A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES

ARTESIAN WELL ENGINEERING.

An artesian well which is reinarkable for the power and constancy of its flow is illustrated herewith, and being taken directly from a photograph, gives an ac curate representation of its great force and volume.
This well is situated at St. Augustine, Fla., and is
ter of $93 / 4$ inches, bat when indications pointed to nated terraces, producing with prismatic effect a most there being so large and constant a supply, its size was gorgeous cascade.
increased to twelve inches. This work was done by Mr. Daniel Dull, of this city (corner of Broadway and FiftyDaniel Dull, of this city (corner of Broad way and Fifty-
first Street), who is an extensive and successful opera-
tor, having an experience in this line extending over

The beautiful fountain made by this well has also most appropriate surroundings in the buildings and grounds of the new Ponce de Leon Hotel. This hotel 1,4: ; feet deep and has a diameter of twelve inch ϵ api
The water flows continuall ${ }_{\text {mat }}$ nd with suff cient for $: \theta$ to maintain the form \mathfrak{F}_{2} a fountain about twoyluy feet high and an es-- 4ated volume of 7,000 sallons per minute, or ' $\hat{4}$-million gallons daily. The mouth of the well is water. After tide water. After mosing through various strata of sand in boring the well, small shells, an' 'ye clay, roc. in which, a.... 450 to 495 feet, bearing vein was and in chalk formation at a depth of 52) At a depth of 520 feer,
there was a sudden large there was a sudden large
increase in the flow. The drilling was further continued through coral and thin shells of limo stoue, but with no further accession of water until à depth of 1,100 feet had been reached, when the flow was per ceptibly increased. After this the drilling was continued down through alternate layers of sandstone and limestone to the total depth of 1,400 feet, but without materially adding to the supply.
The temperature taken at different depths showed a constant rise, as follows: 62° Fah. at 27 feet below the surface, 74° at a depth of 94 feet, 79° at a depth of 520 feet, and 86° at a depth of 1,340 feet. The formations passed through were generally soft, and the whole time occupied in the work was but a little over two months. In the making of tools and appliances for drilling deep wells, Ameri can inventors and me chanics have long held the lead; but in order that such work may be successfully attempted and econonically prosecuted, and a well put

ARTESIAN WELL AT HOTEL PONCE DE LEON, ST. AUGUSTINE, FLA. ble site in the city of St. Augustine, covering in all an area of six acres, and introduces one of the most beautiful examples of Spanish Renaissance that has been erected in this country. On another page will be found an illustration of this magnificent structure, now almost completed. The material used in the construction is beach sand, small shells, and cement, making a beautiful and durable concrete, with arches, window caps, and trimmings of deep red brick, and cornices and finials of terra cotta of the same hue. There are also several other buildings erected and in process of construction some of them being copies of historic Spanish structures, which, with the gardens rich in tropical plants and avenues overarched $b y$ orange trees, will undoubtedly make this seetion of St. Augustine one of the most beantiful places on the continent for a winter residence.

Sencitiveness of Taste.

The substances exam ined were weighed and then dissolved in known volumes of the appro priate solvent. This solvent was generally water, and water was always used in dilution, so that the taste was not interfered with by the solvent. To eliminate personal error, two persons acted as tasters. In each case one cubic In centimeter of the solu tion was tasted. The solutions were diluted to a point at which the taste was barely perceptible (in some cases perceptible to only one of the experimenters) and that was taken as the limit.
The results were as follows: permanent satisfaction,
considerable geological data and competent engi- more than twenty years, and is now boring wells in six neering supervision are of the atmost importance. Few of those following the occupation of well drilling make the causes and conditions of artesian flow a specia study, or find it within their province to master the geological elements of the question. Large sums are often needlessly spent in endeavors to obtain these natural fountains, when the essential conditions warranting a reasonable expectation of success are altogether wanting. It is, therefore, especially gratifying to note this instance of a phenomenal success in artesian well drilling. The well was commenced with a diame-
different States in the Union. He has bored a large number of wells of great depth and capacity, having recently completed one at Northampton, Mass., to the depth of 3,700 feet
The immense volume of water from this well-having a developed pressure of over 50 H . P.-is utilized as a source of power, fire protection, and most efficient sanitary purposes at the hotel. It is designed to construct on the grounds terraces of colored glass lighted by electricity, and after the water gushes forth as an impetuous geyser it will be conducted over these illumi-

Sugar. -3-1000ths of a grm. barely tasted.
Salt (NaCl). $-1-1000$ th of a grm. barely tasted.
Tannin. $\mathbf{2} \mathbf{2 1 0 , 0 0 0 t h s ~ t a s t e d ; ~} 1-10,000$ th failed to taste. Hydrochloric acid. - 1-10,000th of a grin. barely tasted. Saccharin.-5-1,000,000ths of a grm. barely tasted.
Strychnin. $-5-10,000,000$ ths of a grm. barely tasted. F. P. Venables, Chem News.

A granite tile on exhibition in a show window at Detroit is over eight hundred years old, and said to have been taken from the tomb of William the Conqueror at Caen, Normandy.

\%rientific gameriau.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published werkly at
No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. e. beach.
 One cop, one joar to any forelign country bel
Remit by postal or express money order.

The selentife American supplement

 ,

 Addrese MUNN \& CO., 361 Broad way, corner of Franklin Street, New York

NEW YORK, SATURDAY, DECEMBER 17, 1887.
The year 1887 is drawing to a olose, and if those subscribers to this paper-and there are several thousand of them-whose term ends with the year will remit for a continuance of the paper before the year oloses, it will save the removal of a large number of names from our subsoription list, and insure the continuanoe of the paper without interruption. By so doing the subscriber will be benefited and our subsoription clerks greatly relieved.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
INO. 824

For the Week Ending December 17, 188\%.

Price 10 cents. For sale by all newedealer

1. BIOGRAPHY.-Norbert Rillieux.-The blography of a araat in-

 VL Gnograph Y. The Now Hebrides-Thereoent alspute between
Ennind nd rance on the inter's interventlon in the New
Hebrices.

ORE EFPECT OF BHAM BATTLES

The sham battle afloat and ashore, while undoubtedly of great value in schooling officers and men in alerteess and precision, can scarcely be made sufficiently realistic to even approach the real thing. Those who know what the torpedo and torpedo boat have done in war must often have been surprised to learn how small a part they are made to take in the sham battle and will find it hard to understand why, in all the has been gravely set down as beaten off. In the sham battle, it seems only to be necessary to pick up a torpedo boat out of the darkness at long range with an electric light to have it counted out of the fight but it is certain that in war you can't destroy a tor pedo boat with a flash from a voltaic arc light. It would keep right on in its course for the ship, and i several were advancing from different directions, there would be far more call for gunners than light tenders. Indeed, if only one got close aboard and discharged its projectile, life preservers would, like enough, b ngreater demand even than gunners.
Our French contemporury, Revue de Cavalerie, cites one instance of the fatal effect sham battle exercise has apon cavalry. At the battle of Worth (Franco-Prussian campaign), a sinall body of the 8th Cuirassiers and 6th Lancers, while in retreat from Morsbroun, came suddenly upon the 13th Uhlans (Prussian), supported at a short distance by more cavalry. A captain of the 8th promptly formed up his men, the charge sounded, and the Frenchmen dashed forward. But the Prussian cavalry did not move, as if determined to receive the hock at a standstill. This was so unexpected that the French horse, as if remembering the order of shain fight, drew up their horses at pistol shot range. Neither side did anything. Had a single inan rushed orward with the standard at this point, it were cer tain a melee would have followed. As it was, both ides emptied revolvers and carbines, and the French men, discovering they were vastly outnumbered, and that there was nothing to be gained by fighting, turne and fled.

THE CHANGE IN THE PANAMA CANAL

The proposal made by M. De Lesseps in his letter to Premier Rouvier will not fail to interest those who have followed the progress of his scheine for an in terocean canal at Panama. After an expenditure of nearly three times the sum originally estimated by him as sufficient to build a surface level canal, he now asks the French government to authorize him to raise $\$ 113,000,000$ additional by a public lottery, to enable him to construct a lifting lock canal, holding out the hope that eventually the original tide leve scheme will be realized. "It now rests with the gov ernment," he says, "to insure definitely the execution of our programme by authorizing the company to is ue lottery obligations."
It would seem from this that unless the French peo ple subscribe a sum which, with what has been ex pended, will raise the cost of the canal to the extraor dinary total of nearly $\$ 500,000,000$, the project of canal at Panama must be abandoned.
Up to the present, M. De Lesseps has strongly op posed the use of lifting locks along the line of the proposed canal, and stoutly denied that such a plan was afoot, though fully a twelvemonth ago Lieutenant Kimball, of our navy, on his return from the Isthmus declared it was then under serious consideration by the canal's engineers. The present change in plan seems to have been induced by the report of skillful engineers sent to the Isthmus by the department of Ponts et Chaussees, who, after a careful examination of the formidable Culebra section, where the iron back bone of the Cordillera arosses the line with an eleva tion of nearly three hundred feet, decided as impracti cable the scheme of a cut or a tunnel for ships. They lound that because of the extraordinary rainfall and consequent foods, such a cut, even if made, could not be kept free from turbulent, devastating waters; in fact, that it would but become a huge reservoir, into which the mountainous region in its vicinity would pour-the starting point whence the sections of cana on either side would be fiercely beset. They sug gested that lifting locks be built on either side this elevation, and ships in transit be taken over instead of through its flinty sides. This serves to make the Panama scheme similar to that proposed at Nicaragua but, as this latter is much farther northeastward, and consequently offers a shorter voyage over the great commercial lanes, it is easily seen that it could not compete with it, even leaving aside the probable dif erence in cost of construction, which, doubtless, would be greatly in favor of Nicaragua. But the route of the proposed ship railway at Tehuantepec is hun dreds of miles north and east even of Nicaragua, and aside from other advantages which it possesses, would from a geographical standpoint.

A WOODEN case containing a complete set of surgica instrumenta, many of which are similar to those used at the present daj, was a recent discovery at Pompeii

The Calumet and Hecla Mine Fire

The boom in the price of Lake copper, which is now selling here at 16 cents a pound, and of Chili bars in London, which has reached $£ 6515 s$. per ton, as against $£ 395 \mathrm{~s}$. at the corresponding date a year ago, and Best Selected, the brand most nearly approaching our Lake copper, which is now quoted $£ 6810$ s. as against $£ 45$ December, 1886, though not originally due to the Calumet and Hecla fire, has been greatly intensified by this unfortunate accident.
This expected rise, instead of commencing a year ago, and moving gradually in accordance with the statistical and technical conditions of the industry, has come suddenly and has bounded upward with an energy that must soon bring on a relapse, not, of course, to the old ten cent basis, but to a degree that may tend to demoralization. Copper is now higher than it should be, even considering the immense help the market is recejving from the Calumet and Hecla fire. This is, ander the circumstances, a very important matter, and we have sought to obtain from disinterested sources the fullest information possible concerning it.
From good sources we learn that the fire now burning had gained much greater headway before the shafts were battened down than that which preceded it, and it would seem that the fire has come nearer the surface. Presumably, then, the damage to No. 1 shaft will be greater than to No. 2.
How the fire originated is a puzzle to everybody, and it is consequently generally concluded that it was of ncendiary origin
It is stated now that the fire in No. 2 shaft some months ago, which was accounted for by "a boy with oily waste thawing out the pump exhaust," wust have been set, for when the platform on which the pump is set was reached, since work was resumed, it was found that the fire had not come near it.
The closing of shafts at once checks combustion, and the forcing of carbonic acid gas into the mine will, of course, help to extinguish the fire; but when the burning material will be so cooled off that it will not reignite on the access of fresh air is pretty much a matter of guess, which can only be settled when the mine is reopened.
A gas pipe, the outer end of which is plugged, leads from the surface to a few feet below the shaft collar. At stated times a thermometer is dropped down, and the temperature noted. Une day it gets hotter and the next colder, presumably as the underground currents vary. This and an analysis of the gas which comes through the pipe are the indications on which to guess at the condition of the fire.
The remains of the old fire about No. . 2 shaft were still smouldering when this took place, but it would eem scarcely possible that this fire should come from that.
The indications are that it will continue to burn longer than the former fire, and that the mine cannot be reopened during the remainder of this month, and possibly not for a much longer time.
The loss to the company must be very heavy, but it is so rich it could afford it, and would only have to cut off one or two of its dear little extravagances to make up for this unexpected expense. To the thousands of workmen it will be a very severe blow, for the other mines are full-handed, and the stoppage of work at many of the iron mines of Michigan increases the diffculty of getting work elsewhere.-Engineering and Mining Journal.

Grorge Schneizer, the young man who was killed on October 22, in the Harlem Electric Light Company's building, 244 East 122d street, was an inspector of lamps for the company. He received his death stroke from a defectively insulated lamp which hung in the cellar of the bailding. It was an are light of the familiar street light pattern. It hung in front of a big dynamo machine in the cellar. Two men were working about the dynaino, and Schneizer came down to look at them. As he leaned forward, his hat struck the lamp and set it swinging. Without a thought of danger he caught hold of the round, brass-finished tube which holds the bottom carbon. With a spasmodic shiver he fell to the ground. The men raised him up, and one of them ran across the street for Dr. T. H. Hay. It was not more than five minutes after the shock that Dr. Hay arrived. He found Schneizer just gasping his last breath
At the offlce of the Harlem Electric Light Company no one would give any information about the accident. Lamps of this kind are extremely dangerous. The current used is one of great intensity. If the lamp is in order, the wires and carbons are all insulated from the frame. In this case there was a contact somewhere, and when Schneizer caught the amp the whole strength of the current passed through his body to the ground.
Schneizer was uninarried, and lived with an uncle at 117th Street and First A venue.-Neeo York Sun.
[There is no excuse for the employment of dangerus electric light wires or lamps, and whoever does so should be subjected to adequate penalties.]

decisions relating to patents.

The Smith \& Griggs manufacturing Company o. Sprague, Administratrix

Appeal from the Circuit Court of the United States for the District of Connecticut
The first, second, third, fourth, and sixth elaims of Leonard A. Sprague's patent No. 228.136, dated May 25,1880 , and the second, third, and fifth claims of Leonard A: Sprague's patent No. 231, 199, dated August 17. 1880, both for improvements in machines for making buckle levers, declared invalid by reason of more than two years' public use before the date of application for said patent.
When a machine was nsed by a manufacturer in the regular conduct of his business by his own workmen, and in the view of such part of the public as resorted to his establishment for the purpose of baying or selling, such use was a public use.
Where the machine in question consisted in the new combinations of old elements, each of which constituted a new invention, and the machiue was practically useful, and its product was used commercially and profitably in the ordinary course of business, such use was not experimental, although the inventor was engaged in the improvements by which it was hoped and expected that the machine would be made more valu able and useful.
Use by the inventor of a machine in order to devise by experiment improvements upon the same to perfect it is permissible even where, as an incident, the pro duct of the machine is sold ; but where the use is mainly for trade and profit and the experiments for improve ment are incidental, then the principal and not the incident gives character to the use, and the latter is a public use under the statute, and comes within its prohibition if it takes place more than two years before the application for the patent.
Mr. Justice Matthews delivered the opinion of the court.

photographic notes.

