AIETAMDER AGAssty
 by marcue berjamin.

Men of genius have seldom been fortunate in their offspring. Neither Cesar nor Shakespeare left children to perpetuate their fame. In the annals of American science there are remarkable exceptions to this rule. John W. Draper was fortunate in having three sons who suceeeded to his name, and each of whom distinguished himself in some branch of scientific thought. The elder Silliman gave place to his son of almost equal renown. James D. Dana, referred to in a recent issue of the SCIENTIFIC American; has an able successor in his son, Edward S. Dena, who at present is following in the footsteps of his illustrious genior. In Alexander Agassiz we have also a great son descended from a distinguished father-not great by reflected light, but great in comparison, great in his own individuadity. It has been well said of him that he is "the best authority in the world on certain forms of marine life."

The little city of Neachatel, once the stronghold of princes, is picturesquely situated on the side of one of the Jura mountains and along the shores of the lake of the same name, in whose waters lies hidden the history of a prehistoric: peaple; who are known only through the fragmentary remains that occasionally come to us through the lacustrine finds Peace and quiet are now the characteristies of the Neuchatelois, within whose territory there once occurred some of the greatest battles of Charles the Bold, Duke of Burgundy. . There comes but little in these modern days to disturb the watch making of this industrious people. Across the lake, stretched in a long row, are the whitereapped Alps, beginning with Mont Blame on the extreme right, and ending wich the famous peaks of the Bernese Oberlapd on the left. To a chance traveler sated on the veranda of some country seat on the side of the mountain, sipping his eau sucrée or, better still, the famnous red wine of the canton, he can see, when the day is clear, across the fertile Pays du Vand, the great mountains as they. glisten in the sunlight, and fancy that he can hear the running water trickling down their sides to reach the mighty Rhone, which flows on its way through France to the Mediterranean, or,to s well-the current of the rapid•Aar, that adds its stream to increase the historic Rhine-just before it leaves Switzerland. Perhaps later, if the scene teinpts him, he will observe a bright speck of light eoming over the mountains, which, from its brilliancy, would lead him to fancy that some forest fire had broken out on the Alps, till soon the lurid, red harvest moon comes up in all its glory.
To this little city, in 1832, came Louis Agassiz, to fll the professorship of natural science in its college. Here, with Guyot, Lesquereax, Desor, and others known in the history of American science, he founded the scientific society of that town, and here, on December 17, 1885, his son Alexander was born. On a narrow street bear the Palais Rougement, and not far from the lake, on the Rue des Orangers, there is pointed out the residence of Agassir, and I wonder was it there that the son wias born.

In Getober, 1833, Louis Agassiz was married to Cecile Brawn, the sister of his college friend, Alexander Braun, later the distinguished botanist and philosopher, and of Maxímilian Braun, mining engineer and chief director of the largest zinc mine in Europe, La Vieille Montagne.
Arnold: Guyot says of her that she " was a noble minded young woman, of rare moral excellence. A dignified serenity, tempered by much gentleness and simplicity of manner, won for her at once respect and affection. Her deeper feelings were ofter veiled by a natural reserve, which, however, never assumed the appearance of coldness. Her talent for drawing was of the first order, and she was fond of placing it at the disposal of her favorite brother, Alexander. The drawings of natural objects which she executed forhim, and later for Agassiz, commanded the admiration of all by their taste and exquisite correetness.'
That her son would know how to draw, and would

C.EE HATIONAL ACADEYY OF SCRERCE

distinguished-rector of Trinity Church, Bowton. A col lege sketch of him says
"His classmates testify that his ability with the brush and pencil was often put to excellent uses daring his college life; " and "he also inherited his father's won derful persistence in accurate study and research."
On leaving college, he determined to study for a profession, and choosing that of civil engineering, he entered the Lawrence Scientific School of Harvard, where he was graduated in 1857; with the degree of B.S. He then spent three terms in the chemical department and during the same time was engaged as one of the teachers in Prof. Agassiz's school for young ladies.
In March, 1859, he went to California.' where he was appointed an assistant on the United States Coast Survey, being assigned to work on the vorthwestern boundary. After the beginning of the rainy season, he returned to San Francisco, and on the completion of the office work, resigned from the survey. His skill with the pencil was brought into service at this time by drawing specimens of the fish caught along the boundary. He also began to collect specimens for his father, and showed himself an adept in their study and preservation. The greater part of the winter of 1859-60 was spent at Panama and 'Acapulco, colleeting specimens for the Museum of Comparative Zoology at Cambridge. In the spring he again returned to San Francisco, where he was still ocoupied in obtaining specimens and in studying fishes, of which he made remarkably fine drawings. Later, he visited the in terior of the State and examined the principal mines.

In July, 1860, he returned to Cambridge, and was made agent of the museain. After a full course of study in the zoological and geological departments of the Lawrence Scientific School, he was appointed assistant in zoology, and during the absence of his father in Brazil, in 1865, had entire charge of the museum. Subsequently, during the same year, he beoame engaged in coal mining in Pennsylvania, in addition to his appointment in Cambridge.
In 1860 he went to Lake Superior, and became connected with the Caluinet mine, as treasurer. Soon after he was engaged in the development of the adjoining Hecla mine, becoming, in 1807, experintendent of the combined properties. For two and a half years he worked on an average of fourteen and a half hours a day, and in 1869 returned to Boston as the president of the Calumet and Hecla Mining Company, at present the owners of the largest and richest copper deposits in the world. In the develop ment of this great mining property, Mr. Agassiz showed unusual ability as a mining engineer, solving difficulties in this field without precedent.
The mines have become exceedingly valuable, and great wealth has been the reward of his activity. Edwin H. Abbot, one of his classmates, writes in this connection that "the development of the Calumet and Hecla mines, which supply annually onetenth of all the copper used in the civilized world, and coutrol the American market, is more the result of his scientific and executive ability than of any other one thing. Its plant of machinery alone has cost over $\$ 3,000,000$. It has been devised and created under his direct sapervision, and has rendered these mines second to none in the world. For most men this mining achievement would alone be a life work, and glory enough to make its author fanous. To Agassiz, however, it is merely an incident in a scientific life which has already placed him in the front rank of natural scientists." In the autumn of 1869 he went abroad and examined the museums and collections of England, France, Germany, Italy, and Northern Europe. A year later he returned to Cambridge, and became assistant curator of the museum, which office he retained antil the death of Professor Agassiz, in 1874, when he was selected to succeed him as curator. A contemporary scientific journal comments on this event as follows: "It is rare that the mantle of the father sits worthily on the son. Especially is this true when the father has been signally eminent in pure science. Happily indeed is it for America, and for biological science, that the vast plans of the late Agassir are to be continued, as far as possible, on the grand scale upon which his great mind projected them." *. He has since retained the executive office of the museum, and during 1887 was engaged in making extensive repairs and alterations in the building. Mr. Agassiz has been a most liberal benefactor to the museum. President Charles W. Eliot said, \dagger in 1880, that since 1871 he had given no less than $\$ 230,000$ to a single department of the university. He has a peculiar way of giving. If he sees a need in one of the departments of the university, he goes and supplies it, pays the bill, and says nothing more about the transaction. He thinks this department needs more room. At once be contracts for a building, and erects it on the land of the president and fellows, without even communicating the fact that he proposes to erect such a building. His donations in all to Harvard University have mounted to upward of $\$ 500,000$. He was elected by the alumni one of the overseers of Harvard in 1874, and chosen by the corporation to be one of its fellows in 1878, but in 1885 failing health compelled his resifnation.

In 1873, he becane connected with the direction of the Anderson School of Natural History, on Penikese Island, and subsequent to his father's death conducted that enterprise, but differences between himself and Mr. Anderson led to the closing of the school.
(Continusd on page 389.)

- Popular Bcionco Monthly, March, 1874.

Harvard Clab dinner, New York, Pebruary 90, 2890

HETABLIEHED 1846.
MUNN \& CO., Editors and Proprietors. PUBLISHED WERELY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACR.

TERMS FOR THE SCIENTIFIC AMEHICAN

 One copy, one jear. for the U. S. or Canada.. One copy, one year, to any forelen country bela Remit by postal or express money orderAustralia and New Zealand.-Those who desire to recelve the scientipic American for a ilttle ozer one yoer, may remil el in current onial bank notes. Address
MUNN \& CO., 3 al Broadway, corner of Franklin Btreet, New York. Tho seiontife American supplement a alistinct paper from the Scirntipic AmRBICAN. THE SUPPLEMENT IIth Scientific American. Terms of subseription for Supplement With scientipic American. Terms of subecription for suppliment
i6.00 a jear, for U. S. and Canadu. sc.00 a joar to foreign countries belong Ing to the Postal Unlon. Single coples, 10 cents. Bold by all newsdealers hroughout the country
Combliod Ratos.-The Scirntipic Amirican and suppliment voom dollar. The sufest
Anetralia aud New Zealand.-The Scientipic Ambrican and SUPPLEMKNT will be sent for a little over one year on recelpt of \&i cur ent Colonial bank notes.

Sclontific Amorican Export Edition.

The Scientific American Export Edilion is a large and aplendid pertdical, issued onoe a month. Kach number contains gbont one hundre inrse quarto pasea, profusely illustrated, embracing: (1) Moat of the platee
and paxus of the four preceding weekly iseues of the Scrintiric Amiri CaN. with ith splendid engracings and raluable information. (3) Com-
merctal, trade, and manufacturig anouncemente of leuding houes. mercini, trade, and manufacturing announcemente of leuding houses. Terms for Export Elestion. 85.00 a year, sent prepald to any part of the
world. Sinkle coples, 50 cents. te' Manufacturers and othera who deaire to secure foreign trade may have large and handsomely dite
Addrese MUNN \& CO., 381 Broadway, corner of Franklin Street. New York:
NEW YORK, SATURDAY, JUNE 18, 1887.

Contente.
(Illustrated articies are marked with an asteriak.)

table of contents of

SCIENTIFIC AMERICAN SUPPLEMENT

INO. 588

For the Weok Endiug June 18, 1887
Price 10 centa. For sale by all newedealers.

III.

V. MINRRALOSY.-Preclous Stones of the Untiod States.-A rerlew

 II RAVAI KNGINERRING. Some Rocent High Spoed Twin

 Ix. PHysics-Colors of Thin Pinteen-Report of a recent lecture by

cofiti Amd tra adulteration.

An enterprising daily paper, anxious to learn some thing of the extent and nature of that general adulteration of tea and coffee which has so often been alleged, recently caused several hundred samples of these to be gathered from various retail stores throughout the city of New York, and turned the same over to a chemist for analysis. The results as published would indicate that sophistication of these products is so rare as to scarcely deserve mention, and might, as a natural consequence, be looked to to prove that the charges so frequently made may not be sustained.
This particular examination is valuable in its way but it does not go far enough. It has not by any means proved that tea and coffee do not suffer very generally hereabout from adulteration. It only proves that pure coffee and tea may readily be had, if ouly oue asks for and shows a disposition to pay for them, and perhaps it is not too much to add that all this was generally known before.
Those who collected the samples for the recent test were instructed to ask for $p u r e$ coffee and pure tea, and were supplied with money to pay for these articles. But let us suppose that they contented themselves with purchasing samples of these articles which were lacarded before their eyes, "Pare Java Coffee" and "Pure Tea," at ridiculously low prices. How would hese have stood the test?
It is a custom, now become quite general in New York and elsewhere, to give away china and other wares to the parchaser of a certain specified number of pounds of tea or coffee, some stores giving tickets with each pound sold, which tickets, when enough are in hand, entitle the owner to various descriptions of presents. Now, any one who has the time and the inclination to look (and he needn't go very far) may find the brands of teas and coffees which fetch, say, 40 and 80 cents a pound at wholesale marked at 30 and 70 cents respectively, with the prowise of an ultimate present thrown in to tempt the buyer. It doesn't require the services of a chemist to discover how this is done. The coffee is adulterated, and the tea blended with those of inferior quality. It would be interesting to know just how much chiccory the purchaser of low price ground coffees gets, and how much roasted hardtack and rye and peas. Chiceory is generally thought to improve the flavor of coffee, and the average consumer is willing to have his coffee thus "improved" to the extent of, say, 5 per cent ; but there is reason to believe that when he pays a very low figure, and gets a share in a set of crockery besides, that 40 per cent of chicoory, at least, is added to his coffee. Even then the per cent of chiccory is not greater than that which the French and Germans are wont to use.

the celebtial worid.

