
a Weekly jotrinal of practical information. art, science, mechanics, chemistry, and manufactures.

THE U. S. ARMORED BATTLE SHIP TEXAS.-[See page 357.]

\%ricutifir ब्glmmericam.

HSTABLISHED 1846.

MUNN \& CO., Editors and Proprietors.

 published wrekly atNo. 361 BROADWAY, NEW YORK.

MUNN.	A. R. BEACH.
scientrilin and Now Zenland. Those, who desire th recoive the Colontal bant notes Addrees MUNN \& CO.. 3×1 Broadway, corner of Franklin Street, New York.	
ropt Coloonat bank notea Addrase MUNN \& CO.. 381 Brond Way, oorner of Franklin Btreet. Now Port.	

NEW YORK, SATURDAY, JUNE 9, 1888.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 849.
For the Week Ending Junc 9, 1888.

Pree 10 conle. For sale by all nowseal

Aerona UTics.-The rirst Balloon Voyare.-An unpubishod

ARCHITECTURE.-Elements of Architectural Design.-Mould pors and general decorative treat
II. BTHNOLOAY.-The Home of the Aryane -The disputed center

Aryan race propagation......................................
The Mayas.-Their original state, and the resuite of recent in-
V. HYGIENEE-Ipecac Spray In Bronchial Troubles.-A valuable sugrestion for local treatme
Reducing Obesit $5 .-$ Notet.
The Special Dlets in Varlous Nerrous Diseases.-.............................. CHARLES L. DANA, M.D. - Recume of the various diets for invalide, epilepmechanical enginerring.-Deteriorntlon of Steam Boilera Wear and Tear.-By J. M. AILIEN, M.E.- - A sibley Collere leo ture treating of orrorf in the making of boilers, and of the natural luatralions.............................
Btenum Englnes for Lonk on American (Weatinghouse) engine-striking tribute to its excel-

1. MISCELLLANEOUS.-A Cavalry Preraution.-The reapietration of
serriceable horses in the British emplre for possible nse in war.... Cryolite Mining.-The mining and shipping of this mineral from
II. NAVAL enaineering.-The Germad Cralser Schwalbe.-A cruiser of the new light draught, cheap running type, recently built in Germany.- Its dimonsions and charactoristics.-1 illuatraII. PHOTOGRAPHY.-Manufacture of Photographlo senaltive manufacture of dry plates.- 9 illustrations..
On Stereoscoplo Photography.-By P. STROB. $-A$ very clear eluOn stereoscople Photography.- By P. ©r8on.- A very clear eluoldation, with all practical points of this branch of photographic X. Philosophy.-Antagoniem.-By Sir Whilitir R. Grove.-A Very remarkable addrese by the great sclentist, re
veraal law of nature, and its effects on the world...
C. PHYsics.-Spectrum Analyile.-By W. Ivtison macadax.-What has been done by this meth
technology.-Anctent Materials for Paper Mertion investigations of the puper manufacture of anclent times. Natural Gas and its Errects on the Consumptinn of Coal Gas. By E. B. PGiLL

THE COD HAVE "sTRUCI II."

A dispatch from Newfoundland says that the caplin have "struck in." This means that the cod, the most famous of all commercial fish, has arrived on the banks. From now until November the cod will "run," and the great fleet of fishermen, hailing from our own eastern coast and from New Brunswick, Nova Scotia Prince Edward's Island, and Newfoundland, consisting of nearly 1,000 vessels, not including the French fleet, will be kept busy.
Those who have been on the Newfoundland coast when the caplin "strikes in" will not forget the excitement that ensned; the beautiful little fish, about seven inches long, flling all the bays and bights of the shore line, tumbling over each other, and darting up above the surface of the waters, their sides sparkling in the sunlight, in futile efforts to escape their worst enemy, the cod. They come down with the Arctic curenemy, the cod. "They come down with the Arctic current, called the "Labrador current," off Newfound-
land, and it is up in the Spitzbergen waters that their land, and it is up in the Spitzbergen waters that their
enemy, the cod, spawns. This Arctic current rounds enemy, the cod, spawns. This Arctic current rounds
the southern point of Greenland, and, joined by vathe southern point of Greenland, and, joined by various similar currents coming through Davis Sta then rushes across to Newfoundland. Off this coast it meets the warm waters of the Gulf Stream running eastward, and is split into two distinct parts, one por tion crowding itself between the Gulf Stream and New foundland, and the other, not having sufficient power to combat this great force, is forced below, the warn aters of the Gulf Stream riding over it
The caplin supply the cod with food until the last of July, when the squid or cattlefish arrive and take their place : these giving place in turn to the herring. which "strike in" about the middle of September. As if they know all about the fisheries treaty, and were in favor of its continuance, these little flish almost always keep strictly within the "three mile limit" line, that is to say, within Canadian waters, where the Yankee fishermen may not go, though there is enough of this bait and enough of the fish it is used to catch to supply the demand many times told. Under the new regulations adopted by Canada, the Yankee fishermen are not permitted even to buy bait, and willing enough they are to do so, and gladly wonld the Canadian fishermen sell it to them if they were permitted, for there is a large shore population which for years has had no other income save that derived from selling bait, and now these poor people are in a very bad way, in reality being taxed to pay the Canadian cruisers for keeping their customers away; for the sole duty of these armed tugboats is to prevent the Yankees from buying bait or provisions or ice to keep their fish fresh. The Yankee fishermen, with characteristic ingenuity, have discovered a means of circumventing the Canadian " horse marines," as they are called, taking advantage of the opaque fog which seems ever to hang over the fishing banks and their vicinity to go in and take the bait that they are refused the permission to buy. When discovered at this work from the shore, a fight nearly always follows, the shore men coming off in their boats and trying to "trip" the seines and spill out the bait, for they believe, and with reason it would seem, that, should their neighbors be able to get what bait they want, there would not be any excuse for a fishing treaty with them at all, and hence no further market for the bait they are wont to catch.
Last week, a part of our fleet started for the Gut Canso, between Nova Scotia proper and Cape Breton Island, a district of the same, to secare bait, and it is said that some of the Canadian fishermen are now making a business of supplying them at sea. The French fleet consists of about 400 sail ; and though now the French possessions in North America are restricted to a small group of islands on the western coast of Newfoundland, these Frenchmen catch and cure a very largo amount of flsh, being expert and industrious and sending the catch across the ocean to their own country, where it easily competes with the catch taken in the North Sea. Miquelon, the principal of the French group, the others being St. Pierre and Isle Aux Chiehs, though one of the most dangerous parts of the coast to approach in a southeaster or southwester is the chief headquarters of the Gaul. The shores of this island are always strewn with wreckage, mostly of French craft too, but the Frenchman has great endurance, if not so much skill as his Anglo-Saxon brother fishers, and, having a ready market for hake and haddock and turbot and alewives, as well as for cod and halibut, there is great incentive to fish. The treaty made with the English, when they ceded these islands to the French, permits them to take bait and dry their fish and nets along the Newfoundland coast, bnt notwithstanding this there is continual dissension among the two peoples. The Grand Banks, the principal fishing grounds, are 400 miles long and about 200 wide, with a bottom of shifting sands, " no holding ground," as the sailors say; and while in ordinary weather the schooners-they are from 80 to 125 tonsride to their anchors with a long cable out, as soon as it comes on to blow, and the sea rises-conditions chors and heave to under close-reefed foresails.

Don't Undervalue the Boy.
Too many men make their boys feel that they are of ittle or no account while they are boyg. Lay a respon sibility on a boy, and he will meet it in a manful spirit. On no account ignore their disposition to investigate. Help them to understand thimgs. Encourage them to understand what they are about. We are too apt to treat a boy's seeking after knowledge as mere idle cur osity. "Don't ask questions" is poor advice to boy" If you do not explain puzzling things to them, you oblige them to make many experiments before the find out ; and though experimental knowledge is bes in one sense, in another it is not, for that which can b explained clearly does not need experimenting with. I the principle involved is understood, there is no further trouble, and the boy can go ahead intelligently.
Do not wait for the boy to grow up before you begin to treat him as an equal. A proper amount of confi dence, and words of encouragement and advice, and give hin to anderstand that you trust him in man waye, helps to make a man of him long before he is a man in either stature or years.
Give him tools, and let him find out for himsel whether he has got any mechanical taste or not. Do not discourage him, as parents are apt to do, by saying "Oh, it is no use for you to try to do anything with tools. I never have any taste that way, and of course you have not." If a boy finds he can make a few arti cles with his hand, it tends to make him rely on himself And the planning that is necessary for the erecution of the work is a discipline and an education of great value to him. The future welfare and happiness of the boy depends on the surroundings of his youth. When he arrives at that period in his life when he is obliged to choose what profession or what line of business to fol low, it is highly important that he should take no false step. And if in his youth he has cultivated a taste for any particular branch, the choice of a profession or business will be made more easy.-Architect and Build ing News.

A Trick with Figurea.

The following mathematical trick, from La Nature, lthough not new, may be revived for the benefit of hose who are unacquainted with it. It never fails mystify those who do not understand it.
Tell a person to select any even number of figares and, without letting you see them, to write them down and then place under them the same figures in reverse order. Thus, for example :

943518
815349
This done, ask him to add the two numbers, and to ive you the sum, less any figure which he may choose to reject, and the space occupied by which must be left blank or shown by a hyphen. For example 7588-7.
Putting on an inspired air, you now assert that the figure omitted is 6. If you prefer, you can let the per son subtract one number from the other, and then tell him the omitted figure with the same ease.
The trick is simple, and the explanation of it can be understood by any boy who has studied arithmetic. The sum of a number and the same number reversed is a multiple of 11 , and their difference is a multiple of 9 . Now, in multiples of 11 , the sum of the even figures is equal to that of the odd ones. Applying this rule to our example, 17588-7, and representing the unknown figure by x, we have $x+8+7=1+7+5+8=21$. A simple mental calculation gives $x=6$. Where the number of figures in the product is an even one, the sum of the first two or first three will equal the sum of the last two or last three, and 80 on.
Proceeding with the difference, which is a multiple of 9, the sum of the figares must itself be a multiple of 9. Taking our example, $1-8169$, and adding the figures, we obtain 25 , but as this is not a multiple of 9 . we have to add 8 to obtain the multiple, and this was the figure rejected.

The Oll Welle or Florence, Colorado.

This town, sitnated about 30 miles west of Pueblo, is the center of the oil region of Colorado. It was first discovered about twenty years ago, 12 miles west of the town, in the foot hills of the Rocky Mountains, and was pumped up by hand, refined in a rude refinery, and sold for $\$ 1.50$ per gallon. When the Denver and Rio Grande Railway was built, the price tumbled to 50 cents per gallon, and the owners of the well supposed their business ruined.
There are now within the town limits about twenty paying wells, yielding about 1,000 barrels crude oil, or 450 barrels refined oil, daily; also two oil refineries, with a total daily capacity of 1,000 barrels. New wells are being bored, and the industry is said to be in its infancy. The town has doubled in size within a year.
The Denver and Rio Grande and the Atchison. Topeka and Santa Fe Railmad companies have extensive coal mines of excellent quality within three miles of the town, from which they draw their own supplies and furnish the towns throughout this part of the State.

Wages hore and in Great Britalm.
In the sixteenth annual report of labor, by Mr. Car roll D. Wright, of Boston, at page 107 he says: In the fall of 1883, we started upon an original investiga tion through personal agents of the bureau, in Massa chusetts and Great Britain, and through these agents we have gathered from original sources (meaning by original sources the pay rolls of great manufacturing establishments, the official wage lists agreed upon in establishments, the official wage lists agreed upon in
England, so far as England is concerned, between England, so far as England is concerned, between
trade societies and employers, and from other reliable trade societies and employers, and from other reliable
sources) the rate of wages paid in the following twentysources) the rate of wages paid in the following twenty-
four industries, which are common to Massachusetts four industries, wh
and Great Britain:

Indubtrise, 1884.	General Average Weokly Wagespald to All Employes.	
	Massachneetts.	Great Britain:
Agricnitaral implements.	\$10.25	88.85
Artieane tois		
Brick..............................	${ }_{8.88}$	4.16
Building trades.	14.99	7.21
Carpetinge.	${ }^{6.08}$	4.11
Carriages and wagon	18.80	4.89
Clothing....	${ }_{6}^{10.01}$	${ }_{4}^{6.71}$
Flax and jote goods.	6.46	2.84
Food preparations..	9.81	2.72
	11.04	7.9
Glass	12.81	6.51
Hats-Yar, wool, and bilk	1.01	
Luquors, mait and dietiiled.	${ }^{6.49}$	${ }^{4.868}$
Machines and machinery.	11.75	6.98
Metale and metallic goons.	11.23	7.40
	11.37	6.52
Printing, dyeing, bieaching, and		
Stone........	14.89	${ }^{8.58}$
Wooden goods	12.19	5.67
Worsted goods.......................	${ }_{7}^{6.90}$	4.86 3.60
All indastries.	\$10.31	85.86

The Gambor Dam on the Panama Canal

Mr. Jacobson, an engineer from the Panama Canal is staying at the New York Hotel. He arrived on the steaner Colon, from Aspinwall, and is on his way to France. Mr. Jacobson is a graduate of the Polytechnicon of Zurich, and has a fair knowledge of English. His position on the canal works was a very responsible one-that of chief executive offlicer for the Societe des Travaux Publics, contractor for that part of the line between Obispo and Emperador, including the celebrated Gamboa dam. Mr. Jacobson has been in the employ of the Societe for a year and a half, during which time he has resided on the canal line, giving the work his personal supervision. He returns to France at this time for needed rest and to arrange persona affairs.
In reply to inquiries about the condition and prospects of the Panama enterprise, Mr. Jacobson expressed his entire willingness to give any information in his power, and to pronounce an opinion upon any He said work had commenced on the Gamboa dam, which after long hesitation, was at last decided to be neces after long hesitation, was at last decided
sary for the control of the Chagres River.
Of the $3,000,000$ cubic meters of material that the dam is to contain, about 30,000 have been deposited on the opposite ends of the works, at the bases and sides of the two large hills Obispo and Santa Cruz, between which the dam is to be situated. These deposits are far enough from the bed of the Chagres to be safe from the current, even during a freshet.
When, however, the work is further advanced, and the center of the dam is reached, which is to oppose the flow of the current, it is feared that the floods of the rainy season will carry away all the material within their reach. It is Mr. Jacobson's opinion that unless this central part of the dain can be completely finished in a single dry season, it will be found very difficult and perhaps impossible to construct it at all. Mr. Jacobson says, with reference to operations during the rainy season (which has now set in), that little more cean be done while the rain lasts than to take care of the yards and material and preserve the work already accomplished.
Representatives of M. Eiffel, under the new conbut the plans, Mr. Jacobson says, are still inchoate and the number of locks and their final location not yet determined. In the excavation of the locks there will doubtless be obstacles to overcome. Already at points between the forty-fourth and forty-eighth kilometers the excavations made are actually too deep for the lock canal on the proposed level, which will necessitate the construction of dikes on one side to raise the wate of the canal above that of the river. In this section the canal is in? plane with the Chagres and Obispo at their junction. That part of the Chagres will be suppressed by the Gamboa dam, and its flow diverted into an ar tificial channel on the south side of the canal, but a dike of about four kilometers in length and nine meters high must be raised between the canal and the Obispo.
M. Eiffel will have no part in any of the canal work, except the preparation for and construction of the
locks. The other contractors continue the dredging and excavation as heretofore, except for such modifications as the new project necessitates. The completion of the canal does not, therefore, depend upon M. Eiffel any more than upon any other of the contractors. When asked whether he thonght the canal could be completed and open for trafic in 1890, Mr. Jacobson smiled broadly, and said that if the work on the greas could be completed in five years,

Filtration of wator.

At a recent meeting of the Society of Engineers, London, a paper was read on "Filtration by Machinery," by Edward Perrett, A.M.Inst.C.E.
The paper first compared the processes of straining and filtering, and pointed out that in the latter proces the mutual attraction of particles of matter, in addition to the straining action, causes the ratention of the suspended material in a liquid passing through the filtering medium. After describing the early experimente made by the author in filtering Thames water through filter bags, such as are used for the filtration of sugar, filter bags, such as are used for the filtration of sugar,
the paper pointed out the danger of using animal charcoal for the filtration of drinking water. This material has the power of taking out matter in an infinitely fine state of division, and even in solution, the charcoal be coming so charged with such matter that nothing short of subjecting the charcoal to a red heat is sufficient to thoroughly clean it. An animal charcoal filter with any system of washing will gradually accumulate the very fine matter, which may germinate, and at length be carried through with the filtered water. A filter with a granular medium-such as crushed retort coke -designed by the author, is effectually cleaned by an upward stream of compressed air occasionally ap-
plied. This causes an agitation of the material, and plied. This causes an agitation of the material, and
the attrition loosens the dirt, which a small current of water washes away. At a waterworks in South Anerica, where these filters are used, 20,000 gallons of river water are filtered per hour, the floor space covered early $\mathbf{1 0 0}$ gallons per square foot of filtering surface per hour.
The purification of water containing organic matter by contact with iron was mentioned. The original method of using Professor Bischoff"s "spongy iron " on large scale was to mix the spongy iron with gravel and to use this mixture as a filter bed; but it was found that the top surface became hard and impervious after a short time, and Mr. Wm. Anderson introduced a ma chine to supersede these spongy iron filter beds. His "revolving purifier "causes ordinary iron borings to be mixed with the water as it pasees through the machine. The water is afterward filtered through ordinary sand eds.
For the filtration of very muddy water for manufac turing purposes, sponge is used by the author. The nachine consists of a cylindrical casing, in which sponge is compressed between two diaphragins; the ower diaphragm is movable and attached to a piston rod, which passes through the top cover. To clean the sponge, an up and down motion is given to the lower diaphragm or piston, thus alternately compressing and releasing the sponge. These filters will render
Thames water at London clean enough for boilerfeeding Thames water at London clean enough for boiler, feeding
or other inanufacturing purposes at the rate of about 100 gall manufacturing purposes at the rate of about 100 gallons per squang from the processes known as "softening" water is now generally extracted by filtra tion. The material used for this purpose is the filter cloth referred to at the commencement of the paper, as the chalk deposit may accumulate to a considerable thickness before it becomes impervious. In this case the deposit is easily removed. The author finds that simple external jets of water are sufficient for the purpose.