Photo-Mer-hanical Processes, Combined Asphalt and Albumen Process.-In the Amateur Photographer, Mr. Walter E. Woodbury gives the following interesting account of photo-mechanical processes
It is only recently that these mechanical branches of photography have played any important part in England. The most useful process is, of course, the process of producing printing blocks from photographs, that can be printed with the ordinary letter press, and give to the eye the appearance of half tones. This is done by breaking the image up into a series of dots or stipple equal in number on equal spaces, but differing, however, in size in proportion to the density required in the shadows of the photographic subject that is to be reproduced, or by dots equal in size, but different in number in the same proportion, or by lines differing in thickness on the same ratio. A very large number of different processes have been patented, but it is only necessary to mention those now in practical use. Many of these, such as the Meisenbach, Winstanley, Mosstype, etc., are well known. I have recently been favored by a few phototype printing blocks, manufac tured at the well-known photographic mechanical institute of Messrs. Angerer and Goeschl, of Vienna. stitute of Messrs. Angerer and Goeschl, of Vienna.
They are undoubtedly the best of the kind. This firm work many different kinds of printing processes with an excellence not known in England. Indeed, some of our photographic mechanical printers would do well to go over to Germany and take a lesson or two in the art.
But it is not only in Germany that these processes are brought to such perfection. In France also great steps are being made. The latest improvement in this direction is a combined albamen and asphalt process of phototypy. A zinc plate is prepared in the ordinary manner, and after warming is coated with a solution of the sensitive asphalt prepared from-

Puritied aspha

${ }_{90}^{4 \mathrm{grmg} . \mathrm{cm} .}$
If the solution is well filtered, it flows over similar to collodion. Coating is done by pouring the solution over the zinc plate, and, allowing it to ran off at one corner, a very thin flim is obtained. The plate is laid in a dark place to dry. In this manner a large nuinber of plates can be kept in the dark, and if protected from dust and damp, they will keep for months. The plate, which should be from 3 to 4 centimeters larger than the negative, is next coated with the chromated albumen solution, prepared as follows
The whites of two eggs are beaten up into froth with half pint of pure water, allowed to set, and 2 grammes of bichromate of ammonia is added, also sufficient
liquid ammonia, until the solution is of a yellow straw liquid ammonia, until the solution is of a yellow straw
color, and smells strongly of ammonia. With thismixture, previously filtered, the plate is entirely covered at one movement, and if it does not run easily over the
asphalt film, it must be spread with a clean finger. asphalt film, it must be spread with a clean finger. The plate is coated a second time with this solution,
and then warmed gradually over a spirit lamp, without and then warmed gradually over a spirit lamp, without
becoming too hot. The operation of coating can be done in daylight, but the warming of the plate must
not, and after the plate is dry it must be laid in a dark place to cool, for, after drying, the albumen solution is extremely sensitive to dispersed light.
The plate is then exposed under a negative for about 1 to $11 / 2$ minutes in the sun, and from 10 to 20 minutes by diffused light. A long four-sided box is placed over the printing frame to prevent unsharpness in places where the two plates are not quite even. After the exposure the plate is laid in water in which a quantity of aniline violet has been dissolved. After about 20 min utes the water will have penetrated the filn and colored it. That part of the film not affected by the light may then be lightly washed off with a soft sponge. The plate is then dried and exposed to the light for 20 minutes in sunlight, or from 3 to 5 hours by ordinary daylight. The lines of the drawing become thereby insoluble, while the asphalt film underneath the red albumen still remains soluble. Before the develop ment of the asphalt picture, the albumen film must now be removed. This is done by laying the plate in a weak solution of acetic acid about 1-25. When the last trace of the drawing has disappeared, and the plate looks exactly as befort, it is dried carefully. The developing is done by laying the plate for about 10 min utes in a mixture of benzol and olive oil. By this means the insoluble parts are washed out. If the de veloper is too weak, a little turpentine is added. The plate is then laid in warm water, and the grease entirely removed. The plates are then etched in the sual manner, mounted on suitabl

Perseverance an Important Factor.

In any line of business, the man who uses reasonable conomy and has the ability to give fair management and the perseverance to hold on will, in a great majority of cases, make a success ; while, on the other hand, the one who rushes into whatever he has under taken with a spasmodic endeavor to win all at once, as a general rule wastes his energies and often fails for sheer want of perseverance. The editor of the Indus trial Gazette has observed that the man who starts in to do a day's work, and attempts to do as much in one hour as ought to be done in two, will usually find it necessary in a short time to take a rest, and while he is resting will lose valuable time which he evidently feels that he ought to make up, judging from the spasmodic efforts he will make when he starts in to work again But, at night, the man who works steady, but per severingly, will be found to have accomplished the most, while usually he will also be found in a much better condition to commence again the next day.
So it is in business. One will seem to hustle around and make a considerable to-do over what he is doing and after wasting his energies in accomplishing what by taking a little more time, could be done with very little effort, and then, because, as he thinks, he fails to meet the success he imagines he should, becomes dis couraged and is ready to make a change to somethin else. This, in a majority of cases, proves a loss, and, in consequence, he does not succeed as the energy he displays would seem to warrant. Another man, while he may not make a great display of his energies at the start, will go to work more systematic, and will have better opportunities to economize, and in many cases to managy better than when he attempts to rush matters. If he will but observe, he will be ready to take advantage of any favorable circumstances that
may arise. It always seems that the man who is con may arise. It always seems that the man who is con wrong tiwe, when a little perseverance would have brought him through all right. In all lines of business there are fluctuations, ups and downs, and in order to succeed we must persevere. It is when the odds seem against us that it seems the most important to per

Distillation of Peppermint oll.

It is now nearly ten weeks ago since the last ban dles of peppermint herb were distilled at Mitcham Eng. The crop, which at the commencement of the season gave every indication of falling much below the average, began to show signs of inprovement just before the plants were ready for cutting. A few days' rain at that period had an excellent effect upon
the growing plants, and after all the quantity of oil obtained was not very much less than last season's, and of exceptionally good quality. Just when the distilling period was drawing to a close we had occasion to inspect one of the principal works in Mitcham, conducted by a French pharmacist, who undertook, in his own words, to retrieve the fane of the Mitchan essential oils in the eyes of his countrymen, at the instance of a syndicate of French peppermint con-
sumers, pharmacists and confectioners. According to this gentleman, English peppermint, always much esteemed in France, had of late years acquired an unenviable distinction by reason of the sophisticating
When, therefore, a practical pharmacist, who, over, had acquired considerable experience of the essential oil industry at Grasse, announced his deteressential oil industry at Grasse, announced his deter-
mination to start a distillery at Mitcham, the princi-
pal French consumers of English peppermint readily promised him their support, and as a matter of fact the bulk of the peppermint oil manufactured at his distillery finds its way into France.
The distilling and rectifying process adopted at the Mitcham works, though in no material point differing (rom the methods usually followed, may be described in a few words: The stem and leaves of the mint or the leaves alone of the lavender are placed in a huge ron container or still and covered with water. A fire is then lighted under the container, and when the water in the latter commences to boil, the steam is orced through the only exit, viz., a worm-shaped pipe which has been fixed to the still before the heat is applied. This pipe runs into a cooling vat, where it is surrounded by cold water, and then the vapor passing from the still, which carries the essential oil with it, is condensed, the oil being at the same time liquefied. Oil and water together are then drawn from the worm by a tap and left to separate, the oil being subsequently drawn off. The steamed-out part of the plants is put aside, dried in the air, and burned, but, especially just after the distilling season, the accumulation of this waste product causes much inconve nience. The peppermint oil is usually sold as it comes from the still, this being the cheapest variety; but in another part of the works there is a rectifying apparatus in which the more expensive grades of oil are reated, in order to remove the resinous matter and improve the color. The oil which first runs out of this apparatus is placed aside and sold as "triple rectified;" the bulk following forms the second quality, and the remainder is simply "rectitled" oil. After each distillation, or if a different material has to be distilled, the container is cleaned and the odor of the preceding, which still adheres to it, destroyed by boiling water rendered alkali.
A large proportion of the mint is raised on land belonging to the works, but part of the material is bought from farmers in the neighborhood, and it is said that the acreage devoted to the crop by growera in Mitchan and the surrounding villages is increasing every year. This year nearly 3,000 pounds essential oil of peppermint were distilled at the Mitcham works, about 360 pounds being obtained from the white mint, the wost prized variety, which of course is al ways distilled separately. This oil of white mint sells at 45 s . to 50 s. per pound, but the cultivation of the white mint is not likely to extend in the same proportion as that of the black-the former only con. taining about one-half the percentage of essential oil of the latter. Besides, white pepermint is a crop which is particularly sensitive to climatic influences, and suffers more severely from drought or frost than does the black mint. Of course, the quantity of 3,000 b., large as it is, only represents a fraction of the whole of the oil actually distilled at Mitcham. There are several works in that district, and many farmers are in the habit of getting their crops distilled at some of these, paying a royalty for the use of the stills. Lav onder is also an important crop in Mitcham. At the distillery which we have described, only the leaves of the plant are placed in the still, the stems being thrown away, as they are thought to render less fragrant the aroma of the oil of the leaf. The lavender crop this season has been the best for about ten years, and nearly 500 pounds of oil were obtained at the distillery. The proprietors are endeavoring to extend the growing of this crop and to induce farmers to try the cultivation of new products.
Chamomiles were a total failure this year, and only 30 or 40 pounds of oil were obtained from Mitcham flowers. This had all been sold as soon as it was distilled. We were shown a fine sample of beautiful deep green color and penetrating odor. Their oil averages from 30 s. to 40 s. per pound in price ; but this year the firm were able to make 80s. per pound for the small quantity which they distilled.-Chem. and Drug.

Books for the Insane in Asylums.

Some weeks ago we published a short appeal suggest ing that books should we contributed to the insane asylums of the country, in order to form libraries for the unfortunate inmates. Already one result of the sugrestion has been heard from as far off as Texas. The North Texas Asylum at Terrel is now forming a library, and has sent our editorial with comments to the local journal, which published it as an appeal to the public of Texas for this most deserving charity. The asylum has now nearly 300 books as a nucleus of a library, and receives regularly over 78 newspapers. Besides these, hundreds of copies of periodicals have been donated to it. This we cite as an instance of what can and should it. This we cite as an instance Almost every house has some books to spare, which are of no value to any one. Many would be glad to directly foster such work were their attention called to it. Unfortunately, every State can find plenty of field within its own borders for the exercise of this labor of love. We hope that the work now inaugurated may be continued, and that an insane asylum without books may soon be unknown in America.

MECHANICAL COOPRRAGE.

Receptacles destined to contain wine have borne different names, but, though the cooper's art is lost in the night of ages, researches have proved that the primitive form has been preserved. As for the inaterial, that has changed, and wood has only succeeded the pitch. hardened skins that are still used in Spain, Italy, Greece, and Algeria. In antiquity, moulded clay or chalk, dried in the sun and hooped with iron or lead, preceded wood. Diogenes' tub was of baked clay, and Homer sings to us that Jupiter had a tub on each side of him, one of which contained blessings and the other evils. These poetic vessels were indeed of baked clay ; but, alas! they were not of equal capacity, since the one containing evils had the greatest bulge. Human nature was already showing a bad disposition.
However it be with poetry, wood finally prevailed. Its native qualities and its abundance in nature designated this elastic and workable material for its noble mission. It is Pliny who tells us of this use of wood, and he attributes the first enployment of it to the Alpine Gauls, the Piedmontese of our day.
As long ago as the year 70 A.D., Varro and Columella in their works on rural economy, spoke of pieces of wood united by bands.
Since that epoch the construction of tuns, or casks, has gone on improving. The manu facture of casks by
descends automatically and tightens them up. This done, the cone rapidly ascends, leaving upon the cask a temporary hoop. After opening the cone, the cask is inverted and the same operation is performed on the other extremity. The cask is thus perfectly assembled, and the joints are absolutely tight.
Thus mounted, the cask is placed in the crozing and chamfering machine (Fig. 8). Here, in a single revolution, the two extremities are shaped in the most accurate manner, and prepared for the reception of the heads.
After the boards that are to form the heads have been planed in the machine mentioned above, a joint is made by means of a emall mechanical jointer, whose frane likewise carries a lathe for making the dowels, and two small boring apparatus that form the apertures into which the dowels are to be inserted. After the head pieces have been assembled and cut into a circular form by the band saw, they are placed in the fourth special machine (Fig. 4), which bevels their edges. The last operations-inserting the heads and putting on the hoops-are done by hand.-From La Nature.

Some Nowly Discovered Virtues of Phosphoric Acid
Phosphoric acid is not a remedy that has hitherto

The injection of the solution, in another case, into an enlarged gland of the neck effected a reduction of the swelling and induration within twenty-four hours Suppuration of the gland followed later, but was limited to a very small part of it.
Perhaps the most striking results were obtained in a case of caries of the wrist. The disease had lasted a year, and the hand was greatly swollen from the carpus to the metacarpo-phalangeal articulations, and there were two sinuses, one on the dorsum and the other in the palm, communicating with each other. Pressure on the hand caused the exit of blood mingled with pus and caseous matter. Exploration with the probe showed a large extent of carious bone and a general undermining of the soft tissues. The hand would ordinarily have been condemned by any one to amputation. Trial was first made of interstitial injections by means of a hypodermic syringe, but little inprovement fol lowed; and then recourse was had to daily irrigation, through the sinuses, with the phosphoric acid solution, compresses wet with the same being applied in the interval. Some banefit was observed from this treatment, and it then occurred to the author to immerse the hand in the solution. Two such baths were given daily each of two hours' duration. At the end of seven weeks the sinuses were clused; the swelling was reduced more

tig. 1.-hachine for curving and jointing staves.

Fig. 3.-CROKING AND CHAMFERIITG MACHINE.

Fig. 2.- machine for abgembling etaves.

Fig. 4.-MACHINE FOR TURINING AND CHAMFERING BARREL HEADS.
hand is a very complex operation, and requires great |been chiefly that of a tonic, giving place even in this|carpal and metacarpo-phalangeal articulations. A
skill. The tools used are the plane, jointer, drawing knife, bench, hoop bender, block, broad ax, bung borer, dowel, notching knife, compasses, and hammer. Each of these tools has a special duty to perform. We shall not dwell upon the details of the various operations, but shall proceed to a description of four machine tools that perform all the work formerly done by hand with the above named implements.
The wood to foriu the staves is cut to the proper thickness by means of a band saw. These slabs of wood are then put in a planing machine and planed according to the curves of the internal and external surfaces. We do not illustrate the saw and planer, because these apparatus do not belong exclusively to the cooperage industry.
The staves are next put into a machine (Fig. 1) which gives them the proper curve, and trims the edge so that it will form a joint with mathematical precision. This latter operation is performed by a small circular blade, which moves exactly in the plane of the axis of the cask. This blade is toothed, and both saws and planes the surface that is to form a joint. This operation, which by hand is performed by means of a jointer, re quires great dexterity. The machine, however, can be run by anybody, and do perfectly accurate work in all cases.
The staves, having been bent and jointed, are next placed in the machine shown in Fig. 2. Here, after being accurately fitted together, a strong iron cone
application to the other mineral acids. But if some recent therapentical experiments can be accepted, this drug possesses virtues which will serve to place it in the front rank of curative agents.
In the Gazzetta Medica Italiana for October 29, 1887, Dr. Antonio Grossich reports a number of cases in which most remarkable results followed the external use of phosphoric acid. He was first led to employ it from a consideration of the results obtained by Kolischer in the treatinent of local tuberculosis by interstitial injections of a solution of calcium phosphate. He tried local applications of the same solution in the treatment of ulcers of the leg, and found it to give sat isfactory results. But, as there were no tubercles in these cases, the action of the remedy ought to be explained otherwise than by a calcification of the tubercles, and the author concluded that the phosphoric acid must be the active agent. Acting upon this belief, he began to treat all his cases of obstinate ulcer of the leg by local applications of a ten per cent solution of strong phosphoric acid in distilled water, the con presses being renewed three or four times a day. The results obtained were so satisfactory that he was en couraged to try the same substance in various tubercu lar affections.
In the case of two young girls suffering from multi ple ulcers of the neck following tubercular adenitis, the application of a solution of phosphoric acid of the above application of a solution of phosphoric acid of the above
mentioned strength brought about a cure in five weeks.
carpal and metacarpo-phalangeal articulations. A
tubercular abscess of the walls of the chest, treated by free incision and stuffing of the cavity with lint wet with the phosphoric acid solution, was completely and permanently cared in less than four weeks. Finally, in a case of chronic eczema marginale, in a girl of 22 years of age, applications of the same solution had, at the time of writing, two weeks later, caused such marked improvement that the author felt confident of effecting a perfect cure within a sliort time.
Dr. Grossich reported a number of other cases than those to which we have referred, in which he obtained equally good results. He is naturally somewhat en thusiastic in his praise of this remedy in the treatment of local tubercular processes, and he believes that phosphoric acid has a future before it which would never before have been imagined. Lentin, it may be stated, some tine ago recommended the use of a ten to twelve per cent solution of phosphoric acid in the treatment of caries, believing that this process was due to a deficient amount of the acid in the osseous tissues. The cases in which he tried these applications were bene fited somewhat, hut he obtained no such brilliant re sults as those reported by Grossich.-Med. Record.

At Barre, Vt., is being quarried an immense block of granite to be used in a California bank vault. It is to be twenty-five feet long, five feet thick, and five feet wide, and it will require thirty span of horses to draw it four miles to the railroad station.

AN IMPROVED METAILIC RAILBOAD TIE.
A railroad tie designed to be made of iron or steel, which can be inexpensively made, and is calculated to give great stability, is shown herewith, and has been patented by Mr. Charles Netter, of No. 181 Water Street, New York City. It is formed by rolling the iron or steel into the form of a straight bar having a T section, and then bending the bar near its opposite ends, a little beyond the line of the track, to make

NETTER'S METALLIC RAILROAD TEE.

portions depending at right angles and further portions projecting horizontally outward. The tie is buried to bring its top plate on the sarface of the track bed, by which it will be anchored to prevent further sinking, the vertical end portions preventing endwise movement, and the horizontal exteusions thereof preventing lifting, while the central longitudinal flange resists movement longitudinally and acts as a rib to stiffen the tie. The rail may be fastened by passing a hook bolt through an aperture formed in the top portion of the tie and slipping the hooked end of the bolt over the lower edge of the flange, drawing an ordinary clip plate down upon the base of the rail by means of a nut screwing on the upper end of the bolt.

