

1, 2, 3. Common mode or trenching frozen snow on the tracke and removing it in blocks. 4. The rotary steam shovel. ©, 7 . The rotary at work. ©. The track cleaned

sixientific gmmerican.

HETABLISHRAD 1846.

MUNN \& CO., Editors and Proprietors.
PUBLISHED WERKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TRRME FOR THE SCIENTIPIC AMERICAN.
Une copy, one year, for the U. S. or Canade...
One copy, alx months, for the U. 8, or Canade
One oopy, one year, to any forelign country belo
Remit by postal or express money order.
A anotralia and New Zealand.
Anatralia and Now Zoaland.-Thoee who deaire to recelve the Colonial bank notes. Addree

The Eclontife American supplemen
ha a diatinot paper from the scientitic AmRRICAN. THE SUPPLEM RNT is isened weekly. Every number contalia 16 ootaro pagea, uniform in sise
 Ing to the Postal Union. Single coplea, 10 centa. Sold by all newedealiors throughcut the councry.

mascored lotter
Anatralla and New Zoaland.-The Scientivic Anterican and
Sopplement will be nent for a little over one year on recolpt of APPLEMENT will be sent

NEW YORK, SATURDAY, MAY 5, 1888

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
INO. 3 논.

For the Wook Ending May 5, 1888.

Price 10 centu. For male by all newsdealers.

1. ABTRONOMY. - On the Appearanoes Precented by the Batelites of Jupteor During Tranolt.-An interesting paper by Mr. RDMUND J. SPITTA on Jovian phenomens.-The probable responalbility of
the ese for wome of the apperances procented................... 11. BiOLOGY.-The Destruction of Rabbits in Anstralia and New for its oure. - The chioken cholera and its relations to animal lifo. \rightarrow illustrations.
III. CHEMISTRY.- Elements ancpMeta-Elements. - An abstrase and intoreating paper by Prof. Crookis on altria-atomic chemitrity.A moal valuabie review of the new deld of work and theory........ H. MARABALL WARD. The Afth portion of this exhanative paper, treating of fungl and decas
V. EI.ECTRICITY.-Bafner \& Laughans' Safoty Crreult Breaker.-A simple and effeotual apparatus, a subatitute for the dangeroas
and uncertain fusblio circoit breaker. -1 lluatration............
 Frocee and Other Electro-dynnmic Phenomena-By Profeneor J.
W. Moors.-The hellx and molenold. loops, magnetic permea. Dility. Ampere's lav, and other branches of the enbject, fully $11-$ tuatratod for mazicic lantern projection. The contionation of this

lecture, of Interest as giving so thorough a treatment of a subject
hitherto neglected...
The Simonds Metal Roliling Machine.-A most remarkable ma-
chine designed to perform the work of the lathe, forpe. etc., by chine designed to perform the work of the lathe, forge. etc.. by
simple rolling. Fund description and detalls of manipulation and
capabilities.-
VII. MISCELLANEOUS.-Note on Restoring the Luster of Silv

VIIL. PHOTOGRAPHY.-Flexible Substitutes for Photographic Plates.-The Vergara film coating machine, the stripping film, an X. TECBNOLOGY,-Framework Knitting.-By W. T. RowLerteA most elaborate and Important paptinger on this subject, with very

PATERT TRICRE-OLD AED NEW

When an inventor receives a patent, his name is im mortalized in the Offcial Gazette, and he immediately becomes the object of attack from a horde of hungry aspirants for money, among whom are ex-clerks, patent brokers, and pretended legal lights of varying degrees. The patentee is deluged with circulars and letters from this class of gentry. Some write to inform him confldentially that his patent is good for nothing; but on receipt of a certain fee they will set it right and make it sound as a silver dollar. Others pleasantly inform the new-fledged inventor they have read his patent with great pleasure, consider it to be a very valuable invention. If properly introduced, much money can be soon realized. The State of Iowa, they say, is worth $\$ 50,000$, Ohio $\$ 45,000$, Pennsylvania $\$ 65,000$, and 80 on All that is necessary is to print some circulars and do a little blowing, which the broker generously offers to do on receipt from the inventor of ten to fifty dollars cash in advance. Another writes to say he has an actua offer of $\$ 10,000$ for the patent for Canada, provided the patent is at once taken, which he will procure on receipt of the necessary money. It is almost needless to suggest these schemes are designed to fleece the in bona flde sale. They depend upon the advance fees ob tained as above for a livelihood. Some of them have thus grown rich and prosperous.
These pretended sellers try to make it appear they are reliable by giving respectable references, and cit names of patentees for whom they purport to have sold patents. One mode of procuring these references is a follows: They write the patentee they have a cus tomer who will buy a county right in Minnesota for $\$ 500$, and pay by deeding 25 acres of land in Arkansas really worth $\$ 1,000$, but the parties are so anxious to ob tain the patent right they are willing to let the land go and take the right, in settlement, provided $\$ 50$ cash is paid and a mortgage is given for $\$ 500$. This done, the patent broker closes the transaction, receives the $\$ 50$ cash, which is the full value of the land, also receives a mortgage for $\$ 500$, together with the patent deed. At the same time the broker is careful to obtain a written certificate from the inventor stating, "I take pleasure in saying that X. Y. Z. \& Co. have sold a patent right
for me, at my price, and on terms satisfactory, and 1 for me, at iny price, and on terms satisfactory, and 1 recommend them," etc. In this way references are secured which make quite an impressive show on circulars, while the inventor is so ashamed of having been 30 easily duped, he keeps mum.
One of the latest tricks is the following: The patentee receives a letter from A. \& B. asking for how much he plies, giving a price, say $\$ 5,000$. The patentee after receives another letter from X. Y. Z., saying that A. \& B. write they have corresponded with you, and now say they have decided to purchase the patent on now say they have decided to purchase the patent on
the terms named, provided the title and claims are found to be correct. To ascertain this, they require that X Y. Z. shall examine and report upon the patent, other wise A. \& B. will not purchase ; that if the patentee wishes to complete the sale, he must remit fifty dollars to pay for the examination, which sa work independent of the sale, and must be independently paid. The inventor sends the money; a report is made adverse to the patentee; no purchase is made; none was ever intended. Such are a few of the adroit schemes now in ogue for swindling "innocent" inventors.
Bills have been introduced in Congress to protect in nocent purchasers of patents, i. e., infringers. Might it not also be well for somebody to formulate a law to protect innocent inventors?

THE BOARD OF HEALTH AND PRIVATE 8TABLEs. Until quite recently, it has been almost the uni versal custom for owners of privatestables in this city to have, outside the walls of the building, a cemented brick vault with a wrought iron cover, for the refuse of the stable. The contents of this vault were carted away once or twice a week. And this was considered not only the most convenient way of disposing of the manure and litter of the stable, but in a sanitary sense the most desirable, as all emanations from the inclosure were dispelled in the open air. But about one year ago our Board of Health (in its wisdom ?) passed a resolu tion requiring the vaults outside of stables to be permanently closed. Notices were accordingly servéd apon the occupants of stables to empty, disinfect, and close the manure vaults, so there shall be no accese to them from the outside. Forming part of this no tice was a clause stating that, failing to comply with the requirements set forth, within five days, legal proceedings would be commenced to enforce the ordinance, the penalty for non-obeyance of which, we have since learned, is $\$ 50$ and costs.
Our health board is undoubtedly one of the best administered departments in the city. Nevertheless, we cannot but think it has made a serlous blunder in pass ing its resolution of March 2, 1887, suppressing the outside manure vanlt of private stables, especially if the measure was adopted for sanitary reasons, and we are
reluctant to believe the commissioners had any other motive.

The result has been that the short time allowed fo closing theee objectionable out of door pits, and pro viding other receptacles inside, without incurring a penalty of $\$ 50$, and probably as much more for costs, induced the occupants of the stables receiving the no tices to scurry about and provide wood bores which mnst be kept inside the walls, without any regard for he comfort, convenience, or health of the occupants. Most private stables in this city have convenien partments for the coachman's family, which is largely composed of young children, whose health must be jeopardized by inhaling, night and day, the steaming, odorous atmosphere which always emanates from the manure and bedding of the stable, but which has heretofore been stored outside the building.
We would recommend the health board, as the warm eason is approaching, to look into the matter, and see if it did not make a mistake in passing the resolution preventing the use of out of door manure pits, and its rigorous enforcement, and if it would not be wise to rescind that ordinance at once and institute in its place as a sanitary measure a resolution requiring the refuse of stables to be deposited outside the walls. And might it not properly go 80 far as to require that it shall be deposited in brick or stone lined vaults, secured with iron doors, as formerly used, and to which plan we have never heard any objection ad vanced?
The following extracts from the Monthly Bulletin for February, issued by the Iowa State Board of Health, bears somewhat on this subject. It may be well for our health board to procure a copy, and read the entire report :
We had an experience a few years ago that led us to the conclusion that stable manure-especially the straw and litter from horse stables-was specially adapted to the reception and propagation of diphtheria germs under favorable circumstances. We were then county physician, and had charge of the county jail. In the south end of the court house, in the basement, the jailer, with several children, lived. East and a little north from the jailer's quarters was located a fountain with a basin perhaps four feet in depth and thirty feet in diameter. This, in the fall, was filled with straw and horse manure to prevent the freezing of the pipe, the water having been turned off. In the latter part of the winter, or early spring, spontaneous heat was generated. Steam and a very offensive odor were generated, and the wind being largely in the east was carried into the living rooms of the jailer and through the cells. After this had continued three or four days, diphtheria of a most fatal and malignant type broke out in the jailer's family. There were two or three deaths, and almost every member of the family was more or less affected. Quite a number of the prisoners also had diphtheritic exudation upon the tonsils, and there was a general condition of debility and prostration. At the time we believed the exhalations from his manure pit were the cause of the sickness, and we have believed it ever since. The Medical News, January 81,1888 , contains, on page 82, an article confirming our opinion. It is as follows: "A writer in the British Medical Journal of December 17, 1887, remarks that the works of Klebs, Ferrand, and others show that straw and manure heaps play a considerable part in propagating diphtheria. An army surgeon has tried to prove by statistics to what extent these statements are reliable. He has collected the following facts: In the French army, diphtheria causes three times as many deaths in cavalry reginents as in the infantry. This affection is most prevalent in the cavalry barracks in Paris, which are in the vicinity of stables belonging to Paris omnibus companies, and near a large depot for manure. In the German army, the same proportion exists, there being three more deaths from diphtheria in the cavalry regiments than in the infantry," etc.

Another Timber Rart.

Mr. Leary, the log raft champion and promoter, is, acording to the Timberman, rapidly consummating his plans to make another attempt to stem the tide with a timber raft from Nova Scotia to New York. His raft is being built in the shape of a ship, with six masts and a large spread of canvas. This is merely a readoption of the principle on which timber rafts were built in Maine half a century ago, and sailed across to England. The voyages were uniformly successful, only one being lost; but the exposure and sufferings of the crew were so severe that this plan of transporting timber was finally abandoned because seamen would not risk their lives across the Atlantic. Mr. Leary expects that his new raft, which will be a solid mass of logs chained and spiked together, in the crude shape of a vessel, will be ready to launch by August.

A Remedy for Bedbugs.
A correspondent writes to the British Medical Journal as follows: "The best remedy for bugs in hospitals is a bug trap made by boring a series of holes in a piece of wood with a gimlet, and placing this under the mattress of each cot. The piece of wood is to be placed periodically into a basin of boiling water. This is an Indian hospital plan.

Engincoring in Japan-the Kioto-Fa Canal Worke.
Since 1869, when the central government was transferred to Tokio, the city (old capital) of Kioto began to decline. In order to recover and to flourish the city, Governor Mr. Kitagaki planned a work of constructing a canal from the lake of Biwa to the city of Kioto, the main objects of which are: 1. Creating an amonnt of mill powers for city manufactures. 2. Opening of a route of canal navigation from lake Biwa (500 sq . miles, 280 ft . above sea, and 30 miles from sea) to Osaka Bay (a commercial center) through Kioto. 3. Irrigation of neighboring rice field. 4. As a source of water works, such as water supply, sanitary works, etc.
Accordingly, an accurate survey of the district began in 1881, and the route and estimate of the canal works were settled in 1883.
In November, 1883, a consulting meeting was held, and upward of sixty chief citizens who were present all agreed to the proposed plan of the governor.
In 1884, city assembly was opened to discuss and In 1884, city aside the matter.
With the agreed decision of the assembly, the governor asked central government for the permission of actual undertaking, the permission of which was given in January, 1885.
Canal works office was accordingly made up, consisting of engineers and clerks. In March, 1885, actua setting out of center line was commenced, the route of which is as follows :
a. Intake-Land reclamation with excavated debris, dredging, break-
water, etc. Quantity of water 300 cu. ft. per mec. Velocity of water about 3 ft . per sec.
b. Open Canal-Wldth $28-19 \mathrm{ft}$. depth of water δ ft., length 502 yards, with a regulating lock at center. Completed.
Tunnad No. 1-Passes through range of Neger
Twnnad No. 1-Passes through range of Nagaray ama. Natare of rocks met with were clay slate, hornstone, sandstone, and quartz porphyry.
It is 14 ft . high, 16 ft . wide, 6 ft . deep. Length 2,612 yarde, with It is 14 ft . high, 16 ft . wide, 6 ft . deep. Length 2,672 yarde, with Shaft sinking; commenced October, 188\%, reached tannel in March 1880. Works Prom weatern entrance commenced March, 1888, and met exactly with heading from the shaft in July, 1888. Works from
eactern entrance commenced September, 1886. At present about 1,950 enotern entrance commenced September, 1986. At present about 1,950 The tnanel is wo
Open Canal-Throngh Yamanhina district with cuttinge and embankments, something like open canAl b, slope from sofo to sfoss. Almost completed.
Twnod No. i-Pasees through a hill at Yamashina, 140 yarde long.
Completed.
f. Open Canall Just like canal d. Length, together with d, is 4,500 yarde.
f. Tunnel No. 3 -Pasees throagh Hino-oka range. Nature of rocke met Tunat No. 3-Pasees throngh Hino-oka range. Nature of rocke met
with are clay slate, sandstone, and diorite. Commenced March, 1887 to be completed April, 1889. Length 912 yards. Section and Alope is seme as tunnel No. 1 .
apen Camal and Dann-Length 800 yards. Already completed. Here the canal is divided into two:

Matn Canal for Navigation. Branch Oanal for Water
Conal Indine-Length 600 yards.
d. Canal Indine-Length 600 yards.
Slope 1 in 15. In construction.

Blope in in 15. In construction.
\qquad
00 ft . Whe, 5 ft deep. Level.
Kamagavoa and Takacegorva Kamaoaroa and Takasegoroa
Junctions-A regulating lock
Just same as the entrance lock io to be constructed here lock this point to Osake. Fom mavigable now.
atal lengh 12000 yarde.
otal work will be
November, 1899 .
 slope from 1 to B is ist.
Of the total estimate, which amounts to $\$ 1,250,000$ (actual amount will be something less), annual estimate of the sum to be spent for coming year is discussed and decided by city assembly, with approval of governor, and actual calculation of past year is then reported to the assembly.
City aesembly consists of twenty representatives, of which seven serve as committee for
works in detail are submitted to them.
Of the total sum of money, about a quarter came from central government, and a third from public property (given from Mikado in past year) of inhabitants of Kioto, and remaining sum, amounting to about five hundred thousand dollars, is to be directly or indirectly imposed, partly upon number of houses, and trade and land taxes of Kioto inhabitants $(250,00$ in number).

Tanabe Sakuro, M.E., Kioto, February, 1888.

A submerged Forent.

During the late violent storms in the Channel the sea washed through a high and hard sand bank near the Isle of St. Malo, France, nearly four meters thick, laying bare a portion of an ancient forest which was
already passing into the condition of coal. This forest already passing into the condition of coal. This forest
at the beginning of our era covered an extensive tract at the beginning of our era covered an extensive tract
of the coast; but with the sinking of the land it became submerged and covered up by the drifting sand. Mont Saint Michel once stood in the middle of it. The forest had quite disappeared by the middle of the tenth century. Occasionaliy, at very iow tides after storms, remains of it are disclosed, just as at present. It is believed that some centuries ago the highest tides rose
about 12 meters above the level of the lowest ebb. about 12 meters above the level of the lowest ebb
Now the high water level is 15.5 meters above the Now the

Coral Reaft and Ielands.