House Moths.

"Have you anything that is sure death to moths ?" asked an anxious-looking housekeeper of a druggist the other day.
The druggist smiled, looked as though he would like o say " chestnuts," but answered: "So you belong to the moth-persecuted multitude of housekeepers? Well, for articles to be packed away in boxes or drawers, there are several things I can recommend. Some peo ple prefer one remedy, some another. You will find some families putting their faith and their winter lothes in snuff or tobacco; others favor red pepper but for many years I have used camphor, and consider that the best of anything. There is nothing disagree able about it, and moths don't seek it as a regular diet in fact, will never come where there is the campho dor."
" Doesn't it evaporate too quickly?"
"No. Put in good sized pieces, and there is ng dan ger from that source. A piece as large as your fist in six months or a year will be the size of a hickory nut, and the odor will penetrate every part of the box or drawer where the clothing is packed.

Cedar chips are also a preventive," he continued Sprinkle them in among goods packed away, and
you will have no moths. But they are not very easily obtained. Sometimes they can be found at a cigar box factory, but there are not enough to make their use very general.

The best way of all," he added, "is to have a large codar chest and pack everything in that. But such chests are expensive, and cominon mortals must content themselves with other methods."
"Can moths be kept out of things that are in every day use, like carpets, furniture, curtains, etc. ?"
"A good housekeeper should never be troubled with moths in a carpet, for if it is swept thoroughly, especially the edgea and corners, moths will not make it their abiding place. Newspapers laid under a carpet are said to be an effective aid in driving away these troublesome pests, but hard sweepings are more reliable. If a room is to be shut up for any length of time, something should be sprinkled over the floor.

Portieres and all curtains must have frequent shakings, or the moth millers will be sure to lodge in their folds. The great object is to keep them ont of a house, for when they once locate and take up a claiu they have the 'squatter's right,' and only force can drive them out."
"But how are the unfortunates who already have them in their houses to get rid of them ?"
"For such cases I know of nothing better than some of the moth powders. The other things I have mentioned are preventives against moths, but these powders kill the moths themselves."
"Are they poisonous ?"
" No. They are perfectly harinless. The moths don't eat the powder, but are suffocated by it. The powders are made from a tree that grows in Persia, and will kill anything that hasn't lungs. I sprinkle it plentifully around a room where there are moths, shut up the room around a room where there are moths, shut up the room
for a while, and what moth-heaven gains we lose. The for a while, and what moth-heaven gains we lose. The
powders are good to put under carpets, and if a house powders are good to put under carpets, and if a house
is to be closed, should be liberally used in every room. is to be closed, should be liberally used in every room. that can be dampened without injury."-Chicago News.

Pyrogravure.

At one of the recent sessions of the Societe d'Encouragement, Mr. Perier presented a communication upon the application of burning to the decoration of wood, leather, glass, etc.
This new process of engraving is not mechanical, and has nothing in common with branding boxes, corks, etc., with a hot iron.
Pyrogravure is a new method of engraving in black, reddish brown, bister, etc., by the use of a red hot metallic point. The engraving is done as easily as is drawing with a pen or pencil. A scraper and some guin serve to suppress or lighten the lines upon wood, just as upon paper.
Mr. Perier obtained his first pyro-engraved drawings with red hot pokers and the conical cauteries used in surgery. These burners, which it was necessary to keep continually heating, were replaced by platinum burners heated by an electric current, and then by instruments based upon the principle of gas soldering irons.
The invention of the Paquelin cautery has certainly given the best instrument of the kind to surgery and the best burner to pyrogravure. It is by the aid of one of these wonderful instruments that Mr. Perier produced the specinens that he exhibited at the above mentioned session. It is also with this instrument, the point of which is bent for its new application, that he demonstrated his new process, by making an engraving in the presence of the assembly.
The rubber bulb that serves to send carbureted air to the cautery has been replaced, for photogravure, by an organ bellows, an air bag, or a charged gasometer. The draughtsman, after regulating the pressure, has nothing to think of but his work, the burning tool remaining incandescent an hour or more if necessary.
Art decoration on a large scale, and industrial ornamentation, have in pyrogravure a new means of utilizing the talent of the artist and the skill of the workman. By means of it, we can just as well draw a portrait or a landscape as decorate a room, piece of furniture, or any other object, or mark the handle of a tool. The lines made by pyrogravure have not the sharpness of those given on wood by the graver or gouge. It increases the decorative effect of marqueterie and of objects of wood or leather inlaid with metals, ivory, nother of pearl, etc.
Binders, cabinet makers, toy manufacturers; etc., will be able to employ it with advantage for cheaply ornamenting their products. In a word, any object capable of being carbonized, or modified by the action of burning, can be ornamented or marked by this process. The process therefore interests the industries in general by its numerous applications.-Annales InCustrielles.

safoty Rnvelopes.

Schlumberger's safety envelopes are tinted in such a manner as to turn black, blue, and red if an attempt is made to open them by wetting or by exposure to steam, while moist air or for does not affect them.

An Old ©hineme Priming Etabitumment.
\qquad Shanghai, describes a printing establishment which he found in a village in the interior, about 150 miles from Shanghai. The printing was being temporarily carried on in the village temple, and movable type only was used. In the large central hall of the temple were placed about 20 ordinary square tables, on which the cases of type were spread out, very much after the English method, only taking up much more room.

At the time of the visit one man was engaged in set ting up type, another was printing. The former stood before a table, on which was what may be called the Chinese "case." It was a solid block of hard wood, about 22 inches long by 15 inches broad, and perhaps 3 inches deep. The inside was hollowed out to a depth of about $1 / 4$ inch, this depression being still further hollowed out into grooves about $3 / 4$ inch deep. The block had 29 of these groores, each filled to the depth of $1 / 4$ inch with ordinary stiff clay. With his copy before him, armed with a small pair of iron pincers, the compositor began his work ; character after character was transferred from the case and firmly pressed into the clay. When the "form" the clay. When the "form" was complete, a flat board was placed on the top and the characters pressed perfectly even and level with the surface of the wooden block, the edge of which was cut to form the border generally found round every Chinese page.
The printer now received the form, and carefully brushed his ink over the type. Taking a sheet of paper, he pressed it down all over the form ed it down all so that it might be brought in contact with every character. He then removed the sheet and examined each character, carefully adjusting those which were not quite straight with the pincers, and apparently never touching the type with his fingers. After sufficient copies had been struck off, the type was distributed, each character being returned to its particubeing returned to its particular box. The type in the form was of three sizes, each character being kept in place entirely by the clay in which it stood. They were cut out of some hard wood, and were periectly square. The writer was told that the art of printing in this way had been handed down in the same family since the Sung dynasty, more than 600 years ago.
No strangers were ever taught, apprentices being altaught, apprentices being always taken from the same clan. They were open to take any work at the rate of about a shilling a day, which included the two men, type, and ink, but not paper. They were then printing family registers. The custom in that part of the country is to hire the printers, who bring their type and set up their printing establishment on the spot. In this way the same business this way the same busines has been carried on in one family for six centuries, and during all this time movable type ouly had been used in the manner here described.

Whitening Linen with Potatoos.

According to I'Inclustrie Parisienne, a laundryman in the vicinity of Paris has discovered a very ingenious method of cleaning linen without soap. He uses no soap, nor lye, nor chlorine, but replaces these subatances by boiled potatoes, with which he rubs the linen.
This enrious process, it appears, is much superior to those hitherto employed, and the worst soiled cotton, linnn, or silk, cleaned by this method, are made whiter than they could be by the use of an alkali. Besides, the mrthod has the advantage that brushes can be dispellaed with, and well water be used.

1. General arrangement of the machinery for operating the drill. 2. General view of water fowing into sabterranean condalte.

Fig. 1.-artesian well in the place hebert, paris.
teresting experiments in artesian wells have been made, contains various subterranean strata of water superposed one above the other between sedimentary formations which are alternately permeable and impermeable. The ascensional force of these different supplies depends upon the altitude of their original source.
depends upon the altitude of their origly which is reached by the boring in the Place Hebert is between 2,309 and 2,362 feet below the surface in water-bearing sand, and its origin is apparently in Champagne. It has great purity; it does not exceed 8 degrees hydrotimeter, which renders it suitable for industrial uses. It is well known that the legal requirements prescribe that it should not exceed 15 degrees hydrotimeter. Too great purity, much below 8 degrees, would be prohibitory, for water which is excessively pure, as for in stance distilled water, attacks metals and corrodes them. The enormous natural filter of the strata of water-bearing sand at which the new artesian well terminates naturally determines its degree of purity.
The temperature of water at the surface is 12 degrees, that of the new artesian wel is about 30 degrees, in compliance with the well known law which gives a sensible increase of temperature of one degree Cemperature of one degree Centigrade for every 98 fee of increased depth. There fore, when in an artesian well various superposed supplies are met with, the deepest is generally the most powerful, and it is best to use this, com pletely shutting off all the others. Experience shows, in a word, that the power of consumption of the supply is at least equal to its power of delivery. If the upper supplies remain in communication with the lowest one, the latter simply delivers what the others have left. It is better therefore to shut off all the other supplies which are traversed before the supply to be used has been reached. Remarkable work in artesian engineering exe cuted by Mr. Lippmann at the general hospital at Tours has demonstrated this Thi boring traversed three uper boring traversed three upper strata or upplies, whi were completely shut off. The fourth, which was reached at a depth of 558 feet, gave a discharge at the surface of 1,056 gallons of water per minute, while another boring which had previously been made at the same establish ment, having the same diameter, the same level, and the same depth, and having tra versed the same strata, which, however, were left to commu nicate with one another, only gave a delivery of 264 gallons per minute. It is for this reason that attention is directed to the supply of a well having a depth of 2,359 feet that is to say, that the beat processes were studied to shut off the subterranean supplies met with in the tertiary for mations and at the beginning of the cretaceous formations.
the composition of subterranean water, and finally the results of the various processes of boring, which specialists are constantly trying to improve.
The work of sinking the artesian well in the Place Hebert at La Chapelle (Paris) was commenced, carried on, and successfully completed by the firm of Lippmann, of Paris. The greater part of the work is ae complished, and it simply remains to complete the final storage of the water. In the meantime the water is conducted through a subterranean gallery into the sewers of the city. After the work has been completed, Paris will possess an artesian well whose dimensions will place it in the first ranks of works of this kind, owing to its depth of 2,359 feet and its enormous diame ter of $31 / 2$ feet. It may be remarked that similar wells in France and elsewhere are seldom more than from 4 to 8 inches. The enormous difference between these is noteworthy.
The soil of Paris, as in all cases where useful and in-

We will now briefly review the processes of boring which are actually used, a detailed description of which would be ton extensive. These processes are known under the names of boring by the Chinese method, boring with a hollow instrument, and boring with a black diamond, which latter method was introduced by the engineer Leschot. These methods, however, were used only for making bores of sinall diameters when large diameters of from one to two feet and more are required, which, according to the improved processes, are economical, the system of boring with a rigid instrument is employed, which instrument is very powerful, and the skillful use of which has given to our French scientists a well earned reputation.
The rigid shafts are made of wood or iron, and the perforation is made by means of an auger which crushes the rocks by concussion. The apparatus used by Mr. Lippmann are of this kind, but with a free fall. The shaft of the instrument is balanced, and the blow
on the bottom to be crushed is made by means of a then necessary to withdraw them and bring them to die, the bar being normally upheld by a spring. Above catch which permits the drill to fall, the lower part of the surface. It required nine years to remove tubing the instrument being provided with a heavy weight. 828 feet long and weighing 120,000 pounds, which had In that manner the force which is necessary to operate been placed in the well in the Place Hebert. the auger at a depth of 2,624 eet is no greater than at 328 eet. It is only necessary to emove the instrument from the bottom of the hole in case
of some accident. of some accident.
It was Eynhausen who first conceived the idea of balanc ing a portion of the drill, and this was the first step in the application of the free fall, which is now in use in a great number of the systems that are constantly being im proved.
The instruments to be used in driving artesian wells form almost an arsenal. Our engraving (Fig. 2) reproduces the principal types of these cyclopean instruments which are used for boring, for cleaning, for extracting the rubbish, for enlarging the bore, etc.
The reader will find in the description placed under the cuts the necessary explanations. By means of samples, the large cylindrical blocks of rock which are brought to the surface, it is possible, with the help of science and past researches, to form geological charts giving the exact position of the strata traversed by the boring instrument. The drill, by alternating and repeated blows, crushes and grinds the hard rock at the bottom of the boring. The rubbish is the boring. The rubbish is brought to the surface by a cleaning instrument. When a
friable stratum is met with, it friable stratum is met with, it
is sustained by iron tubes, and is sustained by iron tubes, and
when the artesian supply is when the artesian supply is
reached) the tabes which serve reached) the tubes which serve
to conduct the water to the to conduct the water
surface are put in place.
The tubing is run in large iron sections, $3,9,12$, and 7 feet in length, riveted together in such a way as to form a smooth interior bore and a smooth interior bore and constitute a single rigid col-
umn from the top to the bottom of the well. The thicktom of the well. The thick-
ness of the tubes varies from ness of the tubes varies from
0.118 to 0.787 in., according to 0.118 to 0.787 in ., according to the diameter of the bore.
It is curious to see the tubes superpose It is curious to see the tubes superposed one above the other with perfect precision, while in their interior the enormous drill works with regularity and almost noiselessly. The instrument employed at the Place Hebert weighs 8,000 pounds, but those used by Mr. Lippinann in the wells at Konigsborn and Gelsenkirchen weighed 50,000 pounds. The drill is lifted from 1 foot to 1 foot and 6 inches, ten or fifteen times a minute, and falls by its own weight on to the bed, which it reduces to powder.
Sometimes accidents happen, and the tubes are crushed and flattened out at enormous depths. It is

1. Drill, 4 feet 6 inches in diameter, having 6 arms provided with channels, allowing a free fall. This instrument is ased for sinking the well and for catting out specimens at a depth of from 1,400 to 1,800 feet. When it is desirable to remove a sample, the large transverse blade is replaced by two small ones. 2. A drum having 7 valves serving to remove the earth which has been ground by the drill with the transverse blade. 3. Drum with an interior pump. This drum serves to remove the sand which is met with
at a great depth. 4. Drum composed of 8 tubes having valves at the bottom; this is used when it is desirable to remove a epecimen of a stratum. It serves to clean the annular space made by drill No. 1 without the transverse blade. 5. A specimen cut ont and ready to be clamped and raised by drill No. 6. 6. This tool is used for cutting the base of the specimen and removing it from the bore. 7. Machine having 8 rollers for straightening tubes of 5 feet in diameter, and for grinding up a section of tube hich has been broken.

Fig. 2.-IISTRUMENTS UBED FOR BORING THE ARTEBIAN WELL IN THE PLACE HEBERT, PARIS

 the bar is a double-faced eccentric, having a rigid han dle made integral therewith, the eccentric being pivotally supported by a bolt extending through the upper partions of the side plates. A bracket is adjustably nected to the right hand side of the body, so that it may be moved toward or from the front of the gummer, the bracket forming a support for a gange, upon the point of which is a toe to enter the recesses between the saw teeth and regulate their size and slant as they are formed by the gummer. The construc tion is such that the gummer may be readily secured to a bench or other stationary sup port, and allow the saw body to be swung over the bench when the dies are used for shearing, giving a greater range of motion than would be possible if the gummer were supported at points above the die.
AN IMPROVED CARTRIDGE
 LOADER.

A combination tool for loading the ordinary form of paper shell cartridges, and which will load both No. 10 and No. 12 shells, is illustrated No. 12 shells, is illustrate herewith, and has been pa-
tented by Mr. Francis P. Detented by Mr. Francis P. De-
vens, of No. 1306 Forest Avevens, of No. 1306 Forest Ave-
nue, Kansas City, Mo., the nue, Kansas City, Mo., the
invention covering an improvement on a cartridge loader by the same inventor described in our issue of April 21. Upon the main standard is mounted a cylinder, above which is a centrally divided hopper, with one compart ment for shot and the othe for powder, the internal me chanism of the cylinder being such that, by the raising of the bifurcated lever a certain distance, a regulated dis charge of powder will be ef fected and, the lever having been lowered and again raised in like manner, a similar discharge of shot will be made The base of the shell tube is adapted to slide on a plate extending forwardly from the clainp, and having an elon gated aperture, through tions which have defied the powerful weight of the which the shell to be filled is passed into the shel tools, but dynamite does not act effectually at such tube, the latter being then moved to the position begreat depths under the enormous pressure of water. Charges of 30 pounds of dynamite simply lift the column of water, and let it fall again, without accomplishing any useful end. A pressure of 2,000 feet of water or more is so great that a wisp of straw car ried to the bottom of the well by the instrument, and then brought up to the surface by the cleaning device, was found twisted and contracted in such a way that it was as heavy as metal, and fell to the bottom of a dish of water like lead, although it preserved its original appearance and form.
Our other drawing (Fig. 1) represents the position of the well at Place Hebert, the surroundings of which have not yet been completed. This abundant supply of hot water throws a spout 114 feet high. The water will be conducted to reservoirs, where it will be at the disposal of factories and, perhaps, employed for private purposes. Very little remains to be done to complete this important work and to gather in the fruit of success. Science and the arts will have learned many useful and important lessons, which will be of benefit to posterity.-La Nature.

AN IIMPROVED SAW GUMMERE.