A COMBINED LEVEL AND RULE.

An instrument applicable in many and various ways, as for leveling and obtaining horizontal and vertical

WICKHAI AND ROAGH'S LEVELITG IIGTRUMENT.
angles is illustrated herewith, and has been patented M M Wich and of Burnside, Conn. The block, which constitutes the main body of the level, has in its forward end a tube bent to the form of an arc, and five or ten degrees longer than a quadrant, being divided into degrees from 0° to 90°. In the back of the block is a groove adapted to receive a folding rule, there being also a recess in the groove to hold a screw-pointed pin, to be used for holding the level upon a tree, post, or other plate
proper surface, by passing the pin through an aperture shown in the block, and bringing its screw-threaded end into engagement with the support. A longitudinal bore parallel with the bottom of the block has crossed wires in each end, the bore to be used for sighting, and to the face of the block is secured a plate which gives the scale of perpendicular of any angle up to of perpendicular of any angle up to sixty degrees. The rule is formed in wo sections, connected by a pivot pin ne face of the rule being divided into nches, while the other is marked with angle lines, so arranged that when any wo lines formed upon the two rule sec tions are brought together and form a straight line, the numbers placed in connection with the two meeting lines will indicate the angle at which the wo lengths of the rule are extended The free ends of the rule sections are pointed, so that the rule may be used

PLATNER'S VEHICLE BRAKE.

AN IMPROVED 8A8H HOLDER

A simple form of sash support and lock, in which a plate having two oppositely inclined surfaces is secured to the window casing adjacent to the sash, and adapted to receive a roller between either of its inclines and the sash to support or lock the latter in position, is represented in the accompanying illustration, and has been patented bv Mr. Joseph F. Hambitzer, of Houghton, Mich. To and against the inner face of the casing, udjacent to the face of the sash, a thick flat plate is held by screws, the inner edge near the top of the plate being iuclined downwardly toward the sash, and its inner edge near the bottom being inclined downwardly away from the sash. A roller is suspended from a cord attached to the plate os that LOCK. $\begin{array}{r}\text { the plate, so that } \\ \text { when the roller is }\end{array}$
removed from its seat it will leave both hands of the operator at liberty for adjusting the sash, but by placing the roller between either of the inclines, the sash will be firmly supported and locked in the ordinary way, against an upward movement by placing the roller at the top, and against a downward movement by placing it at the bottom.

AN IMPROVED HINGE.

A binge designed particularly for use in fine cabinet work, and which may be applied so as to be invisible from outside the joint formed thereby when closed, is ilustrated herewith, and has been patented by Messrs. Ferdinand L. Scheidemann, of No. 3958 Girard Avenue,

GCHEIDEMANN AND BENDER'S HINGE.
and Frederick W. Bender, of No. 4048 Girard Avenue, Pbiladelphia, Pa. The hinge leaves are combined with links having one end pivoted to either hinge leaf and the other end adapted to travel on a guide on the opposite leaf, the links being connected pivotally toget her on a medial line nearer their pivotal than their traveling ends, as shown in the main view and sectional figure. The smaller figure represents the joint closed. When the joint is opened, the action of the scissors-like links is to automatically separate the two joint sections, while allowing them to fold outward, so that the crushing of the edges of the joint, which would ordinarily occur if the hinge pin directly connected the two sections on a line within the joint, as in this case, is prevented. A mortise is formed in each joint section to receive the respective hinge leaves and attachments, the mortise terminating at a short distance from the outside joint edge.

A steam catamaran, intended for whale and walrus hunting in the Arctic regions, is being built at Montreal, Canada. It has two steel cigar-shaped hulls, each sixty-five feet long, and built in two compartments, one for water ballast, and the other to carry petroleum for fuel. The catamaran is constructed so that it may be taken apart for transportation on the deck of a whaler.

The Big Bend Tunnol Completed.
For five years past a company of New York capital ists have been engaged in the stapendous undertaking of turning Feather River from its bed at the Big Bend, 16 miles above Oroville, in Butte County. [Hllnstrations of this remarkable work were given in the Scr mentific american of February 6, 1886.] Here a mountain spur has caused the river to make a detour which, following the trend of the mountain for 14 miles, returns to a spot not more than two and one third miles from the point on the opposite side. For years the Yuba and Feather Rivers have been noted for their richness in the early days of the State, and untold millions had been taken from their beds, but at this point the depth of the canon through which the river flowed, coupled with the large volume of water, made it impossible for the pioneer miners to extract the great stores of wealth. It is this which at tracted the attention of Dr. R. V. Pierce, of Buffalo, tracted the attention of Dr. R. V. Pierce, of Buffalo,
New York, and he deterinined to associate a number of capitalists with himself, and by tunneling the mountain spur at the Big Bend obtain the gold which had defled all other efforts to get it.
The work of tunneling the mountain was begun five years ago and has just been completed. The tunnel is 12,000 feet, or nearly two and one-third miles, in length. One hundred men have been engaged on it night and day, using the largest sized Burleigh drills, driven by compressed air. The tunnel, as completed a year ago, was nine by sixteen feet, but this was found too small for the volume of water, and the aperture has been increased to twelve by sixteen feet in size. On October 16 the river was turned through the tunnel, which was found of sufficient capacity, and the bed of the river was laid bare. Numerous pros pect holes were sunk at various spots, and gold was found in paying quantities, some of the places paying as high as fifty cents to the pan of dirt. Owing to the quantity of water coming through the gravel and the want of pumping machinery, but little can be done this season, but enough has been discovered to show the richness of the claim, which will be thoroughly equipped with all the necessary pumps for next season's work. The necessary pumps for next season's work. The
water of the river, as it comes from the tunnel, water of the river, as it comes from the tunnel,
is at a height of 300 feet above the river below, and this tremendous fall will be utilized to generate electricity, which will be conveyed to the various pumps by copper wires, and again developed into force by the dynamos there. Dr. Pierce has brought a number of samples of gold nuggets and dust from the claim as an earnest of what is promised in the future. He is now stopping at the Palace Hotel, and is engaged in making contracts for his pumping machinery. This will be erected daring the winter under the supervision of the saperintendent, M. A. Harris, and all will be in readiness for next season's work. The cost of the tunnel has been nearly one million dollars. This expense has been borne by the Big Bend Tunnel Company, whose capital stock is $\$ 20,000,000$. -S. F. Alta.

The Heating of Points by the Electrostatic

In a recent note on the heating of points by the electric discharge, M. Semmola thus describes some experiments he has inade
A point is used made half of antimony and half of bismuth soldered at the extremity, so as to constitute a thermo-electric couple. Having connected the point with the prime conductor of an electric machine, the poles of the thermo-electric couple are connected by wires with an insulated galvanometer of low resistance. When the plate of the machine is rotated, the needle of the galvanometer deviates because of the thermo-electric current produced by the heating of the point as it discharges the electricity of the conductor to which it is attached. (It is scarcely necessary to remark that with a mono-metallic point no current is produced.) A current may even be obtained by attaching the point, not to the conductor, but to a large metallic bar in communication with the ground and at a short distance from the machine.
On performing these experiments in the dark it is observed that when a small star appears on the point, the deviation of the needle is much greater than when the "plume of light" appears there. This proves that the discharge of negative produces more heat than does the discharge of positive electricity. By bringing the point near the conductor, so as to have a constant spark, thin, hissing, and visible in day light, the deviation of the needle decreases.
The electric blast of air that blows from thelpoint is also hot, as can be easily proved by placing upon the conductor of the machine a curved mono-metallic point, a few centimeters distant from one of the faces of a Vobili's thermo-electric battery. On turning the plate of the machine, the electric blast blows against the bittery and the galvanometer needle at once deviates.
A point of bismuth and antimony or one of iron and platinum placed on a metallic bar in communication with the parth, and exposed upon the summit of an
of use in examining the atmospheric electricity, and in'detecting by the production of a current of feeble in.detecting by the production of a current of feeble
intensity the electricity of storms or of the aurora borealis.-Revue Scientifique.

a colitivator, duster, and digaer.

A machine intended to prepare ground to receive crops, to dust poison as required, and to dig or harvest potatoes or other crops, is illustrated herewith, and has been patented by Mr. William C. Davidson, of Grandville, Mich. The beam of the plow, having reversely set or double mouldboards, is connected at its forward end to the sulky axle, preferably by links engaging a clevis of the plow beam, the plow having the usual handles. In a couple of eye bolts in the sulky axle are hooked two draught bars, to each of which a cultivator harrow is held, each of which has a handle, allowing the operator to guide the harrows sidewise, or to lift them bodily to clear their teeth of trash or for passing over obstructions. The opposite harrows are so connected that they may be set nearer (t) or farther from each other, according to the work to be done, and are so constructed as to allow of the attachment of interchangeable forks or mouldboards at the backs of the harrows, and disposed at like angle with the har row-frame bars, to facilitate potato gathering.
On the sulky frame is fitted a box in which !is jour aaled a cylinder or drum, its periphery being made of sheet metal and provided with a series of perforations, for scattering or dusting poison upon plants, there being any preferred arrangement for closing a portion of the holes in the drum, according as the poison is to be dusted upon plants set in drills or in a continuous line, in hills, etc. The drum is rotated by the advance

'DAVIDSON's CULTIVATOR, DUSTER, AND DIGGER.
of the machine, from a gear wheel fixed to the sulky axle, through a belt and pulley.
For simply dusting poison on growing plants, the plow and harrows are removed; and for gathering crops, the belt is unslipped from the drum-driving pulley.

The Tin Mine of California.

Within three or four miles of the railroad leading from Riverside to Santa Ana, is a deposit of tin ore, consisting of over 200 ledges carrying tin, or rather that number of mining locations, and more, were made some twenty years or more ago, upon what is now known as the Rancho Sobrante San Jacinto. This ranch,? consisting of eleven square leagues of land, patented by the United States government in 1868, after a large amount of litigation, was purchased afterward by a corporation organized under the laws of our State, called the San Jacinto Tin Company, which at once took steps to ascertain whether or not there were tin lodes upon it. A thorough examination developed the fact that an area of about ten square miles was permeated with tin veins of various thickness to such an extent as to establish the fact that there was tin enough there to supply the United States with that metal. The company selected one location as easiest of access, called the Jahalco, and upon this vein sunk a shaft to a considerable depth, and ran drifts each way, develop ing one of the richest deposits of tin ore ever known. Some one or two tons of tin was smelted from the ore in this city, in a crude way, from ores sent up from the mine. Quite an amount of tin sheets and tinware, as well as many bars of tin, were also made and exhibited at the Mechanics' Fair in this city in 1869, for which a gold medal was awarded. Some of the tin, both in bars and in the ore, was sent to England, and tested there'fully, with the result of being found almost perfectly pure, carrying no wolfram, arsenic, or tungsten, as is usual with tin ores. At the time this company, which still owns the property, carried on this work, it was very expensive to get supplies and labor there Los Angeles, fifty-five miles away, was the nearest place for supplies, which had to be hauled by wagon. Tin ores have to be treated in a peculiar way, requiring power to crush and concentrate, and fuel for this
to be had then, in that section, unless at too great an expense.
When the company ceased work, not because the ore had given out, but because it would not then pay to work, the vein was over 8 feet in width of solid ore carrying in tin from 5 to 50 per cent. The want of water, and the cost of transporting the ores to a point where water and fuel was to be had, was too great and the company closed the mine. But enough had been done to justify the statement that within what is known as the tin district, of about 10 square miles there are mines enough and tin enough to furnish all the tin required west of the Rocky Mountains, if not for all the United States.
Shortly after closing the mine, the company disposed of some 3,500 acres of its mesa land to the Riverside Company, which land now comprises a portion of that thriving place, and of Arlington. Afterward the government of the United States allowed its name to be used in a suit brought by a person named Baker, of Los Angeles, who owns, or claims to own, a large num ber of tin locations made in early times. This suit was decided in the United States Circuit Court here in 1885 by Judges Sawyer and Hoffman, after a long and expensive litigation, in favor of the company, in an ex haustive opinion. As the plaintiffs had two years with in which to make an appeal to the Supreme Court of the United States, an appeal was taken within but just previous to the expiration of the time allowed by law, and the case is now before the Supreme Court, o rather will be before it in this term. As it has been ad vanced on the calendar to be heard on January 7, 1888, we may hope to get a final opinion upon it early in the new year of 1888.
If decided in favor of the company, we hope to see this industry of tin mining carried on with vigor, as it will add another to the many mining indus tries of our State. It is believed now that the rail road is so close to the mines that the ores can be transported to water and fuel so cheaply that the mines can be worked very profitably. Coal has been discovered within a few miles of the mines and the Santa Ana River is but a few miles away. -Min. and Indus. Advocate.

The Alteration of Iron by Moderate Heat.
An important question to engineers and con tractors having to do with iron and steel exposed to variations of temperature of more than a natural range-such as, for example, in connection with gas retort house work-was recently put in Engineering by Mr. A. Elink Sherk, the engineer of the Lake Haarlemmer drainage works. It appears that a chain hanging in the chimney of a pump ing engine broke with the weight of a man in a gantry seat, although the material was the best that money could buy, and the links 5-16 inch in diameter. The chain was two years old when it broke. When new, the chain had been tested to 1,353 kilos (nearly $3,000 \mathrm{lb}$.). The manufacturer, on being ap pealed to, ascribed the breakage to the metal having been continually heated and cooled in the chimney which made it hard, loose in grain, and brittle. As a matter of fact, the chain had been subjected 35 times in situ to the heat of melting lead and cooled again to atmospheric temperature. The curious point is that similar chains hanging in other chimneys for four or five years have apparently remained perfectly sound under exactly similar couditions, although these were not so good to begin with. In reply to Mr. Sherk, Mr C. E. Stromeyer has written to state that in his expe rience steel and iron exposed to the heat of melting lead in the fumes of a sulphurous coal will lose nearly all their strength.
Mr. B. H. Thwaite also suggests that the contact of the heated chain with soot might recarbonize the metal andfturn it practically into cast iron. Mr. Thwaite remarks, however, that mere heating and cooling, not in a chemically active atmosphere, will not alter the molecular structure of metals, and states that wrought iron tie bars of high temperature furnace do not become altered chemically or physically Any gas manager who has ever pulled down an old re tort stack, in which tie bars may frequently be found turned to lumps of carbon rather than iron, will be able to testify that there are conditions in which iron alters its constitution and appearance, though buried in brickwork, and not subjected at any time to a red heat.-Jour. Gas Lighting.

American Dentistry Abroad.

Among the new companies lately formed in London s one entitled the American Dental Institute. Capita $1,000 l$., in shares of $1 l$. each. Object, to promote the adoption of advanced American and other scientific methods of dental surgery; to protect the interests of dentists and the profession of dentistry ; to consider all questions connected therewith ; to promote or oppose legislative and other measures affecting the profession to collect and circulate statistics and information in re gard thereto ; to act as and to appoint arbitrators for the settlement of any disputes in connection with dentistry.

Sorrespondence.

Tramsplanting Trees.

To the Editor of the Scientiflc American:
In the article on transplanting trees published in the Scientific American, November 26, from Garden (London), one of the most important precautions is entirely overlooked; that is, to have the tree, when transplanted, in the same position as to the points of the compass as hefore removal.
The south side of a tree is exposed to the direct rays of the sun, while the north side is more or less protected from them. Nature accommodates itself to this changed condition, and the difference in development in many trees on the south and north sides is obvious to ordinary observation
When the south side of a tree is turned to the north each side finds itself in a position for which nature has mude no preparation, and death follows almost as cer tainly as if the top were put in the ground and the roots turned up to the sky.
The willow and some other trees will grow if planted upside down, and many trees will grow with the south side turned to the north; but with trees difficult to transplant at best, it is a mistake very apt to be fatal to turn the south side to the north, and the older the tree, the greater the danger from changing sides in transplanting.
D. S. Troy.

Montgomery, Ala., November 28, 1887.

A Siugular Rallway Aceldent.