the paris astronomical congress.
An epoch has occurred in the history of astronomy in the meeting in Paris of the great international congress, called together by the French government. The object of the weuting was to confer on the best methods for obtaining a photographic chart of the heavens. The place of meeting was the Observatory of Paris. The conference continued from the 14th to the 25th of April.
Astronomers of note from all parts of the civilized world were present on the occasion. Among the foreign astronomers were: Struve, of Pulkowa; Christie, of Greenwich: Tacchini, of Rome ; Gill, of Cape Town: Weiss, of Vienna; Beuf, of La Plata; Cruls, of Rio de Janeiro; Peters, of Clinton ; and many others of equal distinction. The French astronomers were, of course, present to take part in the proceedings.
The French government, the Academy of Sciences, and M. Mouchez, the director of the Paris Observatory, made every possible effort to promote the object of the meeting, and provide for the entertainment of the guests comprising the various nationalities
M. Flourens, the Minister of Foreign Affairs, made the opening address, welcoming the delegates and summing up the object of the meeting.
M. Mouchez took the initiative, as was his due, for it was mainly through bis exertions that the conference was inaugurated. Entire unanimity prevailed during the sessions, which were exclusively devoted to the special purpose for which the congress assembled. The unparalleled success attending the experiments in celestial photography made by the Messrs. Henry, of the Paris Observatory, was the inspiration of the movement, and led to the assembling of the congress. Its main object was to discover the most desirable plan for photographing the entire heavens, and thas form a complete chart of the starlit sky as now seen by the inhabitants of the earth. The principal topics discussed were concerning the best kind of apparatus to be used, the most desirable dimensions for the telescopes, the number of magnitudes of stars to be included in the photographic maps, and the number of observatories to take part in the work.
The principal results are embodied in the following esolutions:

1. That the success already attained by astronomical
photography makes it inperative that a chart of the ontire heavens shall be prepared by the combined efforts of a number of observatories.
2. That refracting telescopes shall be used for the purpose, having an objective of 18.88 inches and a foca distance of 11.25 feet, like those constructed by the Messrs. Henry and now in use at the observatory in Paris.
3. Stars of the 14th magnitude will constitute the ex treme liwit of those to be photographed. There will be two series of photographic plates, the one compris ing all the stars down to the 14th magnitude, the othe including only those as far down as the 11th magni tude. The different magnitudes will be determined by the scale used in France.
4. A uniform formula will be adopted for the prepa ration of the plates to obtain an equal sensitiveness fo all that are used. The measures of the photographic images will be made with an apparatus capable of giv ing at the same time the co-ordinates in right ascension and declination. Great distances will be measured on a determined scale, and smaller distances, down to 0.038 of an inch, will be calculated by the micrometer of the microscope.
The work of photographing the heavens will be divided among a great number of observatories. It is expected that portions of the work will be undertaken by at least twelve American, nearly as many French, two or three British, and as many Germany observa tories, while Russia, Italy, and Anstria will not be behind their compeers. The arrangements are by no means perfected. At the close of the congress only two directors of observatories-Cruls, of Rio de Janeiro and Beuf, of La Plata-had received the necessary in structions from their respective governuents to engage in the work. The directors of four other observatorie -those of Paris, Algiers, Bordeaux, and Toulouse-had signified their readiness to take part of the burden on their shoulders. The other directors were ready and willing, but are waiting for the permission of their re pective governments and the appropriation of necessary funds.
The stars of the first fourteen magnitudes number nore than $40,000,000$. The time required to impress stars of different magnitudes upon the photographic plate varies greatly. A star of the first maguitude can be photographed in one two-hundredth of a second. A star of the sixth magnitude, the smallest visible to the naked eye, requires half a second, while an exposure of hirteen minutes is necessary for a star of the foureenth magnitude.
Some faint idea may thus be formed of the unarvel ous undertaking which will soon take form in a photographic chart of the entire heavens. When the work is completed, every star now visible to the human eye and nearly every star revealed in the most powerful telescopes now existing, will hold its fitting place on the mperishable record, which will be a facsimile of the sky, with its $40,000,000$ stars as they appear to the observers of the present time. How inestimable is the value of the gift thus made by the astronomy of the present to the astronomy of the future! How carefully it will be scanned, how dearly it will be prized, by the men of science who follow in our steps as the basis for the solution of the general constitution of the siderea universe, the key that reveals the secret of the changes that take place among the star depths !

A Now Apple Peat.

THE APPLE LEAF flen BEGTLE (Haltica punctipennis, LE CONTE).
As long ago as 1872 I found the larvm of a little flea beetle known as Haltica punctipennis in Missouri leeding upon hawthorn. In 1877 I found it again in Colorado, but the species has never been considered in jurious until the present year. This spring, however, it has appeared in great numbers in the vicinity of Dallas, Tex., and of Gainesville, Tex. Mr. J. R. John son, of Dallas, writes that they appeared in great nam bers about the first week in May, and that within two or three days thereafter they had destroyed his entire lot of apple and pear grafts. They then removed to his one and two year old apple trees. Mr. Johnson had never been troubled with them before, althougb he remembers to bave seen them in limited numbers in 1883 upon his young apples.
The habits and general appearance of this new apple pest are quite similar to those of the grapevine fles beetle (H. chalybea). The larva is rather slender, dark yellow-brown in color, with darker head, and pro thoracic shield, and each segment bears four transverse dorsal warts. The legs are black, and project out at the sides of the thorax.
The adult beetle is shining green rather that steel blue, and is distinguished from the grapevine flea bee tle by its smaller size and by the numerous minute im pressed dots on its thorax and wing covers.
This insent, although exciting considerable alarm, will easily be subdued by arsenical poisons, the use of which is well understood in Texas. Mr. Johnson has already applied Paris green in its dry form with good results.-Prof. C. V. Riley.

PHOTOGRAPHC HOTRA

Stripping Bromide Prints.-Hand polished rabber ou which bromide prints are squeegeed for the purpose of imparting a high gloss when dry, we have found to becone dulled on the surface by continued use, which prevents the stripping or pulling of the prints as readily and quickly as formerly. The washing water was at a tewperature of 64°, yet notwithstanding this advantage, there appeared to be something in the softness of the gelatine surface on the paper or in the rabber plate, or the moist condition of the atmosphere, which made the paper adhere too firmly.
The difficulty was quickly overcome by adding to the hypo bath, which we mixed fresh every day, about onethird its quantity of powdered alum, or in the followng proportion

Hypo.

Water... 6 ounces.
The hypo is dissolved first, then the alum. A milky solution results, which will not deteriorate by one day's use. It is better to use the solution fresh. The white portions of the prints in this bath keep remarkably lear and we think it is not necessary to use the acidu lated water after development as recommended.
After the prints are squeegeed face downward on be rubber plate, and the surface water on the back dried off with blotting paper, the print may bedried in a draught of warm air very quickly-from 10 to 20 minutes-and then be easily palled or stripped from the rubber.
Before the use of the mired bath, from 40 minutes to an hour and a half was required.
Col. Russell.-With sincere sorrow do we learn of the death of Colonel Russell, so well known to photographers of a former period as Major Russell. The sad event took place on the 16 th of May last.
The British Journal of Photography says: Photo graphers are more deeply indebted to Colonel Russel than many of them are aware. Quite apart from the able and skillful investigations he made in connection with the tannin process, and in preservative processes in general, and of the action of bromide of silver, he has made photographers his debtors for ever by giving them the alkaline developer and making them acquainted with the influence of bromide in the developer. He was a prolific contributor to photographic literature in former times, but during the last fourteen or fifteen years had resumed the more congenial life of a country gentleman of independent means on his estate of Stubbers, Essex.
He was born in 1820, and was a scion of a family settled in Essex for over two hundred years. His family name of Branfll-a naine, we are pleased to say, not noknown in the photographic literature of the present time-was changed to that of Russell in obedience to the provisions of a will of the last of a neighboring and nearly related branch of the Russell family.
He made many discoveries in photography, into which field he entered in 1856. It was in 1862 that he first published, in these pages, what has been termed "a matured and practical method of alkaline development," based on phenomena observed by Mr. Borda, f America, connected with the exposure of tannin plates to the vapor of annonia.

Coloring Rubber Fabrica.

A recent action for infringement of a patent has drawn attention to the practicability of improving the manufacture of rubber or waterproof fabrics by printing upon them patterns or ornamental designs-an art that has been carried out successfully only during the last two or three years. Every one is familiar with the nacintosh, and though it would perhaps be of little advantage if colored patterns could be readily printed on that, there are many articles made in rubber, both pure and vulcanized, which can be vastly improved in appearance by the addition of a little color or a patterh of some kind worked in the fabric. More than twenty years ago, attempts were made to print apon rubber fabrics, just as calico is ornamented with de signs ; but the colors were not fast, and the designs were not clear. A certain measure of success was at tained when a fabric with a pattern already printed on it was coated with clear rubber, and a more satisfactory article was, perhaps, produced when some one hit upon the idea of placing the waterproofing between two pieees of fabric on one or both of which the pattern or design was printed. These latter productions were rather expensive, were, moreover, too heavy ; but toward the end of 1883 a Mr. Moseley, of Manchester, obtained a patent for a method of producing ornamental designs on rubber waterproof goods which cems to have been so useful that it was soon infringed. In Moseley's process the fabric is rendered waterproof by one or more coatings of rubber, which may be colored or not as desired, and it is then covered with a filin of farina, on which it is possible to print in colors by methods similar to those adopted by the calico printers. According to Sir H. Roscoe, the farina prevents the pattern from "running," while it readily takes the color, and is, in short, the secret of the success of the invention. When the farina is applied to the
rubbsr-coated surfaces it adheres readily, and after a slight vulcanization is found to be firmly fixed; but if the vulcanization has been carried too far, or been per formed too rapidly, the farina is easily rubbed off, and of course takes with.it the colors of the pattern. Mr. A. Parkes, who invented cold vulcanization about 1846 thinks that water colors applied to an India rubber coated fabric covered with farina will always remai "fast," provided the valcanization is completed; and it appears from experiments that water colors printed on rubber coated with farina are faster than those printed on a surface without farina, and that if the colors are dissolved in media which act on the rubber, they be come still more " fast." The use of the farina is indeed the foundation of the process, for it combines readily with the rubber, and the colors fix well on the farina, the success of the patentee's process being due to the fact that the printing of the design is done on the farina and not on the rubber. The infringers had to send the prepared fabric away from their works to be printed, and accordingly they partially vulcanized it before sending it away, in order that the farina might not be rubbed off. The designs are printed in water colors and subsequently a thin film of clear rubber is spread over, farina is dusted on, and the fabric is passed through rollers, which give the complete vulcanization Dr. Burghardt, who made a microscopical examina tion of the infringer's product, agreed with Sir H Roscoes as to the absorbent action of the farina. It does not make the colors absolutely fast; but it has a very "fixing" effect on them, really inclosing the dye and acting much like a mordant. The case was settled in the plaintiff's favor, the validity of the patent being fully established. The attention drawn to the process by the action will probably lead to its more extended utilization, for vulcanized rubber in certain conditions has a very long life, and if it can be ornamented with designs of a durable character, the extra cost will not prevent its adoption for many purposes.-Eing. Me chanic.

The Brake Triale.

The series of brilliant trials just concluded at Bur lington, Iowa, has especial interest as an exhibition of the development of the train brake, and it mark a long step in the application of continuous brakes. It is eight years since the remarkable experiments of Mr. Westinghouse and Captain Douglas Galton put the problem of continuous brakes on a scientific basis. It is only five years since Edison patented his electric train brake, which consisted of a disk attached to a car axle and revolving within the fleld of a big horse shoe magnet, and intended to arrest the train by the magnetic resistance encountered when the circuit was closed. It is not a great while since men stoutly con tended that the automatic brake was an evil because it stopped trains. The undoubted result of the Bur lington trials will be the speedy application of con tinuous brakes to freight trains, and the use of electricity to actuate them, for emergency stops at least. The delicacy and precision with which the brakes can be inanipulated by electric attachments had hardly been suspected until these trials.
Another result of the trials is to call attention again to the question of common action among the railroad companies for experiments and tests. Interchange of cars is forcing this subject forward as regards car
couplers, and it will probably soon come up in relation to heating apparatus. But there are other mat ters, not dipectly involved in the interchange of cars, which could well be investigated by the railroads in common.
Individuals and companies have long labored with a fine scientific spirit to perfect our knowledge of railroad appliances in all directions. The Altoona la boratory is a steady source of knowledge. The Mas ter Car Builders' and Master Mechanics' Association have done an invaluable work in determining stand ards and improving appliances, and their investigations have owed much to the liberality of various companies in providing place, appliances, labor, and power.
Of course it is in this same way that by far the great est progress must be made in future. The most fruit ful research must be carried on by individuals working privately. The conditions of anything like competi tive tests or experiments are not often favorable to close and accurate investigation. Men cannot be set to thinking to order with the best results; nor would it be practicable or desirable to establish a genera railroad bureau of tests and investigations. A bureau organization is open to the danger that its mem bers become attached to theories and wedded to old ways. In its nature it is narrowing, and breeds prejudice. The French Academy has done its work in the conservation of the French language and literature but progress has been made in spite of the Academy On the other hand, there are always questions for ex periment and study which are so large in their scope and so expensive to carry out that individuals can not undertake them and railroad companies are very concerted action among the railroad companies is
almost necessary. The Chicago, Burlington \& Quincy has made it possible to carry out a most valuable series of experiments, the cost of which might well have been shared by several of the railroad companies ; and it would be well to consider an arrangement for undertaking other investigations in common, specially fitted men to be detailed for special studies, and the labor and expense to be divided somewhat in proportion to the benefit to be derived.
Probably the resuits of the experiments on tight and slack coupling are not yet convincing to all those who are most interested in the subject, and it is not likely that the coupler tests shortly to take place will settle the matter.
A series of experiments to accurately determine train resistance under different conditions of speed, grade, and curvature ought to be undertaken. This is perhaps one of the most important investigations that could be made. Starting with the valuable body of knowledge of the subject already accumulated, we might hope, by thorough experiments now, to arrive at laws that would be indisputable.
It is needless to wultiply subjects for such experiments. There are only too many of them.-Railroad Gazette.