A lecture was recently delivered by Mr. John Murray, at the Royal Institution upon "The Structure, Origin and Distribution of Coral Reefs and Islands." One of the most important of oceanographical facts, the lecturer remarked, is the continual struggle being carried on beneath the sea between vital and chemical orces. The sea water is continually dissolving calcare ous debris, the extent of solution varying with the temperature, pressure, amount of carbonic acid gas held in solution, and other local conditions. On the other hand, coral reefs, although principally formed of dead organisms, are covered externally, especially on the seaward side, with myriads of mouths continually mployed in extracting carbonate of lime from the sea water.
The organisms by which the absorption of this car onate is effected furnished what Mr. Murray termed the most gigantic and remarkable accumulation of rganic life upon the face of the earth." The lecturer therefore pointed out that the best method of arriving an accurate conclusion concerning the vexed ques tion of the formation and distribution of coral reefs
and "atolls" would consist in making an elaborate and "atolls" would consist in making an elaborate
study of the various influences exerted in the struggle of solution versus secretion by all the naturally occurring phenomena. Mr. Murray consequently illustrated bis lecture by a series of photographic slides, recording miscellaneous observations made upon the subject during the expedition of H. M. S. Challenger. In this way he first showed the irregular configuration of the sea bottom, drawing attention to the numerous domeshaped expanses reaching comparatively near to the urface, and also to the geological structure of the slands in midocean, rising like mountain peaks from the ocean bed. Among the more important circum tances tending to control the conditions of pelagic life, the lecturer mentioned the influence of prevalen winds, and also the ever-varying composition of sea water.
Thus the prevalent winds of the tropical oceans cause the warm surface water to be continually driven westward, with the result that the waters on the east ern coasts of continents are considerably warmer and better adapted for the sustenance of polyps than on the western coasts. Coinci quence of, this result, coral is generally found in very and but rarely on the western. The composition of ea water is not only affected by the amount of the constituent salts held in actual solution, which usually bear a mutually constant ratio, but is also considerably modified by the presence or absence of minute calcareous or siliceous organisms. These remain near the surface during the night and in calm weather, but while the sun is hot or rough weather prevails they sink to a depth of from 80 to 100 fathoms. In such enormous numbers do these organisus exist in tropical seas that Mr. Murray computed that a mass of sea water with a superficial area of one square mile and a depth of 100 fathoms would yield 16 tons of carbonate of lime, while he estimated that the total amount held both in uspension and in solution reached the almost inconeivable amount of $628,840,000,000,000$ tons.
As all these organisms sink to the bottom after death, they give rise to enormous calcareous and siliceous deposits, and, therefore, the next point to which the lec urer directed attention was to the nature of deposits on ocean beds at different depths. The objects of most eneral interest found in deposits at great depth are the ear bones of whales, the remains of sharks' teeth, and sponges, which are all usually found in manganese nodules.
The larger bones of the cetaceans, Mr. Murray said, do not appear to resist solvent action so well, while of he sharks' teeth only the dentine generally remains. hells of any size do not appear among the deposits notil much shallower depths are reached, while the from 5 to 50 fathoms, according to the temperature and supply of food. The lecturer remarked that the reef-building animals are not absolutely confined to the few species to which naturalists attribute the formation of coral, while single polyps have been observed to attain a diameter from one-eighth of an inch to a foot or more under favorable conditions. Naturally the polyps on the outside of the reef procure the best food, and this is especially the case on the windward ide of the reef, while the water reaching the interior is much poorer in carbonate of lime, and consequently ossesses less nutrient value and a higher solvent acion.
Based upon these observations, Mr. Murray suggested Mr. Darwin, which, he reminded his hearers, referred the formation of repis the lagoons of atolls, to the enbsidence of the intermediate ocean bed, presumably of volcanic origin, which had also been equally covered with coral. The lecturer, however, said he considered that reef formations start rom a central mass, and, in accordance with the inferences deduced from observation, increase on the exterior
side, owing to the better
becomes more or less dead, and is gradually dissolved away by water reaching it from which a large proportion of the carbonate of lime it is capable of holding in solution has been removed by the living polyps on the exterior of the reef. In this way a continually enlarging hollow circle of reef would be formed, and would account for the regular circular formation of the Minerva and similar reefs. Irregularities might arise. Mr. Murray said, from either currents or prevalent winds providing one part of the reef with a better food upply, and so insuring a faster growth, or else the reef may have been formed by encircling a number of smaller reefs, which would account for the projections of coral in the lagoons in some atolls. By a number of photographs of coral islands Mr. Murray showed that the general appearance and growth of vegetation on these islands are quite compatible with this theory. The exterior portion of the reef is always rough and barren, while the vegetation grows down to the water's edge, and even into the water, on the lagoon side. The coral island naturally does not reach more than four or five feet above the surface of the water, but the height of the island may be increased by volcanic forces raising it up, or by the accumulation of "blown" sand and rock upon it. The lecturer considered that the Bermudas, although attaining an elevation of 200 feet, have been formed from coral islands by the latter method.

The simonde metal Rolling Machino.

In this week's issue of the Supplement we give a very fully illustrated article on this remarkable maohine, which is the invention of Mr. George F. Simonds, of Fitchburg, Mass. We have before us some of the specimens of work done by this machine, and the range already covered is from a shoe calk for lumbermen's boots to a car axle. The most beautifully finished specimens of work accomplished are the steel balls, of which any number of sizes are produced, and these are perfect spheres, and are made with great rapidity, one machine, attended by two workmen, having a capacity of 850 solid two inch steel balls a day. During a recent visit to the works in Fitchburg, Mass., we were shown several of these machines in operation on all sizes of work, the most interesting operations being the rolling of threaded chair screws and solid steel balls. There is practically no waste, as only enough steel is used by the machine to complete the article, and this process bids fair to supplant many where drop forgings were nsed. The experimental works of the company are at Fitehburg. Mass., but plants will shortly be eatablished in all parts of this country.

Gon. Quiney A. Gllimore.

Major-Gen. Quincy A. Gillmore, distinguished as a soldier and civil engineer, died at his home in Brooklyn, on Saturday, April 7, 1888. He was born at Black River, Loraine County, O., February 28, 1825. He entered West Point, and graduated therefrom in 1849, standing high in the class. He was assigned by virtue of his class rank to the corps of engineers. After assisting in the construction of Forts Calhoun and Monroe at Hampton Roads, he returned to West Point, and from 1852 to 1855 acted as assistant instructor in military engineering. He served through the war with high ability, receiving the title of major-general of volunteers for meritorious work done against Charleston with the tenth army corps, then under his command. His other services during the war were numerous. At its conclusion, he accepted the charge of th, division of the South, and after receiving the regular commission of major-general, he resigned in 1865 for the purpose of pursuing the profession of engineer. Both for the government and for corporations and municipalities, his services have been in great demand. His work on cements and mortars is one of the classic books of the profession. Among his more recent engagements may be mentioned his connection with the Kings County Elevated Railroad. This road, destined to do so much for the city of Brooklyn, was on the point of completion at the time of his death. He was the engineer of the company. He was also one of three commissioners appointed to examine the new Croton aqueduct. He leaves a wife and four

Utilization of Drill Holen.

A novel method of conveying power to mines is described in a recent number of the Colliery Engineer as being in use at the Shenandoah mines, Pennsylvania, in which, as the lower level of the Mammoth seam had been, in 1883, nearly worked out, it became advisable to develop new workings. To convey power to these, an 8 in . hole was drilled from the surface to the seam, a depth of 244 ft ., and when finished this hole was lined with a 5 5 in. casing pipe, through which was passed a i in. steel wire rope, transmitting the power required for bauling purposes below. A second borehole, 6 in. in diameter and 118 ft . deep, was also put down, and through it was passed two 2 in. pipes to be used as a speaking tube and for a bell wire, to permit of commanication between the engine house and below ground.

THE CALIGRAPH DROP CABINET DESK.
The old style of stand or table that was formerly used with all type writers was objectionable for several reasons, one of the chief being that in a great many offices the room could not well be spared, and when one of the firm uses the type writer it is a great convenience to have it on the desk, provided it can be readily removed when not in use.

We illustrate herewith a new drop cabinet desk, which the American Writing Machine Co., of Hartford, Conn., have had made for the caligraph. The cut shows the lid thrown back and the caligraph ready fo use. The lid is finished on both sidesalike, and as when open it projects over the side of the desk several inches, it gives almost as much space on top of the desk as when the desk is closed.
When closed the desk is dust-proof, and by means o

THE CALIGRAPH DROP CABIIET DESK.
a spring at the side the caligraph can be held in desired position and at a height that is best adapted to rapid and easy manipulation. There are no chains, weights, springs, or pulleys to get out of order, and the ingenious mechanism, of which we show a sectional view, is so simple that any one can understand it.
These cabinets are finished with or without rail, in any kind of wood desired, and should go with all the caligraphs. Full illustrated circulars will be mailed upon application.

A FEW EYSTET OF TRACHING GEOGRAPHY
In the ordinary method of teaching geography in the schools, maps or charts are employed, either complete with colored subdivisions or in outline; but these map do not always convey a sufficiently clear impression The maps are all made, and there is nothing to firmb impress upon the pupil the proper idea of the geo graphical divisions. Willie M. Bours, of Stockton Cal., has applied for a patent on a map or chart for teaching purposes, in which the general outline of the whole State or country is made, and within this exte rior outline are dots or points so placed that lines drawn through these points will give a general outline of the subdivisions of the country or its con figuration, and from these general outlines the more exact indication of the conflguration may be drawn. The pupil can therefore, draw the various lines indicating the genera shape of the subdivisions, and may afterward make th more exact contour lines therefrom, thus gaining know ledge of the size, proportion, and general appearance which it is impossible to obtain from completed maps Mr. Bours calls this a "lineal system." The objects are to assist the pupil to grasp the territorial relations of the divisions of a country, and to aid the pupil in the practice of this knowledge by giving directions for its application. The use of the system may be exempli fied in a study of the geography of the United States An outline engraving of the United States is shown on this page, with the dots or points indicating the corners or extremities of Boundary lines of the The general outline The general outline only follows the more prominent irregularities of the coast or boundary. The dots are placed in such position that lines drawn from these points or dots will show the general contour of the interual subdivisions of the State. By the aid of these dots the pupil will soon learn to construct all the sub. divisions of the subtry. First in counoutline by drawing approximate straight lines through the dots, and afterward the more minute irregularities of contour may be indicated by dotted lines. For inntance, the line drawn from E to F would indicate the southern bor-
 chould be rade as par allel as possible, to diminish the liability of crossing. A telephone wire coming in contact with an electric light wire may bring about the most serious consequences. The insulation of electric light wires should be of the most thorough description, and the abandonment of old wires should be stopped.
It is true that when the wires are to go under ground, that such action would seem unnecessary. But at pre sent it is impossible to say when the underground system will be in use. It seems far in the future. In the meanwhile, more deaths may occur, and the city remdins covered by this network of absolute danger to life and pro-

TWELVE TON HYDRAULIC WHARF CRAIE.

 Our engraving illustrates the construction of the 12 ton crane made by the Glenfield Company, Kilmar nock, for the Karachi harbor. The crane lifts a load of 12 tons, at a radius of 34 ft ., through a vertical height of 60 ft . and swings through 480 deg . $-11 / 3$ circle. The lifting rams are arranged to lift up to six tons with the smaller and up to twelve tons with both engaged. They have a stroke of 10 ft ., a doubled 1 in . chain being wound in multiple of six to give a lift of 60 ft . The crane has a wheel base of 15 ft . in the direction of the rails, and 12 ft .10 in . from center to center of rails. This gives stability at any horizontal angle of jib, but an additional security is obtained by hooking the pedestal to the wharf girders. The jib and mast are of steel, and the pedestal frame of wrought iron plateswithout them, are given over to marsh and jungle. Northern Ceylon, especially districts which in the early centuries of our era supported large populations, are now, owing to the ruin of the irrigation works of the ancient kings, almost uninhabitable. For some years past the colonial government have steadily directed their efforts to restoring these mighty works, and early in the present year the Kalawewa tank, the largest and most important in Ceylon, was declared completed, the formal opening by the governor taking place on February 22, although the various festivities were spread over several days. The tank was constructed in 460 A. D., to supply the ancient capital of Anuradhapura and the neighborhood, the water being conveyed from it by a canal 54 iniles in length which on its way supplied a largesystem of village tanks
the most important part of the second largest province in the island. When the work of restoration began, the bed of the tank was quite hard and dry. It is now covered with seven square miles of water 20 ft . deep, and supplies towns and villages over an area as great as an English county, and filling tanks belonging to onsiderable towns more than 50 miles away, which in their turn become centers of distribution. With all this, the government of Ceylon in the 19th century is only restoring the work of the government of the fifth century.

state Taxation of Agonte Vold.

In its decision upon the commercial travelers' tax question in the Robbins case, last year, the Supreme Court of the United States held that legislation by

TWELVE TON HYDRAULIC WHARF CRANE

and angles. The construction and arrangement of the parts are so clearly shown by the engraving that further description is unnecessary. The pumping engines and accumulator for the harbor were made and supplied by the Glenfield Company. The engines indicate 160 horse power, and the accumulator ram is 17 in . diameter by 17 ft . stroke.-The Engineer.

Lentoration of a Groat Recorvoir in Ceylon.

In the last week in February, a succession of festivities and ceremonies took place at Kalawewa, in Northern Ceylon, to celebrate the restoration by the government of the great tank at that place. The policy of restoring the ancient and stupendnus irrigation works of Ceglon, though it did not originate with Sir Arthur Gordon, will make'his administration memorable in the history of the island, for these huge reservoirs, which are called "tanks" in India and Ceylon, spread cultivation and fertility over large tracts of country which,
an area of 4,425 acres, or about seven square miles, with a contour of 30 miles. On all sides but one it is surrounded by high ground, from which it is fed. On the remaining side an enormous embankment was constructed, which measures six miles in length, with a breadth of 20 ft . at the top, and an average height of 60 ft . It is formed of large blocks of stone and earth work, and provided with fine spill wall 260 ft . long 200 ft . wide, and about 40 ft . high. Just beyond this wall was the great breach which destroyed the tank at some unknown period. It was $1,000 \mathrm{ft}$. broad, and it is not known whether it was caused by a heavy flood or by an invoder. This is the breach which has just been repaired. A huge masonry wall has been thrown across, the canal has been renewed, and regulating sluices and other works have been provided The whole has taken four years. It is described by Mr Burrows in his "Buried Cities of Ceylon "as the grand est experiment in irrigation ever undertaken in modern Ceylon, for its completion means the resuscitation of

States or municipalities imposing taxes on commercial travelers engaged in interstate commerce was not war ranted by the Constitution, the court taking the ground hat a salesman from one State entering another to so icit orders or negotiate sales by samples or otherwis was engaged in interstate commerce. The question has arisen, in a case decided lately in Memphis, whether agents resident in a State, but acting for non-resident principals, come within the protection of this decision Chancellor Estes, the sitting judge, held that the axing authorities could not tax such residen agents. He took the ground that the substantia question was whether the legislation imposed a burden on interstate commerce or not. He held that a tax on the agent was a burden on interstate commerce, and that it was wholly immaterial where the gent resided, or whether he was a traveler or had an office in the State. This decision, it will be seen, is an extension of the principle laid down ly the Supreme Court in the Robbins case.-Bradstreet's.

A subetitute for Gum Arable

The high price of gum acacia has led Trojanowsky to seek for a substitute. This he believes may be found in the mucilage of flax seed. By boiling the seed with water and precipitating the strained decoction with twice its volume of alcoliol, he obtained a substance which, after drying, consisted of opaque, yellowish-brown irregular fragments, somewhat brittle, but not easily reduced to powder, dissolving in water to a turbid mucilaginous solution. Of this five grains were sufficient to emulsionize an ounce of cod liver oil The large quantity of alcohol required for the precipitation and the difficulty of drying the adhesive pro duct are, however, serious objections to this product The author, therefore, pursmed his study of the subject further, and believes that he has satisfactorily solved the problem.
He still employs flax seed as the source of the mucilage, but by treatment with sulphuric acid he converts this into a guie more resembling acacia. He directs to boil one part of flax seed with eight of dilute sulphuric acid and eight parts of water until the mixture, which at first thickens, becomes quite fluid. The mixture is then strained through muslin, and to the strained fluid is added four times its volume of strong alcohol. The precipitate is collected on a fllter, washed with alcohol, and dried. The alcohol, after neutralizing with chalk may be recovered by distillation, or it may be used for many purposes without distillation. The gum thus ob tained is in the form of translucent, grayish-brown brittle fragments, easily pulverized, and without odor or taste. Thirty grains of this gum will emulsionize an ounce of cod liver oil, and the product resembles exactly that made by the use of acacia.
Another substitute for acacia, made from starch, has been recently patented in Germany by Schumann Two hundred parts of starch are boiled under a pressure of two to three atmospheres with 1,000 parts of water and one part of sulphuric or nitric acid, until the mix ture begins to be fluid. The acid is then neutralized, and the mixture is again treated under a pressure o three to four atmospherus, until the starch is completely converted into gum-like substances. After filtering through animal charcoal the solution is evaporated at a low temperature. The product is a transparent color less substance, which is non-hygroscopic, and has essentially the same useful properties as gum arabic.Pharm. Era.

Detection of Adulteration or Larde.

A correspondent of Science says: The recent examina tions of lards made at the Agricultural Department have resulted in the discovery of a test by which the presence of cotton seed oil may be detected instantly by any dealer or housekeeper. The experiment is a follows: As much lard as can be taken up on the point of a caseknife is placed in a teacup. About a quarter of an ounce of sulphuric acid is poured upon it and thoroughly mixed with it. If the lard is pure, it will coagulate, and there will be a little difficulty in the mixing. If it is adulterated with cotton seed oil and stearine, the mixture will take place immediately and easily. After half a minute one-fourth of an ounce more of sulphuric acid should be poured upon and mixed with it. The whole process thus far should not occupy more than one minute.
The substance thus obtained is poured into a com mon test tube, such as may be bought at any chemist shop for a few pennies. The acid, somewhat colored, will sink to the bottom, and the fatty substance wil remain on top. If the lard thus tested was pure, the color of the latter will be that of a light colored sponge, changing in a minute or 80 to a dark cinnamon color If it has been adulterated with cotton seed oil, the colo at first will be darker, changing immediately to a dark brown. These differences of color are so marked the no experience is required to detect them.
Cards might be printed upon which the colors pro duced by the sulphuric acid reaction for both pure and adulterated lards might be shown; and dealers, by using this test, may prove to their customers in a min ute or two that the lard they are selling is an unadul terated article. The experiment is simple, and the cos of it almost nothing. The novel thing about it is the placing of the mirture in a test tube, in which the acid may become separated from the fatty substance, thus making the test much more decisive and satisfactory This was tirst suggested by Dr. Thomas Taylor, who has extended his experiments to a great number of dif ferent animal and vegetable oils.

Why Require a Seal on Deede?

In a recent address before the Yale Kent Club, at New Haven, the venerable David Dudley Field said - Another of the anomalies which should be eliminated from our legal system is the distinction between sealed and unsealed instruments. Can anybody give a reason for this distinction, except the historic one that seals were used when most men were unable to write ? Now when most men do write, why use the seal? Or if the seal is used, why give it a significance and importance not given to the writing? I find in your revised stanot given to the writing? I find in your revised sta-
tutes a provision that a deed of real property must
have a seal and two witnesses at the least. You cannot transfer to your neighbor a cabin for a hundred dollars without these ceremonials; but you may transfer to him a million dollars' worth of railway stock by a simple signature, without seal or witness. Upon a sealed nstrument you may bring suit within seventeen years; but if the seal is wanting you most sue within six years Is it a reason why these anomalies should be retained in the valley of the Connecticut, because they come from the valley of the Thames?"

AI IMPROTED CLASP.

A simple and effective device to attach to the end of strap or tape for suspending garments, or other uses, is illustrated herewith, and has been patented by Miss Annie Lewis, of 105 West Church St., Galveston, Texas,

LEWI' CLASP. Fig. 1 being a front view, and Fig. 2 a sec tional side view. It has a front and a rear plate, with circular opening, and each provided with toothed jaws, arranged in a semicircle around the opening. The plates are hinged together on a spindle, on which is a coiled spring, for pressing the front and rear plates from each other, and from the rear plate projest lugs, with a fulcrumed locking plate. The jaws of the clasp being open, the parts to be clasped are placed by their teeth, when the between them to be engaged ocking plate is brought downward to the position shown in the illustration, and the jaws are securely locked in position, so that they cannot swing back until the operator lifts the lower part of the locking plate, and turns it upward. It will be seen that the eeth of the clasp embed themselves in the material and make a double grip thereon.

TMPROVED HAND TURNING TOOLS.

The accompanying illustration represents a tool in which the handles are so constructed that they will firmly hold the bar steel as it comes from the manufacturers, without any forging or fitting, and wherein the steel can be turned end for end in the handle, and both ends of the bar be shaped into tools. The handles re made to hold four sizes of steel : No. 1, $1 / 4 \mathrm{in}$. square No. 2, $1 / 4 \times 1 / 8$ in.; No. 3, $3 / 8 \times 1 / 8$ in.; No. 4, $1 / 2 \times 1 / 8$ in The handle is wade of iron, with fiat sides and rounded dges, and is hollow inside, so that it is but little heavier than a wooden handle, and may also be useful for other tools which can be made of corresponding sizes of steel. These tools are made by Messrs. Goodnow \& Wightman, of No. 176 Washington St., Boston Mass., the sinall figures showing the different shapes of

GOODFOW \& WIGHTMANS HAND TUBIIIG TOOLS.
ools to go with the handles, the tools and handles being sold separately, or in sets of twelve handles and welve tools in a neat box.

Phyolcal Training of the Grooke and Remane. The Thursday lecture on March 22, given at the Parkes Museum by Mr. Alexander Murray, the keeper
of the Greek and Roman antiquities of the British of the Greek and Roman antiquities of the British
Museam, was of no ordinary interest. The subject. that of the physical training of the Greeks and Romans, was attractive to the sanitarian, the athlete, and the antiquary, and it is needless to say that it was andled with great ability by the learned lecturer, whose discourse afforded that evidence of research and iterary culture which was to be expected from one whose reputation is so well established. "The Greek notion of physical training," we are told, "was associ ated in one of the oldest Greek legends with the prac-
tice of medicine. The Centaur Cheiron not only in structed the young Achilles and others in hodily exercise, but he also taught them at least as much of surgery as to make them able to attend to such wounds and bruises as were likely to arise in the rough life they were to lead." Even Apollo learned something of medicine from the Centaur Cheiron, and Apollo was one of the gods of the Greek gymnasia, of which, howver, Hermes was the principal deity.
According to the old poet Simonides, the two things which the Greeks desired most were to be healthy and
" is perfectly true as to health, and would be equally true as to beanty if we used the word in the same strict sense as did the Greeks. They applied it to a beanty which was, or seemed to be, the result of careful physi cal training. And if you wish to see what they re garded as the perfection of beauty of this kind, you have only to go to the Elgin room of the British Museum and observe the frieze of the Parthenon." The sculptor had anticipated Plato in assigning to horsemanship the first place in physical training, and the frieze might be considered as a vast glorification of youth. From this point of view, as well as from the artistic one, the frieze of the Parthenon is unique, and it stands alone as a vast conception devoted to the glorification of youth made beautiful by healthy exercises. It might be suggested that there was too much uniformity in the type of the youths represented in the frieze of the Parthenon, but this objection is the result of tastes formed in the bustle and variety of modern life, and whenever there is a continuous application of many persons to oue pursuit, uniforinity of appearance is to be expected. The great object of the physical training of the Gecte. The ny to prect of the phy youther of the Greeks was to prepare boys and youths for the military profesion, and also to insure health for those Who were to devote the the ture. The games which the children played were very much the same as those in vogue at the present day. Balls, hoops, seesaw, knuckle bones, tug of war, blind man's buff, and leap frog were all popular with the Grecian children, and, like the modern childern, they built toy houses and modeled boats and beasts.
According to Galen, boys of seven were allowed to commence horsemanship, and soon after this the youths entered at the public gymnasia or palæstra, where properly regulated exercises were carried out under the direction of a gymnasiarch. In the public gymasia reat and implicit obedience was exacted, and mach care was used to proportion the exercises to the age and strength of the learners, and to insure that competitors were selected with due regard to these two conditions. Mr. Murray reviewed the exercises in detail, and dealt in the first place with foot races, speed of foot being of great importance, not only in war, but in carrying messages in a country where roads were bad. These races were mostly for short distances, although it wås customary to make the course "heavy" by laying deep sand upon it, and occasionally races in full armor were ordained in order to try severely both strength and endurance. Many Grecian runners were possessed of enormous "staying" power, the most notable example perhaps being found in Pheidippides who carried the news of the approach of the Persians from Athens to Sparta (a distance of 112 miles over mountain paths) in two days. Wrestling and boxing, and the combination of these two exercises in the Pankration," was very popular, and it was mentioned that those who took part in these contests had their bodies oiled and then sprinkled with fine sand, a pro ceeding the object of which it is difficult to understand. A common form of contest was found in the Pent thlon, in which the competitors met in a series of five exercises viz running leaping wreatling disk and spear throwing. The most popular form of leaping spear throwing. The most popular form of leaping
was the long jump, in which the athlete used a spring board and carried in his hand two iron "dumb bells," called halteres. The Romans afford a great contrast to the Greeks in the inatter of exercise. With the Romans the great institution was the bath, combined with so much exercise only as was sufficient to keep the body in training. The luxurious Romans delighted, in the intervals of campaigns, to be amused, to luxnriate in the bath and watch the gladiatorial and other spectacles in the amphitheaters. Rome was the great center for professional athletes, while Greece was the home of the gentleman awateur.-Lancet.

The King of the Belgians recently sent to the Sultan o Morocco a present of a locomotive and a Pullman car. The difficulty is that there is no railway in Mo rocco. A contemporary suggests that probably the first contractor who got there would have the job of making a small line ; but there are several obstacles in the way. The secretary of the treasury never pays bills except when he has money in hand, and, as a rule he never has any. Moreover, when he is impecunious, he has the bastinado and the bowstring quite handy for the contractors. Under all circumstances, we do no suppose that many railways will be made in Moroce just yet awhile.

From our foreign exchanger we learn that the pre parations for the Barcelons exhibition are progressing satisfactorily, and it seems likely to be a great success. Not only Spanish and colonial, but also foreign ex hibitors, are so numerous, that fresh building space has been added to the original plan, for which the gov ernment has contributed one hundred thousand pounds. Barcelona is preparing splendid festivities including bull fights, regattas, races, shows, theatricals, concerts, and literary and other congresses, to give foreigners and natives a favorable impression o the most prosperous manufacturing and commercial sity in the kingdom.

May 5, 1888.1
THE ROTABY sTEAY 8ENW EROVEL
In our firat page illustrations we show the old and the new ways of removing snow from railway tracks. The has been practically before the public for only a short time, a successful trial of the first machine built in this country having been illustrated in the Scientific American of May 23, 1885. Perhaps the most common of the old methods consisted in the use of a snow plow, of which there are many forms, attached to the front of a heavy locomotive, the latter itself being sometimes pushed by other locomotives. With all the power it was possible to apply in this way, however, the progress was slow, failures were frequent, and the plow and locomotives would often have to be dug out by gangs of laborers. Many engines have also been wrecked and lives lost by attempting to "buck" a way through snow which had become packed in a cut. The engines snow which had beocme packed in a cut. The engines
would sometimes attack such an obstacle at a speed of would sometimes attack such an obstacle at a speed of
fifty miles an hour, so that it has come to be well understood that there was no more dangerous work in the railroad business than that of operating snow plows.
As being better than hand shoveling in such case where the snow is sufficiently packed and frozen, a method has been adopted of trenching and cutting out blocks for a sufficient width over the line of track, theee blocks to be hauled away by a locomotive to a point where they can be conveniently deposited out of the way. This manner of working is shown in the three views at the top:of the page. Pieces of wood are placed r edges of the block, as cut out, to af ford a bearing for the lower rope, so that it will not cut
through when subjected to the strain of detaching the through when subjected to the strain of detaching the
blook from its frozen bedding on the track and ties. Our views are from photographs, showing the cutting and drawing out of these blocks on the Southern Minnesota division of the Chicago, Milwaukes \& St. Paul Railway, and on the Winona \& St. Peter division of the Chicago \& Northwestern Railway.
But by far the most satisfactory method yet devised of accomplishing this work is found in the rotary steam snow shovel, a good idea of the construction of which will be obtained from Fig. 4, while Figs. 5 and 7 show the machine at work.
In the center of the front cylindrical casing of the machine, and projecting slightly into its flaring-edged square hood, is the cone-shaped end of the hub of a wheel which carries the knives and fans. This wheel is mounted on the outer end of a longitudinally extending steel shaft, connected by means of bevel gearing to a cross shaft, actuated by a pair of 17×22 inch horizontal steam cylinders. The hub is made in two parts, its inner end carrying a circular plate, near the inner wall of the casing, but not touching it, while spokes extend a short distance from the front end of the hub to a ring, and radial fans or wings extend from the front edges of this ring to the inner disk, to which they are secured. Midway between each two successive fans is a radial shaft or rod, extending from the inner ring, carried by the shorter spokes from the hub, to an outer to which the fans are secured. On each of these radial shafts a knife is held to swing, each knife being made with two wings extending at angles to each other, the edges of the knife wings extending radially in line with their respective fans, and resting upon them. Thus, when the cutting edge of one wing of a knife rests against its fan, the other cutting edge extends a suitable distance therefrom to form an opening into the interior of the wheel. By a similar construction, radial shafts or rods extend from the hub to the inner ring, between the spokes, carrying similar, but necessarily sualler, knives and fans, and a less number of them, to operate in the same way.
According as the main operating shaft is rotated, the respective sets of knives and wings open or close in one direction or the other, the snow in either case being acted upon alike, passing into the openings provided, and being forced by the fans out of the spout. The latter is provided with a reversible hood, by which the direction in which the snow is thrown may be changed from one side of the track to the other, or this may be accomplished by reversing the engines, as it would evidently be inexpedient to force the snow in a direction against the wind, and there are many places where it is decidedly advantageous to direct it one way instead of another

The machine, with the engines and boiler, the latter having more heating surface and a larger fire box than is usual on locomotives, are all mociated on an eight wheeled car, under the charge of a pilot who can, by signals, communicate with the engineers on the rotary and the pushing engines. and by a hand wheel can alter the position of the hood that directs the stream of snow to either side. An ice breaker in front of the front wheels of the front truck is so attached as to maintain a fixed position relative to the wheels, about half an inch above the top of the rail. A fianger is also attached in front of the rear wheels of the front truck, and there are devices by which both the flanger and ice breaker can be instantly raised clear of the track by
the pushing of a lever by the pilot, or they will beautothe pushing of a lever by the pilot, or they will beauto-
matically raised in meoting any unusuad obstruction,
as in passing switahes, etc. These devices effectively supplement the work of the shovel, and are designed to clean the rails as effectually as it could be done by hand with picks, shovels, and brushes. The machine has a weight of some fifty tons, or about that of an
ordinary locomotive, and is pushed into the snow by one or two locomotives, as may be desired.
It is obvious that, on account of the great variety of obstacles the machine is designed to encounter, there can be no rule as to the speed of rotation of the wheel carrying the knives and fans. Its action is that of a blower as well as a cutter, and in long sections of track presenting but little difficulty the conditions would be very different from those presented in special places on the line. But this is a matter directly under the control of the pilot, who can regulate the speed of the ma chine, as well as that of the pushing engines, according to the obstacles presented during every foot of pro gress. How important this is will be better appreciated,
perhaps, by noting the amount and kind of work done by one of these wachines last winter, as compared with previous work of this kind, from a report recently published in the Minneapolis Tribune:
"One of the rotaries started out in Dakota, in the middle of January, after the terrible storm, and while the thermometer was still 30 degrees below zero. Sidings covered with from 1 to 3 feet of snow were first cleared the rotary being pushed by one Americau type engine The next operation was to open the northern division from Jamestown to Minneawaakon. The first obsta cle encountered was a cut filled with 12 feet of solid snow, packed and frozen hard for a distance of abut 25 feet, while for 100 feet more the drift varied in depth from 1 to 5 feet. The rotary was pushed by two 18 by 24 engines, hat stalled after penetrating 5 feet into the deep cut. On backing out it was found that the face of the drift on which the rotary cutters had been working resembled polished granite in shine and consistency. The sides of the face were then shoveled down, and the rotary, after repeated attacks, worked through the obstruction. An officer of the company who witnessed the first two trials returned to Jamestown and reported that they would not get to Minnea waukon in six weeks. As many as nine snow plows be longing to the road having been smashed up in trying to open the same cat in the previous spring, it did no seenn unlikely that the new machine would also fail
But within three hours the cut was opened, and an other cut 500 feet long and varying from 2 to 8 fee deep had also been cleared and an abandoned and buried train had been disinterred. This train was taken back to Jamestown, and the rotary started again next morning, making an advance of 46 miles during the block Iwo cuts, 600 and 800 feet long respectively out. In the snow from 2 to 8 feet deep, were solid and frozen hard. But, notwithstanding this, the worst cut was opened in 50 minutes. On a previous occasion, when this cut was opened by an ordinary snow plow, 85 shovelers were employed, and 11 hours were consumed in opening this cut. It is found that where the snow is not hard packed-of the consistency where
an ox can walk on it without sinking in more than 2 an ox can walk on it without sinking in more than 2
inches-the rotary will clear out snow 10 to 12 feet inches-the rotary will clear out snow 10 to 12 feet
deep while moving two or three miles an hour," deep while moving two or three miles an hour.
The operation of the machine is described as being a marvelous sight. Such is the tremendous centrifugal force of the wheel, that the snow is discharged in the form of a great stream or cloud, and hurled to a distance of from one hundred to three hundred feet from the track. An army of ten thousand men could not begin to do the work of a single

This machine has formed the

This machine has formed the subject of several pat ats granted to Mr. Edward Leslie, of Orangeville Ontario, Canada, and is constructgd for the Rotary Steam Snow Shovel Company by the Cooke Locomo-
tive Works, of Paterson, N. J. It has been adopted by all the transcontinental lines, the Canadian Pacitic having bought the right for their whole system and intending to manufacture the machine in their own shops.

"Almadina" = New Gmm.

Under the various names of "almadina," "potato gum," "euphorbia gum," or, more shortly, "E. G.," a peculiar resin of African origin has been of late years kets in steadily increasing quantities. Hitherto its chief if not its only use in the arts has been as a "substitute" for or addition to India rubber, and we learn it is not only much cheaper than caoutchouc, but actually improves the latter when added to it in cer-
tain proportions. Among the advantages over pure tain proportions. Among the advantages over pure
caoutchouo which mixtures thereof with "E. G." are said to possess, not the least are diminished porosity and greater durability.

Messrs. D. F. Dunn \& Co. (not B. F. Dunn \& Co.), of Columbus, Ohio, manufacture the patented valve dresser noticed in our issue of March 17, and they write us that they are already reeeiving many inquiries us that

Garrespondence.

The Uses of eijcerine.

To the Editor of the Scientific American
Few people realize the importance of the uses of pure commercial glycerine, and how it can be used and made available for purposes where no substitute is found that will take its place; and herein, Mr. Editor; if you will allow me space in your well-read journal to speak of its utility, no doubt many of your readers will find an opportunity to thank you. As a dressing for ladies shoes nothing equals it, making the leather soft and pliable without soiling the garments in contact. Where the feet sweat, burnt alum and glycerine-one of former to two of the latter-rubbed on the feet at night and a light or open sock worn, the feet washed in the morn ing with tepid water, will keep them during the day free from odor, so disagreeable to those persons who are sufferers.
For bunions and corns Cannabis indicus and glycerine equal parts, painted on the bunion or corn and bound equal parts, painted on the bunion or corn and bound
around with Canton flannel, adding a few drops of the around with Canton flannel, adding a few drops of the
liquid to the flannel where it comes in contact with the affected parts, will soon restore to health.
As a face lotion, oatmeal made in a paste with gly cerine 2 parts, water 1 part, and applied to the face at night, with a mask worn over, will give in a short time, if faithfully pursued, a youthful appearance to the kin.
As a dressing in the bath, 2 quarts of water with 2 ances of glycerine, scented with rose, which will im part a final freshness and delicacy to the skin
In severe paroxysms in coughing, either in coughs, colds, or consumptives, one or two tablespoonfuls of pure glycerine in pure rye whisky or hot rich cream will afford almost immediate relief; and to the consumptive a panacea is found by daily use of glycerine internally, with the proportion of 1 part of powdered willow charcoal and 2 parts of pure glycerine.
For diseased and inflamed gums, 2 parts of golden seal, 1 part of powdered burnt alum, and 2 parts of glycerine, made in a paste and rubbed on the gumsand around the teeth at night, strengthens and restores the gums to health, provided no tartar is present to cause the disease, which must be removed first before applying.
And finally, Mr. Editor, to the epicure who relishes a nice breakfast dish of fried fish, he will find "a feast or'the gods" by frying the fish in glycerine to a brown adding a small sprig of parsley when nearly done
J. S. Charles, D.D.s.

Omaha, Neb.

Long Diatance Tolegraphy

The recently announced claim of a telegraphic circuit of over six thousand miles, surpassing all previous experiments, is somewhat misleading. Many efforts at ong circuit work have occurred during the past few years, the distance varying from 4,600 to 8,100 miles.
It is a matter of considerable pride to the old operaors of the Western Union Telegraph Company in San Francisco, says the San Francisco $A / t a$, that the feat of transmitting clock signals through 7,200 miles of line and communicating directly through that same line has never been equaled. The occasion of this feat was the telegraphic determination of the difference of lougitude in time between the United States coast survey station in San Francisco and the observatory of the Harvard University at Cambridge, in the year 1869. In order to determine the time of transmission of a signal either from the clock or from the operator's key over he given length of the line of 3,600 miles, three diferent methods were devised. One of these was original with Prof. Aeorge Davidson, who had charge of the bservations. Through the liberality of the management of the Western Union Telegraph Company, a double circuit of line was looped at Cambridge, so that there extended from the San Francisco observatory 3,600 miles to Cainbridge, and the return from Cambridge by a somewhat different route of nearly equal length. The two "earths" were under the San Francisco observatory, distant from each other not more than ten feet. The line was first opened by an operator n the observatory, and when the sast connection was rade at Cambridge, the San Francisco operator was considersbly astonished to get his own message back ithin one second of time.
Then the astronomical break circuit clock was thrown nto line, and made its first break on a pen recording apon a revolving cylinder of paper in the San Francisco observatory, and after this break had traversed the ine to Cambridge, it returned and made a break upon asecond pen moving parallel with the former, in about eight-tenths of a second of time. This was continued every second for several minutes, and was repeated upon several nights, and when one of the twelve batteries in this long circuit was removed, the wave length time was reduced to only sixty-five hundredths of a second. Communication was, of course, carried on at the same rate of speed. This feat over a line 7,200 miles in length has been unrivaled up to the present time, both

DANIEL YCABTMEY-THE GREAT PRODIGY OF rasiory.

by J. h. crineition.
Daniel McCartney was born in Westmoreland County, Pennsylvania, September 10, 1817. His father was of Irish descent and his mother German.
I first met him in Delaware, Ohio, in 1871. Notice his coming and what he would do was given in the papers several days before he arrived.
The meeting was in a public hall. The president and several professors and many students of the Ohio Wesleyan University and also a few citizen were present. Mr. O. C. Brown, of Cardington, O. stated what he could do, and introfuced him and conducted the examination.
Mr. S. Moore, of the First National bank, was prepared with calendars and other documents to test his claims. Other gentlemen were also pre test his claims. Other gentlemen were also pre-
pared in various ways to decide the truth of Mr. pared in various wa
Mr. McCartney was then fifty-four years old, of medium height, rather heavy set, with rather large, well formed head : square, large, high fore head; complexion pale. Countenance sober, dig nitied, benevolent. Eyes defective, not being able to see clearly, and yet not entirely blind.
His speech was deliberate and confident, using but few words. His dress was cheap, but decent. The audience was requested to ask any questions they chose. As the examination went on, we soon found that everything that had passed before his mind for forty years was reinembered. I can only refer to a few things that occurred in the two hours of most varied questioning. He could tel the day of the week (by having the year and day of the month) back for forty years, and tell it in stantly. He could tell the dates of most importan events from his boyhood. Could give the state of the weather, forenoon and afternoon, for forty years with out mistake.
One gentleman asked for the day of the week about fifteen or sixteen years before. McCartney replied Fri day. No, sald the gentleman, that is wrong. That was my wedding day, and it was Thursday. Now, said Mr. Brown, can any gentleman in the hall tell who is right. Yes, said Mr. Moore; and in a minute or two from his old calendar he found that McCartney was right. During the evening one or two other questions were raised as to the day of the week, but by the old calendar McCartney was right every time.
He was a complete concordance of the New Testament and most of the Old Testament. Prof. Hoyt (Hebrew professor) read a large number of pa
from the Scriptures, till the audience were entirely satisfied that he knew where every passage was.
He could tell what he was doing every day from his boyhood. President Merick having prepared himself on several dates, asked him what he was doing on a certain day, uaming the time, several years before. "Looking at the elipse," said he
His multiplication table went up into millions. He could give the cube root of numbers up to millions almost instantly. One of the numbers given was ten figures deep, another was eleven figures deep.
He could raise any number ander forty to the sixth power instantly. He could raise any number under 100 to the sixth power in ten or fifteen minutes.
He was given the number 89 , which is a prime number and more difficult; but he raised it in a few minutes ($496,981,200,961$). He could instantly give the minutes and seconds of periods of time from the Mosaic creation, and could give the feet or inches of sidereal distances. Prof. H. M. Perkins (professor of astronomy) asked him a question. McCartney said be had never been given such a question, but he would see. What was very remarkable was, he never asked the professor to state it again, although it was wost complicated. In about three minutes he said it came out with a fraction, and the fraction was one-eighth. In a few minates more he told off the long line of figures.
A gentleman wrote five or six columns of figures, seven or eight deep, on the blackboard and read them to him. He could immediately repeat them backward or forward; and being asked the next day if he still remembered them, he told them off again without a mistake.
At the close of the examination, several quesions of another nature were asked. Some of them were of a nature not needing any test, for we were perfectly satisfled of the accuracy of all his statements. His powers of memory wer noticed when five or six years old, and he could renuenber a great number of little events from that
early age. His full power of memory was attained early age. His full power of memory was attained
at the age of about sixteen. He knew two hundred hymns, and could sing one hundred and fifty tunes. He could remember what he ate for breakfast, dinner
and supper, for more than forty years. He learned nothing by reading, but by hearing. His sight was so defective, especially in early life, that be could not read, except very coarse print, and that very slowly, and with great difficulty. He was always poor, and his relatives, with whom he lived, were poor. The
question has often been raised why a man with such

DAIIEL MOCARTIET.
prodigions memory did not prosper in some business. Doubtless the principal cause of this was his deficient eyesight. Several attempts were made to bring him before the public, but with very little success. At one time, in 1871, he appeared in the Opera Honse, Columbus, Ohio, when members of the legislature, teachers, and professional men were present. At that neeting he answered questions similar to those above stated, and gave entire satisfaction.
He retained his memory to the time of his death. He was in possession of most all these vast powers for about sixty years. When answering questions about certain things, President Merick asked him how he did it, or if he had any particular mental process or rule. He said, "I just know it." The answers to some questions, however, showed that it was not all entire memory, for they required some reasoning
table of logarithms. These deductions, that cost Napier long and tedious hours of figuring, McCartney could solve at once without pencil or paper, and without mistake.
Daniel McCartney was supported for the last few years of his life at the county farm, near Muscatine wa, and died in that place, November 15, 1887, aged a little over 70 years.

THE SUPRRB BIRD OF PARADIBE.

(Lophorina, Parotia,

The paradise birds attract attention less by the brilliance than by the extracrdinary development of their plumes.
From the Arfak range we had obtained several species, which at a little distance look a uniform black. Two of these-Lophorina and Parotiaare furnished with appendages which are, perhaps, as striking as any with which long ages of sexual selection have provided the birds of this group, but until the specimen is taken up in the hand they may pass unnoticed. In the former an immense plume of feathers springs from the occipital region, and reaches to the end of the tail. It is of the deepest velvety black, shot in some lights with oily-green reflections, and with the outermost feathers slightly recurved toward the tip. The top of the head is covered with scale-like feathers of metallic green, and a shield of the same color and nature, but of a still brighter shade adorns the breast. The rest of the body shade, all black any further rnament or color is dull black. Any further ornament or color would be out of place, and one feels that the fully deserves its appellation of the tiful creature fully dese
superb bird of paradise.
Almost more beautiful still is Parotia sexpennis, the six-shafted bird of paradise, which Signor D'Albertis was the first European to observe in its native jungle. The curious plumes, which give the bird is specific name, lie so close to the neck in the dried skin as to be almost invisible. They consist of three slender fila. ments springing from each side of the head, and terminated by a spatulate expansion. A bar of vivid steelygreen across the vertex, and a peculiar tuft of metallic silver at the base of the beak-a color which, so far as I know, is unique in the bird world-completes the I know, is unique in the bird world-completes the
head decoration. Like Lophorina, the rest of the head decoration. Like Lophorina, the rest of the
plumage is almost entirely black, except at the upper plumage is almost entirely black, except at the upper
part of the breast, which is furnished with a collar of green and bronze feathers.
The impossibility of giving all the featares of this curious bird in a single illustration has led to its representation in a position which is quite possibly ineorrect. As far as could be gathered from the natives, the enormous crest, as it appears displayed during the courtship of the female, is spread more widely, in the shape of a fan opened out to its fullest extent, and the pectoral shield being expanded in a similar manner, the head of the bird forms the center of an irregular circle of feathers of velvety black and emerald, which completely hides the rest of the body when viewed from in front.
The tuft of silvery feathers on the forehead can be either erected, as represented in the engraving, or depressed flat against the skull, where it forms a triangle of regular shape with the apex forward.-Dr. F. H. H. Guillemard, Cruise of the Marchesa.

A Now Dynamite Gun.
The ordnance department of the army has received from Mr. Hiram Maxim, of England, received from Mr. Hiram Maxim, of England, the description of a new dynamite gun wrojected, in which he proposes to introduce a new.and interesting method of expelling the projectiles from the weapon, and by which he hopes to render the use of dynamite in projectiles practicable in heavy guns. He retains the pneumatic principle which has been utilized with so much success by Zalinski, but instead of using compressed air alone, as Zalinski h:s done, he mixes with this compressed air a quantity of volatile hydrocarbon, such as the vapor of gasoline. This compressed mixture is introduced behind the projectile and the pressure is applied to start it forward in the chamber of the gun. After it has moved a certain distance the projectile itself uncovers a detonating fuse and an explosion then occurs, the air furnishing the oxygen for the explosion and the pressure being increased about eight times. He claims that by this method his initial pressure does not need to be more than half as great as that used by Zalinski. He does not have to use so much compressed air. nor does he require that the barrel of his gun shall be of such great length. His highest pressure is about 4,000 pounds to the inch, the first pressure is about 4,000 pounds to the inch, the first pressure being not more than one-tenth of that. His detonator is a very ingenious affair, and is inserted through a small circular opening from the interior of the gun. The ordnance offlcers are much interested in this new form of the dynamite gun.-Army and Navy Register.

THE GRRIAN CORVETTE ORUIBRR IRERE

 The corvette Irene belongs to a new type of vessel not heretofore used in the German navy, being pro vided with a strong, arched armor deck lying far be low the water line. The lines of the Irene are beautiful, and its dimensions are as follows: The greatest length about 340 feet. greatest breadth about 46 feet, and the depth 25 feet. Its displacement is about 4,300 tons.The vessel is driven by two screws, each having a diameter of 16 feet, and so placed as to be protected by the hull of the vessel. The engines for operating these screws can develop over 8,000 indicated horse power piving the vessel a speed of $181 /$ tnots an hour pach engine is placed in a separate watertight comEach engine is placed in a separate watertight com-
partment. The coal bunkers have a capacity of 900 partin
The armament consists of fourteen gans, six of which are of the newest construction, being mounted on center pivots in projecting turrets. Four of these guns are so arranged that they can be fired in a line parallel to the line of the keel, or so that the line of fire will cross the extended middle line of the vessel.

Itrorgelatinc Experimente

We learn from the Royal Eingineers' Journal for April that "some very interesting experiments have re cently been made in firing high explosive shells out of ordinary field guns at the Dardanelles, by Mr. Frederick H. Snyder. The experiments were conducted by the Turkish artillery, under the personal superintendence of General Asif Pasha, inspector-general of fortifications, and under the supervision of Mr. Snyder. The gun used was an American breech loading howitzer of 15 centimeters diameter. The explosive for the shells was prepared nitro-gelatine. The target was nade of 12 iron plates welded together, of a total thickness of 12 inches, with very strong backing made of oak beams, of a thickness of 12 inches by 14 inches. The target weighed 20 tons, and was placed at a dis tance of 200 yards from the gun platform. The first two shots missed the target, but the third struck it, and so completely wrecked both the iron target and the wooden backing and supports that it could not be fired at again. Photographs have been forwarded showing the effect of the shot which struck the target. Mr. Snyder has proved effectually that shells charged
of gunpowder is measured. The mode of loading the gun is Mr. Snyder's secret, and prevents the shock caused by the gunpowder, which would shatter the gan to pieces."-Broad Arrow.

The Chinese Almanac.

The great value which the Chinese attach to their almanac is shown in many ways. Recently the Chinese residents at Lhassa, in Tibet, implored the Emperor to cause arrangements to be made which would enable them to receive their copies of the almanac at the earliest possible date in each year. A writer in a recent issue of the Chiness Recorder says that the most important book to the Chinese is the that the Its inpo is far too important to be the almanac. Its space is far too important to be occupied with the matter which flls western almanacs. but its great mission is to give full and accurate information for selecting lucky places for performing all the acts, great and small, of every-day life. "And as every act of life, however trivial, depends for its success on the time in which and the direction (i.e., the point of the compass) toward which it is done, it is of

THE GERMAN CORVETTE CRUISER IRENE

The remaining eight guns are placed on the deck and fired through broadside ports, by which their range is, of course, limited. Torpedo tubes are provided in the proper places. A very large amount of ammunition can be carried by the Irene, so that she will not have to depend on ammunition transports during engagements.
No sails are provided to assist in the propulsion of the vessel, and, therefore, there is no rigging except what is required for the support of the masts and the signals. The mast tops are arranged for the reception of a limited number of revolving guns and search lights.

The construction of the vessel, including the equip ment, but exclusive of the armament, will cost about $\$ 1,000,000$, and the guns, torpedo arrangements, etc. will cost about 8168,000 .
The sister ship of the Irene, the Germania, was built at Gaarden. near Kiel, from the same plans, as was also the Prinzess Wilhelm, which was launched a short time ago.
We are indebted to the Mlustrirte Zeitung for the accompanying illustration.

A GUN of 150 tons weight is now being constructed a Essen by Krupp. It is similar to the 120 ton gun, but is longer, and will have a much greater range.
with his prepared nitro-gelatine can be fired out of or dinary guns with perfect safety, which in itself is a very important discovery. If a 6 inch shell can pro duce such results on an iron plate target, it is not diffi cult to imagine the effect of the explosion of much larger shells on the plated sides of armorclad men of
war. Mr. Snyder calculates that a 6 inch shell would strike the armor of a man of war without piercing it, but would produce an explosion capable of destroying the ship. A siege gun of 6 inches would easily carry a shell containing 40 pounds of nitro gelatine, and this gun would suffice to destroy any ship. Mr. Snyder did not expect his shell to pierce iron or steel armor plates, but he calculated that if he could fire a shell with safety out of a gan, on percussion on the side of an ironclad the tremendous explosive force of nitrogelatine would assert itself, and either shatter the plates or drive them into the ship; the plates being bolted together, if the shell struck on a join or corner, more than one plate might give way. Nitro-gelatine is said not to explode unless subjected to a powerful shock, and it does not explode by contact with flre.
Its force, compared with gunpowder is beyond all orIts force, compared with gunpowder, is beyond all ordinary comparison. If powder develops 10,000 feet of gas, dynamite containing 50 parts of nitro-gelatine could develop 100,000 feet. It is also impossible to could develop 100,000 feet. It is also impossible to
measure its destructive force as the expanding force
the utmost importance that every one should have correct information available at all times to enable him to so order his life as to avoid bad luck and calamity and secure good luck and prosperity. Consequently, the almanac is perhaps the most universally circulated book in China." The writer speaks of it as a terrible yoke of bondage. It is issued by the government, and the sale of all almanacs but the authorized one is prohibited. Quite recently the new Chinese minister to Germany refused to sail for his post on a day which the almanac declared to be unlucky, and the departure of the German mail steamer was consequently deferred at the request of the German minister to Pekin.

To secure the flap of an envelope so that it may not be readily opened without betraying the fact that it had been tampered with, has beeu the ambition of good many inventors. An envelope constructed as ollows is the subject of a recent English patent: The lap is so cut and shaped as to bring the point of it o the top right hand corner of the front side of the onvelope, where the gummed surface of the flap secures it to the front of the envelope. The postage stamp is then fixed over the flap so that the envelope ot possibly be unfastened without destroying the

Impartance of small quantitios of Impurtices in Motals.*

w. chandier zopisto Auster, pes.

The author points to the great industrial importance of the influence exerted by small quantities of me tallic and other impurities on masses of metals in which they are hidden. He states that this is most marked in the case of iron, and that when Bergman discovered, in 1781, that the difference between wrought iron, steel, and cast iron depends on the presence or absence of a small amount of graphite, he was astonished at the sinallness of the amount of matter which is capable of producing such singalar changes in the properties of iron. The evidence as to changes in the properties of iron. the importance of small quantities of impurity is quite as strong in other directions at the present day, as is
shown by the statement of Sir Hussey Vivian, that shown by the statement of Sir Hussey Vivian, that
one thousandth part of antimony converts "best select" copper into the worst conceivable, and by the assertion of Mr. Preece, that "a submarine cable made of the copper of to-day," now that the necessity for employing pure copper is recognized, "will carry double the number of messages that a similar cable of copper would in 1858," when the influence of impurities in increasing the electrical resistance of copper was not understood.
Allusion is made to the effect of a small quantity of tellurium on bismuth. Commercially pure bismuth has a fracture showing brilliant mirror-like planes, but if the one thousandth part of tellurium be present; the fracture is minutely crystalline. Specimens of bismuth are submitted to the society. The author states that in his own experiments he has employed gold prepared by himself with great care, the purity of which has been recognized by no less an authority than M. Stas A portio of this gold was recently used by Professor Thorpe n a determination of the atomic weight of fold. fold was selected for the experiments for the following reasons: It can be prepared of a very high degree of purity, it possesses considerable tenacity and ductility, the accuracy of the results of the experiments is not likely to be disturbed by the oxidation of the metal or by the presence of occluded gases, and the anount of impurity added to the gold can be deter mined with rigorous accuracy. The influence of smal quantities of metallic impurity in rendering gold brit tle has long been known, and is frequently referred to by the older metallurgists, especially by Geber, Birin guccio, and Gellert, and by Robert Boyle. The first systematic experiments on the subject were made by Hatchett at the request of the Privy Council, and were communicated to the Royal Society in 1803. Hatchett concluded that certain metals, even when present in so small an amount as the one one-thousand-nine-hun dredth part of the mass, will render gold brittle, and he stated that: "The different metallic substances which have been employed in these experiments appear to affect gold in the following decreasing order: 1. Bis muth. 2. Lead. 3. Antimony. 4. Arsenic. 5. Zinc. 6 Cobalt. 7. Manganese. 8. Nickel. 9. Tin. 10. Iron. 11. Platinum. 12. Copper. 13. Silver." Mr. Hatchett did not, however, employ pure gold, and in his time the importance of submitting metals to mechanical tests was not understood.
The anthor then proceeds to describe the results of his own experiments, and he states that in selecting tenacity as the test to which the metal should be subwitted with a view to ascertain the effect of the added matter, the following consideratious presented them selves. W. Spring has built up alloys by compress ing the powders of the constituent metals, and by pointing to the evidence of molecular mobility in solid alloys he has done much to show the close connection which exists between cohesion and chemical affinity Raoul Pictet considers that there is intimate relation between the points of metals and the lengths of their molecular oscillations, the length of the oscillation diminishing as the melting point increases, and, as Carnelley has pointed out, "We should expect that those metals which have the highest melting points would also be the most tenacious." It is known that the melting points of metals are altered by the presence of is also thereby altered. The degree of cohesion may thus be investigated either by the aid of heat or by mechanical stress. It might have been well to uscertain the amount of change in the melting point of gold produced by the presence of the different elements in small quantity, but, unfortunately, slight variations in high melting points are very difflcult to determine with even approximate accuracy, and it appeared to be better to ascertain the effect of metallic and other in purities on the cohesion of the gold, as indicated by the amount of force exterually applied in an ordiwary testing machine, and in that way to ascertain whether the
The purest gold attainable has a tenacity of 7.0 tons per square inch. and an elongation of 30.8 per cent on 3 inches. Professor Kennedy found that a less pure sample, which contained $999 \cdot 87$ parts of gold in 1,000

Chem. Neves.
broke with a load of 6:29 tons per square inch, it had an elastic limit of $2 \cdot 12$ tons per square inch, and elongated 18.5 per cent before breaking. In the following experi ments only the purest gold that could be prepared was employed. The effect on the tenacity of gold produced by adding to it about $0 \% 2$ per cent of various metals and metalloids is shown in the following table, in which the results are arranged according to the tensile strengths :

Reasons are given for adding the comparatively large amounts of impurity (two tenths per cent), notwith stauding that even "traces" of certain metals would have produced very marked effects upon gold, and evi-
dence is adduced to show that exact concordance in dence is adduced to show that exact concordance in not of much importance.
The testing machine is of the form devised by Professor Gollner, and used by him at Prague. It is a double lever vertical machine working up to a stress of 20 tons.
The author points out that these results lead to the conclusion that the tenacity of gold is affected by the lements in the order of their atomic volumes, and he discusses the evidence in favor of this view at some ength, pointing especially to the fact that while those elements the atomic volumes of which are higher than that of gold greatly diminish its tenacity, silver, which hasnearly the same atomic volumeas gold, hardly affects ither its tenacity or its extensibility. He shows that o far as the experiments have been conducted, not a single metal or metalloid which occupies a position at the base of either of the loops of Lothar Meyer's curve which is a graphical representation of the periodic law) diminishes the tenacity of gold, while, on the other hand, metals which render gold fragile all oc upy higher positions on Meyer's curve than gold does, and he urges that the relations between these small quantities of the elements and the masses of metal in which they are hidden are under the control of Mendelejeff's law of periodicity, which, as originally expressed, states that "the properties of the elements re a periodic function of their atomic weights." Carelley has given strong evidence in favor of supple nenting the law as follows: "The properties of compounds of the elements are a periodic function of the atomic weights of their constituent elements," and the uestion arises, "May the law be so extended as to govrn the relations between the constituent metals of alloys, in which, as is well known, the atomic properies are often far from simple?"
The effect on gold of small but varying quantities of metals, singly and in presence of other metals, demands examination, and their influence on the specific gravity of gold must be ascertained. Until this has been done no explanation as to the mode of action of
elements with large atomic volumes will be attempted.

A Patont symponiam.

"I tell you, sir, the Patent Office ought to be reormed, every man of them turned out, from the least unto the greatest, and the law altered so that a patent would be good for something!" The speaker was one of those overgrown noisy men with bulbous form and bawling voice, loudly giving his opinions in one of the hotels on Union Square, where electricians do congregate. He said that he came from the State of Kansas, and some accident of hospitality had evidently brought him very nearly into another state-the penalty for which in Kansas is, we believe, death for the first ffense and dissection for the second. The results were imited to making him slightly loquacious without urther disabling his faculties.
A cool young man inquired if he was interested in any patents.

Why, yes ; that is my business. I am a professional patentee, Col. Grumpus Bloward, of Yates County, ir. I was the first inventor of the telephone. It was in the spring of '37. I didn'l make one, but I said at the time that the telegraph was very good, but they ought to talk by telegraph. I conceived the idea and therefore made the mental effort, yet they would never have given me a patent. I was told two years ago that it was no use to apply for a patent-and see what this grasping monopoly of a telephone company now holde !" [The lant in the beat tonew of hie voice.]
"Did you fully reoognize the value of ancll an in ention accomplishing the elestrical transmisaion of speech q " asked the young man.
"Certainly I did, and never lost sight of it, either I knew that it was worth millions and millions."

Ever buy any telephone stock ?" was the next in"Now young
"Now, young man, that has nothing to do with the question, and I don't wish you to try and dodge the subject in that manner! As I was going to say, I invented a perpetual motion, and put in my application for a patent : and what do you suppose they did! What do you suppose they did?" [Second time, voice What do you suppose they did?" fortissimo crescendo.] "They sent back papers and
money with a letter written by an understrapper, and money with a letter written by an understrapper, and
signed by some chiel cook, saying that the office did not recognize that the subject was within natural laws, and that it was therefore beyond the scope of the office, and the application could not be entertained by them. It was an infringement of my rightsas a citizen. They ought to give every one a patent and one that would be good for something, so that there would be no suing and infringing."
"Suppose that some one would apply for a patent on some invention for which you had received a patent?" asked the young man.
"Why, the office would have to throw it out," was the reply.

Well," pursued the inquisitor, "what would you do if some one should 'make, vend, or use' your inven tion?"
"Shut him up at once!"
[Very savage this time, suggestive of retrogressive revolution. No scalping done, however.]

Possibly without due process of law or bringing the action and proving the infringement?" asked the young man.
"I said once that the government ought to make a patent always good, without obliging people to go to law. Not half of the patents are good for anything in the courts."
"That matter has been looked up," said the young man, consulting a memorandum book, "and the records of the decisions of the United States courts on patent issues from 1776 to 1886, as given in Mejer's Federal Decisions, show that 73 per cent of the patents were sustained and 27 per cent of the patents were annulled. Of those which were sustained, 67 per cent were valid in their entirety and 33 per cent were sustained in part. In later years the percentage of valid patents is largely in excess of the average result, owing to the decisions which have established every phase of patent law, and also the higher class of men which have been engaged in the solicitation of patents.
" The majority of patents possess a stability of value which will compare favorably with that of personal property in stocks, but any lack of value in patents cannot be ascribed to defects in the legal status of the patents, but to the lack of skill in the patentees, whose inventions are either inoperative or not suited to any practical purpose to a degree superior to present methods.

The art of inventing consists in finding out what is wanted, and then making something to fill that want. By reason of inventions protected by patents, I have been prosperous, receiving at thirty-five a larger annua income than the aggregate amount obtained by my father during a pastorate as long as my life.
" No one has been defrauded, no one has been made poorer, while labor has been made lighter and pro duction increased, giving additional resources to those who would have lacked.
" If there had been no patents, I should not have thought. If I had not thought, I should not have invented, but would have been a laborer-a hewer of wood and drawer of water.
"The moderate pay and the defects of the civil service in regard to appointment and promotion render it a wonder that the vast, deal of work imposed by law upon the Patent Office can be so well and so faithfully performed. It is but in thfe nature of things that there is opportunity, even need, of reform, but it must be the kind of reform which improves, and not the kind of reform which destroys.
"Concede everything alleged against the United States patent system, and then name the nation whose patent system you would take in exchange."
This gentleman, who had joined the group unan nounced, departed unattended, while a young steno grapher who had reported the discussion without being observed, wrote it out and submitted the foregoing credentials accompanying an application for employ ment in the office of the Electrical Review.

A Stopper for Rate.

A correspondent says: Soak one or more newspapers, knead them into a pulp, dip the pulp into a suitabl solution of oxalic acid. While wet, force the pulp into any crevice or hole made by mice or rats. Result-a disgusted retreat, with sore snouts and feet, on the part of the would-be intruders. Probatum est.

AN IMPROTED PAEGETGER RATHWAY CAR.

 A passenger car made with detachable and buoyant side panels, readily removable in case of accident, for the release of the passengers, is represented in the accompanying illustration, and has been patented by Mr. Henry Niehoff, of No. 74 West Fifty-third Street, New York City. These panels, which extend below the windows of the car, have in their lower portions air-tight vessels, or the lower part of the panels may be filled with cork or other light material, the panels having recesses in their abutting edges for the introduction of a double-headed dowel, of which the heads extend to the inner and outer faces of the panel. Below these recesses is a transverse slot, in which is fitted the connecting web of an H -shaped clip, the web entering registering recesses in the abutting edges of the adjacent panels, and the clips being bent down to bear against the outer and inner faces of the panels. One of the end panels is permanently connected to the car, and as many other panels are employed as may be necessary to fill up and inclose that side of the car, their vertical edges connected as described, and each panel being supported at its lower edge by a pin which fits into a socket secured to the sill of the car. In the upper edge of the panels is a slot entered by a tongued shaft inounted in the fraining of the car above the space occupied by the panels, this shaft having outer handles and inner handles or lever arms. This shaft and lever handles are so arranged that in case of accident, as by the overturning of the car, the tongues will be carried upward, and a slight push upon the panels will cause them to fall outward from the car frame, thus clearing the whole side of the car; or this turning of the tongues the car by this construction slso, should the roof or floor of th car be badly broken, the panels will fall out, and should the cars fall into the water the air-tight or cork-packed compartments of the panels will make them useful as life preservers.
experincerts illogtratifg phyaical and CHEMICAL CHANGE.
 t. o'conor slonke, phid.

At the present time, when physics and chemistry approach so closely to each other, and way even be said to overlap, it is very hard to furnish definitions that will really distinguish one from the other. When the vexed ground of solution and molecular combination is reached, it is often impossible to characterize reactions as chemical rather than physical, or the reverse. Perhaps the best distinction is to consider chemistry the science of atoms, and physics the science of molecules Then mechanics is left as a heading for the science of mass.
The general indications of a chemical reaction include the production of thermic changes. If it is a case o combination, an increase of temperature is produced as a general rule. Heat is always developed, but it may be marked by incidental changes productive of cold. On the other hand, in a physical change, minor thermal activity, as a rule, prevails.

physical and cheyical change.
Advantage is taken of the opposite thermal effect due to chemical combination and to liquefaction in the experiment illustrated, to produce an example of a chemical contrasted with a physical change. In the first, heat is produced by chemical combination ; in the second, cold is produced, or, more strictly speaking heat is absorbed by the act of liquefaction-a purely physical phenomenon.
Two flasks, of about one pint capacity, are fitted with singly perforated corks. Through each cork a glass tube of about one-fourth inch internal bore is passed
which reaches nearly to the bottom of the flask. A lit tle water, enough to seal the end of the tube, is placed in each, and the corks are pressed home. This forces water up into the tubes. All should be so arranged that when the corks are in plase the water will reach to the center of each tube. The flasks thus arranged form delicate therwoscopes or indicators of a change of temperature. To render their indications visible, a little perature. To render their indications visible, a little
coloring matter should be added to the water. A little

hIEHOFF'S PASSERGER RALLWAY CAR.
sulphocyanide of iron, formed by adding potassium sul phocyanide and ferric chloride (chloride of iron) to the water, is an excellent material. It colors the water red, and, unlike most of the aniline colors, does not stain the glass. For most experiments where water is used this will be found an excellent substance for rendering the water visible.
Two boxes, which should be as near watertight a possible, and which should be large enough to hold the flasks, are next needed. In each of these a flask i placed. One is packed around with quicklime, prefer ably in somewhat small pieces. The other is embedded in orystals of nitrate of ammonia. Water is poured into the two boxes, so as to fill them within an inch of the top, while giving the fluid time to percolate through the mass of solid material.
The quicklime has a strong affinity for water, and in combining with it undoubtedly suffers an atomic change. The water and calcic oxide unite, and in a few minutes become very hot. The air within the flask is ex panded by the heat, and the column of water rapidly ises in the tube. If left long enough, it will overflow it This illustrates a chemical reaction with evolution of eat
In the other box the nitrate of ammonia rapidly dis solves or liquefies. This change requires the expenditure of energy, represented by the absorption of heat. As none is supplied from an artificial source, the dis solving salt absorbs it from the water, and cold is pro duced. The colnmen of water in the thermoscope tube sinks rapidly, and soon is out of sight. This illustrates a physical reaction, the change of state from solid to liquid without any atomic change
The water should be added to both boxes from on pitcher. Thus conducted, a very curious and para pitcher. Thus conducted, a very curious and para-
doxical effect is produced. Water from the same vesse produces both heat and cold.
As regards the solution of the nitrate of ammonia, possibly an obscure chemical combination, heat may be produced by it. If so, it is overcome by the greater degree of cold which is produced by the change of physical state of the nitrate of ammonia from solid to iquid.
Other substances may be used. Thus anhydrous car bonate of soda nay be used instead of the lime, and many salts used in freezing mixtures could be cited a substitutes for the nitrate of ammonia. Ammonic sul phocyanide is an extremely powerful refrigerant. But from its general innocuousness, the nitrate is to be strongly recommended.

Making sach Weights out of Tin Cans.
The latest use for tin cans, and the chips from the tin shops, is the conversion of the material into sash weights. The Commercial Bulletin says: There is no secret about the process. The only thing is to have a proper sized furnace and to get up a sufficient heat. The business has developed of late, but the manufac turers say the margin of profit is swall. It costs more to welt the scraps than common iron. Chips ready for the furnace cost seven dollars a ton. The sash weight produced are of a superior quality. The business is ike the case of old rubber, an illustration of the use of waste material. The tin can companies and othe manafacturers of tin goods formerly dumped hundreds of tons into space, but now these scraps are utilized and the irrepressible small boy works the ash fields to

Oarcleas Handiling of Nitro-slycorime.
If there is anything more surprising than the exploive force of nitro-glycerine, says the A merican Archiect, it is certainly the carelessness with which that subtance is handled. It is well known that nitro-glyce ine freezes at a temperature considerably above the reezing point of water, and scores of accidents have resulted from the reckless methods employed for thawing ago, when pure nitro-glycerine was used for blasting, a workman in Germany found one morning his can of explosive material frozen. Being in a hurry to begin work, be returnad to the house, heated a poker red hot, and started off to thaw the nitro-glycerine with this instrument. It is hardly necessary to say that he succeeded to perfection, the nitroglycerine changing its condition with an energy which pulverized not only the operator, but all other surrounding objects.
A few days ago, according to Fire and Water, five miners in Michigan brought a bent gas pipe to a blacksmith's shop, where it was heated and straightened. Without waiting for it to cool, they then filled it with dynamite, which immediately exploded, killing them all. Almost at the same moment a man in New Jersey brought some blasting cartridges to thaw them out by a fire. He accomplished this result by holding them on the flame for a suitable period, and is supposed to have dropped one during the process, for his remains were found in a fragmentary condition sixty feet away. At Richmond, Ind., on the same day, six tons of dynamite, which had been stored on a farm, exploded, blowing a horse and wagon to pieces, excavating a pit fifteen feet deep and twenty-five feet in diameter, injuring a woman a quarter of a mile a way, and breaking every window in a neighboring village.

An Unlooked-for Explonion.

A little knowledge of chemistry has often, from gnorance or when possessed by a person of an experimental turn of inind, led to disastrous results. Hospital tells of a nurse in a London hospital who was cleaning a bottle which had contained glycerine. To facilitate matters she poured in some nitric acid, thereby unintentionally forming the explosive compond nitrolycerine. The bottle burst in her hands, and ono piece flew up and struck her face with such violence plece few up and struck her face with such violence
that her cheek was badly cut and one eye seriously injured.

AN INYPROVED CAR-HEATER

A car-heater designed to be capable of sustaining great weight, and not allow the escape of fuel should the car be overturned, is illustrated herewith, and has been patented by Mr. James Wardle, of Hope, British Columbia, Canada. It is constructed of two concentric cylindrical casings of malleable steel or iron, both cylinders being strengthened by outer attached, metal hoops or bands, and between them a space for the circulation of air. The centrally-apertured base to which both cylinders are attached is secured to the car floor, the inner cylinder having a conical bottom projecting downward through the floor, as shown in dotted lines,

WARDLE'B CAR-BEATER

a horizontal plate beneath acting as a damper, and also as a means whereby ashes may be dumped through the conical botton. The outer cylinder is provided with a series of apertures between the encircling bands, and the inner cylinder is cupped by an apertured plate, to prevent fuel entering the smoke-pipe should the car be overturned. The latched fuel door of the inner cylinder corresponds with an opening of the outer casing, covered by a door adapted to slide in ways, and operated by a screw rod which travels in a threaded aperture in the flange of the top.

byantigrde invention.

A changeable gauge truck has been patented by Mr. Samaed \mathbf{R}. Wilson, of Adelate, South Australic. It is to effect the antomatic transefer of rail way cars from tracka of one gange to zanother, for which
the axio ends and wheels are threaded, and midway be axio ends and whoelin are threaded, and mider contuct with an elevated ridge or rall in the contior of the ruck, locks the arle, canaing the wheeld as they revolve to approach or recode from each other so thes p se into a changed gave.

AGRICULTURAL ITVEITIOTS.

A corn planter has been patented by Mr. Charles O . Du Cray, of Iowa Coonts. Wia. It io dealgnod to provide for the smoothing of the zround in advance of the wheele, for the marking of of the ad. the corr-delivering mechaniam, the invention covering various novel detalls and combinations of parta.

A planter and fertilizer distributer has A plantor patented by Mears, Lewis and John Charles Clear Sppring. Md. Its. constraction is such that the
dropping derices can be reedily thrown into or out of grear with the drive whoel, and the fertilizers agitated and forced outward as desired, the invention coverth various novel features and comblnations of parte.

HECHLLAEEOUS LIVETTIORE

A reversing gear for saw mills has been patented by Mr. Europe N. Collett, of Whelen Springa, Ark. This invention covers a novel constrac--
tion and combination of parts and detalis for a almple lon and combination of parts and details for a almple motion to the saw mill carriage.
A saw jointer has been patented by Mr. Charles R. Black, of Topetza, Kanses. It has two platee reccesed on their inner adjacent faces to form sav. jection engaging them, to faclitate the jointing or leveling the teeth of saws prior to alling them.
A leak stopper for vessels has been patented by Mr. Lonis Weihe, of Connellsrille, Pa. It consiote of a canvas sheet with horizontal etay rods at
suitable diotances apart, ropes for suspending the suitable diotances apart, ropes for suspending the
canvas aboet, and means for releasing the rolled-ap canvas aboet, and means for releasing the

A vegetable cutter has been patented by Mr. Anthony Letbert, of Jordan, Minn. It is a ma chine wheroby reaptablees of all kinds mas be cut in nient, epeody, and eflicient manner, the machine being cimple and durable in construction.
A bulletin board has been patented by Mr. Levi J. De Land, of Faifport, N. Y. This inven tion providee a aimple construction by which to hold a
number of tableta or carde which may be differently in acribed, and changed as often as desired, for exhiblting difrerent algne from dme to tim
A bag fastener has been patented by Mr. Henry A. Martens, of St. Joeeph, Dakota Ter. It consliste of two clamps hinged together, one formed with a toothed arm and the other having a apring bolt motallic truteper eopecially designed for ane on grain bage.

A brace for bedsteads has been pawented by Mr. Charles P. Lewis, of 8weet Springs,
Weat Va. From hooks on the inver corners of the poeto. below the ralle, bands extend to a central head, in which a bolt is held to be turned by a wrench or other saitable tool, for atrengthening bedsteads and holding the poots armly In plece.
A slate for telephone deeks has been patented by Mr. Bmil T. Mueller, of La Croves, Wis It coneiste of = oboet of enitable material covered with a oiate componition, and having retaining cilps mdaptod or lead pencll, to be constructed of various sizes to at differant deaks, for conveniently recording meseagres.
The manufacture of thimble skeins for axles forme the sabject of a patent isened to Mr. Joseph in bending the metal blank ontil the longitudinal edgee meet, or noarly 80 , and then oniting them by a separate strip, by bringing all to a welding heat and welding the
A hydraulic shaping press has been paItented by Mr. Arthar E. Hobeon. of Hartford, Conn It provides meanes for clamping a anange formed at the the prese having moany for raising the die from ite bolder or cace, and meane for drawing the blank whereby emboweed faced articles may be produced.
A portable fence has been patented by Mr. Albert Whest, of Reailing, N. Y. It is made of ecctione of poota and rails mountred in an inclined
pooftion againat inclined bracee, the incilined braces and fence cectuoss resting agaiost pegi driven into the ground. hexiove etripe extending over the breces and

A heating furnace has been patented by Mr. Jamee White, of Brooklyn, N. Y. It has combination with an afr chamber surrounding the of rooms independently and oniformly withont regard to the length of prpe noceseary, supplying aloo the requisite amount of moisture to the alr.
An automatic fire extinguisner for car beatere has been petented by Mr. Louls A. Lyon, of
8borter's Depot, Ala. With a plpe extending into the 8borter 0 Depor, Ala. With a pipe extenaing into the
are box of a car heater are connected a funnel, ham. mero, and glace veweele holding a Are extinguinaing
higuld, $\infty 0$ beld reiatively that the veceels are broken by Hipuid, oo seld reiatively that the reseeis are broken by
the hamimeres and the liyuid ruas into the Are box when the heater io npeet in any diroction.

A saw fling machine has been patent d by Mr. David W. Johns, of Allegheny City, Pa. I by an adjastable cam for antomatically feeding the oeth of the saw forward, with mechaniem for holding and gulding saws, and other features, being adaptod ort and rip saws, long saws, and band sawn.
A frame for use in the manufacture of oil prese mats has been patented by Mcesra, Marcus
T. and Junius A. Marphy, of Now Orleans, Ia. This
invention covers auxiliary pasher bars, used in con. invention covers auxiliary pasber bars, used in con
nection with the regular mat plates, making a machine he warpe into compact form withoat breaking the nat plates or injaring the warps.
A hot air furnace has been patented
y Mr. Philip H. Scheurer, of Naskvile, m . There are side fues between the Are box and casing, opening at their lower ends below the are box, and down tane or the peseage of the heat to the side fiues, in connec on with varions novel features of constraction and combinations of part.
A telephone transmitter has been pa ronted by Mr. John M. Graham, of Pittsbarg, Pa. Two pairs of contact springs are arranged to press opposite
onde of electrodes carried by springs bearing on the diaphragm, one contact spring of each pair being con lectron wherated by the diaphragm being connectod with the terminals of the local battery, whereby the
carrent in the local circuit is reversed during each vi current in the local circuit
bration of the diaphragm.

SCIENTIFIC AMERICAN

buildina edition.
GAY.NUMEBER.-(NO. 81.)

table of contents.

Elegant plate in colors of a donble house for two thozesand five handred dollare, with fioor plans,
sheet of detalle, etc. 2. Plate in colors of a cottage costing five thousand 8. Page of engravings giving a general view of the suc cessfal operations of moving the great Brighton Beach Hotel at Coney Island.
4. Perspective elevation and floor
costing six thousand dollars.
corlag in thoneand dollars. Dealgn ror a house to otrand on a k
ground. Perspective and foor plans.
b. Perspective view and groand plan for the Orange Helghts Hotel, now erecting on Orange MountainsArthar D. Pickering, architect.
7. Half page engraving of the new United States Poer Omce at springield, Mass., and new United Statee
Poot Omice and Court Hoase at Loo Angeles, Cal. Drawing in perspective of the elogant residence Dr. B. F. Hanse at Minneapolis, Minn
. Sketch of a dwelling in Rochester, N. Y., cost about six thousand Ave hundred dollar
. Perspective and foor plans for a country bouse o morvo
Elevations and tioor plane for a frame dwelling
Cost aboat ive thousand dullars. Coot aboat ive thousand duliars.
Ilostrations giring a perspective view and tioo
plans of a cottage for afteen hundred dollars. Repaling the foundations of a large grain mill and eleva
4. Floor plans and perspective view of a sabstantion Floor plans and perspective view or a
dwelling. Cost elght thousand dollars.
A dwelling for two thongand aive handred dollare. Perspective and floor plane.
10. Perspective and fioor plans of two modern dwellings,
coeting eight thousand dollars and two thousand elght handred dollars respectively.
17. Plans and perspective elevation for a two thousan two handred dollar house.
Ilastration showing the beanufal dwelling and groands of Timothy Merrick, Eeq., Elimwood
Holyoke, Mase. Holyoke, Mase.
P. Elegant reaidence of Dr. J. S. Harlbat, Feq., School
Street, Springfeld, Mass.

Miscellaneons contents: Relative strength of
etones and bricks.-Fchoes and reverberations in stones and bricks.- Kchoes and reverberations in
rooms,-Dimensions of the most Important of the great cathedrals.-Boston hot water distribation. - Roofs for mills.-Combined rain water cat-ofi and alter, illuatrated.-The gendeis of a tornado.
$-\mathbf{A}$ millstone recipe.-Lumber trade notes.Warming and ventlating.-Grant memorial com Warming and ventlating.-Grant memorial com
petition. - The Arkanses dry kiln.- Paint for petition. - The Arkanses dry kiln.-Paint for
fresh cement.-Foraign made joinery.-Floor painta.-Large dams.- Preservation of timber. How to ornament a vase.-Eneraices to varnikh.-
Filing for floors.- Wooden water pipes.-Read mixed painta.-The Ridgway refrigerator syotema,
illustrated.-A sanitary heacing apparatus, uluas Illustratod.-A sanitary hesting apparatus, Ullus-
trated.-The Prentice patent metallic hip stingle. The sclentific American Architects and Bullder Edition is isened monthly. $\$ 2.50$ a year. Single coplee
w cents. Forty large quarto pages, equal to about 25 centa. Forty lange quarto papes, equal to about
two handrod ordinary book pages ; forming, practically. a large and splendid Macazine or Abcurtso TURE, richly adorned with elegunt platos in colors and
with ane engravinge, dinatrating the moot interesting axamples of Modern Architectural Conatruction and allied sabjecta.
The Fullicese, Richnoes, Cheapnese, and Convenience of any Architectural pabilication in the world. Sold by all newadealers.

MUNN \& CO.. Publiahirs,

special.

OUT OF TURE

Did you ever hear a near nelabbor playing on an instru-
ment out of tune? 19 po, did you ever remart, Mra. Mualc get her pluno tuned?" A vory natoral in-
quiry. But you quiry. But you are in bad health, and allowa more valu-
able inatrument. the body, which to your companion not able instrument. the body, which io your companion not
onis in hours of leisure in the parior, but in all siceping an woll mo wating hours. to remaln out of tuna, and con-
tine to tinue to jar on the feelingss of all who come into sight of
you or within the sound of your volce. Why don't you you or within the sound of your volco. Why don't you
got it tuned? It is surely of meep diterest to you as
 tuning yourself, in a pleaceant mannor, it to woll worth
while to be in tune, and that without delay. One petient While to be in tune, and that without delay. One patien
"Bofore i had ured it a week 1 began to marked ohinge. That falint, tired foeling which I had for 20 long began to dioappoear, and I began to gain life
and anlmation. 1 alson began to notioe an improvement and animation. 1 also began to notion an inprovement
in my dikestion, and I cean now eat without the paln and
and distress whioh have been so troublesome for nearly a
 gen-Ite Mode of Aotion and Hesulta," will be malled to you froe on application to D
Arch Street, Philedel phim, Pa

இBusiness and \$ersonal.
The charge for Inevetion undor thes head is ons Dollar
a line for occh incerton;
A bout eloht woords to a line.

Wanted-To buy or lease, in New York, Jersey City, or Brooklyn, foundry and machine shop ppoperty anlita, ble for the manufacture of heary machinery. Adirees.
with complete partioulars, Flectric Motore, P. O. box 3, New York.
The Diamond Prospecting Co., 74 and 78 W . Lake St.
prospecting drille.
For the specisc purpose for which they are deaigned, Parts Electric Battery Co.,
1 1723 Chestnut Streot, Phlladelphia, Pa.,
For the latest improved diamond prospecting drills, adrese the M. C. Bullock MIf. CO., 183 Jackeon the Chicaro. 1 Il .
An American, age 28, deaires poxition in machine
shop. or an ireman of stationary engine. "A. B.," bos shop, or an Are
Tr3, New York.
Barnham's tarbine wheel is sold at net price to mill wners. Catalogue free. Addrees York, Pa
Nickel Plating.- Manufacturers of pare nickel an"Lea, pare nickel malte, polishing componitions, ota $\$ 100$ Agente of the new Dip Leoquer Kristalline. Complete
outat for plating, otc. Hanson, Van Winkie \& Co., New-

Perforated metals of all kinds for all parposes. The The Bolliroad Gacette, handsomely illustrated, pabWhed weekly, at 77 Broad way. New York. 8peolmen The Knowles Stoem Pump Works, 113 Federal sued a now oantalogua, in whioh are many now and improved forme of Pumplng Meohinery of the single and unplox, ateam and power type. This oatelogue will be
Link Belting and Wheels. Link Belt M. Co., Chicago. Iron Planer, Lathe, Drill, and other machine tools of Premes os Dies. Fe The Holly Mannfectaring Co The Holly Manufacturing Co., of Lockport, N. Y. ohinery, and contalining reports of testo, on application.
Sapplement Catalogae.-Persons in parsait of informaclon of any spectal engineering. mechanical. or soien-
tise subject, can have catalogue of contents of the SclITrific AMERICAN SUPPLEMENT sent to them free. he whole range of enpincering, mechanics, and prysical coience. Addreas Munn \& Co... Pablishers, New York. No. 11 planer and matcher. All knds of wood
anachinery. C. B. Bogers \& Co.. Norwloh, Conn.
Patent foot power seroll and circular saw, mortisers talle, N. \mathbf{Y}.
Improved fine toole for mechanics-Manafactured by 8. Starrett, Athol, Mass. Send stamp for full list.

For best forges, blowers, exhansters, hand and power
drills addreas Bumalo Forge Co., Bumalo, N. Y. We are sole manufacturers of the Flbrous Asbestos zemorable Pipe and Boller Coveringa. We make pure best ens keat 8 th Btreet, New York.
The Improved Hydraslic Jacke, Panches, and Tube
Friction Clatch Palleys. D. Frisbie \& Co., N.Y.city
Tight and Black Barrel Machinary a apecialty. John
"The Improved Greene Encine." Safetry stop on
cennlator. Providence, R. I., Steam Fingine Co. are the
ofe buildera. For beat quality, order your steel
Bumlo steel Foundry, Bumio N.
Pattern makers' lathe. Back knife gange lethe for Pattern matrers' lathe. Back knife gange lathe for
Carning chair stook. Rolistone Machine Co., Kitchburg. turning
Men Per
A Perfect Engine-Syracase water motor, for driving
Usht mach'y. Tuerk Water Meter Co., syracuse, N. Y. Duplex Steam Pumps. Volker \& Felthousen Co., Bufalo, N. Y.
Send for now and complete catalogue of Soientisc
Books for sule by Munn \& Co., 2ol Broadway, N. Y. Free

HENTS TO CORRESPONDENTS.

(1) P. D. asks: How ought the word dypamo be prononnced: Shonld it be pronounced "dy-nam'-o," with the accent on the second syllable,
like the word "dynamics," or shonid it be pronounced "dyn'a-mo." with the accent on the irst syllablep A. Analog favors the pronunciation "din-s'-mo." It is of
course an incomplete word-the arst component of coarse an incomplete word-the arst component of (2) H. D.-Violin strings are made of (3) P. B. asks : 1. Are magnetism and electricity the same substance? Does an electric light dynamo make the electricity, or simply collect it from
the elements: If an electric light dynamo were placed in a perfect glass vacuum, insulated and run as intended, woold it produce any or more or less electricity than as now runf A. Neither magnetiom nor electricity can be
called a substance. Magnetism is a force sapposed to he due to magnetic energy ; magnetism is a manifestation or phenomenon of electricity, according to the most recent theories. An electric light dynamo converts mechanical energy into electric energy, and would work (4) W. F. P.
(4) W. F. P. asks : 1. Will a bichromate battery with half as much sarface of zinc and carbon
as another, have half as much power! A. Practically as anotber, have hair as mach power? A. Practically.
speaking, yes. The smaller battery will give the same difspeaking, yes. The smaller battery will give the same dif-
ference of potential, but will have double the reaistance, If the plates are at the same distance. 2. Is the carbon obtained from gas retorts the kind used for these bat. teries? A. Battery carbons are generally made from a carbon composition paste, which is baked and ignited.
a. How many cells of the simple plange battery de8. How many cellis of the simple plange battery do-
scribed in vol. 1 ivil, page 116, of the Screvtific Axisriscribed in vol. vili, page 116, of the SciEvitiric Aneri-
oAN will it take to ran the simple electric motor, with sufficient power to operate a sewing machine? A. This will it take to run a three candle power electric light ? A. For a three candle incandescent lump, use foar to
(5) M. O. G. asks: 1 . Could the armatare core be made of cast iron, or is it better to have it
of soft iron wire, and why so! A. The armature core is sabjected to rapidly recarring changes of polarity. To enable these to take place and to prevent the forma
tion of Foncault carrents, wire is need. tion of Foocault carrents, wire is used. 2. Would a inches by 8 inches, and 1 zinc of the same size in each cell, give enough power to ran one sewing machine? . The plates of your battery are rather small. It would probably drive a light sewing machine. Your plates should be of doable the area given.
(6) E. A. writes : I have built a dynamo electrical machine, combining some of the features of
the machine deecribed in Suprismixst, No. 161, with the machine described in supplisicint, No. 161 , wif
the one in No. 600 . I made my patterns after the one in No. 161, but made them three times as large as drawings instead of twico as large. Sbuttle armature wrapped with No. 18 double covered wire; magnet
wound same as the 8 light dynamo in Sopplemexr No. wound same as the 8 light dynamo in Sopplexiskr No.
600 , bat with No. 16 wire. I have 72 convolations on 600 , bat wilth No. 16 wire. I have 72 convolations on as follows: Height 9 linches, width 6 inches, thickness ter, magnet and armature weigh abont 30 pounds that is of iron. I started it with one cell of gravity battery, and it works splendidly, gives very powerfal shocks. Now, from these data. would you inform me what the
probable power of the machine would be,that is E.M.F. probable power of the machine would be,that is E.M.F.
and quantity of current produced, running at a speed of and quantity of current produced, running at a speed of
say 1,500 revolutions per minute? Δ nd what would be its lighting capacity, if any? Is there not some rimple given amount of platinum wire of a given size, say No. 889 What is the power in volts of the machine described in Supplinisnr, No. 161? A. You can mesoure the power of your machine by comparing it with 6 or 8
cells of gravity battery, by the ald of a tangent galvano colls of gravity battery, by the ald of a tangent galvano-
meter. The machine described in Supplemerm, No. 181, yields a current of 6 volts and 3 amperes.
(7) G. A. writes : I wish to run an incandencent lamp, one now, may be later on lighting the
whole house, bat of course a dynamo is too expensive for this, so I am going to ase a storage battery, charging it during the day with cells. Will you please tell me what is the cheapest, best storage battery I can nse,
and how it is made? Also, what cell had I better nee? and how it is made? Also, what cell had I better nee?
A. For information on storage batteries, consalt SurA. For information on storage batteries,
pLemext, Nos. 304, 870, 382, 354, aud 215 .
(8) W. J. B., referring to the 8 light dynamo, asks : 1. What size wire should be used for main
circuit? A. It depends apon the length of the circait. If the circuit is short No. 16 copper wire will do; if long, the size should be increased to No. 14 or even No. 12. 2. Mast not the current pass through each lamp in unNT, No. 600, it anderstand the diagram in Surpls- Will you explain or refer me to some paper on the subject? A . The dynamo is unable to produce a current of suficient voltage to
run throngh eight lamps in series. The dynamo referred run throngh eight lamps in series. The dynamo referred
rect. 8. Shoald the wire on dynamo be single, doable, or triple wound; A. Fine doable wound armatare wire with solder? A. Not necesearilly; it the wires are well twisted togther and the joint is protected, there will be no appreciable resistance. It is, however, advisable to solder the joints of conductors wherever it is conve-
(9) C. M. H. asks: What changes are neceseary to convert the motor described on pagy 165 of
Scizmitio Anirican of March 17 Into a dynamo And how many 16 candle incandescent lights will it furnioh? How should it be connected? A. Provide a
cast fron field magnet as described on page \&za current cast iron field magnet as described on page nat carrent
volume of Solisntifio Anriican, and wind the arma. ture with No. 80 wire. Connect 28 in the motor. The number of lampe it would ran conld be determined ouly by experiment.
(10) J. S. M. asks how bromide prints are made. A. You purchase the paper, called gelatinotographic supplies, and expose in in contact with a ne gative to lamp or gas light, bolding the frame about three feet therefrom, for about two or three seconde.
The exposed sheet when removed from the frame (in The expooed sheet when removed from the frame (in image on it. Bat it is wet with water, laid in a tray. and over it is poured a developer as follows Saturated solution oxalate potash. In a few minutes the poeitive picture comes out. When Anished, it is removed from the tray, washed axing bath (hyposalphite soda one onnce, water alx nxing bath (byposalphite soda one ounce, water six
ounces). It is then washed for two hours, and dried. If dried on a sheet of hard rubber, the surface will possess a beantifal glaze or polish.
(11) E. W. J. writes: I have a zinc and carlbon battery consleting of eight cells, and I use for a Auid salphuric acid and bichromato of potash. I wioh
to change it to a zinc aund copper battery. What I wish to know is, will I have to nose a different liquid? If so, what? And how will it compare in E.M. F. to the com-
mos. zinc and carbon? A. You will have to arrange your zinc copper battery as a Daniell or gravity combination, whose electromotive force will be 107 volte per conple, or a little over half that of the sinc carbon
cell. A solution of sulphate of copper will be the proper exciting fuld.
(12) B. N. asks if the potato is a fruit or a vegetable? What is the detaition of the word vegetable? What is the difrerence between a frait and a vegetable? A. The potato is conventionally called a vegetable. It in a tuber, or subterranean stem. A
vegetable is a plant, part or all of which is need for calinary parpoeee, or for feeding animalo. A frait is the edible succulent portions of certain plants generally edible by man without cooking.
draw a sharp line between them.
(18) J. M. S. should have patience and try to improve his apelling and handwriting. If he
proves able to do good work, he will adrance slowly, but surely.

TO IVERETORS

An experience of forty yeark, and the proparation or more than one handred thousand applications for per
tents at home and abroad, enable us to underatind the lawe and practice on both continente, and to poenere the equaled freclitiles for procuring patents every where. A eynopals of the patant laws of the Onited States and all
forelgn countries may be had on application, and persone foretgn conntries masy be had on application, and persons
contemplating the securing of patente, elther at home or abroad, are invited to write to this omoer for prices,
which are low. in accordance with the times and our ax-
 MUNN \& CO., omme SoIENTITIC AMERICAN, 881 Bromd-
Way, Now York.

INDEX OF INVENTIONS

Or Which Letters Patent of the United states were Granted

April 17, 1888,
AND RACH REARING THAT DATB.
[See note at end of list about copies of theee patenta.]
Aerial navigation, apparatus for, B. Bontan
AIr brake attachment. G. B. Lehy................ 881,108

Axlea, manafecture of thimble skeline for, J.
Daridson...................
Beg fastener................... Marteng.
Baling prees, W. J. Y. Jddell
Bannd dreas, J. J. . Sargent
Bar. Soe Curtala bar
Bar. See Curtalin bar.
Battery. See Galvanic battery.
 Bit. See Coar drill blt.
Blook. Soe Pavink block.
Board. See Bulletin board. Hleotric awitch

board. Boiller. see steam boller. Boller, w. E . Haxtun...

 keld...........................
Boom stick, Durell \& Goldie..
Boots or shoes, manufacture of welted. m. m .
 Box. 8ee Wagon box.
Brace. See Bedstead brace. Bractet. H. P. Kochameter Brake. See Car orake. Wagon brake. Brower's graing, conveyer for. E. Grake. W. Woers.
Brick dring tannol, e.
V. Johnson. Brick drring tannei, w. V. John
Briok maohine. W. Dengoleaky.
Bridge, truss, H. W. Ramasy...

${ }^{381,189}$

381,384
881200
. 801.200
. 201,30

Bridie attachment, c. 8. Shue....
Brush. H. Berry.,......
Buckie, ,
Bulletin Buckie, enspender, W. J. Walters..............
Bulletin board, IL, J. Do Land..............
Bullion from alag, mattee. and spets, appe
for separatiag beec, W. B. Devereax..... for separating baec, W. B. Devereux.
Bang, J. H. Bherwood.......... Burean, D. C. Clapp....
Burial casket, J. Walk
Burner. Bee Ged burner. Lamp burner. Vapor barnor.
Burner thp, W. M. Jnc
Buthe, II. A. Jewoll
Button,
Button, F. P. Barne
Button, A. Blppart.
Button,
Button, hloged shoe, G. C. Bagbee
Button, hinged shoe, R H. Lowt
Bation, hinged shoe, R. H. Lowio..... Button өetting machinee, apparatus for makin
racoways for, J. H. Vinton........ Ractoways
H. Veting n
H. Vinton.

Cable gripe and ohher purposeen, triotion ro.............
for, T. J. Mayall Cabr, road \&rip genar,
Can. See Drip can.
Can alling attechment, J. H. J. Halnee

Car heater, F. Trowbrige.
Car heoter, C. W. Wiecking
Car motor, ateam stroet, W. V
Car, railway, Love $\&$ Soealike
Car marter, J,
Car sumter, Jo M. Linnoout.
Cara, dio for making stako pocketa for, C.
 fer combs of, E. Wright. Carrier. See Cash and parcol carrier. Tuß Cart, rood, W. A. Paterson. Cartridge loadink machino, G. D. Hi............. Cash and parcel carrier, G. F. Green.... Castor, M. B. Bohonc
roy..........
Casting car wbeopla..................................
Cempent for calkink metalle jointa, W. W. Warikio. Chaln wrench, W. 8. Rollures
Chair. See Folding chalr.
Chate, coal, E. F. Lewis.
Clgar moald press, D. Slunghi........
Clatern clamp fastener, W. A. Blagas, Jr
Clstern, aushlng. W. Dunnet
Clothes atand. s. A. Parter.
Clothes atand. S. A. Parker.
Clover huller, A. T. 8heots
Coal drill btt, D. Corran
Coll, renotive, E . w . Rice, Jr
Collar horre, H. Van Waconer.......................
Colortng matter, productag blue-red, e. Hasee
Converor apparatua................................
cilickenederfor...... See Stook cooler.
Copring puds molst, receptacie for keoptng prees.

Coupling. Boe Car couplita..
Crabobing and artnoling
Cultivator, v. Rhodea
Cup. See Grease cup.
Curtaln bar, window, I. B. Tripp
Cut-ör ralve, A. Van Guyalling
Culer. $88 e$ Verecable catter.
Cylinders with toothed strips of motal, dorico
olothing

 Drill. See Dental drill.
Drilling tool, H. s. Gail Drilling tool, H. S. Gall.
Drip can, E. L. Kinport
Dyeutur by the action of tetraco-................... on
betanap ofthyiamine mononalpho acta, produ
Hon of Dlue-red aso, K. Hazsenkamp.
Hectric contact changer, P. C. Morse....
 Eleotrio qenorator, dypauno, R. .L. Rles..........
 Eleotric machine, aynamo, R. H. Mather..
m.
 Electric motora, meane for regulating and
trolling, B. A. Finke..................

 Elevator. Soo Fileotric elevator.

Kngine. fee Gas engine. Rotary engine. Win

Engraving and chasing machine, J. A. Coburn...

Preed water rexalator. J. W. Weaver
Fence, N. W. French......
 Toppan.. Filter, Mreace A. Heberer
 Mre extingulsher tor oar heatern, antomatle
A. Lyon.......................

stroproot matiorial, J. Bmalkh............................. $881,21,1$
Folding chalr, H. J. Harwood.................. 381,8

 381,483
381,37
301,130 281,458
881,185 881,458
381,188
881,170 Oven attechment. c. H. Harmon 381,229
Pall, chamber, G. W. sticon.
Pan. See Leer pan.
Paper and t ter no holder, J. o. MoBride.
aper recoptacle, o. H. Hicka................331.184

Pen, fountaln, G. Pellinger. Pea holder, W. W. 8towart 881,117 891,19 Photograph holder, J. Mcafforty Photokraphle printing frame, I. F. Adt Plano action, 8. R. Harcourt	

Printer's analley, O. A. Dearing. reoelving tickets from tiokoh Propeller, ecrew, A. Vogeleang

Eropuladon of shlps or veaela, apparatus for the
E. Grifinan..
Palley buahing, J. J. Mahoney

云

coo. Boe Pump rod.
colling mills, reeling apparatus for rod, F. II

Bean
manh look and factonar

Saw Jointer, C. R. Bhack....
Sawmilli, rovoruling Rear for, E. N. Colijet............3croenink, machino
J. F. Golaing..
oparator volocipede seat.Woodman.381,574
381,100
hoet metal, aydrallt, A. E. Hobbon.... 281,2020
802,300
and expanding iat, Golding \& Darkeo......hoe, C. T. Loe......Elino
Signal. Seo hallway sigDal. Railway semaphore
algnal.43, 381, M4
Oap, making, R. A. McCollough...........
ole edge burnishlog machine, W. Gordion. 381,509
381,490
381,200
Doke tenon, W. F. Morton.
Momberg ..
tand. See Clothes stand. Show stand. Steam boilior, C. J. M. Hayna....................from, J. J. Lowden.team, utilising exhaust, M. Hornigmanntook cooler, portable. I. T. Eoh wamm.woil or chair, edjuatable, G. W. Tripp...tove door, W. F. Beecher....
a apparatus switch. viteb, circott breater,
minge, W. streetman..........................2881,46
87,511

TheTechno-Chemical Receipr Book.
톤ㄴ․․․․․
 let cioth, jillt Iree of postage to any adaress in the world.
Price $\$ 2.00$.
 HENRY CAREY BAIRD \& CO.,
 Usefull, Beautiful, and Cheap. To any person about to erect a dwelling house or sta-
ble, either in the ecountry or city, or any bullder wishing
to examine the latest and best plans for a church, school to examine the latest and best plans for a church, school
house, club house, or any other public bunlding of high
or low cost, should procure a complete set of the ARCHITECTS' AND
AMERICAN.

The information these volumes contain renders the work almost indispensable to the architect and builder and to persons about to build for themselves they will find the work suggestive and most useful. They colored plates of the elevation, plan, and detail draw-

 ings of almost every class of building, with spectifea-tion and approximate cost. Four bound volumes are now ready and may be ob-
tained, by mall, direct from the publishers or from any newsdealer. Price, $8 . .00$ a volume. Stitcheed in paper
new.
covers. Subscription price, per annum, 2.50 . Address
and remit to
MUNN $\&$ CO., Publishers,
$\frac{361 \text { Broadway, New York. }}{\text { His }}$ ing Engines. Turbine water COMPARATIVE VALUE OF STEAM

THE DEVELOPMENT OF THE MER-

BIBB'S Celebrated Original
BALTIMORE PIRE
PLAEE HEATERS
To warm

SEVERN AND MERSEY TUNNELS.-

 EVERY USER OF MACHINERY How to Use Loose Pulleys. Userul information on tlus subjec,
is giver in our "Oatalogue No. 5 .',
Sent free to any address.

PERFECT
NEWSPAPER FILE

MUNN \& CO.,

 GAS GNGINGE.
Best in principle, Workmanship, and materials:

 ECONOMIC GAS ENGINE COMPANY,

THE CURTIS

MUNSON'S PORTABLE MILLS,

WEITMYER PATENT FURNACE every description.

THE "FISHKILL" CORLISS ENQINE, Fishkill Landing Machine Co., Fishkill-on-Hudson, N. Y.

ROCK BREAKERS AND ORE CRUSHERS. ROCK BREAAKERS AND ORE CRUSHERSK

RALLWAY AND STEAM FITPERS' SUPPLIES Rue's Little Giant Injector. sorew jacks, sturtevant blowers, \&e. Telegraph and Electrical SUPPLTES

ETIOLOGY OF SCARLET FEVER-A

BALL ERIE, PA.E CO.

 BROOKS' NATIONAD DETEGTIOE

 ELECTRIC CONV EYORS--DESCRIP

 FAST ACTOMATIC Mrict $\$ 10.00$ to $\$ 50.00$
VULCANITE EMERY WHEELS.

 SUPERIOR TOALL OTHERS Thopands of manufacturers testify to tes being the Strong-St, most Du rable, and \mathbf{H} ealthiest Kmery Wheel made. RUNS WMT OF DRY New York Belting \& Packing Co., Large Wheols mado on Cast Tron Centers if de- Warehouse : 15 Park Row, New York
ICE \& REFRIGERATING

INSURANCE G.HARTFORDCONO

Propasils for Consiructivg isicam Propellier. this -sealed proposas, is iuplicate, will be recelved ai

(Bicivyctes.
 NO STRONGER BICYCLE MADE. A.W. GUMP \& CO., Dayton, TELESCOPES-THEIR HISTORY Patent, Exhibition \& Security EXCHANGE CO., 61 LA 51020,000 , in 10,000 Shares or 810 eno, 1LL Chicaga the Center for a Peres ient Exhibition. THE OBBECT Of this Company ys is oestablish and maintio permanent Exhblition Rooms for Inventions
 PHONOCRAPHY ${ }^{\circ}$ Solf-tayght, Send for Catalog. Address

 STORAGE BATTERIES FOR ELEC-

 200 Cutc, Curlous, Catchey Pletures

 FRAMCE LOUN KA PFERER, 12 rue Orleun ays American, eleectrical and meechanical Roods. Invent NVENTORS AGENTS DEALERRSOR OOTERES
 PATENT WANTED - Will buy exclusive

 M. F. BRew

 DISEASES OF DYNAMOS-A PAPER

The Scientific American PUBLICATIONS FOR 1888.
The prices of the different publications are as follows:-

Wovertisements. ment as the lettere prates. receive at at publication omtce ing to appear in next issne
 New Gas Engine

 "The Baldwin" Otis Brothers \& Co., Elevators and Hoisting Machinery, CASTING METALS UPON COMBUSTI-

 Nomity "arimem Expose an Immense Heated Extract all the Heat the Gases. Furnish Prom C
Warm Air in Abundance. Unteen Years of Test.
Universally satisfactory.
Send for "O Aend for "Our Furrace Book,", Philadelphia and Chicago.

SHIP WAVES.-BY SIR WILLIAM Thomson. A lecture delivered before the Institution of
Mechanical Engineers. - Definition of Wave. The difter
ent kinds of

AIR, PURIFICATION OF.-BY D. Prine, M.D. An experimental stuy in re ation to the
remova, from the air or the dast or particulate material
supposed to produce yellow fever, small-poxe and othe

WATCHMAKER THE FORTH BRIDGE - A PAPER BY

SUN DIALS. - PRACTICAL DIREC

PATENTS.

 TH: AMERMCAN BELU TEF PHONE CO 95 MILK ST, BOSTON MASS
This Company owns the Letters Patent ranted to Alexander Graham Bell, March Th, 1876, No. 174,465, and January 30th
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders each
individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

GOLD MINING MACHINERY. - DF

EI. V. JOFEN®'

 Asbestos Patented Roofing H. W. JOHNS MFG. CO., 87 Maiden Lane, N. Y. Chicango. Philadelphia. London.

8
 THE BRIDGEPORT WOOD FINISHING CO Wheelors Patident Wood Muluer. Breinigs Lithogen Siligate paint Lithogen primer, wood stains SILEX FRMER MO FELDSTAR

an Rundew, forman THE VICTORS
ARE THE BEST
Bicycles, Tricycles, Safety Bicycles
Overman Wheel Co. Makers of Victor Cycles, BOSTON, MASS. HOW TO MAKE AN INCUBATOR.-

WIRE ROPE

 RAILS FOR STREET RAILROADS.

RUBBER BELTING, PACKING, HOSE,
 MECHANICAL and MANEFFACTURING PURPOSES THE GUTTA PERCHA AND RUBBER MFG New York, Chicago, San Franeisco, Toronto,

G. Hatfield. With directions
 RRASOTORT $\begin{gathered}\text { small Brass Werk \& Modes } \\ \text { Also Aspecility }\end{gathered}$

ELEOTRIC WELDING.-A PAPER B
 FW=? M =

Scientific American

 The Most Popular Scientific Paper in the Worid. Only 83.00 a Yenr, including Postage. Weekly.52 Numbera n Year.
This widely circulnted and splendidy illustrated paper is pubished weekly. Every number contains sir
teen pages of useful information and a large number original engravings of new inventlons and discoveries
representing Engineering Works, Stega Chemistry, Eleetricicity, Telegraphy, Photography, A, cecture, Agriculture, Horticulture, Natural History, etc.
Complete List of Patents each week Terms of Subscripts each week.
Terms of Subscription,-One copy of the scizs.
TIFIC AMERICAN will be sent for one yearpostage prepaid, to any subscriber in the United Sates
or Canada, on or Canada, on receipt of three dollars by the
lishers; six months, 81.50 ; three months $\$ 100$ lishers; six months, 81.50; three months, $\$ 100$
Clubs.- Special rates for several names, and to Masters. Write for particulars.
The safest wat
The safest way to remit is by Postal Orfer. Dnith, or
Express Money Order. Money carefulit plat Express Money Order. Money carefully placed taside
of envelopes, securely seated, and correctls seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafte, etcon pay.

```
    MNUININ &e CO.
```

 361 Broadway, New York. TIETIT
 Scientific American Supplement.
This is a separate and distinct publication from
THK Sorentric American , ut is uniform theremitb
in size every number of size, every number containing sixteen large pages full
of engravings, many of which are taken from foreige papers, and accompanied with translated deseriptions
THE SCIENTIFIC AMEBIC weekiy, and includes a very wide ramge of is publithe weekly, and includes a very wide range of contents.
presents the most recent tapers by eminent writers in
all the principal departments of selence and the Useful Arts, embracing Biology, Geclogy, Mineralog), Natural History, Geography, A rchreology. Astronomy
Chemistry, Electricity, Light. Heat, Mechanical Engl neering. Steam and Railway Engineering, Mining
Ship Bullding, Marine Engineering, Photogriph echhology, Manufacturing Industries, Shotogriph
gineering, Agricutury
\mathbb{E} gineering, Agriculture, Horticulture, Domestle Feon
my, Biography, Medicine, etc. A Vast ammint of fres and valuable information obtainable in no other pul The most important Ensineering Works, Mechantems
and Manufactures at home and abrosis and Manuractures at
and deseribed in the SUPRIEMENT.
Price for the SUPPLEMENT for the United States and Canada, 85.00 a year, or one copy of the SCIENTIFIC Al ERIOAN and one coly of the SUPPLEMENT, both mailed
for one year for $\$$ कi.00. Single copies 10 cents. Address and remit by postal order, express money order, or check
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, N. Y.

Builders Edition.

The Scientifio Amigrican Architects' axi
BuILDers' Edition is issued monthly. 82.50 a yea ingle copies, 25 cents. Forty large quarto pages, equil large and splendid Magazine ot Archisecture ring 1y adorned with elepant plater in colors, and with other
fine engravings; illustrating the most interesting ex amples of modern Architectural Construction a anled subjects.
of a variety of the latest and best plans for private resb-
dences, city and country, includlng those of very moderate cost as well as the more expensive. Drawings The elegance and cheapness of thits mastimates, etc. rectural publication in the wola son of MUNN \& CO., Publishers, 361 Broadway, New York.

PRINTHNG ITNES,