To the Editor of the Scientific American:
An unusual accident occurred on the railway at Parkersburg, W. Va., a few days ago in which a loconotive was badly used up and several persons somewhat injured. The locomotive attached to a freight train was pulling out of the station up grade, and was working a full head of steam at full stroke, the fireman was shoveling fine or slack coal into the furnace, when suddenly the netting in the diamond stack became entirely stopped up, which forced all the blaze, gas, smoke, and steam from the exhaust out of the furnace door into the cab, severely burning the engineer and fireman and brakeman. The engineer jumped out through the front window of the cab, leaving the throttle wide open. The engine commenced slipping with fearful velocity, and when stopped it was found that both parallel rods were bent down about four inches out of a straight line, and all the wrist pins badly sprung. The engine was hauled to the shop and repaired, started out with a train, but broke down again. This time one of the piston heads broke off from the pisten inside the cylinder, knocking out the head and otherwise injuring the cylinder. The peculiarity of the accident has caused considerable comment among railroad men as to the cause and some of the effects of the accident. My opinion is that the exhaust caught up some of the fine coal that the fireman was using, and carried it up against the netting, and the pressure in the stack, immediately following, holding it there as securely as though it had been cemented. This caused the fire, etc., to come out of the furnace door, with the result above stated. As to the rods becoming bent, the great velocity of the revolutions of the wheels, the rods not being strong enough to resist the strain caused in changing the motion from down to up, is what caused them to be bent; and the piston must have become fractured when the engine was shut off, as it would not be apt to occur while working steam with the engine slipping, as the steam would act as a cushion to receive the blow of the piston at the end of each stroke; but when shut off, this cushion, as it were, was removed, and the piston became fractured, so that when stean was applied after the engine was repaired, the head broke off en tirely. I believe that the axles of locomotives are frequently sprung while slipping, by the engineer giv ing the engine sand, especially if the sand is fed by one pipe. In this case the sand would act as a powerful brake on one driver, while the others would with their momentum tend to force ahead, with the result of springing the axles or pins. I was much pleased in reading Prof. Sloane's account of his experiment on the injector in a late number of the Scientific American as some months ago I wrote to the Locomotive En gineer's Journal, giving my views as to "why the injector worked." I compared it to a shot gun in which the steam was the powder and the water was the shot.
The powder, or steam, was harmless without the water or shot. The steam having no weight could not penetrate the check; but give it the shot, or water, and it would go through the check instantly. Prof. Sloane prores this clearly in his experiment. He could blow through the tube all day with no effect, but when the shot are put in, they strike with such force as to open the little check valve easily. Some of our great wise men laughed at my explanation, and it is a great satisfaction to see it so clearly explained by Prof. Sloane. Marietta, O., November 26, 1857.
"W. M."
The curvature of the earth is such that a straight line a mile long would be 2.04 inches from the surface at either end.

Work Begun on the ship Canal between Liverpool
and Manchester.
The actual work of constructing the Manchester Ship Canal was commenced, November 11, in a strangely modest and unassuming manner, says the Engineer, considering the magnitude and importance of the undertaking. Instead of having an elaborate ceremony, with a public personage as the leading figure, as is customary in such cases, the directors went quietly up the Mersey to Eastham, on the Cheshire shore, and each cut a sod. Nothing could be more unpretentious than that method of inaugurating what is likely to prove a revolutionary enterprise, commercially speaking; but it must be observed that Eastham is not the most convenient or most accessible spot for an elaborate public venient or most accessible spot for an elaborate public
ceremony, and this may have influenced the directors in dispensing with fornalities. An ordinary navvy's spade being handed to Lord Egerton, the chairman of the company, his lordship cut the first sod, amid ring. ing cheers from the assembled spectators. Following him, Sir J. C. Lee, deputy chairman, Mr. Alderman Bailey, Mr. Henry Boddington, Mr. J. K. Bythell, Mr. W. J. Crossley, Mr. C. J. Galloway, the Mayor of Stockport (Mr. J. Leigh), and the Mayor of Oldham (Mr. S. R. Platt), each cut a sod, they being directors. Mr. Leader Williams, C.E., chief engineer to the company, next filled a wheelbarrow with earth and tipped it near by, thus really beginning the work of excavation, and subsequently Mr. Boulton, of Ashton-under-Lyne, cut a sod on behalf of himself and other shareholders.
Later on the directors examined the plant which the contractor, Mr. Walker, has collected, which, at Eastham and Ellesmere Port, embraces fifteen locomotives, numerous stean navvies, or;excavators, of the latest and most improved type, massive cranes, and a vast quantity of timber and steel rails. It is expected that rapid progress will be made with this, the lower part of the canal, notwithstanding the advent of wintry weather, and the upper part will be proceeded with. A sufficient number of trucks have been provided by the Ashbury Railway Carriage Company, which has contracted to supply 100 wagons each week up to next May. Already within a week a good deal has been done. The steam excavators have been put in position, railways are being laid down for carrying away the excavated matter, and smiths' and joiners' workshops and store sheds have been erected. Naturally, the prospect of work has drawn many hundreds of unemployed men to the scene of operations; butas only one section of the canal is at present being proceeded with, only a small number of men has been taken on yet. Only some three or four hundred are so far empioyed, but there is a good prospect for genuine and capable workmen, for this section alone will probably require at least two thousand men, and when the whole work is in progress the number of men employed will be between twenty and thirty thousand.

Geraon's system of Filtration.

The system of filtration invented by Dr. Gerson, of Hamburg, depends chiefly for its action upon the presence of iron in the filtering material, and is carried out in two stages. The fatal influence of iron on the class of organisms found in water is well known, although only juperfectly understood. It is taken advantage of in the well known Bischof spongy iron filter and in the process of water purification pursued at the Antwerp Water Works under the superintendence of Mr. Willian Auderson. In the former case, contact with metallic iron seems to be the means by which bacteria and the like are destroyed, while in the latter the impurities in the water are attacked by a solution of iron, and are afterward removed by a sand filter. In Dr. Gerson's apparatus the germicidal material is insoluble tannate of iron, which is presented to the water by being distributed thoughout the entire mass of the filtering medium. Two substances are used to carry the ron. The first is sponge, and the second pumice stone. It is well known that sponge makes a capital filtering material, taking solid matters out of water most effleiently. But as ordinarily used it is subject to decay, and consequently it not only requires renewal, but may also introduce contamination into the water which it is supposed to purify. But if all its fibers be filled with insoluble tannate of iron, the vegetable material is pre served, and may be regarded almost as a mineral. In passing through the sponge the greater part of the insoluble matter in the water is removed, while there is a prolonged contact with the iron, which cannot fail to affect the organisms. It is, however, the second filtering material which is supposed to have the greater ef fect on these creatures. In this the tannate of iron is held in the cells of pumice stone, which is used in layers of different size, varying from gravel to tine sand. Here we have the separating power of a sand filter added to the action of the iron, the result being that the water emerges with a very high degree of purity.
This system may be carried out by aid of various ap paratus. A usual method is to employ a pair of verti cal iron cylinders for the preliminary filtration and a second pair for the final filtration. The water is ad two filters, and flows upward under a head of about 15
feet. The greater part of the sand and mud isextracted by the first few inches of sponge, the office of the re mainder being to catch the finer floating particles. After emerging at the top of the cylinders, the water passes to the bases of the cylinders forming the secondary filters. These are flled with layers of pumice of various degrees of fineness, also impregnated with tannate of iron. In passing through this material every drop of the water has to come in contact time after time with the iron, and not a single organism can escape the prejudicial effect of the iron. The secondary filters can, according to local circumstances, be worked either under high pressure or low pressure. In the first case their capacity is about half the capacity of the preliminary filters, and the total pressure for both filters, 26 feet to 28 feet; while in the second case, under low pressure-namely, about 32 inches-they require ten times the surface of the preliminary filters, but still ex ceed the capacity of sand filters twenty-five times.
The filters are cleaned by reversing the current, valves being provided by which this result can be inmediately attained. By this device the greater part of the dirt, which lies at the bottom, can be washed out, although it is, of course, impossible to thoroughly cleanse the filtering material in this way. It is not, however, a very serious affair to take out the whole of the spouge and the pumice and to purify them thoroughly. As far as the sponge is concerned, the method adopted by the Pulsometer Engineering Company, of Nine Elms, London, of alternately compressing and relaxing the sponge in the cylinder, while at the same time water is flowing through it in the reverse direction, would probably add greatly to the efficiency of this filter, as it would enable one-half of it to be made thoroughly pure every day, or several times a day if required.
Dr. Gerson's filters are designed for bleach works, paper works, breweries, boiler feeding, and other in dustrial purposes, as well as for towns' water works. For the latter purpose they only require about oneninth the floor space occupied by sand filters. For many industrial purposes the first filtration is quite sufficient without the second. Already there are two installations at work in this country, one at the Alexandra Dock, Newport, Mon., and another at the paper mills of Messrs. Fletcher \& Son, Stoneclough, Lanca shire. On the Continent these filters are used in many large breweries, paper works, and the like. The fol lowing are some analyses made of water from sand filters in comparison with Dr. Gerson's filters. The quantity of organic matter has been determined by the consumption of oxygen for their oxidation:
Analysis by the German Imperial Sanitary Board :
Water from the Elbe nnflered
Water from the Elbe, unfltered.
nitered throngh sand.
Analysis by the German Hygienic Institute in Munich
Water from the Elbe, unfiltered
Analysis by Dr. Niederstadt, in Hamburg: 0.480
0.400

Water from the Elbe, unditered. 0.878

Analyees by Meesrs. Senurier and Labeen, in Amsterdam Water from the downs at Amsterdam, nnilitered Ditto, filtured through sand.
Ditto, filtered through Dr. Gerson's filter
Analysis by Mr. Stein, town chemist at Copenhagen
Water from the canal of tho water supply, cleared through standing.

Ammonia....

Micrococopical Examination.

Unfiltered water:
Tails of lalga, vortochaceex, infusiorix, wire bacteria, dust bacteria oscillarisce, palmellacee, pediostoce, desmediace, diatomex, green wire alge, living crabs, and some urchlas.
Tater from Dr. Gerson's ilters
No organiems found.
-Engineering.

Rice and Progress of Steam Navigation.

In fifty years steamships have increased in tonnage from 67,969 tons to $4,318,153$ tons, while their proportion to the total registered tonnage of British ships has increased from 1 to 41 to 1 to $2 \cdot 14$. The first Cu narders were only 207 feet long and 34 feet 4 inches beam, while the first steamer which plied regularly between Liverpool and New York, the Royal William, measured only 175 feet in length. The steps by which the marine engine has developed have been, first, the screw propeller, then the introduction of iron and steel in the building of ships, then the increase of steam pressure in the boiler, then the adoption of surface condensation, followed by the use of compound and duplicate expansion cylinders, and a much larger increase in boiler pressure, rendered possible by the use of mild steel in the construction of boilers, have effected in all a reduction of 70 per cent in the consumption of coal and an increase of 110 per cent in spoed.

gITGLE FLUID BATTERY
 T. O'CONOR BLOANE, PH.D.

The battery here illustrated is a very efficient and simple form for open or closed circuit work. It represents a favorite and recent type for such cells, and can be put together with the minimum number of tools and appliances.
The cover is made of wood. If a circular vessel is used, the cover should be cut in a circle equal in diameter to the outside of the jar, and a shoulder should be formed to hold it in place and prevent lateral motion. Any number of holes, according to the size, are bored through it, one set for the reception of the carbons and the others for the zincs. Care should be taken to bore these holes truly vertical to the plane of the cover, and the bit used should make a hole of exactly the right size to fit the carbons and zincs respectively. The fit wust be a very tight one, so that the rods have to be driven into their places with a mallet or hammer.
For the positive elements, zinc rods, such as sold for the Leclanche battery, are used. Such rods can be bought of 6 or 8 feet in length and of uniform diameter. Pieces are cut off of the proper length, a cold chisel, hack saw, or file being used. A very easy way of dividing the rod is with mercury. A fine groove is filed around it. A globule of mercury is placed in a saucer with a little dilute sulphuric acid. A thin slip of zinc or a strip of galvanized iron is dipped in the mercury. Some adheres to it. This is then drawn around the cut, so as to fill it with mercury and amalgam. Then the rod is broken off, either in the hand or in a vise. It becomes almost as brittle as a pipe stem. This process is hardly to be recommended for the upper ends of the zincs. These have to be soldered, and the mercury interferes with the operation to some extent.
For negative elements, electric light carbons are used. The copper is dissolved off by nitric acid, they are washed, dried, cut to the proper length by a saw or cold chisel, and their upper ends are soaked in hot paraffine.
Both elements are now driven into their respective places. With each carbon a slip of copper $1 / 4$ inch wide is also introduced, and lies alongside, pressed hard against it and projecting about as much below the cover. As shown in the cut, a wire is carried around the outer circle of the carbons, and is soldered to the copper strips. If a central carbon has been used, as shown, a special connection is soldered to it and to the main wire. The end of the wire is carried up through a hole in the cover. A second wire is soldered to the zincs, this piece lying on the upper surface of the cover. Concentrated hydrochloric acid (muriatic acid) is the best flux for the zincs. If desired, the projecting end of the zinc connection may be secured to the wood by a staple. This is not necessary if the soldering is solid.

To amalgamate the zincs, a strip of galvanized iron is far the best instrument. The end of such a piece, which may be 2 inches by $1 / 2$ inch, is bent into a hook, so as to fit the zinc rods. This is dipped into
the globule of mercury as it lies under a little dilute acid, and is rubbed up and down the rods. If the mer cury does not take hold at once, the zincs and carbons may be dipped nearly to the level of the coverin dilute sulphuric acid. After a few minutes' immersion the zinc will be ready to amalganate, and the rods will shine like silver after a few minutes' rubbing with the galvanized iron and mercury.
The soldering may of course be dispensed with. In stead of strips of copper, the ends of some pieces of wire may be flattened and driven into the holes along with the carbons and zincs. By twisting together the

single fluid battery.

ends of these, zinc connections and copper connections separately, the battery will work perfectly if care is taken to avoid short-circuiting. When it is made in a hurry, for temporary use only, the paraffining of the carbons may be dispensed with, and the copper may be left upon their upper ends. The wires may be soldered directly to this, although such connection is rather weak.
For bichromate solution, $21 / 2 \mathrm{oz}$. of bichromate of potash in fine powder are shaken up in 10 fl . oz. of water. To this $21 / 4 \mathrm{fl}$. oz. of sulphuric acid are added slowly with constant stirring. Great care should be taken in pulverizing the bichromate of potash, as it causes ulcers if inhaled. For open circuit work a solution of sal ammoniac may be used. The ends of burned out carbons, such as are thrown away by the lamp at tendants, answer perfectly for the smaller sizes of this battery.

Dr. W. Crookrs mentions that if gallium could be obtained in sufficient quantity, it would be a perfect metal for producing vacuam in air pumps, as it is

The Rell Telephone Patent Cancelod in Austria.
The efforts of the Telephone Company of Austria to get the Bell patent canceled have at last been successul. Their manager, Mr. R. Howard Krause, believed this possible from the commencement, and with the assistance of Mr. Otto Schaffler the company has been the means of securing free trade in telephones in Austria. The result of the decision of the Austrian Ministry of Commerce and the Hungarian Ministry of Agriculture, Industry, and Trade, dated October 28, 1837, seems to be that all those clauses of Bell's patent which refer to the telephone are canceled, only those referring to the multiplex telegraphy being allowed to stand. Certain clauses were canceled because the Telephone Company of Austria was able to prove prior publication, and others were canceled because the company uroved that they embodied scientific principles which, iccording to Austrian law, cannot be the proper subject of a patent.

THE BRUSSELS INTERNATIONAL EXHIBITION, 1888.

A great international competition of sciences and inIustry and universal exhibition will be opened at Brussels, the capital of Belgium, on the first Saturday of May, 1888. Applications for space must be made by January 15, and all entries by April 15, the goods to be in their places by April 25 . Belgium is in an eminent degree a manufacturing country, and in many lines of production a close competitor with France, Gerinany, and England ; therefore it is proposed to make this exhibition rather an exception to most previous international displays in the fact that a more enlarged programme of direct competition has been offered, which will tend to bring out a good representation of the different industries represented. The products are to be grouped in fifty special competitions, in such manner as to supply material for the complete study of any branch of industry in comparison with the similar products of other nations.
The rewards and cash prizes are to amoint to 100,000 , and numerous cominittees have been appointed to the end that the greatest possible amount of information may be obtained and placed at the service of the public. Exhibitors will be free to take part in the competitions or in the exhibition ouly, or simultaneously in both. An international jury on rewards will be appointed, whose members will be designated by the governments of their respective countries, and the jurymen of nations not officially represented will be proposed by delegates of the exhibitors of such nations. Foreign products designed for the exhibition may be imported with provisional right of free entry, on condition that they will be afterward exported. The exhibition buildings will cover an area of 100 acres, the permanent ones being supplemented by temporary structures of brick, iron, and glass, and the grounds beng laid out in beautiful gardens.
Messrs. Armstrong, Knauer \& Co., of Nos. 822 and 824 Broadway, New York City, are the authorized agents for the exhibition in this country.

Tomatees from Cuttinge:

I am very much in favor of propagating tomatoes by cuttings. If a gardener has a good variety, and is not certain that it will come perfectly true from seed, the best plan is to keep up the stock by cuttings. The earliest fruits in spring are readily secured from plants rooted as cuttings in the autumn, and grown during the winter as store plants. At the present time, tomatoes that are about to cease bearing are producing matoes that are about to cease bearing are producing
numerous shoots, and if these are taken off and innumerous shoots, and if these are taken off and in-
serted at the rate of from four to six in a 4 inch or 5

Fig. 1.-EGROT's DISTILLING APPARATUS.
inch pot, they will turn out well during the early spring months. The pots should be plunged in a lit tle bottom heat until the cuttings are rooted, then harden them off a little, and keep them afterward with pelargoniums or plants of this sort. They winter better in a cool place, away from frost, than in much heat ; but they may be potted singly and started into growth very early in spring, and it is then the cuttings have the advantage over seedlings. The latter are always inclined to make very long stems; but cuttings are always dwarf, and I have proved them over and over again to be earlier and produce more fruit than seedlings. All will admit that it is an advantage to have strong tomato plants early in spring, and autumn propagation by cuttings is a certain way of securing them.-J. Muir, in Field.

AN AJTOMATICALLY WORKING RAILROAD GATE.

A gate which is designed to be self-opening and self closing with the movement of the cars on and off the track at stations, and which is more especially designed for use on elevated railroads, is shown in the accom panying illustration, and forms the subject of two patents recently issued to Mr. John B. Carey, a stenographer, of No. 109 Liv ingston Street, Brooklyn, N. Y. On the platforim supports are secured a number of guides, which extend up to the outer edge of the platform, a vertically sliding gate being held between each two succeeding guides, the gates being connected at each end by a link with a each end by a link with a
weighted lever fulcrumed weighted lever fulcrumed
on a post or on a bracket secured either to the track posts or to the platform supports. From the fulcrum of each weighted lever extends an arm pivotally connected with a rod arranged horizontally along the platform, the outer end of the rod being pivotally connected with one arm of a bell crank lever pivoted on one of the track posts, and connected at its other arm by a link with the free end of a rail lever held alongside of one of the rails of the track. This rail lever is arranged in position cover ing the usual locomotive stopping places, and is so formed as to be acted upon only by the larger treads of the locomotive wheels, and not by those of the car wheels. Each gate link may be connected to a separate
weighted lever, or the links of two adjoining gate ends may both be connected to one lever. The weights of the levers are so arranged that the levers hold the gates in a closed position and also hold the rail lever slightly extending above the rails of the track. When a train moves up to the station, the treads of the front locomotive wheels press the rail lever downward, swinging the bell crank lever, and drawing the horizontal rod forward, so that the weighted levers are swung to draw down the gates until the top edge of each is flush with the top of the platform, thus permitting passengers to pass from the platforin into the cars, or vice versa, in the usual wanner. As soon as the train starts to leave the station, and the treads of the locomotive wheels move off the rail lever, the gates move upward vertically again by the action of the weights of the levers, and the station platform is closed on its track side. Levers also extend from the horizontal bar to the track rails in such way that the passage tal bar to the track rails in such way that the passage
of the train, before the locomotive reaches the rail lever, will cause the gates to move alternately up and down for a distance of about six inches, as a warning for those near them to keep out of possible danger. As a still further protection, a rod-like hand rail is held slightly out from and just below the top of the gate, being bent down at its ends and inclined inward. It is hinged on the gate at the platform edge, and is drawn hinged on the gate at the platiorm edge, and is drawn
down with it, but is extended in position by a spring down with it, but is extended in position by a spring
as the gate rises, acting as a guard to keep people from crowding too closely up to the gate. Instead of operating the rail lever by the locomotive wheels, a special device located in the locomotive or in one of the cars may be employed, under the control of the engineer or a train hand, but the whole construction is designed to be simple and durable and to operate automatically.

THE DIBTILLATION OF FRUITS AND MANUFACTURE OF BRANTDY.
Among the fruits given us by nature some figure with advantage on our tables and others serve for the manufacture of brandy, preserves, marmalades, etc. Those of inferior quality and less pleasing aspect, and those that cannot be utilized in such a way, because of their abundance, are employed in the manufacture of fruit liquors. Through great carelessness, the larger part of such fruit is lost, thus depriving the land owner of a resource that is of no small consequence.
The distillation of fruits is an operation that is so much the more lucrative in that the law of December 14, 1875, relative to the privileges of distillers of wine and fruits, dispenses with afflavits and frees the farmer who distills the results of his harvest from inspection, and consequently exempts him from tax. The grower, then, has the best of reasons for utilizing the products of his land, since he can cheaply obtain an excellent liquor that he knows to be natural and healthful.
All fruits do not render the same proportional quantity of spirit, the proportion of the latter being greater or less according as they are more or less saccharine. In Bohemia and Moravia, plums give a liquor called sliwowitz. The spirit obtained in France has a great analogy with kirsch, which is more especially produced by a small, black, very sweet cherry.

CAREY'S RAILROAD GATE, ESPECIALLY DESIGNED FOR PLATFORMS OF ELEVATED RAILROADS. in the same manner that the juice does.

The method employed in the manufacture of spirits just about the same, whether it concerns fruit with or without stones, and, moreover, it is very simple. As soon as the fruit has been collected in sufficient quan tity, it is put upon an osier frame placed over a tub, and is crushed so as to make it give up all its juice. which, along with the pulp, passes into the tub. With plums, cherries, and other fruits whose stones are held back by the frame, care must be taken to throw these stones into the tub, as this is what gives the liquor that peculiar bouquet to which it owes its value.

Fig. 2. MODE OF EMPTYING THE STILL.
The whole is then thrown into a fermenting tub, which is generally a cask with one head removed. Care is taken to pour in a sinall quantity of tepid water, in order to start fermentation, and then the cask is covered. A room must be selected that has a nearly equa ble temperature of between 18 and 25 degrees. The temperature of 25 degrees should never be exceeded, for, were it to be, fermentation would be arrested and the yield in alcohol would be diminished very largely. On the contrary, if the temperature were too low, the fermentation would proceed more Nlowly.
When the fruits to be fermented are dry ones, such as figs and raisins, they must be placed in tepid water and allowed to macerate. It is preferable to chop figs up, so that they may be reduced to a pulp. The water in which the fruit is macerated enters into fermentation

The duration of the fermentation depends on the fruit. It may be eight days, and sometimes a month. Plums and cherries require from twelve to fifteen days. The cessation of fermentation is shown by the settling of the cap, which consists of grains and pellicles carried to the surfuce of the liquid by the disen gagement of carbonic acid gas. It is likewise shown by the vinous odor that is emitted. When the fer mentation is over the li quid is drawn off and the marc is pressed in order to extract from it all the juice, and the latter is added to the liquid. In this state the juice is ready to be distilled. It contains not only the alcohol of the fruit, but also the latter's characteristic bouquet. Many routine distillers do not take the trouble to separate the solid and liquid material, but distill the whole in a pasty inass. But the spirit obtained has a peculiar more or less pronounced empyreumatic taste due to the boiling of the solid substances, which, despite all care, adhere to the side of the still and are burned.
The mare of the grape alone does not have to be fermented, since it is due to the fermentation of the

Kirsch is manufactured principally in Switzerland, in the Black Forest, and in France in Franche-Comte, the Vosges, and Meurthe-et-Moselle.
In Algeria, dates, sweet figs, and Indian figs yield an excellent liquor. Huckleberries and raspberrie also are sometimes distilled, although rarely.
fruit, contains alcohol all formed, and can be distilled at once, or be allowed to macerate in water, in order that it may give up its alcohol thereto. This latter method gives a better product, and one that has not the charIn the distille of marc spirits.
In the distillation of fine fruit alcohols, the liquid to
ture is reduced. The same is the case with the condensing water, the quantity of which used is scarcely half that

The Preservation of Iron and stoel shipa.
The inner surface of the side and bottom plating in the earliest iron ships was protected by paint only against corrosion and such other wasting influences as might operate on the interior of the vessel. It seems
to have been considered at that time the greatest wear to have been considered at that time the greatest wear vessel below the water line, and that it was sufficient on the inside to simply paint the surface of the iron, and lay close ceiling upon the frames as high as the upper turn of the bilges to form a platform for the cargo and keep it clear of the bilge drainage. But ship owners were not long in discovering that whatever might be the ultimate durability of the bottom plating, the wear and tear from corrosion proceeded at a much more rapid rate on the inside than upon the outside of the vessel. This was seen to be particularly the case in the flat of the bottom, where the inner surface of the plating and the rivet heads ware exposed to the continual wash to and fro of bilge water with every roll of the vessel. This action was much intensified when hard substances, such as fragments of ballast and lumps of coal or other portions of cargo, found their way into the limbers; and as these accidental droppings through holes in the ceiling, or by reason of inattention when limber boards were lifted, proved to be of common occurrence, it became evident that some steps should be taken to provide greater protection to the inner surface than was afforded by two or three coats of paint. Among other means which were adopted, the employment of a thick layer of asphalt seemed for a time best calculated to meet the circumstances of the case. But after a time it was found that asphalt was not a stable protection, especially in the machinery spaces of a vessel. With a moderate rise of temperature the as phalt became sufficiently filuid to "run," and when a vessel had much rise of floor the protecting ma-
terial would slowly leave the bilges and accumulate terial would slowly leave the bilges and accumulate
toward the middle line. Even the increase in temperature of such cargoes as grain or wool when stowed in the hold would at times be sufficient to soften the asphalt, and consequently expose a large area of the bottom plating, with its rivets and butt straps, to the wasting action of the bilge water and whatever hard ubstance might happen to be lying in the spaces beween the frames. Ultimately, after trying various materials, the shipping community by common agree ment pronounced Portland cement to be the most trustworthy substance with which to protect the horizontal portions of the inner surface of an iron ship's bottom. At the present day scarcely any other covering than this is employed, the only variation being in the proportion of sand which is added to the cenent and in the extent to which such substances as brick, broken tile, and coke are incorporated with the cement at places requiring a more than ordinary thickness of the protective material.
The internal structural arrangements in the early iron ships were very simple, so that when the inner surface of the bottom and the frames below the bilges were well plastered with Portland cement, and the remainder of the ironwork was thoroughly painted, as much was done as appeared necessary to avert wasting through corrosion and attrition. Competition for car goes was not so keen in those days, and freights were
sufficiently high to render shipowners comparatively indifferent regarding the weight of cement carried in the bottoms of their ships. It was not at all unusual to pour in cement between the floors to a heigh of 5 inches or 6 inches at the middle line, and to place at least an inch of cement where it was thinnest at the bilges. An advantage was found in this, inasmuch as flush surface was prepared level with the limber holes in the floors, upon which the water in the limbers could flow freely to the pumps. Moreover, with such great thickness of cement to be worn through beore reaching the skin plating, the presence of hard substances in the frame spaces became a matter of com parative indifference. It was when the cement was thickly applied to this extent that recourse was some times had to broken bricks, tiles, and coke, to econo mize both in regard to cost and weight. At the ex tremities of the vessel, in particular, spaces not suff ciently accessible to be kept properly clean and painted kind.
On the interior of the vessel, where exposed to bilge water or to water ballast, paint is of very little use. Most ship owners have coated the surfaces at these parts with "cement wash." or, in other words, with a very fluid preparation of Portland cement laid on with a brush. The same kind of coating has often been laid upon the upper surface of inner bottom plating, and with fairly good results. Elsewhere within the vessel iron or steel work should be painted, the thoroughness of the painting and the number of coats applied being of greater importance than the nature
of the paint itself, which may be red lead, iron oxide or white zinc, just as suits the taste of the person pay ing for it.
Although " cement wash" has proved a fairly satisfactory protection to the iron or steel work at the parts already referred to, yet recent experience tends to show that more advantageous results follow the useof Stockholm tar and Portlaud cement. The sur faces coated must in all cases be free from oxidation and quite dry. If at all damp, the intended protection rapidly falls off. The surfaces are first coated with Stockholm tar, and at once sprinkled with dry cement powder until as much cement is applied as will stick to the tar. The tar and cement speedily amalgainate and slowly set ; but when set, the protection is quite hard and wholly impermeable to water. The upper surfaces of inner bottoms may advantageously be cov ered with this protection, more especially when under engines and boilers. Indeed, the wear and tear to inner bottom plating below machinery and boilers has been found to be so great that in all probability the placing of double bottoms at that part of the vessel will, to a large extent, be avoided in the future. The wasting of double bottoms has become a serious question with the owners of some lines of steamers and with the committee of Lloyd's Register. Unless some means can be taken to check the corrosive action which is so de structive at that part of the versel, it will be necessary to add considerably to the scantlings in order to pro vide a sufficient margin for possible and probable de terioration. The Stockholm tar and Portland cement remedy appears so far to meet the necessities of the case, and it is to be hoped that further experience will confirm present expectations regarding it.
Uncovered iron and steel decks continue to waste at a rapid rate, despite all the attempts hitherto made to check corrosive action. Coal tar and black varnish seem only to make matters worse, and the "let alone" policy appears so far to be as good as any. Singularly enough, the more traffic there is on an iron deck, the less the wear and tear is found to be. At the sides of large hatchways, for instance, the corrosion is less than at parts of the deck where men seldom walk. It is not difficult to explain this phenomenon. As is well known, oxidation of iron progresses most rapidly in the presence of existing rust. The rust of copper prevents further corrosion, and only by the constant exfoliation on the surface is the bottom of a copper sheathed ship kept clean. If that exfoliation is checked, the substance of the copper is preserved from wasting, but at the cost of a foul bottom. With iron the case is different. Oxidation engenders further oxidation, and hence the necessity for frequently scaling the surface of iron which is permitted to oxidize at all. The wear and tear of traffic near the hatchways wears away the scale of rust as it is formed, and consequently corrosion proceeds more slowly there than elsewhere on the iron deck. The constant falling of salt water on the deck is undoubtedly the cause of its rapid corrosion, and up to the present time no means appear to have been successful in keeping the water from acting on the surface of the iron. Probably, the Stockholin tar and Portland cement remedy would be as efficacious as any if it were hard enough to endure, but that is doubtful. Under present circumstances, the best course seems to be to scale the deck frequently, and so imitate at all parts of the surface the action which nominally operates so advantageously at the sides of the hatch-ways.-The Engineer.

An Aerolite Hoax.

The following clippings from recent exchanges explain themselves. The aerolite as a subject for hoaxes is becoming antiquated already.

From the New York Sın, Nov. 19, 1887
FALL OF AN AEROLITE WEIGHING THREE TONS
Amsterdam, N. Y., Nov. 18.-The Recorder this vening says : "An aerolite weighing three tons dropped with a loud report in front of the Merchants' National Bank, on East Main street, at 11:20 this morning, making a deep indentation in the ground. Great excitement was created by the occurrence, and large crowds viewed the celestial visitor. Local experts find traces of iron, nickel, aluminum, and other inetals in the aerolite. The Dudley Observatory has been notified by telegraph of the meteor's fall."

From the Amsterdam Democrat, Nov. 19.
" A man came down from Fort Hunter this morning to see the 'aerolite.' A meteorologist from Troy arrived in town to-day, having come in haste, without his dinner, and was much disappointed when told that the aerolite was a hoax. It is also stated that a party are on their way hither from Philadelphia. A big stone did fall in the place indicated. The only trouble is that instead of falling from the sky, a wagon which was loaded broke down with it. That's all, but it rather spoils the sensation.'
The conclusion reached by the Amsterdan journalist is ingenious, to say the least. The finding by the local experts of "traces" only of iron, nickel, and aluminum in the supposed celestial missile is suggesive of a discrepancy.

A New Electric welding Apparatus.
The electric welder invented by Professor Elihu Thomson, which was described and illustrated in the Scientific American of November 26, 1887, has already found a rival in an apparatus devised by Messrs. Nicolas de Bernardos and Stanislas Olszewsky of 8 . Petersburg. Industries gives the following :
The new method, which was invented almost simultaneously with that of Professor Thomson, has during the last few months been elaborated so as to render it applicable in cases where Thoinson's welder cannot be used. The action of both instruments is based upon the conversion of electrical energy into heat in that place in the circuit where the resistance is greatest but while in Thomson's welder this resistance is merely that of an imperfect contact between the materials to be welded, in the new apparatus it is that of an electric arc, and therefore considerably higher. As a natural consequence, Thomson's apparatus must work with very large currents of low e. in. f., and for convenience alternating currents are used, while that of Messrs. Bernardos and Olszewsky works with moderate con tinuous currents at a comparatively high e. m. f.