Large Fires in Now York and Brookiyn

A street car depot, the Belt line, with stables and some thirty other buildings-tenement houses, factoies, stables, and shanties was burned in New York in the early morning of May 27. The fire, fed by a large quantity of grain and hay within the stables, and fanned by a brisk wind, raged for some hours absoutely uncontrolled, despite the most strenuous efforts of the department, which was hampered in its work by a lack of water. Eleven hundred and eighty-five horses perished in the flames, and about four acres of ground were burned over, the money losses aggregating close o \$700,000:
Following this, the large cooperage shop of Lowell M. Palmer, iu the eastern district of Brooklyn, containing from 75,000 to 80,000 empty sugar barrels, was fired by a discharged employe and entirely destroyed. The next day another big shop belonging to Mr. Palwer, on the opposite side of the street, took fire from ome unknown cause, and also burned to the ground.
The next fire was in Richard's eight story storage warehouse on King Street, formerly Booth \& Edgar's sugar house. The building contained about 8,000 bales of cotton, besides a large quantity of wool, rags, moasses, and wine. The fire was caused by a workman who held a lamp too close to a cotton bale while reading a mark. The elevator shaft quickly conducted the flames to all parts of the building, the workmen barely escaping with their lives. The losses in this instance are estimated at between $\$ 200,000$ and $\$ 250,000$.
The time has come when the owners of non-fireproof buildings should be compelled by law to put in the automatic water sprinklers. Probably all the above conlagrations would have been prevented had these devices been in use in the premises.

The Living Earth

In a paper published in the Indian Engineer; an illustration is given of the life that dwells in nature, the phenomenon of earthquakes being cited. The peculiar terror of an earthquake lies mainly in the suddenness of its approach. Volcanic eruptions are usually preceded by vast rumblings, or jets of steam, or other uninistakable tokens. Hurricanes and cyclones, in like manner, have heralds that announce their coming. But with an earthquake there are no premonitory symptoms. The great earthquake which took place at Lisbon in the year 1755 found the people engaged in their ordinary occupations. All the shocks were over in about five minutes. The first shock lasted about six seconds. In that brief space of time most of the houses had been thrown down, and thousands of men, women, and children crushed beneath the ruins. At times the ocean lends fresh terrors to the scene. Thus at Lisbon a wave of water over 50 feet high rushed in among the houses, and covered what still remained. In the island of Jamaica on a similar occasion two thousand five hundred houses were buried in three minutes under 30 leet of water. Recent delicate scientific experiments have disclosed the fact that the surface of the land is never absolutely at rest for more than thirty hours at a time. Thus those great earthquakes which make epochs in history are merely extreme cases of forces that seldom sleep.

Froezing Mixture.

A liquid invented by Raoul Pictet, of Geneva, Switzerland, for use as a disinfectant, answers well as freezing mixture for hardening microscope specinens. Sulphur dioxide and carbon dioxide, having been mixed and cooled, are compressed until they are liquid, and stored in siphons. When liberated, they rapidly evaporate, with great reduction of temperature. By this means mercury may be frozen, and animal or vegetable tissues rendered solid in a few seconds. It is as easily managed and more effective than ether, the odor being the principal objection.

Digitized by Google

COMBINED RANGE AND HRATER.

The illustration herewith is a sectional view, through the oven, of a novel construction of range, especially designed to furnish heat, if desired, to the upper rooms of a building. At the top and bottom are the spaces for the passage of smoke and the products of combus tion to the pipe, in the usual way. The oven itself is, however, connected to a heat passage or drum by an opening in the rear, at the top, in which is a damper, and this heat passage leads to a larger heat pipe or flue surrounding the smoke pipe, and leading to an upper room. In the oven door is a damper and slide, so that, when the oven is not needed for baking, these may be opened to admit a current of air, to be there heated and sent through the damper at the rear into the flue leading up, the openings in both door and fiue to be closed, however, when the oven itself is to be used. It

younginan's portable range.

is not always necessary to the economical application of this method that the heating flue should surround the smoke pipe, and it is obvious that, instead of the curved pipe at the rear, two ordinary stove pipe elbows may be placed together to make an angular, but sometimes more readily obtainable, construction.
This invention has been patented by Mr. John P. Youngrnan, of Hazleton, Pa
miproved means of furling topsatls.
According to the custom heretofore, the topssil clew line is inade fast to the foot of the sail at or near the

LOVELAND'S IMPROVEMENT IN FURLING TOPSAILS.
tack, or to the body of the sail, running thence through a block secured to the clew of the sail, up over a second block fastened to the head, and thence to the deck; but, when the tack and sheet are loosened, and the sail thrashing, the sheet is apt to foul the block at the clew, as well as the clew line rove therein, and thus interfere with hauling in the clew line. This diff culty is obviated by the invention herewith illustrated, in which two brails are employed, the line of one being nade fast to the lower outer corner of the topsail, from which it runs up along the sail, through grommets or thimbles, over a block at the head, and thence down at one side of the mast to the deck. The other line is made fast to a grommet secured in the foot of the topsail, about one-third of the distance from the tack to the clew, and this line runs up over a block secured to the luff of the topsail, about a third of its length from the bottom, and thence down to the deck at the same side of the mast as the first line. In clewing up the topsail, the tack, or rope to hold the lower corner of the sail in position, and the halyard
passing over the block at the masthead, are loosened in the usual way, and the brails hauled in, serving to draw in the clew and foot of the topsail to the points indicated by the termination of the dotted lines against the mast, where the sail bellies out in a ball, and the tackle is free. To utilize this means of furling sails, no alterations in the sail or new running gear are necessary, further than an extra brail. This invention has been patented by Mr. William Toveland, of New Gretna, N. J., and for partisulars ddress John Curtin, 98 West Street, N. Y.

Texas Marblo.

The San Antonio Light says: When the San Antonio and Aransas Pass Railway was pushing its way to Boerne, the Beckinans gave the railway the right of way through their land, they holding something in the neighborhood of 2,000 acres directly in the line of the road and near San Antonio. In blasting the rock for a passage for the road, a peculiar hard rock was thrown out, which, on closer examination, proved to be the finest kind of pure white marble, and further investigations showed that the supply was practically inexhaustible. They are now making arrangement to open the quarries.

A COMBILIED UNIFORY AND CIVILIAN'S BUTTON.
Those who have to appear occasionally in officia dress, with buttons of a special design, but do not wish to afford a suit of clothes for that particular purpose, may, by the invention herewith illustrated, provide themselves with the required official buttons for such garments, so made that the tops of the buttons carrying the design can be readily removed, leaving the garments with only such appearing buttons as ordinarily worn on civilian's dress. In our engraving Fig. 1 shows the putting on of the design face over the ordinary button, Fig. 2 is a central sectional elevation of the button, and Fig. 3 represents details of the means of attaching the top. The main supporting ring, the inner one of Fig. 3, has a facing plate, above which is mounted a dome, held in position by a spiral spring. Clamping hooks are inounted between lugs or ears secured to the inner face of the main supporting ring, the upper ends of the hooks being connected by links to the under side of the dome; so that as the latter is forced downward the hooks will be carried to the position in which the hook on the left is shown in Fig. 2. Between outwardly extending flanges of the inner ring is fitted an outer ring, having wedge-like projections on its inner face, as shown in Fig. 8, and in applying the attachinent this ring is turned so that the wedge-like projections will be moved to a position out of line with the hooks, when the dome is depressed, and the detachable portion applied, the points of the hooks engaging in a groove formed around the outer edge of the civilian's button, which is so constructed for use with this attachment. The attachment of the button to the garment may be by sewing or any usual means.
This invention has been patented by Mr. Louis \mathbf{D}. Frenot, of No. 383 Mulberry Street, Newark, N. J.

4 EECURE AND NON-RATTLING THILL COUPLITG.
Our illustration so plainly pictures the novel features of a simple thill fastening that its construction and application will be readily understood, Fig. 1 showing the device in perspective, as connecting the thill to the wagon axle, and Fig. 2 being a sectional view illustrating the spring clasp of the fastening upon the eye of the shaft iron. The bolt, as will be seen, is of novel construction, being formed with a hooked head, the point of the head being carried around so as to extend toward the shank of the hook, and leave ample space for conveniently attaching the fastening. The latter consists of a single length of spring wire that is centrally bent to form the loop shown around the inside of the eye of the shaft iron in Fig. 1, the two lengths then extending downwardly, where each is shaped into a single coil and carried upward and bent over the extensions of the axle clip on either side, one end thus securely holding the hooked head of the bolt to

torrance's thill coupling
the axle clip. The bolt is also formed with an aper ture at its farther end, in which a cotter may be used in case the fastening attachment is lost or damaged. This invention has been patented by Mr. John Tor rance, of Chetopa, Kansas

A TIIBER BUNE FOR SLEIGH OR OTHER VEHICLE.

Lumbermen using the imperfect means heretofore employed for securing logs or timber to sleighs, wagons, cars, or similar conveyances, will appreciate the simple and efficient device presented in the invention of $\mathbf{M r}$.

DANIELSON'S TIEBER BUNR

Danielson, which will be readily understood by referance to the illustration, where the bunk is shown as applied to a sleigh. The device comprises a cross bed beam, to which there is bolted a double angle iron, upon which are mounted two sliding blocks having down wardly extending side flanges, fitting against the web of the angle iron. The web has a number of apertures for the reception of a retaining pin carried by a chain attached to each of the blocks, whereby the blocks, when moved iorward or backward into any desired position required for the support of the load, may be firnly beld where placed. The blocks, to prevent their

FRENOT'S CONVERTIBLE BUTTON.

being lost or misplaced, are permanently attached by a chain to the bed beam. The blocks also have swing ng rings, through which binding chains may be passed such as it is sometimes necessary to throw over the load to more securely hold it in place.
This invention has been patented by Mr. John A. Danielson, of Calumet, Mich.

IMPROVED PACKAGE FOR CARRYITG EGGS.
A cheap, simple, and convenient egg case or holder. in roll form, by the use of which eggs may be car

FRAZEE'S EGG CARRIER.
ried with little risk of breakage, is shown in the ac companying illustration. The body of the package or case may ordinarily be made of pasteboard, bent to the required form, and the lid may be made integral with the main portion by longitudinally slightly incising the roll thus formed, on its inner face, so that the two parts will thus be hinged together. The interior of the holder is divided into the desired number of compartments, each to hold an egg separately. by partitions in the form of a disk, as shown in the small figure, each disk having ears or projections made at opposite sides, which fit in slots made in the body portion, and in the joining body and cover portion, of the holder. These partitions may also be made of pasteboard or of wood or other suitable material. When the package is to be much handled, the eggs should be wrapped in paper, cotton, or other flocculent or suitable material. To hold the roll closed, suitable pliable catches are provided.
This invention has been patented by Mr. John Frazee, and for further particulars address P. L Tourchy, 31/2 Carondelet Stret, New Orleans, La

AN IMPROVED SLIDING GATE

The invention herewith illustrated covers a gate con struction which presents several novel features. The gate is of the kind intended to be readily opened by one approaching it in a vehicle or on horseback, without alighting, and as readily closed after passing through. To a post at the right side, at a distance of the length of the gate, is pivoted a bar which extends throngh the upper end of the rear stile of the gate. This bar has on its upper face a metallic track, upon which rides a roller mounted in the upper end of the

VON STEIN AND WHITE'S GATE.
rear stile, the bar also extending through one of the double posts of the main gate frame. Another bar pivoted higher up in this double post, and carrying a like track on its upper face, extends across the road way, through the upper end of the forward stile, and between the standards of the other double post, a roller mounted in the forward stile also riding upon the track on the upper face of this bar. To the inner end of the first bar is attached a rope or chain, which passes over a sheave on one end of the other bar above it, the rope passing along the under side of the latter bar, and over a second sheave, to a fastening on the post at the forward end of the gate. The upper pivoted bar, the one extending across the road way over the gate, as seen in our illustration, is supported on its forward end by links connected to levers which extend out on either side of the roadway, these levers having swinging handles. To open the gate, a pull upon one of these handles raises the two bars carrying the tracks upon which the rollers in the stiles ride to the position shown in the dotted ${ }^{\circ}$ lines, when the gate rolls back from the road, and is held open, though slightly raised from the ground, through the medinm of the levers and their swinging handles, the weight of the latter being so adjusted as to slightly overbalance that carried by the short arm of the levers. To close the gate, one of these levers is pushed upward, when the track-supporting bars are moved so that they incline downward, and the gate rolls to its closed position.
This invention has been patented by Messrs. James P. Von Stein and Henry A. White, of North Liberty Johnson County, Iowa.

A Mechanical "Porpoise."

At a recent meeting of the Liverpool Engineering Society, a paper was read by Mr. J. F. Waddington on "Submarine Vessels." In commencing the paper the and having air ducts leading from the ash pit up to the spring of the arch, for in. creasing the draught and introducing increased quantities of oxygen. The dump grate is pivoted behind next to the bridge wall, which is made elongated and receding. Through the flues or ducts a large quantity of air is admitted at the front, and then passing over the fire, under the arch, mingling and igniting with the carbon beyond the arch, in. suring a perfect combustion of the gases before they reach the
author said that there were records of submarine vessels as far back as 1648 , and a very interesting series of experiments were made by Fulton in 1801. Subwarine vessels, he stated, were used in the American civil war, and numbers of patents had been taken out in America. He then referred to the submarine vessel Resurgam, designed by Mr. Garratt, and tried in the Birkenhead Float, in 18i9, and also to the Nordenfelt boats. His own submarine vessel, the Porpoise, which was tried last year, was then described. She was 37 feet long by 6 feet 6 inches beam, and was propelled by electricity. The Porpoise was submerged when onder way by means of inclined planes, which, when the buoyancy of the vessel had been sufficiently reduced by letting in water, were set over at an angle, and so guide the vessel below the surface. He also described the horizontal propellers working in vertical tubes used in his boats for the purpose of diving below in cases of emergency when there was no way on the boat. The tendency of subinarine vessels to dive by the head when going at any speed was prevented by means of a horizontal rudder. Compressed air for consumption by the crew was carried in two compartments at the ends. For the propalsion of the vessel and for driving the various machinery on board, electricity was stored in 45 accumulators of 600 ampere hours' capacity. The author stated the speed of the boat with the $6 \cdot 77$ horse power available would be about 8 miles per hour, at which speed she would be able to run a distance of 80 miles.

IICPROVED BACKUS FURNACES.

This furnace, which is one of the newest types manufactured by the Backus Company, of 505 Fort Street, West, Detrolt, Mich., and for which they have been granted a patent, has for its object the complete consumption of the products of combustion before reaching the furnace chimney. The principal features of the chimney are a brick arch abutting against the door,

Fig. 1.-LIEW backus "perfect combustion furnace."
surfaces or flues of the boiler. The complete burnug of the fuel that here takes place gives clean flues and a rapid radiation of heat, a large economy of fuel and a smokeless chimney. Cut No. 1 shows the furnace as used with an ordinary boiler. The other engraving represents a furnace constructed to burn shavings and light fuel, and is admirably adapted for use in planing mills and woodworking factories.

The Fastest Steam Vessel.
The London Engineer says: The daily papers are publishing a statement leading to the notion that the fastest vessel afloat has been made by Messrs. Thornycroft \&
trengthened by diagonal braces connected with the ferrule and with the top of the cup.
This invention has been patented by Messrs. John B Fauntleroy aud Chester S. Osborn, of De Kalb, Mo.

solidification of Potroleum.

Dr. Kauffmann is at present making some experiments for the Russian government, with the view of finding a process of solidifying the petroleums used as fuel. According to report, his process consists in heating the oil and afterward adding from one to three per cent of soap. The latter dissolves in the oil, and the liquid upon cooling forms a mass having the appearance of cement and the hardness of compact tallow. The product is hard to light, burns slowly and without smoke, but develops much heat and leaves about two per cent of a hard, black residuum.-Annales In. dustrielles.

A Now Asparagus.

Some little interest has been excited by the announcement of the discovery of a new and remarkable variety of asparagus on the steppes of Akhal-Tekiz. It has not been botanically identified, but it is represented as growing perfectly wild, the stalks being nearly as thick as a man's arm and attaining a height of five or six feet. so that one of them is said to suffice ten Russian soldiers for a meal. If the preference of experts for wild asparagus finds justification in this variety-and its flavor is described as equal to that of the best European kinds-asparagus lovers may have a good time before them.

AN DEPROVED DITGH MAKTMG MACHME.
The invention illustrated herewith is designed to facilitate the making of ditches, with smooth and graded bottom, for the laying of drain tiles, sewer pipes, and all other purposes where such excavation may be required, the machine, as may be seen by the illustration, cutting out the work smoothly and evenly, and depositing the earth well to one side of the ditch.
The frame of the machine consists of two pairs of side bars, connected at their rear ends by a curved bar, and at their forward ends attached to two parallel curved bars, there being on the inner sides of the latter pivoted rollers which rest and roll upon the side flanges of a central bar similarly curved, rigidly attached to the center of the arched ront axle, the wheels of which ravel on the ground at the pposite sides of the ditch. The rear end of the machine s supported by a caster wheel, and the rim of the large wheel journaled at the middle is grooved to form a channel n which the dirt is carried up rom the bottom of the ditch. To the side of this wheel is secured a wheel carrying an endless chain, by which motion is communicated, through the intermeshing of the teeth of a chain wheel and another ondless chain, to the chain wheel seen at the top of the picture, which operates the dirt-carrying chain, formed in a special way of plates and links, to bring up the earth from the rear of the plow. This chain passes backward and downward, over a puley on a swinging support, held back by a spring, to give the desired tension, thence slightly forward and down around a small wheel pivoted to supports attached to the standards of the plow, in such a position that the dirt raised by the plow will be carried up and between the chain and the channeled rim of the large wheel, and discharged upon the ground from the spout, the outer end of which is shown just over the front of the top of the large wheel, the inner end of the spout being so formed as to fit into the channel of the wheel and serve as a scraper to remove, the dirt. To the rear of the plow are also circular rotary cutters, to shave off the sides of the ditch at the opposite sides of the furow, so that the ditcher in its next passage can move freely and without binding, it being the design to have the machine obtain the required depth by drivng back and forth in the ditch, cutting a few inches at a time, and grading the depth of cuit by the foot rods at the driver's feet, by which the furrow can be made deep or shallow, as desired.
The plow standards are curved forward in hook shape, and to their ends are pivoted rods which pass forward
ing of the other foot lowering the plow to cut a deeper urrow.
It being the design of the machine that the front wheels shall travel on the ground at either side of the ditch, while the others travel in the trench as it is be ing made, the connection of the frame with the front axle is inade in such way that the large wheel, with the plow and other attachments, can be readily raised and lowered, by the turning of the crank in front of the drivor's seat, the shaft leading therefrom being connected with a beveled gear wheel and a pinion wheel firmly attached to the frame, and engaging the rack teeth on

Money in Circulation.
At the present time, deducting the money held by the Treasury und the banks, the amount of circulation really in the hands of the people can hardly fall, says the Baltimore Sun, much short of $\$ 900,000,000$, or about $\$ 16.25$ to every man, woman, and child in the country. This amount amply suffices for the business needs of the United States, supplemented, as it is, by he use of checks and drafts. So extensive is the use of checks and drafts at the present time, alongside of coin and other recognized forms of money, that it may be questioned whether the quantity of cash in a com munity is as much uow as formerly a measure of its prosperity. On the 17 th o September, 1881, the total receipts of the national banks in New York, in other reserve cities, and of the banks else where in the United States aggregated $\$ 295,238,779$, but of this anount only 138 per cent was in gold, 0.17 per cent in silver, and 4.36 per cent in paper currency, while 94.09 per cent were in checks, drafts, etc. In New York city less than one per cent of the payments were made in gold or in currency, while 98.86 per cent were in check and drafte. In the banks elsewhere, and not in the reserve cities, 3.31 per cent of all payments were made in gold, 0.68 in silver, $14 \cdot 27$ per cent in currency, and $81 \cdot 74$ per cent in checks and drafts. From this exhibit of the amount of business trans acted in one day and in a few cities by means other than gold or silver coin or currency, it is evident that the silver enthusiast and the

With this construction the driver can readily lower the forward end of the frame, lowering thereby also the large wheel and plow to remove another slice of earth from the bottom of the ditch, and can raise it when desired. The machine is designed to cut from 150 to 200 rods of ditch per day, from two to three feet deep, with sinooth and graded bottom, requiring for this the labor of only one man and a team of horses.
This invention has been patented by Mr. Herman I Potter, of Leonardsburg, O., who should be addressed for further particulars.

AN IMPROVED PORTABLE BED.

A light and easily set up portable bed is shown in the accompanying illustration, in which Fig. 1 gives a view in perspective, Fig. 2 a representation of the angular spring wire forming the head rest support and Fig. 3 a sectional detail of the middle part of one of the main stay rods at the side. The four corner posts have each a lower pointed part, a larger middle section, and a reduced top rod or bar, the ruid dle section of each post having near its lower end screw eyes, from which side and end ropes, with snap hooks at their ends, connect the four posts together. The head and foot posts are also connected by the stay rods, each made of t wo rods, held together in the middle by the hollow sleeve shown in Fig 3. The head posts are united by a removable stay, over which slips a welt on one end of the canvas mattress, which passes at the foot over a roller, which has at each foot post a ratche wheel engaging a pawl, the roller ends being adapted to receive a small crank arm by which the roller can be turned and the mattress drawn taut. The foot and head pieces each consist of a canvas strip, stretched from one head or foot post to the other, with welts at their ends fitting over the reduced top parts of the posts. The adjustment of the angular spring wires supto levers pircted in front of the large wheel. To the porting the head rest will suggest itself, the loop upper ends of these levers are pivoted rods, which run back to crank arms upon a short shaft, to which is attached the upright lever seen in front of the driver's seat, and next which is a spring lever pawl, by which the pitch of the plow can be regulated and the lever held in its position. Between the plow standards is also pivoted an upright bar with rack teeth, engaging with gear wheels attached to cranks, upon which rest the driver's feet, the pushing of one foot forward raising the plow to cut a shallower furrow, and the push-
at one end slipping over the smaller top part of the post, and the other end being reduced to fit into an aperture in the side rod, a canvas strip stretched from side to side forming the head rest, and being attached to the wires by welts on each end of the strip. The parts of the bed can be quickly disengaged from each other, and all conveniently rolled within the mattress for transportation.
This invention has been patented by Mr. Joseph M Strout, of Portland, Me.
ance of their respective hobbies.

A WEATHER STRIP FOR THE BOTTOMS OF DOORS

The invention herewith illustrated is designed to pro vide a device which is automatic and noiseless in its action. Fig. 1 represents a longitudinal vertical sec tion through the door frame, with the casing and door partly broken away, illustrating in positive lines the application of the device upon an open door, and in dotted lines the position of the strip when the door is closed, Fig. 2 being a transverse vertical section through the applied strip. To the lower portion of the door is attached a moulding, with a recess on its under side, in which is a series of staples. The weather strip, of wood or other suitable inaterial, is of rectangular form, with its opposite corners rounded, as shown, carrying eyes in the top, by which, with the aid of a rod, it can be hinged with the staples on the under side of the moulding. In the curved lower edge of the weather strip is inserted a strip of rubber, and in the corner of the strip next the hinged side of the door, in the under edge, is journaled a roller, which travels noiselessly upon the saddle as the door is opened and shut, as the door is closed the roller dropping into recesses formed for it, and the weather strip fitting in the concave surface of he saddle, forining a complete seal. Fig. 3 shows the

allan's weather strip.

strip made with a metal facing, in which the facing and rip are made integral.
This invention has been patented by Mr. William R. Allan, of Pittston, Pa.

A Large River Cargo.

The largest load ever taken by a single steamboat down the Mississippi reached New Orleans, La., re cently. The Joseph B. Williams had the tow wade up on the Ohio River, consisting of 39 boats and barges oaded with coal ; the load, 826,011 bushels of coal, or 31,388 tons. The steamer is attached to the rear of the tow, guiding and controlling it in the current. It would take about 2,000 freight cars and fifty engines to bring the load by rail.

ALETANDER AGAsaiz.
(Continued from frst page.)
He made an expedition in 1875 to the weat coast of South America, for the purpose of examinfig the copper mines of Peru and Chili. During this time he also made an extended survey of Lake Titicaca, and with the aid of his assistant, Samuel Garman, gathered an immense collection of Peruvian antiquities, which are now in the Peabody Museum at Cambridge. These collections represent the antiquities of the lake, of ol Trahuanaco, and of the shore Indians at Ancon.

In 1875 he was invited by Sir Wyville Thompson to assist him in arranging and making up the collection of the great English exploring expedition of the Challenger. A portion of these collections he brought with him to Cambridge, and there wrote his report on the sea urchins of this famous expedition, which ranks high as a contribution to original research. His pre vious investigations on the Echinoderms gained for him, in 1873, the Walker prize of $\$ 1,000$ from the Boston Society of Natural History. This was the first
bestowal of the Walker prize. In 1878 he received the "Prix Serres," awarded only once in ten years, from the Academie des Sciences de Paris, and was the first foreigner to secure this distinction.
From 1876 till 1881 Mr. Agassiz spent his winters in deep-sea dredging, having had placed at his disposal by the superintendent of the coast survey, the steame Blake. These expeditions have enabled him to explor the deep waters of the Gulf of Mexico and of the Caribbean Sea. The success that has attended his interest shown by the coinmanders of the Blake, but much more, we are persuaded to believe, through his own great ingenuity and special familiarity with hoisting and mining machinery, which has enabled him to introduce new methods in place of the old ways of deep sea dredging.
In 1887 he received the degree of LL.D. from the University of Cambridge, England. He was elected a member of the American Association for the Advancement of Science in 1869, six years later he became a fellow, and in 1879 was made vice-president. At the Boston meeting, held in 1880, he delivered his retiring address on "Paleontological and Embryological De velopment," in which he took a decided stand against the prevalent developinent theory. In 1866 he was elected to membership in the National Academy of Science and held the office of foreign secretary till 1886 since when he has entirely severed his relations with that organization, owing to the impaired condition of his health.
Mr. Agassiz is likewise a member of the following societies: The Academy of Natural Sciences, Philadel phia: the New York Academy of Sciences; the Ameri can Philosophical Society. Philadelphia; the Essex Institute, Salem, Mass.; the Society of Natural History of Montreal, Canada ; the Geological Society of Man chester, England ; the Zoological, Linnean, and Roya Microscopical Societies of London, and other less famous foreign societies.
His bibliography includes numerous titles in the Proceedings of the Boston Society of Natural His tory ;" "The Annals of Lyceum of Natural History," New York; "Proceedings of the American Academy of "Arts and Sciences," Boston; "American Naturalist," "Anerican Journal of Science," and the "Archiv der Zoologie." They are principally on subjects connected with marine zoology. The "Report of the
Anderson School of Penikese," 1873, and the " Revorts Anderson School of Penikese," 1873, and the "Reports
of the Museum of Comparative Zoology," from 1873 till of the Museum of Comparative Zoology," from 1873 til 1885, are by him. To inany of the "Bulletins" of the "Memoirs of the Museum of Comparative Zoology," he is the author of "Revision of the Echini," "Echini of the 'Hassler' Expedition," and "North American Starfishes." Besides the foregoing, he has written, with Mrs. Elizabeth C. Agassiz, "Seaside Studies in Natural History" (Boston, 186.3), "Marine Animals of Massachusetts Bay" (1871), and the fifth volume of "Contributions to the Natural History of the United States," left incomplete by his father.

These great undertakings have unfortunately injured his health to such an extent that he has been advised to put aside all work and rest awhile. Early in May of the present year he started on a long voyage to Alaska from which it is hoped he may return thoroughly recuperated and able to again prosecute his scientific labors.
Personally, Mr. Agassiz is a bright, intelligent, busy man, easily approached, something more than a man of science, abounding in liveliness, interested in all that eoncerns humanity, but too much occupied with special work ever to be idle. His life has been one of continuous development along the lines of which his genius or temperament has naturally led him. Though a Swiss by birth, he is essentially an American in his intellectual grasp and in all that belongs to his ordinary life.
Where so much has been done since he gained the wealth which has enabled him to do what he thought beat worth doing, what may not be looked for in the rich prime and afteriuath ?*

Correspondence.

selontile Improvement or Boor

To the Edittor of the Scientific American:
I desire to call your attention to a few physiological experiments recently made in the laboratory of Dr Hal. C. Wyman, of Detroit, which may have a bearing upon certain econoinic questions. The experiments consisted in dividing certain nerves which supply motion and sensation (I will say certain spinal nerves) to the muscles in the necks of rabbits, and carefully noting the results. A large number of rabbits were experi mented upon, and a careful microscopical examination made of the fibers of the trapezius muscles, which showed that such fibers had undergone fatty degeneration. This, however, is no more than what has been known to every physiologist and pathologist who has given any attention to the study of paralysis.
The nerves divided were the muscular branches of the inferior cervical nerves and that portion of the spinal accessory which supplies the trapezius muscle. The filer of these muscles supplied by these nerves was found to have been very appreciably softened, and the writer desires to ask whether these experiments do not open a field for the study of processes by which the large, tough inuscles of the necks of beeves may be converted into tender and more salable food. It is well known to all butohers that the most inferior portion of beefthat is, twise parts which are most difficult to dispose of-are the muscles of the neck ; and if experimental physiology can teach a method whereby this meat may be rendered more tender, digestible, and salable, a great good will have been accomplished.
The writer ventures to state that the studies promoted by Dr. Wyman are steps in that direction. It might be advanced as an objection that a division of the sensory and motor nerve of a muscle would result in its atrophy from disuse, and that the gain in quality would be lost in quantity. But the experiments diseipate such an idea, because there are left undisturbed sufficient of the deep uuscles of the neck to maintain passive motion, insuring a fair amount of exercise and reasonably good circulation of
Trusting you will give this matter space in your valuable journul, and that it will invite discussion, have the honor to be, etc., Zina Pitcher, M.D Detroit, May 26, 1887.

The Dentructive Power of Torpedoen.

To the Editor of the Scientific American:
Having noticed your article on the power of torpe does, I send you an account of the destruction of the Chinese corvette Yang Wo during the fight between the French and Chinese at Foochow. The French flagship had two torpedo boats attached to her. They were stationed on either side of her, at the gangways. This ship was about 300 yards below the Yang Wo. As soon as the firing commenced, both boats attacked the
Chinese vessel. The first one fired her torpedo directly Chinese vessel. The first one fired her torpedo directiy
under the Yang Wo's after gangway-starboard side No damage whatever was done to the ship, but the offlcer in charge of the torpedo boat was wounded in the chest by the return action of the torpedo. The other boat had in the mean time attacked the ship forward, a little abaft the cathead, on the same side. This torpedo was in direct contact with the ship. The effect was, when the torpedo exploded, that it pene trated the fore magazine (or, I should say, the fire from it did). This blew up, and the whole forward part of the ship was demolished. This all happened inside of three minutes. The remainder of the wreck drifted ashore, and burned for seven days. The Yang Wo was a wooden corvette of fourteen guns. The torpedoes used were booms-contact ones.
I was an eyewitners-in fact, too close a one. One of the torpedo boats was lost afterward at Samtur Formosa, but in what manner the French have never tated. She is simply put down in their list as lost. Gakow, April 27, 1887.

An EyRwitness.

Rapid Rallway Bnilding.

A correspondent of the St. Paul Pioneer Press thns describes some rapid railway construction:

Just beyond this point, and eighty miles west of Minot, the traveler finds himself at what railroad men call 'the front,' or the end of the track of the extension which the Manitoba Railway Company is now making to Great Falls, Mont. To speak more accurately, this was the end of the track yesterday, but to-night that point will be flve miles further westward, and by tonorrow yet five miles further. From Minot here the work has been in progress since the first week in April From now on it is proposed to complete five riles of track each day, thus achieving the greatest feat ever attempted in the way of rapid railway construction.
From here to Fort Buford the distance is a little ove From here to Fort Buford the distance is a little over open to that point by June 1. Thence to Great Falls the distance is 403 miles, and trains will in all probability be running to that point before the middle of September.
"It can readily be surmised that the accomplishment of this gigantic entarprise requires little less than an army of workers, and that is what one fincis here. The number of men now at work is 6,600 , and the number of teams 8,000 . With this force it is hardly to be wondered that the dirt is flying at a lively rate. From here to seventy miles besonc Fort Buford there is one unbroken serles of graders camps. Fifty of these camps can be seen from one point some distance beyond White Earth. By June 1, between 3,000,000 and 4,000.000 cubic yards of earth will have been taken out, and by the time Great Falls is reached the amount will aggregate not far from $10.000,000$. On the Canadian Pactic, during the whole of last summer. the amount of earth handled was 6.700 .000 cubic yards, and this was considered a remarkame piece of work. A few figures may serve to give a clearer conception of what is involved in the construction of five miles of railway track in one day. A rail is $\mathbf{3 0}$ feet long, and there are consequently 352 to the mile, or 1,760 to every five miles. As each rail weighs 600 pounds, the amount of steel handled in one day aggregates $1,056,000$ pounds. It takes 2,640 ties to the mile or 13,200 per day. Thirtysix 200 pound kegs of splkes are used to the mile. There are 32 ' spikers' to avery five miles of track, each man of whom drives 840 spikes a day. which, at the average of three blows to the spike, gives 2,520 blows per man per day. A mile of rails takes 1,408 bolts, which are handled by fourteen 'bolters,' or 503 each per day. To avoid delays in the progress of construction by reason of rough country, it is the intention of the contractors to work five gangs of men in five hour reliefs during a portion of the time. Work will begin at 8 o'clock in the morning, and the darkness will be scattered by thousands of torches.
"With such an army of men and teams at work far from the centers of civilization, and in a totally unproductive country, it can be readily seen that the task of secaring and distribating supplies is one of enormous. magnitude. Indeed, there is little doubt that greater executive ability is required in this than in almost any other department of railway construction in the far West. Here at Whits Earth is, for the present, the headquarters of the supply train, consisting to day of twenty cars filled with every conceivable thing necessary for man and beast. There is grain, flour, canned goods of all sorts, butter, hains, sugar, wagons, harness, plows, boots and shoes, pipes and tobacco-in fact, nothing is lacking. Every day sees a big hole made in the stock, and every day sees the hole replenished by incoming trains. Day before yesterday 15,000 bushels of oats were sent out by wagon and yesterday 5,000 bushels, all for distribution along the line for a distance of forty miles. From here on the trail along the line is marked by one continuous siream of freighters' teams distributing supplies to the various camps. The other day a herd of 170 head of cattle was driven in, and it seemed that there at least was enough meat for some time to come. A rapid calculation, however, showed that it would furnish only about ten pounds to the man. Already 250,000 pounds of flour and 500,000 bushels of oats have been purchased. Lovers of baked beans will learn with alarm that the supply of that luxury is about exhausted. A letter just received from one of the largest wholesale firms of St. Paul states that if the demand is to continue throughout the summer as large as it now is, it will be necessary to import from Europe. They say they have now secured all the beans that can be found in the United States, and that they have only enoagh to last this army here for two months.
"Another interesting feature of this train is the hospital cars, where the laborers suffering from disease or accident are cared for by a regular physician, assisted by several nurses, the expenses being inet by a contribution of two cents a day from each laborer enployed."

Lumainous Palnt in Theatera.
Herr Stehle, the Government Inspector of the Royal Bavarian Court Theater, has, according to Iron, given high testimony to the use of luminous paint as a safeguard against panic in theaters. Any explosion or disaster with gas leaves the exit passage of the theater in total darkness, and even if additional oil lamps were used, they would probably be extinguished by the air concussion. In the above named theater inscriptions in luminous paint are suspended orer the exit passages, which direct the audience to the "way out" (Ausgang). "These placards, in spite of being exposed to the very poor light of the corridora in the daytime and the gaslight in the evening, are so luminous after the gas has been turned out that any one can gain the stairs in each corridor without diffealty." The Lancet says the precaution is so simple and inexpensive that we wonder it is not immediately adopted in all theaters. Indeed, we see no reason why its use shonld not be made compulsory. Surely some provision of the kind might be lucluded in the theaters bill now before Parliament.

The first street railway in America was completed in Now York city in 1882.

THE NORDENFELT SUBYARINE BOAT AT CONETANTINOPLE.

The modern Turks have ever shown much enterprise in providing themselves with the latest novelties in arms and munitions of war. Sultans Abdul Musjid and Aziz spent large sums in ironclads, while it was in a great measure due to the Martini-Peabody rifle that Turkey was enabled to make so prolonged a stand against Russia in the late campaign. They have now been experimenting with the new Nordenfelt submarine torpedo boat, two of which were ordered from the inventor last year, and being sent to Constantinople in
fresh supply, and she is furnished with the means for both attack and defense in the fish torpedoes carried in the case at the bows and the two Nordenfelt quickfiring guns, seen on the upper surface.
The great fact about the Nordenfelt system of torpedo boats is that the public demonstrations of its capabilities the year before last at Elsinore, of which we published illustrations, showed clearly enough that it had reached a really practical stage. It is not pretendd that the boat can make a long submarine voyage. ndeed, one great drawback to such an atteinpt would be the impossibility of seeing ahead, as the submerged
the boat under to any depth required, and by repeating their motion she can be kept stationary at any dis tance below the surface which may be desired. As soon as the motion of the screws ceases, the boat rises at once to the surface, owing to her spare buoyancy. The motive power is steam, and Mr. Nordenfelt can store up the heat necessary for its generation when the boat is subinerged and combustion is no longer possible. In this particular boat there is sufficient steam power when she first goes under to drive her fifty miles without relighting fires.
The last engraving shows the position for attack. As

general view of the boat.

boat in the dook.

THE BOAT SUBYREGED SHOWING THE MACHINE GUNS.

THE NORDENFELT SUBMARINE BOAT

sections, have been now remounted in the Imperial craft must come up to the surface from time to time to |the boat approaches the enemy, she is broug Dockyard. One of them was launched a few weeks since, and our engravings, from photographs by Mr. Bergren, of Constantinople, represent the little vessel in the various stages of "launching," of "making a voyage as a surface boat," and when "prepared for action." The boat is the largest of its kind as yet launched, being 100 feet long, 12 feet beam, 160 tons displacement, and is engined to 250 horse power. She is able to descend to a depth of 50 feet, to remain submerged some nine hours, and proceed at a maximum speed of ten knots. Her coal capacity is sufficient to enable her to steam for 900 knots without taking in a
course. The great advantage claimed over the water, appoaches號 the ordinary torpedo boat is its capacity for approaching a hostile vessel unseen, as it is exceedingly difficult for the ordinary torpedo boat to get within striking
distance of a war ship without being detected. As a surface boat, moreover, the Nordenfelt can undertake a long voyage, and, owing to the greater strength of its construction, is better able to defend itself against the attacks of other vessels. When about to attack, the boat is submerged by admitting water until the vertically acting screws seen in the upper surface are under water. A few revolutions of these screws suffice to send
showing above the surfave. There is no disturbance at the surface from the action of the serews to mark her passage through the water, and the cupola is too small an object in itself to arrest the eye of even the most wary observer, when a short distance off. The captain, with his head in the glass, carefully watches the movenents of the enemy, directing his own boat toward her, and thus, stealthily approaching, the torpedo is sent on its mission of destruction as soon as the effective range, some three or four hundred yards, is reached.London Graphic.

this royal paly

The royal palm is most appropriately named. It is royal in its characteristics, and in its entirety it has a rosal aspect. We had enjoyed the glorious array of the tree in extended numbers in Havana. The palace of the Captain-General of Cuba is surrounded by magniffent examples in full growth. Their stately columnar trunks seem fitting accompaniments to the simple, yet dignified, architecture of the governor's dwelling. All palms are attractive, and many are surpassingly beautiful in their graceful foliage and architectural trunks. The cocoanut palm is, perhaps, one of the most beautiful, and it is one of the most familiar, is in our semi-tropical States it is a naturalized tree, if not, possibly, an indig. enous one. That and tne enous one. That and tne
cabbage palm and a small cabbage palm and a small
fan palm are the principal forms which grow in our North American States.
Palms, though found throughont the tropics, and a few even in the temperate regions of the world, are by no means generally present in the former. We may pass through great areas of forests and not meet one. They are, however, the most characteristic of tropical vegetation, and often abound in certain regions. On river banks they are especially conspicuous and abundant. They vary in height from a few feet to that of the most lofty trees. The latter are usually without stem or leaf, excepting upon the summit, where is a wide spreading crown of large pinnate leaves or fronds.
Palms of one hundred feet in height and a trunk two feet in diameter are not uncommon in the great mauritia of the Amazon. Humboldt even mentions one which he measured in South America as 192 feet in height.
The leaves are immense also. One of the manicaria palm measured thirty feet in length and nearly five in width; in this species having the additional singularity of being entire, and not pinnate or broken ap into fine leaflets, as in the cocoanut palm. Some of the pinnate leafed are larger than the latter; those of the Maximiliana and Raphia being more than fifty feet in length.
Perhaps the fan palms are as pleasing as any. They certainly contribute remarkably to the picturesqueness of tropical forests, as they are usually quite low, and therefore complete the picture, which is otherwise made ap by taller trees.
It is nearly thirty years since we visited the then almost untraveled region of southwestern Florida at Cape Sable. We had heard of the great beauty of the wild groups of royal palms at this place, and certainly the voyage well repaid the visit. We have never been \mid roe, of Staten Island, has for several years been accusable to determine how these trees originate at this latitude; but the finding of others subsequently on the reef seems to add more light on the subject, and rather suggests a solution of it.
In 1864 our government ordered a survey of the Florida reef, for the purpose of aiding the telegraph and cable company of Cuba. As one of the party of United States army officers who were detailed for the parpose, we utilized the excellent opportunities for noting facts in natural history. Among other circumstances which constantly surprised us was the discovery of such large trees and extended forests-a state scarcely to be expected on the low sandy islets, which have been built up from the ocean depths by coral ageney, and which furnish a soil of very limited ex agency, and which furnish a soil of very limited ex- sary fixings. He came on one occasion, while pushing
tent. Trees and shrubs which evidently were of more his way through the tangled underbrush beneath tow-
tropical origin were occasionally met with; but during the entire survey, which extended from Key West to Cape Florida, on the southwestern extremity of the tate of Florida, we did not meet with a royal palm. The cocoanut palm wiss abundant. Yet at that time no considerable attempt had been made to make the ruit a regular article of commerce. A few years after this a vigorous attempt was organized to introduce the cocoanut and pineapple as regular articles of commerce.
Mr. Lum, of Red Bank, N. J.. informed us, several years since, that on reading some published notes of ours relative to the results of the survey of the Florida reef and its suitableness for cultivation of tropical
 ship near the Miami River, at old Fort Dallas. The statistics at this time relative to the cultivation of cocoanuts and pineapples there are surprising.
The cocoa palm nut is sbout the same in flavor the world over; but the pineapples, like the Florida orange, must be eaten to be appreciated. The royal palm bears a nut too small and of too little value to be considered. The date palm is also found at Key West, as an introduced tree, though not on the reef or man-
land. Mr. Ralph Mon-

ering timber, where it is doubtful if any other white man ever had trod, natural habitat for the puma and tramping ground for the Seminole, upon a scene which both surprised and delighted him-a group of royal palms. What a gratification to the owner of this picturesque forest ! and what a fortunate thing for Flora and her disciples, and for the lover of the picturesque for Mr. Monroe will keep these trees as near as possible from all harm, and perpatuate their clories.
One extremely shapely one he has photographed, which is herewith presented. To do this he, with as sistance, cut his way through a tangled forest by the use of the Cuban machette, and to get a good view it was necessary to cut a considerable swath distan for proper focus. Although the soil and climate along this latitude are well suited to such forms of vegetable life, yet it would seem probable that the royal palm, like many other trees and shrubs, has been through accidental circumstances planted there. It is well known that birds are a very common ament for such results.
Mr. Wallace, the eminent English naturalist, told us, in his late lecture in New York, how true it is tha birds convey seeds in the mud or sticky earth which chances to remain on their feet, and eventually are conveyed hundreds of miles into the interior of newly visited lands. There are on the Florida reef many shrubs, as well as trees both deciduous and others, which have evidently originated in like manner.
Birds also swallow fruits, the seeds of which are deposited, in the form of excrement, on lands far away fruits, he made the ex- from the places of feeding. It is probable, therefore, periment, and, finding that the royal palms of Cape Sable, as well as those in it eminently successful, the interior of the Everglade region, near Miami, were has organized a town- planted through the intervention of birds, who have unwittingly brought seeds from the Cuban forests or from the near shores of Yucatan and the Spanish main.
We are extremely sorry to record the results of a vandalism at Cape Sable, which leaves not one tree to tell of the formerglory of the place. Such a call for walking sticks and small souvenirs from Florida has been kept up by the small dealers in north Florida, that the trees have been completely destroyed and removed. Thanks to Mr. Monroe, however, his purchase of a tract which, in good chance, includes the little group of royal palms nd the stately one whose picture we here offer, secures to those who shall hereafter visit this now growing region a view of one of the most charming sights offered in the vegetable kingdom. These trees will be guarded with great care, as the owner is a man of taste, and is willing to do much to perpetuate such a pleasing feature in the flora of our sub-tropical country.
The superb picture leaves little to describe, its characteristics being well known. The foliage is not so flowing, and therefore not so graceful, in one sense, as that of the cocoanut palm, but its stateliness and architectural aspect will appeal to one as charming features.

Medical Electricity.

Electricity is now being employed at two estab lishments in Paris for the treatment of disease. In one of these, conducted by Dr. Vigoureux (the head electrician of La Salpetriere), there is a gas engine driving a dynamo machine, the current from which is led to a number of small electromotors. These are used to work electrostatic induction machines, which used to work electrostatic induction machines, whed is
are of English make, and the electricity generated is are of English make, and the electricity generated is
applied to the patients sitting in insulated chairs. The applied to the patients sitting in insulated chairs. The
advantage of induction machines over the old fashioned frictional machines is that they can work at a moment's notice, and in all states of the weather. A similar installation is in use at La Salpetriere.

122 Years old.

Amy Avant, a colored woman on the plantation of Major James Reaves, in Marion County, S.C., died a few days ago, of measles, at the advanced age of 122 years. She was remarkably well preserved, and retained all her faculties up to the time of her fatal illness, previous to which she claimed that she had never taken a dose of medicine. During the last cotton picking season, she took her place regularly in the cotton fields and always performed a good day's work. Her age is well attested by family records.

Miany Items or Interent.

The Columbus, Ga., Enquirer-Sun ntters sound sense in the following, which is as pertinent to some of our Western States as to Alabama: "According to the reports which are daily sent out over the country, nearly every town in Alabama either has a boom or is about to get one. They are good things, properly managed, but nothing could be more disastrous than a too sudden advance in real estate prices. It is bound to bring reaction. The boom only too easily becomes a boomerang. There is only one safe course, and that is to first get your boom and then hold on to it. If it is inflated too much it will get away, and everything that has depended on it will drop."
A substance resembling ivory of creamy whiteness and great hardness is made from good potatoes washed in diluted sulphuric acid, then bofled in the same solu tion until they become solid and dense. They are then washed free from the acid and slowly dried. This ivory can be dyed and turned and made useful in many ways.
Charles Brush built some time ago a powerful dynamo for use in Cowles, Ala., for disengaging aluminuin from clay so economically as to make the inetal an article of commerce. A contemporary says this dynamo weighs 22,000 pounds, requires 500 horse power for its operation, and has an armature of 47 inches diameter, in the making of which 6,250 pounds of copper wire were used.
Man's insignificance is thus defined by the Boston Journal of Commerce : Somehow, when a man's mind becomes really engaged-say like that of Baron Hum boldt-and he is able to place in focus more and more of the cosmos of which he forms a part, the things he at the outset of his life regards as the largest get smaller and smaller, till at last that first iminense and over whelmingly important thing, himself, becomes so insignificant that it is only through a process of mental microscopy he can discern his little float swim or wiggle across the field of view. How big is a man anyway? Well, he is smaller than an elephant, and an elephant is smaller than a mountain, and a mountain is smaller than the world, and the world is a mustard seed compared with the sun, and the sun itself is a mere mote in the dust cloud of spheres that. stretches out through the universe beyond the reach of thought.

The individual or firm who attempts to do everything seldom succeeds in doing anything well. Life is not long enough to exhaust even one branch of science, art, or industry. When one needs anything out of his line of business, it is far better to make the purchase of an experienced and trustworthy neighbor than to undertake to learn another branch of business, with all its cost of experience. The concern which under takes to make all the money, to get along without making any purchases of others, and to monopolize all the avenues for profit, generally gets left in the race for wealth.