A saw gummer which admits of ready adaptation and quick adjustment for work on a variety of saws is illustrated herewith, and has been patented by Messrs. John P. and Nicholas Romer, of Gowanda, N. Y. To the side faces of the lower portion of the body are riveted upwardly extending diagonal plates, above which is adjustably held a die holder, the adjusting screws holding the die in any desired position, while the die rests directly on the upper ends of the diagonal braces. In the die is formed a V-shaped opening corresponding with the desired interdental spaces of the
saw. Side plates are secured above the die, between saw. Side plates are secured above the die, between
which is mounted a movable bar, the lower end of which is formed to correspond with the opening in the
neath the hopper where it is shown in the illustration. The powder having been supplied, the tube, as it is drawn forward, engages a tongue at the lower end of the wad tube, whereby a wad is placed on the powder and the shell tube with its partially filled cartridge is moved further forward to a position just beneath the plunger, when a depression of the lever forces the wad home upon the powder. The same operation is then repeated in loading the shell with shot. A capping and decapping device, adapted to screw into the lower end of the plunger, has a convex face on one end for capping and a pin projection on the other end to re moved an exploded primer. The crimper, beneath the forward end of the clamp plate, has an annular groove

DEVENG IMPROVED CARTRIDGE LOADER.
in its upper face, its lower edge being formed of cam faces, operated by a crank arm. The open end of the cartridge is tirst depressed by a claw or pronged piece adapted to engage with the thread of the plunger, so that it will enter the annular groove in the upper face of the crimping block, when by a slight downward pressure on the lever, at the same time rotating the crank arm, the edge of the shell will be further turned over and properly crimped.

Photography as a Detective

Photography is gaining prominence in the criminal courts. With its help a Berlin merchant was lately convicted of crooked ways in keeping his acconnts The slightest differences in color and shade of inks are made manifest in the photographic copy. Blue inke appear nearly white; brown inks, on the contrary, almost black. A contemporary states that the books of the accused were submitted to a photographer, who took off the pages concerned and brought into court the most undoubted ocular proofs of the illegitimate after-entry of soine of the accounts. A subsequent chemical test substantiated this evidence. The photographic is to be preferred to the chemical test, because it brings its proofs into the court, and submits them to inspection, at the same time leaving the document under examination unharmed; while the results of a cheinical test must be taken on the evidence of the chemist alone, and the writing examined is perhaps destroyed. In another case similar to the above, the changing of the date of a note by an insignificant erasure and addition was proved by means of photography.

AN ITPROVED CANOPY DEVICE FOR CHAIRS.

A frame to support an awning, canopy, or mosquito netting, which can be quickly and easily secured to

gIITH's CANOPY ATTACHIEENT POR CHAIRS, ETC.
and detached from a chair, settee, etc., and is especial ly designed for use as a screen for protection against mosquitoes, etc., at all watering places and mountain resorts, is illustrated herewith, and has been patented by Miss Almira A. Sunith, of Hadley, Mass. (box 140). The frame proper is composed of two standards, two side pieces, two end pieces, and two braces, which may be made of wood, but are preferably nickel plated metallic rods.

The standards are adapted to be detachably secured to a chair or settee by means of clamps, such as shown in the small figure to the left in the illustration, the sinall figures to the right showing corner pieces of the top frame, and the manner of adjusting the braces on the standards. An awning cloth of waterproof material is attached to the top frame, and, when used in localities infested with mosquitoes, a suitable netting is suspended in such manner as to wholly inclose the space beneath the frame. The construction is such that the frame can be accommodated to any irregularities of the ground, and the whole can be quiakly taken down and folded in compact form to be readily carried in the hand of the user.

The Hoosac Trenel, North Adame, Mase.
The total length of the tunnel is 25,081 feet, or four and three-fourths miles. It is 20 feet in height and 24 fret in width. From it was excavated $1.900,000$ tons of rock. Its entire cost was $\$ 14,000,000$. It is soon to be lighted by electricity

The Scientibic American needs no one to "sing its praises," but, notwithstanding this fact, we feel it an absolute duty to the general public, at least that portion of it which has never seen or heard of the paper, to tell them that such a one is published at the low price of $\$ 3$ a year, and that its true value cannot be overentimated. It stands at the head of all publications of its kiud. $-\Delta$ mer. Art Printer.

AS IMPROVED OAB AND OAR LOCK.

A novel construction, whereby an oar will be held securely in the oar lock, while turning freely therein, forins the subject of a recent patent, and is illustrate

pheatt's oar and oar loge.
herewith, the small figure showing a sectional eleva tion of the oar and oar lock. In a space formed by a cut-away portion of the oar is fixed a metal rod to fit in the oar lock, this rod being so attached that there will be no projections on the oar. At the bottom of the space formed by cutting away the oar is fitted a strengthening plate. The rod is round for about hal of its length, the other portion being flattened to adapt the rod to be readily placed in and removed from the narrow slot or opening of the rowlock, which is formed with a shank that enters the rail, and a plate secured thereto in the usual manner. The top of the lock is divided to form two opposite members, between which the rod is held to fulcrum the oar, the upper ends of the meinbers approaching each other at the top to form a narrow slot. The oar is limited in its outward movement, and in reversing the direction of rewing, it has simply to be turned over the top of the lock.
For further particulars with reference to this in vention, address the inventor, Mr. Gideon K. Pheatt, of No. 120 Locust Street, Toledo, Ohio.

AN ILPROVED NUT LOCK

A nut lock which partakes of the functions of a jan nut, and which may in some instances take the place of a nut already in use, is illustrated herewith, Fig. 2 showing a plan view, and Figs. 1, 3, and 4 illustrating different applications. The invention consists in a nu whose inner periphery is threaded, and whose body portion is cut entirely through with a slit parallel to the axis of the bolt, a portion of the body thus cut being depressed or pushed out of the normal plane of the nut, so as to act as a stout spring bearing against the other nut when screwed up. The tension of this spring, when the jam nut is screwed up, creates so much friction that neither of the nuts can turn with out tarning the other, while the strain is so unequal a to prevent them from acting in unison. The cut in the jam nut may also be semicircular, or nearly so terminating at either end in the body of the nut, and not extending to the edge. This invention was pa tented in December, 1886, and the nut has been thoroughly tested and has given satisfaction. Fo

vatghar's not lock.

Varther information relative thereto address th Street, Philadelphia

anmeallng small Tools.

According to the English Mechanic, a very good way a anneal a small piece of tool steel is to heat it up in forge as slowly as possible, and then take two fireboards and lay the hot steel between them and screw them up in a vise. As the steel is hot, it sinks into the pieces of wood, and is firmly embedded in an alinos air-tight charcoal bed, and when taken out cold will be lound to be nice and soft. To repeat this will make it as soft as could be wished.

Paper for Cleaning Lences.

Prof. S. H. Gage, of Cornell University, recommends as preferable to linen or chamois skin, the so-called Japanese filter paper, the bibulous paper often used by dentists in filling teeth. It is soft and flexible, absorbs iquids readily, is less likely to contain gritty particies that are liable to scratch the lenses, and it is so inex pensive that when a piece has once been used it may be thrown away Every director of a microscopica laboratory appreciates the difficulty of getting students to exercise the proper care in cleaning objectives and eye pieces. Every large laboratory is sure to contain some students whose genius for scientific study is ex hibited chiefly in the careless handling of delicate aphibited chiefly in the careless handling of delicate ap
paratus. Doubtless if in a microscopical laboratory paratus. Doubtless if in a microscopical laboratory paper, fewer valuable lenses would be injured.

AN ITPPROVED ADJOSTABLE CHAIR AND SWING.
A chair, in which the position of the back seat and foot rest may be changed at pleasure, and the chair be readily varied in height as desired, while it may also be quickly transformed into a couch, or adapted for use as aswing, forms the subject of a recent patent, and is illustrated herewith. Besides a main frame of nove construction, three separate frames are provided, con stituting respectively the back, seat, and foot rest hinged together, the seat being adapted to fold upon the back, and the foot rest upon that side of the sea not in contact with the back. There is a crank to make continuous the reclining action of the back and seat, whereby also the foot rest may be made to work n unison with the back and seat or be released to old under the seat. The foot rest is also detachable so that it can be placed out of the way withou nconvenience to the user. The normal height of the chair may be lowered to that desired for a lady's sew ing chair, retaining the reclining position, and, with

BASTIAN'S ADJOBTABLE CHAIR AND SWING.
the extension of the foot rest, the chair may then be nade to form a couch. Discarding the legs by folding them underneath the frame, provision is made to use he contrivance, suitably hung, as a swing, which will be comfortable and secure, and peculiarly adapted for children's use. As is obvious, the construction, as a chair and chair and swing, presents facilities for a reat variety of changes. Entirely folded up, it forins rectangular package of small compass capable of easy transportation and storage.
For further particulars with reference to this inven tion, address the patentee, Mr. Charles Bastian, No 36 Howard Street, New Orleans, La.

The Electro-Cryutallization of Metallic Copper. by h. n. warben, bersabch analybt.
The apparatus made use of for the above mentioned substance consists entirely of an open tube, closed at one extremity by means of a bladder diaphragm, and suspended in a solution of dilute sodium chloride. Into the tube is introduced a saturated solution of cupric sulphate, the strength of the solution being maintained by the insertion of a smaller tube terminating in a point, and containing crystals of CuSO_{4}. A strip o copper foil, about 8 inches long by 1 inch wide, is nex introduced into the copper solution, and connected by means of a copper wire to a plate of zinc, forming the negative electrode and in contact with the salt soluion. Aiter the lapse of a few hours small cubical crystals of metallic copper gradually begin to appear on the copper electrode, which in the course of a week or more will have arranged themselves into a compact crystalline mass, possessing a full metallic luster, and rivaling in purity and malleability the finest specimens of artive copper, which they much resemble. Metallic silver, antimony, bismuth, zinc and even aluminum, Lásresium, iron, chromium, and all the more oxidizable wet. ls, may by slight altera tions be reduced to the metallic state.-Chemical News.

THE U. 8. ARMORED BATTLEE GHIP TEXAS. The new cruiser Texas, which is now being built by
the United States government at the navy yard, Norfolk Van, was designed by the Barrow Ship Building Company, and is of the belted type; that is, it has a belt of armor amidships to protect the vitals of the ship, and has an underwater armor deck extending from armor belt to the extremities of the vessel It has twin screws. The principal dimensions are : Length between perpendiculars, 290 feet; extreme breadth, 64 feet 1 inch: depth moulded to upper deck 39 feet 8 inches; mean draught of water, 22 feet 6 inches ; displacement to this draught, 6,300 tons; displacement per inch at load line, 30 tons; complement of offlcers and men, 300 ; speed, maximum, 17 knots.
Armament.-The main battery consists of two 12 inch guns in turrets and six 6 inch guns protected by shields.
The secondary battery consists of four 6 pounders, four 3 pounders, and four 47 millimeter revolving cannon, protected by $13 / 2$ inch steel plating. Two Gatlings and two 37 millimeter revolving cannon. Two 1 pounders. Two Gatlings, with two 37 millimeter revolving cannon, are fought in the military mast tops to repel boarders and torpedo boat attacks. Two 37 millimeter rapid-fire guns are fitted in the steam cutters.
Torpedoes can be projected through six tubes, one through the bow, one through the stern, two through the side above water, and two through the side forward below water.
Machinery.-The motive power is furnished by two triple expansion engines, placed in separate watertight compartments.
The cylinders are 86, 51, and 78 inches in diameter, with a stroke of 39 inches. There are four double-ended boilers, 14 feet diametar by 17 feet long. Steam pressure, 150 pounds. Grate surface, 504 square feet. In dicated horse power, with an air pressure of 2 inches of Water, equals 8,600.
Coal supply is 500 tons. With this supply the endurance for a speed of 17 knots is 1,110 knots ; at 15 knots speed, 2,050 knots; and at 12 knots speed, 3,170 knots. With an increased coal supply to 850 tons and a speed of $11 \frac{8}{10}$ knots, the endurance is 6,000 knots.
Quarters for Officers and Crew. -This vessel is to be fitted as a flag ship. Directly aft, on the gun deck, is the admiral's private cabin. Forward of this, his dining saloon and sleeping cabin. Next, the admiral's are similar accommodations for the captain. Forward of this is an open space extending across the ship, with of this is an open space extending across the ship, with two passages leading forward. These passages inclose the wardroom, and the staterooms open into them from
the outer sides. There are nine staterooms opening into theee passages. Beyond the wardroom bulkhead is a large open space, which can be used by the steerage officers. The crew are berthed on the gun and berth decks.
General Construction of Hull.-The ship has double bottom and transverse watertight bulkheads. Is built rical and flat keel plates. the trausverse frames are made of Z-bars.

British Cottons and Hardware in China.

The British consul at Ichang, the most western port in the Yangtsze, notices in his last report'that while the import of the lighter cotton goods has increased, that of the heavy and coarse textures has decreased. In the spring of last year there were rumors among the Chinese of bodily ailments, diseases of the skin, and even death being induced by wearing garments of foreign cotton stuff. In Szechuen province the story had much currency for a short time. He suggests that those who control the cotton goods trade should take means to prevent the presence of noxious or irritant matter in their goods. "The alleged use of baryta and its possible effects might be worth inqairy." Mr. Gregory further urges that some one from Birmingham should visit the China ports with a shipload of samples and wares for sale. "Two spades were in my hands lately for transmission to a brother officer ; they bore the mark of a Pittsbarg manufac turer. I wrote to a house (British, I believe) at Shanghai for weighing scales, and what were sent me were
American. The stove in my office bears a name which American. The stove in my offlice bears a name which
means the 'stars and stripes.' Our own people could surely have supplied these things quite as well and as cheaply." He also suggests a trial of watches of gigantic size, say three inches diameter, of sound and very strong construction, so as to bear rough usage repairing. The cases might be of copper or one of it alloys.

An Active Centenarian.
Charles Clendenning, one of the pioneers of Alle gheny County, Pa., celebrated his 100th birthday on May 24. Mr. Clendenning is in good health, and personally superintends the work on his large farm in He has never worn spectacles, and still shaves himself Upward of one hundred and fifty descendants and relatives were present at the reunion.

Carrespondence.

Curionition or Doarnose.

To the Editor of the Scientiflc American:
In the Scientific American of May 26 there is an article entitled "A Curious Case of Deafness," which does not seem so very curious to me.
I am myself so deaf that common conversation is inaudible to me when in a room where there is no other noise, but when there is singing or instruments playing can hear as well as any one; and when on board of railroad cars in motion I have frequently heard conversation from the seat behind me that those on the seat with me could not hear. I have known a number of people similarly affected.
I am seventy years of age, and have been deaf for nore than fifty years.

Chas. Stone. Brockton, Mass.

The Alleged Clay Eaters of North Carolima-A Refutation.

To the Editor of the Scientific American:
In your paper of the 19 th of May, 1888, I find an article on page 811, under the head of "Carolina Clay Eatcle on page 811, under the head of "Carolina Clay Eat-
ers," on the authority of Dr. Frank H. Getchell, which, ers," on the authority of Dr. Frank H. Getchell,
in the interest of truth, deserves a brief notice.
I am a resident-a native-of Rowan County, which Salisbury is located, and within the last sirty years have been in all parts of the county more or less, and am utterly at a loss to deterimine where Dr. Getchell found his community of clay eaters. If there be such a community, I ought to know of it. If there be such a place, either "back," front, or on the sides of Salisbury, some one-nay, many-in Salisbury ought to know where it is ; and yet if any such place exists in this county, it is unknown to us. We have two little hills in the county, one of them $31 / 2$ milessouth-southeast of Salisbury, which have been dignified by the name of Salisbury, which have been dignified by the name
Dunn's "Mountain," and the other, 13 miles west, as Dunn's "Mountain," and the other, 18 miles west, as
Young's Mountain. Neither of them exceeds 300 feet Young's Mountain. Neither of them exceeds $\mathbf{3 0 0}$ feet
above the waters at their bases. The snow and ice never lingers on them until spring, and in no particular do they answer to the description of Dr. G. In fact, the doctor's report as a whole or in detail cannot be nade to apply to any part of Rowan County. Her people are prosperous farmers, and live as well and are as intelligent as those of any other part of this or other Southern State.
In conclusion, I will say that this story of Dr. Getchell has been going the rounds for two or three years, and has more than once been contradicted.

Salisbury, N. C.
J. J. Bruner.

PAt a recent conversazione of the Royal Society at Burlington House, under the presidency of Professor George Gabriel Stokes, among the exhibits of interest were samples of extremely hard carbon by the Woodhouse \& Rawson Electric Supply Company, for inicro phonic and other purposes. It took a high polish like jet, and in pieces as thick as average metallic foil gave a metallic ring when dropped upon the table. Some samples of it, soldered into small disks of brass, were ex hibited. The soldering had been effected by first de ositing copper upon the carbon by electricity, then inning the copper. This "adamantine carbon" was stated to be hard enough to scratch glass, and the exhibitors said that its mode of preparation is secret, but electrical deposition is brought into play in the process. The same firm exhibited Vernon Harsourt's new pentane standard lamp, in which part of a cylinder of flame is seen between two vertical tubes, which cut off from view the upper and lower part of the fame, gave a light in all directions equal to that of ne average standard candle. Messrs. Woodhouse \& Rawson also exbibited a holophotometer; for measuring he intensity of a light all round. It consisted of ad justable mirrors mounted upon a heavy kind of re-
tort stand. The absorption of light by the mirrors hemselves had been found to amount to 1.8 per cent.
Among the most interesting objects on view was a copy of M. Moissan's apparatus for the isole
fluorine, exhibited by Professor T. E. Thorpe.
Mr. C. V. Boys, who is noted for his ability as a de nonstrator, whether in drawing quartz silk by means of flying arrows or in managing straw skyrockets, perormed various experiments with soap bubbles. He blew one bubble and placed it upon an iron ring, then with coal gas he blew another bubble inside the first one, which rose, carrying the outer bubble with it, also a piece of paper attached by a thread, as a sort of bal-
loon car, to the lower part of the outer bubble. When two bubbles were blown independently of each other, and then rubbed against each other, they would not touch, but the slightest amount of electricity brought near them by means of a little electrophorus caused them to coalesce and burst. When one bubble coalescence, the outer bubble protecting the inner one rom its action.
mometers, made to determine the present temperature of mineral springs in the Pyrenees, in order to ascertain whether there have been any small changes in their temperature during the present generation.
Mr. Shelford Bidwell exhibited apparatus for meas uring the changes produced by magnetization in the dimensions of rods and rings of iron and other metals. It has long been known that an iron rod when wagnetized is at first slightly lengthened, but Mr. Bidwell has discovered that if the magnetizing force be suff ciently increased the bar again contracts, and ultimately becomes actually shorter than when unuagnetized. A cobalt rod contracts at first under magnetization, and then becomes longer ; a nickel rod contracts, and the limit of its contraction has not yet been reached ; bismuth is slightly elongated in intense fields. These results were rendered visible by means of lever motion applied to a little reflecting mirror; the instrument would measure changes in length amounting to the twenty-five-millionth of an inch.
Mr. A. A. Common, of Ealing, exhibited photograplıs of the polar axis of a 5 foot telescope. The axis of the telescope consisted simply of an ordinary iron boiler floating in water, so that it would turn easily, and loaded with pig iron.
Professor George Forbes exhibited a coulomb meter, in which an electric current passing through an iron conductor creates heat, which sets up a convection current in the air, and this causes vanes to rotate about a vertical axis and drive clockwork. The number of revolutions indicated on dials is, through a considerable range of currents, an exact indication of the number of coulombs or ampere hours which have passed through the conductor. The friction of a ruby cap on a pivot determines the smallest current which can be accurately measured, and the friction of the clockwork is barely perceptible. The resistance of a meter to read from 1 ampere upward is 0.02 ohm .
Mr. E. S. Brace had on view a translucent captive balloon for flashing signals by night. Some glow lamps were placed inside the balloon, and flashes could be produced from the earth by means of two fine conducting wires and a commutator; some experiments with the system have been conducted in the presence of the English and Belgian military authorities.

The Great Philadelphia sugar Relinery.

The plans for the great sugar refinery to be erected by Mr. Claus Spreckels, at Philadelphia, are rapidly assuming shape. The pile driving has been begun, and very soon the foundation walls will give the outlines of the great structure. In twelve months, it is hoped, the refinery will be in working order. It will then be started, and be able to turn out every day two million pounds of refined sugar.
The main refinery building is to be 60×160 feet in area. Its height of 132 feet will include thirteen stories. The finishing house, warehouse, boiler house, filtering works, and other structures will greatlyextend the works, the entire area to be covered by buildings being in the neighborhood of 100,000 square feet. In its effects, even upon so large a city as PhiladelIn its effects, even upon so large a city as Philadel-
phia, the gigantic establishment will be impressive. phia, the gigantic establishment will be impressive.
With its workmen and their families, the shipping and With its workmen and their families, the shipping and
dock employes, and the allied industries of cooperdock employes, and the allied industries of cooper-
age, etc., many thousands of individuals will be supported by it.
In California Mr. Spreckels has given every evidence of his enterprise and progressive nature. He has encouraged, by free distribution of seed and otherwise, the cultivation of beets for sugar, and he may yet play in this country the same role that Napoleon flled for France. The enormous development that the beet root industry has attained in Germany and France is almost without parallel in its widespread effects. It has given the farming population a remunerative crop. The requirements of the root have been studied, and the fertilizer manufacture has been greatly increased by the demands of the beet root farms. Even on metallurgy its influence has been felt in the utilization of the phosphatic basic steel process slags as a source of plant food.
It is not easy to predict the effects upon this country of the introduction of so important an industry. If Mr. Spreckels succeeds in establishing it here, his influence on the
lasting.

De Haem's Antimony salt.

This salt is a combination of antimony terfluoride and ammonium sulphate readily soluble in water, containing 47 per cent antimony sesquioxide, and having a strongly acid reaction. Its solution attacks glass and metals, and should consequently be used only in wooden vats. If employed for fixing tannin, it should be neutralized with half its weight of soda crystals.
The quantity to be used per liter is 4 grms. of the antiThe quantity to be used per liter is 4 grms. of the antimony salt and 2 grms. soda crystals, taking the pieces salt take the place of 5 grms. of the double tartrate. The shades are brighter than those obtained with tartar emetic, and the whites purer, which proves that the celoring matter is better fixed. you know," they explain ed. About a hundred feet back of the post officestood two fine specimens of th abundantly in that region.

On the afternoon of the 18th of last August, at about o'clock, a number of boys and men had collected under the post office porch, thinking, on account of the lightning rod, that they would be safe from the lightning, which was playing rather freely from an only partially cloud-covered sky. Among them was John Chisholm, a merchant of De Funiak, who was sitting about half way between the corner post of the porch and the nearest window
The lightning struck the two high pines, and, after shattering their tops, leaped to the rod, completely melting its points, and then running along the comb of the roof to the gable and down a corner, leaving it in the condition shown in the engraving. Mr. Chisholm's only recollection of the stroke is a sensation like that of a heavy blast of hot air striking him between the shoulders. He was thrown forward upon his face and taken up for dead. His shoes were new and his trousers nearly so, yet they were left looking very much as if they had been attacked by an army of hungry rats. The engravings, which are made from photographs which I had taken for the purpose, give a fairly good idea of their condition. How a man could have his clothes chewed off from him by lightning in that style and still live is a mystery. His shirt was torn entirely in two. His body was badly blistered, especially from the knees down. Becoming conscious, he experienced a terrible feeling of suffocation and " heartache, as though it would burst." He remained helpless for four months, suffering terribly from aching these photographs had his pipe knocked out of his in the bones and a stinging sensation, "as though a thousand needles were being stuck all over my body.'
Now, after a lapse of over nine months, Mr. Chisholm has gradually recovered the use of his limbs, only suffering from n occasional violent involuntary iark the back jerk tends to business, and has recovered much of his former sociability. As his photograph indi cates, he is alto gether the best pre erved specimen of thunderbolt that 1 have ever seen.

ave ever seen.

Several others sit ing near were, o course, more or les shaken up.
Dr. Allred caught a part of Mr. Chis holm's charge in his loot, and went on crutches for some days.
The jeweler, Mr
MR. CHISHOLM'S NEW GAITERS AND CLOTHING AFTER THE STROKE,
and breast badly singed, and the artist who took

JOHN CHISHOLM. inite, but the metal alone showed an unexpected and able and readily workable to the last. crushing tests with so much success that it was adduring all the incessant pounding unharmed, and well able to serve their pieces.-Broad Arrow.

Natural Gas in Kentucky.

 inan's house is also heated by natural gas.these photographs had his pipe knocked out of his A reporter recently called on Mr. Moreman, and
outh and broken to pieces-a calamity which I ima- as
 rine cost him many a regret.

John B. De Motte. De Pauw University, Greencastle, Ind.

armor Plates and Concrete.

A course of experiments were recently conducted at the camp of Chalons, in the presence of M. De Frescinet and the heads of the Paris military technical commission, for ascertaining the relative resisting powers of armor plate and concrete faced cupolas against melinite shells. The trials demonstrated the shelter afforded by the concrete facings of 10 feet n thickness to be mnch nore effectual than the metal plates alone; but in justice to the lat ter system of protection it must be mentioned that the armored cupolas had already withstood five months' exposure to the heaviest shot and shell that could be directed, almost daily, against them. It was genagainst them. It was genwork in the window nearest the corner, had his hair erally agreed that the concrete facings were superior the plain metal shiels, irresistible to melsubstances were comparatively irresistible to melextraardinary degree of resistance against the discharges from guns and mortars of the largest known caliber, sometimes at point-blank range. Some of the shells employed contained even 197 pounds of melinite. without materially impairing the offensive purposes of the cupolas, for, spite of their battered plates and other damages, the two guns within were found still service-

The compound protection system was approved for future constructions of a similar kind, but it was beld that the metal cupolas had maintained the continnal judged in the end to replace the shattered sarface plates, and send them to strengthen the defenses on the eastern frontier. Contrary to first reports, the gun ners within the cupolas conld have remained within

Mr. Albert W. Moreman is interested in the gas wells now in process of development at Brandenbarg. His father owns salt wells there that are operated by means of natural gas, which has been used for this purpose some twelve or thirteen years. Mr. MoreA reporter recently called on Mr. Moreman, and
aked him to give some account of the development Brander wells of Brandenburg. He said: "Within the last few months seven or eight wells have been bored. Five of these give a flow of from $1,000,000^{\prime}$ to $1,500,000^{\prime}$ of gas a day. The well struck recently by the Doe Run Natural Gas and Manufacturing Company is the largest of the wells, giving at a depth of 437' a flow estimated at from $8,000,000^{\prime}$ to 10,000 ,000^{\prime} per diem, and having a pressure of 225 pounds to the squareinch the the square inch. The estimates are made by practical gas men who have been bor-
ing about Pittsburg. This is the only well in which any shooting has been done. We put down a 12 pound cartridge, which brought the gas. Every well that has been bored gives gas in some quan-tity."-Louisville Times.

JAMESS CURTIS BOOTH.

It has been pointed out by the present writer, elsewhere in these columus, that two distinct epochs can be shown in the development of science in the United States, one beginning with the teaching of chemistry by the elder Silliman at Yale College, early in the century, and the other beginning with the settlement of Louis Agassiz in Cambridge. Between these two eras there was a developinent of chemistry in Philadelphia, which may be traced back to the influence of Robert Hare, who was contemporaneous with Prof. Silliman, but which culminated in the opening of J. C. Booth's laboratory, in 1836, where many of our ablest chemists of a past generation received their early training. A course in this laboratory was considered necessary for the chemist of that time, and was regarded as of more value than a college diploma. Professor Booth continued long in the active practice of his profession, and his recent death, on March 21, 1888, at his residence of "Midhope," Haverford College Post Office, Pa., removes from us one of the most eminent of American chemists.
James Curtis Booth was the son of George and Ann Bolton Booth, and was born in Philadelphia on July 28, 1810. He received his early education at classical schools in Philadelphia, and then spent four years in Hartsiville Seminary, in Bucks County, Pa., after which he studied at the University of Pennsylvania, where he was graduated in 1829. A year later he entered the Rensselaer Polytechnic Institute, and completed his course in 1831. He then went to Flushing, L. I., where, during the winter of 1831-32, he delivered an introductory course of lectures on chemistry. Deciding to follow that science as a profession, he went to Germany in December, 1832, and entered Friedrich Wohler's private laboratory in Cassel, there being at that time no university laboratories arranged for the regular reception of students; and it is believed that he was the first American student to study analytical chemistry in Germany. After a year with W8hler, he went to Berlin, and spent an equal amount of time with Gustav Meqnus. The remainder of his three years abroad The remainder of his three years abroad was devoted to the practical study of chemistry applied to the arts in the manufacturin

and England.

With an education probably unequaled at that time by any chemist in America, he returned to the United States, and in 1836 established in Philadelphia a laboratory for instruction in chemical analysis and applied chemistry. This institution soon acquired considerable distinction, being the first of its kind in this country, and during the course of a few years nearly fifty students availed themselves of his instruction, most of whom have since acquired distinction. The list includes John F. Frazer, professor of chemistry at the University of Pennsylvania in 1844-72; Thomas H. Garrett, his surviving partner in the analytical business ; Campbell and Clarence Morfit, known by the handbook which they wrote : Richard S. McCulloh, professor of physics at Colnmbia College in 1857-63; Robert E. Rogers, professor of chemistry at the University of Pennsylvania in 1852-77; and Dr. William Camac of Philadelphia.
At first he was assisted by Dr. Martin H. Boye, who remained with him until 1845, and in 1848 Thomas H. Garrett became his associate. The latter continued to manage the analytical department of the business until 1881, when Andrew A. Blair joined the firm, which, un der the title of Booth, Garrett \& Blair, have a high reputation as analysts, especially in the examination and determination of iron ores.
Meanwhile, in 1849, Mr. Booth received from Presi dent Zachary Taylor the appointment of melter and refiner at the U. S. mint in Philadelphia, which office he held until his death. His resignation was sent to the President on July 27, 1887, and accepted on January 7, 1888, to take effect on the qualification of his successor-an event which occurred after his death. In his official capacity, Mr. Booth was frequently consulted by the government on questions pertaining to chemistry, and his studies on the nickel ores of Penn sylvania led, in 1856 , to the adoption of nickel as one
of the components of the alloys used in the coinage of the cent issued in that year.
Soon after his return from Europe he was called on to take part in the geological survey of Pennsylvania, and during 1837-38 he had charge of the geological surhe issued the first and second "Annual Reports of the Delaware Geological Survey" (Dover, 1839) and "Memoirs of the Geological Survey of Delaware" (1841).
His partiality for applied chemistry led to his appointment as professor on that subject at the Franklin

Institute, in Philadelphia, in 1836, and during the nine successive winters he continued his lectures, making three full courses of three years each, and exhanstive of the range of applied chemistry. It is much to be regretted that these full courses have not been resumed since 1845, except in single sporadic cases.
The University of Lewisburg conferred on him the degree of LL.D., 1867, and that of Ph.D. he received from the Rensselaer Polytechnic Institute in 1884. In January, 1839, he was elected a member of the American Philosophical Society, and in September, 1852, he was chosen a member of the Philadelphia Academy of Natural Sciences. He served as president of the American Chemical Society in 1884 and 1885, and was elected for a third time, but declined this honor, never before conferred on a member.
His bibliography, which is not very extensive, includes the following papers: "On the Deutarseniuret of Nickel from Reichelsdorf in Hessia" (1836) ; "Anaysis of Various Ores of Lead, Silver, Copper, Zinc ron, etc., from King's Mine, Davidson County, N. C." 1841); "On Beet Root Sugar" (1842); "Chrome Iron Analysis" (1842); "Constitution of Glycerin and Oily Acids" (1848); "On Remingtonite, a New Cobalt
Mineral" (1852); with Martin H. Boye: "Analysis of Well Water in Philadelphia" (1842); "On the Extraction and Decolorization of Gelatin" (1842) ; "On
the Preparation of Aluminous Mordants" (1842)

THE LATE JAMES CURTIS BOOTH.
"Conversion of Benzoic Acid in Hippuric Acid" (1843) and "Analysis of Three Kinds of Feldspar" (1844) with Thomas H. Garrett: "Experiments on Illumina tion with Mineral Oils" (1862); and with Campbel Morfit: "On the Analysis of Cast Iron" (1853) Hi larger works are: "Encyclopedia of Chemistry, Prac tical and Theoretical," in the preparation of which he was assisted by Martin H. Boye, Richard S. McCulloh and Campbell Morfit(Philadelphia, 1850), and " Recent Improvements in the Chemical Arts." issued by the Smithsonian Institution (Washington, 1852). Also he edited, with notes, a translation from the French of Regnault's "Elements of Chemistry" (two volumes, Philadelphia, 1853).

Electrolytic Deposit of Pure Irom.

For obtaining fized or detachable deposits of chemically pure and very homogeneous iron, Mr. Barthol omploys the following process :
A bath of carbonate of iron is prepared with $183 / 4$ ounces of sulphate of iron to $21 / 2$ gallons of water, and 43/4 pounds of carbonate of soda to $21 / 2$ gallons of water. To this is added 5 gallons of water acidulated with sulphuric acid, and there is thus obtained an electrolytic liquid in which, on the one hand, are immersed the objects to be covered, and, on the other, an iron or steel anode of the size of the sbject to be coated with pure iron.-Revue Scientifique.

The physicians are vigorously discussing the ethics of patenting instruments invented by members of the profession, in the Medioal Journal. They never hesi tate about copyrighting a book, though, the Sanitary tate about copyrightin
News has discovered.

Ventliation or the Beds or the sick.

In the Cambridge (Mass.) Hospital there is an arrangement for the ventilation of the beds not gener ally known It is so effective that I wish to describe it. Beneath each bed is a ventilating tube of about eight inches in diameter, fifty square inches area, leading directly through the floor to a foul air tank, beneath which it communicates with the main ventilating chimney. About 2,000 cubic feet of air an hour is thus drawn from beneath each bed. This ventilating tube is connected with the bed above by a four inch pipe of tinned plate, with a proper cover and joints, which passes around the side or foot of the bed and into it beneath the clothing. This pipe is lengthened with one of the same size of pasteboard or other substance, a non-conductor of heat, reaching to any part of the bed. By this simple means foul air is removed as fast as formed, the bed kept free from odor, and the patient's body is no longer surrounded with contaminating gases. As the air presses inward through the porous bed clothing, none escapes into the ward. Further, two inch flexible pipe is adjusted to that just decribed, and slipped over the hollow handle of the bed pan when in use, carrying off odor from that also. In the same hospital similar means connect the beds in the private wards with the chimney of an ordinary fireplace, up which the pipe reaches about four feet to insure a good draught with a moderate fire; the part in the chimney is of black iron. The advantages of such an arrangement in cases of sloughs, foul ulcers, cancers, and in'fevers with frequent fæcal dejections, are obvious. It may be supposed that the passage of air through the bed would cool it too much. Practically it does not. Probably the quantity of air passing is about the same as in beds ordinarily at the same temperature of the room, but in a different direction.-N. Y. Medical Journal.

The Chemistry or Plants.

The activity characterizing many branches of scientific research has yielded wonderful results during recent years. We look upon continued developments with an indifference which but yesterday with an indifierence which but yesterday
would have been wonderment. The would $h a v e b e e n$ wonderment. The
phases of human progress follow in such phases of human progress follow in such
rapid succession that we fail at times to rapid succession that we fail at times to
note their continuity. But the momentum of research and thought is nevertheless daily demonstrated, and with each demonstration it receives a new impetus which suggests the final possibility of a solution of all mysteries.
While perhaps not in greater activity, still in apparent results the mechanical sciences lead, and from their direct appeal to the more evident interests of the people probably always will be regarded as the most important form of development. In the fields of research of more difficult conquests the results are correspondingly meager, and in no branch is this more true than in that of organic chemistry, especially that pertaining to the chemistry of plants. In referring to this subjeet the Western Druggist says there is little doubt that the organic principles existing in plants are as yet very imperfectly understood. The question of their relations to each other, the influence of variation in climate and soil the presence and effect of ermenta wh forments, wich appear to be one of the inost import is called upon to explain more clearly. Recently the as called upon to explain more clearly. Recently the
active principles of several drugs have been localized active principles of several drugs have been localized
in their respective parts of the plants-amygdalin and on their respective parts of the plants-amygdalin and
omulsin in almond, and atropine in belladonna. It is hoped that these and similar investigations will pave the way to a better understanding of the cause, origin, and chemistry of the proximate organic principles, that a systematic science may be formed from the present chaotic mass.

What a Ton of Coal Yields.

A ton of coal yields about 8,000 cubic feet of gas and 1,500 pounds of coke. The purification of the gas furnishes 45 gallons of ammonia water, from which is obtained sulphate of ammonia for agricultural purposes, and about 130 pounds of tar. It is here that the operation becomes especially interesting, for from this last named product are obtained 70 pounds of pitch, 18 of creosote, 9 of naphtha, 13 of heavy oils, 6 of naphthaline, 4 of naphthol, 2 of alizarine, about 1 each of phenol, aurine, and aniline (the substance to which we are indebted for 80 wonderful colors), 10 ounces of toluidine, 6 of anthracene, and 12 of toluene. Finally, it will interest photographers to know that hydroquinon, that product that has been so much spoken of recently, and which was at first obtained from cinchona, is now obtained from coal by industrial processes.-La \&cience en Famille.

Fabulous Antrouomy.
 (Continued from page 344.)
 HE EARTH, SKY, AND STAR

The first observers of the heavens had no suspicion of the true nature of the stars, nor of the great distance that separate us from them. They believed them, if not within reach of the hand, at least (and almost in a literal sense) to be within reach of the voice. Homer says that the loftiest pines of Mount Ida extended beyond the limit of the atmosphere and penetrated the ethereal region, through which the noise made by the arius of his heroes reached the sky. The latter was a solid hemisphere-a bell that rested upon the earth. According to Euripides, it was a cover put upon the works of the sublime workman. The Hebrew psalmist of the eleventh century before our era said to the Lord, "Thou spreadest the heavens like a tent." It is in this hemispherical vault that the stars of Anaximines are fixed like nails. Empedocles supposed them to be attached to a crystal vault.* The celestial bell covered a flat earth surrounded on every side by water. Every nation supposed itself to be in the center, and China is still to-day the "central empire" [and its Chinese name, ChonKoo, means "center of the world"]. The Incas of Koo, means "center of the world "]. The Incas of
Peru showed the center of the earth in the sanctuary Peru showed the center of the earth in the sanctuary
of Cuzco, the name of which signifies "navel," just as of Cuzco, the name of which signifies "navel," just as
the Greeks saw it in the temple of the sun at Delphi, called also the navel ('o $\mu \varphi \alpha \lambda$ ós) of the habitable world, and celebrated under that title by Pindar. The Chinese locate the navel of the earth in the city of Khotan. The conception of an earth flat like a cake prevailed in European civilization up to the crusades, and the lazzaroni of Naples still have it.
The Hawaiians, Maoris, and Eskimos believe the entire sky to be supported by a column, just as classical antiquity supposed it to be upheld by Atlas. The Iroquois Indians suppose the sky to be fluid. In order to explain the circular motion of the sun, the Polynesians suppose that the great god Mani holds it by means of a cord, and this also was the idea of the Peruvians

To the pastor of the Saptasindhu, the stars were fires lighted by Agni (elementary fire) or by Varuna (the celestial vault). A hymn that he addressed to the gods mentions the moon with icy rays only to proclaim the powerlessness of it before the divine fires of heaven.

THE MILKY WAY.
The grouping of the stars in constellations is very ancient. The Great Bear, the Little Bear, the V of Taurus, the Pleiades and Orion have been known for a very long time. The milky way, which is the "winter lane" of the Scandinavians, is the "soul's road "anong the Iroquois and several other nations of America [and the tchibekuna, or "road of the dead," of the Odjib ways]. The souls enter the world through the door at the intersection of the zodiac and milky way in the constellation Gemini, and make their exit, to return to the gods, through the door of Sagittarius. French peasants still call the milky way "St. James's Road," and mythology attributes it to a drop of milk that fell from Juno's breast while she was nursing Hercules. It is the "celestial river" of the Chinese, an arm of the sea inhabited by sharks to the Tahitians, the field in which the manes of the ancestors of the Puelches hunt ostriches, and the "star dust" of the Peruvians.

the pleindes.

The Pleiades are a group of stars quite close together, visible in winter in that part of the constellation which lies near Aries aud Perseus. Several ancient peoples imagined that they saw male and female dancers in the group.
[Iroquois tradition originates the Pleiades in seven little Iudian boys, who met for a dance. Their heads and bearts grew light as they flew around the mound ubout which they were dancing, antil suddenly the whole party whirled off into the air. Higher and higher they into bright stars, they took their place in the firmament, where they are dancing still, the brightness of the singer, however, being dimmed on account of his desire to return to earth.]

In India, Italy, England, and France, it is rather a hen and her chickens that are seen in the group. Freuch peasauts call the group the poussiniere (from poussin, "chicken"). According to Ciel et Terre, observations of the Pleiades are of the highest inportance to the Black foot Indians, whose feasts are regulated by the advent or disappearance of this group of stars. When the latter disappear from the starry vault, in autumn, the agricultural labors are begun by sowing seed. It is the inissiman, or feast of the men. When they reappear, the montoka, or women's least, is cele brated. The first merrymaking has for signitication turn of the absent. The day before the Pleiader make their appearance (and a knowledge of this.event implies an advanced state of astronomy), the women make unerry by dancing around a pole. It is the marristam,
in which the vestals of the sun take part. Ocan is the
autumn feast, during which the dead are honored by dance called stapuscan, or "dance of the dead." The women swear by the Pleiades, and the men by the sun. They are called " the seven," implying the idea of per fection and signifying the seven perfections. In every religious feast the calumet is always presented to then, and prayers are offered up to them that a happy life may be granted. To these Indians the Pleiades were formerly seven young people who guarded the sacred seed at night, and who executed a sacred dance while doing so. Epizors, the morning star, charmed with their gracefulness, took them to heaven, where the sight of their gambols delights the stars.
The sand dance of Malay warriors gives an idea of this celestial dance. The bath of purification prescribed to the Indian doctors contains a triangular aperture, in which are placed seven hot stones that are afterward covered with cold water. After the medicine wen have made their invocations, they invoke the aid of the Pleiades in curing the sick in body. As a talisman they have seven bones, balls, or buttons.
To the ancients, the Pleiades (from $\pi \lambda e i v$, " to navigate") were the constellation of navigators, because they were visible from May to November-the period of navigation in the Mediterranean-and served, instead of the pole star, for directing sailors at night. According to a fable, the Pleiades, or Atlantides, were the even daughters of Atlas and Pleione, who were carried off by Busirus, king of Egypt, and rescued by Hercules. Being afterward persecuted by Orion, they were changed into stars. The most brilliant of them, Alcyone, η Tauri, is of the third magnitude; Electra and Atlas are of the fourth; Merope, Maia, and Tay Lates are of the flfth ; and Cæleno, Pleione, and Aste rope are of the sirth and eighth. The last two are in visible to the naked eye, and Cæleno can be seen only by sharp eyes. It has probably diminished in brilli ancy since the time of the Trojan war, since an ancient version states that it disappeared on account of the carnage of these battles.
It is a remarkable thing that our sun and its system are drawn along to a point in space situated between μ and π Herculis, and much nearer the latter, under the influence of a central star, which is perhap Alcyone.

THE GREAT bRAR

In the Great Bear, the inhabitants of northern re gions see a rude figure of the common bear, or that of the reindeer or dog. A chariot is likewise seen in itthe " chariot of David" of country folk.
The Iroquois have long known of the approximate immobility of the pole star, and call it tiyunsoudagoerr, "star that never moves." [The Cree Indians name it atak eka
the aztec feast of the cycle.
The period of fifty-two years appeared to the Aztecs o complete a cycle that they asked themselves whether at the expiration of this period, the great clock of heaven (having accomplished its revolution) would not stop forever. The Aztec cycle threatened a large num ber of men once, sometimes twice, in their life. The fatal night on which the fifty-second year was to ex pire was therefore a solemn moment. On this evening the sacred fires in the temples were extinguished, as were also the fres in private houses. All vessels that had coutained food were broken. The evening was passed in darkness, the population being divided be tween inquietude and hope. It was in the month of November. The sky, usually clear at this season sparkled with myriads of stars. The people then be took themselves to the mountain of Huixachtecatl near Mexico. The Pleiades were to culminate at midnight ; it was the demarkation of the cycle. When they were at the highest point of the heavens, the chosen victim was brought forward, and the priests opened his whence the new fre was to issue upon the victim's quivering breast, they rubbed them in order to produce the flame that was to light the funeral pile. Men provided with torches at once surrounded the new flame in order to light the resinons wood that they car ried in their hands. These were the couriers who were to distribute the sacred fire throughout all the prov inces of the empire. At this moment, cries of joy made the monntain echo; the world had not come to an end, and man could hope for at least one more cycle before the destruction of the universe.
Those who were unable to be present at the public ceremony kneeled upon the house tops, asking them selves whether they would see a new era. At the ap proach of daybreak, with eyes turned toward the east, hey watched for the first glimmer of the dawn, like he bird that Dante speaks of, which fixedly gazes eastward in order to see the day appear. At the first sign of light, cries of joy arose from everywhere. New fire were everywhere lighted, a magnificent feast was cele-
brated, and thanks were rendered to God for having prolonged his light and accorded a new cycle.
The secular feast of the Aztecs has been suppressed by the Spaniards, their conquerors. The last human victim was sacrificed upon the pyramid of Tlaloc in
secular games of the Romans, and still more closely resembled those of the feast of Isis, in Egypt.-L. Burre, in Reoue Scientifique.*

Alaminum Bronso.

A writer in the Journal of the United States Cavalry Association points out that this alloy might with advantage be used in the construction of breast plates. There is no doubt that the days of defensive armor are by no means past. The advantage of the cuirass was shown in the cavalry combats of the Franco-German war, and the far rance of the modern rifle inay render it very dey more desirable that some atteupt should be very to counteract its deadines. Gun shieldsald be nade to counteract its deadiness. Gun shields also will this alloy will be found the solution of the question this alloy will be found the solution of the question
how to protect light artillery and cavalry. without sacrihow to protect light artillery and cavalry.without sacrificing mobility. Captain W. Hall, the writer above re ferred to, gives an interesting comparison, which was made by his government, between the average of 130 specimens of accepted gun steel and an alloy of 90 parts copper and 10 aluminum. This comparison is as folows :

Tensile strength...
Alaminam alloy.
Lb. per sa. in.
ins.
Lb. per sq. in.
Probable elastic limit............ 84,000
It is considered that modern methods of working aluminum, especially by aid of the electric furnace, will so reduce the price that it will come into general use or many purposes.
the pearl mocilage bottle.
The accompanying cuts show a novel and useful mucilage bottle recently placed on the market by the Nassau Manufacturing Co., of 140 Nassau Street, New York.
Fig. 1 shows rabber tip. whichis of peculiar conpeculiar con-
struction, anstruction, an-
swering the bwering the purposes of a brush, with none of
the inconveniences. This tip way the inconveniences. This tip may
be readily converted into a selfbe readily converted into a self-
feeding brush by simply sticking feeding brush by simply sticking a narrow knife blade through it at Fig. 2.
Owing to the peculiar construc tion of the tip, the slits will selways open when it is bent by pressure applied in using, but if mucilage hardens around them, a pinch or
Fig. 1. tap on the end of the tip will readily loosen it. The bottle may be left on its side, or, in fact, in any position, with out the slight-
est chance of

spilling any of its contents, as the mucilage will only flow through the apertures when pressure is upplied, as in use.
There is no waste from spilling or evaporation. It is much more economical than the old fashioned bottle, and may be refilled as often as desired by slipping off the tip.
Fis. 2. Though on the mark

Priction of Collar Bearinge.

The third report of the friction committee of the Institution of Mechanical Engineers is on experiments on the friction of a collar bearing. The general con clusions of the committee are that this kind of bearing is inferior to a cylindrical journal in weight-carrying power. The coefficient of friction is also much higher than for a cylindrical bearing, and the friction follows the law of the friction of solids more nearly than that of liquids, due doubtless to the iess perfect lubrication applicable to this form of bearing compared with a cylindrical one. The coefficient of friction appears to be independent of the speed, but to diminish somewhat as the load is increased, and may be stated approximately at one-twentieth at 15 pounds per square inch diminishing to one-thirtieth at 75 pounds per square inch.

Quantities of bears' bones and seven very well preserved skulls were recently discovered in a cave at Rubeland, in the Hartz. A set of stag antlers, frag ments of skeletons of hyenas, and some slender bones, which are assigned to the ptarmigan and the lemining, were also discovered. The cave is to be lighted by electricity for the benefit of scientific visitors.

[^0]

\qquad

Own Your Homes.

Every man, says the Building News, whether he is a workingman in the common acceptation of the word or not, feels a deep interest in the management of the affairs of the city, county, and State in which he live wherever he owns a home. He is more patriotic, and in many ways is a better citizen, than the man who simply rents, and who has but little, if any, assurance of how long it will be before he can be ordered to move, to which may be added in many cases the sav ing of more money.
Of course it requires some economy to lay up a suff cient amount of money to purchase and pay for a home, but this very fact, if properly carried out after the home is acquired, may be the instrument of fur nishing the means to commence and prosecute a business upon one's own responsibility. True, in some cases it will require more economy, perhaps, than is now practiced. But the question with every man, and especially if he is the head of a family, is, can he afford it 9 That is, can he afford to live up his wages as fast future?
If he is the head of a family, he is obliged to pay rent, and it does not require very wany years of rent
the currant bush treated with a solution of alum pro duces a brown. Yellow is obtained from the bark of the apple tree, the box, the ash, the buckthorn, poplar, elm, etc., when boiled in water and treated with alum. A lively green is furnished by the broom corn

restoration of roican ruin at reigs, france.

The gate known as the Porte de Mars at Reims, in France, one arch of which has been recently restored a first step toward the restoration of the whole monu nent, is the only one remaining of four similar gates or triumphal arches which were used in the city of Reims while under the dominion of Rome. It consists of three arches and eight columns of the Corinthian order, measuring $421 / 2$ feet in height. The middle arch, which is the largest, measures 49 feet in width and 38 feet in height. It is called the Arch of the Seasons, and the sculptor had represented the twelve months of the year. Unfortunately, five of these bass-reliefs are almost entirely destroyed, and the seven others are very much damaged. The left hand arch is called the Arch f Rewus, and represents Romulus and Remus under the wolf, and at the right and left of the children are standing figures of Faustulus and Acca Laurentia. The standing figures of Faustulus and Acca Laurentia. The
arch at the right is called that of Leda, and represents

World, that this subject will meet with the attention it merits, and that light will be shed upon a still obscure suijject.

The Dynamite Gun.

At a recent meeting of the United States Military Service Institution, General H. L. Abbot, of the Corps of Engineers, criticised this weapon adversely. Hedid ot believe in the practical value of the pneumatic gun n coast defense, because its short range restricted its fire to the area already obstructed by submarine suines, and the defenders cannot afford to make every shot that misses the enemy a countermine to destroy the wines, and thus open a route for his passage. The mines are indispensable, because steam vessels can force their way through any unobstructed channel under cover of darkness, whether the projectiles thrown at then contain gunpowder or dynamite ; and it would be inadvisable to introduce a new weapon that directly antagonizes another of prime importance, which it cannot replace.
If it be suggested that the use of the "aerial tor pedo" may be restricted to the period of the siege, when, the subuarine mines having been destroyed by the enemy, he is ready to attempt to pass the forts, we

THE HISTORIC MONUMENTS OF FRANCE-THE ROMAN ARCH OF MARS, AT REMS

paying to make up an amount sumcient to purchase and pay for a comfortable home. You have to pay rent. This you eay you cannot avoid and be honest. Well, you cannot be honest with your family unless you make a reasonable attempt to provide thein a you

And the obligation to do this should be as strong a the one to pay rent or provide the other necessaries for the comfort of your family. When you own a home, you will feel a direct interest in public affairs that otherwise you might consider.were of little interest.

Dye Colors from Plants and Shrubs.

A variety of very useful colors and dyes may be ob tained from very common plants, growing in abund ance alnost everywhere. The well known huckleberry or blueberry, when boiled down with an addition o a little alum and a solution of copperas, will develop an excellent blue color; treated in the same manner with solution of nut galls, they produce a clear dark brown tint, while with alum, verdigris, and sal ammo niac, various shades of purple and red can be obtained The fruit of the elder, so frequently used for coloring spirits, will also produce a blue color when treated with aluni. The privet, boiled in a solution of salt furnishes a serviceable color, and the over-ripe berries yield a serviceable red. The seeds of the common burning bush, "euonymus," when treated with sal am noniac, produce a beautiful purple red. The bark of

bove them

Until 1544 the Porte de Mars was actually used as the gate of Reims, but at that time, owing to the growth of the city, it becane necessary to carry the gates further out, and the Porte de Mars is found buried (incredible to believe) under the rubbish brought there for eveling the new routes. Discovered and unearthed in eveling the new routes. Discovered and unearthed in 1812, the government has recently classed it among the
monuments of historical interest, and has voted, in conjuments of historical interest, and has voted, in
con necessary for the preservation and restoration of this important ruin.-L'Illustration.

Danger from Electric Wires.

The number of deaths in this and other cities caused by the electric wires in our streets seems to call for a thorough investigation on the part of our city authorities and electrical engineering associatious here and elsewhere.
In a paper presented by Mr. P. B. Delany before the American Institute of Electrical Engineers, a suggestion to this end was thrown out. The causes of death by electricity, its nature and limitations, as well as the probable means for its prevention, are of sufficient practical importance to warrant earnest investigation. The investigations which have thus far been undertaken in this direction have for the most part been isolated and imited in their scope, and there is thus left for the nstitute a clear fleld for work, the result of which will redound to its credit. We hope, with the Electric
must remember the high trajectory of the weapon. Vertical fire is not effective against a rapidly moving target, such as would be presented by the enemy's ships when once the channel is opened. For the dynamite gun was claimed the exclusive ability to throw detonating substances with safety ; but it was stated on good authority that mortar shells charged with 110 lb . of authorty that wis fired in wet guncotton were fired successfully in Germany, and pointed to their early use even in guns.
The pneumatic gun was more useful in the navy than the army. As a counterminer to destroy submarine mines it might have a value, although without abso lute proof he would be loth to believe that it could do more than moderately assist in the opening of any known and well defined channel from four to six miles long, without which no armored ship could safely pass the forts. Even then it would be a serious matter to maneuver an unarmed floating magazine, containing many tons of dynamite, under the fire of high power guns, mounted on land at a range of one or two iniles.

Telegraph ve. Telephone

A speed trial between the telegraph and telephone rom New York to Boston was lately undertaken a the Sun newspaper office in this city. The contest last ed for ten minutes; 330 words were delivered in Boston ready for the printer, by the telegraph, and 346 words by telephone. But many of the telephone words were incorrectly received. So the telegraph was the winner.

ghanterming nivertion.

A boiler feeding attachment has been patented by Mr. Morris P. Janney, of Easton, Pa Combined with the pamp and a feed plpe connected
with it having a cock or valve at one eide of to connec lion with the pump, is an accumnulator connected with the throtle of the pamp and with the feed pipe, whereby, when the feed plpe valve is closed, the force of water in the feed pipe causes the accamulator
throagh its connections, to operate the pump throttle.

higesllanteots invertioms.

A wagon has been patented by Mr. Georze S. Conwell. of Booneville. Tenn. This inven. tion covers an Improvement in wagon bodies whereby
the wagon can be readily gited with side standards for hanaling wood and the like, or may be formed into
box wagon by the addition of suitable side boards.

A pocket book fastening has been pa tented by Mr. Robert L. Boyd, of New York City. catch plate is attached to the flap, having a hook-shaped jaw adapted to engage a corresponding jaw on a base
plateattached to the body of the pocket book, the base plate having a movable button arranged to be pushed ver the engaging jaws to lock them together.
A nut lock has been patented by Messrs. Alvin B. Neiman and Lewis M. Melhorn, of
York, Pa. The nut has a tapered screw hole at right angles to the bolt hole, comblined with a tapered screw plag cutting the threads of the bolt at right angles the threads of the bolt.
A combined square, bevel, protractor, ad level has been patented by Mr. William Palmer ment for measuring the length of rafters and braces, for marking bevels at their ends, and for forming poly onal figures, the ${ }^{-}$invention covering various nove details and combinations of parts.
A nut lock has been patented by Mr Orlundo L. Castle, of Upper Alton, III. It is for nse in railroad rails, and is of that kind in which arch shaped spring plates are ueed to aesist in keeping the ats from working loose or turning, and to compensate
or or take ap any slack in the nut lock.
An inkstand and frame has been pa tented by Mr. Charles Vehring, of New York City. The frame is covered with leather or other saitable udapted to be applied to the base of a writing pad, the casing of the ink bottle being made fast to the frame by

A stock trap and holder has been patented by Mr. Joshua \mathbf{H}. Gentry, of Sheldon, Mo. It is a device which can be cheaply made and set in a fence,
gateway, or stock chute, and adapted to any ized gateway, or stock chute, and adapted to any bized
opening, as a device for catching and temporarily holding a domestic animal driven into it, by means of a lever, ratchet and pawl, and sliding bara
A road grader has been patented by Mr. Alberto Finks, of New Berlin, N. Y. This inven parts in connection with a reversible scraper, with means for securing it in different positions, and apply ing the dranght for adjusting the scruper vertically or bolding it at any suitable angle.
A wagon jack has been patented by rr. Rozell Harris, of Hackensack, N. J. Combined thereto. upwardly extending supportung bars integral with the extremities of the arm, and steps secured on
he arm beneath the supporting bars, whereby one o the arm beneath the supporting bars, whereby one or
both wheels of a wagon on the same axle may be raised both wheel

A theatrical appliance has been pa ented by Mr. Joseph Arthar, of New York City. This invention provides mechanical means for representing
the interior of a city fire engine house, wherein the clothes covering the beds and the harness for the horsees lifted from the beds and the latter dropped in position apon the horses.
An electro-medical apparatus has been patented by Mr. Peter Horst, of Sioux Clty, Iowa. It
has a hard rubber grooved diek with a small metallic late on its under side and a large one on its upper side with conductors held in the disk and connecting its under side with the metallic disk on top, in connection with a collector for frictional electricity held between he top diek and the hard rabber disk.
A gummed paper fastener forms the smbject of a patent lisaed to Mr. Joseph M. Jonen, of slaris, Ky. It consists of a strip, divided transversely
at suitable distances by rows of perforations, and having gum or adhesive material applied to both of its sides, to secure, upon dampening, separate sheets or plices or

An automatic fire extinguisher for stoves and heaters has been patented by Messrs. Fred rick L. Hotchkin and Pierre A. Raby, of Brooklyn N. Y. It is desigoed to be especially applicable for use dent, to extinguleh are in the heater, the invention covering various nove?
An embossing machine has been paAnted by Mr. Michael T. Darkin, of Brooklyn, N. Y operated by a lever working on a yielding falcrum, with an arrangement of movable diee adapted to he
readily adjuated for different kinds of work, for formgg sheet metal in various designs without the employ ment of special dies or monlds

An electric tele-thermoscope has been has a by Mr. Harry W. Hardinge, of Leadville, Col bulb at each end, additional tubes extending short die ances into the bulbe, combined with an air chambe connected with one of the additional tabes, a thermosta capring and adjasting screws, arranged in an electric

A punching and shearing machine ha been patented by Messrs. Claas Weber and Henry ists of a series of different sized punches, and a shea sdapted to be engaged alternately at their heads by ongitudinally ellding bar held above the panch and hear heads.
A gate has been patented by Mr. Jesse handler, of Red Stone, Kansas. Combined with atch, rods pivoted to the opposite endm bar, a sectional bosely connected to the rear section of the latch, rope eing connected to the other arm of the lever, the ob ject being to facilitate the opening and closing of gates ad proncte reliability in their action.
A secondary battery has been patent d by Mr. Ludwig Epptein, of Martinkenfelde, nea Berlin, Prassia, Germany. The electrode consite of a series of composite strips formed of the active materia
nd metallic lead, the strips being arranged at a suit and metallic lead, the strips belng arranged at a sail bie distance apart, and connected by suitable mean
of 1 a grid, which is adapted to permit the fre Yorm a grid, which is
irculation of the electrolyte.
An oven attachment has been patent d by Mr. Charles E. Hollingoworth, of Minneapolis, Zansas. It is for use in connection with a gas o on by which it is designed that baking may be carried on at the time when it is necessary to employ he stove for other culinary purposes, with no additiona expenditure for fuel to prodace the requisite heat.
A fire escape has been patented by fr. Henry B. Calkins, of Hyndsville, N. Y. It ha riction rollers pivoted near the upper end of a frame
comblined with aligning curved carrying arms and angle levers, and other novel featurres, being adapted for nse with a rope, to facilitate the safe descent of a
person from any height, the rapidity of the descent eing under the control of the operator.
Tubular plaited or braided bands form he sabject of a patent iesued to Mr. Leedham Biuns, of pecially designed for driving the spindles of spinning and twisting frames, and the invention covers a novel
constraction, in which the tabular band is formed at its constraction, in which the tabular band is formed at it ends with disconnected loops of the
their bends as the body of the band.

A wheel for hand trucks, casters, etc. as been patented by Mr. Michasel J. Cummings, of New
ork Cuty. It is made of two motallic compreasing isks, each having a peripheral fiange and an annular honlder, combined with a tire of rubber or similiar materia, having annular side grooves to recelve the the tire cannot be slipped off the wheel by hard usage.

A fire escape has been patented by Mr. homas Brice, of Sandy Hill, N. Y. The case is made two long haif boxes, in which grooved palleys are arranged, a rope passing through the case and winding frictional engagement, making a simple and efficien device not llable to be disarranged in the excitement of device
are.

A hay derrick has been patented by Asers. William A. Hooper and Rodney F. Hamblen, pulley at its lower end and an inner guide pulley, in connection with a centrally journaled mast carrying a cross beam on whose ends are palleys, the mast and its
croes beam tarning in any desired direction, and there cross beam torning in any desired 1
being a windlaes on the base frame.

A machine for planing stereotype plate has been patented by Mr. Lacins Goss, of New York
City. It is for use with plates cast with several spaced columns, and bas trimming knives or catters arranged to enter the spaces between columns and trim the edges, while the bed plate or frame has a straight edge or and its line of motion, to insure accurate trimming of the columne.
A belt punch has been patented by Mr. Hagh L. T. Overbey, of Summerville, Ga. It the arms of a metallic frame, the lower end of the rod being threaded to receive a tubular bit, and there bein a handled lever pivoted at the top of the rod, and the rod being sarrounded between the arms by a coiled spring,
which acts to withdraw the punch after a hole has been which a
made.

A moulder's draw iron has been patented by Mr. George \mathbf{A}. White, of Sharon, Mass. It is
an improved device for the ready and accurate withan improved device for the ready and accurate with-
drawal of a pattern from the mould, in which ordinary drawal of a pattern from the mould, in which ordinary
wood screws are employed, so that as one wears ont it may be quickly replaced at alight cost, and by means of may be so controlled in entering the pattern as not to depress or jar it and thereby tronble the sand.
An apparatus for detecting leakage in arnace blocks has been patented by Mr. Jooeph Bird, Saxton, Pa. Combined with the water blocks of a fur faucet, with a valve near the lower end, an apwardly extending branch above the valve, a glass tube smpported by the branch and closed at its apper end, a
atop cock below the tabe, and a pectional collar attach. ing the fancet to the discharge pipe, making a almple ing the fancet to the discharge pipe, making a

A process of reducing iron ores has A
olm, Sweden. In addition to the reducing farnace
or regenerating or carbureting furnaces are employed with a circulating blast engine, affording means for reducing the ores by means of carbonic oxide, by passgg the carbonic oxide throngh a charge of ore, drawing of the gases from the charge and pansing them ove owing coke, cooling the gases and then superheating , after be reduced thus eaving fuel withort fifur ing the quality of the product.
A process of reducing zinc ores has nbjecting the zinc ores in mixture with coal to the action of highly beated carbonic oxide, condensing the zinc from the outgoing carbonic oxide, and subse quently reheating and returning the gas through the
charge, the gases taking the oxygen from the zinc oxide charge, the gases taking the oxygen Prom the zinc oxide
and the carhon from the fuel, avolding the admixture of air or oxygen, and constituting a process of reducing the ores at a low cost, with saving of labor and A
A two-wheeled vehicle has been pait is designed to obviate horse motion by the nse of ovel form of springs, having a transverse front apring atached to the body and the side bars, in combination ith longitudinal side springs having their forwar nds attached at the front of the body and their rear scured to a aemlelliptic spring atteched to the ander side of the seat, each side spring being likewise susceptible of being made in two parts, to vary its form in front of and behind the point of its attachment to the

Scientific american
BUILDING EDITION JUNE NUMEERR.-(No. 32.)

TABLE OF CONTENTS

Elegant plate in colors of a beantifal dwelling a Tuxedo Park, N. J., with foor plans, shee Plate in colors of two dwellings costing two thonsand two handred dollars and two thonsand four
handred dollars each, with fioor plans, sheet of undred dollars each, with fioor plans, shoet details, etc.
A cottage of field stone and wood, perspective and Perspective and fioor plans for Sketch of a residence at Minneapolia, Minn.
6. Perspective view of a small suburban or measide cottage Sketch of the
Kenwood, 111 .
Plans and perspective view for a cottage costing, complete, one thousand and afty dollars.
cottage on Prospect Ave. and 16sth Street, New York. Perspectiv.
10. Floor plans and perspective view for a realdence of moderate cost.
Half page engraving.
Tomb in the cemetery of Beville, H. P. Nenot architect. Half page eugraving.
Full page of Illustrations of North St. Paul, MinnePage engraving of the new Clty Hall, Holyoke, Mass.
Design for a porter's lodge at North Andov
Mases. Hartweil \& Richardoon, architects. Villa. Penmaenmayr Bailding Estate, North Wales. Wm. Dawes, architect.
tect. on New York.
19. The Tower of Babel, according to Father Kircher Two engravings.
80. Miscellaneous contents: Moses as a sanitarian.-To the the age of a horse.-The ventilation of thea-weather.-Originality in architecture.-Painting and varnishing foors.-The Architect and Bailder. -Proceedings of the National Association of Builders.-Senator Stanford's $\$ 100,000$ tomb.-
Italian marble. - Masonry and cement $-T$ Temple of Italian marble. - Masonry and cement.- Temple of
Jupiter Olympius.-Honee painting.- Sale of ready Jupiter Olympius.- Honse pain ing.--sale of ready Ings.-The Startevant system of heating and ventilating buildings, illustrated.-A new boiler for steam or hot water heating, illastrated.-The Paraon seliffeed rip saw, illastrated.-Gypsam paint. -The Humphrey Pony hand elevator, illustrated. Electrical sapplies.-Permanency of color in paint. Iineral wool.-A b
The Scientifc American Architects and Builders Editlon is iseued monthly. $\$ 2.50$ a year. Single copies, w cents. Forty large quarto pages, equal to about two hundred ordinary book papes ; forming, practically, a large and splendid Macizing or ArchitroTURE, richly adorned with elegant plates in colors and
with Ane engravings, Illustrating the most interesting with Ane engravings, Illustrating the most interesting allied subjects.
The Fallness, Richness, Cheapness, and Convenience
of this work have won for it the Larasst Cibculation any Architectural pablication in the world. Sold by

MUNN \& CO.. Ptblishers,
Pal Brondway, New York

2Business and \$ersomal.

The chargo for Innertion undor the head is ons Dollex a line for each ineertion; about dight woords to a

 a line for each innertion; about sioht soorct to a live.Advertiements mue be moctool at puliscuta Advertivemente muxt be rocctiod at publication ofac

Wanted-A reliable arm to manufacture an entirety new article on contract or royalty. (Wire ticket ay
label holder.) Thousands will be used dally. Seed for a ample. Patent No. 377.176. Will buy machine or wort ing drawinga. Addreas
$\&$ Co., Columbus, Ohlo.

Rave Business Opportunity.
A well established N. Y. house will sell patevis for com-
pact stam enowne, boller, and pobernor. New desiom. Hilp
 filled while hot without danger. Can be sean in operi nilled while hot without danger. Can be seen in
tion. Address H., lock box 7 Fr, New Yort City.
Going soon to Earope, for some time. Will attend to business and nexotiations for inventors and others, in
obtaining tecchnical information on all maiters intrused,
ota Part eto. Part of traveling expe
H., New York P. O. box 386.
Wanted-A good, competent superintendent in Woodworking machinery manufactory. Must understan
the building of woodworking machinery, the handiling of men, draughting, and designing of wood working tool if necessary. None but competent and practical peed
apply. Reference required. Addrese Penington \boldsymbol{M}_{3}. apply. Reference reguired. Addr
chine Works, Fort Wayne, Indiana.
The best Caffee roaeters, coolers, stoners, separator ilsh machines; aso built by The Hungerford Co., eo Cortlandt Street Nic Portable grinding mills. Chas. Kaestner \& Co icaro. Ill.
To any one who will start a match factory we w Rive a rood site and one year's supply of timber. Ad
dress Bay City Manufacturing Co., Bay Ctty, Mich. Bot

Safety water columns. Cheaper than explosions purned bollers. For lllustrated price list, Rellanoe Gruge Wanted-Patents-Manufactaring.-It is deaired bj the undersigned that parties having for diapoaition an
patented article or a new line of manufacturiog to Lablish, the merits of which can be proved, to addrea
vith reference thereto, M. C. W. Wheeler, Peoria, ill. Steam Pipe Covering, Sectional and Plastic. Writ
for Pamphlet. Jno. A. McConnell \& Co., \oplus Water is, Pttsburgh, Pa
Steel name stampe, 15 cts. per letter. Steel tqures, 31 The Diamond Prospecting Co., 74 and 76 W . Lete St., Chicawo. III- renera
prospecting drills.
Feed grinders. Chas. Kaestner \& Con, Chirapa, IL
For the speciac parpose for which ther are deespres
Parta Electric Battery CO_{O}

For the latest improved diamond prospecting drils,
address the M. C. Bullock Mis. Co., 138 Jackion 8 ,
Chroess the, M. C. Bullock Mif. Co., 188 Jackion st
Nickel Plating.- Manufacturers of pare nickel an , polishing compoilions, wa Agonts of the now Dip Lecquer Kristaline. Complet outat for plating, etc. Hanson, Van Winklo \& Co
ark, N. J., and 92 and 9 Liberts Bt.. New Yort.,
Perforated metals of all kinds for all parposen. The
Robert Altchison Perforated Metal Coo., Culceneo, il.
The Rallroad Caaretts, handsomely illustrated, pub lished weekly, at 73 Brosd way. New Yort. Specime
The Knowles Steam Pump Works, 118 Federa sued a new catalogue. in whith are morky have juat in proved forms of Pumpting Meohinery of the entigle and
duplex, stoam and power typh. This catalogno will be malled free of charge on application.
Link Bolting and Wheele. Link Belt M. Co., Chicugo Iron Planer, Lathe, Drill, and other machine tools of
modern deakn. Now Haven Mfr. Co., New Beven. Conn. Prees o Di Wracto Mh. Cow Eriven. Con Engines and boilers. Chas. Kaestaner \& Co., Chicago Sapplement Catalogue.-Persons in parsait of info mation of any spectal ensineerink, mechanical., or siob
 ho whole range of ongtineering. mechanics, and physic

The Holly Manufacturing Co., of Lockport, N. Y Wll send their pamphlet, describing water worts ma Improved ine tools for mechanice-Manufectured by L. s . Starrett. Athol, Mase. Send stamp for full list Lockwood's Dictionary of Terms used in the practice of Mechanical Engineerting, embracing thome ourrent the drawing omice, pattern shop, foundry, nteting, tar tng, smith's and boller shop, ecc., comprising orer 6,
detnitions. Fadted by a foreman patternmater. defnitions. Fattod by a foreman patternmaker.
Price. \&R.00. For sale by Munn $\&$ Co., 801 Broadway, Ner

Billings' Drop Forged Lathe Dogs, 12 sizes- \mathbf{K} to Steam Hammers, Improved Hydranlic Jacke, and Tobe bla St., New York. 60,000 Emerson's 1887 RTB Book of superior sawn, wiu Adireses Emerson, Smith \& CO... Limited, Baarer Pellin Pa., U. S. A.
Safety Elevators, steam and belt power ; quick and
mooth. D. Frisble \& Co.., 112 Liberty Stw Now York. Veneer machines, with latest improvements. Farte ar addre How to Keep Boilera Clean." Send your addrexe
tree 88 page book. Jas. C. Hotchkiso, 120 Liberty ${ }^{\text {St }}$

Paint mills. Chass. Kaestner \& Co., Chicago, Ill.
spilt Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocou
"New Drill Chuck," holding stralght taper or squar shanka. Address standard Tool Co., Clove Daplex St
alo, N. \mathbf{Y}.
ETend for new and complete catalonze of Scientur and other Books for aule by Munn \& CO., 351 Broedway

HEW BOOKS AND PUBLICATIOIS.

A Treatise on the Use of Belting FOR THE Transmission of Power
By John H. Cooper. Third edition Philadelphia: Edward Meeks. Pp
399. Price $\$ 3.50$.
This work, from the time of the appearance of the Irst edition, in 1877, has been louked upon with decided savor by iarge numbers of users of leather beltung, as eing eminently practical and covering a wide range o and actual methods of arranging main driving and quar ter-twist belts, with rules for calculating the size and iniving power of belts, and directions for their care and iona covering the riews and experience of the beat known engingers and managers of machinery, collected hrough a long series of years.

Woolen and Worsted Cloth Manu FACTURK. By Roberts
New York : John Wiley \& Sons. Pp ${ }_{390}$ New Price $\$ 2.50$

This book is designed to be a practical treatise for a It treats of the physical strictire and clothing proper ies of the raw materials used in the production of woolen and worsted fabrics, the making of yarns and their preparation for weaving, the manipulation of the loom, deeigning and coloring, and the operations to which the cloth is submitted after weaving. The anthor is a lecturer and demonstrator in the textile industries
department of the Yorkshire College, Leeds, England, and therefore brings to his tank a knowledge of the echuical details in ane of the foremost manufacturing districts in this specialty in the world.

Send for new and complete catalogue of scien ifc and other Books for sale by Mann \& Co., 881 Broad Free on applicatio

hints to correspondents.

(1) C. H. writes: I have just completed a mall motor, made after the instructiona given in you nets one-half the width and thickness as the one you de cribed, pat the same number of layers and convolulons, and wound the magnets with No. 20 covered wire apphed it to the wires from a dynamo, and found in 0 work excellently. This is my first attempt at such work. Would you please give me the dimensions of a
motor, such as the size of field magnet, length of armture core, size of wire, and the number of convoln ions and layers to be wound on each, so that I could make a motor with power enough to propel a small row boat abont 18 feet long? A. We are pleased that you
have succeeded so well in making your motor. We have succeeded so well in making your motor. We shall in the near future publish a desc
electric motor adapted to your wnnts.
(2) J. J. E. writes : I have built a dy namo according to description given in Scrientipro Amprican Sopplixient, No. 161, and it works beautit with a small current, and where I run it and magnet zed the field magnets, they put the current from 4 ar lamps as used on the streets, and it ran with uncoont able speed withont heating at all. The Arst few turns of he drive wheel generates a current. I have made an arc amp 18 inches by 6 inches, $1 / 4$ inch carbons. Can you give me an idea how I can make some electric magne
that will cause the apper carbon to be ralsed abont $1 / 4$ nch when the current is tarned on, so as to make a heavy enough to carry the entire carrent, and provided with a hollow cylindrical core or armature, carrying coutch adapled to engage the carbon or the carbon sup
(3) W. C. S. asks: 1. Will the moto used as a dynamo, wound with 16 and 20 wire, develo manch current as the one in Suppleimext, No. 161 when driven by a half horse powerengine? A. Yes. 2,
Can the so-called burglar alarm wire wound with two an ectlon costing 40 cento a pound, do in two of regnlar magnet wire to wind it? A. No. The insulation is too thick. 8. Would a better commutator, like that of the eight light dynamo recently described in
Scinstific Anerican, increase its eflciency as a dymo? A. It would undoubtedly be a better commu the spirit of the article, which calls for a commatator

nade with few tools.

(4) H. H. W. asks : Will increasing the coont of wire on the feld magnet increase the lighting
capacty in number of lampe from dynamo, in No. 000 capacity in number of lampe from dynamo, in No. 000 of the machine by adding two layers of two parallel No 3 wire each, or two layers of No. 12 , which is the equivalent of two No. 18 wires, and, by increasing the size o the wire on the armatare from, 20 to 19, and increasin
he apeed aboat 25 per cent. This modification will en the apeed about 25 per cent. This modification will en able you to ran aboat 18 lamps, bat at
increase in the expenditure of power.
(D) H. A. Z. asks: If an armature can
 g Solextidio AMERican SUPPlizient, No. 161, tha will give a stronger carrent in voits han oc, can it be ture, and what size wire and number of coils? oft iron wire or washere would be best for core? A We cannot advise you to make a dram armature fo our small dynamo. You can increase the voltage by reducing the aize of the wire upon the armatare an eld magnet. The redaction of one or two sizes in the
(6) D. T. G. writes : I anticipate usin he hand power dynamo for a motor, in a canoe. If wind it as directed in the article on making a dram a mature for it, for motor, how much battery power wil in take to run it? A. The hand power machine describe otor without any alteration, except poseibly the re nction of the amount of wire apon the field magnet to boont one half its present quantity. A drum armatar of a diameter suitable for this machine we think would
(7) J. O'D. writes : I am trying to nake the simple electric motor. I would like to kno the coppor wire us used in the telephone will do? A he wire used in the telephone is wo dne for the moto ricanita is 24 inches in diameter and $3 / 1$ of an inch hick. It need not be exactly of this size. Conana SUPPLEMENT, No. 641.
(8) C. K. S. asks if the simple electric capable of ranning a small dynamo of same dimensions, and if this dynamo would be capable of sastaining two 16 candle power 40 volts incandescent lamps. A. Th motor is incapable of running a dynamo of sumicien
aize to sustain two 16 candle power iampe; better use the size to sustain two 16 candie power iampe; better use the
carrent emploged in driving your motor for running our lamp.
(9) W. T. asks : Can we decompose water by a dynaic feet of \mathbf{H} and O, per hour can two rse power engine with a dynamo in favorable cir mastances produce? A. Yes. By asing iron terminal soda, oxygen and hydrogen will be evolved, one ga rom each pole. It is an expensive way of working A 2 horse power engine will give abont 5 cublc inches
of hydrogen and half as much orygen per second.
(10) M. F. D. asks : Is Fordham a part

New York Chy? A. Yes.
(11) H. M. P. writes : We have contructed the electric motor, following as near as possi
le the instructions given in your paper. Being nn ble to get 12 coils on the armatare, we wound it with coils No. 16. The commatator is made of a brase tub inch long and 1 inch diameter, divided in 8 sections ach jar having 1 plate of zinc and 2 plates of gas car on cat roughly in shape, and separated from the zin plates by vertical strips of wood nalled to a horixonta strip that supports the zincs. This battery runs th motor for two or three hoars, but does not give powe noagh for any work. The mowr allalus a higa speed when in the circuit of a small dynamo. How can w the? Is it neceseary to make a new solution ever me we use the motor? You eay to connect the coill inches parallel. What is meant by this? In taking wice the dimensions of motor, should there be 24 coilo n the armatare? Is the power of motor increased by daing to the namber of colles How can 1 monla probably secure better results if you were to connect your battery for "quantity," that is, connect all the zincs together for one pole of the battery, and all the
arbon plates together for the other pole. It was carbon plates together for the other pole. It was the number than reduce it. To connect coils in par ether, so that the current will pase throug both once, instead of passing through one after the other. If you double the diameter of your armature, yo should ase 24 or more coils. The power of a motor
will be increased by adding to the number of collis, but will be increased by adding to the number of colls, bu You cannot readily make your own battery plates. You Fill find it far cheaper and better to purchase them full directions for making battery carbons.
(12) E. C. B. asks : 1. Should the armaare tonch the field magnet in the electric motor de can I make the vulcanized fiber diak for the motor? A You will have to parchase the vulcanized itber from a dealer in electrical supplies. A disk of hard rubber
ill answer the same porpose. 8. Would it be practil will answer the same parpose. 8. Would it be practi-
cable to use a storage battery and dynamo ran by wind hill to run the motor: A. The power of a windmill is 200 unsteady to ran a dynamo direct for changing stor storage battery: A. For information on dynamoo conenit Supplement, No. 600. For information on and 342. 5. How is adhesive tape made, and where can procure it? A. Adbesive tape is made by covering rubber in benzole or turpentine, and wddiag a very pumal percentage of a axed oil to prevent it from drying hard.
6. Where can I procure loadstone? A. From any dealer physical machines or apparatus. 7. How can I tem plange it in oll: hold the ppring iover an apen fre and eat it evenly from end to end notil the oll blazes great deal of practice is required to properly temper spring. In the afrat place, to sccure a proper spring cemper, good spring steel is reqaired. The stee muit be uniformly heated to a cherry red, and care mus e taken to not overheat it. 8. Does an engine take any great deal of heat is What by conduction the expansion? walls of the cylinder. 9. What is the best form for an account book for a mechanic working by the day? A Consalt any work on bookkeeping. 10. Where can
rules for taguring on a bullding? A. Consult Building Table and Eatimate Book," by Brown Price $\$ 1.50$. "Bullders' Gulde and Ratimators' Price
Book," by Hodgson. Price $\& 2$. Or "Architects' and odges. Price $\mathbf{S L}^{1.50 . ~ W h i c h ~ w e ~ c a n ~ s a p p l y . ~}$
(13) F. McF. asks : 1. Would a motor nade one-half the size of one described in March 17 A. If made one-half the size (linear), it would have bu ne-quarter the power of the machine as described. W hink it advisable to adhere to the present proportion except in the matter of winding the armature. You
might nill up the eeclious of the armature ring with No. might ill ap the sectlous of the armature ring with No.
0 wire, about six layers deep. 2. Will four bichromat 0 wire, aboul six layers deep. 2. Win rour ild
 A. The size of the wire on the field magnet may remain the same. 4. The brushes are connected ap by mean f fiexible cords. Please explain. A. The connection of the brusbes are clearly shown in the drawings. The
fexible cords are need to permit of turning the disz fexible cords are used to
(14) G. I. K. asks for the calorific powers nation and coal gas. A. Natual gas varie give per 1000 cabic feet :

Natoral gas. $.650,000$
500,000
ater gas is about the same as coal gas. 1 foot pound $=$ Water gas is about the same as coal gas. 1 Poot poand=
(15) A. K. asks : What substance in the orm or a varnish or paint, or similar covering material ill resist the action of hydroficooric acid: A. Melted eeswax or paraffin may be used as a reaistant varnish,
(16) J. W. I. asks for something to put posts to keep them from rotting in the ground. We ind the spruce posts will only stand three or for ears, when they rot off at the ground. A. Creosote oil is an effectual preservative. Make a small shallow ank into which pour one or two barrels. Place the ende of the posts in the tank, as many as convenient. Allow tem to remain a few hours, then drain off excess of oil and lay by ready. Por sething. If ertion poing into the
such sise that you can burn the porto round, before creosoting, so as to make on
(17) J. T. asks (1) how to make a fire
ed in a forge that will not crack and get loose A. Make the Are bed of your forge of palverized Are brick, which can be done with a hammer. Mix with tick together, ram the bed slightly with a etick o mmer, let it dry, and build a slow are at arst. What is the best way to temper amall fat springs, suc main springs in gung, etc.? A. Small springs so that the water will fow through the bend. Use a ow a heat as will allow of hardening. Much depends apon the quality of steel used as to heat required. To draw temper, dip the spring in lard oil or linseed oil,
and heat over the afre until the oil takes ifre, then dip oll.
(18) Mrs. F. P. writes, concerning how keep jelly from moulding. Gremse a soft paper with jelly, buttered side up, and do not leave the least air abble visible, placing the paper close to the side of the cup all roand, then paste another good paper, not too uifl, over the top of cup; you will
(19) H. A. S.-Kerosene and petroleum re used in burners for cooking purposes, and in 2 mall way for generating steam withoot the steam jet. omake any relisble flame for steaming a boller. It has een tried without pressure on borners to boilers fo trom the fact that they cannot be trusted and are therefore a source of danger. We do not know enough of eparicalar burner you menion to ventare an opinion.
(20) F. W. J. asks : 1. Will the lines of tanding in the temperate zone, both looking in a westerly direction, be converging, diverging, or paralle iness And if so, why? A. They will be parallel. All horizontal lines at right angles with a merldian are parallel for every degree of lautude. The reason is a dian of the earth in in a geometrical plave, and all nes at right angles to a plane are parallel. This has no relation to the dip of the horizon, which will make all nes converge from a meridian or other circle.
(21) L. C. N. asks how to enliven the ashons on a biliard table. A. The cushions of bililiard tabies are usually made of rubber, vulcanized; when
(22) P. C. C. asks (1) a receipt for mak g chloroform liniment. A. Take 1 ounce each chloro orm, ether, apirit of camphor, and laudanum, and ance tinctire of Cayenne pepper. 2. How to make a
bood purifer. Mix $1 / 2$ ounce nuliphite of manganeese blood purifer. Mix $1 /$ ounce rulphite of manganese
with 1 pint of water. Take a wingeglasoful three times

TO DTVERTORE

An experience of forty yeurre, and the preparation of onts at home and abroad, enable us to undens for peaws and practice on both continenta, and to posseces unoqualed facilities for procuring patents everywhere. A ynopsis of the patent laws of the United Statee and all ontemplating the securing of patenta elther pet home or abrood, are invited to write to this ofloe for prices,
which are low. in acoordunce with the times and our ex. ng the busineme. Addreme MUNN \& CO., omoo SCIENTITIC AMRBICAN, 801 Broad

INDEX OF INVENTIONS

or which Letters Patent of the
 United statem were Granted

May 22, 1888,
AND EACH BEARING THAT DATE.
[See note at end of list about coples of theee patente]

Acid esters, manufacture of sallicylic, C. Kolbe.... 3238300 D. J. Brougher.............. 389,10 Belting, maohine, C. A. Schieren..................... 383,273 Billiard marker, coln-act nated, E. C. Jones...... 3838 Boiler feeding attachment. M. P. Janney...... ... 383,227 Boot or shoe, W. F. Kearnee.................... 388,303 Boot or shoe trimming machire, C. H. Trask..... 383,331 Bonts or shoos, detachable sole plate and spire for, Kfigaton \& MoGunalgal \& Reynolds, Jr............ 288,13: Boring bars, zutomatic feed for, 8. A. Bram- baugh... 333,210

 Bottie stopper,Box. See Journal box. Telegraph call box. Brakections, machine for cutting. P. Rodidean.. 383,148
Brake. Wakon brake. Brlck machIne, J. J. Kulage... 388,398
BrIdle attechment, A. Geenen................... 383,170
Bridies, roeette attachment for, J. C. Harpham... 383,122 Bridies, rosette attachment for, J. C. Harpham... 883.122
Buckle, N. Clement................................ 888,102 Buckle or clasp, W. Griee.................................... 28
Bugs, machine for destroying potato, Hooes \&e

Bullding construction, iron, L. 8. Bumington...... 883,170 Burner. See Gas barner.	

Chain outter teeth, machine for making blanks
for, C. H. Dougine........................... ss, Mi
Chaltr. Soe Aduatable chatr. Folding chalr.
Rattan chalr.
Chair, A. D. Marr
Chalk, crayjona etc.,......................... machine for the manufacture
of , 231
Chuck, drill, H. M. Prest.. 383,1248
Cigar bunchling machine, C. Browning........... $\$ 8,342$
Cleaner. See Carpot cleaner.
Cluteh oouplina, G. F Hutchis
Clutch coupling, G. F. Hutchlot
Clutch, friction, H. C. Crowell .

Cork extractor. H. J. Bogrta..........................
orset shaping apparatus, stone $\&$

Cotton cleanink machines, elevator for, R. H.
Wlagina.. 388,

Cultivawor, Motherwe.il a Comi.............................. $\$ 83,188$
Cutter. See Sheot metal scroll cutter.

Derrilak, hay, Hooper \& Hamblen 388,358
Dit. See Serew cutting die.
Diepleg rete,
Doll and phonograph, comblned, W. W. Jacque... 383,117
Door mat, Johnson \& Larsson................. 38,132
389,
Drier. Soe Frult drier.
Drill eocket, P. Grable
Drum, heating, V. D. Ureo 388,289
383831
388,389
ERacalional dovice, J. Dusbane....... 388,
D. Brooks, Jr........ 883.008
Biectric machine, dynamo, J. W. Kaston........ 383,11 :

Electric machive, dynamo, L. N. P. Poninnd...
Electric maching

			Noverfisemen
trophorua，J．D．Culp．．．．．	Penolls，eraser holder	，	
Hog，W．A．8woet．．．．．．．．．．．．．．．．．．．．． 28	Plllow sham holder and litte	．	
Ine．Bee Btoemm ensino．Tra	Plpe conpling and che		
Robia			
		Type writing machine，M．Weiso．．．．．．．．．．．．．．．．．．．．． 388383 Umbrella，A．S．Hubbell．W．．．．．．．．．．．．．．．．．．．．．．． 383.128	
Explosive componid，C．W．Volney ．．．．．．．．．．．．．．．．．383，420	Plane．bench．T．H． Plastic material，b	Umbrellat A．A．Aubbell．．．．．i．．．．．．．．．．．．．．	
fanged，A．G．Meand．． 88,408	Plated wire stock，		，
deorc	Plow．drill c．Her		
Hos．．38，14		Valve，pop afety，A．Huttoriley．．．．．．．．．．．．．．．．．．．．．．sanı	
Fenco，C．C．Baradill．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 88.385			
${ }^{383,93}$	Potson bottle Indic		
${ }_{3 \times 3,2 m}^{23 \times 29}$	Po		
${ }_{383}^{383}$	Pre	Vehicle，tw	
383,125	Prosure	Vehiole wheel．T．Tid	，
Fre slarm circuits，fusible coupliog for electric．	Presure reaulator，fulua，w．．．Mason．．．．．．．．．．．．．．． 283,420	Veloci pede，т．B．Jefrery．．．．．．．．．．．．．．．．．．．．．．．．．． 383,181	
33，371		Ventluating wheol，e，Fox．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 888.217	
Mrearm，magasine，J．P．Lee．．．．．．．．．．．．．．．．．．．．． 388.388		Ventilator，J．W．McKinnon	
	Pump，pp	Wason，A．．Convell	
383		87	
		Walls，anish for plactered，T．Jones ．．．．．．．．．．．．．．\＄8．，wi	
Folding chair．J．F．A．Spaet tal．．．．．．．．．．．．．．．．． 388,255	相．		
See			
Smoke consuming turnace．			
Vance battery oxectant．T．P．Whitiler．．．．．．．．． 838,283	Rellways，		
${ }_{\text {Gas and }}^{\text {vai }}$	Refrigera		
${ }^{388,154}$	Rheost	1	
	${ }_{\text {Ro }}$		
Gobiet	Chada ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 388101		
Gold plated shelli，etc．，plate for Palmer．	Rope tran	Window acreen，H． \mathbf{H} sperer．．．．．．．．．．．．．．．．．．．．．．． 28.155	
Governor，steam engine，J．B．Alliree．．．．．．．．．．．．．38，3， 37			
	composition for converting India，W．B．		
in separa pes while			
		TRADE MARKS．	
Gin，breech－louding．I．P．Dise ．．．．．．．．．．．．．．．．．．． 883.108	Saw rummer，J．P．\＆N．Romer．．．．．．．．．．．．．．．．．．．${ }^{2}$ \％ 1191	Beltug，leather．W．s．Nott	
	288		
${ }^{28883285}$		Corsets，C．A．Griemola．．．．．．．．．．．．．．．．．．．．．15．183	
	Seaming machine，can，G．w．Lore．．．．．．．．．．．．．．．． 388.400	Coreete and other white underwear，Roseothal．	
	288		
		Trading Company ．．．．．．．．．．．．．．．．．．．．．．． 1	
rvester，cotton，O．T．Bugr \square	Seconaary	Cotton fabrics of all kinds，Lencositer Milli．．．．．．．．． 18.5085	
nt for	Separator．		
	Sowing machin		
Hat stretching mac	Sewing machine buttonhole attac		
mater．	Shafts，means for securing pulleys on，w．H．	\pm Darmsteette	
rap		Medical po werc．C．I．W．H．Biker．．．．．．．．．．．．．．．．．．．．．15．514	
or．Bee Goblet holder．Lamp shad	Sheet met		
Pen hoid holder．	Sheet metal blanks，machine for making，C．W． Judson． \qquad		
ok．	Bheet metal folaer，Q．R．Everson．．．．．．．．．．．．．．． 88889		
	sheet	Pa	
Hose couping，H．A．Wahiert．．．．．．．．．．．．．．．．．．．． 8831100	8hoes，machine for treeing，Copeland \＆Crisp．．．．．．383，279 sifter，nsh，J．E．Crosby．．．．．．．．．．．．．．．．．．．．．88，173	Pert	Chuct
draulc elevator，W．H．Marah．．．．．．．．．．．．．．．． 83.282	sif	Plils，linime	－－m monplo fromemo
icator．See office indicator．	Sift		
inden indicator．	${ }_{\text {Slp }}$	neuns	
d	dorrer．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 28.153	tato flour and potato star	
or，W．．E．Dodge．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3831100	Sleigh，w．8．Marble．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．883，401		
n．See Matiron．Moulder＇s drav	Smoke consuming furnace，J．D．Lee．．．．．．．．．．．．．．．．． 28.8280	Read	
nores，reducing，G．M．Westman．．．．．．．．．．．．．．．．． 583,201 ning table，C．Ostrander．．．．．．．．．．．．．．．．．．．．．．．．．．．．888，180	Soldering cylindrical cans machine for，J．S．John－ stone ．．888，501	－	on of these two important engipeeriss
Jack．see Lirting jack．	Sole machine．E．S．Abbott．．．．．．．．．．．．．．．．．．．．．．． 88.	sal	
Jewelry，manufacture of anld plated			
	${ }^{\text {sq }}$		
ture or	Stalin for	soa	
rmal			
Ladder and bench，comblned，step，J．W．Pea－ cock	Stand．See Rallway ewitch stand．		
dder，ex	Station indicator，J．C．Luamig．．．．．．．．．．．．．．．．．．． 88,230	tro	
mp．electric．	Stavee，Jointing machine for barrel，w．Riter．．．． 3×2.299		
Lemppa made holder and ehat	Steam boiner，C．P．M．Marhall．．．．．．．．．．．．．．．．．．．．．． 3×3.18	Ascough ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 15.	
A．Mosee	Steam or other motor，Moehring \＆Pfuger．．．．．．．． 889,4		
he，turain	Stere		
vel，spirit．	Stopper．		PRICTION POLLETS CLDTCHES and ELETATORS
		Tollet application for the skili，L．H．Gordon．．．．．．15，91	
	Store，heating，M．Peckham．．．．．．．．．．．．．．．．．．．．．． 583,14		
	sto		
俍 for weaving loom harness，F．Eok	8to		
sure for futiog elovea，han			
uriok machiae，ralan，rar a jouen ．．．．．．．．．30，	8t		
chantical	T	Brat	
son．． 38820	Tack heading machtne，strip， \mathbf{G} ．W．Copeland．．．．． 383,78		
		Costume，lad	
er，Welss \＆Fraenkel．．．．．．．．．．．．．．．． 38		Costume，Mist，M．B．Ke	
		Door trimming，G．J．Wells．．．．．．．．．．．．．．．．．．．．．．6 18．351	
		Fabric，C．．．Smith ．．．．．．．．．．．．．．．．．．．．18．37 to 18.8 .80	
，	883，200		
${ }_{38}^{388}$	${ }^{6}$	Organ	
Nut lock，Nelman \＆Melhom．．．．．．．．．．．．．．．．．．．．．．．．．． 3883.36	Testing machine．A．V．Abbott．．．．．．．．．．．．．．．．．．．．．．． 88,385		
${ }^{23} \mathbf{3} 162$	Hal appliance，J．T．Kllham．．．．．．．．．．．．．．． 85838	Stove，heating．J．L．Gobellie．．	
	r his		
		on and draming of	
388．123	Tire heater．J．O．8perbeck．．．．．．．．．．．．．．．．．．．．．．． 38,19		
	To	（the	，
Ordance，breen－10ading，C．．Rostel．．．．．．．．．．．．．．． 88,372	383,1		
	相．Biake a stor		
Packinn pulverulent substancees，machine Ior．C．	Trap．See Hostra？．	inventors for any of the inventions named in the fore－	

 A New and Thoroughly Yodern Book.
The Iost Complete and Valuable in any

 ractical Treatise By William T. Brannt. EDittor or
 Price 87.50, by madl, free of postage to any addreese in the

 A Practical Treatise on Animal and Vegetable Fate
 An thustrated elrcular of this book, 8 papes, sto, wrul be

 HENRY CAREY BAIRD \& CO:, S10 Walnut She, Philadelphia, Pa., U. S. A.
 Expose an Immense Heated Surface. Fxtract all the Heat from
the Gases. Furnish Pure
Warm Air in Abundance. Fourteen Yearr of Teet.
Universally satisfactory. Abram Cox Stove Co. Philadelphia and Chicago
QUARANTINE SYSTEM OF LOUISI

 a permanent and cor give
ous reard tin ink of tit

 The DRAPER
 ICE-HOUSE AND COLD ROOM.-BY R

NICKEL PLATING

 \&POLISHING MATERIALS. ZUGKER \& LEVETH CHEMICAL CO NEW YORKUS.A. NICKEL \& Electrop pation OUTFITS.
PATENTS.

A pamphlet sent free of onarge. on application, oon-

 MUNN d CO., Solicitors of Patents,
 PERFETTEWSPAPER

Makers of Victor Cyclos, BOSTON, MASs. Steam! Steam! We build Automatic Eapines from 2 to 200 H. P.
equal to anything in market.
A Large Lot of $\mathbf{2 , 8}$ and 4-H. Engine
With or without boilers, low for cash. B. W. PAYNE \& SONS, Box 15,

 ustable Wing Ventilating Fans, For ventilation of every ae エreary Fans FOR DRYERS. GEO. P W. CLARK, THE MIND CURE.-BY MARY J. FIN-

RUBBER BELTING, PACKING, HOSE. RUBBE VULCANIZED RUBBER FABRICS A170 ETPala RUBBER MATE

RUBBER MATTIMC
NEW YORK BELTING \& PACK

(15 PARK ROW, N. Y.

HOW TO MAKE AN INCUBATOR-

BARREL, KEE, Hogshead,

STAVE MACHINERY
E. \& B. Holmes

Truen Hoos Drtrite. UBFA LO, N. Y.

ARCHIPEMTRLL Boors. Useful, Beautiful, and Cheap.
To any person about to erect a dwelling house or stable, either in the country or city, or an5 bullder wishing to examine the latest and best plans for a church, achool
house. club house, or any other pullic bullding of high or low cost, should procure a complete set of the ARCHIAmerican.
The information these volumes contain renders the work almost indispensable to the archltect and builder,
and to persons about to build for themselves they will and to persons aboot to build for thembelves they will
find the work suggestive and most useful. They contain oolored plates of the elovation, plan, and detail drawings of nimost every class of bullding, with apeoifica-
tion and approxtmate cost. tion and approxlmate cost. Four bound volumes are now ready and may be ob-
talined, by mnill, direct frim the publishers or from any newsdealer. Price, 83.00 a volume. Stitched in paper
covers. Subscription price, per annum, 2.50 . Addrece and remit to MUNN \& CO., Publishers, 361 Broadway, New York.

WELLS BROS, \& CO., OREFMEIELD, Oatting Manhncry and Took for, Machinitot, ART PHOTO ENGRAVNAGCg
 WOOD-ENGRAVING

DRY AIR REFRIGERATING MACHINE.

N. Y. Macc'' Depot, Brige store li, Frankfort St., N.f. tore by H. Metcale. U. BA.A.t. Gellvered in the sibe

A SCIENTIFIC Invention it the Electic ship sip-

8CIENTIFIC BOOK

CATALOQUEX,
 malled iree to any address on application. 361 Broadwny, New York. GOVERNMENT BREEDING FARM FOR

The Scientific A merican

 Publchations for 1888.The prices of the diferent publications are as follows:
RATKS BY MAIL.
The Sclentifc American (weekly), one year . 83.00
The Sclentific American Supplement (weekly), one 8.000
Jear.

 The Soientific American and Supplement
The Scerentific American and Supplement, American and Architects and Build 87.00 The sclentific Amertcan and Architects and Build- 5.00
The Scitition, The Scientific Amertcan. Supplement, and Archi- 9.00
tecta nnd Bulldera Kdition. Proportionate Rates for six Months.
This nctudes postage, which we pay, Remit by postal
or express money order, or daratt to order of

CURE ${ }^{\text {ㅇRNE }}$ DEAF

Wovertisements．

 ment，as the jetter press．Advertisements must be
recelved at puthication ottice as early as Thursday morn－
ing to appear in next issue．

These Hack Saws will cut Iron and Steel be yond all expectation．
Iron working mechanics everywhere must and
will use them．They do the work of tiles at one－ tenth the cost，and in one－tenth the time．One
Patent Nickel－plated Steel frame，and one dozen 8inch Blades，sent by mail，prepaid，on receipt
of $\$ 1.50$ ．Hardware dealers will furnish them at of \＄1．50．Hardware dealers will furnish them at
at the same price．All saws marked with a star，
and bearing our name are fully warranted． MILLERS FALLS CO．，

nis
 Ba Rukn Inila
 54 darapplivequia
GAS ENGINEERING，RECENT PRO

LITTLE WONDERS

J．DICKINSON， 64 Nassau St．，N．Y

T HESE are in every respect strictly first－class highest grade of pigments．They are pre－
pared ready for the brush，in 54 newest shades
and standard colors，and， purity and great covering properties，we offer Paints ever produced．One gallon will cover ad De Price List free by mail f．W．Johns manufacturing company，
 Steam－Pipe and Boiler Coverings，etc．Vulcabeston
Piston Rod Packing Rings，Gaskets，etc． 87 MATDEN LANE，NEW YORK．

95 MILK ST．BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7 th，1876，No．174，465，and January 30th， 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawtul use，and all the consequences thereot，and liable to suit therefor．

MAGNESIA SEGTIONAL STEAM－PIPE AND BOILER COVERIMGS． \rightarrow THE MAGNESIA

THE MAGNESIA

Local Avents．Wan

｜

 curacy and nice tion．
Ing－Machine Co．，Fitehburs，Mases． Simond＇s Roling－Machine co．，

Clumbia BICYCLESS atricrcles TANDEMS

GUARANTEED＝HIGHEST GRADE ILUSTRATED CATALOGUE ：FREE －Pope Mfg．Co． 79 FRANKLIN ST－BOSTON BRNCH \mid I2 WARREN ST．NEW YORK
HOUSES ${ }^{201}$ WABASH AVE．CHICAGO．

THE DUNNING PATENT WROUGHT IRON BOILER．（OTer 13,500 in IIBe．

The Boston Hydraulic Motor Co．

25 Motons
CHURCH ORGANS，
Antic conprites，

 Address
t．，Boston，
 PATENT
JACKET KAKNT KTLES，

SHIP WAVES． BY SIR WILLIAM

SHIELDS \＆BROWN CO．

Steam，Gas and Water Pipes，Drams，Heaters， The Best Non－Conductor of Heat \＆Cold in the World．

established half a century．

HIAVE MANY PATENTED IMPROVEMENTS NOT FOUND IN OTHER MAKES THAT WILL WELL REPAY AN INVESTIGATION BY THOSE WHO DESIRE TO SECURE THE BEST SAFE MARVIN SAFE CO． NEW YORK，PHILADELPHIA， LONDON．ENGLAND．

CHALLENGE EMER ${ }^{\text {R }}$ GRINDNC
 BUFFALO FORGE CO． FORGES BLOWERS EXHAUSTERS

TELESCOPIC OBJECTIVES AND MITR

工玒曰
ฐ́rientific American The Mest Popular Seieutific Paper in the World， Only 83.00 a Year，including Pastage．Weekly． This widely circulnied and splendidly illustrited
paper is pubilished weekly．Every number contains tid teen pages of useful information and a large number or original engravings of new inventions and discoreries， representing Engineering Works，Steam Machiners：
New Inventions，Noveltles in Mechanics，Msonfutar Chemistry，Klectrielty，Telegraphy，Photography，Arebs） tecture，Agriculture，Hortleuiture，Natural Hilstorg，elc Complete List of Patents each week．
Terms of Subscription．－One
TIFIC AMIBRICAN will be sent for one parims the Scies－ postage prepaid，to any subscriber in the United Satates or Canads，on receipt of three dollinra by the pail
lishers；six months， 81.50 ；three months， 11.1 Clubs．－ Special rates for several names，sod to P The safest way to remit is by Postal Order．Drift，or Express Money Oraer．Money carefully placed lavist seldom envelopes，securely sealed，astray，but is at the serrecter＇s risk．Ad．
sold dress a
able to

$$
\begin{aligned}
& \text { MUIVIV \& CO., } \\
& 361 \text { Broadway, New York. }
\end{aligned}
$$ TEET

Scientific American Supplement．
This is a separate and distinct publication from
THE SoIENTIFIC AMERICAN．but is unlform theremith in size，every number containing sixteen larke pages foul
of engravings，many of which are taken from forcign papers，and accompanied with translated descriptioo
THE SCIENTIFIC AMERICAN SUPPLEMENT Is publisben weekily，and includes a very wide ranke of contents． 1
presents the most recent papers by eminent writers in presents the most recent papers by eminent writers in
all the prinoipal departments of science and th
Li Useful Arts，embracing Blology，Geelogy，Aineaw，
Natural History，Geokraphy，A rchsoology．Astronoms Chemistry，Electricity，Light．Heat，Mechanical Engl－
neering．Steam and Railway Engineering，Mining． neering，Steam and Railway Engineering，Mining，
Ship Building，Marine Engineering．Fhotogriphy，
．
 gineering，Agriculture，Horticulture，Domestic Econo－
my，Blography，Medicine，etc．A vast amount of freal my，Biography，Medicine，etc．A vast amomnt of ine
and valuable information obtainable in no lication．
The most important Ensineering Works，Mechanlams，
and Manufactures at home and abrosd are illostrated and described in the SUPPLEMENT．
Price for the SUPPIEMENT for the United sitesin Price for the Supplement for the United States an
Canada，$\$.00$ a year，or one copy of the Scientific A ． ERTOAN and one copy of the SUPPLEMENK，both malled
for one year for $\$ 7.00$ ．Single coples 10 cents．Addrea for one year for 87.00 ．Single coples 10 cents．Addrea
and remit by postal order，express money order，or check， and remit by postal order，express money order，or chec
MUNN \＆Co．， $\mathbf{3 6 1}$ Broadway，N．Y．
Builders Edition.

The Soientifto American，Architects＇an
Builders＇Edition is issued monthly．$\$ 20.50$ a yem BUILDERs＇EDTrion is issued monthly．\＄2．50 a to about two hundred ordinary book pages；forming
large and splendid Magazine ot A rchitecture，rid ly adorned with elegant plates in colors，and with olies ane engravings；illustrating the most interesting er
amples of modern Architectural Construetion an allied subjects．
A special feature is the presentation in each number
of a variety of the latest and best plans for private resl of a variety of the latest and best plans for private resk
dences，city and country，including those of very mod－ eences．city and country，incha expensive．Drawings
erate cost as well as the more
perspective and in color are given，together with fit Plans，Specifleations，Sheets of Details，Estimates，etc．
The elegance and cheapness of this mapnificent with have won for it the Largest Circulation of any Archifectural publication in the world．sold by newsdealers．${ }^{20.50}$ a year．Remit to
MUNN \＆CO．，Publishers，

361 Broadway，New York

PRINTINTE INTKS

[^0]:

