
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, APRIL 28, 1888.
[$\$ 3.00$ per Year.

1. Store. 2. Factory. 8. Thermometer Shop. 4. Enappring Roomp. 6. Bram Foundry. 6. Lena Grindiog. 7. Lens Fitung. 8. Eyeglase and Spectacle Department,

ฐrientific esmmeritan.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. pUbLished weekly at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN.

A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S. or Canada....
One cops, six months, for the U. S. or Canada.
ne copy, one year. w any forelgn country belonging to Pootal Union, 150 Remit by postal or express money order.
Amatralia and New Zealand.
BCIENTIPIC AxErican. for a little over one year, may remit 81 in current Colonial bank notes. Address
MUNN \& CO.. 3 ci Broadway, corner of Trankiln Street, New York.
The scientiac American supplement io a distinct papor from the scientimic Amirican. THE SUPPLEMAENT
 5.00 a year, for U. S. and Can. Terms of subseription for SOPPLEMENT, hag to the Postal Union.
Combloed Rater.-The scientific american and supplement will be sent for one jear, to any adirese in U. B. or Canades, on recelpt of
woen dollars. The sufost wa
Anatralla and New Zenland.-The scientipic Aktrican and
Soppl.cment will be sent for alltue over one jear on resolpt of sa curOPPI.EMENT will be sent for a ilttle over one jear on recolpt of 89 cur ent Colontal bank notes.
Addrees MUNN $\&$ CO, 381

NEW YORK, SATURDAY, APRIL 28, 1888.
Contente.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

INO. 848.

For the Wook reding April 28, 1888. Price 10 cents. For sale by all newodealerr.

 RHOLOGY.-Potaona-ADatract nen 1 lecture by Pror. Mryworr

. CHEMISTRY. Molecalar Welghto-A nell and almple method V. CIVIL ENGINERRING.-Concrete. By Jown Luxdr-A prac
 Rativirrina- - Katrado's High grood Lncomotive-A com-

IX. PH

 XI. protogeaphy.-How to Makr Phot-Printing Platee.-The

 of the smaller. Uranns sets on point out th 49 m . A. M. On the 31 st he sets at 1 h .50 m . A. M. The diameter of Uranus on the 1st is $3^{\circ} .8$, and he is in the constellation Virgo.

saturn

is evening star. He is moving eastward and approaching the cluster Praesepe, in Cancer. He is on the me ridian, or point overhead, on the 1st, at $5 \mathrm{~h} .31 \mathrm{~m} . \mathrm{P} . \mathrm{M}$ he sets at 10 h .54 m. P. M. His diameter on the 1st is 17", and he is in the constellation Cancer.

MERCURY
is morning star till the 10th, and then evening star. He reaches superior conjunction with the sun on the 10 th, at $7 \mathrm{~h} . \mathrm{P}$. M., passing beyond the sun and reappearing on his eastern side as evening star. Mercury rises on
the 1st at 4 h .85 m. A. M. On the 81 st he sets at $\theta \mathrm{h}$. tion Virgo.
is evening star. The chief interest attached to his course during May is his near neighborhood to Mars, he larger planet serving as a guide to point out the position of the smaller. Uranus sets on the 1st at 3 h .

Thomas Silver, civil engineer and inventor, died in
New York, April 18, of Bright's disease. He was born June 17, 1818, in Cumberland County, New Jersey, of American parents, belonging to the "Society of Friends." When a boy, he developed mechanical in with hidden propeller wheel and other devices, was the wonder of the country village. Models of his many sabsequent inventions are at the Patent Office, Wash ington, Kensington Museum, London, and the Con servatoire des Arts, Paris. The loss of the San Fran cisco in 1854, bound to California, with troops, caused by the engines becoming disabled in a severe storm, led to the invention of Silver's marine governor. In 1855, it was placed on the engines of the steamer Atlantic, of the old Collins line, also on engines at the United States Mint, Philadelphia Arsenal, and on the printing presses of the Public Ledger, of Philadelphia and Tribune and Herald, of New York, which re ported it as "operating more quickly and correctly, even for stationary engines, than the old two-ball gov ernor, which depended upon gravity." Mr. Silver's greatest success with it was in Europe. Admiral Pairs introduced the governor in the French navy in 1855, maintaining "it was just what always had been needed." Vessels on the Continent soon adopted it John Hamilton, and, later, Osborne \& Co., engineers on the Clyde, became the manufacturers, realizing large fortunes, though opposition was continual, one house in Glasgow confessing candidly as a reason for not using it that they realized $\$ 25,000$ yearly by repairing engines on which it was not used.
At the Royal Institute, of London, it was resolved that "Mr. Silver had done as much as any man living to facilitate stean navigation, enabling steam vessels to weather all gales, without danger of broken shafts wrecking; and consequent loss of life." Prince Albert said: "Mr. Silver, it is too common sense a thing, engi neers must use it." The British Admiralty ordered it into general use in 1864, and so did all the naval au thorities of the world, excepting that of his own soun try, the United States. Mr. Silver was a member of
the Franklin Institute, of Philadelphia, and of different societies in Europe, and awarded several medals. His latest inventions were a mechanical lamp, and a lamp burner made to dispense with glass chimneys, which is a great economical success.
Mr. Silver married the daughter of the late James M Bri, of Philadelphia, who survives him, and leave York.

POSITION OF THE PLANETS FOR MAY

 JUPITERis morning star till the 21st, and then evening star. The most important epoch in his course occurs on the 21st at midnight, for he is then in opposition with the sun Jupiter in opposition, rising at sunset, looking down from the meridian at midnight, and enthroned among the bright stars of Scorpio, makes the most charming celestial picture that will glow on the planetary annals of May. Observers should follow his course as rising low in the southeast earlier every evening he leads the
starry hosts as they move over the heavenly road. He is very near to Beta Scorpii on the 20th, at 10 o'clock in the evening, passing only 2^{\prime} south of the star, scarcely a line of sky intervening between them. An opera glass will bring star and planet into the same field at the time of conjunction. Jupiter rises on the 1st at 8 h. 38 m. P. M. On the 81 st he eets at 3 h 57 m . A. M. Hi diameter on the 1 st is $42^{\prime} .4$, and he is in the constellation Scorpio.

MARS

is evening star. He is on the meridian soon after 10 o'clock on 1st, and is still a conspicuous object in the sky, the distance increasing between him and Spica. On the 5th, at 1 h . P. M., he is in conjunction with Uranus, being 3^{\prime} north. Mars sets on the 1st, at 3 h
54 m . A. M. On the 31st he sets at 1 h .45 m . A. M. His diameter on the 1 st is $16^{\circ} .2$, and he is in the constella

4 m . P. M. His diameter on the 1st is $5^{\circ} .2$, and he is in the constellation Aries.

NEPTUNE

s evening star until the 20th, and then morning star. He is in conjunction with the sun on the 20th, at 8 h A. M., changing his position to the sun's western side and becoming morning star. He is in conjunction with Mercury on the 15 th, both planets being very near the sun. Neptune sets on the 1 st at $8 \mathrm{~h} .15 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31 st he rises at 3 h .58 m . A. M. His diameter on the 1st is $2^{\circ} .4$, and he is in the constellation Taurus.

venus

morning star, rising on the 1st about half an hour before the sun. Her diameter is decreasing, and her distance from the earth is rapidiy increasing. Venus rises on the 1st at 4 h .13 m . A. M. On the 31st she rises at 3 h .54 m . A. M. Her diameter on the 1 st is $10^{\circ} .6$, and she is in the constellation Pisces.
Mercury, Saturn, Mars, Uranus, and Jupiter are vening stars at the close of the month. Venus and Neptune are morning stars.

The sharing of Proflte with Employes.

This is a subject which is receiving considerable attention, and one on which there seems to be a di versity of opinion. A Springfleld (O.) manufacturer says in the Age of Steel: "I am almost persuaded that the best way to secure the undivided interest of an employe is to share with him the profits of the concern. You thus make him your partner; he is elevated in his own estimation and in reality; he feels a certain pride in the work turned out, not only of his department, but of the entire factory; he has aroused in him a feeling that he is in a certain sense responsible for anything that may no wrong about the establishment, and he will use his best mental and physical endeavors o do the particular piece of work he is doing as well as it can possibly be done. I believe, also, that the system of profit sharing is a solution of the labor question. The system brings employer and emplose ogether. They are friends, colaborers, in a common cause. What is for the best interest of the one is for the best interest of the other, and should any difference arise between them they will not go into a cor ner and sulk and nurse their grievances until a molehill becomes a mountain, but will come together like partners, as they are, and will adjust their differences without trouble. I am not saying that either emwithout trouble. I am not saying that either em-
ployers or employes in this country are yet ready for ployers or employes in this country are yet ready for
this new order of things. But they will grow into it this new order of things. But they will grow into it, for I believe that the time will coune when the
will be very generally adopted in this country."

An Unpolishable Diamond

A remarkable diamond was exhibited at a recent meeting of, the New York Academy of Sciences by Mr. George F. Kuntz. It was a compound or multiple rystal, containing a large number of twinnings. It is of the class termed "extreme durate" by the French. thad been cut into the general shape of a brilliant, and its main face or table was then placed on the polshing wheel. It was kept there for 100 days, the wheel revolving at the rate of 2,800 revolutions per minute. The diamond was held upon the rotating sur ace at a distance of about 15 inches from the center. Based on these figures, a calculation showed that the surface passed over by the diamond amounted to 75,000 miles, or nearly three times the circumference of the earth. Yet it was all futile, as the stone would not acquire a polish. The ordinary weight placed on a diamond, while on the wheel, is from $21 / 4$ to $21 / 2$ pounds. This was increased by 4 and 8 pounds without effect, and finally 40 pounds were used. The wheel was badly damaged, the diamond plowing nto it and throwing scintillations in all directions The diamond, even under these conditions, could not egiven a commercial polish. The wheel had to be eplaced. The work was done in the establishment of Tiffany \& Co., of this city.

Exploration of Greonland.
A correspondent in Norway sends us the following Theresting information :
The conservator of the museum at Bergen, Mr. Frith of Nansen, intends very soon to investigate the interior of Gremland.
One of our sealers is to take him to the eastern shore, where he is to land at, or near, Scoresby Sound.
Taking the place as a starting point, he intends to cross the continent to some place near Disco Island, on the western shore. For making the journey over the ice or snow he means wholly to rely on the use of the Norwegian snow shoes, long narrow strips of wood (ash as a rule), on which great distances can be wood (ash as a rule), on which great distances
Mr. Nansen is a man of learning, of an energetic turn of mind, and is bent upon seeing his plan accomplished in this manner. He is an expert on snow shoes, and is
to be accompanied by only three or four other persons accustomed to the hardships of mountain traveling in a Norwegian winter, as is also Mr. Nansen himself.

With the increase of her army and navy, the wa fever in Italy seems to be growing apace. The Alpin rontier is being strengthened with something like fe verish haste, owing, no doubt, to the preparations on the French side, and the Italian military journals are flled with so-called proofs that war is imminent. Fis crito ltaliano, in a recent issue, declared that it had discovered a French conspiracy to fall suddenly upon Spezia with ships and troops and simultaneously with a declaration of war. It warned the government that coup de main was about to be made, and insisted that the Italian fleet recently collected at Madalena should be instantly dispatched to the threatened port. L'Ave nir Militaire, speaking at great length on the subject explains how so absurd an idea got abroad.
It says that Capt. Mirabello; Italian naval attach to the Paris legation, became alarmed by the unusua naval preparations he saw making at Toulon, where he Frach Admiral Krauz is reftting a big fieet rehips of the line; and bka, consisting of some fort nterviewed at the Ministry of Marine was unwilling to unfold his plans, the over-excited Italian jumped to the conclusion that a descent upon the big Italian naval ontrepot was contemplated, and sounded the alarm. The affair is what we would call a tempest in a teapot, and seems, at least from this distance, scarc worthy serious attention.

Our English contemporary Broad Arrow does no think so, however. It says

What redrees has the government of France against the Escrito if the story told by that Italian journa is not true? What a picture of national demoraliza false!
"If France really had any such ideas, the mere entertainment of them goes far to place her outside the pale of the civilized society of nations; for such things are not war, they are gigantic acts of piracy. If
France cannot clear herself of the charge, let her be France cannot clear herself of the charge, let her be
Anathema maranatha, and let us in England sit tight and take care that no laxity shall suggest a temptation to a people unable to resist it. Yet can we not believe the story is true."

Sir Edward Reed, the famous naval architect, but no longer having a hand in English naval construction, says that none of the big ships built for the roya navy, since he was at the head of the construction department, are reliable for war purposes, that they look formidable and seaworthy, and so they are in time of peace, but the very moment anything useful and prac tical shall be expected of them, he says, is when they
will be found most deficient and unreliable. Curiously will be found most deficient and unreliable. Curiously enough the present Board of Naval Constructors have
decided that the ships he built are obsolete, and this would make it appear-if we take the opinions of both sides-that Brituin has no effective ships at the present time. During a recent naval debate in the House of Commons Mr. Reed said : " Nine millions [$\$ 45,000,000$] have been spent on ships which, if they entered bat tle, would be lost almost as readily as if they had no armor, and would be only saved by their engines and boilers," that is, by running away. There is food fo reflection in this !

Apropos of this, we have the recent payment of 15,000 to an English naval architect, Mr. Johns, by our navy department for a design of a big armored ship embodying the same ideas of construction which are thus pronounced fallacious, and which it seems no exaggeration to say have been fairly shown so to be by the recent naval maneuvers.

The German military anthorities are much troubled -ver the question of magazine rifles vs. single firers, for the latter, it is conceded, has some decided advantages over the new arm. The Militar Wochenblatt, com menting upon the recent report of the Russian Genera Wasmund to the Russian military authorities, admit
there is at least some sound reasoning in his findings. there is at least some sound reasoning in his findings.
General Wramund, who is recently returned from an General Wramund, who is recently returned from an
extended examination of the magazine gun as now used in the Continental armies, declares he discovered no proof whatever of its superiority. On the contrary where trials were made of the two arma simultaneously, and under similar conditions, he observed that the very reliance which the multi-firer bred in the soldier was a source of weakness at the critical moment. Looking to the many charges in his gun to stand him in stead, he neglected to take those precautions which are necessary fre, using a piece that must be reloaded after each pecially after long marching was the inferiority of the new arm observable; those armed with the old one hitting the mark oftener because of the less weight to bring to the shoulder and the unchanging poise. Rus sia will not change-at least for the present.

The Germans have given ap the metal breast and back plate or cairasa. It is found to offer little protec
tion, unable to stop a bullet, besides rendering gunshot wounds more dangerous because of the pieces o metal torn from it by the bullet and often forced into the wound.

Roscoe Conkling.

On the morning of Wednesday, April 18, Roscoe Conkling died. His death is attributed largely to his exertions during the March storm, when in the height of the gale he walked up town from his office in Wall Street. He died at the height of his career as politician and lawyer. As legislator he had made for himself a unique fame. Positions that other men wo
was able to resign, or to refuse when offered.
He was born in Albany, N.Y., in 1829 . His father was
. Alfred Conkling, a lawyer of considerable reputation, circuit judge in 1825, and minister to Mexico in 1852. Roscoe Conking was one of three sons, of whom Fredorick A. is still living. Without graduating at any college he began the study of the law, entering the law filice of Spencer \& Kernan, of Utica, N. Y., in 1846. n 1858 he was elected mavor of Utica, which office he resigned a year later
His services in the national legislature began in 1859, when he entered Congress as a representative of the Oneida district. With one intermission he held a posiiou in the House of Representatives for a number of ears. In April, 1866, upon a bill relating to the reorganization of the Army of the Potomac, he and Mr. James G. Blaine were oppoeed to each other. The debate became acrimonious, and was the foundation of a quarrel that has been termed historic. In January, 1867, he took his seat in the United States Senate, havong to resign a seat in the House of Representatives to accept the promotion. In May, 1881, during President Garfield's incumbency, he resigned from the Senate, and thenceforward devoted himself to the practice of law. It is said that the purpose of his resignation was o obtain a unanimous vote for a return, and thus to indicate his position in certain political differences with the executive. It resembled the English appeal the country. He was not re-elected, and passed out of public life. In 1882 President Arthur sent in his ame to the Senate for a position on the bench of the United States Supreme Court, but Mr. Conkling declinod the honor.
His work as a lawyer since that period has been of mmense importance and extent. He acted as counsel or many corporations, and had acquired a very high eputation in the more important class of patent cases. He was married to a sister of Horatio Seymour, and he, with an only child, a daughter, survives him. In 877 he received the degree of LL.D. from Madison University.

Dr. Cormelius Rea Agnote.