The first experiments were made about a year ago in the electric workshops at Creil, and were so successful as to induce Messrs. Rothschild, of Paris, to acquire the patent rights for several Continental countries. Further experiments were carried out last summer by Messrs. Garbe, Lahmeyer \& Co., at an industrial exhibition at Aix-la-Chapelle, which the writer witnessed, and at the present moment experiments on a still larger scale are in progress at the laboratory of the "Ger
which made a brief appearance and then vanished gain some few years ago. They consist of a lead frame, serving as a support for thin lead tapes alternately corrugated and straight, placed side by side within the frame. Since the dyuamo is always kept running, storage capacity is not of so great importance in this process as the ability of the cells to discharge very large currents for a short time. The inventors employed at first e. p. s. cells, but finding that their greatest merit, which consists in large storage capacity, was not of much use in this particular application, they reverted to the type above described, which more nearly approaches the original Plante cell. Owing to the reducing action of the carbon, it is possible to weld metals even if they be coated with a slight layer of oxide, and in no case is any cleaning of the joints necessary. To give an approximate idea of the energy required in this process, it might be mentioned that during the experiments above cited a lap joint between iron sheets of 2 mm . thick was welded with a current of 15 amperes supplied at 65 volts pressure. Thin lead sheets can be welded by the use of from two to five cells, the carbon pencil in this case being 5 mm . diameter. It is also possible to perforate metal plates by the arc, the carbon pencil being simply pushed through the plate as ast as the metal melts, and the writer has seen a lap joint of two $3 / 8 \mathrm{in}$. boiler plates, in all $3 / 4 \mathrm{in}$. of metal, thus perforated. It is remarkable that the perforation can also be carried on under water.
One application of this invention is the welding of the beads in wrought iron petroleum casks, and it may also be used for repairing cracks or faulty places in iron
have increased in the ten years, 1875 to $1885,43.8$ per cent, being exceeded in percentage only by the growth of German exports. Among the articles in which we show a large increase are agricultural implements, 356 per cent increase ; carpenters' tools, 85 per cent ; hardware, $391 \frac{1}{2}$ per cent; iron nails, $561 / 2$ per cent ; ma chinery, 106 per cent; plows, $351 / 3$ per cent ; thrashing machines, $131 / 2$ per cent; wire nails, 800 per cent. These figures show a very gratifying growth in a but slightly cultivated field.
In Australia and South Africa we have made great progress, the more enterprising people being wisely desirous of obtaining "the best" of everything. The pages of the Engineering and Mining Journal are con stantly telling of the sending of quartz mills, Krow's steel crushing rolls, concentrating machinery, sinelting plant tools of all kinds, and American experts to man age these things, to all the Australian colonies-the two great Australian bonanzas, the Mount Morgan gold mine and the Broken Hill silver lead mines, being among our largest customers. South Africa, the rich gold mines of the Transvaal in particular, are getting mining machinery in this country, and from all sides comes testimony to the fact that American machinery, tools, and appliances, when purchased through respon sible houses, are more reliable and give far better eco nomic results than those made in any other country.
In the Australasian Ironmonger we notelong lists of American goods which are highly commended; among these are saws, spades, shovels, picks, weighing machines, Rand rock drills, "the most popular drill in New Zealand and, perhaps, in the other colonies," rack

HOTEL PONCE DE LEON.-[See first page.]*
mania," a marine engine works in Tegel, near Berlin. The process is as follows :
The joint of the two metals which are to be welded together is connected with the negative pole of a dynamo or other source of supply, the positive pole of which is formed by a carbon pencil. Under the heat of the arc the two metals are melted at their junction and fused together, the carbon being handled very much in the same way as a blowpipe. It is necessary that the current should pass from the carbon to the metals, as otherwise the latter would be volatilized. The metals do not oxidize, but through the presence of the carbon a slight reduction takes place. In this manner it is possible to join copper and iron, or steel and iron, or any two similar or dissimilar metals. The idea of thus welding by means of the electric are is not new, but the inventors have elaborated the apparatus so as to make it commercially applicable. How smal is the chemical change produced by the action of the are at the joint is shown by the following table given by the inventors :

	Sterl.		Iron.	
Composition of material.	Before welding.	After welding.	Before welding	After welding.
Carbon.... .	0.48	0.25	$0 \cdot 34$	0.14
silicon.	0.04	-	-	
Manganese.....	$0 \cdot 50$	0.5	$0 \cdot 50$	028
Salphar........	0.04	0.04	$0 \cdot 14$	0.09
Phosphnrus....	0.08	$0 \cdot 07$	$0 \cdot 12$	$0 \cdot 11$
Iron.....	98:88	99.89	98.90	99.48

It is necessary to carefully adjust the current to the of the metals is volatilized, and if too small fusion does not take place, because the heat has time to flow away through the body of the metals. This adjustment is provided for by the use of secondary batteries and a suitable regulating switch to vary the number of cells in circuit. In the laboratory above inentioned, there is installed a dynaino giving 120 amperes and 175 volts, which is used for charging 280 accumulators grouped in four parallels. The plates of these cells are constructed in a similar manner to the Khotinsky accumulator
or metal castings. Although the apparatus is very much more costly and considerably more cumbersome than that of Professor Elihu Thomson, it has the great advantage of being applicable to almost any
of welding which may be required in metal work.

American Export Trade.

Our manufacturers have been so accustomed to finding a good market at home for their products that less attention than is desirable has been paid to the extension of their foreign trade; nevertheless, the great superiority of many articles of American inake has created for them a wide and rapidly increasing foreign demand. Mexico, South and Central America, South Africa, and the Australian colonies are among our best customers. Canada we already look upon as a home market.
South Americans will probably continue to be more permanent, though at present less important, customers for us than are the Australians, who are too "Yankee" to remain long indebted to any foreign country for what they can themselves produce. They buy our stamp mills and some other articles only to imitate them in their own machine shops; but there is always something which cannot be imitated and which characterizes American machinery, namely, the embodiment of the lessons of experience. In mining machinery and appliances, there can be no set type best adapted to all conditions, and those who simply copy an American stamp mill may be very far from securing American practice. There are modifications from the main type which are suggested by experience in the treatment of each different kind of ore, and it is this varied experience, and the characteristic genius in adopting suitable means in the solution of new problerus, which give rise to those variations in details which alone enable the person to attain the best and latest American results.
From the British consular reports, as published in the Engineer, we find that American exports to Chil * Views of the Hotel, the Alcazar, and other St. Angustine improve oan Architsots and Bullders Eidition.
arock, axes, Worthington's steam pumps, mill machinery, American stoves, "always growing in popularity," tram cars, barb wire, lager beer, and innu merable other articles.
There are numerous references in our Australian exchanges to the great mining records, almost equaling our own, made with the Rand slugger drills and rack arock. In fact, we have before us a list of no less than thirty-one different parties in New South Wales, Vic toria, Tasmania, and Queensland that are using these deservedly popular American drills and explosives. Eng. and Min. Jour.

Emission of Light by solid Incandescent Bodies.

It is generally admitted, according to the researches of Draper, that when a solid body is heated it begins, at about 525° C., to emit red rays, to which are succes sively added radiations more aud more refrangible as the temperature increases. The investigations of M. Weber have led to different results.
By observing, in an absolutely dark room, either an incandescent lamp, excited by a current of gradually increasing intensity, or plates of different metals heated by a properly adjusted Bunsen burner, he found that the emission of light begins at a temperature much below that which we have mentioned, with the production of very pale gray rays, whose refrangibility is equal to that of the yellow and greenish yellow rays of the central spectrum. As the temperature rises the light enitted grows yellow and gives in the spectroscope a wide gray band, whose center is tinged with grayish yellow. At low red, a narrow red line appears at one side of this band, and almost at the same time a green band, large and of slight intensity, appears at the other side. The temperature still rising, the spectrum spreads both toward the red and green ends, and M. Weber further ascertained, by means of a thermome tric element soldered to the plates, that the first traces of gray light are emitted at a temperature varying with the nature of the plate, about $396^{\circ} \mathrm{C}$. for platinum anc 877° for iron.-Revue Scientifique.

meaninering invertions.

A car brake and starter has been patented by Mesars. Amos \mathbf{M}. Vereker and stephen \mathbf{M}. Yeatoen of Dablin, Ireland. This invention covers
devicos which act antomatically to store ap force while devilose which act antomatically to store ap force while acting 28 a brake to top the car. so that it wind
able for starting the car again when required.
A railway clamp plate has been patented by Mr. Thomes J. Bush, of Lexington, Ky. This invention covers a spocial construction of plate in comblnation with interlocking bolis inserted
goonl interececting holes made in the crose
Lie, being an improvemen
A car coupling has been patented by Mr. Gartav J. Selk, of Monico, Wis. This Invention prorldes a coupler which can be readily attached to any
car, and which can be ueed in connection wilth the old pln coupler without aterantion, antomatically coupling
with an opposing coapler. while the cars may be with an opposing conpler. while the
coupled either from the sides or the top.
A safety attachment for railway car heaters has been patented by Mr. Edwin C. Rowe, of Bellerone, in which the jar of the collition or tilting of a
car atoves car antomatically dumpe the grate and also the bottom of the otove, dropping the hot coale entirely t.
bottom of the car and oat apon the ground.

A cat coupling has been patented by Mr. Samnel A. Young, of Washington, D_{y} C. This invention covers a novel construction to eerfect the automatic dropping of the pin on the entrance of the link and aloo ample means for adjusting the ooter end or
the seccrod link, in order that it may properly enter the secured link, in order that
drawheads of different heights.
A motor for street cars has been patented by Mr. William H. Patton, or Pueblo, Col. Ite constraction is such that the drive power may be oper-
ated at fall speed at all timea, and its motion trans. atod at fall speed at all times, and its motion trans
mited to the arles in any desired deyree, or so as to re molvee the same in elther direction, the power being afforded by either gas or steam engine or other motor. afionded by elther gwe
and the invention cover
comblinations of parts.

AGRICULTURAL nNVETTIONS.

A coupling for cultivators has been patented by Mr. Peter Rader, of Kirklin, Ind. This invention rectates especially to corn cultivatorn, and
 Inexpensl
the arch.

A manure scraper for plows has been patented by Mr. Adolyph Zerrenner, of New York Clty. It consiots of a a crailght vertical ranner with Its rear end widenod and concared outwardly to form a deffector, and adaptod to be eecured to a plow beam with the ver-
tical runner directly below and approximately parallel tical runner directly below and approximately parailel
with the beam, the device belng easily attached and detached and adjustod to the beams of different plows.

MTEGELLAIEROUS IIVERTIONB.

A tobacco box has been patented by Mr. Anstin L. Greebam, of Kinggiand, Ark. It is so made that the tobacco will be in aight and yel be prowhile the tobacco will be eas readilly accessible as in the old style of boxes.
A hand loom has been patented by Mr. Charles N. Newcomb, of Omaha, Neb. It is in. tended eppeocilily for weaving rag carpets, and in its
teneral construction is much as usual, but the inven. general construction. is much as asual, but the inven. tion coverrs varions novel
the arrangement of parts.
A folding stacker has been patented by Mr. Charlee Sanaders, of Cape VIncent, N. Y. It te made in sections which may be folded apon themselves Yor removal from place to place, but the constraction is
scch as to edmit of a proper adjustment and sapport of such $2 s$ to admilt of a proper ad dustment and sapport of
A broom holder has been patented by Mr. Charies W. Love, of Fairpoint. Ohio. It is made of one plece of wire, oo formed and bent as io have a ree
foill beve end a right-angularly projecting pair of carved gripping jaws or Angers with coins therein, to be eecuree
A bung has been patented by Mr Mchanel R. Mayer, of Zaneevilie, Ohilo. A bung pro beling binged to the veseel provided with a lag and arbeing
rainged to lie over and upon the hinged bang, a locking bolt engreging the lage of the bang and plate.
A mail bas has been patented by Mr. Carey F. Kizar, of Westrille, Ohio. This lavention coverr a special formation and construction of the
moath of the pooch, whereby it may be readilly and easill g closed and opened, regqurting no strape and but
one taple, the fasteoing being recare and darable. A cash box has been patented by M Benjamin C. Footer, of Baltimore, Md. It is made Benjemin C . Foater, or
bbeet metal, in two mections, hinged at their edges, the parts being arranged in a novel way, with reference to convenience, aretety, compectinese, and osey portablility, in the keeping of ins and
A fence has been patented by Mr. Jecou \mathbf{Y}. Boosart, of Sumner, M1. This invention pro-
 In addition io raila, whereln bat few posts are barled in
the ground, and whereby the fence may be set up and taken dorn aseln with celerity and ease.
A lounge has been patented by Mr. Goorfe Hofman, of Moant Vernon. N. Y. It has a
reverible back, so that when deatred the loange may bo reveriblo back, 20 that when desired the loonge may be
ceaily and quikckly changed from a riktt 0 a left hand loonge, and ubec verase, and there are varioan novel

A harness buckle has been patented by Mr. John H. Neill, of SInclairville, N. Y. It is sdapted more particularily for ase on the crupper and tip atrape off harness, being so made as not th catd It, and at the same time to provent the line from being caught under the end of the hip strap.
A miner's lamp has been patented by Ir. John L. Morris, of Middleport, Pa. Combined wil he lamp is a dooble hook formed of a doobled or coped wire having its ends beut over into outwardily projecting beaks or points, one of which is longer thai the other, whereby the limp is more readic
the hat and more steadily held in place.
A wagon jack has been patented by Ir. Anthony o. Stiveson, of Pomeroy, Ohio. This in parts in a jack having a stationary standard firmly mounted in a base block, making a wagon jack which io convenient and effective and has an extensive range of

An apparatus for purifying and sepating ratty substancess by electrichy has been patent d by Mr. Heinrich F. D. Schwann, or Kaseas Cith, Mo.
 separatos kunpended therein, in
A spring roller has been patented by Mr. Rucher Grese of Tombetone, Arizona Ter. It is of that class wherein a casing secured to the curtain roller incloses a drum and spiral spring, one end of the
pring being attached to the plivot on which the casing apring being attached to the plvot on which the casing
prns, the invention covering a novel construction and Combination of parta.
A water back for gas heaters has been A wated by Mesers. John T. and Errett E. Phillipe, of New Castle, Pa. It is applicable for une in connection
with the ordinary form of gas heater, and provides for with the ordinary form of gis heater, and provides ort
aproper moistening of the atmoepherc of the expartment and also for
A fire escape and water tower has been patented by Mr. Mantice J. Hart, of New Orleans. La.
it to be located at atreet corneri, and has floors or It is to be located at street cornera, and has nioors or

A baling press has been patented by Yr. Abjah simpeon, of Lapeer, Mich. It is a simple and inexpensive device for compresing hat, straw,
cottou, and similiar material, there being combined with the baling box and planger a shaft in the forward part of the case, with a loosely monnted drive wheel and
aweep
proted on the shatt, with other novel features. A tent pin extractor has been patented by Mr. Henry M. Hyde, of Princeton, ill. It consista In a rectangular box- like frame adapted to engage a ten peg, having its forward end beveled, and a detachabbe
connection between the trame and the hande of a mallet, whereby a tent pin may be readily drawn fron he groand.
A buckle has been patented by Mr William J. Walters, of Prospect, N. Y. It is a saspeuder buckle in which the frame has a cross bar and clamp allding on the side bars and pressing the web of
the suspender apon the fixed croses barf, the clamp belig connected with the suspender strapes, holding the wet the saspender frmly as the pull is increased.
A buckle has been patented by Mr Charles R. Harris, of Williamepport, Pa. The frame of the buckle has applied to band passing through the backle, there being also a face bar applled to the bockle below the toothed a
A box loop has been patented by Mr Martin L. Hickle, of Dyson's, obio. It is for retaining the free ends of straps secured by a buckle, the loop being formed with its top plate made to open to enable the strap to be convenienty placed in and removed
tron from it, and provided with a
which tit may be secured cloeed.
A galvanic battery has been patented by Mr. Horatio J. Brewer, of New York City. Com bined with the cell is a divislon plate, dividing the cel into two compartmente, one larger at tos apper end to Yorm sumficient space for the head of the negailie elec-
trode and for conveniently packing the negative ma. trode and for conveniently packing the negative material aro.
A thill coupling has been patented by Mr. Samuel Forter, of Marysille, Kansas. It consits and turough the shaft end, the bolt having on one end an extension on which is formed a bar extending parallew with the bolt, and having on its outec end a
curved angular arm adapted to engage the outer face of one of the ears of the cllp.
An invertible microscope has been partented by Mr. Edward Ranech, of Rochester, N. Y.
The stand has an arm adapted to receive a doobly rodeecting priam, the arm belng arrangrd to hold the maln tabe in two positions, and to receive and hola the prim, making a microscope which may be omployed either as invertibe or vercicas molmu
change in the adjastment.
A magic lantern has been patented by Mr. Willum H. Ridding. of Brooklyn, N. Y. It consisto of an extensibe frame with a condenser be connected with the slide holder by a bellows, there being a centrally apertared cap adapted to it over the conden. ser holder and recoive the casing
light, with other novel features.
A portable elevator has been patent-

ower part of the gulde frame, a part on the car projecting between the side beams and adapted to sirike ne stop, the device being reanily foideder.
An air ship has been patented by Mr. Charles i. Morgan, of Gannison, Col. It is construct od with a neries of longituainal hercel adaplod oncenurata has, ben mities to end ribs, together with a series of transverse oval ribe, between which and the longitudinal tubes is aited an Inner incloing ailk
A hand grip tester has been patented A Mr. John M. Reiners, of New York City. It has oppoosing diliale sapported by standardis, a pinion pivoted between the dialos carrying Indicating fingers, a rack silding in the standards, a spring adapted to bear gainst the etandard ald arm, mak nig af the human hand.
A logometer has been patented by Mr. Charles sperry. of New York City. It provides as registering mechanism to be operated and regalated by
mechanimm indicating uniform time, on veseels, in com. mechanism Indicating unliorm time, on vesselis. in com.
bination with a speed-Indicating mechanism, the regiter showing the distance the vessel hns covered efince etart. ing, thereby makng a completet logometer to constant
indicate unitorm time, the speed of and the distance nadicate anirorm
A brake for children's carriages has been patentod by Mr. James H. Peterson, of Brooklyn,
V. \mathbf{Y}. Combined with the azie and hub of one whee a Y bracket adapted for attachment to the axie, aper tured to receive one end of a brake strap. a brake strap being adapted to encircle the hab, so the brake can be quickly applied from the handie, and ithe carr danger of changing poaltion.

SCIENTIFIC AMERICAN

BUILDINGEDITION

DECEMBER NUMBRER.

TABLE OF CONTENTS.
Hlegant Plate in Colors of a Suburban Dwelling
cooting about Nine Thusiand Two Hundrea
and cooetn ${ }^{\text {and }}$ about Dilara with foor plans, speciflo

. The Shal
Pergyectlive riem and floor plans of a Residence
to coct Eight Thousand Dollars.

Perspective view. detall drawings, specifce
tiona roof and floor plans of T To Thousan

Engravings showing interior and front view of
Cfateau of Castelliadary. A. Aubry, Archi-
. Lea Hurst, Derbyshire, the home of Miss Flo-
9. Fileveration and fileor plans of Homes of Factory

Operativesat oun Banioon at Vittel. Bull by 1. Floor plans and perspective sketch for a Cot-
tage eoting about Five Thousand Five Hun-
dred Dollars. dree Dollars.
Perspectlve ver and floor plans of a Cottage
cooting Four Thousand Two
Hundred Dollars.
 Dollars.
Porspective view and floor plans of a Reaidence
for Five Thousand Dollars. 15. Pergyective view and plans of a Neat Dwelling
costing Four Thousand Two Hundred DolLars.
Helf page engraving of the John Crouse Memo-
rial Iollege Tor Women, syacuse Unveraty,
Byracuse, New York.
17. Plans for a French Cottage, Hotel de Peintre,

Misellannous Contents: Optical Refnements

Special.

the degpair of science.

Rheumatism and neuralifia, two remorseless demons
human surfernuk, have puxiled the masturs of mealioed if human surfernk, have puzzied the masters of modiaen
clence. They are inally arreed that the Arrat is a blood disease and that the seond is an arrection of the nerres
Tor thelr cure unul reconty the facalty prescribed slmFor thelr cure unul recentil the facalty prescribed simapplications in both arfections. Jately, sereral of the most distinguished physicians of Philadelphia soribed nitro-glyoerine to neuralgic patient.
Now, the dynamite, or nitro-gly cerine Now, the dy namite, or nitro-giy cerne, treatment of Bkoptical sufferers from acute neuralgla or rheumatism in the majority of cases, would prefer to have the dyna mite placed directly upon the afrected part and exploded promptly. Cures are, atter all, the vindication of a new
departure:In the healing art. The Compound Oxyken treatment solves the quesilon as to the complete eradication of both rheumatism and nearalgia from the system. Drs. Startey \& Palen, 1529 Arch Bt., Philudelphia,
Pa., send a Home Treatment which can be used with perfect ease and safety at he pale are felt immediately The system takes a now tone, and life becomes full of onjoyment akain. A postal card sent to the above ad-

2Business and Personal.

The charge for Insertion under thes head is One Dollar a line for each insertion; about eight woords to a line. as early as Thuraday inorning to appear in next issue.

Inventors of small articles of merit, who need money or perfect inventions, or who wish to sell patents,
end doscriptions to A. W. Webster, Ansonia, Coni. Works by Huxley, Spencer, etc., fifteen cents. J. FitzAll Books, App., etc. cheap. School of Electricity, N.Y. Partles desiring to manufacture and introduce the Lorometer" (noticed in
or vessels) in the United states or foretgn countriea, nay apply to the preeent address of the inventor, Charles Sperry, Port Washingcon, L. I., New York.
Leather link belting is the most rellable for dynamos and swift running machinery. For particulars write
Chas. A. Schieren \& Co.. 47 Ferry St., New York. Wanted-A'foreman for a fonndry job shop. Aboat moulders omployed. Address, statink ake, refererce, and sala
Mass.
situat

Situation Wanted-By a man of experience as superAdress P. O. box 783, Providence, R. I.
Perforated metals of all kinds for all parposes. The For the latest improved diamond prospecting drills, didress the M. C. Bullock Mfg. Co., 138 Jectson St., Chicano, 111 .
The Radlrood Cazetto, handsomely illastrated, pab-
ished weekly, at 73 Broadway. New York. Specimen ushed weekly, at 73 Broadway, New York. Specimen
copies free. Send for catalogue of railroud books. The Knowles steam Pump Works, 113 Federal The Knowles steam Pump Witon, and 98 Llberty St., New York, have just ioued a new catalogue. in which are many new and im proved forms of Pumping Machinery of the stngle and duplex, steam and power type. This
malled free of charke on application.
Link Betting and Wheels. Link Belt M. Co., Chicago Presees \& Dies. Ferracute Mach. Co., Bridgeton, N.J. Nickel Plating.- Sole manufactarere cast nickel an LLttle Wonder." A perfect Electro Plating Machine Sole manufacturers of the now Dip leacquer Kristaline Complete outat for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St.. New York. Iron Planer, Lathe, Drill, and other machine tools o odera deblka. We till, a Mu. Supplement Catalogue.-Persons in parsuit of infor maction of any apecial engineering, mechanical. or scien-
ulic subject, can have oatalogue of contents of the Sclido subject, can han Supicicmint sent to them free The SUPPLEMENT contalins lengthy artioles embracin the whole ranke of engineering, mechanics, and physica oienoe. All The Holly Manufacturng Co., of Lockport, N. Y
water works ma will send their pamphlet, describing water works maLathes for catting irregular forms a specialty. See d. p. 349.

Curtis Pressure Regulator and Steam Trap. See p. 864 Pedestal tenoner. All kinds woodworking machinery.

Billings' new Hand Vise, with parallel Jaws. Drop We are sole manufacturers of the Fibrous Asbestos Remorable Pipe and Boiler Coverings. We make pure
asbestos roods of all kinds. The Chalmers-Spence Co., 419 and 221 Rast 8th Street, New York.
New Portable \& Stationary Centering Chucks for rapid Conn.
The Improved Hydraulic Jacks, Punches, and Tube Hoisting Engines. D. Frisbie \& Co., New York city. Tight and Slack Barrel Machinery a apecialty. John
Greenwood \& Co., Rochester, N.Y. See illus. adv., p. 2s. Graphite Lubricating Co., Sersey City, N. J. GraphQuints' patent antomatic steam engine governor a Street, New York.

Catarth Cured.
A clergyman, after yoars of surfering from that loath-
some disease, catarrh, and vainly trying every k nown some disease, catarrh, and vainly trying every known
remedy, at last found a prescription which completely cured and saved him from deabh. Any sufferer from this dreadful disease sending a self-addreased stamped
envelope to Prof. J. A. Lawrence, 212 East 9 th St., New envelope to Prof. J. A. Lawrence, 212 East
York, will recelve the recipe free of charge.
Double boring machines. Double splindle shaping
ming
Graphite Bushings．－Put them on all loose palleys． Paptent Rights for Sale．Apparatus for building concrete Bu．See descriptive notice in Sci．Amsrican Mos 2 ， 1 188\％．Send for circular
gomery St．，San Francisco，Cal．
Best belt hooks are Talcott＇s．Providence，R．I．
Send for new and complete catalogue of Scientifi Books for sule by Munn \＆Co．， 861 Broadwas，N．Y．Fre
on application．

HEW BOOKS AND PUBLICATIONS．

Screw Threads and Methods of Pro ducing Them．By Paul N．Hasluck
London ：Crosby，Lockwood \＆Co 1887．Pp． 79.
In this little work，which as regards form is strictly of vest pocket size，is given a practical treatise on this mportant subject，adapted for the mechanic．Dies and die stocks，acrew cutting on lathes with chasers and on engine lather，and cap making are all succinctly and are fity in number Eight tables of Whitworth they other gauges，decimal equivalents，etc．，follow．The other gauges，decimal equivalents，etc．，follow．The
book may be confldently recommended as a true vade mecum to the thinking machinist．
The Presservation of Fish．By J．C．
Ewart．M．D．London ：Charles Grif Ewart．M．D．London ：Charles Grif－
fin \＆Co．1887．New York ：Scribner \＆Welford．Pp．ii， 45 ．
This valuable and interesting little monograph ireats
of the prevention of putrefaction in Ash．The relative of the prevention of putrefaction in fish．The relative rawl or hook，are examined，and conclasions reached a to the best method of catching fish for market．The
general conclasions are in favor of the hook．Some remarkable instances of the disregard fish pay to the
hook are quoted．Codfish are cited that after being hook are quoted．Codish are cited that after being
held for three weeks on a set line seemed as lively and happy after the expiration of the period of cap－ tivity as ever．The great point seoms to be that the his needs to have unimpeded gill ach are aso not to mind the hook．Byron＇s lines about Izaak Walton，

I wish the cruel old coxcomb in his gullet ose mach of their force in the light of the experiences
cited by Mr．Ewart．On the whole，the book may ee recommended to all fishers as of very general in terest and as disclosing a comparitively new line of re search．

HINTS TO CORRRESPONDENTS．			
Names and Addreses must accompany all letters or no attention will be paid thereto．This is for ou information，and not for publication．	above the stream，you can lay the pipe，protected from freezing，from the stream to the highest point．There		
eferencen to former articles or answers should give date of paper and page or number of question．			
spectal Writien Information on matters of personal rather than general interest cannot be			
scientille Amorican Supplomente referred to may be had at the office．Price 10 cents each． ookn referred to promptly supplied on recelpt of price． Wifiernim sent for examination should be distinctly marked or labeled．	keep the siphon free from air．Use the same size pipe as now nsed for the well connection．		
（1）H．P．，Jr．－For browning gun bar－			
ls：Mix 16 parts swect spirits niter， 12 parts saturated			
solution of sulphate of iron， 12 parts chloride of antmony．Bottle and cork the mixture for a day，the			
	ny．Bottle and cork the mixture for a day，then poor quality of the oil ased．Mach of the labricating d 500 parts water，and thoroughly mix．Clean the oil on the market is unft for engine bearings．By mir－		
ns．Wipe the barrel with the staining mixture on a			
wad of cotton．Let it stand for 24 hours，scratch－brush the surface and repeat twice．Rub off the barrel the last time with leather moistened with ollve oil．Let it cant，and probably get rid of your tronble．The crank pin has a slight tendency to wear out of round by the unequal pressure and abrasion from heating			
dry for a day and rub down with a cloth moistened with oil to polish．There is an excellent book on gan work， （18）H．M．M．asks how to sook hominy			
	to give it a snow white appearance．A．Use hominy		
（2）B．H．K．asks addresses of manufac－ rers of traction engines，for which we refer him to e annonncements in onr advertising columns．			
（3）I．P．－Soundings in the Pacific			
Ocean have been made to the depth of from 5,000 to a commou brass blowpipe fixed to the stand or bench， 6,000 fathoms．The deepest sounding known was with a rabber pipe extending down to a tee piece hav－			
aboat $88 / 4$ miles．Iron was used for the sinker；both common honse bellows alternately oparated by the feet， lead and iron sink rapidly to the greatest depths．The or you may make a small holder of an India rubber			
pressure at a depth of 5 miles is 11,000 poands per square inch．			
T．H．writes：I want to fill a cistern			
a force pump，a distance or height of nineteen feet． ch will require most pressure－to fill from the bot－			
Which will require most pressure－to fill from the bot－ tom or top of cistern，and what is the difference：A．			
It takes a trifle less power to fill at the bottom，the difference in pressare per square inch being equal to forty－three one－handredths of a ponnd for each foot of distance between the surface of the water in the tank and the filling spout at the top of the tank．			
（5）W．S．C．asks：What is meant by			
Crank is ahead of the steam when it passes the center before the steam port opens．			
boxes on an iron spindle turned smooth and with a			
slight taper．Paint the spindle with whiting and water and heat to thoroughly dry the whiting before insert－			
ing in the fron box．Cast，and when cold the spindle as you mention．2．Whether there are any coke ovens			
will easily drive out．There are machines for repairing where coke is manufactured for sale without the gas			
valve seats and disks to be had through the machinist supply trade．Make buffing wheels of sole leather．The			
of the iron you have to finish should suggest the			

（7）W．；T．P．－Water gauge glasses hoald not necessarily break oftener after cleaning than cleaning the glasees．Better use a pine otick with a wad of cotton cloth apon the end，not large enough to press the glass，or a string with a wad tied in the mid－ die，so that the wad may be palled both ways．Time
peroxide scale．on iron rods or wire is hard and liable peroxide scale on iron rods or wire is hard and liable
to make minnte scratches apon the inside of the tubes． to make minnte scratches apon the inside of the tabes．
There is always a atrain upon the tnside surface from defective anne
（8）C．M．H．－－To compute the centri－ jugal force of a ds wheel：Divide its velocity in feet
per second by 401 ，also square of quotient by diamerer of circle．This quotient is the centrifagal force，acsum－ ing the weight of the rim as 1 ．Then this quotient multiplied by the weight of the rim in ponnds will give ccuracy the center of the pounds．For approximate oint of measurement．Divime the whole centrifagal orce by the numbers of arms for the force on each arm，or by the area of all the arms in
（9）H．F．B．－The rubber for band saw may also wind the rabber in thin stripe around the may also wind the rabber in thin stripe around the
groove with rubber cement．The rubber shonld be what is called pare gam in the trade．Gam and ce－ ment can be procured throngh the rubber trade．After Hing the end down，the wheel should be placed in a warm place to dry，for a day or two．Leather is some mos used when rubber cannot
（10）I．B．S．writes：In a railway curve seet longer than the of inide rail；now，hould be about 150 comot longer than the inside rail；now，how does the lo travel 150 feet more than the inside drivers when the two driving wheels are compelled to make the same number of revolations？ A ．The wheels slip on the rails，the Blip occurring with the wheels having the least friction as governed by the pall of the engine．As，for in stance，when the engine is pulling hard aronnd a curve the inner wheels slips．When running free with steam shnt off，a siight difference in the condition of the rails may make the slip on either side．When two akee place on all alike．With the standard reilroad gange，the difference in the length of the inner and outer rail on a whole circle curve，great or small，will only be aboat $201 / 9$ feet．Very few carves are greater than $1 / 8$ of a circle，which will make only about 44 inch （11） 0 ．
（11）C．H．P．writes ：I have a well，dis－ cant about 800 feet from a stream of water．The bottom of the well is about 10 feet deeper than the atream；the well is ased to supply a 15 horse power boiler，bat the supply is insufficient．Canl I siphon water from the
strean？If so，how？A．Provided that yon have to make the apex of the siphon more than 28 feet reezing，from the stream to the highest point．There of thel water in the well．Connect the outlet of the de of the pamp．If convenient，place a valve each of the supply．Make all air tight，open the valves and wimp the air out，when the water from the stream eep the siphon free from gir．Use the same alze pipe
as now used tor the well connection． gine to apep it a crum cating when it gets hots bearing is brase against stoel．Also will said bearing解 mixed with the oin．The troabe may be due to the
poor quality of the oil ased．Mach of the labricating the beat lobrical sweet lard oil，you will mach improve your labri－ crank pin has a slight tendency to wear out of round
by the unequal pressure and abrasion from healing． （B）H．ask how to sook hominy都e from white corn only．Boil in a porcelain line （14）G．H．P．－Naph e best lard oil with a wick $\xi / /$ inch in diameter．Use with a rabber pipe extending down to a tee piece hav－ ng rubber valves so arranged as to blow with two or you may make a small holder of an India rubber （15）
（15）L．P．McC．asks ：1．Is there any thing I can apply to the cement coating in my cistern water hard；A．Probably your cistern to coated with water．There is nothing better than a lining of pure Portland cement．Clean and scrape the walls and bot－
tom of the cistern，and plaster with a thin coat of pure
Pa Portiand cement．2．What is the number of asteroids known．We have not the complete list to the present （16）D．P．asks about the wages of any of them receive from $\$ 10$ to $\$ 12$ per day．A．Pud有

TO IIVERTORS
An experience of forty yours，and the preparation of tents at home and abroad，enable us to understand the laws and practioe on both continenta，and to posesess un oqualed faclitiee for procuring patants everywhere． synopsis of the patant laws of the United States and all
forelgn countriee may be had on application，and person contemplating the securing of patenta，either at home o abroad，are invited to write to this office for prices Whioh are low．in accordance win tho h mes ana our $8 x$ tansive facilities for condacting the buainess．Adareend
MUNN \＆CO．，oflice ScIENTITIC AMERICAN，sol Broad－ way，New York．

INDEX OF INVENTIONS
For wheh Lettore Patont of the
United states were Granted
November 29，1887，

AND EACE BEARING THAT DATE

［See note at end of list about copiee of these patents．］
Advertising vehicle．J．F．Nichols．
Antiseptic solution，C．T．Kingrzett．
Anvils，tire appllance
Automatic gate，D．B．Beaty
Automatic gate，D．B．Bea
Ale box，C．H．Bhattuck．
Bedge，pall bear
Bag，J．B．Boyd

Barrel heater，A．Hime．．．．．
Bed bottom，G．S．Lowndes．
Bed pan，C．F．Forshaw．．．
Belting，machine for stretching，G．F．Pare ．． ning．
nor
Binder，temporarr，w．Nash．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Blind，sliding window，R．M．
Blinck．Soe Snatch block．
Blower，fan，W．D．Smith．
Body protector，W．Gray．
Botler．See Steam boiler．
Boller tube cleaner，H．L．Currler．．7．．．．．．．．．．．．．．．．．
nelly
Boot Juck，C．M．L．．．．．．．．．．．．．．．．．．．．
Boot or shoe Insole．J．M．D．
Boots and shoes，manufacture of，Wood \＆Brown Boots or shoes，device for holding，W．W．Watts．． 8 Bottle top，1．Pomeroy．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Knockdown box．Musical box．Telephone call box．
Box loop，M．Lu Hickle．
Brake．\＆ee Carriake brake．Vehicle brake．
Buckle，R．I．Barney．
Buckle．D．L．Bmarth
Buckle，W．J．Walter．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Burner．Soe Vapor burne
Bntton or stud，W．W．W．Covell
caloric engine，D．I．E．crerson ．．．．．．．
Calortic engine，G．M．\＆I．N．Hopkins
Can stopper，nutomatic，w．H．Thayer
Car brake and starter．E．．．．．．．．．．．．．．．．．
Car couppling，Kirby J ．C．Heed
Car coupling．F．Roop．
Car coapling，Rundell \＆Do
Car coupling，B．A．Young．
Car，dumpling，T．Rodger．．
Car heater，J．Tyler．．．．．．．
Rowe．．．．．．．．．．．．．．．．．．．．．．．．．
Car motor，street，A．L．Rich．．．．．．．．．．．．．
Car stater and brake，C．Merckelbagh．．
Gars，plpe coupling for heating rallway，w．F．

Cars，ventliating apparatus for rallwas，G．Leve．
card shuming apparatus，Tungley \＆sto
Carriage brake，child＇s，J．H．Petereon．．．
carrier．See Mail，paroel，or cash carrier．Parcel
carrier．Parcel or ca
Case．See Butter cass．
Cash box，B．C．Foster．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Casket handle，W．H．Blackford．．．．．．．．．．．．
Chment，manufactur．
haln and chain making，J．A．Je\＃trey．
Crcult opener，antomatic，J．P．Tirreil．
Circular shears for cuttug shells and tabes，B．
Gruhl ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Gruh
leaner．See Boller tube cleaner．Feed water
cleaner． lock winding mechanism，A．E．Hall．

Coat hanger，W．B．Bisbee．．．．
oqual wear of leathers of drawing－off roller
of，Green wood \＆Farrar．．．
Conduit or hose，J．Shackleto
Cord or rope，F．M．Beck ford
corksorew， $\mathbf{\text { E．D．Willia }}$
Cottor plns，machine for inishinge，J．Adt．．．．．．．．．．．．
Coapling．See Car coupling．Hose conplling．
rimping machine，J．Phillips
Cushing and puverizing mill，F．M．Davis．．．．．．．．．．．．
ultivator tooth，H．C．Pratt．．．．．
Cultivator，vineyard，H．B．Reed

Doung machine，A．Galbraith．
ovetaling machine，E．Totman

 The most Complete and Valuokbe Treatise in the
Enolish Lanowage.
 and Oils, and Lubricants, etc.

 Indastrial Prblibhors, Booksollors, and Inporters,
810 Wninut St. Philindelphia, Pa.. U. S. A. Eotablished by EDWARD L. YOUMANS. THE Popular Science

Monthly. | EDITEDD BY W. J. YOCMANS. |
| :--- |
| $\begin{array}{l}\text { Ls alled with scientific articles by well known writers on } \\ \text { subjects of popalar and practical intereat. Itt range of } \\ \text { toptes, which is widening with the advance of science, }\end{array}$ | comprises: Domestic and Boclal Economy ; Political Sclence, or the Functions of Government; Pyschology

and Reducution; Helations of Secence and Relligion
Con Conditions of Health and Prevention of Disease; Art Agriculture and Food Proctucts; Natural History ; Exploration; Discoverr, etc.
In volume XXXII, whict
November, 1887, Profesor Jegins with the number for the Relations of Evolution and Religion, and the Hon. David \boldsymbol{A}. Wells will continne his valuable papers on Re
cent Economlc Disturbances. The volumes will also cent Economle Disturbances. The Volume will also
contain illustrated articles on Astronomy, contain illustrated articles on Astronomy, Geography
Anthrepol Jgy. Natural History, and the Applications of sclence; and will be enriehed with contributions by Professars J. S. Newberry. F. W. Clarke. N. S. Shaler,
Mr. Grant Allen, Mr. Appleton Morgan, and other disMr. Grant Allen, Mr
tinguished writers.
It contains lllustrated Articles, Portraite, Blographica sketches: records the advance made in every branch of
science; is not technical; and is intended for non-sci entific as well as sclentific readers.
No magazine in the world conta
No magazine in the world contains papers of a more

```
D. APPLETON & CO.,
```

1, 3 \& 5 bont strient, NEW YORK.
Single Number 50 centa.
Yearly Subacription, 85.00. "The Electrical World." THE PIONEER Weekiy Electrical Joarnal of
America. Edited by experts. Noted for expla!ning
Blectrical Princtples, New Inventions, etc., in simple and reasy langnase, free from technicalities. Able original articlea, handsomely and copionsiy
illustrated. All the news and progress in Telegraphy. Telephony, Electric Lighting, the Electric Motor, Btorage Batteries, etc. First and fallest descriptions, with cuts, of new. electrical inven-
tions. Cheapest and largest circulating journal of its tlons. Cheapest and largest circulating journal of its
class in the world. Indispensable to all interested in electrical unatters. Weekly; 28 pages; size
of Scientipic Ambrican. Subscription 83 a year Your subeeription is Solicited.
free. Wample copies mailed
W. JOHNSTON, Publisher, Potter

NEWSPAPER FILE

 MUNN \& CO.,
CONSUMPTION ,throwtend bromehan A hite discovery. sample bottles froe with treatise contatining

\%

HARRISON CONVEYOR!

Handing Grain, Coal, Sand, Clay, Tan Birk, Cinders, Ores, Seeds, \&C.

C.T.MILLICAN, 729 ChestnutSt., Philada.Pa

FIRE-BRICK.-BY R. A. COOK, A.M

carreris gas meain.

Williams \& Orton Mfg. Co.
P. O. Box 148. STERLING, ILL.

WEITMYER PATENT FURNACE IDE Automatic Engines, Traction and Portable Engines
 Foundry and Machine Department
Harrisburg Pa., U. S. A.

HITTINGS for STEAM, GAS \& WATER CAPILILAKY TUBES, SPONTANEOUS

New Catalogue of Valuable Papers

Telegraph and Electrical

Yedical SUPPIIES

100 PER PROFIT \& SAMMPLES FRER

CURE DEAF,
 (mu

\section*{PULLEYS, HANGERS,

FRICTION CLUTCHES.

 COCOAINE.-DESCRIPTION OF DR.J.
 THE A MONTH a and expenses paid any
 A- COLEMAN NAT'L BUSINESS

 HOW TO MAKE AN INCUBATOR.-

aram

HOME MANAGEMENT
 and economical arrangement of every department. An
every-day book for the careful housewife. 998 pages,
with 230 illustrations. Price $\$ 3.00$, express prepaid. De-every-day book for the careful housewife. 998 pages,
with 230
scriptive circuations. Pro Pree 3 ...00, express prepaid. De-

VALUABLE BOOKS hollday Presents.

Amertenn Mechanical Dirtionary, ${ }^{-1}$ Descrip-

$\underset{\substack{\text { com } \\ \text { renn } \\ \text { min }}}{ }$
er

 Quentionn nt A Answeru for kncinero. Contang

 Second series. -Industrial Chemistro Cemerts and

 Fourth Series. - Waterprooang, Packigg ano sioriva ing, Ar afi water, Prmpt and siphons, iesicicat-

 MUNN \mathbb{C} C Co., 361 Brondway, Ne:: york.

CATARRH poidroly cared bot the great Germar

2hovertisements.

USEFLL BOOKS.
 Manufacturers, Agriculturiste, Chemists, Engineers, Me chanics, Bullders, men of leisure, and profensional men, of all classess, need good books in the line of their respective callings. Our post office depurtment permits the transmission of books through the malls at very small cost. A comprehensive catalogue or nseful books by different authors, on more than ifty different subjects, has recently been published for free circulation at the office of this paper. Subjeots claselfed with names of author. Persons deeiring tothom. Address, 381 Broadway, New York. MUNN \& CO., 361 .

Steam! Steam!
We bulld Automatic Enpines from 2 to $\mathbf{8 0 0}$ H. P. A Large Lot of 2, 8 and 4.H. Engines Fith or without bollers, low for eash B. W. PAYNE \& 80NS, Box 15,

Elmira, N. エ.

8 AWS Wambed souw sumyers nod SAW 8

PATENTS.

Stientific Ammeritan

...FOR 1888. \%
The Most Popular Scientific Paper in the World. ESTABLISEED 1845.

Circulation Larger than all Papers of its Class Combined.
Only $\$ 3.00$ a Year, including postago to United States and Canada. $\$ 4.00$ a year, including postage to all countrion in the Postal Union.

This widely eirculated and splendidly il-
ustrated paper ispublished weekly. Every numbe contains sixteen pagee of weekul. information and
arge
aster large number of original engravings or new in-
ventions and discoveries, representing Engineering
Works, stean Machinery New Inventions, Novelies in Mechanics, Manufactures, Chemistry, Elec-
tricity, Telegraphy, Photography Architecture.
Agriculture, Horticulture, Natural History, etc. A11 Classes of Readers find in THE SCIEN-
TIFIC AMERIOAN a popular resume of the best
scientific information of the day; and it is the aira
 form, avoiding as much as possiole abstruse torms.
To every intelligent mind this journal afford a
constant supply of instructive reading. It is pro-
motive of knowledge and progrefs in every com-

 States or
by the pu
The arrest Way to remit is by Postal Order nside of envelopes seeurely sealed. and correctly nside of envelopes, securely sealed. and correctly
addreased seldom goes astray, but is at the sendonstant supply of instructive reading It is pro-MUNN \& CQ., 861 Broadway, Now York

\&nientifit ©

This is a diatinct paper from Thes Sciren-

 every number containing 18 octavo pager. ThiSCIRNTIFIC AMERICAI SUPPLEMENT embraces a very wide range of contents, covering the most
recent and vanable contributions in Science Mechanics, Architecture, and Engineering from
every part of the world. Every number contains every part of the world. Every number contains ant engineering works, in progress or completed
both at home and abroad. It presents the most both at home ment of science, and every number contains infor-
mation useful to engineers in every departmentof mation useful to engineers in every depart.
industry, civil, mechanical, electrical, etc.
Tramslations from French, German, and other foreign journals, accompanied with Mustra
thons of Grand Engineering Works; also of Nava tions of Grand Engineering Works; also of Nava
and Mechanical constructions of magnitude, pro jected, progressing, and completed, at home and in all countries abroad
The mont important papera read at scien
tifc Conventions by the best and most profound
thinkers, will be found in Tre screstrest Anen

$\$ 2.50$ a Year. Single Copies, 25 Cents.

 month. Each numbor contains about forty large
quarto pages, equal to about two hundred ordinary quak pages, forming, practically, a large and spendid Magazine of A rchitrcture, richly
adorned with eleoant plate in colore and with fine engravings; jllustrating the most interesting ex-
amples of modern Architectural Construction and A special feature is the presentation in asch
number of a varlety or the latest and best plan for number of a variety of the latest and best plans for
private reaidences, city and country. including
those of very moderate cost as well as the more ex pensive. Drawings in perspective and in color are iven, together with full Plans, Specifications,
Cots, Bills of EEtimate, and Sheets of Detalis.
Notaner building paper contains so many plat
 the various plangs we have areasy lisued during the pant
year, and many others are in process of construcgestions. All who contemplate building or in
proving homes, or erecting structures of a ind, have berore them in this work an of almost
endices series of the latest and best oxamples from which to make selections, thus saving time and
money.
money, other subjects, including Sewerage, Piping, Lighting, Warming. Ventilating Decorath, LLaying out of Grounds, etc, are illustrated. An ex-
tensile Compendium of Manufacturers' Announceensive Compendium or Manufacturers An in which the most reliable
ments is also given in
and improved building Materials, Goods, Machines and improved building Materials, Goods, Machines,
Tools, and Appliances are deacribed and illustra-
ted, with addresses of the makers, etc. The fullneess, richness, cheapness, and conve
nience of this work have won for it the Largest nience of this work have whitectural publication in
Circulation of any Arohithe world. TTe subecription price of this publica
then
 Anmrican and Architect and Builders Edition to
the same address $\$ 5$ Single numbers mailed, 25
cents. For sale and subbcriptions received by all news dealers. Addrees
tion.
Architects, Builders, and Owners will find this
work valuable in furnishing fresh and useful sug-
IUNN \& CO., Publishers,
381 Broadway, New York

Mancuion tris pape.
JHNRINE BROE, TATVME,

 SHAFTING DEPARTMENT Couplings, Hangers, Shafting, Pulleys. EDISON MACHINE WORKS.

 GASENGINGES

 ECONOMIC GAS ENGINE COMPANY,

 95 MILK ST. BOSTON, MASS.

This Company owns the Letters Patent granted to Alezander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electris. Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequence thereof, and liable to suit therefor.

H. W. JOHNS

COVERINGS

For Furneces, Hot-Air Pipes, eto FIRE-PROOF. MON-CONDUCTINE. 33% of Yuel seved. Has no Odor. All of the heat is carried to points desirod and
not wetod in collars and fluee.
H. W. JOHNS M'F'G CO.

87 MAIDEN LANE,
NEW YORK,

MIREROPE

 VELOCITY OF ICE BOATS. A COLLEC. Hen of interesting letters to the edito. of the SCINNTIFIC

WAGIC LANTERNS

 RAILS FOR STREET RAILROADS.-
 T TOOLS. FOT POWEPR

 J. Wilikismon Co. GOLD MINING MACHINERY. - DE-

RESERVOIR DAMS.-A PAPER BY

 SED AND RECOMMENDED by Mkigsonirg, KActi-
BACH. VON PILOTY, GAB. MAx, and the moat emineut artists throughout the worla. 'The Johann Faber Siberian Lead Pencils. None genuine unless stamped Johan Fa BER, For
by all stationery and dealera in Artista' Materials. QUEEN \& CO., PHILADELPHIA,

LEAD SMELTING.-A FULL DESCRIP-

 CHANDLER \& FARQUHAR
177 Washington St. 177 Washington St. BOsTON.
New England Agents for
BARNES' FOOI POWER MACHINERY
Machisista' Supplies of Brory Fiad Send two stamps for illus. cetaligne PH OTO-E N GRAVING PROCESSIRS

PRINTING INTE:

