enters the slot in the sliding strip, a, and othe slide carrier rests upon the shoulders formed by the upper block. A hand screw, a, is arranged to hold the slide carrier in place where desired.
A smaller movable mirror, \mathbf{D}, is supplied, to be sup ported above the objective when the lantern is to be used for vertical projection
A piece of sheet iron is fastened across the bottom of the main frame, on which the lantern, \mathbf{E}, rests. In the front of the same frame a notch is cut in which the piece, a, rests. To make its position in the front con denser board more secure, a second strip may be at tached just below the mortise and to the back of the board.
For lantern any good form of screened lamp may be used. If necessary, a sheet iron box may be arranged to inclose the source of light. But with such a lantern as is here shown it is quite unnecessary.
In the drawings, Fig. 1 shows the whole ready for mounting, the lamp being lighted andeready for work The lamp should always be lighted before beginning as it may take five minutes for it to attain its ful power. Fig. 2 shows the whole put togetber and power. Fig. ${ }^{\text {arranged for exhibiting views. By removing the slide }}$ carrier the entire space between condenser and objective is free for the introduction of apparatus or per formance of experiments. A soap bubble can be blown and projected in this space. A glass of water can be very prettily shown, and the lantern will be found admir ably adapted for the experimenter's use. Fig. 8 shows the lantern arranged for vertical projection, the outline of the mirror being given in dotted lines. A the slide carrier is not always used for work in this position, it, too, is shown in, dotted lines.
If all is properly constructed, the apparatus will be susceptible of all kinds of adjustments. The sliding board, a, can be moved back and forth in the mortise in the front condenser board. The slide carrier can also be moved backward and forward. By these two adjustments the slide carrier can be brought to any point desired in the cone of rays converging from the condensers. By moving the lantern backward and forward, any modification in the direction of the light rays emerging from the condenser can be given.
A lime light can be used instead of an oil lamp. But as the objcet was to show a portable lantern, the former has been shown in the cuts.

The Water Jet Telephone Tramemitter
This transmitter has been recently exhibited in Eng land, where it has attract ed attention, both by its novelty and its excellent performance as a long dis tance transmitter $T \mathrm{~h}$ following is an abstract from a lecture recently de livered by Mr. G. W. De Tunzeemann: "The jet transmitter consists of a small jet of water, acidulated to render it a conductor, falling upon two electrodes, consisting respectively of a platinum wire and a platinum ring concentric with the wire and separated from it by a ring of glass or ebonite The connection ebonite. the electrodes is formed by the nappe of the jet; and, when the jet is thrown into vibration by the sound of the voice, the variation of another shorter hook, c, with staple. The condensers resistance between the electrodes causes it to act as a are then in place for horizontal projection. To ar- transmitter of great delicacy. This delicacy is so great range them for vertical projection, the small hook, c, is unfastened, the front condenser, B, is pushed up until the two are at an angle of 90°, and a plane mirror is inserted, resting against the two bottom strips. The nirror should be mounted on a thin board or on a brass plate, so as to provide strength and protect its back.
A mortise is cut in the front condenser 63/4 inches irom its top, $5 / 8$ inch wide and $31 / 8$ inches long. A
plece of board, a is out to slide moothly back and
at the voice of a person speaking in an ordinary tone a distance of fifteen or twenty feet from the instrument is reproduced in a distant telephone with the most perfect distinctness."

In our issue of June 2 we copied some striking passages from a recent lecture of Prof. Elisha Gray on the "Progress of Electrical Science." The lecture quoted roin was the first of a series before the Lake Forest III.) Univernity.

Trade of south America.

Among the recent consular reports issued by the State Department is an able paper on the above subject, by John E. Bacon, U. S. Consul at Monte Video, from which we make the following abstracts:

The unusual and energetic efforts on the part of Spain to recover the trade of her palmy days with South America, as also with the West Indies, Mexico, etc., are attracting great attention here, and are much commented upon in mercantile and diplomatic circles. Not less so are the efforts, still more energetic and successful, on the part of Gerimany to secure her share of the $\$ 700,000,000$ of annual comnerce (exports and iuports) of the twenty "American lndias." In connection with these efforts comes the query, Why is the United States, especially so far as South America proper js concerned, so lacking in energy?
The countries south of the United States, consisting of the empire of Brazil, four European colunies, and fifteen repablics, consist of over $40,000,000$ people and have an aggregate area of over $8,500,000$ square miles -a population almost equal and an area double that of the United States.
Their principal products are sugar, coffee, cocoa, fibrous plants, hard woods, cochineal, dye stuffs, and immense herds and flocks, furnishing countless hides and quantities of wool, all of which are greatly needed by the United States, and in return for which they should receive the innumerable articles manufactured from cotton, iron and other hard metals, agricultural and mechanical implements, shoes, hats, watches, and as they have no factories of their own worth the name, the countless articles formed and fashioned in the United States by the skill and invention peculiar to that country, and also wheat, corn, flour, bacon, tobacco, kerosene, oil, etc.
Of what, in detail, does this trade consist, especially the inports? The statistics of Spain alone, since her late effort to increase her trade, as above stated, prove that in many inanufactured articles alone, supplied in this South Anerican commerce, the variety is astounding, the principal (in 1886-87) being as follows: Agriplows, hoes, reapers, thrashers, rakes, cars, wheels, plows, hoes, reapers, thrashers, rakes, cars, wheels,
axes, spades, shovels, etc., going to make up the interminable list of such implements and machines, and also minable list of such implements and machines, and also
the still more innumerable manufactures of cotton, the still more innumerable manufactures of cotton,
woolen, and linen goods. Also arms, alcohol, apples, air guns, asbestos, axle grease, asphalt, acids, ash, art supplies, smmonia, buttons, billiard cloths, brass, bottles, butter, blacking, bran, beef, bananas, bells, blocks, bitters, brooms, bags, books, bacon, brushes, beans, bellows, bread, belting, beer, bicycles, brimstone, batteries, baby carriages, burial case3, britannia ware, bronzes, bustles, billiard tables, barks, borax, bath tubs, beeswax, bungs, candles, cinnamon, casters, cloves, chromos, corn meal, celluloid goods, cassia, crayons, corn starch, cigars, cigarettes, cages, cotton
seed hulls, china, corn plant, carriages, carriage maseed hulls, china, corn plant, carriages, carriage ma-
terials, collars, corsets, clothing, caustic soda, clay, caustic potash, candy-cement, cod sounds, candy, corn, car materials, carbons, corks, canary seed, coloring, cuspadores, cutlery, cocoa, clocks, cattle, cane chairs, codfish, canned goods, cucumber seed, crucibles, cheese, chalk, cyclostyles, cigar maker's boards, and all sorts of carriages, dental eugines, druggist's ware, dates, dried fruits, derital instruments, drugs, dried fish, domestics, dry goods, eye glasses, extract logwood, engines, essential oins, empty shells, ennery cloth, enameled duck, feed, felt, fishing hooks and lines, frames, furniture, fire arms, flour, feather dusters, fish, figs, fish plates, fuse, fire crackers, fruit presses, fish oil, furs, files, gas fixtures, grindstone fixtures, guns, glass tubes, glass, glasses, guin senegal, gasoline, grindstones, groceries,
glue, garlic, grease, hemp, hektogmphs, horns, hair, glue, garlic, grease, hemp, hektogmphs, horns, hair,
heading harness, handles, household goods, hides, hoops, hay, handcarts, hams, bardware, hats, hops, howe, igniting tapes, India rubber, incubators, iron, iron bars, iron tubes, iron manufactures, ice cream freezers, iron safes, ink, japanned ware, jute, jewelry, lamps and lamp fixtures, etc., leather, leather belting, leather fixings and manufactures, lightning rods, lubricating oil, lathes, lead pencils, leather bags, locomotives, labels, lard, lumber, locomotive springs, linseed oil, lime, machinery, manufactured zinc, mat ting, minerals, match splints, mats, maizena, mattresses, manufactured wood, marble dust, matches, music, manufactured hair, manufactured tobacco, Mexican silver, machine oil, mince meat, mast hoops, moulds, metallic shells, mineral waters, needles, newspapers, notions, nuts, nails, organs, oak, oakum, oll cake, vats, oatmeal, onions, olive oil, oars, organettes, olivex, paper, paper bangings, etc., printing type and paraffine oil, porcelain ware, pickles, pianos, pins, paramme of, porcelain ware, pickles, pianos, pins,
pimento, percussion caps, pork. peas, pumps, pumice yimento, percussion caps, pork, peas, pumps, pumice
stone, pictures, pick!ed tish, perfumery, pitch, pencils, stone, pictures, pick!ed tish, perfumery, pitch, pencila,
pepper, potatoes, paint, photographic material, paper, petroleum, plaster, plated ware, rice, resin. raisins, riveth, railroal spikes, refrigerators, resin oil, railroad fixtures, rubber belts, revolvers, railroad cars, shafts, apikes, stove polish, sausages, staples, syringes, saw
teeth, smoothing boards, sarsaparilla, coap grease, shot shell primers, salves, sand, steel rails, saws, sickles, straw goods, scientific instruments, sponges, spirits turpentine, strawboard, starch, soap, paste, scissors, sewing machines, suuff, silex, saddiery, specie, scales, and heads, slates, stationery, shawls, straps, sulphur, sheet iron, twine, tin, tents, tags, tiles, telephones, tongues, tarpaulins, tin foil, toilet ware, tea, toys, trunks, telegraph material, tools, tallow, trucks, tar, tobacco, toothpicks, tacks, tinware, thread, tallow scraps, toilet sets, type writers, valves, velocipedes, vegetables, varnish, vermicelli, vermouth, wood wheat, window glass, wood ware, wood manufactures,
whipe, wines, whels, walnut, watches whipe, wines, wheels, walnut, watches, wheelbarrows,
whitewood, water wheels, water colors, wall whitewood, water wheels, water colors, wall paper, whiting, wooden pails, wood sticks, wire, wire screws, wiudnills, wax, wads, yellow ocher, yarn, yeast, inc.
If the commerce of a third or fourth rate commercial country like Spain discloses such a list of articles, how countless must they be when regard is had to that o
England, France, Germany, the United States, etc. England, France, Germany, the United States, etc. 1
It is evident this South American trade is worth It is evident this South American trade is worth
having, and deserves a serious struggle, and, as above having, and deserves a serious struggle, and, as above
intimated, the best evidence of its value is shown by the continued and energetic efforts on the part of the great uaritine powers to control it. It is also evident that the United States, if she will makea serious effort, exhibit half the energy, and invest one-fourth the money that these countries do, can secure the better part thereof. She controlled it, and in her own bottoms, before the war, and can, therefore, control it
In.
In 1856 United States vessels conveyed (exports and imports) from and to her ports, in value, $\$ 483,368,274$, and foreign vessels only $\$ 159,336,176$. In 1888, thirty
years later, the tables were completely turned, and years later, the tables were completely turned, and
foreign vessels conveyed a value of $\$ 1,139,636,971$, and United States bottoms, $\$ 827,947,500$.
England, France, Gerinany, and Spain have found that trained, intelligent, and energetic consuls are required at every port, that long credit at a sinall rate of interest is necessary, and that great pains in the pack ing and dispatching of goods, prompt dealings, reliable oxactness in business, a proper catering to the habits and tastes of the purchasers, great energy, and sleepless vigilance, together with commercial treaties with all states, and an abolition, if possible, of all duties
upon the raw productions of South America, are like upon the raw productions of South America, are like-
wise required. A strict conformity to these requirenents has enabled Germany within the past five years to compete successfully, in fact, to supersede, in many nstances, her able and influential rivals in a commerce which, up to that time, they had monopolized, especially England.
The journals of France and Spain are also greatly concerned as to this German ascendency. On the contrary, none of the English, French, German, or Spanish papers seems to have the least fear of any in terference with trade or commerce by the United States Indeed, their articles in this regard are tinged with a mixtare of ridicule and pity. Almost all of them con cluded by stating, in substance, that the United States are not to be dreaded so long as they merely look forward to being able, within a fow years, to control the entire Spanish-American trade, provided the proper means be adopted, but does not suggest positively what these means are or when the adoption shall be decreed.
"Our enterprising American cousins" are waking up the great and increasing Spanish-American trade They are figuring over the facts that nearly all of these countries are republics; that they are contiguous, on
the same heuisphere, and considerably in love with the the same hewisphere, and considerably in love with the
great, model, mother republic ; the opening of the Panama Canal and Nicaragua route ; New Orleans Ex position; international fairs; Centennial of the Con stitutiou; four hundredth anniversary of the discovery of America ; invitations to all Spanish-American state to meet in Washington or New York; South American commissions, etc.; as if such figuring by some novel Yankee invention in arithmetical rules would transfer this immense commerce to American shores.
The change from wooden to iron and steel ships cut her out of a large part of the carrying trade, which no fiscal regulations or lack of regulations can possibly restore.
The Buenos Ayres Standard says, among other things :

Congress has created commissions who have gone eathers, about the world with no end of fuss and

It seems to be the opinion of American that cominercial relations are to be created by a series of resolutions and the visits of an itinerating commission, and that such old fashioned ways as the invest went of capital and the doing of work are not necessary in the case of American enterprise.
one need quarrel with the Americans about this, for they have every right to select the field of their opera
tions. . . . So long as Europe comes here with its
millions and Americans come here with itinerating
commission, the business supremacy of Earope in this country will be seen."
Consul Bacon thinks the quickest and best way of securing South American trade is to continue the railway southward from Mexico. He says:
"Fortunately, the United States is not confined to the ocean in order to recover this immense South American commerce. An international railway would not only control, but monopolize it, and in such.way as ot only control, but monopol
" Within three years railro
" Within three years railroads have been actually built and routes surveyed for at least one-third of the distance between Buenos Ayres and Bogota. This leads me to believe the great international highway (railroad) will be completed much sooner than has been anticipated. These railways, together with shorter ones ailready in operation in Peru, Ecuador, and Bolivia, with which connections might be easily made, would make the distance between the two cities, Buenos Ayres and Bogota, to be filled up only about 2,000 wiles. It is by no means so gigantic an undertaking as the great Pacific road, connecting the Atlantic and as the great Pacific road, connecting the Atlantic and
Pacific, over $\mathbf{3 , 0 0 0}$ miles. I allude to this to show how distance, time, obstacles, visionary impediments, sneer and ridicule vanish before concentrated determination, energy, capital, and skill.

Public Health.

At a recent meeting of the Engiueers' Club of Phila delphia, Mr. A. Marichal read a paper on the "Public Health of Cities and Towns," of which the following an abstract:
Water Supply.-In many cities the water works are supplied neither with filters nor subsiding reservoir, and after a heavy rain the water contains clay powder, which is decidedly injurious, especially to children, causing inflammation of the bowelsand other troubles, the cause of which is generally unknown, although thousands of people are affected
It every property owner would consider a filter a no Iess essential part of a dwelling than a bath tub or a less essential part of a dwelling than a bath tub or a
water closet, a supply of pure water would be enjoyed by the poor as well as by the rich, and without appreciable cost to any one.
Drainage.-The system of sewers should be such as not to allow any filthy matter to remain in them more than twelve hours. To obtain these results the sewers should have sufficient slopes and should be flushed every day. The flushing can be attended to by the police, consequently without extra cost for labor, and porce, consequently without extra cost for labor, and the gutters and the inlets and accelerating the flow in the sewers.
Manholes should be made air tight. Ventilation pipes should be placed at the upper part of the sewer, hould be extended under the pavement to the house ine and thence carried above the roof of the baildings. These pipes need not be of large diameter, but should be numerous.
Cesspools should be strictly prohibited. It is well known that the germs of cholera are transmitted through the fæcal matters. In a city where cesspools are allowed, it would be impossible to control the rav ages of the disease.
Paoing.-The very first thing to be thought of in paving a street is to provide gutters with sufficient lopes. Belgian blocks placed lengthwise will mak an effective gutter. The slope should be at least 0.5 per cent.
Inlets should not be more than 400 feet apart when streets are level. They should be made of cast iron and not of bricks.
Street Cleaning.-It should be done between mid night and 5 A.M., as it is unsafe to inhale all the dust accompanying this operation.
Street Cars.-There are, perhaps, few causes con tributing more to the increase of the death rate than the deliberate overcrowding of the street cars. Muni cipal authorities should limit the number of passen gers to be admitted on a car
Dweelings.-The height of a building should never oxceed the width of the street, and each story should be at least nine feet high.
In any room where persons have to spend severa hours, 1,000 cubic feet of space per capita should be provided. Each room should have 20 square feet of light per 1,000 cubic feet of space, etc.

The Gold Mines of Mancharia.
The attention of the Chinese government having been directed to the gold fields in the Amour region by recent disorders there, a commission was appointed to examine and report on the best weans of working these deposits. An official who was sent to the spot gives a doleful account of the desolation of the region in ques tion and the diffleulty of procuring food. The country he says, is covered with snow in winter to the depth of 10 feet or 12 feet, and "in summer and autumn there is species of insect which fills up people's noses, making ife unbearable." There are no roads, and to supply military protection for the miners would be a serious matter.

Wanted, an Engincer. w. н. wakimar.

Wanted, an engineer, to run a stationary engine Address X .
Whenever we see the above notice appear in the "want" column of a newspaper, or when it becomes known by any other means that a man will be needed for this purpose soon, it is sometimes surprising to see the number that will apply for the place, and to note the experience and capabilities of some of the applicants. One has been employed by a railroad company and his duty has been to whpe up the locomotives after they have been run into the roundhonse. He has run them back'and forth, a few yards at a time, a occasion demanded, and from the knowledge acquired here he feels that he is competent for the position, and can run any kind of eng
or an entire steam plant
Another is called the "sub" in the shop where he i now employed, and one of his dnties is to stay in the fireroom for an hour or two at a time, or perhaps to shovel coal and watch the pump for half a day occasionally during the absence of the engineer. Feels at home around an engine, and is satisfied that he can do the work. Will work for a low price.
Another has run an engine for four years or more, has a recommendation from his last employer, saying that he is a sober man, etc. He asks for a fair rate of compensation, but thinks that he can earn it
Still another is one of those nice young men who alway wear a "boiled shirt" and stand-up collar Some folks would call him a dude. He has read something about steam, and wants to be an engineer. The next one is a machinist by trade.
The next has been a fireman for several years. He has cleaned his boilers himself, understands the principles that cause his pumps to work, and when they refuse to deliver water, soon finds out the canse and applies a remedy. He starts and stops the engine during the absence of the engineer, and helps to wipe it up every night, and when any repairs are to be made on it, he is sure to be there, trying to learn all that he can about its construction. The last one is an indus trious, competent engineer, and has been for years, but for reasons which he is not ashamed to give, he wishes to secure a situation where his services will beappreciated. He asks a fair price for his work and will take no less. Now let us follow the fortunes of these men, and see which of them succeed and which fail, for these ar no fancy sketches, but refer to actual occurrences, as they all succeed in obtaining a situation, but, of course in different places. Let us consider them in the order above named. The first gets along very well for one day the engine, which is an antomatic one with the disengaging type of valve gear, refuses to run, and our man is in great tribulation. It is impossible for him to even locate the trouble, to say nothing of being able to remedy $i t$, and as there is no engineer near to help him, and the shop must not be shut down any longer than is necessary, the proprietor sends to an other city, about fifty miles distant, and -secures the services of a consulting engineer, who comes, looks at the engine, takes a wrench, loosens a small set sorew, moves one of the parts a fraction of an inch, and tightens the set screw again, when, "Eureka !" and the trouble is not only found, but it has also disappeared, and the engine is all ready for business again. As to the expense of the operation, the reader can estimat that for himself.
Our embryo engineer is now operating two imple ments that he seems to understand perfectly, namely pick and a shovel.
The one that had learned to be an engineer by run ning occasionally for another man found that the engine that he had taken charge of was different from the one that he was familiar with. It was of the auto matic type, with a stop motion so arranged that when over the governor balls were allowed to fall to their owest position for any cause, the steam valves would not open, and the engine would soon stop for want o steam to run it.
Well, our friend was settling himself down and ex pecting to take some comfort, when one day the engine slowed down and finally stopped. He examined the throttle valve and found it wide open; there were no hot boxes to cause the stoppage, and to him there appeared to be no reason why it should not go. By this time the proprietor and a majority of the opera tives were in the engine room inquiring what he had shut down for, and as it was one of those places where the power cannot be shut down (except at certain times) without causing serious loss, he was in a grea deal of trouble, and regretted that he had enlisted.
And now ready hands seize the fly-wheel and main belt and turn the engine several times, with the throt tle valve wide open, but when they cease their exer tions, it goes no better than before. So the proprietor cets into his wagon and drives to another part of the city, and brings out an engineer, who looks at the en gine for about fifteen seconds, closes the throttle valve raises the governor balls up, and blocks them there
with a piece of iron made for that purpose, hoops up
the cut-off valvee and gives stoam, when the machinery starts slowly, and increases its speed as more steam is admitted, until all is again running smoothly; but the engineering days of the substitute are numbered, and an experienced runner succeeds him at thirty-three per cent more salary.
Let us now call on the engineer that has had four years' experience. It does not take a very long time to find out that he has run a throttling engine and anderstands no other, but he has charge of a new Harris-Corliss in this place. Everything is running woothly now, but soon one of the crab claws refuses to "eatch on," the engine runs slower and very unsteady, and it becomes necessary (so he thinks) to shut down.
He has not the least idea what to do, but soon a happy thought suggests itself, and seizing a wrench, he proceeds to loosen the jam nuts on the "right and left" connection between the steam valve and the wrist plate and then leagthens it until the crab claw hooks on gain, and concludes at once that he is a genius.
Soon the power is running at full speed, but why does it still run so unsteady? Our engineer thinks that he has discovered the cause. So, shutting down again, he attacks the valve gear for the second time with his wrench, and soon it is completely demoralized. A few days afterward we saw a friend, who informed us that he left the shop one night, promising to report for duty the next day at 9 o'clock, but he has not been een there since.
We next turn our attention to the dude engineer, and find that he is runving a small horizontal engine and a vertical boiler, and as it is a very clean place, the work is light, and he has time to read stories, he appears satisfied. Bnt after a time everything does oot run as smoothly as it did once, and he has trouble with his plant, and cannot tell where it is, or what 0 do.
This is concealed from his employer for a little while, but at last it is too plain to be overlooked. He is found to be deficient, and told that his resignation will be thankfully received ; and as no one cares to recommend him as a competent engineer, he soon finds employment in an entirely different business.
Some steam users appear to think that if a man has earned the machinists' trade, he must of necessity be an engineer.
Why this is so is not clear, any more than if a black mith should be expected to know how to shoe a horse but it is so, and as this machinist applies for a certain ongine to run, he is engaged at once. He knows enough to open the throttle valve and start the engine, but when he attempts to put on the steam to heat the shop, which is a medium sized one, with several differont kinds of radiators and traps, he is at a loss to know what to do, and instead of tracing the pipes from the boiler through all of their windings and turns, until they terminate at the traps, he only learns from the man who is instructing him that when he comes in the morning he must open this valve and shut that one, tc., just as a monkey learns to do one trick after another when his master begins to play the hand org
no and with no clearer idea of what he is doing it for.
Soon there is complaint made that the shop is
Soon there is complaint made that the shop is not heated as it should be, but as our machinist has played pon to set matters right.
He notices that the engine pounds a little, and as he knows little or nothing of the steam engine, he thinks that it must be because there is lost motion somewhere, and proceeds to drive the key on the cross-head end of the connecting rod. Result : a hot box, a scored wrist pin, the engine has to be shut down three times in one day, and he is obliged at last to put the key back where it was before and to try something else. But before he gets the pound out be is informed that
his services are no longer required, and he gathers tohis services are no longer required, and he gathers to-
gether his tools and takes his departure, giving vent to his wrath in such language as is seldom seen in print, and which we will omit here.
As to the two last ones, no one will be surprised to learn that they run their plants economically and well, that their engines start up on time, and are not shat down through any fault of theirs until the proper time at noon or night, that everything is neat and clean in their engine and fire rooms, that they give their employers satisfaction, and are considered valuble men.
These are days of close competition and small profits n many kinds of business, and it will make a great dif ference whether a competent man is in the engine room or a man who does not thoroughly understand his business, or what is much worse, a man who does not have the interest of his employer at heart
You cannot buy gold dollars for seventy-five cents and many a competent engineer has resigned his position, not becanse he could not get fair wages, but on account of the contemptible policy persisted in by his account of the contemptible policy persisted in by his
employers in the management of shop aflairs.employers in the.
Manfrs. Gazette.

The largest collection of coins, 125,000 in number, is in the cabinet of antiquities, Vienna.

Improved Rallway Appliances Greatly Noodod. The railroad commissioners of the State of New York eport that during the year ending September 30, 1887, there were 199 railroad employes killed and 896 nore or lees severely injured in the performance of their duties. These accidents are classified as follows

According to "Poor's Manual," the number of locomotives owned by railroads in the State of New York in 1886 was 2,722 , and in the whole country 26,415 . It will be quite safe to say that there were ten times as many locomotives in' the whole country as there were in New York during the period covered by the railroad commissioners' report. If the average number of persons killed or injured per locomotive is the same elsewhere, the number of casualties to railroad employes in the whole country would be ten times the above figures, or a total in round numbers of 2,000 killed and 0,000 injured.
No pretense is made that this estimate gives the nutnber of employes killed and injured with anything more than an approximation to accuracy. It wust be remembered, thongh, that whatever errors there may be in the reports of accidents to the railroad commissioners, and of the number of locomotives in the country, are errors of omission, and that probably both the number of accidents and of locomotives are greater than reported, which would make the above estimate too low, rather than too high. Nevertheless, with any reasonable deduction, the record of frightful suffering, pain, and sorrow will be more than sufficient to emphasize the following inquiries, the aim of which is to elicit information that will indicate how the number of such accidents may be diminished.
All railroad officers and employes, whether members of the Master Car Builders' Association or not, are therefore requested by the committee of the association to send answers to the following questions to M. N. Forney, 145 Broadway, New York

1. What defects are there in the present construction of cars and locomotives which cause accidents to railroad employes by falling from trains, engines, or cars, or of accidents of getting on or off trains?
2. What changes could be made in cars or locomotives which would diminish the number of such accidents ?
3. What kind of couplers and dead-blocks are the wost dangerous to employes in coupling cars ?
4. What kind of couplers and dead-blocks do you think are the least dangerous to employes?
5. Has the introduction of antomatic couplers thus far lessened the danger of coupling cars?
6. Would the general introduction of automatic couplers, in your opinion, diminish the danger of conpling cars?
7. Can you suggest any way of lessening the number of accidents to employes from "walking or being on the track"?
8. How can employes be prevented from "catching their feet in frogs or between rails"?
9. In what way may any other kinds of accidents to employes be prevented or the number lessened?
All railway officers and employes who see this circular are earnestly solicited to answer it, and thus add the weight of their testimony in helping to reduce the terrible sacrifice of life and limb which is anuually exacted from our railroad employes.

Great Chancee for Three Inventorn.
Prof. R. H. Thurston, in the May Forum, states that the world is awaiting the appearance of three inventors, greater than any who have gone before, and to whom it will accord honors and emoluments far excoeding all ever yet received by any of their predecessors. The first is he who will show us how, by the combustion of fuel, directly to produce the electric current; the second is the man who will teach us to reproduce the beatiful light of the glow worm and the firefly, a light without heat, the production of which means the utilization of energy without that still more serious waste than the thermo-dynamic now met with in the attempt to produce light; while the third is the inventor who is to give us the first practically sue cessful air ship. The first two of these problems are set for the electrical engineer, and we may be pardoned excess of faith, should it prove to be such, when, contemplating the enormous gain to humanity which must come of such inventions, we look confidently for the genius who is to multiply the wealth of the world to an extent beside which even the boon conferred by the creators of the steam engine and the telegraph will not appear overshadowing. When this inventor comes forward, and most probably not till then, it is ve
likely that we shall see steam superseded by a rival.

A triple valve for air brakes has been patented by Mr. George B. Williams, of Le Crosese,
WIs. Thie invention covers a novel combination and arWis. This invention covers a novel combination and ar
rangement of parts whereby the brakes may be applied rangement of parts whereby the brakes may bo applied
simultaneoualy at the front, rear, and middle of a trinin, or may be applied cooner and with greater force on special cars in the train.
A valve gear has been patented by r. Robert Mackay, of Warren, Pa. Combined with a ok is an upwardly extending rod, an operating lever, ing rod upon either side of the swivel eye, with other novel featares, the design being to steady the position of the link, and to provide for its quick and ready adastment.
A rotary valve has been patented by Mr. James O'Donnell. of San Francisco, Cal. It is a cylindrical oscillating valve, with two ports connecting therascely the steam supply with the ports leading cavity in its rim connecting the exhaust port alter ately with the ports leading to the cylinder, the valve being simple, perfectly balanced, and dispensing with he usaal steam chest.

AGRICULTURAL IIVERTIOR

A cleaner and gauge attachinent for grain drills has been patented by Mr. John T. West, of Bowling Green, Ky. It is a rotary and vertically ad dion of trash in the form of grass, weeds, stabble, etc. and regulate the depth of the furrowe made by the teeth or
drills.

HISGELLANEOUS ITVERTIOATS.

A folding cot has been patented by Nr. John C. Porter, of New York City. Its cross preces support coiled springs which sapport slats,
while folding legs are pivoted to the side pleces, the onstruction being chenp, etrong and practical, and the ut occupying but little apace when folded.
A machine for excavating has been patented by Mr. Charles S. Jones, of Yates Center Kanses. This inventlon covers a novel constraction and combination of parts for an improved acavenger heir contents and the latter transported to any desired place.
A grindstone hanger has been patentad by Mr. Dennis O'Leary, of San Bernardino, Cal tone, washers beld on the shaft, and a nut screwing against one of the washers, while a key presses againat the other washer to hold the stone securely in place on e shaft.
H strap edging machine has been pa lented by Mr. James N. Farlow, of Lender, Wyoming Ter. Combined with a frame having fxed and mov a a tulting presser bar or lever adapted to bear apon be movable cutters, the machine being designed for beveling the odges of leather straps.
A screw driver attachment has been patented by Mr. Lee Kiblinger, of Jackeon, La. The ade is provided with a latoral catch or projection wl to make a hole for the screw, the slide being adapted to be engaged by the catch while in the posil on of nee.
A wire fence has been patented by Mr. Jesse J. Bachanan, of Bridgeport, III. It is made with horizontal fence wires in combination with a pollow metallic powt, through perforations in which are wires in pooition, the post having also a heavy tile

A bottle filler has been patented by owa. This whereby boulles may be filled so that the liquid will no come in contact with the ontside air, and with which both light and heary bottlees will be evenly alled with at wacte of the liquid.
A shaft coupling has been patented by Mr. Simon H. Barnes, of Laneebborongh, Pa. It it made with a longitudinally split sleeve whose perts act as clampe or compreseors to grip the meeting end por
tions of shaft eections to couple and hold them in line, the eleeve being inclosed by a tightening and loosening band.
A commode has been patented by Memers. Gayger D. Tolman and Lorenzo D. Koberta, of hawano, Wis. It is designed to be eimple in construc veniences used in dreseing furnishing various con enences used in dreseing, the invention covering a parts.
A drapery hook has been patented by Mesara. Ralph Tinton, of New York City, and Marti cowen, of chicaso, in. The a suapension book mad ike form, to be used in combination with a hook. drapery or curtain nag having an eye adapted to re eive the apring prongs of the hook.
A rack for exhibiting goods has been pacented by Memrs. Adolph Neuville, of St. Lonis, Mo., and Alber Back, of New York Cliy. This invention covers a dovel construction. combination, and arrauge
ment of parts, providing a device designed to be used in dry goodn olores, whereby lace curtalne and othe
goods may be exbibited to customern to advantage.
A breaker and crusher has been pa Fnted by Mr. Frederick L. Preston. of Darien, Wis. than a ixed corruynted jaw and nxed aide platee, witt pusbiog plato, aod othor novel fontures, making a
oimple, darable, and effective machine for breaking
A track lifter has been patented by Mr. Gack linter has been patented by mr. Gavin Rainnie, of Portiand, New Branswick,
Canada. It has a lever and ratchet arrangement in Canada. It has a lever and ratchet arrangement in
connection with a cast fron frame abont sixteen inches high, with an extendpd bese plate, being designed to
hold iteolf in position when the rails and sleepers are ifted, thns saving the time and labor of track repairers.
An anti-friction bearing has been pa tented by Frank Corbett, of New York City. It is of hat clase in which a neat of bearing rollers are mountod orevolve in a chambered box, and provides for the ready introdaction and removal of the rollers, being
particularly adapted for Ironing machines where the rollers are hollow and beated by steam.
A broiling oven for ranges has been atented by Mr. James G. Lyon, of Brooklyn, N. Y. grate set back from the front of the range, and the space between the Are pot and the range frontis floored over, forming a space in which viands may be exposed the live coals behind the front grate.
A fire escape has been patented by Mr. John Grant, of Beverly, Mass. It is a portable device which may be readily secured to a window, the invention covering a novel constraction by which the deacent of an occapant may be controlled from the window or street, accommodations belng also provided
A type writing machine has been pa-
 chines in which a vertically and laterally swinging hand lever operates a printing type wheel and pape feeding mechanism, being deaigned to simplify the construction and give increased ease and rapldity of opera-

A horse detacher has been patented Mesers. Walter L. and Philip M. Mitzel and Joha . A. Haney, of Felton, Pa. The detaching dericess are ided -with spring-seated locking bolts that prase through the trace eyes and are operated from the vehicle to release the traces, whereby the horse may be etached from the vehicle.
A loading apparatus for ordnance dages has been patented by Mr. John T. Jeflerso Annapolis, Md. It is for une with that form abes of powder having a central perforation, and designed to enable such a cartridge to be bailt by on an in one-fourth the time required by two
A Venetian blind has been patented by Mr. Samael S. Patterson, of Wilkesbarre, Pa. This of parts, including the elats and side pieces, providing that when the rolling alates are closed the blind wHl effectually exclade the sun or rays of light, the slats
having a closer joint and neater Anlah than herecoiore aving a closer joint and
A hame has been patented by Mr. James N. Farlow, of Lander, Wyoming Ter. The inention consists in forming the hame whic notches, and ombining therewith a sliding clip with notches, a bolt fastening for the hame tug, and a screw and nat scilitate adjastment for raiaing and lowering the draught.
An artificial leg has been patented by Mr. Alexander Ganit, of Medford, Minn. It has a socket for receiving the stamp of an amputated leg, obber or gutta percha, with other novel features, being copecially adapted for use by one whose log hass been apputated between the knee and foot, and designed A head block for saw mills has been atented by Mr. Irwin Swank, of Paris, III. This inention covers a novel construction, comblnation, and machinery of this class, the improvement being applicable in the sawing of slab aldes and tapering hoards or planks, and the turning or rolling of logs on the knees

A drying attachment for tobacco barns has been patented by Mr. John M. Snidow, of Big Stony | Creek, Va. It consists of a furnace with two dampers |
| :--- |
| elow the combastion chamber, and having a cold air | ipe connected thereto between the dampers, whereby obacco barns can be kept at the temperature at which obacco is cured with the best results and in the least

A boom fastening has been patented by Mr. John H. Rashton, of Canton, N. Y. It is inonded to take the place of the jaw on small craft, and ast aft, and consilstending past the mash, oived on the nast, with ears projecting from one side, a nwiveled lamp for receiving the boom, and a spike to be driven A spokeshave has been patented Yessro. James H. and Bonjarain F. Polhemne, of Brook y, N. Y. Thbs inenitin corss an improvement on a object being to provide a tool capable of use as readily ta carves of small radius as upon a fat surfuce, the inrention also making a further improvement in the contraction of the too
A tile machine has been patented by yesers. Emill Puchta and Robert Houtmann, of Washington, Mo. This invention covers a moald press of
novel form, combined with a movable former, for ovel form, combined with a mavable former, for
moilding and preseing bottles, jars, and other articles moniding and pressing bottles, jass, and other articles
with closed botoms, out of clas, or analogou. subof the completed article from the presa.
A receptacle and heater for tea, coffee,
brand, of Salem, Oregon. It consists of three supe and having a lamp or gae jet beneath it, the inter mediate jar, resting thereon, to receive milk, and the top jar fol coffee, etc., a pipe from this jar leading
through a coll in the hot water jar or tank to a cock at through a col
A pool registering device has been pa lented by Mr. Charles S. Kraftr, of Albany, N. Y. I is conatructed with a lock for holding the triangle, tho ock being connected with a mechanism arranged strike a gong, and at the same time drop a check into box, the register beling adapted for connection with distant bell by an electric clrealt on the detechment of the triangle from the lock.
A wheel has been patented by Mr. Henry Q. Maurino, of sibuquerque, New Mexico. Th bub block consists of a casting having grooves slots for the inner blfurcated ends of the spoke, while he felly has a polygonal inner face, with angles co outer ende, with other novel features, the constructio being designed to secure cheapness, lightness, and darability.
A school slate and ruler therefor has been patented by Maybury W. Fleming, of Nev yn, N. Y. The slate frame has grooves in its inner edge above the sarface of the siate, combined with a rule having rabbeted ende adapted to slide in the groove ing a curface is provided at the ende only, making stralght edge or ruler which may be moved over the surface of the alate.

SCIENTIFIC AMERICAN

BUILDING EDITION

JUNE NUMBER.-(NO. 32.)

TABLE OF CONTENTS.
Elegant plate in colors of a beautiral dwelling at
Tuxedo Park, N. J., with noor plans, sheet of Taxedo Park, N. J., with hoor plans, she
detalis, etc... James Brown Lord, architect.
2. Plate in colors of two dwellings costing two tho sand two handred dollars and two thousand fou hundred dolla
detalls, etc.
A cottage of 1

loor plans.

and forr plave tor a reatide couna cost about five thousand dollars.
Sketch of a residence at Minneapolig, Minn.
cottage coeting one thousand elght handred dollars. Sketch of the
Kenwood, mI .
8. Plans and perspective view ioc a cottage costing complete, one thousand and fifty dollars.
9. A cottage on Proepect Are. and 165th Street, New York. Perspective and floor plans. Cost, seve thousand dollars.
10. Floor plans and perspective view for a residence of moderate cost.
Grand Stairway of the St. Lazare Station, Parie Half page engraving.
12. Tomb in the cemetery of Beville, H. P. Neno architect. Half page engraving.
. Full page of illastrations of North St. Panl, Minn age engraving of the new City Hall, Holyok Mase.
Design for a porter's lodge at North An
Mass. Hartwell \& Richardson, architects.
Mass. Hartwell \& Richardeon, architects.
16. Villa. Penmaenmayr Building Estate, Nor Villa. Penmaenmayr Building Estate, North
Wales. Wm. Dawes, architect. Sketch of an English cottage. E. C. Poole, arch tect.
E. Engraving of the new Consolidated Stock and Pe troleum Kricher
New York.
19. The Tower of Babel, according to Father Kircher Two engravings.
Miscellaneous contents: Moees as a sanitarian.-To
tell the age of a horse.-The ventilation of thea-ers.- -Ivory gloss on wood. - Bricklaying in frosty weathor.-Originality in architecture.-Painting and varnishing foors.-The Architect and Builder. Brilderes.-Senator Stanford's $\$ 100,000$ tomb.Italian marble. - Masonry and cement.- Temple of Japiter Olympius.-House painting.-Sale of ready made plans.-The Tower of Babel, two engra. Ings.-The Startevant system of heating and ven liating buildings, illastrated. A new boller fo coam or hot water healing, ilustratea.-The Pant The Humphrey Pony hand elevator, illustrated -The Hamphrey Pony hand esevalor, lhastrace. Mineral wool.-A barglar proof sash lock and ventilator, illastrated.
The Scientinc American Architects and Builders Edition is isened monthly. $\$ 2.50 \mathrm{a}$ year. Single copiee donts. Forty large quarto pages, equal to abou two hundred ordinary book pages ; forming, pracl cung, richly adorned with elegant plates in colors and with ane engravings, illinstrating the most interesting examples of Modern Architectural Construction and allied sabjects.
The Folliness, Richness, Cheapness, and Convenience ihie work have won for it the Larages Circulatio of any Architect
all newsdealers.
muNn $\&$ CO., Publaberme

วBusiness and Personal.

Tho chargos for Ineertion under the head is One Dollar
a line for each ineertion; about tipht words to aline a line for acch inertion; about titht woords to a line

Zwicker's Instractor for Procaring stationary and of the kind ever published. Price. $\$ 2.00$. G. A. Zeller bookeeller, St. Louls, Mo.
Stone Breaker Wanted-Second hand, good order. for rallway ballast, Address. giving particulars. E. W.
Rethbun \& CO., Oswego. N. Y. Wanted-A hydranlic power preses. Address E. Rauh Sons, Indianapolle, Ina.
John M. Horr, fret sawyer. North Dana, Mase.
Wanted-Competent machlnists on lathes and planorr. J .
The best Cafee roaeters, coolers, stoners, separators,
 enberry machines: also rice and macaroni machinery.
re built by The Hungerford $C o$., 0 Cortiandt Street, are buint by
Now York.
Safety water columns. Cheaper than explosions or burned botiera.
Co., Cleveland, 0 .
Steam Pipe Covering, Sectional and Plastic. Write Por Pamphlet.
Pttsburgh, Pa.
The Diamond Prospecting Co., 74 and $76 \mathbf{W}$. Lake St.
Chiciano. .l., Reneral akents for the sullivan diamond For the specific parpose for which they are designed, The batteries manufactured by the
Parts Electric Battery $C o$.

1723 Chastant Street, Phluatelphili, Pa.,
best in the world. Catalogue now ready.
For the latest improved diamond prospecting drills, Fdrese the M. C. Bullock MfR. Co., 138 Jackson St. Chicano. 11 .
Nickel Plating.-Manufacturers of pare nickel anSoes, pare nickel selta, polishing compositions, ota 8100
Little Wonder." A perfoct Mleotro Placing Manine. agents of the new Dip Leoquer Kristaline. Complec

Perforated metals of all kinds for all purposes. The The Eadlroad Gazetta, bandsomely illnstrated, pub shed woekkl, at 73 Brondway. New Yort. Speotme
coples free. Send for catalogue of ralliond bookk.
The Knowles Steam Pump Works, 118 Federal
 proved forma of Pumpling Mechinory of the alingie and
atiplex , tream and powor type. This catalokne will be

Link Bolting and Wheels. Link Belt M. Co., Chicago. Iron Planer, Lathe, Drill, and other machine toois of Premes \& Diee. Ferracute Mach. Co., BrIdgeton, N. J Sapplement Catalogue.-Persons in pursuit of infor anlion of any special engineering, mechanical. or seliod INTInTC AMERICAN SUPPLEMKNT sont to them free. The SUPPL minury contains lengthy artielen embractin tho wholo ranke of engtineerting, mechanics, and phyica

The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphiet, describing water morks ma ohinery, and contalining meports of tests, on application.
Improved Ane tools for mechanics-Manufactured b
tarrett, Athol, Mass. send stamp for full hosh Lockwood's Dictionary of Terms used in the practice of Mechanical Engineering, embracing thone current in
he drawink omoe, pattern \&hop, fuandry, atting, turnng, smith's and boller shop, ecc., comprising over $6, . a 0$ dennition. Edited by a foreman patternmaker. 1888 .
Price. 8200 . For sale by Mun $\&$ Co., 861 Broadwa, Now Price. 88.
Yort.
Pedestal tenoner. All kinde woodworking machinery. B. Rogers \& Co., Norwich, Conn.

Dapler Steam Pumps. Voiker at Felthousen Co., Buf
Billings' Drop Forged Machinists' Clamp and Stee
steam Hammers, Improved Hydraulic Jacke, and Tube
Expanders. R. Dudqeon, 2 Columbia St., Now York.
60,000 Emerson's 1887 ET Book of superior saws, with
 C., U. S. A.

Hoisting Rngines, Friction Clutch Pulleys, Cut-of
Veneer machines, with latest improvements. Farrel dry. Mach. Co., Arsonia. Conn. Send for circular.
"How to Keep Boilers Clean." Send your addrese for fre
N. \mathbf{x}. For Steam Heating-the Danning Patent Wrought
ron Botler. Over 13,500 in use. Manufactured by New

Hodges' universal angle union makes pipe connection
"New Drill Chuck," holding stralght taper or square hanks. Address Standard Tool Co., Cleve
afres. of twist drila, reamers, and apocial tools.
Split Pulleys at low prices, and of same strength and Worta, Drinkor St., Phlladelphita. Pa.
FS Send for new and complete catalorane of sciontunc and other Booke for eule by Munn
New York. Yroe on applioation.

REW BOOKS AND PUBLICATIONS.

Lockwood's Dictionary of Terms ING. London: Crosby ${ }_{\text {in }}$ Lookwood \& Son. Pp. 417. Price
This work does not aseame to be a general reference only for such as are directly connected with the practice of engineering, as in the drawing department, pattern shop, and foundry, in the atting, turning, and Anitions cover some six thousand terms, embracing Anitions cover some six thousand terms, embracing
those in most common use in the workshop, as well as a vait number of technical terms of comparatively re cent origin in the science of modern engineering.
Photography Applied to Surveiting.
By Lieut. Henry A. Reed, U. S. A. By Lieut. Henry A. Reed, U. S. A.
New York : John Wiley \& Sons.
88 pp. qua
\$. 50 .
The anthor claims that, in themselves, photographs preesent all the data necessary for the constraction of
an accurate map, thus rendering other field work unan accurate map, thus rendering other feld work onnecessary, while at present photographs are only used
in the United States as an addenda to the deld work. In In the United States as an ade, however, photography has been more generally applied to surveying, with a great saving of time and and conclse manner, according to the experience obtained in his own practice, and with reference to the contribations of numeroas foreign writers.
The WATCH JobBER's HANDYBook. London : Crosby,
Pp. 144. Pock
Price 80
cents.
The Wood TURNER's HaNDYBOOK. London : Crosby
Pp. 144. Pock.
Price 80 cents.
These manuals are of a series of handybooks for
handicrafts, the Arst object in all of which is to be practical and elementary, so that they will be of value ble assistance to an apprentice just commencing to learn a trade in eithar of the departments to which they
relate, or to an amateur seeking to do such work for relate, or to an amateur seeking to do such work for
himself. They are very plain and minate in their de himself. They are very plain and minate in theirde
scriptions of tools and how to ase them, are fully 11 lustrated, and afford safficient information to enable a young man or boy having any facility at mechanical work to do a great many jobes such
ETAny of the above books may be parchaced throngh Fis oflice. Send for new catalogue just pablished. Addrese Muns \& Co., 381 Broadway, New York.

Hilcecthaniss

HINTS TO CORRRSPONDENTS.

(I) T. W. V. asks : What is the best ind of material to make cores for steel castings? Cores used for casing much hotter than caat lron, cuts into the cores and leaves a rough casting. A. Try ground
are brick with the duat blown out. Make the cores in are brick with the dust blow
(2) T. G. R. writes: 1. T. H. claims o have a hydrometer which, when waspended
silver or gold solation, will denote the quantity of metal in said solation. Is there any such hydrometer tity of metal in a solution with that, and I And, by in quiry, it (Baume's) is generally used by platers around here. A. All hydrometers are based on the same gen-
eral principle, and usaally differ only in graduation. They will not indicate the amount of gold or silver in a plating solution with any approach to accuracy. 2. sil and quadruple plate, now what is the definition o above terms. Is there a given weight of the metal deposited on a given surface to denote each term! A.
As used in this country, they are simply arbitrary cerms, not denoting absolute, but only comparati weight of metal deposited, the double plate of som 3. What is the weight of a gramme in Troy weight? A A gramme is equal to $15 \cdot 43235$ grains. 4. In a grea many mechanical as well as eloctrical calculationes I meet with, letters are used which I cannot anderatand. How are such calculations made? A. You will have to study the sabject of electricity from the beginning. We recommend you by matl for $\$ 8.50$.
(3) H. G. H. writes : 1. At sunset we see a band of stratus clouds in the west, neeming to
rest upon the horizon. How far distant from the point of obeervation is the place where those clonds are directly overhead? A. Stratus clonde aro variable in height. Generally low in winter and higher in summer.
Their height may be from 800 to 5,000 feet. Clonds 800 Their helght may be from 800 to 5,000 feet. Clonds 800 feethigh may be seen on the horizon at 88 miles dirtance. At 2,000 feet high they may be seen 50 or more average height above the earth's surface of the ap-
the horizon before a thunder or rain storm! of the cumulas ! of the cirras? A. Thanderstorm clond clonde in thander atorme may be very deep, two to fy miles, and more. Hence the appearance as to distance is very deceptive. Cumalus clonds are intermediate, and generally occupy a position from 2,000 to 5,00 are from 10,000 to 30,000 feet above the earth. 3. Wh rale may be given for Anding the distance of clouds
from the place of obeerration, when their angular dis cance above the horizon and their approximate height above the earth's surface are known? A. Calculation for the distance and helght of clonds are very ancers.
cain, from the dificulty of obtaining correct observa. tions; simultaneons trigonometrical triangulation from a known base, and compatation, are the only method (4)
(4) A. S. B. writes: 1. If, in making dynamo after the plans of the motor in SUPplimesict, No. 1 . I wind the armature with No. 24 wire and the ach will I need! Are theee the right size of wire? We think the sizes of wire are aboat right. You will require aboat 8 pounds of each kind of wire. 2. What Is thanreason of using cast iron for the feld magnet? \mathbf{A}. ing. 8. I made a galvanometer of a $11 / \mathrm{h}$ inch compase placed over 80 feet of No. 24 wire. When connected I read that a galvanometer was never defected more tread that a gaile wrong? A. We think you are mis-
than taken aboat the defection of 95 . 4. I made a bichromate battery of two pairs of electric Hight carbons with a zine 2 inch by 1 inch. How strong would one cell bel A. Probably 13/ volta. 5. Mast the resistance of the wire on the feld magnet equal the resistance of the
wire on armature on a motor or dynamo? A. Not newire on ar
cessarly.
(5) R. W. writes : I have made a dy(5) R. W. Writes: I have made a dy-
namo according to the directions in Surpurizas, No. 161, only I need No. 28 wire instead of No. 18, as recombe made to work better by using No. 18 wire? A. It depends entirely apon the use to which you apply the
dynamo. No. 18 wire on the armature will glve a curdynamo. No. 18 wire on the armature will give a cur
rent of fewer volts, bot more amperes. 2 . How conld I rent of fewer volts, bat more amperes. 2. How conald
change it to electroplate? A. Wind the armature with No. 10 wire, and the teld magnet with No 14. 8. J am aloo making an eight light dynamo according to direc tions in a previous number of your paper, bat I have used valcanized Aber between the commutator bars instend of mica. Will the spark barn it out or not? A. Mica is preferable, as valcanized niber is apt to burn.
4. I soe in the cut of the complete machine that all of 1 reo 1 switch board. Does this mean, that if the carrent is shanted through one pair of coils on the deld magnet. that the machine generates current enough for two
lampo, and so on? Until four are shanted in circuit the machine runs to its fall capacity of eight lamps. A. The part you take for a switch is only a support for
the wire. By connecting all the wires in series dind using the machine as a shunt machili, with some rom o
(6) W. H. L. desires a good remedy for moths in farniture. A. The continual use of Persian insect powder will drive them away. The noxioas that its trequent renewal is necessary untll all of the (7) W. R. K. asks if there is any known the rapld growth of hair on a young man's face 1. Mistares containing stimulants, such as cantharides or Spanish Ay, are said to be comewhat efficaclons, if persistently applied in moderate quantities for a con iderable period. Among the mistares rocommended for that purpose ls: Cologne 2 ounces, iliquid ammonia drope, ievender 19 drope Apply to the face daily. (8) F. T. H. asks : 1. What vehicle outalde walls are to be painted? A. Boil with llineeed oil and a emall quantity of rees. 2. What to mix it with when iron work is to be painted! A. Linseed oll. 8 Also please explain why, when a $1 / 6$ inch glass tabe is
introduced into water, the water level in the tube io introduced into water, the water level in the tube is
always about an eighth of an inch abovo the normal a waye about an eighth or an linch above the norma
level? A. On account of caplliarity. for a deecrip on of which see Sir William Thomson's loclare 568, which we can send you for ten cents each. In ranning electric, wires through gas mains, is there an insulation in the market that will efrectually resist the chemicals usaally found in gas mains? \mathbf{A}. A wire insu moes eftectual. Moet other styles would quickly o帾
(9) F. L. D. asks the power required to drive a 80 foot boat at a speed of 18 milles per hour. feet beam and 83 inches flat on bottom. It was bailt by an experienced boatman. and cuts the water ver moothly. A. It is extremely doubtful if you can ac commodate engine, bolier, and wheels of sumecient size how much dranght nor the kind of wheel'you propose. 16×12 cylinder with 8 horse power boller, carrying wheel 8 fop poands preseare, connected dilrect to a slem 50 re
(10) J. R. B. writes : 1. I have an ivory way to restore it white again, without injary? A Place for a short time in a gently heated thin lim on their sand belta, or do they pat something in to make it elsatic? A. Common brown glue is better than he best glae, and will answer alone
(11) C. T. C. aoks : 1. How can certain stance, à lock of halr, a mole, etc.? A. Only by re wuching the negative, or,using powder, etc., ou
ace before taking the picture. 2. What oll should be applied to ahoes to make them more fexible, Impervion o water, and durable? A. Use neat's foot oil moder ately and well rabbed in after the leather has been good place for buying chemicals and scientinc apparatus for amatear experiments in the home circle? A Consult our advertising colamns.
(12) W. H. D. desires a recipe for a first clase office mucilage. A. Use the following preparapart; dissolve by heat and add 1 part of alcohol.
(18) C. D. A. desires directions fo moalding small articles of soft rabber. A. The proce is analogons to that described under "The Making of
Rabber Stampe," in Screntrifio Axerican Suppin
 ery full details on the manafacture of rabber in So ExTIT
282.
(14) L. J. J. asks what the common eader ased for fishing is made of A. Silik worms ar matter, which is palled ont into a thread between the "gut " leaders.
(15) W. S. asks (1) how breaking strain on suspension bridge cables is computed. A. The straln are gencrally compated on the assamplion that the
curve is a parabola. 2. What cheap and effecuve way to destroy or drive small red or brown ants from and What is your charge for ascaying ores for gold and silver, etc., also for analysia of ores? A. From avo
(16) H. \& W. ask : 1. What is the best walnut stain? ' A. Take of apirits of tarpentine 1 gallon,
 red staln to imiltate moewood. The addition of a little varnish with the tarpentine improves it. 2. What is the best preparation, and how made, for patting on the trings used in sealing fralt jars, etc.? A. Dissolve one poond of sulphate of zinc in 40 gallons of water, an then add 1 pound of sal soda. After these ingredien
are dissolved, add 2 ounces tartaric acid. The cord are aissolved, add inis soancestion for twenty-four hoan and then dried without wringing.
(17) A. M. M. writes : 1. I have a smal rule made of bone,which I broke. Is there a cement tha will mend itt A. Take of isinglase 1 ounce, distilled
water 8 ounces. boil to three ounces, and add rectifed spirit $11 / /$ ounces, boil for a minute or two, strain, and add while hot, arst a millky emulaion of gum ammonia Whance, and then tincture of mnatic 5 drachme. Which will give the most heat, a gallon of gacoline or
gallon of kerosene, for steam bollers? Which would be the safest to burn? A. Kerosene is the safer, and will give most heat.
(18) A. G. and others ask: When does 1800, while I claim that it commences on January 1 . 1801. A. It commences January 1, 1900. The Christia era was not promalgated until long after the birth of Ching being assigned as the irst of January, in the fourth year of the 194th Olympiad, the 759d from the foundaLion of Rome, and the 4,713th of the Julian pericd. By the computations of several anthors, the date of the
birth of Christ varies several years before and after and Crist varies several years
(19) H. W. D. asks (1) if the coil described No 38 wire will it do 1 wone with No. 85 insted No. 38 wire, will it do just as well, and what size the wire is so slight as to make no material difference in the action of the coil. 2. If I shoald make a coll the size of the igures instead of twice the size, woand
with No. 8 , what size spark will it give? if coll is made as \ln quertion 2, but wrapped with No. 85 instead of No. 88 , what size spark will it glive?

* tnch to $\%$ Inch. 8. What is cartridge Inch to $3 / 8 \mathrm{inch}$. 8. What is cartrid
(20) T. W. asks for some metal or alloy that will neither expand nor contract with heat or cold. And which metal expands most with heat, and the feet long: A. No sach metal io known. The condition obtained by a combination of metais in the gridiron pendulam. Of common metals zinc expands the most. Fah., it expands ate of its leugth-about fots inch for a piece 10 feet long.
(21) B. J. H. asks : What is the simplest method for anding the altitude of a given place: Is a barometer used: Δ nd if so, where can he same be ith reasonable accuracy, or a line of levela may be in with still greater exactmess. Any dealer in scienittes.
(22) G. A. V. asks rom conter shaft would be bettor than stern paddle wheel for light draught fat bottom river boat drawing one foot of wator. A. No. It is well established by trial that the atern or side
(23) C. H. F. asks the English and also he American standard of pipe tops, the pitch of thread threads to 1 inch. x inch and \geqslant inch pipe 18 threade 01 lnch. $1 / 1 /$ inch and $~ \$ /$ lnch pipe 14 threads, to 1 inch, inch, $13 / 4$ inch. $11 / 4$ tnch and 2 inch $111 / /$ threade to nch. $2 x /$ inch ap 8 threads to 1 lich. A. tureads taper x inch to 1 foot on each side. End of taps shonld be

(24) C. H. L. asks: Can you tell me whether quickallver atanding a long ume in a brese have upon brass? A. It will quickly amalgamate the brase, destro
brittle alloy.

to niventors

An experience of forty years, and the preparation of
ore than one hundred thousand applications for paants at home and abroad, enabie us to undertiand the wo and pracile an bot continents, and to poseess unynopelis of the patant inws of the Uniltod States and all forelgn oountries may be had on application, and pervons abroad, are invited to write to this offce for prices, hich are low. in accordance with the times and our extenaive facililies for condacting the business. Address
MUNN \& CO.. omice ScIENTITIC AMERICAN, 81 Broaday, New Yort.

INDEX OF INVENTIONS

or which Letters patont of the
June 5, 1888,
AND EACH BEARING THAT DATE.
[See note at end of hist about coples of these patenta.] Abrading pud, J. H. Riedell.... 3 bl.076
Acid and heavy maknesia, manuincture of carr-

 Alarm. Soe Boller alarm. Low water
Animal trap. C. H. Mitlier...........
Anunactator, eleotric, C. E. Sortbner. nnunclator, eleotric, C. E. Sortbner.
Annunclator, pneumatic. R. P. Garseed

Buttery. Soe Elicetro-therapeatic ba

Blind, Venetian, S. s. Patterson..................
Treat.... .. s81,221
Board. See Gamo board.
Boller alarm, J. J. Gheexno ...88,9119
Boller feeder, A. Blatchley............ Bolt lock, W. A. Borden Boot, felt, II. W. Hathorn...
Botlue aller, W. H. Comstock

```
Box or roceptacle, E. J. Hauck.......... .......... 3%.150
```

Brake. 8ee Car brake.
Brake lever. T. Dilger............................. 884088
Bread machine, Bitterman \& Bernateln......... 88389

Burfet for housexeeping, \boldsymbol{A}. L. De
Burner. Soe Hydrocal
Burners for Incundeecent lighting and making the
same. stock for skeleton, E. Morean............ 888888
Bustle, H. P. Olmastead..................... 883,008
Bustle, H. P. Olmstead
Button, W. F. Nlles..
Button, W. F. Nlles
Batton, H. Vollmer.
Butho \mathbf{t}.
Button fastener, Clark \& Ingra....................
Buttonn madutucturing machine, G. Heldman
Buttons, making, s. cotitie......
Cable and car propeller, eleverated. H. Cacebolt.
Can elling machine,
a. H. Perkins.................
, int orkins...............
G. H. Perkins.......
Car conpling, w. R. Cha
Car coupling, J. Coup...........
Car coupling. Olmatead a Wemp
Car couping. Oimstend of We
ar
Car coupling, W. W. Rutled
Car heater, Y.C. McEITry...

Car motor, street, L. L
Car seat,
Car s. Hale.

Crar ventllator. W. Wright
Car Wheel, H. R. Allen....
Car Wheel, W. G. Richards.
Cars. frame for rallway, M.
Card hanger, H. S. Hack..
Carpet fastener, G. Barro
Carriage bow, J. B. Fox..

Cartridges, londing apparatus for ordnance, J.
Case. Bee Show case.

Cash register and indicator, Hendy \& Patterzon... 384,1118
astrating instrument, J. Phillips................... 38,2125
Cement, compositlou for making, J. Woir...... . 389,922
Check protector, W. I. Beat.................................... 388,884
Chloroform from acetone, manufacture of, G.
Rump ...38.98e
churn, W. H. Crnwford............................... 383.980
Clamp. Soe Jar clamp.
Claw bar, A. R. Wgrle............................... 38,2223
Clip. See Whimetree ollip. C. . Burnham......... 334,191

lothes rack, J. Dan
oant. W. H. Osmer
Coat and hat hook, F. Taylor.
Collar fautenting, horree, Daris \& Kolth.
Cllar for authe, bell, J. R. \& E R. Hill
Commode. Tolman \& Roberts...
Commode. Tolman \& Roberts
commode, Lollet jar. 8warord
.
Corrugating machine, s. F
Corset, C. A. Griswold (r).
Cot, folding, J. C. Porter.

38,031
10,988
88,185

Coupling．See oar compliga．Pipe cocaplima．shaft
coaping．Thill coupting． Cruahing mill roller，G．E．No Nes．
Culinary veseel，A．B．Conde Cultivator，Comily \＆Motherwall．
 Cutlery，show cane for， m 4．Nelms． Cutter see Buttonhole outher．Daco outher Cutting maching，A．J．I．Lo Damper．regulator，㚗 W．Hagne Demaknotizer，J．Greave Direct－acting engine，G．A．Barth． Draught apparatues，vebicle，Thomas \＆Bitty Drapery hook，Tilton \＆Cowen Drawer，canh．Willinms \＆Roovers． Drier．See Clotbes drier
Dril．See Mining aril．
Dropper，H．J．Case．．．．
Dumbwaiter．C．L．Lincol
Ensel，E．R．Morris．
Electric etreutt surtch or cout－．．．．．．．．．．．．．．．．．．．．．．．．．
Electric machine or motor．dynamo，． L Electric machine or motor．dynamo，A．L．R1
Electrie motnrs，governor for，W．Baxter，Jr Electric power controlier．G．8．Nou
Electrio shunting device，W．Baxter， Bruch．．
Elicoctro－magnotio separator，J．B．Hamilion． Elerator，w．8．Johnson
Elevator，8．E．Stotee．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Ensino．See Direot－acting engine． Evener，Your horse．C．C．sasen huth uxcaracing nuachine，C．8．Jonee
cxtension tuble，\＆．8．Sutherlund Fyeletting machine，Hawkins \＆Palke raucet， 2. U．Scovilio
Fence，wire，J．J．Buchane
Fille，bill，C．C．Chamberialn．
Yile，papor，G．P．Herudon．．
Fille，paper，
Filter，contee，shaw \＆Bux
Yirearm magazicee，s．K．Hindley
Mrearms，detachable magazine for，P．Mancer Fire ercape， \mathbf{B} ．H．Ge
Porkinge，die for making rolled，G．F．Blmonds，
Furnace．See Blowplpe furnace．
Furnace doors，apparatus for opentng， Game board，C．R．Duryea．．．．．． Gas governor，B．F．Das
ate J Donnolls gate．Rallway croseling c．．．．．．． Glase．See Opera，Deld，and marine glass． Grain binder，G．Esterly．：
Graln binder， \mathbf{W} ．M．Pialt
Graln drills，cleaner and gauge attachment for， ans ${ }^{5}{ }^{3}$ West
tus，P．F．Chase．
Grapple，W．H．Wiley．．．．
Grindstone hanger．D．O＇Lear Halr crimper，1．W．Heysinger（ r Hame，J．N．Farlow．．．．．．．．．．．．．．
Hame attuchment，R．．Ruseil． Handle．See Adjastable handie． Hanger．See Card hanker．Grindstone hanger Harneas， Harrow，A．Corbin，Jr．
Harrow disks，manafactecre of，W．J．H．Hogen．．．．． harvester．J．8．Davis．．．．
Harreaters，reel driving Rear for，J．Agenten．． Has loader，C．A．Henry．．． May tedder，G．H．Hernest Heater．See Air heater．Car heatiter．Water beater．
Heating water and other Hquide， Heating rater
W．T．Sagg．．

Heel burniehling machine，C．J．Addy．．．．．．．．．

Heol burnishing machine，C．J．Addy．．．．．．．．．．．．．
Hides or sking，machine for shaving，Ruod
∇ tanghan Hinge，spring， G ．W．Warner Holder．See Bag holder．Lead and rule holder Napkin holder．Pen holder．
Hook．See Coat and hat hook．Drapery hook Hook．See Coat
Palnter＇s hook．
Hab boring machtne，W．H．Barnh Hydrocing mach burner，Jarboo \＆McHale Hydrocarbon burner，Patterson \＆Noteman．．．．．． aydrodynamic forcees，meobbanism for utllising
and controlling．W．M．Jackson．．．．．．． ndicator．see Liquid level indicato Insulated wire，H．Splitdorf．．．．．．．．．．．．．
Jack．Bee Lirting jack．Smoke jack． Jar clamp，F．G．Tallman．．．．．
Joinh．See Rallwuy rall joint． Joint．Soe Rallway ral
Killn．See Brick kill．
Saitting machines，derice for adjueting the Wheels of，Y．P．Holt．
Lamp and stand，candle，s．Clart
Lemp，candle，8．Cla
Lamp，rallwny rate，A．J．McDonald
man ．
Lantern，
Lathink to the wooden jolsts und studs of build
ings，device for 383,981,
3 Lead and rale holder，A．A．Low ．．．．．．．． 88,459 to
Leather board，machine for stripplig．W．E． Letter box，D．Harrigan． Lifting jack，J．S．Or Lighng Jack，J．S．Orr … ．．．．．．．．． Liguld leve
Ghegan．
given temperatures．device for tee the physical conditlon of，G．H．Perkins．．．．．．．．
wock．See Bolt lock．Nut lock．Rallway switch
3
.. 384.

GOING INTO THE POUETRT BUSI：
 DELAFIELD＇S PAT，SAW CNTT

ΩHydraulic Elevators WATER MOOCORS． Tvent Hyor vaulice Powerner \mathcal{B}_{a} 18 Cortunad 8L．，Now Yorkt，
PNEUMATTC DYNAMITE TURPEDO

1, 883,92

884172

38s， 1.00
Nall strip，J．R．Prouty．．．．．．．．．．．．．．．．．．．．．．．．
Nall stripe，maohine for loading，J．R．Prouty．．．．
Naptin hoider，
Neckile P．Pand collar button，combli．．．．．．．．．．．．．．．． tligham．．．．
Necktie factene
Vocktle Pabtaner，A．Henesivorr．
Nut look，J．A．Hard．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Pad．See Abrading pad．
Pad．See Abrading pad．
Paddiewheel boat，Monroe \＆Slsum
Puntiter＇s hook，J．B．Hopp
Paper box，W．B．Howe．．．
Paring，coring，and slicink machine，apple，B．D．
Tabor．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Tatterns

lining，A．Wachtor．

Pegring machine，J．R．Pro
Pen holder，C．F．Warner．．．
F．B．Gould
Ple，s．G．Hutchinson．
Pipe coupling，A．Cote．．．
Pipe coupling．B．W．Poh
Prpe expander and cutter，B．A．Roes．
Platon meter，J．R．Norfolk
 Plow，sidehill，A．K．Snodrrass，．．．．．．．．．．．．．．．．．．．
Plag and ferrale for wush tray conneotions，com hined，C．J．Phillipa．．．
lumber＇s trap，N．Berr，
Plumber＇s trap，N．Barry．Jr．．．．．．．．．．．．．．．．．
Pole and shafte，vehicle，A．I．Bratioh．． Pressure regulatur．Gale \＆Wiselogel．．．．．．．．．．．
Printing machine，ticket．C．F．\＆W．B．Hur． Printing preses，lik foartain for piaten，W．H
Price，Jr．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

Pulley，spilt，J．Bruse

Pump，rotary，O．Selfert．．．．．．．．．．．．．．．．．．．．
Reck．See Clother rack．Harnees ract．
 Rallway kate．A．J．McDonald．．．．
Ralliway kate He A．J．MoDonald
Rell Rellway rall joint．J．J．Mulhall．．．．．．．．．．
Rallway memaphore alknal，C．H．Koyl Rallway owtch lock，W．T．Manning．
Rallway astem，T．J．Majall． Rallway system，T．J．Mayall．．．．．．．．．
Ranges，brolling oven for，J．G．Lyon Rasp，P．8．Stozes．．．．．．．．．．．
Reel．See Harroster rei．
Rexister．Bee Cach rexiteter．

Releasing devioe M. H. Whalen.
Rheostat, W. H. Knight...
Rheostat, E. W. Rlce, Jr
Riveting, me. W. Rilice, J. B. Frost.....
Roiler. see Craching mill roller.
Rolling mill, C. A. Nighman
Rolling milli, Rlohardson \& Rapp.
Rubber shoe, E. Stout.
Sach tastener, J. Jackson..............
Saw aling machive, 8. C. Roeers (r).
Saw alling machile, bend, A. B. Duni
Saw retting mechine, w. s. smith
Sawna, devioe for side draseing, G. Glace.............
Sawa, device for alde dreseing the teeth or, \mathbf{W}.
Williams................................
Sawling machine, elrcular, J.
Scale beam. W. W. Reynotds.
Bcoop, wre L. H. Boilder...
creen or door for obstructing the paseape
fame, automactic, M. B. Feeney..
serow swaying machine. H. A. Harvey
seal lock, E. C. Bartlett

Sean. Bee Car meat.
Separating machine. A. J. Miller........
Separator. See Elieotro-magnetic soparator. Max-
netic separator.
owing broks, W. W. Neel.
Sewing machine, L. I. Mllier.
Seving machine, C. \mathbf{E}. Tibbles

Bhaft coupling, S. H. Barnes...
Shipa, etc., construction of, C. G. Landbork
Shoe. M. Yeaple...............
how case, F. C. Cutting
Signal. See Rallway seumphore signal.
Ignalting box, electric. W. D. Browne...
for, Clark \& Eingiler

3 pinning mac
Dunham.
Rogulator. Bee Damper reaulator. Proceare
regulator.
Relay, J. E. Watcon................................ $804,2 \mathrm{~m}$

$\begin{array}{c}\text { Sanvase... } \\ \text { Slate frames, } \\ \text { Kname. }\end{array}$

8moke jack, self-cleaning
Snow plow, J. Vincent W．．．．．． 88
5
8
8

Sprinkler. See Automatic sprinkier.
Stamp and tloket holder, pooker poetal, F.
stranee

Stranse..
Varley....................................
store nerrice aparatu, E. Bates....
Stove, polt-feoding cooking, C. E. King
Stove, ,oit-ioseling cooking, C. E. King
store, vapor, Z. Davis.............
Strap edging mmohine, J. N. Yariow...
Strap edging machine, J. N. Yarlow...
Bupporter. Beo Garmenent for, R. Letporter.

Suspending derioe, E. Blaokman.
Buspending devioe, C. R. Fay.....
Switch. See Eloetric ciroult wivito...................
SWitches and semaphores, mechaniem for operat

Bringe, A. W. Brinkerhori.....................
Table. Se Bloom shear table. Extansion table.
Telophone tranamiter, T. T. Gulland...........
Thill coupling, M. G. Conrad...................
Telophone tranamituer, E. T. Glu.
Thill couppling, M. G. Conrad.....
Thill coupling, Howiand \& Alien,
Thill coupling, Howiand \& All
Tie. See Rallway gate tie.
Tongs, A. Biber..
Towel, F. Leak.
Towel, F. Leake
Towlin machine,

Track IIfter, G. Relnnio........
Trap. Soe Animal trap. Plumber's trap
Track, W. W. Roohe..
Tub. See Mach tub.
Tub. Soe Mash tab.
Tu, hame, R. R. Ruseal........................
Turning irregular forme, machine for, $\mathbf{H .}$
Tug, hame, R. F. Ruseal..............................
Turning Irregular forms, machine for, H.
Tajlor...................................

Valve for air brakea, trip
Valve zear, h. Mecka.
Valve, rotary, J. O'Donnell.
Valve, steary, engine. W. J. Allen.................
Valvee, etc., operatiog lever for, W. soote.

Noteman.................
∇ arnish, E. N. Todd....

Vehicle spring and gear, E. Y. Mors
Vehicle spring rear, G. E. Bartholom
Vehlicle spring roar, G. R. Bart
Vehicle wheel, G. E. Broyles.
Vehticle wheel, L. H. Donkel.

Velocipeode, L. H. Goukdobli.................
Veneer cuttin machine, C. L. Merrill.

Veneer machine, rotary cutting, \mathbf{H}. H. Coo..........
Veatilitor. See Car ventulator.
Veasels, shock arrester for the rigring of, F.
Wheeler.................................

W sson, dumpling, D. A. Williams.
W asher. See Bottle washer.

Blign box, G. ©. Meyer..............
Stove, heating, W.H. Wilkinson...
Tile, e. Whalley.......
Trimming. J. Malabof.

TRADE MARKS.
Bods, folating, W. T. Selter.............
Beor, tader, Gippe Brewing Company..

Miller...

384,000
333,38
38888
38,067
383887
383,028
388,019
384,009

20

$$
1
$$

I worhan an onoth -

Cans
Mill

and snufr, M. D. Neumann.....
Tour, wheat, G. V. Hecker
Harr tonic. M. M. Harper.................................
Medictne for internal une
Iiquid, B. Frakner.
Paper, tollet. J. T. Moors Bearer \&
Somp, tollot and laundry, Beaver \& Co...
Tobecoo. smokink tobaceo,
chewing, Bituling $\&$ Hay.
chevewing, Bltuling \& Hing.
Tolit.
Whisky. Blakate, Bruce \& \mathbf{C}
Wine, champagne, Vouve
15.581, 15.580
A printed copy of the specincation and drawing of
any patant in the foregong list will be farnishod from
this on
an patant in the foresolng list will be furniahed fron
this oome for $\$ 2$ cents. In ordering pleace state the
name and number of the patent debirea
Canadian Patente may now be obtulried by the
inventors for any of the inventiona phaned in'the fore-
roing litet, provided they are elmple, at a oont of so

ష

名男番

20ㅜㄹ훙

Tobecilot and lanndry，Beaver \＆CO．．．．．．．．．．．．．
cheowing，Bituting \＆Haj．．．．
Tollet．preparatlons for the
Tollet．preparatlons for the，
Wbisky，Blake，Bruce \＆Co．
\qquad
A printed copy of the specincation and draving of any patant in the foresolng list will be furniahed from
this omice for 25 centa．In ordering pleace state the name and number of the patent dearcel，
Canadian Patente may now be obtuinied by the
inventors for anj of the inventiona bemad in＇the fore

-2

June 23, 1888.]
 Useful, Beautiful, and Cheap.
 amehican.
The information these volumes contain renders the Work amost indspensable to the architect and buider.
and to persons about to billd for themselves they will find the work suggestive and most useful. They contain colored plates of the elevation, plan, and detail draw-
ings of ings of nimost every class or bulidgs, win speelitica
tion and approximate cost. Four bound volumes are now ready and may be b-
tainea, by mail, direet from the pubbishers or from any newsdealer. Price, 82.00 a volume. Stitched in paper
covers. Subscription price, per annum, 8.50 . Address MUNN \& CO., Publishers, 361 Broadway, New York.

UNEXCELLED

FIREWORIS

Largest Manufacturers and Dealers in the World.
IILL COOARE FIRFWORIS

As Public Exhibitions from

$$
\$ 5 \text { to } \$ 5,000 \text {. }
$$

send for catalogue to the
UngXCollion Fiplowalks fo 9 \& II Park Place, N. Y.

COSTS IN MANUFACTURES--A LEC-

] anc	
5 T	
DERFECTEAn NEWSPAPER $A P E \text { In } F \text { ILE }$	
The Koch Patent Fille. for preserving newspapers, Mag azines, and pamphlets, has been recantly improved and MUNN \& Co., Publishers Soientifio Amertcan	
$\text { URE FOR } D E A F$	

ฐcientific American.
397

RUBBER BELTING, PACKING, HOSE.

$\left.-\frac{\mathrm{Al}}{\mathrm{A}} \right\rvert\,$

CAMERA BELLOWS,-FULL DESCRIP

ASBESTOS

PIPE COVERINGS
Made entirely of Asbestos.
Absolutely Fire Proof. bRaided packing, mill board, sheathing, cement, fibre and specialties,

8
 confurrom
 HARRISON CONVEYOR!
 $\underset{\text { Handing Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&C. }}{\text { Find }}$ sand forg.| Oircular. BORDEN, SELL

Steam! Steam!

 A Large Lot of $\mathbf{2 , 3}$ and $\mathbf{4}$-H. Engines
B. W. PAYNE \& SONS, Box 15, GAS ENGINEERING, RECENT PRO

THE NEW CROTON AQUEDUCT.

$\$ 10.00$ to $\$ 50.00 \begin{gathered}\text { per night. } \\ \text { pita } \\ \text { nathan }\end{gathered}$

 CHEMICAL AND ALLIED INDUS

※ New Catalogue of Valuable Papers

FOREIGN PATENTS

THEIR COST REDUCED.

The expenses attending the procuring of patents in duced the obstacle of cost is no longer in the way of arge proportion of our inventors patenting their inven lons abroad
CANADA.- The cost of a patent in Canada is even
less than the cost of a United States patent, and the less than, the cost of a United states patent, and the
former macludes the Provinces of Ontarluc. Quebec, New Brunswiek, Nova Scotia, British Columbia, and Man The number of our patentees who avall themselves of the cheap and easy method now offered for obtainin
ing.
ENGIAA ND. - The new English law, which went in orce on Jan. 1st. 1885, enab es parties to secure patent
Great Britain on very moderate terms. ABritish pa tent includes England, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the acknowiedged goods are sent to every quarter of the globe. A good invention is likely to realize as much for the patentee
in England as bis United States patent produces for him at home. and the small cost now renders it possible or almost every patentee in this country to secure a pa jon in Great Britain., Where
OTHER COUNTRIES. -Patents are also obtained on very reasonable terms in France. .Begigim, Germany
Austria, Russala, tualy, Spain (the latter includes Cuba and all the other spanish Colonies), Brazil, British ludia Australia, and the other British Colonies.
An experience of Forty years has
An experience of Forty years has enabled the
publishers of The Scientific Anerion to estaulish competent and trustworthy ageycies in all the principal foreign countries, and it has always been thair aim to have the business of their el:2ents promptly and proper-
iy done and their interescs faithfully guarded. 1y done and their interescs faithrully guarded
of all countries, Including the cost for each, and othe information useful to persons contemplating the prothis office.
MUNN \& (CO.. Editors and Proprietors of THE SClentipic American, cordially invite all persons desiring any information re ative to patents, or the registry of
trade-marks, In this country or abroad, to call at their offices, 361 Broadway. Examination of inventions, con-
sultation, and advice free. Inquiries by mall prompt
\qquad
and Patent Solicitors Branch orfices: No. 622 and 624 F Street, Pacifle Building, near 7th Street. Washington, D. C
 2nd MACHINERY

HE PENNA. DIAMOND DRILL \& MFG. CO. BIRDSBORO, PA., Builders of High Class
Steam Engines. Diamona Driling and General
Machinery, Flour Mull Rolls Groind and Growed USEFUL BOOKS.

chanics, Builders, men of leisure, and profersional

 men, of all classes, need good books in the line oftheir respective callings. Our post office department their respective callings. Our post ofince department
permits the transmission of books through the mails at very small cost. A comprehensive catalogue of
useful books by different authors, on more than fifty different subjects, has recently been published for
free circulation at the office of this paper. Subjects free circulation at the oftce of this paper. Subjects a copy, have only to ask for it, and it will be mailed to them. Address,
MUNN \& CO..
AMMONIA SULPHATE.-A PAPER

The Scientific American PUBLICATIONS FOR 1888.

The prices of the different publications in the United
States and Canada are as follows:
The Scientific American (weekly), one year $\quad 83.00$
Yearentifle American Supplement (weekly), one 5.00

COMbined rates.

The Scientific American and Architects and Builld
ers Edition

Rr.00
The Sclentlfic American, Supplement, and Archi-
teots and Buitcers Edition,
This includes postage, which we pay, Remit by postal
or express money order, or draft to order of MONN \& CO., 361 Broadway, New York.
[JUNE 23, 1888.

 95 MILK ST. BOSTON, MASS.
rhis Company owns the Letters Patent granted to Alexander Graham Ben, March 7th, 1876, No. 174,465, and January 30th, The transmissi
forms of Electric Spa Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company
by the above patents, and renders each by the above patents, and renders each
individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

JAMES B. EADS.-AN ACCOUNT OF
 Shepard's New \$60 Screw-Cutting Foot Lathe

 for A mateurs or Artisans.
Address Hi. SHEPARD,
H AE NTEPAR

PATENTS.

 In this line of busmess they have had forty-one years
experience, and now nave unequaled facilties for the

 We elso send, free of charge, a synopsis of Foreign Pa-
tent Laws showige the orat and method of securing
patents in all the principal countries of the oorlc MUNN \& CO., Solicitor

cos

INEWV GAE EINGINK "The Baldwin"

Otis Brothers do OO
38 PARK ROW, NEW YORK
THE COPYING PAD.-HOWTO MAK

TELESCOPES \#Gata Wuas. prioe Ulith free. Send for specail Bargatin that

QUARANTINE SYSTEM OF LOUVSI-

MJACKET KETTLES,

THE PENNSYLVANIA GLOBE GAS LIGHT CO.

 Lighting Stractors. and Erecting
Gas and Water Works.

$\stackrel{a}{s i}$

TO BUSINESS MEN.

TELESCOPIC OBJECTIVES AND MIR

A II.w. somise

Asbestos potand Roofing
 H. W. JOHNS MFG. CO., 87 Maiden Lane, N. Y.

 CHALLENGE EMERY GRINDINC THE PHONOGRAPH--A DETAILED

BUFFALO FORGE CO. Forges Blowers Exhausters

 ICE-HOUSE AND COLD ROOM.-BY R

HOME-MADEINCUBATOR. - PRACTI
 SYRAGUSE MALLEABLE IRON WORKK

ฐ́icutific Amprican

The Most Popular Seientifie Paper in the World,

 Only 83.60 a Yenr, including PThis widely cirent
paper is published weekly. Every number contains sir teen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Min New Inventions, Noveltes in Mechanles, Manufinctures, tecture, Agriculture., Horticulture, Natural History, ete. Complete List of Patents each week.
Terms of Subscript
Terms of Subscription.-One copy of the Scies-
TIFIT AJIERIOAN will be sent for one vearpostage prepaid, to any subscriber in the United States or Canada, on recelpt of three dollara by the pub-
 Clubs. - - pecial rates for several names, and to Poof
Masters. Write for partlculars. The safest way to remit is by Postal Order. Dither Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressal,
seldom goes astray, but is at the sender's rik dress all letters and make all orders, drafts, etco, par abletol MIUINIV er ©O., 361 Broadway, New York. TIEX
Scientific American Supplement. This is a separate and distinct publication from
THE SCIENTIFIO AMERICAN, but is uniform therevit In size, every number containing sixteen large pages foil
of engravings, many of which are taken from foreign papers, and accompanied with translated description. The Scisntific American SUPplement is publisbed
weekiy, and includes a very wide range of contente weeky, and ineludes a very wide range of contents. It
presents the most recent papers by eminent writers in all the principal departments of Selence and th
Useful Arts, embracing Biology, Geclocy, Mineralogy, Useful Arts, embracing Biology, Geclogy, Mineralogy,
Natural History, Geokraphy, A rchæology. Astronomy, Natural History, Georraphy, Archæology, Astronomy,
Cbemlstry, Electricity, Light. Heat, Mechanical Engi-
neering. Steam and Railway Dhing, Steam and Railway Engineering, Mining,
Shilding, Marine Engineering. Photography - echnology, Manufacturing Industries, Sazitary E
gineering, Agriculture, Horticulture, Domestie Fcono gineering, Agriculture, Horticulture, Domestle Kcono-
my, Biography, Medielne, etc. A vast amount of fres nd valuable information obtainable in no other pots hication.
The most important Ensineering Works, M echaniem and described in the Suppliement. Price for the Scpplikment for the United States and ERICAN and one copy of the SUPPLEM SNT, buth As tor one year for $\$$ क.0.0. Single coples 10 cents. Addre d remit by postal order, express money order, or chen MUNN \& Co., 361 Brandway, K. Y..

Builders Edition.

THE Soikntific Ambrican Architzcis' AND
Builders' Edition is issued monthly. $\$ 2.50$ a year. Single coples, 25 cents. Forty large quarto pages, equa large and splendid Magazine of A rchitect forming 1y adorned with elegant plates in colors, and with other fine engravings; 1 Hustrating the most interesting ex
amples of modern Architectural amples of modern Architectural Construction an
allied subject. A special feature is the presentation in each number
of a variety of the latest and pest plans for private resiof a variety of the latest and best plans for private resi-
dences. city and country, incluading those of very moddences. city and country, including those of very mod-
erate cost as well as the more expensive. Drawings wi perspective and in color are given, together with full
Plans, Specifications, sheets of Details, Estimes The elegance and cheapness of this inaenificent work have won for to the Largest Circulation of any
Architectural publication in the worla. Sold by al MUNN \& CO., Publishers,