This eminent specialist, famed for his skill in the reatment of affections of the eye and ear, died on Wednesday, April 18. On Sunday, April 8, he was attacked by peritonitis. He had been called in to reat Mr. Conkling, who was attacked by his last ilness on April 5. Dr. Agnew called upon Drs. Sands and Barker to assist in performing the operation, but his own illness forced him to give up the care of his distinguished patient. Slx days before his death, he submitted to the operation of laparotomy, administering the ether himself. Pas was diseovered and the cavity was drained, but without any effectual elief.
Dr. Agnew was born in this oity, August 8, 1880. He graduated from Columbia College in 1849, and from ye College of Physicians and Surgeonsin 1852. About a year later he was appointed surgeon of the Eye and Ear Infirmary, and then went to Europe to complete his studies. In Dublin, London, and Paris he pursued his researches, and in 1855 returned to America. In 1864 he resigned his position at the Eye and Ear Inirmary on account of his other pressing duties. He Was one of the lounders of the Union League Club, a founder of the Ophthalmic Clinic of the College of Physicians and Surgeons, and he initiated many other Physicians and Surgeons, and he initiated many other
important professional movements. He was one of the oldest members of the board of trustees of Columbia College, and was a member of a great number of scienCollege, and
tiflc societies.

John R. G. Hascard.

On Wednesday, April 18, Mr. John Rose Green Hassard, of this city, died. He was born on September 4 1836, in New York, and graduated from St. John's Colege, Fordham, in 1855. He adopted literature as his profession, and in it attained considerable eminence. His first important work was done on the "New American Cyclopedia," now "Appleton's Cyclopedia." Here he was in coustant association with Mr. Ripley, the chief editor, then also engaged on the Tribune, who as greatly impressed by Mr. Hassard's ability. In 1865 Mr. Hassard was editor of the Catholic World, and at
last, in 1886, became associated with the New York Tribune, and continued the connection until his death. He did a great variety of literary work for that and
other journals, musical criticism being ope of his en-
pecially strong points. While on the Tribune staff, Mr. Hassard and another member thereof independently attempted to decipher the famous cipher dis patches of the Democratic managers in the Tilden Hayes campaign. When each had attained a partial success they compared notes, and thenceforward progress was rapid. It is said that he never recovered from the strain that this performance entailed.
Among his works may be cited the following: "Life of Archbishop Hughes " (1866), "Life of Pope Pius IX." (1877), "A History of the United States" (1877), "The Ring of the Nibelungs" (1877), and "A Pickwickian Pilgrimage" (1881).

The san salvador Rallway.

From the harbor of La Union, on the Pacific, the railway crosses the State of Sta. Ana, a district of Salvador 50 miles square, producing, it is stated, more coffee than any equal area of land in the world. In truth, every acre of the mesa of Salvador is cultivated, each producing from two to four crops annually. The products are rice, tobacco, indigo, sea island'cotton, coffee, sugar, cocoa (chocolate), India rubber, and Peravian gum-so-called because it was originally sent from Salvador to Peru and thence to European markets. The railway penetrates irom La Union to Puerto Barrios or to Port Izabal on the Atlantic side, whichever harbor may be its northern terminus, a very paradise. The average density of population along the whole route exceeds 100 for each square mile. Here villages and towns are almost conterminous, and the popula-tion-Aztec 92 per cent and Spanish 8 per cent-toil most industriously. Labor costs 20 to 25 cents and food 10 cents per diem. The thatch-roofed, floorless adobe huts of the natives (Aztecs) are the cheapest possible, and only useful in protecting the occupants against rain storms of July, August, and September (the rainy season), when the country is flooded almost every day. There is not a stove or fireplace in any house in the republic. None is needed where the thermometer never falls below 70 or rises above 80 degrees. So great is the annual production of fruits, as well as of indigo, tobacco, sugar, and coffee, and so short the distance from Port Barrios to Mobile, that it is believed that most delicate and delicious tropical fruits, never seen in the United States, will be distributed every where from Mobile; and so redundant are the crops of Aalvador and of the districts of Guatemala penetrated by this railway that it must have two tracks-one for immense local, the other for interoceanic, freights and travel.
But the great good to be achieved by this transisthmian road congists not so much in the fact that it will enable traveling multitudes to cross the continent where narrowest without possible danger from deadly fevers and plagues incident to detention at the sea level, but, with its branches, binding together these five Central American states in perfect political and social unity, it accomplishes their perfect commercial annexation to the Únited States. Puerto Barrios is within fifty hours or less of Dauphin's Island wharves at Mobile, and only sixty hours would be required to transfer a traveler or bale of goods from Mobile to the Pacific coast harbor of La Union. United States and other steamers now pay from $\$ 20$ to $\$ 30$ a ton at La Union for English or Australian coal. It may be delivered there from Alabama over the transisthmian rail way for from $\$ 5$ to $\$ 7$ a ton. Therefore, the governrailway for from ment of the United States, as well as the people, must ment of the United States, as well as the people, must
confess keen interest in this short, easily built railway, confess keen interest in this short, easily built railway, and commercial results.
After the plan of the transisthmian railway was conceived and the details published, and after applications were made for charters in Salvador and Guatemala, English and French bankers and capitalists sought much the same concessions; but the governments of Salvador and Guatemala both gave preference to the American applicant for these franchises. The Salvador charter conceded a monopoly for fifty years of the right of accens to the matchless harbor of La Union. The cost of a double track road from La Union to Port Izabal or Port Barrios, it is stated by engineers who izabal or Port Barrios, it is stated by engineers who about 300 miles will not traced 985,000 mile will not be a tunnel not exceed $\$ 30,000$ a mile. There will not be a tunnel on the whole line, or a grade greater than 70 feet on any mile, and this only at each
terminus, whence locomotives must climb, within 80 terminus, whence locomotives must climb, with
or 40 miles, to the mesa 2,000 feet above the sea.
or 40 miles, to the mesa 2,000 feet above the sea.
The rapid multiplication of foundries, furnaces, and forges in Alabama aud other Southern States induced the writer to seek, for the behoof of the commonwealth which is his home, an insatiable market for its products, to be found alone along the western shores of the three Americas. From every trading place of as many as 2,000 or 3,000 inhabitants along this interminable coast a railway will soon lead to farms and villages of the interior. Twelve such railways are now building between the southern confines of Chili and Galifornia. If the transisthmian railway be speedily finished, the iron and coal and steel of England and Australia may be supplanted everywhere on the Pacific by that produced in the United States.-Report of L. J. Du Pre, U. S. Consul, San Salvador.

THE LANUFACTURE OF sCIENTIFIC APPARATUS.
Thirty-five years ago, Mr. James W. Queen, a gen tleman of scientitic attainments and great business ability, began in the city of Philadelphia a small business in optical and philosophical apparatus. In 1859 he associated with him Mr. Samuel L. Fox, and under their personal supervision and management the busi ness steadily developed and quickly outstripped similar establishments. In the year 1870 Mr. James W. Queen withdrew, and Mr. S. L. Fox continued and still con-

ETAINEERING MSSTRUIEENTS.

tinues the business under the old title of James W Queen \& Co. Different branches were gradually added until the business became the largest and most comprehensive of its kind in the United States or in the world. The progress and development of this business is, without doubt, a fair index of the scientific progress of this country. In time the business became so large that it was found necessary to arrange the different branches under different departments, with a competent mar-at the head of each department.
There are at present six departments, arranged under the following heads : Physical and chemical, engineer ing, ophthalmic, microscopical, the magic lantern de partment, and the photographic department. The headquarters of these departments are at 924 Chestnut Street, Philadelphia, at the site occupied originally by Mr. Queen ; but the business having enormously outgrown the building, some of the departments were obliged to seek quarters for apparatus in other build ings in the vicinity of the main offices of the establish ment. The factory in which are made a large propor tion of the iustruments and apparatus sold by Queen \& Co. was long ago removed to more commodious quarters, now occupying a floor extending through a city block and fifty-five feet in width.
Although the importation of fine instruments for demonstration and for commercial use is a large and important part of the business of the concern, the

Co. One of the features which first attracts the attention of visitors to the shop is a machine for testing anemometers. A pair of anemometers are attached to a long beam, which is rotated at a known velocity. This is, of course, the equivalent of causing the air to pass the anemometers at the same velocity. By means of the rotating bean the instruments are carried through the air at different velocities, ranging from a fraction of a mile per hour up to the velocity of a cyclone, and the instruments are adjusted to accurately indicate and record the velocity.
The thermometers and barometers used by the government are inade here. An order from the government for a large number of microscopes of special design for testing certain adulterations of food has reently been completed.
The microscopes of the various " Acme" patterns are made here, these being finished up in lots of from twenty-five to fifty of a kind; many of the parts are inade up by hundreds at a time. As the best drawn steel pinions to be found in the market have proved to he of insufflcient exactness to make a perfect rack and pinion movement, all the pinions and racks used here pinion movenent, all the pions and race uas here n the manufacture of micoscopes are cut by fine nachinery, specially adapted to this work. To secure perfect smoothness in motion, each rack and pinion is "ground in." The making and adjustment of the rack and pinion is one of the most vital points of a microsoope ; indeed, it is an art of itself.
Engineering instraments are made here in large uantities. Transits are generally made in lots of 25 , evels in lots of abont 75. By carrying on the manulacture of instruments in large lots, the quality of the work is not only kept up to a high standard, but the workmen acquire such dexterity as to greatly reduce the cost of labor on these instruments.
The machinery used in the shops has been purchased, o far as it is possible to purchase machinery adapted to this kind of work, but a large number of special tools and appliances have been made in the shop which are adapted to this particular line of manufacture only.
To secure the quality of brass and bronze castings required in the manufacture of the instruments, it was ound necessary to add a brass foundry. Phosphor bronze and aluminum bronze enter largely into the manufacture of many of the engineering and physical instruments.
Among the instruments and apparatus being made e will mention air pumps, induction coils, separable induction coils, Holtz machines, gyroscopes, drawing and mathematical instruments, and instruments for lectrical measurements. It is a mistake to suppose that all of these instruments are designed only for institutions of learning. A large proportion of them are specially designed for practical, every day use in connection with regular manufactures and electric lighting.
$\mathbf{M u}$
Much of the apparatus is of new and original design. One of the figures of the engraving shows the designing department, in which the drawings are executed for

While all the apparatus might come under the gen eral heads of physics and chemistry, there is a specia department (No. 4) devoted to these sciences with thei various branches, as exemplifed in apparatus for re search and for practical use. Under this head comes the department for electrical instruments, galvanometers bridger, resistance coils, reading telescopes, ammeters voltmeters, and similar instruments, which includ those for the most careful research as well as for the of the practical

cheycical apparatus.

This particular branch of the business has grown to very large proportions within the last few years, and is now very complete.
The sale of anmeters and voltmeters, both for scientific measurements and for practical work, is one of the specialties which has assumed large proportions, and they sell to universities, electric lighting companies, users of batteries, dynamo machines, in short to all of those industries where the ammeter and voltmeter have become as necessary as the steam gauge. It is perhaps well to mention that Queen \& Co. are eole agents for the popular and well known Ayrton \& Perry instruments for electrical measurements
Under the head of physics and chemistry is included another department, comprising anatomical and botanical models in plaster of Paris and papier mache. This branch includes a large and fine collection of mani- the construction of scientific instru-

LANTERN AND TELEGCOPE DEPARTMENT.
ments regularly made in the establishment, as well as for work done to order.
The work done in the designing department covers almost every sind of apparatus for the illustration of the laws of physics and chemistry in their various branches. The designing of such instruments requires not ouly great mechanical ability, but also a thorough knowledge of the laws which the instruments are intended to illustrate, and must therefore be carried on by inen of education and special talent. The manufacture of such special instruments in the workshops also gives to the men employed on such work a faculty for grasping new ideas and carrying them out which is not to be found where the men work in regular lines, making only the specialties to which they are accustomed. The instruments manafactured by this firm from their own designs are greatly varied, covering those for the illustration of the laws of mechanics, hydrostatics, pneumatics, acoustics, optics, heat, electricity, in short, the whole range of physics, as well as much in this firm is furnished not only to all parts of the United States, but they have constant demand for goods to go to Canada, Mexico, the South American states, China Corea, Japan, and the Pacific islands. The cause for this may be found in the fact that they are of such general interest, embracing as they do appliances for all the arts and industries, for the physician and specialist, for the laboratory and observatory, for the workshop and the railroad, for the scientific investigator and experimentalist, as well as the mechanic and the farmer.

DESIGIIITG DEPARTIGENT.
kins and models of different physiological subjects from węll known European makers. They also inclade some entirely new and beautiful botanical models Some of the novelties of this department are the model in gelatine of budding yeast, after Koch, and of other low forms of life, bacilli, etc., which represent the subjects as they appear when inagnifled 25,000 diame ters.
Among the most interesting things in the depart ment of physics are the new forms of polariscopes for
manufacture of such instruments has reached propor tions which can hardly be appreciated without a visit to the shops.
One of our illastrations gives a truthful representation of the place wherein are made scientiffcinstruments in such great variety as to render it impossible for us to even enumerate them. We may, however, mention a few of the leading articles. A great deal of work for the government is done in this place. The apparatu for the Signal Service is largely furnished by Queen \&
the table and for projection, and the exquisite specimens arranged to be used with these instruments.
The new form of Toepler-Holtz machine made in this establishment deserves more than a passing notice. It generates electricity in all weathers, is always ready It generates electricity in anl weathers, is always
for immediate use, and yields torrents of sparks.
In this department we also notice a new air pump, which gives a vacuum of $993 / 4$.
In this department may also be found a large collection of instruments for very accurate measurements Among these are the standard meters, such as are used at the Bureau of Weights and Measures at Sevres, comparators, dividing engines, cathetometers, micrometers, spherometers, and other instruments of procision of the highest class.
In the chemical department a specialty is made of the importation of balances for all purposes, including very fine analytical balances, some of them sensible to the twentieth of a milligramme. The stock of chemical glassware, pure chemicals for techuical work, platinum, etc., is large and complete.
In the department of engineering are found transits for railroad engineers, city work and general surveying, engineers' and architects' levelers, plane tables, surveyors' compasses, leveling rods, chains, and all other instruments required to complete the outfit of the engineer, either for reconnaissance or for the final work of laying out the line of a railway or boring a tunnel. We are informed that these instruments are sent to every part of the world. In this department are also inade the elaborate and costly instruments of precision used principally by the United States governinent, such as standard comparators for the testing room in the United States Signal Service, standard ruling and engraving machines for the United States hydrographic office, the instruments of precision for the engineer corps, etc. The firm, besides being large manufacturers of engineering and drawing instruments, are large importers of these articles, as well as the stationery and other materials required by draughtsmen and engineers.
The ophthalmic department, which ts known as department No. 1, embraces all the apparatus and appliances used for the examination of the eye, and includes spectacles, eye glasses, opera glasses, etc. It is one of the largest branches of the business. The lens-grinding room, a part of which is shown in one of the engravings, is devoted almost exclusively to making what are known as "prescription glasses," which are required to be ground specially to order. This department is particularly interesting, as here the process of making lenses can be traced from beginning to end. The number of prescriptions which come in daily through the mails and otherwise from all parts of the country indicates the importance of this branch of the business. It is surprising to note the variety of defects in the eye which are corrected by special glasses. These prescriptions are prepared from measurements. The old way of fitting the eye by trial is now almost discarded. In this department are made ophthalmoscopes, by ineans of which the interior of the eye is illuminated and examined by the physician. In this department are also made other ophthalmological apparatus, such as perimeters, trial frames, test cases, prisms, etc.
In the department known as No. 5 may be found astronomical instruments and apparatus for projection. The astronomical branch comprises refracting and reflecting telescopes, the stands and other accessories required for practical observation; microscopes, helioscopes, spectrum attachments, ese pieces, etc., tran sits, sidereal clocks and chronographs, which are par ticularly designed for schools and colleges. In the branch devoted to projection there are various forms of lanterns, which are known under the names of sciopticons, stereopticons, college lanterns, for entertainment as well as for instruction. Some of these lanterns are provided with powerful petroleum lamps of new design, which compare favorably with other illuminators. Asmight be expected in an establishment like this, a large stock of pictures for use with the lanterns, embracing educational views, diagrams, and

schlepegrell's ellectrical spied impicatop.
pictures of various physical apparatus, are kept on hand.
The photographic department, although a compar atively new one, shows all the spirit and enterprise which characterizes this establishment, having within five years introduced many articles of value to photographers, the most important of which are the wel known Queen-Francais photographic lenses, indorsed by the highest authorities, and the Queen pantagraph lenses, which are designed to supply a lens of good quality at a reasonable price.
This department has also commenced the publication of a magazine entitled "Science of Photography," which is full of interest and covers a wide range of subjects.
It is impossible to fitly describe in detail all the de partments of a great establishment like this. Each department is a little world in itself, covering many branches, each of which in turn includes many sub branches, so that it would require volumes to ade quately describe everything that may be seen at the store and wareroom.
Any one desiring further information than we have been able to give, can readily obtain it by securing one or more of the large number of catalogues published by this house, relative to the different departments.
The firm, in addition to the catalogues of their own productions, make a specialty of securing catalogues of all foreign makers of apparatus in different branches f science, and of keeping informed as to the scientitio and practical knowledge and apparatus of the day, so that they may properly be considered a burean of information for those who choose to avail themselves of its advantages.

AV IMPROVED HORSESHOE.

A horseshoe which is designed to combine the ad vantages of a smooth or a flat calk shoe and a sharp

HOWELL'S HORGESHOE. calk shoe has been patent ed by Mr. Israel G. Howell, of Hopewell, N. J., and is illustrated herewith. The shoe proper, or main shoe, to be attached with nails in the asual way to the horse's hoof, is shown in Fig. 2, a supplemental or over shoe being shown in Fig. 3, and being adapted to be attached to and detached from the main shoe. The supplementa shoe has on its inner side flat surfaces corresponding with the flat surfaces of the main shoe, and it has recesses, one in its forward end and one at each of its rear ends, corresponding with the wedge-shaped and dovetailed toe calk and the heel calks of the main shoe. The supplemental shoe has sharp or pointed calks on its bottom, and is adapted to be secured to the main shoe by screws passed through suitable screw holes provided therefor. By this inven tion a shoe having one or the other forms of calks may be readily fitted without the necessity of withdrawing nails from the hoof and renailing, and the cbanging may be performed by unskilled persons.

AN DEPROVED ELECTRICAL SPEED IINDICATOR.

A simple device by which the increase or diminution of speed in machinery above or below its normal rate may be indicated electrically, is illustrated herewith and has been patented by Mr. Frederick W. Schlepe grell, of No. 20 Ashton Street, Charleston, S. C. The indicator shaft, arranged to receive motion conven ently from the machine whose speed is to be indicated, is formed of two parts connected together by an insulating sleeve, and is journaled in a frame whose upper and lower parts are also connected by a threaded insulating sleeve, binding posts, connected with an electric bell or alarm, being secured to the lower and upper parts of the frame. In grooves on opposite sides of the indicator shaft are secured flat springs, with a weight, preferably of spherical form, on the outer ex weight, preferably of spherical form, on the outer ex-
tremity of each spring, a nut being fitted to move up tremity of each spring, a nut being fitted to move up
or down on the shaft to vary the length of the free or down on the shaft to vary the length of the free
ends of the spring arms. The weights are adjusted ends of the spring arms. The weights are adjusted
relative to the motion of the indicator shaft when relative to the motion of the indicator shaft when
driven by a machine, so that when the machine runs at its normal speed the weights will revolve in a posi tion between the upper part of the shaft and the contact screws on either side, the variation in the throw of the spring arms being indicated by the dotted lines. When the speed of the machine increases so that the weights touch the contact screws, the circuit is com pleted and an alarin is given, a like effect being also produced when the machine runs slower than its nor wal speed, or when it stops, as the weights are then brought into contact with the upper part of the indibrought into contact with the upper part of the indi-
cator shaft, thus completing the circuit. The indi-
cator may be adjusted to adapt it to higher or lower speeds by turning the nut on the lower portion of the indicator shaft, thus shortening or lengthening the spring arms, and also by turning the contact screws in or out.

AN IMPROVED BPARK ARRESTER.

A device adapted for application to chimneys, stove pipes, and smoke stacks, to prevent sparks and cinders

BRUHE \& RAUY'S SPARI ARREBTER

rom passing out, and whereby they will be thrown downward to the base of the chimney, is illustrated herewith, and has been patented by Mesers. Frederick Bruhn and Jerome Raum, of Fort Shaw, Montana Ter. Two or more, but preferably five, frames are made of double strap iron, of a size equal 'to the inner dimensions of the chimney stack or. pipe, and across the top of each frame wire netting is stretched, the ends of the netting being carried down in a space between the opposing bembers the frame The bere the opposing mery thin of the lrais. The screens are made of very thin wire, the meshes of one screen being very Ine and the meshes of the others increasing in size, the screens being retained in horizontal position one above the other, about four inches apart, by their attachment at each corner to vertical rods. With this arrangement any sparks or cinders passing through the hottom screen are checked at the upper one and dehected downward to the base of the chimney. In placing the series of screens in a chimney they are manipulated by means of knobs on the vertical rods, and are supported by projections from the rods resting on the top of the chimney. This spark arrester can be readily taken apart and put up in a very small space for shipment, and can be manufactured very economically.

DCPROVED DRITLITEG MACHINE.

We illustrate a handy drilling machine, capable of being driven either by font or power, which we find in Engineering. The driving band runs from a large cone

heial apeed drilling machise.
pulley, D, on the main shaft round a pair of guide pulleys, A, to a cone pulley, E, on the drill spindle. The arrangement of the guide pulleys is novel. They are mounted on an inclined slide, along which they can be moved by a screw, and they are so arranged on this slide that as they move lengthwise they are tilted sideways, so as always to present a fair lead to and from the particular step of the main pulley which they may be opposite. Each guide pulley has five grooves, corresponding to the five steps of the cone on the drill spindle (see detached view), and the angle of the slide is dle (see detached view), and the angle of
such that the band is kept uniformly tight.
such that the band is kept aniformiy three different methods of feeding the There are three different methods of feeding the
drill. It may be forced down by the screw, P, or by drill. It may be forced down by the screw, P, or by
applying the hand to the lever, N, or the counterapplying the hand to the lever, N, or the counter-
weight, B, may be transferred to the other end of the lever and the feed be controlled by withdrawing the sorew, F. By means of the stop screw, a, any number of holes may be drilled exactly to the same depth.
The machine is provided with a treadle, but fast and loose pulleys can be fitted to it, as shown in dotted lines.

Practical Usee or the Eloctro-wagnot.
The following description of the practical employment of the electro-magnet is taken from the Pittsburg Press
" B. T. Wellman, the superintendent of the big steel works at Cleveland, conceived the notion some time ago that a large electro-magnet, suspended by a chain from a crane, could be employed very profitably for lifting masses of iron. Not being an electrician, he did not see his way to carrying the thing out practically Mr. Berry, an electrical engineer of Pittsburg, being on the spot, volunteered his advice and superintend ence. Together they brought the thing to completion, and it is now working with great perfection.
"For the construction of the electro-magnet to be experimented with, two bars of soft iron were taken each being fourteen inches long and three inches in diameter. They were wrapped with a multitude of strands of No. 14 B. \& S. gauge covered wire. To combine the two separate magnets thus formed into one, they were linked together on top by a third soft iron bar, square in the cross section.
" For trial of the magnet at portative work it was suspended by a rope from a pneamatic orane. Rope was used, as it was found that a chain became mag netized and did not act very well. The current power sent through the wire to induce the magnetism wa that of $51 / 2$ to 6 amperes. It was found that a weight of 800 pounds could be lifted up handily, and, by shut ting off the current and lowering the magnet, deposited anywhere very easily. . . . At one part of the factory where this electro-magnet has been put up lourteen or fifteen Polacks have been wont to be kep employed at this work. They are now in the position of Othello in the matter of occupation, the magnet picking up two or three billets at a time and deposit ing them in a car.
" If the thing works permanently, as it appeared to be working when Mr. Berry left Cleveland, it looks as If one boy would be able to do the work of a gang of men. His duties will be those of lowering the magnet from the crane on to some billets, turning on the current, swinging the magnet around to the top of a car, cutting off the current, and bringing the crane back to its first position. The crane used is one of a very superior class, being adapted to turning in any possible direction almost, at a slight movement from a pneumatic valve.
"The turning off and on the electric switch, of course, would require no expenditure of energy that would be worth speaking of at all. It is intended to propriate iron than that of which the first experimental one was made. The amount of current, also, will be arranged so that only a portative capacity of 150 pounds or so, at the poles of the combined magnet will be produced."

Parastees on Live stock.

At the end of the winter, colts, calves, and older stock are very apt to be crowded with these objection able parasites. They thrive best upon poor animals, and are supposed to be bred by old, worn out, and miserable creatures. However this may be, there is no doubt that they find a suitable home in the dirty matted hair in the late winter or early spring months, and on a sunny day may be seen. literally in millions, every hair having nits upon it. One reason of so much
rubbish accompanying them is that in the course of rubbish accompanying them is that in the course of their development from the
the skin is cast several times.
To get rid of them is not always easy, as the length of coat and accumnlation of dandruff or scurf makes a waterproof covering that resists many remedies which in themselves are certain destroyers if only brought into contact with the parasites.
A sunny day should be chosen, and the early part of it, when a bountiful washing with soft soap and hot
grease and dirt before applying the remedy. Staves-
acre is an effectual destroyer of lice if prepared by boilacre is an effectual destroyer of lice if prepared by boiling $1 / 2$ pound with a gallon of water and brushing wel into the coat with a hard brush.
Tobacco juice is also much in request for the purpose, and can be procured from druggists at a very low rate as it is imported now free of duty, or only a nominal daty, and the old expensive plan of boiling or infusing good shag tobacco is not necessary. By the way, very lew people avail themselves of the governmental privi eges of growing sufficient tobacco for this and fumi Pating purposes, though they might easily do so.
Paraffin is somnetimes used, but is a very dangerous remedy, occasionally being absorbed and causing the death of the animal, and not unfrequently causing a blister,
blemish.
There is another kind of louse from which horses uffer, which, if once seen, can never be forgotten-we refer to poultry lousiness. It will sometimes happen that a horse stabled with fowls will become affected and literally tear himself to pieces with them unlese promptly treated with one of the foregoing remedies, either of which is as effectual against these as against the ordinary louse
In washing or applying any remedy, it should always e commenced near the eyes and worked backward, as if any other plan is adopted the besieged retreat into the mane and ears, and many eecape altogether, like the rats that are left just to keep up the breed after the rat catcher has gone.
It is always well to repeat the dressing and keep the animals moving about till dry, or they may lick off more lotion than is good for them, or stand about and get chilled.-Chemist and Druggist.

A DEVICE FOR PROTECTING GARIERITS

The vest protector shown herewith has been patented by Mr. Benjamin Ives, of St. Paul, Minn. It is an apron
 rial, having a binding on its upper edge, in which, near opposite edges of the apron, are formed holes for receiving an S-shaped hook, by which the protector may be supported from the edges of the vest pockets, for protecting garments against wear by contact with the edges of desks VES' VEST PROTECTOR. and counters.

Dymamito-Ite Uses and How to Handle It.
Although dynamite has been in use for considerable time, from the number of inquiries from every part of the globe relative to its ingredients, its explosive force, and how to handle it with safety, we conclude but few comparatively know but little about it. The following, rom the Indian Engineer, published at Calcutta, gives the information which many are seeking to know.
Dynamite consists of some porous absorbent mineral aturated with nitro-glycerine. Several substances have been tried as absorbents of the glycerine, but the most satisfactory is the kieselguhr, an infusorial earth, composed of the silicious shells of extremely small vegetable organisms, and it is of this that Nobel's dynamite is made. It absorbs about three times its weight of the glycerine, and resembles putty in appearance. Thus, a given quantity will contain 75 per cant of the real explosive, and its blasting power com pared with pure nitro-glycerine is, of course, representd by the same ratio. In order to explode it, it is ecessary to obtain the temperature of 360° Fahrenheit. It freezes in the same way as glycerine, and when in this
state must be carefully handled. Nitro-glycerine has an expansive force ten times that of an equal weight of powder. It is highly dangerous to place dynamite on or near fire stoves, steam pipes, or any highly heated metal. Dynamite must never be put into warm water to thaw it, as the water would free the nitro-glycerine, when it is most dangerous. It ought always to be put into a water-tight vessel, and then have the vessel put into warm water. It should never be exposed to the direct rays of a tropical sun. When loading it, a wooden rod or squeezer should be used to push home the cartridge, never a metal one, and the charge should gently and firmly be pushed down, and not rammed or pounded.
If dynamite has to be loaded into tins, avoid smelling it, as it gives a sickly, nervous headache for several days. Never squeeze the primer containing the detonator, but lower or push it gently till it rests on the charge. For tampings, and or water should be used. In the event of a misfire, never attempt to draw the tamping. If water tamping has been used, put a fresh primer and detonator on top of the charge. If other
than water tamping has been used, bore a fresh hole. The detonator must be very carefully handled. If one exploded in the hand, the hand would be shattered. When putting in the fuse, cut off the end of it square.
burnt with safety, and simply fizzes up harmlessly. It Axercises its force in the direction of most resistance. oz. cartridge will break a 85 lb . railway rail in two. The charge varies from a few cartridges to as much as may be necessary.
Dynamite is generally packed up in dealwood bores containing 50 lb . Each box contains five separate packages of 10 lb ., and in the package $1 / 2 \mathrm{oz}$. and 2 oz . cartridges are mixed. They are all the same power but the $1 / 2 \mathrm{oz}$. cartridges are called primers, and used for exploding charges. The detonators are long copper caps, filled with a heavy charge of chloride of mercury. They must be kept quite dry, and always separate from the dynamite. It is sold in boxes of 200 caps. The fuse used is of various sorts. The most useful is the black use sold in coils of 24 feet. It burns at the rate of a yard a minute.

A school for Fire Hormen

At 58 Lawrence Street, Harlem, is the famous trainAt school for all the fine, intelligent horses of the ing school for all the fine, intelligent horses of the
New York Fire Department. Here, says the New York New York Fire Department. Here, says the New York
World, the green horses are brought and trained to World, the green horses are brought and trained to
jump from their stalls at the first sound of the alarm jump from their stalls at the first sound of the alarm
gong and rush out to their stations, where they stand ready for the lightning-like adjustment of the harness, and quivering with impatience for the great doors to be thrown back, that they may whirl the ponderous engine or hose carriage out into the street. Veterinary surgeon Joseph Shea, who ranks as a captain in the department, is in comenand of this equine kindergarten, and is ably assisted by Foreman Lawrence Murphy, Firemen Patrick Haley and Thomas Clark.
About sixty perfectly trained horses are turned out from this school yearly. Captain Shea does not attend to the training as much as to the buying and matching of the animals. He goes at regular intervals to Bull's Head, buys those horses that his judgment tells him are what he requires, and, sending them to the school, leaves then in the hands of Foreman Murphy and his two assistants. It astonishes one to find how rapidly this training is accomplished. The average horse understands his new duties pretty thoroughly at the end of two days, and the least intelligent of them never takes longer than a week to learn the ropes. After thoroughly testing the green animal to find if his "wind" is in perfect condition, he is put in a stall and led backward and forward to his station before the engine some dozen times or so to accustom him to ducking his head to get under the collar and harness. Then he is left in his stall and coared to come forward under the harness himself by kind words and rewards of candy and apples. He is then taught to come forward at the clang of the gong, and after a little practice at this his education is complete, and he is transferred to one of the regular fire houses. The system of training here is entirely that of kindness, and recourse to the whip is never necessary. The horses seem to like the work, and grow as enthusiastic over it as one of the old volunteer firemen. Of course horses that do this kind of work have to be both strong and speedy. Three hundred dollars is the aver age price paid for them, and they mnst be between sixteen and sixteen and one half hands high, weigh from 1,200 to 1,450 pounds, and be from four to six years old. Their usual length of active service is about five years. They are then auctioned off, and bring from $\$ 50$ to $\$ 150$.
This institution is also a kind of "hors-pital," and the fire horses that fall ill with distemper, or pinkeye, or become lame, are sent here to be nursed back to health. Captain Shea is fond of perfectly mated teams, and takes a great deal of extra trouble in transferring horses from one station to another, in order that, as nearly as is possible, every teain in the department may be perfectly matched in size, appearance, and working qualities. The old chemical fire engines are used in the school for the horses to practice running with, and four of them have been racked to pieces since the establishment of this institution, March 23, 1882. The one now in use is the old Morrisania engine, and it looks as if it were on its last legs, or, more correctly speaking, on its last wheels. This school was started merely as an experiment, and as such was provided with what was thought to be temporary quarters in an old engine house. It has proved a big success, but nothing has been done to improve the accommodations. The building is too small for the amount of work done there, and is in need of repairs. The general opinion of the firemen is that there should be nearly double the number of teachers there, and accommodations for twenty instead of seven horses, so that in the spring, when the going is always heavy and many horses ill from the hard work of the winter, there would be absolutely no danger of running short of trained animals. M. Surat, who came from France some years ago to study the methods of the New York Fire Department, was particularly struck with the equine training school, and when Chief Gicquel and President Purroy visited France a year, ago they saw in Paris a school on exactly the plan of this one, but fitted up more completely.

Atmoapherfo Hicetricity.
At a recent meeting of the Royal Meteorological So ciety, the president (Dr. Marcet) delivered an addres on "Atmospheric Electricity." He first alluded to Franklin's experiments in America in 1752, in which he succeeded in obtaining the electricity of a storm cloud by conducting it along the string of a kite sen into the cloud. De Romas in Europe repeated the ex periment, and having placed a wire within the twine his kite was attached to, obtained sparks of 9 feet or 10 feet in length. The characters of the two kinds of electricities were next described, the vitreous or posi-
tive, which was produced by rubbing glass, and the路 or other resinous substances; and it was shown by or other resinous substances; and it was shown by
bringing suspended balls of pith within the influence of these electricities, that electricities of different kinds attract each other, and those of the same kind repel attract each other, and those of the same kind repel
each other. De Saussure's and Volta's electroscopes were next described, pith balls being used in the former and blades of straw in the latter for testing the pres sure of electricity. With the object of measuring the force of electricity, Sir W. Thomson's electrometer was mentioned, in which the electricity is collected froin the air by means of an insulated cistern letting out water drop by drop, each drop becoming covered with electricity from the atmosphere, and running into the that portion of the instrument which records its de gree or amount. The atmosphere is always more or less electrical, or, in other words, possessed of electrical tension, and this is nearly always positive, while cal tension, and this is nearly always positive, while
the earth exhibits electrical characters of a negative the earth exhibits electrical characters of a negative
kind. The effects of atmospheric electricity were classed by Dr. Marcet under three heads: 1. Light ning in thunder storms. 2. The formation of hail. 3 The formation of the aurora borealis and australis. He explained how clouds acquired their electrical activity by remarking that olouds forming in a blue sky, by a local condensation of moisture, became charged with positive electricity from the atmosphere while heavy dark clouds rising from below nearer to and the two systems of clouds, attracting each other, would discharge their electricity, giving rise to fiashes of lightning. In some cases a storm cloud charged of lightning. In some cases a storm cloud charged with positive electricity would approach the earth,
attracting the terrestrial negative electricity, and when within a certain distance shoot out a light ning which would apparently strike the earth, but it would just as well have struck the cloud, only there was nothing in the cloud to sustain any damage, while on the earth there were many objects that lightning would destroy, to say nothing of its effects upon animal life. Thunder is the noise produced by the air rushing in to flll up the vacuum made by the heat o the lightning flash. There may be sheet lightnings, zigzag or forked lightninge, and globalar lightnings The latter are particularly interesting from their as uming a spherical form. Illustrations were given o objects struck by lightning, the most remarkable
being, perhaps, the clothes of a working man which were torn into shreds while the man himself was no eeriously injured.
Dr. Marcet next proceeded to show a flash of light ning, which he produced by throwing on a white screen the image of an electric spark 2 inches or 8 inches in length, enlarged by means of the lens of an optical lantern; forked lightning, 6 feet or 8 feet in length, with its irregular, zigzag course, was most learly demonstrated. Arter alluding to the protecting power of lightning conductors and their construction,
Dr. Marcet explained the formation of hail and of waterspouts, and exhibited an instrument by Pro fessor Colladon, of Geneva, for showing the formation of waterspouts. He concluded his address with a few remarks on the aurora borealis and australis, the formation of which was illustrated by De la Rue's experiment, which consisted of successive discharges of electric sparks through a partial vacuum while under the influence of a powerful magnet. Electri and possessed of a certain rotating motion.
In connection with this meeting a most interesting exhibition of instruments was arranged in the rooms exhibition of instruments was arranged in the rooms
of the Institution of Civil Engineers. The exhibition was devoted chiefly to instruments connected with was devoted chiefy to instruments connected with electrometers, including those formerly in use at the Greenwich and Kew observatories. Numerous patterns of lightning conductors were exhibited, together with models of churches, houses, chimney shafts, and
ships, showing the various methods of protection. ships, showing the various methods of protection.
The postal department showed a number of lightning The postal department showed a number of lightning damaged by lightning were exhibited, including lightning conductors, telegraph apparatus, portions o rafters, trees, etc., also the clothes of a wan torn off raiters, trees, etc., also the clothes of a wan torn off
his body by lightning. An interesting collection of his body by lightning. An interesting collection of meteorites and some alleged thunderbolts were shown,
the latter being of an amusing character. There were the latter being of an amusing character. There were
also several new meteorological instruments exhibited, also several new meteorological instruments exhibic
which had been brought out during the past year.

One of the special features of the exhibition was a most valuable and interesting collection of over fifty photographs of lightning flashes. Many of these were aken during the great thunder storm which oocurred in London on August 17 last year,
The exhibition also included a la
The exhibition also included a large number of pho tographs of damake by lightning, and photographs of clouds and meteorological instruments, as well a records of atmospheric electricity, eta.

The Yellow River of China.

The Yellow River, from the enormous rapidity of ite volume when swollen by melted snow, is the worst of offenders. Its now bed, even in twenty-five years, has risen far above the plain, and as the dikes grow frow hillocks into hills, from mere walls into ranges of earthworks like fortress sides, hundreds of miles long, the effort overtaxes the skill of the engineers and the per severance even of Chinese laborers. The ablest engineers in India were beaten by the Damoodah, though it is, compared with the Hoang-Ho, like a trumpery Euopean stream, and thongh the labor a available could ropean stream, and thoanh tre labor available could
hardly be exhausted. The truth of the matter is that, n all such cases, the apper sections of the dikes cost too mach for complete repair, and tend to be inade quate; and when the Yellow River, gorged with water rom the moantains till it forms in reality a gigantic reservoir, averaging a mile broad, from 300 to 500 miles long and 70 feet deep, all suspended in air by artificial supports, comes rushing down in autum the slightest weakness in those supports is fatal.
On Septamber 27, the river was at its fallest, its speed was at its highest, there was almost certainly a driving wind from the west, a bit of dike gave way, the rent spread for 1,200 yards, and-our readers remember, for Charles Reade described it, the rush into member, or Charies Reade described it, the rush into
Sheffid of the Holmfirth reservoir. Multiply that, if you can, by 2,000 , add exhaustless renewals of the water from behind-flve Danubes pouring from a height for two months on end-and instead of a long valley with high sides which can be reached, think of a vast, open plain, flat as Salisbury Plain, but studded with 3,000 villages, all swarming as English villages never swarm, and you may gain a conception of a scene hardly rivaled since the deluge. The tor ent, it is known, in its first and grandest rush, though of the land, had for its center a stream thirty miles wide and ten feet deep, traveling probably at twenty miles an hour-a force as irresistible as that of lava. No tree could last ten minutes, no house five, the very soil would be carried away as by a supernatural plow hare, and as for man-an ant in a broken stop cock in a London street would be more powerful than he. Swim? As well wrestle with the Holyhead express. Flee? It takes hours in such a plain to reach a hillock three feet high, the water the while pouring on faster than a hunter's gallop. There is no more escape from such a flood than there is escape from the will of God, and those Chinese who refused even to struggle were the happiest of all, because the quickest dead. Over territory of 10,000 square miles, or two Yorkshires at least (for the missionaries report a wider area), over housands of villages-3,000 certainly, even if the capital is not gone, as is believed-the soft water passed,
silently strangling every living thing, the cows and the sheep as well as their owners; and for ourselves, who have seen the scene only on a petty scale, we doubt whether the "best informed European in Pekin" not right when he calculates the destruction of life at 7,000,000. The Spectator (London).

A Novelty in Voting.

Messrs. Richard H. Dana and Morrill Wyman, Jr. have prepared for the committee on election laws of the Masaachusetts legislature a ballot which is, says
the Nation, in many respects, the best measure of the the Nation, in many respects, the best measure of the kind we have yet seen.
Their bill opens with a provision that all ballots shall be printed and distributed at public expense. Upon that point there is no longer any division of pinion, everybody conceding the wisdom of taking rom the political organizations the dangerous and corupting control of the ballots which have been so long in their hands.
Each ballot "shall contain the name, residence (with treet and number in city elections), and party or political appellation of every candidate whose nomina-
tion for any offlee to be specified in the ballot has tion for any office to be specified in the ballot has
been duly made," the names to be arranged in alphabetical order, except that presidential electors are to be arranged in a separate group. The provision for distributing the ballots to the election offlcers at the polls is so specific and so interesting as an effective weans for preventing forgery of the offcial ballots that we give it in full :
"Section 14. The secretary of the commonwealth shall send the proper ballots, specimen ballots, and cards of instruction printed by him, to the several city and town clerks, so as to be received, one set at
least forty-eight hours before the day of election,
the other set sent separately so as to be received at least twenty-four hours before the day of election. These ballots, specimen ballots, and cards shall be sent in separate sealed packages clearly marked on the outside for the polling place for which they are intended, and the number of ballots inclosed. The ballots, specimen ballots, and cards of instruction printed by the city clerks shall each set be packed in separate sealed packages clearly marked on the outside for the polling precincts for which they are intended. The city and town clerks shall send to the several offlcers of each precinct or to the selectuen of the town before the opening of the polls on election day, in the manner in which the ballot boxes are required to be sent, one full set of the packages of ballots, specimen ballots, and cards intended for that polling place, keeping a record of the number of ballots sent to each polling place. The second set shall be retained until they are needed for the purposes of voting. At the openiug of the polls in each polling place the seals of the packages shall be publicly broken and the packages opened and the books of ballots handed to the ballot offlcers hereinafter provided for by the precinct officer or the selectmen of the town presiding at such polling places. The cards of instruction shall be posted in each place provided for the marking of the ballots, hereinalter provided for, and not less than three such cards, and also not less than flve specimen ballots, posted in and about the polling place outside the guard rails, before any ballot is delivered to any voter."
When the voter receives his ballot, after he has shown that he is entitled to vote, he must go alone into a cornpartment and check with a cross in the margin of the ballot the names of the candidates for whom he wishes to vote. Then he must fold his ballot so that the offcial indorsement on the back will be visible, and, coming from the compartment, deposit it in the ballot box. No ballot without the offlicial indorsement can be received by the offlcers in charge of the ballot boxes, and if any such should get in, it must be thrown out in the counting. Any voter who allows his ballot to be seen by any person with the apparent intention of letting it be known how he has voted or intends to vote, or any person who interferes or attempts to interfere with any voter while marking his ballot, or who attempts to ascertain in any way how he has voted, shall be punished by a fine of not less than $\$ 5$ or more than 8100.

Adulterated Lard.
In the interest of pure food the testimony of Mr. K. Fairbanks and Mr. Webster, before the Committee on Agricaltare of the United States Senate, should have wide circulation.
They testified that "all of the lard on the market marked 'Prime Family Refined Lard.' ' Choice Reflned Lard,' and other brands of this nature is mixed with more or less beef stearin and cotton seed oil."
As it is well known that cotton seed oil is a semi-drying oil, having strong siccative properties at the temperature of 212° F., this admixture unfits the lard for many uses.
It is impossible to make good biscuits with such a compound, as they rapidly become rancid.
The above gentlemen represent two of the largest arms in the so-called "refining" business in Chicago. The refining of lard consiste solely in adulterating it with cotton seed oil and oleostearin.
These mixtures may be easily detected. The usual tests for detecting cotton seed oil in olive oil answer every purpose. Bechi's test, as given in the Δ nalyst, gives good results. Lard is without action on the solutions used. Nitric acid of $1 \cdot 35$ specific gravity gives only a faint color with pure lard, with lard adulterated with cotton seed oil it gives a color more or less intense,
varying with the quality and quantity of the oil used. varying with the quality and quantity of the oil used.
For the beef stearin the best test is that proposed by Dr. Belfield, of Chicago, as follows : The suspected lard is dissolved in ethylic ether, so as to form a nearly saturated solution. This is best done in an ordinary five inch test tube, which should be about two-thirds filled with the mixture. The top of the tube is then loosely stopped with cotton wool, and it is placed in a quiet place, at a temperature of about sixty degrees, and allowed to stand until crystals conmence to form. These crystals are removed from the tube with a dipping tube and placed on a microscope slide ; they are quickly covered with a thin cover glass, pressed enough to flatten the grains, and then examined with a
quarter inch objective. quarter inch objective.
Pure lard gives large flat plates with well defined oblique terminations. These are sometimes in radiated groups, but often occur singly. Beef fat always crystallizes in radiating tufte, often resembling wheat sheaves, and the crystals are either pointed or else have nearly square terminations. They are always, however, much more slender than the lard crystals.
Watering lard has almost become one of the lost arts. Only oue sample from nearly a hundred examined had any marked amount of water. This one, however. had over forty per cent. It was kept in combination by means of an alkali.-The Analyst.

E

As inquiry is sometimes made respecting the leased gently, and the coupling chain swings aside clear forms used for coupling cars on English railways, we have thought some of our readers wight be interested in the following illustrations, which we take from $E n$ gineering, which it states embody the latest devices for coupling and uncoupling. They are the invention of Edward J. Hill, of London. Figs. 8 and 4 represent an uncoupler solely, while the arrangement shown in Figs. 1 and 2 serves both to couple a a stamping or steel casting which stands astride of the wagon hook and is pivoted on the shackle pin or Gedge link. When placed in position, a touch with a hammer turns over the fingers or horns, which embrace the top of the link in the draw bar or the shackle pin, and secures the uncoupler. The device is operated by means of a chain fastened at the center to the end of the uncoupler, and which then passes round two guide pulleys, and ends in two staples, one over each buffer. A hand ring is secured near each end of the chain, and by pulling on one of these rings the uncoupler is raised, and in rising it coupler is raised, and in rising it lifts the coupling chain up the hook nntil it carries it over the point and
allows it to drop free. The operaallows it to drop free. The opera-
tion is perfectly simple, and any one can perform it without instruc-tion--the chain is pulled, the uncoupler is raised, and the link is pushed off the hook, much in the same way that the unfortunate hedge sparrow is hoisted over the brink of the parental nest by the sagacious cuckoo. Several uncouplers are in experimental use on the London, Chatham, and Dover Railway, and have been higbly approved by the district inspectors.
Simple as is the foregoing arrangement, it is inferior to that shown is Figs. 1 and 2, which performs the double function of coupling and uncoupling. There is bolted to the headstock of the wagon a bracket in which there is pivoted a long arm which normally lies parallel with the end of the wagon above the hook. The bracket is so tilited that when the arm is moved from the position shown in Fig. 2 to that in Fig. 1, the end rises considerably, until it comes into a direct line ith the opposite drawbar hook of the neat truck ith the oposite drawbar hook of the next truck when it is arrested by a stop in the bracke. This end s provided with an eye, through which there runs a chain connected at its outer extremity to a light clip fixed to the last link of the coupling chain. The other end of the hand chain runs round a sheave over one buffer, and is then connected to a stranded wire, which has a handle situated near the other buffer. Now, when the handle is pulled (Fig. 2), or the chain (Fig. 1), the arin is rotated on its pivot, carrying the coupling chain forward. At the same time the hand chain is drawn through the eye and the end of the arm, and lifts the coupling until it stands in a position (Fig. 1) ready to drop over the hook of an approaching vehicle. By suddenly releasing the hand chain, the coupling is effected. When uncoupling is to be effected, the operation is just as easy. Tightening the band chain brings the arm up over the coupling, and then a pull lifts the link off the hook, the hand chain is then re

Fig. 4.

Fig 3.

1. Gasoline is an extremely dangerous, explosive ubstance. 2. It should be kept in a cool, well ventilated place, if possible out of doors, or in an outbuildng, never in a kitchen, closet, or cellar. 3. A vessel containing gasoline, unless tightly closed, should never be brought within ten feet of a lamp, stove, grate fiame, or fire of any sort. The small flame of a match or even a spark is sufficient to explode the gas when present in sufficient quantity. 4. The vapor of gasoine may be carried by a draught or current of air, and thus be brought in contact with fire at considerable
distance, even greater than that mentioned in the pre-
of the hook and falls into the position illustrated in Fig. 2.

The Dangers of Gasoline.

The Michigan State Board of Health, in a circular just published, gives the following succinct rules for the use and care of gasoline. Every person employing or keeping gasoline should keep constantly in mind

Fig. 2.

A NEWLY DIECOVERED WILD GOAT (Capra dercas).
The discovery of a new world is greeted with enthusiasin by astronomers, but zoologists very seldom enjoy a similar pleasure, for the dominion of the animal world, especially that of the higher classes of animals, has been very thoroughly explored. So much the greater, therefore, was the sensation caused by the account of a hitherto unknown wild goat, which has recently circulated through the German press. The fact that the animal was from a European country, and not from some distant part of the world, added greatly to the interest taken in it.
"Polyaigos," i. e., goat realm, was the ancient name for the home of this goat, which is the little island of Joura (Giura), one of the Sporades, lying to the north of Eubuas. The inaccessibility of the island was favorable to the increase of the animal. A person who visited the place later than 1848 reported that it was swarming with goats, but he could tell nothing of their species. Between 1850 and 1860 a young specimen came into the possession of the Austrian consul st Crete, but it was supposed to belong to the Capra agagrus of Asia Minor. After that nothing washeard of the animal until the explorer E. v. Oertzen succeeded in catching a wild goat on the island of Joura. It was determined that it did not belong to the Capra aga. grus, and Dr. Reichenow named it Capra dorcas.
The creature is of remarkably strong build, is smaller than the common goat, and is characterized by a coat of dark brown, marked with black bands. His sinewy egs remind one of the chamois. The assertion that this wild goat attackod the hunter and threw him into a rocky ravine seems perfectly credible after one or two experiences with the specimen in the Berlin Zoological Garden. The two year old buck there gets on very well with his but the sight of a man on but hime thatherus ages him so that he rushes with great bounds toward the visitor, throwing himself with such force against the bars that they would long ago have been broken had not special care been taken to prevent sueh an accident. In spite of the failure of his daily attempts to attack great and small be does not lose his pugnacious disposition, and a vain charge is made every time that a new comer ap pears, so that ladies and children often start back with cries of alarm.
Unfortunately, the wild goat of Joura is nearly ex tinct : and the improved firearms will soon exterminate him. It is, therefore, greatly desired, in the interest of science, that the slaughter shall end, and that steps shall be taken fo the preservation of the species.-1llustrirte Zeitung.

The Canon Wren.
 I. x. hassmover.

Who in wandering through the woods or along the banks of some rippling streain in early spring has not heard with delight the familiar note of soine well known bird, or listened with eager ears for the faintest note that should proclain the arrival of the first of a myriad of birds that in the course of a few weeks will swarm throngh the flelds and forests? What lover of nature, upon hearing a song unfamiliar to the ear, has not felt a keen desire to trace it to its source, and labored lons and patiently to find from whence it proceeded ?
Long ago, when our country was comparatively new and naturalists few and far between, hundreds of birds whose notes had never been heard by men of science flitted through the woods, and whose songs, when heard lor the first time, were a source of pleasure seldom equaled, and occasioned a feeling akin to idolatry.
Owing to the efforts of ornithologists, this state of affairs no longer existo. True, there is still much to be accomplished in the study of the singing of our birds ; but to hear something comparatively new, something not constantly heard of and talked about, it is neces sary to enter the more remote and isolate portions of the country, and to traverse the mountains and valleys seldom trodden by man. It is in such localities as this, in the south western part of the United States, that the canon wren (Catherpes mexicanus conspersus) is to be found. Here-no matter how lonely, darksome, or dreary the vale, no matter what dearth of life is other wise to be found-the clear, melodious song of this bird wreaks forth from the gloom and thrills the very coul of
the listener as with something holy. This is entirely different from the song of any of our birds, and is as marvelous for its character as for its clearness and strength, consisting of a series of eight or ten notes, descending regularly as does the musical scale until the lowest note is reached, each clear and distinct, but prolonged so as to glide smoothly into the next.
I remember well the first time I heard it. I had been climbing the "Bee Rocks" near Meridian, Texas, and on reaching the summit paused a moment for breath and to rest. From a considerable elevation I looked across the Bosque valley to the hills on the opposite side, and along the river for a distance of twenty miles in either direction. The bed, owing to a three years' drought, was dry, save for a few stagnant pools of water, and the valley, although still of a sickly green, contained but little animal life.
In the air above circled countless numbers of vultures, while on the edge of the oliffs perched swarms too gorged to fly, but at times dispelling the monotony by shifting their location in long, awk ward hops. The whole presented a scene similar to some of those described by Dante, and a more gloomy and desolate spot would be hard to find. While comparing it with a landscape viewed from a similar location in central New Hampshire, the wonderful note of the canon wren burst upon the air. It was repeated several times at intervals of about three minutes, when it was answered by another lower down on the cliff. Both sang for some moments, then all was hushed as before That the rocks had now a new inter hushed as before. That the rocks had now a new int

a mewly discotered goat-capra dorcas-nqw in the zoological garden, berlin. works.
bird was fully as surprised as myself and considerably more frightened, for it dashed around a neighboring bluff and went some distance down the cliffs.
This closed my experience with them until later in the season, when I again met a few in the vicinity of Comanche peak, in Hood county, and again a week later on Paluyy creek, but it was now late in the fall and their voice had lost much of its melody and richness. They are never, I believe, to be found at any great distance from the gorges and cliffs, which are their favorite haunts, and while the beauty of other localities is enriched by the songs of hundreds of musical little thronts, it is reserved for the present species to lift in part and to cheer the gloon which forever overshadows some of Nature's mightiest and grandest

4 Now Flamelesa Exploaive.

A new variety of "securite" has been prepared by Herr Schoeneweg, which is said to be flameless when exploded, and will, it is expected, be of espeoial value as a substitute for ordinary blasting powder and other explosives in fiery coal mines. It consists of nitrated hydrocarbons mixed with an oxidizing agent, such as chlorate of potash and some organic salt which renders the mixture flameless. The substance is not hygroscopic, and is of a bright yellow color, and can be kept for any length of time without undergoing any change. It cannot be exploded by a flame nor by a hot substance, but only by a detonating cap. Recent experiments at Hendon have proved that the new explosive fulfills the anticipations of the inventor, and we understand that the Flaneless Explosives Company have undertaken to introduce it to the notice of mine owners and others to whom an explosive of this nature should be welcome. Its power is said to be equal to that of No. 1 dynamite, and it can be manufactured at a less cost. The organic salt which is added to the "securite" to produce this effect has also the property of rendering dynamite similarly fameless when mixed with it.

Fire Eseape for School Balldinge.

A novel system of fire escape for school buildings has been suggested by Captain Reagan, assistant chief of the Boston fire department, which upon its face looks as if it might prove of considerable practical value. His idea is to utilize the large yard area to be found about nearly every school house in Boston, and erect an
est and had assumed a different aspect can be readily imagined. For some time I waited in vain for it to be repeated, when of a sudden it burst forth again, seemingly directly beneath me. Crawling to the edge and peering over the cliff, the author was discovered some distance below flitting from rock to rock, pausing occasionally to give utterance to its song, then resuming its occupation. To descend to a point about on a level with the bird and conceal myself was the work of a few moments. Presently, with a "chip" and flutter the little songster entered my retreat, visiting every nook and cranny, peering into every crack and crevice in search of insects. Yet it never for a moment lost sight of me. Coming at times to within a few feet of my hands, it would dart to the opposite side of the cavern and view ne from another quarter. Whether it possessed that peculiar, hoarse, chattering note common to most of the family, I was at a loss to know until, by accident, I moved slightly, when, with a sudden movement, it dashed across the open space, plunged into the busbes, and descended gradually to the bottom of the valley, scolding to itself all the way. During the next half hour a dozen or more individuals were heard, and many others were undoubtedly in the vicinity. Descending now some fifty feet to a shelf which runs the entire length of the rocks, I followed it for some distance, and was pleased to note a number of the birds in question clinging to the walls, darting into the air, and seizing insects in the manner of the Tyrannida, disappearing from view for a time while they searched the interior of some dark retreat and appearing again often where least expected ; on oue occasion I observed one to enter a orifice in the rocks some twenty feet distant, and while watching closely for its return was amused to have it dart from a hole directly before my face. The
ornamental iron tower a short distance from the building. This tower would contain a broad iron staircase leading from the top to the ground. From each floor of the school house a covered bridge would lead into the tower, and the door leading from the schoolroom to the bridge would be kept unlocked during school hours. The rooms on each floor would connect with each other, and in case of fire the scholars could have unobstructed access to the bridge. By such an arrangement, whenever a fire broke out there would always be an egress open, and even if matters became serious, the iron tower and bridges would remain unharmed. The plan appears to be perfectly feasible, and the expense would, it is said, not be much more than what is laid out on the present fire escapes. And we should think the same plan might be adopted for factories and other buildings where numbers of persons are employed on the different floors of the build-ing.-Fire and Water.

A Now Mineralogical Association.
On Monday evening, April 16, 1888, after the adjournment of the regular business of the New York Academy of Sciences, the members interested in mineralogy held a meeting for the purpose of establishing a section on mineralogy. The section will meet when enough interesting material presents itsolf to insure a full even ing of business, and will publish all papers presented before the Mineralogical Club in the proceedings of the Academy. Mr. George F. Kunz was elected president, and Mr. J. H. Oaswell secretary of the section. The uewly elected president is to deliver a lecture on "Precious Stones during the Last Decade" before the Boston Society of Arts, at the Massachusetts Institute of Teohnology, on Thureday evening, April 26.

Alloy.

The first of a series of three lectures on the subject of "Alloys" was recently delivered by Professor \mathbf{W}. Chandler Roberts-Ansten, F.R.S., before the Society of Arts, London. In commencing his lecture Professor Roberts-Austen stated that there was a popular impression that chemists had consigned alloys to oblivion, but this view was only partly true, as chemists were now turning to metallurgists for help in explaining the constitution of the various organic compounds. For centuries the history of chemistry was the history of alloys, and much valuable information on the subject was contained in ancient works on chemistry. The art of separating metals from their ores was quickly followed by the knowledge of uniting metal with metal to form valuable compounds. In early times many metals had been used in a native state which were now only used in the form of alloys. Thus Greek vases had been discovered consisting of practically pure anti mony. Nevertheless, Dr. Schliemann's discoveries had proved that this people were acquainted with alloys of copper and silver, gold and silver, and silver and lead, all artificially prepared. Throughout the middle age the action of a base metal on a noble one had been considered as corrapting the latter ; but in 1540 Muschen brock had contested this view, and at the same time had shown that metals should be united in definite veights and not at random.
There were four old writers who took a prominent place for their researches on alloys. These were Reaumur, Muschenbrock, Gellart, and Achart. Reaumur's observations on steel read like those of a modern writer. He stated that steel only differed from iron in being more easily penetrated by sulphurs and salts, and on this he founded a theory of the hardening of steel which, if he had only known that it was carbon and not sulphurs and salts the steel contained, would have been nearly identical with some modern views on this subject. Gellart considered the relation of fluid metals to each other regarded as solvents. He knew that by a superior solvent property one metal could displace another. Muschenbrock examined the tenacity of alloys, and obtained the results agreeing remarkably well with modern observations. Achart studied the electric behavior of these substances, and showed that with regard to their conductivity for heat and electricity they must be ranged in the same order. The importance of employing pure metals in forming alloys whose behavior was to be studied was not recognized till about the middle of the eighteenth century. In 1860 we come to Mathiesson's works, which were of the greatest value. He studied the effect of uniting metials on their electrical resistance, and pointed out that his results could not be explained unless the metal in the alloy existed in a different condition to that which we were accustomed to in the free state.
Alloys could be formed in different ways. The most usual was by fusing the constituents; but they could also be produced by the compression of metallic powders and by electro deposition.
Taking a piece of tin, which, as they knew, could be bent, emitting at the same time its peculiar cry, a small percentage of arsenic would destroy this cry, and a slightly greater amount would give an alloy having properties differing from both its constituents, and rery closely resembling zinc. Rubbing a little mercury round a bar of tin, the latter was rapidly penetrated, and could then be broken with ease.

Some metals evolved heat in uniting, while others absorbed it, producing cold. Of the first class of alloys were aluminum and copper, platinum and tin, bismuth and lead. All these metals, however, united at a comparatively elevated temperature, so that the experiment conld only be carried out in a laboratory. Mercary and sodium, however, also gave out heat in uniting, and this experiment he could show them in the room. Cold was produced by mixing together equivalents of tin, bismuth, and lead, in the form of powder, and finally adding mercury to the mixture. The heat absorbed was 80 great that by placing the above mixture in a small flask, standing on a wetted board, and then adding mercury, the flask would be frozen to the board. The same fact, as to the production of cold, could also be demonstrated with a thermopile. The above results led to inportant conclusions, which he would deal with in the third lecture. The result was not the same if one took fusible metal, consisting of the same ingredients fused together, and acted on it with mercury. Cold indeed was produced in the latter case, but not to nearly the same extent, thus showing that molecular work had been done in the act of fusion.
Mr. Spring had shown that by compressing metallic powders the whole might be welded into one solid mass. This led to important results, as Mobr had shown that cohesion itself was but a kind of chemical affinity. The welding was due to the pressure simply, and not to the heat generated during the process, which was totally lusufficient for the purpose.
Though metals might be united by fusion or compression, it did not therefore follow that they would remain united in cooling. The little mass of metal he held in his hand was once a uniform molten mass of lead and zinc, but on cooling these had separated out so com-
pletely that he could flatten out the lead at one corne or crush the zine at the other. A similar separation took place if a molten mass of copper, lead, and anti-
mony was allowed to cool in a cylindrical mould. There was another class of alloys. Depretz had shown that when an alloy of rhodium and lead was treate with nitric acid, a black residue was obtained, which in a vacuum, would deflagrate or even explode with the evolution of nitrogen and oxide of nitrogen, just like ertain organic substances.
Guthrie showed that alloys in solidifying threw of certain groups of their constituents, and that in the alloy which finally remained, and was the most fusible of the set, the metals were not in atomic proportions This was important, as Mendelejeff regarded solution as strict chemical combinations at temperatures highe than their dissociation temperatures, and showed tha alcohol would form perfectly definite hydrates with water. He had there an alloy which greatly resembled ordinary cast iron in appearance, and it did in fact con sist of iron, with only a small proportion of antimony yet on filing it the particles removed by the tool would take fire in passing through the air, thus demonstra ing the great effect of small quantities of metals o each other, perhaps the most interesting branch of metallurgy.

Nothing Now.

It is an easy matter to prove that there is nothin new in the world, and it has come to be the fashion to belittle about every invention made, by showing that something in some respects like the thing in vented has been known or dreamed of before. As general thing, remarks the American Machinist, these rusty resemblances are matters of very little conse quence. They go to show that some one has tried to accomplish a certain purpose and has
When an inventor brings out something that ac complishes a useful purpose not before accomplished or does this better or more economically than it ha been done, it is reasonably certain he has invented something in the value of which he has an interest And this point is the one that is overlooked by those who declain against the rights of inventors in favo of some one who tried to do something similar twenty years before. The very fact that the party who tried first did not succeed is fairly good evidence that he did not make the invention. All recent construction of pat ent law is in favor of sustaining the inventor who ac complishes something, as against the man who has trie and failed, evén though the means used are very simi lar. And this is justice and common sense. The pat ent laws are presumably in the interest of the public and theipublic is interested in the inventor to exactl the extent that it is benefited by him.
The same spirit that leads people to detract from the credit of others by unearthing old material things tha were never of any practical utility, leads them to a
good deal of useless trouble in the way of digging up good deal of useless trouble in the way of digging up obsolete ideas and expressions to show that some modern writer has, after all, told nothing new, al though to ordinary readers it may be of great practi cal value. In this case, as in the case of the machine edge to these device, the man wh it deserves praise. It makes but little difference whethe he does this by adding something that was lacking, of by putting what is really complete in its way int ch shape as will make it servicesble to others
There are a hundred devices not patented nor pat entable, used here and there for certain mechanica purposes, that a knowledge of would be of material
advantage to others. But those who could make this knowledge known are very frequently hindered from doing so because there is in all probability, some where, a man who stands ready to affirm that he has seen and used the same device. The knowledg of many a good thing is, kept from being made com mon because those who possess it are reasonably cer tain that it is not aboolutely new. The man who has seen it before" is not always a public benefacto although he may be a very observing person.

The Now Explonive "Hellhofinte."

The safe working of mineral property has for nearly twenty years been an anxious care to the legislatare, and at present the the general public in this country, problems of the greatest importance. A perfectly eff cient and safe miner's lamp has yet to be provided, and colliery managers are still far from unanimous in thei approval of an effective and at the same time harmles substitute for gunpowder and dynamite as explosive forces. The lamp question has continuously been the object of scientific application, but it is only recently that inventive genius has engaged itself in the task of
modifying the process of breaking down minerals by means of dangerous explosives. Progress in this work has been marked by the water cartridge, gelatinou cartridge, securite, tonite, a variety of mechanical coa getters, and other more or less practically useful pro
ductions. "Hellhoffte," which is one of the latest ad
ditions to the list, hails from the Continent, and is said to be a harmless explosive. Hellhoffite is a red and rather caustic liquid, and is formed by a combination of the nitro-products of tar oils with nitric acid. It may also be obtained as a soiid, this state being arrived at through absorption of the liquid by "kieselguhr" -fossil earth.
The cartridges which contain the explosive are made, for light charges, of refined lead, and these may be driven into the blast holes under pressure, are capable of filling up unevenly drilled holes, and can sustain de formations without their contents being affected. The explosive is fired by means of strong caps, primed with fulminate of mercury, inserted into small lead tubes tightly screwed in the cartridges, and these need not be fitted on until just before firing. Numerous experi ments have been made at various Continental mining centers under diverse conditions with this explosive and have uniformly resulted in a clear demonstration of the great force it exerts and of the perfect safety with which it may be used. From a tabulated state ment contained in the final report of the Prussian roya commission on explosions in mines, it appears that a long series of experiments with hellhoffite were con ducted in the drift of a mine, where in each case the percentage of fire damp varied. In one instance it amounted to 10 per cent, and when coal dust as fine a flour was strewed for a distance of 10 m ., no flam whatever appeared. According to the same authority iquid hellhoffite is 70 per cent more powerfal than guhr-dynamite, and 30 per cent more than liquid nitro gljcerine; and in the opinion of the imperial and royal mining department of Pribram, it has over 3 per cent more breaking power than Nobel's pelatine
dynamite No. 1. The following is culled from an ofidynamite No. 1. The following is culled from an offof Schemnitz

A rail of the narrow gauge Schemnitz line was laid ree upon a grass plot, and a 100 gramme hellholite cartridge so placed upon the rail-totally uncoveredas to be located between flange and foot. The cartridge being flred by an electric fuse, the whole foot of the rail was torn away for a length of 15 cm ., and hurled to a distance of over 50 m ., the surfaces of the fragments showing initial signs of fusion. A 105 gramme dynamite cartridge, placed in the same manner upon a similar rail, exploded when fired withoat Whowing any vestige of destruction."
When we add that the products of combustion re maining after the explosion of the hellhoffite are only characterized by the smell of the burnt fase, and are neither dangerous nor disagreeable; that the price of this explosive, including the flling of the cartridges and the packing, is less than that of dynamite; and that when used in a pit the tendency of its breaking power is rather to rift than to shatter, it is sufficiently clear that the explosive to which we now direct atte tion is one which will make its influence felt in the mining world.-Industries.

Ivy for Walle.

In order to expedite the growth of ivy, the ground, previously to planting, should be trenched two feet deep, and be enriched with decomposed farm yard manure, vegetable refuse, and the ashes of burnt rubbish of any kind. The plants should be healthy and well rooted when planted, and be watered as required in dry weather. No other evergreen climbing plant is so good for covering a wall as ivy, and the old Irish ivy (Hedera helix canariensis) is not surpassed for gen eral usefulness. Many other ivies, however, are wel worthy of attention. Hedera dentata is the largest leaved ivy in cultivation. It has a very long lea stalk, and its hard, leathery foliage stands out boldly and effectively. H. Reggneriana is another bold and effective kind, with magnificent, large, glossy, heart shaped leaves. H. latifolia maculata is a handsome marble foliaged variety of canariensis. They are both of very free growth. H. azorica, sagittæfolia, and taurica are also very useful. The last named has much divided, small, and neat, distinct leaves. There ar also several other very pretty variegated sorts, sach a H. aurea, argentea, and elegantissimo, which do no grow quite so fast as the foregoing, but are indispensa ble if a collection is aimed at, and are very useful fo covering buttresses and small prominent positions, the more robust growers being planted to cover the broad
est spaces. The green varieties of ivy delight in rich est spaces. The green varieties of ivy delight in rich soil, which induces rapid growth, but to the golde
and other variegated sorts rich soil is detrimental, fer if forced into exuberant growth they are apt to sper from their variegation.-Garden Work.

1 The Keoly Hotor in Court

Another act in the Keely motor farce was opened by Judge Finletter, on April 7, 1888, in the Court o Common Pleas of Philadelphia, requiring John W Keely to exhibit, within 30 days, to experts appointed by the court, his " motor" inventions. The examina tion is for a special purpose, to ascertain whether be now has departed from an invention alleged to hare been assigned, in 1869, to the plaintiff in the action, Mr. Bennett C. Wilson.

The Firut Appropriation of Congreas for the Tolegraph.
From a sketch of "American Inventors of the Telegraph," with special reference to the services of Alifred Vait, in the April Century, profusely illustrated with portraits and diagrams, the Railway Review quotes as follows: This was a period of discouragement and depression for the proprietors of the telegraph, scarcely relieved by a ray of light from any source. At the time, there seemed little hope that Congress would even grant the desired appropriation. The session of 1839-40 was on the eve of the most exciting and disgraceful presiden tial campaign that the country had ever known, and, a in later days, the members were far too much interested in legislation which would give them some imaginary advantage over their political opponents to pay attention to measures affecting the real welfare of their constituents and of the country. In December, 1842, Morse was persuaded to make one more application to Congress. The committee on commerce again recommended an bill passed the House by a close vote, and only after a discussion which, as reported in the Congressional Globe, reflects scant credit upon the patriotism, to eay nothing of the intelligence, of some of the participants. nothing of the inteligence, of some of the participants.
In the last hour of the session, March 8, 1843, the bill
in respect to the subsequent progress of the work. On April 18 he saggested to Morse the trial of two or more circuits from one battery. The experiment was successful, and the result proved to be one of the utmost importance when the telegraph system became more widely extended.

A suburbai besidence.

We publish an admirably planned and picturesque design of a suburban residence, by Mr. Wm. H. Beers, architect, New York. The house has been designed to occupy a corner lot, with a frontage of one hundred feet on the main streetrand two hundred on the side street, giving ample room for a stable in the rear of the lot. The house has an extreme frontage of 55 feet by 65 feet in depth.
The exterior of the house on first story is finished with clapboards and trimmed with corner boards, belt courses, etc., as shown on the drawing, and over each window is placed a swinging transom glazed with stained glass. These transoms are very pretty in their interior effect, and also furnish an excellent means for ventilation, when opened, in connection with the open freplaces in each room. The second story is carried out in the "Old English" half-timbered style, with the panels filled in with round cut shingered style, with th
the ends against a chill exactly $121 / 8$ in. apart. Another bar is cast with this, and is run from the same gate. It is 1 in. wide and 1-10 in. thick and is run against chills in the same way as the square bar. When the bars have been trimmed and both bars and chills have attained the same temperature, the shrinkage is measured by inserting a graduated wedge between the end of each bar and its chill. A third bar is called the fluid strip. The pattern of this is 1 in . wide, 12 in . long, and $6-100 \mathrm{in}$. in thickness. This is ran from the end and is poured first. The strip rarely runs full, and its length in inches is taken as a measure of the fluidity of the wetal. The fourth bar is called the crook strip. It is 12 in . long, 1 in . wide, and $86-1000 \mathrm{in}$. in thickness. On the center of one side there is a rib 412-1000 in. high, 1-5 in. wide at the base, and $1-10 \mathrm{in}$. wide at the top. The unequal shrinkage of the thin flat strip and of the taper rib causes a slight curve in the test piece. This, when measured, affords valuable information as to the properties of the iron, and is called the "crook." The irst and second bars are tested for transverse strength and resistance to impact. The first test is wade by a gradually applied weight, the deflection being measured at the same time. The resistance test is made by subecting the bar to a series of blows from a 25 lb . weight until it breaks, the fall being at first $1 / 2$ in., and increas-

\triangle TWENTY THOUSAND DOLLAR COUNTRY HOUSE.
passed the Senate, and was signed by the President. Morse, writing to a friend in after years, says:
"This was the turning point in the history of the telegraph. My personal funds were reduced to the fraction of a dollar; and had the passage of the bill failed from any cause, there would have been little prospect of another attempt on my part to introduce to the world any new invention.'
On March 4, Morse wrote to Vail the most hopeful letter he had penned in many years:
"You will be glad to learn, doubtless, that my bill has passed the Senate without a division and without opposition, so that now the telegraphic enterprise begins to look bright. I shall want to see you in New York after my return, which will probably be the latter part of next week. I have other letters to write so excuse the shortness of this, which, if short, is swee at least. My kind regards to your father, mother brothers, sisters, and wife. The whole delegation o your State, without exception, deserve the highe gratitude of us all."
On March 31 Morse tendered Vail an appointment as assistant and superintendent of the machinery depart ment of the telegraph to be constructed between Washington and Baltiwore under the government ap propriation, which was at once accepted, Vail im mediately entering upon his duties with characteristic energy and industry. From this time forward the condition of the work is minutely detailed in his diary and from this we gather much information of interes
with a very effertive group of windows in same. The panels in this gable are filled with shingles, carved woodwork, rope twisted in artistic designs, secured to the wood, and finished in bronze, producing an excel lent effect.*

Keop's Teste for Foundry Irom.

A paper has recently been communicated to the South Staffordshire Institute of Iron and Steel Works Managers by Prof. T. Turner, of Mason College, Birm ingham, giving a full account of the inethods of testing cast iron devised by W. J. Keep, of the Michigan Stove Company, Detroit, an abstract of which is given in Engineering. These tests have been adopted by a num ber of important American firms who have to do with the buying and selling of foundry iron, and it is sought to introduce them into this country, for the purpose of providing a uniform standard, which has already been approved by a lengthened experience in America When the tests are carried out in their entirety, 15 lb of metal are melted in a plumbago crucible in a fire brick furnace, driven by a blast at a pressure of $23 / 2 \mathrm{oz}$. per square inch. Three sets of test bars are ran from each melting. One bar is $3 / 2 \mathrm{in}$. square and is cast with

* A description of the house, with a number of other views showing the bracketed gable, oriel bay window, and other ornamental featurns of the sre Rition of the Scientific Aurbican, copies of which may be had at this ofice and of news agents. Price, is cents.
ing $1 / 8$ in. at a time. An arbitrary scale has been constructed giving a value in pounds avoirdupois on an assumed value for a foot pound. After these tests have been made the depth of chill is determined, and the grain of the fracture is observed by means of a pair of lenses. The harduess of the metal is finally tested by means of Turner's machine in which a polished aur by means of Turn machine, in which apolis ace is set under a diainond of a standard cut, and the diamond is weighted until it produces a scratch similar to a standard scratch. They are made by the Dunkirk Manufacturing Company, of Dunkirk, N. Y., and the price of the complete set is about $\$ 350$. These tests have been in regular use for upward of two years at the Michigan Stove Company's works, where about 70 tons of iron are daily cast into thin stove plates.

An American manufacturer of sugar coated pills added to the attractions of an exhibit of his product in London an ingenious piece of mechanisun, which might have been intended to represent the pharmacist of the future. It was in the form of a cabinet provided with s series of knobs or buttons, each inscribed with the name of some malady for which a remedy might be asked. The customer puts a coin into a slit and presses the button calling for the remedy he requires, when immediately a drawer flies out containing the articla sought. This automatic dispenser of course makes no mistakes. If the customer accidentally presses the wrong button, he alone is responsible for the error. Is this really what we are coming to ?

BMGIRERLIG INVENTIOIS.

An electrical governor has been pa lented by Mr. Frank E. Prichard, of Cedar Falls, Iowa It is designed to control the speed of water wheels and
other motors by means of an electric current, a ratchet wheel being connected with the valve or gate, engaging an oacillating lever carrying pawle, in connection with electro-magnotic mechanism for controlling the pawle and a centrifagal governor for connecting the carrent.
A rotary excavator for removing snow has been patented by Mr. Rdward Leslie, of Orange-
ville, Ontario, Canada. It is mounted on the forward ville, Ontario, Canada. It is monnted on the forward end of a car in connection with a cylindrical casing,
having a revolving wheel provided with radial fana, having a revoiving wheel provided with radial fana,
and outer and inner sete of knives held in front of the wheel, the invention being an improvem
patented invention of the same inventor.

agricultural invebtions.

A cotton planter has been patented by Mr. Jacob R. White, of Greanville, Ala. It is designed to plant cotton and other seed in rows or
drills, opening the soil, dropping the seed regularly, drills, opening the soil, dropping the seed reguiarly,
and then covering the seed, all in one passage of the machine over the field.
A plow standard has been patented by Mr. William H. Hodgson, of Winonm, Minn. This invention relates to an improved unlon whereby a plow
atandard mas be connected to a standard may be connected to a beam, the parts being adjusted as desired, a lateral adjustment of the beam being aleo provided for.
A combined planter and fertilizer distributer has been patented by Mr. James M. Pope, of Canton, Mise. It is adapted for planting small kraln, corn, or cotton, for distributing a fertilizer, and for
covering the seed and fertilizer after they have been covering the seed and fertilizer after they have been
deposited in the groand, the invention covering varions deposited in the ground, the invention covering varions
novel features of construction and combinations of

HECELLANEOUS ITVENTIONA

 A spindle-driving device for spinning nachines, etc., has been patented by Mr. Leedham Banns, of Philadelphia, Pa. It is for driving by one apinning and twisting frame, or on opposite sides of the drum which drives the spindies.A waterproof paint has been patented by Mr. Matts Fred, of Hancock, Mich. It consiests of charcoal, bolled linseed oil, litharge, blnoxide of manafter a specifed manner, in proportions explained fo iterent uses.
A paper box has been patented by Mr. Albert H. Zugalia, of Brooklyn, N. Y. This invention covers a box to be cut and folded from a anngle terlocked, will form a complete box, dispensing with all astening or glaing of the parts.
A bolt has been patented by Mr. rator for cleaning bone black, solphar, coftee, or ad dry matter required to be freed from dast, the invention covering a novel constraction and combination
parts in a boit to do such work in an expeditions parts in a bolt to do such
simple, and effective manner.
An instrument for dividing angles has been patented by Mr. Adolfo Saenz Yanez, of New York Cilty. It is an instrament for dividing sector and angles into equal parts, made of a thin plate pre meter pass through its centor which forms the base of the instrument.
A shackle has been patented by Messrs. Leonidas C. Ferrell and David Irrael, of Donaldsonville, La. It consists of a nafety belt provided with a lock and with hand cuffs for holding the prisoner's hands down in front of him in an easy position, and
one which will prevent him from running rapldy or offering great reeistance.
A sleigh has been patented by Mr. Nelson G. Reynolds, of Bangor, Mich. It is of that by a connection that will permit of oncillation or tilt of the body upon the runners, or vice verea, the connection being strong, simple, cheap, and not liable to get out of order.
Combined outside and inside calipers Warfeld, of Chicopee Falls, Mass. The device bas legs formed with inclined arms at one 'end and bowed arms at the other, semicircalar threaded recesses and a
pivot screw therein, a screw-threaded rod, an adjuating plvot screw therel
nut, and a spring.

A vehicle wheel has been patented by Mr. Joseph Blais, of Daluth, Minn. Cape are Atted on a split metallic rim atted to ran circularly in the wheel of great atrength and elasticity with afford a wheel of great strengtb and elasticity, with
ent and effective adjustability for shrinkage.

A water trap for gas mains has been patented by Mr. Alexander Chambers, of Toledo, Ohio. valve and carrying a foat on its other end, a lever fot crumed in the fioat chamber carrying a float, with means for locking the valve arm until the water near
A composition for A.
A composition for lining vessels has been patented by Mr. James A. Blanchard, of Brooklyn,
N. Y. It is to at such vesle N. Y. It is to it such vessels for nse in inclosing com-semt-fuid state, and is made of resin, pitch, and other ingrealents, componnded and applied in a specially described manner
A calf weaner has been patented hy

Kansas.
side and
It consists of a detachable noes plece having

A snap hook has been patented by Hesera. Edwin Crippen and William King, of New lower end and carved to form an open reduced at its entrance to which a spring form an open hook, over the the upper part of the body being in the usual manner pleces for atteching the shackiee to the hook

A hand propelling device for sewin machines has been patented by Kate P. Beaird, of Tyler, rexas. A rod to jointed to the iny wheel after the manner of a pitman, and is rashioned into a handle ex tending obliquely ap toward the operator, being com may be attached to the framework of the machine.
A corner iron for carriage bodies seats, etc., has been patented by Mr. Joeeph Doty, o mortices, with. Y. Its boitionas the lodinal slde an apertured cap, whereby two or more boarde quired to meet at an angle may be armly attached to form a corner, either round, square, oblique, or angula
A gate has been patented by $\mathbf{M r}$ George Ford, of New Harmony. Ind. The gato is poots, and is pivoted centrally so that any resiating action of the wind on one side of the pivot will be connteracted, and the gate may be turned as freely in
windy as in other weather, with various other novel

A sash balunce has been patented b Mr. Thomas Jones, of Danville, Pa. Combined with frame for insertion in the window window sash is spring-actuated pinion and angle lever with having raging the pinion, and other novel features, the main object being to dispense with weighted sash lines and he ordinary sash fastener.
A tire-upsetting machine has been pa lented by Mr. Robert Rutter, of Butte City, Montan Ter. The heads or seate for the tire are formed with
tandards and bosees projecting therefrom. In conneo ton with gripping cams recing therefrom, 1 c connecthe construction relieving the strain on the pins tha connect the gripping cams to the stationary and sllding

A cash carrier has been patented by if. Lonis J. Bishop, of Cleveland, Ohlo. Combined riction rollers, with carved-face propelling arms fut crumed to operate in opposite directions on the fric don rollers with a wiper-cam action, a spring clasp holding the carrier at the end of its ro
A balance apparatus for ascertaining counis or numbers of yarn has been .patented by Mr. mil Stanb, of Leipsic, Saxiony, Germany. The counts red at one end of a balance arm, at the other end of which is a hook, a pattern or templet being prepered or each system of numbering according to which the samples have to be cat.
An ice creeper has been patented by Measrs. William W. and Edward F. Preston, of Bigmarck, Mich. It is dealgned to be applied to rubber
overshoes, and has a shank or main plate, a turnover vershoos, and has a shank or main plate, a tornover
pivoted or lever spur frame, and a apring controlling voted or lever spur frame, and a apring controiling ment beneath the heel, or which may be folded ap thin the shank of the sole.
The manufacture of buttons forms the abject of a patent posied to Mr. Daniel A. Ladd, of tag a shank and an approximately spherical hollow and pertured body, inserting the end of the shank and nally compressing the body to the form of the head of ontton, the improvement being especially applicable
A roller for producing alto-rilievo ornamentation has been patented by Mr. John H.
Thaiton, of Chicago, ml . It io made with a rim on the race of which are prodpcod sunken or intaglio patterns,
the rim being cut away to conform to the of the patterns, and also cont throngh to outer marging side openings, for producing ornamentation in plastic composition applied to plcture frame monldings, etc. A baling press has been patented by Mr. Andreas Mattijete, of Glddings, Texas. It hav slotted baling box and planger held to sllde therein arms rigldy y connected with the planger and havin racks on their under sides, a shaft with pinions meshing with the racks, with other novel features, making a imple and darable press which may be operated by
A method
imbers timbers has been patented by Mr. Hiram L. Ricke, of piles or timbers longitudional or transersinging in the both, and connecting the plles or timbers by plpes which communicate with a tank containing fresh water which by preseing outwardly displaces the ealt water
and keeps the timbers constantly soaked with frest water.
A galvanic battery forms the subject A York city. The jar, by one of the patonts, has it moath formed by an outwardly extending fange, the
electrodes being held together by elantic bends which the apper one rests on the dange of the jar, on apporting the electrodes in the jar and also forming a ight joint to prevent the spililing of the exciting liquid By the other invention. the porous cap itself forms the cover for the jar, at the same time permitting the tinaertion of the zinc rod, which is prevonted from coming
in contact with the electro-negative sediment in the

IEW BOOKS AND PUBLICATIONE.

Practical Hints For Dradghtsme
By Charles W. MacCord, A.M., Sc.D Professor of Mechanical Drawing i the Stevens Institute of Technology N. Y., publishers.

The practical dranghteman shonld be master of principles should be relligiously adhered to main theos cal drawings, but there are times when this is imprac ticable, and when these rales ahould be abendoned. The pages of the present volume show how and who hise ahoald be done, and how, aided by judgment an ingenulty, such liberties may be taken. This subjeet will be found of value to the stailent and workmen There is aleo a section on free hand sketching, and a number of chapters on the selection and use of drawing instrumente. Boand in cloth. 4to, 100 pages. Price $\$ 8.50$
Treatise on Electricity and Mag
NETISM. By E. Mascart and
bert. Translated by E. Atkinson
Vol. II. Methods of Measurement
and Application. London: Thomas
De la Rue \& Co. 1888. Pp. 782. Price 85.00 .

The socond volume of this work treats the the fulles The formale are siven in the fulleat metall, and the minence of Professor Atldneon's name alt, and the dds to the standard quality due to Professors Jonber and Mascart. The illastrations are all thoroughly pernent, and are of the plainer and more usefal type whose use now prevalis in electrical books. A coplons
index of references to both volumes is given. Numerous tables of electrical constants arv incladed in the ext.
ET Send for new and complete catalogue of ScienFree on application.

SCIENTIFIC AMERICAN

BUILDINa EDITION.

APRIL NUMERER.-(NO. 80.)

TABLE OF CONTENTS.

Klegant plate, in colors, showing perspective eleva-

plans, sheet of detalls, etc.
Plate, In colors, of a cottage costing nineteen han perpectire, wor plat an Perspective view and fioor planis or
four thousand five hundred dollars.
Porspective eleration and floor plans of a dwelling liting two tho
loor thonsend two hondred dollere.
Plans and perepective elovation of two thousand elght hundred dollars. dwelling for drelling coeting four thoneand lars. Perspective and foor plens. ave handred dol
floor plan
Δ city hones of moderate cost.
. Perspective view of a conntry honse in Connecticat Floor plans and perspective view of a seacide reaithoussand Ave handred dollars.
12. Flevation and noor plans of oconomical workin men's homes at Krapp's Steel Works, Eecen, Rhenish Prussia.
13. Engraving and plan of a town hall or charch.
14. Vlew of Conntry residence of Mr. Kurts-F. Geb , arilloch 1 wankol.
supporting the cracked celling of the trestie for Chamber, Capitol Building, Albany, N.
6. Vicarage Honse, Herrington, Durham.

Full page perspective view of the Caldwell Hotel
at at Blangham, Ala., Bhouard Sidel, architect. Page of drawings representing some of the exhibit of the lave display of the Architectaral Loague, of Now York. Δ Spanish Grille. Δ French Farm
House. Δ row of New Hoases, New York. J. H Duncan, architect.
Miscellaneons contents: Trees for Marsh and Concrete.-Bulbous Plants for Apartmenter, and engravings.-Color is Greek Templee.- Fever from
Sewer Gas.-New Use for Dynamite.-Wall Plates. Sewer Gas.- New Use for Dynamite.-Wall Plates.
-The Underpinning of the Great Yarmouth Town -The Underpinning of the Great Yarmonth Town and Shavings.-Dry and Damp Rot.-The Rose ants.-Wood's PatPainting of Iron R illastrated.-The Danning Hot Water Boiler, illua-

The Scientifc American Architectes and Bualldere cents. Forty large quarto a year. Single coplees, wo hundred ordinary book pages ; forming, practically, a large and splendid Magazins of Abohitso-
rure richly adorned with elegant plates in colors and with ine engravinge, illatrating the most interesting xamples of Modern Architectural Construction and allied sabjects.
The Fulliness, Richness, Cheapness, and Convenience thio work have won for it the Larorbt Cibculation newsdeale all newsdealers.

MUNN \& CO.. Publisaers,
coi sicodmay,

2Business and Xersonal
2ne charpes for Ineertion under thes head is ome Dole

aline jor cack insertion; about aloht woonds to a the

 Ldiveribernents must be neostived at publicalion astacThe Diamond Prospecting Co., 74 and 78 W. Iake 8 alcawo. III., goner
All Books \& App., cheap. 8chool of Electricity, N. Y Wanted to Manufacture on Royalty-Bome memall pe For
For Salo-Model and machine shop. Holablished \approx
fovery deseription. Send for oircular. Stoel Cauting

Wanted as Instructor in a City School-A adilibed Feferred. Addrece Mentor, P. O. box Tra, New Yort Portable grinding mills. Chas. Kecotner \& C_{0}., Wanted-A practical tool maker. An experienced Wardware manafactory, magy apply for situation io Hardware," P. O. box Trs, Now Yort
For Salb-Two hundred shares of the Burgees Putent . Addreme A. B. C., Dritton, Penne. Luserne Co. For the specilic purpose for which they are dealgred, Parts manufactured by the
Partictic Bettery

1723 Cheotnut Street, Philladelphia, Pa,
Steel name stampes, 15 cts. per letter. Steel igures,
11 per set. F. A. Seckmann, 1000 Firat Ave., Clovelund,
Brase, iron, and steel work of all kinds. Send ean
 Mase.
 Cadroengo, the M. C. Bullook Mif. Co, 128 Jackeon 8 .
Feed grinders. Chas. Keestner \& Co., Chicago, ill Burnham's tarbine wheel is sold at net price to mill wnars. Catalosue free. AGarece Yort, P2
 ohinery, otc.
Nickel Plating.-Manufacturers of pare mickel an-

Perforated metale of all kinde for all parpoess. The
Robert Attchison Perforated Metal Con Chicera, ill The Relrisod Porite, hendeomely, Caicuano, ill
 8t., Boston, and 98 Liberty St., Now Yort, barve fous t-

Link Betting and Whools. Link Belt M. Co., Cricayo.

 Iron Planer, Lathe, Drill, and other machine tools of Prewees \& Diee. Ferracute Mach. Co., Bridgeton, N.J. The Holly Manafacturing Co., of Lockport, N. Y_{n}, Fill eend their pamphlet, deacribing wator works man. Kngines and boilers. Chas. Kaeotner \& Co., Chicago,Curtis Preseare Regulator and steam Trap. See p.7T. Sapplement Catalogue.-Persone in pursuit of infortifo subjeot, can have ontalogue of contoate of the 8 cc . EMTHFC AMERIONN SUPPLEMENT seont to them free Tho SOPPLiminery contalins leagthy articlees embradias solence. Addrees Munn \& Co.. Publichers, Now Yort No. 11 planer and matcher. All kinde of woodw
machinery. C. B. Rogers \& Co.. Norvich, Conn.
 Improved ane toole for mechanics-Manufactared b
Improved ine thol, Mess. Send et He for full live Iron, steel, and Copper Drop Forgings of every de sten 1 , steam Hammers, , Improved Hydraulic Jacks, and Tube
sxpandera. R. Dudreon, 21 Columbla St., New York. New cutting-oft tool, with offeet holder. Blade iom 1-16 to $1-4$ inoh thick. Dwight Slato Moth. Co Hart

00,000 Emerwon's 1887 ETV Book of superior sawe, with applement, sent froe to all Sawrers and Lumbermen
Addreese Emerson, Bmith \& Co., Lemited, Boaver Falla,
L., U. 8. A.
Safety Klevators, steam and belt power ; quick and Safety. Elevators, steam and belt power ; quick and
nooth. D. Frisble \& Co., 112 Liberty St.. Now Yort. "How to Keep Bollers Clean." Bend your addrese
or free so page book. Jas. C. Hotohkike, 180 Lbberty 8 . Paint mills. Chas. Kaestner \& Co., Chicago, II .
Praclical working drawings of machinery made by A.
K. Mansfeld $\&$ Co., 280 Broadway, N. Y. Correspundence
invited.
For Steam Heatiug-the Danning Patent Wrought ron Boller. Over 13,500 in use. Manufactured by
York Central Iron Worke, Geneva, N. T., U. 8. A. "The Improved Greene Engtne." Steam closing
oechanism. Sole bullders, Providenoe, R. I., Steam En. Rod,
Rod, pln, and dowel machines. 1,000 to 8,000 Uineel
feet per hour. Rollstone Machine Co.. Fitobborr, Maea Split Palleys at low prices, and of same atreasth and ppoarance sa Whole Pulleys. Yocom tian's aharting Works, Drinker BL, Philedelphiz, P2

 HINTS TO CORRESPONDENTS

(1) L. C. asks : Would the carbon,'made an described in Scrismitio Amiricican of April 29.1887 , No. 11, current volume? A. Yes. 2. If so, how larg should the carbon be for one large cell, sufficient to give the motor one man power, asing the following mix-
ture, which I copy from the Electical Rovero: "Diooolve common soap in bolling water, and add to it The mixture forms in the manner of jelly, and will no readily spill.". I wish to attach the motor to a vehicle and any liqnid will easily spill. A. The motor is not adapted to a single large battery. As we have never seen a practical trial of the soap and caustic polash ba
tery, we are unable to ray anything as to its merits. of beat to have one large cell or a number of smaller ones? If it is best to have small cells, how many half kalion or quart cells will be required to ran the motor A. It will require about 8 cells of planging bichromat
(2) P. J. N.. writes : Will you please in form me whal form, whether round, square, or twisted Would it be lightning rodis? Also, what material is best ay 4 or 6 rods, to the galvanized two inch pipe of drive pump, forty feet deep in earth? A. The form of ightning rod is immaterial. Copper is thought to b beat. Iron rode of donble the diameter of copper have the same capacity. The drive well would form a very ood ground, but the surface is rather small. We would copper buried in moist earth, or of beds of coke having the ends of the rode looped and laid beck and forth pon the coke bed, with a covering of coke above the ods. The coke should, of course, be in contact with

(a) W. C.

(3) S. W. C. writes: 1. Are there not ome discrepancles in the description of the simple he armature yon say to use 18 colls of No. 16 wire. Pou layers in each coil, and eight convolutions in each hyer. This wonld require 80 convolations of wire in ated wire measures 0 -088 (over the insalation), ther woold have to be aboat $6 \% /$ inches in which to wind the 12 colls. Now, the inside of the armature, when wound wonld be only $1 x$ inches diameter, or about $53 /$ inches in circumference, and therefore conid not contain the required namber of convolutions. A. Armature ma carefully used, but it is difficalt to wind the armatare with wire of this size in such way as to get the wire all in . The resiotance of the armature is increased nmewhat by using Aner wire, but owing to the facility with which No. 18 can be woond, it is, perhappe, advisa he to use that size instead of No. 16. 2. It is state ce 88 convolntions, and onls sbont B inches in each convolution, I do not eee how there conid be more tha abont 16 feet. Δ. There was an error in giving the
length of this wire. The length is about 15 or 16 feet.
(4) H. R. S. writes: In winding the ar ater winding six coils as described, I And that I shal not have ronm on the armature to wind the other six colls with eight convolations. Would the motor ra all. right if eleven lnstend of twelve colls are used, o would it be better to wind the remaining six coils with paper convolutions? I saw in the last issue of you of wire that the motion would be irregular. To whe extent would be the Irregularity of motion, in either o the above cabes! Is there any other way than that havo statod, besides rewinding. of overcoming my difmcolty? In case I should wind the remaining coils with seven convolutions, shonld I decrease the amount of hine or lathe what inconventence would the irregularity of the motor cause : Would the irregularity b enough to be noticeable in the lathe? A. By using sin gle covered wire yon will be able to get in the required namber of cuils. There will be no particalar objection to asing No. 18 instead of No. 16 , if you find your ring too amall to receive the No. 16. Sllght irregularities of erious effect apon the operation of the motor. There will be no observabie irregularity in the rotation.
(5) Montana wishes to know if there is any limit to the height a siphon will work, provided mit of the action of a slphon is 88 feet high, but prac cally, only about 28 feet is realized.
(6) G. I. H. asks (1) if the field magnet of the electric motor described in March 17 number of scurstimio Ampacans is to be of one piece of Ruseia
itron, or of diferent pieces, and if of one piece, where lron, or of different pleces, and if of one plicee, where aeld magnet of a single plece of Russia iron. The tripe should be as long as you can conveniently pro Is any of the wire to be cotton covered, except fo winding the armaturet A. All of the copper wire ased
in the construction of the machive musi
Single covered magnet wire will answer.
(7) H. C. S. writes: I am trying to
 firio Amarican. I ind that I cannot wind twelve
eections, eight wires wide and four deep, of 16 cotton rections, eight wires wide and foar deep, of 16 cotto
covered wire. In Mr. Hopkins' directions he saya covered wire. In Mr. Hopkine arection of the arma
takes only 80 feet of wire on each eection are. What is the cause of the troubie? I ind wind on the required number of convolutions and layer of wire in the eections of the armature is probably due one of two cauges, or perhape both. You may have ased donble or triple covered wire. The wire in the ire. You may have falled to lay the wire straigh and traly parallel. The way oat of the dimenilty is to amit one convolution from each of the last two layers of
wire in each coll, or wind the armature with No. 18 wire. The latter plan is preserabie. You are right regard to the length of wire in each coll of the armature. read 15 to 16 foet.
(8) S. J. A. writes: I have wound my eld magnet with wire which I bought of the Detroit ne coll is on the armature ring, I cannot get the second in its proper place, the Arst belng too wide. I need four layers, 8 wires wide. What shall I do? Use smalle nagnet all wound, and don't know what to do. A. See nagnet all wound,
(9) R. M. S. writes: I am making an lectric motor as described in in cientipio Americar Luaed March 17. In the bill of dimensions and quanites, 1 and 1 cannot get 80 fi in each coil on the core in each layer. What I wish to know is, is the effective ess of the motor governed by the proportional amoun of wires in armature to the aeld magneta? If so, does lengthening or shortening the wires in the colls make
the motor stronger? I And by actual trial that 15 ft the motor stronger? I and by actual trial that 15 ft
will all each coill, thas ghortening just one-half. A. See will all each coll, th
(10) W. C. F. asks: 1. Would it be well to ase a motor run by batteries to ran a dynamo to roperate a dynamo to produce a light is rery muct ike pamplig water by hand to operate a water whee oo run a grist mill. Better use the current from your battery to operate your lights, as you will lose more
han half of it in the process you deacribe. 2 Wonld the motor of Scienturic Axsmican, March 17, 1888 an the small dynamo of Scientifio American Sup pliniext, No. 1619 If not, how conld the dynamo be ynamo to any adrantage. The dynamo conld not be changed so as to be run advantageoualy by means of he motor.
(11) B. F. S. writes: I was much in lerestod in an articte headed "Simple Electric Motor," a Soismitioio Ancrions of March 17, 1888 and have begun the construction of one. The battery is the
point I am In doubt about. The article says, eight cells of plunging blchromate battery, each having one zinc ate 5×7 inches, and two carbon plates of same size athe or two or three sewing machines. Dooe this mean Fuller's mercary bichromate batiory or the Grenet battery? Can you refer me to any number of your aper in which I can get a deecription from which to onstruct, at moderate cost, a anitable battery to ran have not described a battery of exsctly this conetric ion, but expect to do so at an early day.
(12) G. M. C. asks: I want a cement hat will bind (1) a strip of rabber, (2) a strip of rough aches long, and lo other dimensions about like the whalebone that goes in a corvet. The cement to be
arm enough to hold, desylte active and frequent motion ike that employed in laying on the rod. A. Use a cement Composed of equal parts of pitch and antita percha, axed oil-lard oil for example.
(18) W. D. L. asks: 1. Would you cease inform me if the rmall "Electric Motor" de 41, would require an electrin current of a strength which would make it dangerous in the hands of an Inxperienced person? If not, why? A. The carrent reaired for the motor is not at all dangeroun. 2. Also oul the prepared heikograph the the the then or atores qive the same reanlt as that of the formula american Supplizirnt. No. 438 ! A. The prepared thk will answer the parpoee.
(14) H. S. P. writes: 1. I have a one解 I power engine in our coffee roasting department he Sciemtific Anerican an a dynamo, by connecting to line shaft and driving it with the engine? Could I ovelop enough electricity to make one or more small nagnet and winding the armature with finer wire yeld rill be able to prodace a current that will run one or two amall lamps. 2. Can I procure a namber of your paper in which there is given 2 deseription and illustra-
tion of a plonging bichromate battery! A. We shall at an early day pabilibh a deacription of a plunging battery
and

TO DIVETTORS

An axperience of forty yeark, and the proparation of nore than one hundred thousand applications for pe-
onts at home and abroed, onable un to maderatand the laws and practice on both continente, and to poseses unequaled faclitties for procuring pationts every where. A
synopats of the patent lawt of the Onited Statee and all ontemplaning the coing of petication, and person abroed. are invited to witte to thte ofice for prioeen,
which are low. in accordunce with the timee and our er.
 way, New Yort.

INDEX OF INVENTIONS

or which Letters Patent of the United states were Granted April 10, 1888,

AND EACH BEARING THAT DATE.
 H. Thalson..................................
 Auker, spoke, 8. B. Bhafrer.
Axle,
Axle, wakon, N. L. Holmes.
Bag, Ehoe for traveling, C. Bolinitich.............
Bagasee drier and furnace, A. G. De Aguiar. Bagasee furnace, F. Cook.
Bale tie, wire, W. Hewitt
Balilig prose, , M. Mattijots.......................
man box, rextatering and caceling, A. Bigel

Barrel, \mathbf{Q}. 8. Long.
Barrel making mpochine. M. E..... Beanley ac a
Barral making machine, G . Rehfues ot al
Battery. see Galvanic battery. Secondary bat-
tery.
rant electrical, J. T. Arestrionary and itino-
Bod bottom, W. B. Noyes.
Belt conpling, N. Qurin.
Belts, compound oul dreseling for rubber, G.
Cooper.............
Bill holder, H. E. Leasure
Bit blanks, machine for groovink, J. Swan
Bllnds, bllod rod for allding, G. Popport..........
Boata, eto.. releasing device Inr, J. L. Cathoart
Boate, etc.. reiameang ,..............................
Boller farnace, Q. W. Parketon...
Boller grate and furnnoe, ateam, G. Gulickion. Bollera, Junctlon plecs for ateam, G. 8. Strong..
Bolt. G. D. Murdoch

$\xrightarrow{\text { Halces }}$

H. Minterc............... Bolting reel, $\mathbf{0}$ M. More

cooz signatures, machine for gathering and 0 Soor protector, fell, saunders \& Rauch Buot or shoe, H. W. Furber
 Boots or shoes, button plece for
Botle, nuraing, W. F. Ware....
Bottle stopper,
Botulea, ecrew siopper for, Barrett $\boldsymbol{\&}$ V arier
Bowls, mak ing woodeni. J. Berter.
Box see Ballot box. Paper box.
Box. See Ballot box. Paper box.
Brake. See Car brake. Wazon brake.
Brake lock, A. Hansen...
Bridee,
Buacke, 2wing, C. W. Martin.....
Bung and alr vent, A. Waloot.
Bapp....
Burglar alarm, W. E. MoIntoah.................
Burner. Boe Gan burner. Gan fuel burner.
Buttor worker, F. E. Crawford.
Button, J. M. Ellis..
Button Is marking machine, II. R. Corkhill, Button Yorming machine. R. Hormann. Button making machine, F. Bockna........ Butcon seting machine, F. R. Richards....... 881.0 Cablons, manu fort holding or rallway fol Vello
Calipera
neld
neld.....................................

Car brake. E. H.
Cardy
Car coupling, J. Kruupa........

Car coupling, H. Sabine.....
Car coupling, J. G. Whliame.
Car platiorm, T.
Car platiform, T. W. Whoore
Car,
Car starter and brake, J.
Car, stock, C. Lenagguth............
Cars, indicator for atreat, F. Hicks

Cartridake, G. M. Peters................
Case. Soe Cablnet case. Show case.
Case. Soee Cabinot case.
Cash carrier, L. . . Bishop.
Cash carriar apparatus, J. F. Burdett...
Cash rexiteter and Indicator, E. T. Taylor
Claster rollers, manu facturing, R. B. Cocilink
Casting ordnance, apparatus for, R. J. Gal.
Casting patern, F. M. Beterens
Chatiog pattern, F. M. stev.
Chisel gauge, C. It Mesd...........................
Chioraiking
Newbers
a V Vatin.
Churn oover, J. H. Tayior
Churn desber, J. E. Finley
Chute, H. B. Warner...
Cigar bunching machine, J. R Wuliam
Clapp. See Garment clacp.
Clock movement, A. E. Hotobkiee (r)................
Cloth outtink machine, A. Warth...........2ease
Clothes arler, O. M. Bhanion
cofive n fart tener, W. A. Sperks
Colorng mattera, production of diaciola, Potriti

Comblnallon look, H. C. Grimin.

Wilinems Corn sheller.

Corn shellor, s. G. Pullisbary.
Correer ImD, J. DDty..........
Corvet buak. G. Dunninghuas
Couping. Beo Belt coapling. Car conpling...... Pi
Cruahing mull, A. B. Roe.

Cultivator, E. Kast.
Cultivator, J. Bhank
 Cartain rolier support, G. S. Tyler.....
Cut-ori, antomatic, W. G. Browne....
Catter. See Feed outter. Tabe cutte Cutter. Soe Feed outtor.
Dental chair,

Dentit stucke... | 380,448 |
| :--- |
| $.880,8 \times 2$ |
| $.821,041$ | Dental chair, L. Stuck...

Dentifrice, J. Sch warta. 381,000
380,700
Die. See Screw cutting die.
Die arinding mechanism, M. Brock. Digrer. See Potato dikge

Draught equaliser and spark
Crane
Draught evener, J. W. Gamble.
380.c.4

Draught evener, J. W. Gamble...............
Drier. Bee Bagasse drier. Clothes drier.
${ }^{2300.766}$
Dyestur, manafacture of purple-black azo, O. N.

ERxtractor. Soe Rivet extraclor.
Eye bars, machine for upeetting, Cooke \& Car-

A. A. Hawley.
Fence, Y. E. Wood

Fifth wheel. vehicle, E. E. Daris................
yilese, machine for cutting, O. M. Fairbanks.....
Milter, wet
Milter, water, H. W. Grelle.
Firearm, breech-loading, , G. D.

 Flour dreeser, B. Knimer.

Fork guard. F. C. Fel.cker.......
Frame. See Pocketbook fram
Furnace. See Bagase furnace. Boller furnac.
Heating furnace.

Gas plpes, apparatus for cleaning charged, P.
MoGGe.............................
Gas works, hydraulic main for, Mcilienny
Lansden...............................
380,910
380,911
Bwinging gate.
Gata, G. Ford.....

Guard. Bee Fork guard.

Hauger. See Umbrella hanger.

V. M. Hollyday..

Heating furnace, E. W. Anthony
381.016
381007
380.711

Hoislung tacklie, s. M. Vauchan!..........................
Holder. See Baa holder. Bill holder. Pullow
Hook. See Snup hook.
Hook, G. C. Beals.......

1880,983	
1,074	bers
880,701	Iron. See Corner Iron. Sad tron.
380,928	Iron and steel, apparatus for manufacturing compound plates of, A. Wilcon.
880,487	Iron, manufature of planished sheel. W.\& W. H.
381,008	Rorers.. 880,8
	Kilin. 8ee Lime
880,710	Knife. See Sardeal knife.
${ }^{380,701}$	Ledder for city lire department service, E. F.
380.871	steck.. 880
88.081	Ledder, fralt. M. H. Murphy....................... 380,
	Lamp, J. G. Halinc...... 881
	Lamp, C. S. Upton........ 881,042
580881	La
80,783	

April 28， 1888.1
§rientific Americait．

GAS LICHT CO．
 Gas and Water Works．

 THE VICTORS Bicycles，Tricycles， Safety Bicycles

Overman Wheel C_{0} Makers of Victor Cycles， BOSTON，MASS． NATURAL GAS INDUSTRY AT PITTS－

BARREL，KEG， Hogshead， stave machinery． over So varieties manu－
fucturea by \＆B B．HOLMES，
PIPE COVERINGS
Absolutely Fire Proof．

MAGNESIA SECTIONAL STEAM－PIPE AND BOILER COVERINGS． \backsim THE MAGNESIA
\qquad
Covering Co．
PHILADELPHIA． ocal A Aents Wan

THE COPYING PAD．－HOW TO MAKE
 BICYCLES and TRICYCLES．

cy John WIIkinson Co．
VOLNEY W．MASON \＆CO．， PRICTION PULLETSS CLUTCHES and ELEVATORS RRIGATING MACHHNERY ON THE

 New Catalogue of Valuable Papers

CHEMICAL，AND ALLIED INDUS－

 FASTM $\$ 1000$ to $\$ 50000$ 背就を

ICE\＆REFRIGERATING

Proposnls for Constructing in Seam Propeliler，

TELESCOPIC OBJEOTIVES AND MIR－

MANUFACTURERS！

 WEBSTER

3000 more Words and nearly 2000 more Illustra
tions than any other American Dictionary WEBSTER IS THE STANDARD Authority in the Gov＇t Printing office，and with
the U．S．Supreme Court．It is recommended the the State Supre court．It is recommended
by Soos sin 36 States，and
by leading College Pres＇ts of U． S and Canada． It is an invaluable companion in every School G．\＆C．MERRIAM \＆CO．，Pub＇rs，Springfield，Maes． ALCOHOL，SWEET POTATO．－AN
 200 Cute，Curlop，Catchey Plityres TAKE THE MONDN ROUTE Leulsville，In
 E．O．MeCormick，Gen，Pass．Agent，Chicngo． FERTILIZER MACHINERY．－Milis，Mixers，

FOR BATM．

FOR SALE Citr，Contry，or State Riphts，under

The Scientific American PUBLICATIONS FOR 1888.
\qquad The Scientifc American（weekly），one year ．$\$ 3.00$ The Scientiff American Supplement（weekly，one
year．
5.00 The Scientific American，Export Edition（monthly） 5.00 The scientific American，Architects and Builders
Edition（monthly），one year． COMBINED RATES．
The Scientific American and Supplement，
The Scientific American and Architects and Build－－ ers Edition，
The Seientific American，Supplement，and Archl
tects and Builders Edition， This includes postage，whioh we pay．Remit by postal MONN \＆CO．， 361 Hroadwny，New York．
ON 30 DAYS＇TRIAL

2 2doerfisements.

 $7 \begin{gathered}7 \mathrm{JOHNs} \text {, } \\ \text { NEW YOKK. }\end{gathered}$ II NEW YORK,
 54 Darmaniverixa

THE GENERATION OF STEAM.-A

$\frac{\text { sTA }}{\text { ETH }}$ -ENGIND MARINE Steam Yachts, Seio Stmmp for Catalooues. racine haroware co., - racine wis. THOMAS KANE \& CO., 39 Wabash ave.. - chicaco, ill Warm Air in Abiund Pure. bran "or Por Fumace Book.", manutacturbes. Philddelpha and Chicago.
THE PHONOGRAPH.-A DETAILED

ELECTRRIC CONVEYORS.-DESCRIP-

New Gas Engine

 "The Baldwin" all the steadiness that can be obtained from the hith hith

Otis Brothers \& Co., Elevators and Hoisting Machinery,
etroleum fuel-an account

PATENTS.

 MUNN \& CO., sillititors of Patenta,

Asbestos patented ilooting FIRTM-PROOT

H W Par
H. W. JOF ${ }^{\circ}$

2 Ch CO., 87 Maiden Lane
 Sheathings, Bullaing Felts, Asbestos stenm
ALL BOOKS and Achoolofieetr
Boats and Canoes for Oar, Sail, Or rim

FREME, BT MLATI t of steel Figures, $3 /$ inch,
\qquad

Clumbia BICYCLES.
 - Triciclies TMANDEMS GUARANTEED=HIGHEST GRADE ILLUSTRATED CATALOGUE:FREE $\xrightarrow[\text { ie frankun Mra. Co. }]{\rightarrow}$ Pope

 LEAD SMELTING:-A F FULL DESCRIP-

G. Hatteld. with directions for construction. Four

RUBBER BELTING, PACKING, HOSE.
 VULCANIZED RUBBER FABRICS Air Braixe PIose RUBBER MATS, RUBBER MATTINC,
AND STAIR TREADS.
NEW YORK BGLITNG \& PAGKING CO., 15 PARK ROW, N. Y.

HOMMEMADE INCUBATOR.- PRAACTI-

SHIELDS \& BROWNCO.

Steam, Gas and Water Pipes, Drums, Heaters, ete

JACKET KETTLES,

USEFUL BOOKS.

chanics, , Builders, men of leisure, and protession
men, of their respective calilings. Our poosk ofinge the lepartment
permits the transmission of books throught

 classiffed with names of author. Persons desirining a copy, have only to ask for it, and tt will be matiled

TELESCOPES ${ }^{\text {Spectacles, Baromatera }}$

95 MILK ST. BOSTON MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, Mareh tht, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known orms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor

WATCHMAKER

QUARANTINE SYSTEM OF LOUISI

HARRISON CONVEYOR!

Forn grain, Coal, Sand, Clay,Tan Birk, Cinders, Ores, Seeds, \&c.

 BUFFALO FORGE CO.
MAKE BEST LINE
FORGES BLOWERS EXHAUSTERS
HAND \&POWER DRILLS EUFFAIO Nx GEOLOGY EXPLAINED IN ITS SIM.

 HOW TO MAKE AN INCUBATRR-

Scientific American The Most Popular Seientific Paper in the World, Only 83.00 a Year, inclucding Poantrige. Weekjo.

 original engravings of new inventions and diccorerise
 New Inventions, Novelties in Mechanics, Manufictum
Chemistry, Electricity, Telegraphy, Photography, Arel tecture, Agriculture. Horticulture, Natural Mistory, etce Complete List of Patents each week.
Terms of Subscription
Terms of Subscription.-One copy of the scirs.
TIFIC AMERICAN will be sent for TFIC AMERICAN will be sent for one vear- Sig umbert-
postage prepaid, to any subscriber in the United Sutas
or Canada, or Canapa, on receitp of three dollars by the pobl
Hishers; six months, 81.50 ; three Hishers; six montbs, 81.50 ; thiree moxth, sil.ae.
Clubs. - Special rates for several names, and to Post Clubs.- Special rates for several names, and to Pos
Masters. Write for particolars. Masters. Write for particulars.
Thersafest way to xemati is by P
Express Money Order. Money carefolly placed inside envelopes, securely sealed, and correctly addressec,
seldom goes astray, but is at the sender's risk. Address ail letters and make all orders, daits, etco, pas.
dis. bleto alulvin at CO.

361 Broadway, New York. TEX
Scientific American Supplement.
This is a separate and distinct publication from
THR SOIENTIFIC AMERICAN, but is uniform therevith in size, every number containing sixteen large pages fo engravings, many of which are taken from forie phers, and accompanied with translated descriptions
Scientivic Ambrican Suppliorkst is publisbed weekiy, and includes a very wide range of contents it all the prinoipal departments of seience and the Useful Arts, embracing Biology. Geclogy, Mineralogs, atural History, Geooraphy, A rcheoology, Astronomy, heemistry, Electricity, Light. Heat, Mechanical Engiaip Building, Marine Engineering, Photography, echoiogy, Manufacturing Industries, Saritary En my, Biography, Medicine, etc. A vast amount of fresh ication.
The most important Ensineering Works, Mechaniass, dd Manufactures at home and abrosd are illustrated Price for the Surplikment for
Canada, 85.00 a year, or one copy of the SCIENTITES AIF. ERIOAN and one copy of the SUPPLEMENT, both mailed and remit by postal order, express money order, or cheak MUNN \& Co., 361 Broadway, N. Y..

Builders Edition.
The sutentific American Architgets' axd
Butiders' Edition is fisued monthly. \$2.50 a year. Single coples, 25 cents. Forty large quarto pages, equal large and splendid Mad ordmary book pazes ; forming a ly adorned with elcoant plates of a colors, and with other
fine engravings ; Illustrating the most int amples of modern Architectural most interesting ex.
anstruction and
anled subjects. allied subjects.
A special eature is the presentation in each number
of a variety of the latest and best plans for private restdences, city and country, neluding those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with foll Plans, Specifcations, Sheets of Details, Estimmates, ete
The elegance and cheapness of this mapnifcent work have won for it the Largest Circulation of any
Architectural publication in the world. Sold by Architectural publication in the
newsdealers. $\$ 2.50$ a year MUNN \& CO., Publishers,

361 Broadway, New York.
PRINTING INKES,