They seem to have builders of the Budensiek order in London as well as in New York. The Building News said the other day that the true cause of much of the present stagnation of business is caused by the appalling amount of bad building done of late years. Cheap and nasty architecture ruins the national health, and if the next conference of architects would but devote a little attention to the rotten leasehold system, they would be doing a great public good.
L'Industrie Moderne gives Mr. Ladewig's process of manufacturing from asbestos ftber a pulp and a paper that restit the action of fire and water, that absorb no moisture, and the former of which (the pulp) may be used as a stuffing and for the joints of engines. The process of manu facture consists in mixing about twentyfive per cent of asbestos fiber with about from twentyfive to thirty-five per cent of powdered sulphate of alumina. This mixture is moistened with an aqueous solution of chloride of zinc. The mixture is washed with water and then treated with a solution composed of one part of resin soap and eight or ten parts of water mixed with an equal bulk of sulphate of alumina, which should be as pure as possible. The mixture thus obtained should have a slightly pulpy consistency. Finally, there is added to it thirty-five per cent of powdered asbestos and five to eight per cent of white barytes. This pulp is treated with water in an ordinary paper machine and worked just like paper pulp. In order to inanufacture from it a solid cardboard, proof against fireand water, and capable of serving as a roofing material for light structures, sheets of common cardboard, tarred or otherwise prepared, are covered with the pulp. The application is made in a paper machine, the pulp being allowed to flow over the card board.
In an interesting article on cream, its value and use, Professor Arnold, of Cornell University, says: The superiority of cream over butter or any other solid fat consists, first, in its being not exactly in a liquid form, but in a condition allowing of great mobility between its particles, permitting the gastric juice to mix with
it in the most perfect manner, and with whatever else the stomach contains, thereby aiding digestion. Its behavior is quite different in this respect from that of butter and other pure fats. As soon as they become melted they grease over the other contents of the somach, obstructing, in a measure, the contact of gastric juice, and hindering, rather than hastening, the progress of their digestion.

The New York Electrical Society are to make a grand display at the American Institute exhibition next autumn. The exhibition will include all that is newest, and a special and interesting feature will be the stor age of electricity and its application to the transmission of power. This promises to be the best electrical exhibition ever held in this country.

The most successful individuals and firms are those which have developed a promising specialty, leaving collateral matters to the attention of their neighbors in trade and industry. The pussibilites of any one branch of manufacture grow upon investigation, and develop rapidly under fostering care. The man who gathers all the profits that are in one branch of legitimate industry can well afford to give his brother in trade a chance as well.

The Natural History Musenm had a spring opening, which took place about the middle of May. The most noted annong the new exhibits, and which created considerable attention on the opening day, was a collection of birds, consisting of eighteen groups, each representing a pair of birds-with their nests and the eggs or young-of the different varieties found within fifty miles of New York. It is the first collection of its kind in this country, and has been prepared by the munificence of Mrs. Mary Stuart, whose husband, the late Robert L. Stuart, was one of the founders, and for a number of years president, of the museum association.

A temperature of 570 degrees will produce a dark blue color on polished steel, and 590 degrees a pale blue. Oil or grease of any kind will answer for drawing the temper of cutlery. The temper for lancets is obtained at 430 degrees Fahrenheit, axes at 500 degrees, words and watch springs at 530 degrees, small saws at 570 degrees, and large saws at 590 degrees. Copper colored spots are not produced by tempering ; but they may be obtained on the polished surface of steel by immersing the article in a solution of sulphate of opper.

The Farmer's (Irish) Gazette gives the following different ways of treating balky horses, which are recom mended for trial :
First, pat the horse on the neck, examine him careully, first one side, then the other; if you can get him handful of grass, give it to him, and speak encouragingly to him. Then junp into the wagon, and give the word go, and he will generally obey. Second, taking the horse out of the shafts, and turning him around in a circle until he is giddy, will generally start him. Third, another way to cure a balky horse s, place your hand over his nose and shut off his wind until he wants to go. Fourth, then, again, take a couple of turns of stout twine around the fore legs, ust below the knee, tight enough for the horse to feel it ; tie in a bow knot. At the first click he will probably go dancing off. After going a short distance you can get out and remove the string, to prevent injury to the tendons. Fifth, again, you can try the following: Take the tail of the horse between the hind legs, and tie it by a cord to the saddle girth. Sixth, the last emedy 1 know, is as follows: Tie a string around the horse's ear, close to head. This will divert his attention, and start him.
The genius that can spin a cotton or a woolen cop on bare spindle that will weave from the inside, that is, similar to what is used on a carpet loom and on the Lyall loom, according to Wade's Fibre and Fabric, will earn a fortune. This has not been accomplished on fine yarn with a loon running at a high rate of peed. We believe a cop can be wound by hand that will weave in this way. It requires a rapid vibration while winding on to prevent the yarn from sloughing ff in a tangled mass when weaving. With this fact before us, it would seem that some genius ought to be able to produce the motions that will produce the cop wanted.

A new process of annealing wire consists in coiling the wire upon a hollow metallic core or drum, embedding the wire and core in sand or its equivalent, surrounding a central open space, subjecting the whole to beat with the wire thus embedded, and then allowing the whole to cool before removing the wire from the embedding material. While cooling, the vessel is dipped intermittently into cooling liquid.
According to the English Mechanic, a very good way o anneal a small piece of tool steel is to heat it up in a orge as slowly as possible, and then take two fireboards and lay the hot steel between them and sonew
them up in a vise. As the steel is hot, it sinks into the pieces of wood, and is firmly embedded in an almost air tight charcoal bed, and, when taken out cold, will be found to be nice and soft. To repeat this will make it as soft as could be wished.

Geo. E. Doering, Ph.D., informs one of our medical journals that an alcoholic solution of oil of wintergreen rubbed on the marble slab of a soda fountain will keep the flies away and not prove disagreeable to customers. It is well known that all essential oils are poisonous to insects.
To make a good black varnish for ironwork, take 8 pounds of asphaltum and fuse it in an iron kettle, then add 2 gallons of boiled linseed oil, 1 pound of litharge 1/2 pound of sulphate of zinc (add these slowly or it will lume over), and boil them for about three hours. Then add 116 pounds of dark gum amber and boil for two hours longer, or until the mass will become quite thick when cool. After this it should be thinned with tus pentine to the proper consistency.

Ozone.

Ozone, according to the recent careful observations of Dr. Olszewski, boils at a temperature of $-106^{\circ} \mathrm{C}$ This curious substance-the nature of which was so long a mystery, and about which so many conflicting hypotheses have been devised-is now beconing well known to us. For the sake of those of our readers who have not been able to follow the details of recent research, we may in a few words summarize the present state of our knowledge. Ozone is a denser form of oxygen. Its specific gravity is 24 , that of common oxygen being 16, and that of hydrogen 1 . It is highly probable that its molecules contain three similar orygen atoms. In the concentrated state it is a powerfal irritant poison, and it is very unstable, decomposing with explosion and with evolution of heat, and exerting a most powerful action on oxidizable materials. For some time past it has been known that it liquefies under the influence of combined cold and pressure. The liquid is indigo blue, and its vapor in a tolerably concentrated state has a color which can only be compared to that of an Italian sky. Olszewski has now succeeded in liquefying it at the ordinary atmospheric pressure by exposing it to the intense cold of boiling oxygen (-181° C.). When cautiously heated the liquid began to evaporate, and when heated to -106° C. it entered into active ebullition. It is a very dangerous substance to work with.-Lancet.

Blumdering in the Naval Burean.

No little dismay has been occasioned in the Naval Ordnance Burean by a mlshap which, appareutly trivial in itself, is fraught with grave consequences. A great injury is said to have been done to one of the largest pieces of ordnance yet attempted at the Washington ordnance factory, by the breaking of a portion of the huge bar which carries the tool used to finish the bore of the gun. The accident is said to be of a serious nature, and the present prospect seems to be that the piece is injured beyond repair. A deep score is said to have been cut in the interior surface of the powder chamber. In any case, the accident bids fair to be an expensive one. This is the more to be regretted as it is said to have been a thing which could have been foreseen and guarded against if the delicate and valuable manipulations called for in this class of work had been contided to the care of competent supervision, as would be the case in a private establishment where such important interests were at stake. And this adds renewed force to the criticism which has already appeared in these columns of the system which places young men unskilled in any of the mechanical arts, untrained in shop service, and ignorant of even rudimentary metallurgy, in positions of high trust and responsibility in a factory of ordnance of the grade which the Government aspires to set up at Washington. In all this it must be borne in mind that no reflection is expressed or intended upon the officers under the Bureau of Ordnance when operating in their proper spheres and carrying on the legitimate duties of their profession. The country is too much indebted to the fighting branch of the navy to render effective any criticism of their ability in any and all positions for which they are fitted by their educstion and training ; but it is unreasonable to expect full and unbroken success in the career of any man, be he offlcer or otherwise, who aspires to be "Jack-at-alltrades." Without long and persistent training in mechanical pursuits, any success which may attend the sudden investment of a naval officer with the snperintendency of a great gun shop, such as the one at the capital, will be due more to "good hit than any good wit."-Army and Navy Journal.

On Decoration day, the Manhattan Elevated Railway, New York, carried 571,412 passengers, or 14,000 more than ever before in one day, and the receipts were $\$ 28,570$. The average daily passengers for the
three months ending March 31 were nearly 430,000 , including Sandaya.
wide and three inches long, upon opposite sides of one or two segments of a rubber fruit jar ring, and binding the glasses together upon the rubber by means of very MICROSCOPIC PROJECTION strong thread.
In mechanics it is a generally accepted principle that a tool or a piece of apparatus applicable to a large number of uses is too much like the Jack of all trades; but this principle is hardly applicable to physical apparatus, as it is seldom in continual use. In fact, it seems desirable to find as many uses as possible for the different pieces of physical apparatus one possesses, and this remark applies to seientific toys quite as appropriately as to the more expensive apparatus.
In the case now presented, the toy lantern and the toy microscope described in previous articles are pressed into the service of microscopic projection, the lantern serving as the illumina. tor, the microscope stand as a support for the object, and the eyepiece of the microscope as a projecting objective.
To arrange the microscope for projection, the focusing tube is withdrawn from its guide, the draw tabe is removed from the focusing tube and inserted in the place of the latter, after being wrapped with one or two thicknesses of paper to make it

HICROSCOPIC PROJECTION.

fit. The eyepiece is now inserted bottom up in the and lantern tube axially in line. It is necessary to supdraw tube, that is, with the eye lens next the stage of port the microscope at such a height as to cause the the imicroscope. The tube is then turned down into a brightest part of the image of the flame to fall upon horizontal position, as shown in the engraving, an the object. A clear, sharp inage may be producedin object of some kind is placed on the stage, and the the manner described, but, of course, its size is limiten lantern is arranged so as to project a bright, sharp by amount of light available. With a strong light. image of the flame upon the back of the object. The illuminating power of the lainp may be increased by turning its flame edgewise or at angle of 45°, and (as suggested in the article on the toy lantern) the addition of a small piece of gam camphor to the oil in the lamp intensifies the light.
A screen, preferably of white cardboard, is placed about five feet distant from the microscope, and the image is focused by sliding the draw tube. It will, of course, be understood that the room in which the microscope is used must be inade as dark as possible. With these appliances, ordinary objects may be projected so as to be easily visible to twelve or fifteen persons. The nearer the screen is to the microscope, the brighter will be the image.
The eyepiece belonging to this inicroscope is of the negative kind, that is, the image is formed between the eye lens and the field lens, when the eyepiece is used in the regular way. Very good results may be secured by the use of a single lens. Either of the lenses of the eyepiece may be used by removing the other, but in this case the diaphragm must be taken out to allow the full beam of light to pass.
The objects that may be shown in this way are the larger animalcules found in stagnant water, parts of insects, sections of wood, stems, leaves, etc., crystals, woven fabrics, feathers, etc. The objects selected should be as thin as pos. sible, and if unmounted ible, and if unmounted should be pressed flat be-
tween t wo glasses. An inexpensive cell for containing objects in water may be made by pressing two plates of glass, one inch

the crown jewels of fraice recistiy soid at auction di paris.
antiug and Polsonc.
rational therapeutics will be characterized by increased precision in instructions as to the mode of taking medicaments, their rela tion to food, their state of dilu tion, difference of action accord ing to temperament, and so forth Fasting is already known to ex ercise an important influence on the effect of certain substances and M. Roger has further in vestigated the influence of the state of hunger upon the power of animals to resist the poisonous action of alkaloids. It was found that such alkaloids as quinine, atropine, or nicotine were only four-fifths as toxic if introduced during fasting into the periphe ral venous system of a rabbit as compared with their action when introduced while digestion is in progress. But if introduced into the portal venous system during digestion, the toxicity is only half that during fasting. It is assumed, then, that fasting di minishes the power of the liver to arrest the alkaloid, and this coincides with a diminished power of glycogen formation Sugar given to the animal three hours before experimentation causes the liver to recover its functions. -Lancet.

THE CROWN JEWELS.

The sale by auction of a vast number of jewels is a matter of no mean import ance, especially so when they are the imperial jewels of no less a country than France. The jewels themselves were of rare worth, owing to their size purity, and beauty, and purity, and beauty, and their value being many times enhanced by their
historical associations. . In historical associations. . In
spite of the meager details spite of the meager details that have reached here concerning the sale of th 12th of May and following days, the interest taken in the event has been mark ed; and although the illus tration, which is borrow-
ed from the French paper ed from the French paper
L'Illustration, is as perfect L'Illustration, is as perfect
as could have been expect ed, it can only convey feeble idea of the beauty of some of the choice gems. Nos. 1, 12, and 18 are small crown, and pendants of rubies and diamonds. No. 2 is known as the Russian crown. No. 8 the grand pearl crown. Nos $4,10,18$, pendants and pins of sapphires and diamonds. No. 17 is a necklace of the saine stones. No. 5 a rose No. 6 a knot with two tas sels. No. 7 a brooch with pearls and diamonds. No. 8 a comb with large diamonds. No. 9 a buckle for a belt. No. 11 a rosette for the hair. No. 14 a bouquet to be worn on the corsage No. 15 a crescent. No. 16 the brooch Sevigne
Many of the jewels sold will be brought to Ameri ca, several purchasers from this country being repre sented at the sale. Messrs. Tiffany \& Co., of New York, the well known jew elers, purchased a necklace for 183,000 francs. It con sisted of four revieres mad up of 222 diamonds, weigh ing 363 carats. instead of steam.

BNGMRERITG Divemtions.

A carbell has been patented by Mr. Wil liam H. Hudson, of New York City. It is adapted to be operated from the axie of the car when the latter is in motion, the car bell and striker belng arranged in
connection with a pulley having an arm operating on the etriker, an endless belt panaing orer the polley and operated by the axle of the car.
A steam heater for railway cars has been patented by Mr. Henry R. Robblins, of Baltimore.
Md. This invention covers certuln novel features of constraction in steam heaters in which pipes or tabee are supported underneath a train of cars, with means for commonicating with registers or orther devices for diffusing the heat within the cars
A car coupling has been patented by Mr. Lavvega Self, of Piedmont. Mo. Combined with the chambered head of the drawbar is a epring-preseed
follower adapted to hold the pin in an elevated poostion ollower adapted to hold the pin in an elevated pooition,
and to hold the link in suitable position for engagement with the drawhead of the adjacent car, the device bein, min amend An automatic railroad gate has been patented by Mr. John T. Phillips, of Now Castle, Pa. proaching train and opened as soon as the last car has passed the gate, which is pivoted, in connection with springs arranged at the side of one of the ralis of the
track, wheels mounted in bearings, levere engaging the springe and wheels, and other novel featurate.
A tube expander has been patented by Mr. Thomas Beverly, of Kilis. Kansas. It is especially deaigned for expanding the ends of boiler tubee close
ap to the fange of the fiue sheet, a stagle tool being ap to the Aange of the fine eheet, a single tool being
provided for fivee of difierent diametera, the etock being adaptod to recelve rollers or swages of different sizee, in connection with which is employed a tapering plua varied in size and form for different requiremente.
A car coupling has been patented by Mr. Henry Gallager, of Savannah, Ga. It is intended soe ordily for use on freight cara, having a drawhead of he ordinary form, with pln openings, with a main
bever and a pin saspended at its forward end, the rear end being pivoted to the drawhead, the device being inand uncoupling can be effected without trainmen going and uncoupling
A railway gate has been patented by Mr. Oliver H. P. Cornell, of Albany, N. Y. It is for closing bighways at the intervection of railways and
 cape wheel and a pendulum piroted on a Axed sap port, with other novel featares governing the time of opening and closing and adapting the gate for nee in variety of sittastions.

AGRICULTURAL IIVEATIOME

A combined hay rake and tedder has been patented by Mr. Casedus M. Maxson, of Portville,
N. \mathbf{Y}. This invention covers varions novel detalls in N. Y. This Invention covers varions novel detalls in
the conseruction and combtnation of parts of a mathe construction and comblnation of parts of a ma-
chine which can be readily adjasted for ane ae rakes or as tedders, and which is calculated to be reliable in operation In elther capacity.
A dust conveyer for thrashers has been patented by Mr. Lyman A. Miller, of Carbondale III. Combined with the thrashing cylinder and feed board are a fan and fan case, with a tube having its
vertical portion provided with inwardly or rearwardly projecting tubes, extended to conform to the lower side of the feed board and then carriled upwari
rearward to canse it to overhang the feed board.
A combined seeder and fertilizer disribater has been patented by Mr. Isaac N. Franklin, of the seed and fertilizer are simultaneonasly dropped in one spot on one side of the machine into a furrow made by the opening catter or plow, the furrow afterward
being closed by the driving wheel, the invention coverbeing closed by the driving wheel, the invention co

MISCELLANEOUS INVETTIOTS

An improvement in calipers forms the abject of a patent issued to Mr. Oliver D. Warfield, of Chicopee Falls, Mass. The invention consists in a joint ormed of two roling sarfaces held together by a
pring, the legs having convex sarfaces and mortisen, nd the spring having tenons to at the mortises.
A hat has been patented by Mr. Robert Plats, of New York City. It is designed as a Robert Plats, of New York chy. It is desigued as a
cheap and practical folding hat, the brim wire being
formed in curved sections, with inwardly projecting formed in curved sections, with inwardly projecting
radial arms at the ende of each section, the arms being held by radial seams in the brim.
A fireplace blower has benn patented by Mr. Ralph Ely, of Delaware, Ohin. A hood is
secnred to the lower edge of the blower proper, and so arranged as to permit free access for the purpose of tirring the fre, while the dust resulting from such
A necktie fastening has been patented by Mr. James H. Carter, of Philadelphia, Pa. A back plate is connected at its apper edge to the apper edge
of the front or main portion of the necktie, with open. of the front or main portion of the necktie, with open-
ings throagh the front portion and back plate, the for the ordinary scarf pin
A scribing attachment has been parented by Mr. William F. Seargeant, of Marshall, Mo. it consiste of two parallel legs united by a head block, other features, the attachment being more particularly designed for marking off weather boards where they bunt against window casings and corner strips.
A swing has been patented by Mr. John O. Lyon, of Quincy, IIL Ite construction is such
that no rope or other connection with a Axed point is
required to operate the swing. The seat may be ad-
justed to an upright or a reclining position. The is easily portable, and has an awning to adapt it for comfortable ase in san or shade.
A hat hook has been patented by Thesers. Gustav and Frederick Pape, of New York City. closed upon a hat or other garment placed apon the hook, and to be locked to prevent the removal of the garment except by
A cattle stanchion has been patented y Mr. Dwight Manwaring, of Algona, lowa. The frame has a horizontal rod on its top cross piece, the neck
bars having separate independent fexible connections at their upper ends sliding laterally on the horizontal orl, the neck bars being thus yieldingly mounted and
A necktie has been patented by Mr ohn H. Irwin, of Philadeiphia, Pa Combined with Inding strip formed with button holes are studs atted within the button holes, the binding strip being comoosed of several layers of the material forming the outer face of the scarf, thus making a scarf
A bustle has been patented by Messrs. dward D. and John Fraser, of Brooklyn, N. Y. I consists of main and auxiliary loops so arranged that
when the extending loops are subjected to any preswhen the extending loope are subjected to any pres-
sure directed toward the person of the wearer the loops will fold upward and inward to positions withln the line the main sapporting hoop.
A cuff fastener has been patented by Ir. Davld Stone, of New York City. It is a stad pin, the head of the stad being preferably concave and the hollow shank being preferably proviced with a spring, making a fastener whereby the cuff may
readily secured in such position as may be desired.

A carpet stretcher has been patented by Mr. Oscar L. Sprague, of Andover, Ohio. Combined with a slotted main frame is a rack bar carrying teeth
and having vertical and longitudinal movement, pivoted iever carrying a pawi, an independently pivoted make a simple and othective device featares, calculated to ing down carpets.
A cigar bunching machine has been patented by Mesers. William M. Stelnle and Anton
Senn, of Toledo, Ohio. It has an endless traveling senn, of Toledo, Ohio. It has an endless traveling both edges of the belt may be slackened or tightened to roll bunches of different sizes and shapes, the compressor cutting off surplus tobacco as it descends on the cigar bunch placed in the shaper and forcing the banch into the mould cavity withoat too much pressure.
An improvement in pants has been patented by Mesers. Frank Kahn, Hirsch Morris, and outs Morris, of hemphis, Tena. It consists in having through the laps or folds, with a second separate strip croseing the firat strip and stitched to the legs at op pecially to working pants or overalls, and beling in ded to make ripping prectically impoeal
A fruit picker has been patented by Mr. George C. Thompeon, of Darien, Ga. It consisto or two pivoted hemispherical caps, arranged to nest to cord for closing them to a spherical form, and a a pal handle, permitting fruit to bo plcked from clustera, from the picker not expending to occupy a great spece A washing
A washing machine has been patented by Mr. John W. Neff, of Buckhannon, West Va. Comcircular plates with circularly arranged bowed epring the plates carrying concave rubbing sections connected by bolts to the ends of the springs, are other nove features, to bring more or less pressare on the clothes
A shattle operating mechanism has been patented by Mr. Lynn W. Back, of Springfeld Vt. The sweep stick is formed with a slot throug
which the picker stick passee, the slot belng larger than which the picker stick pasees, the slot belng larger tha the latter, the sweep stick beling sapported and con
then nected with the picker stick by an all wood or all metal connect
An implement for buckling bale ties has been patented by Mr. Frederic s. Williams, of De one end for clamping one end of the tie is a lever fal
ont cramed to the bar, and formed with a forked forward end adapted to retain the cross bar of a buckle held to of the tightened tie to be passed aronnd the backit crose bar, with other novel feature
A plastic compound for walls has been pases. by Mr. Henry W. Herrita, of somerville patented invention of the same inventor, and provides for a compound consisting of eilica and a solid silicate and carbonate of lime, each in palverized condition dissolved in water, and a soluble alkaline silicate, the
whole intermixed and incorporated after a special manner, and including variations for diferent usee.
An automatic perforator for printing presses has heen patented by Messra. George and Robert Kcnnedy. of New Westminster, British Columbia,
Canads. The invention provides a hollow rale con taining a serrated cutter monnted on links to glve it a paraliel motion, in combination with an angled lever by the yielding contact carried by the platen of the press, for perforating paper in the operation of print-

A washing machine has been patented
by Mr. Townan Hand, of Shelbs ville, Ind. This in-
conical shaped dashers are made to reolprocate vertl-
cally in a tub on a revolving table, the machine beine cally in a tub on a revolving table, the machine bein large or small namber of clothea, and provides means whereby the dashers may be readily changed from vertical
features.
A stringed musical instrument has been patented by Mr. George W. Van Dasen, of Brooklyn
N. ${ }^{-}$T. This invention relates more particniarly to planos, providing a simple arrangement of the string and their supports, the spring wire being fattened where it is doubled over or aroand a head or pin, and the string head having a knife edge bearing upon a
compensaling lever, the construction being designed to compensaling lever, the construction being denigned to perfect harmony and pitch of tone.

A carding engine has been patented by Messrs. Benjamin A. Dobeon and William I. Bromilley of Bolton, Lancaster Connty. King. The invention re
lates to an improved arrangement for casing in the lates to an improved arrangement for casing in the
apace between the cover of the doffer cylinder and the adjacent portion of the main cylinder of the carding engine, dispensing with the ordinary wooden or tin mould or any other locose filling up or making ap pleces, the parts.
A carding engine has likewise been patented by Mr. William Dobson, of Bolton, Lancaster County, Eng. In connection with the engine bend, or adjusting the fiexible bend, are a slotted bracket piece on the engine bend and a pin or projection on the asilly arranged positive adjuating action. making an

SCIENTIFIC AMERICAN

buIIDING EDITION.

JUNE NUMBER.

TABLE OF CONTENTS.
Plate in Colors of a Twelve Hundred Dollar
Cottage, with floor plans, also sheet of details,
specifications bills of estimate, etc. specifications, bills of estimate, etc.
Plate in Colors of a Five Thousand Dollar Reed-
dence, with plans, sheets of details, deecription, Plate in Colors of President Cleveland's Cot-
tage, near Washington. Residence of George Noakes, Rsq., at Riverside
Park, New York City. Page engraving. a. Dwelling for Three Thousand Dollars, with
perspective and floor plans. B Resldence at 0
and floor plans.
A.Three Thousand Dollar House at Mount
Hope, New York, with perspective and foor Awenty Thousand Dollar Suburban Reas-
denoe, with perspective and partial details
Fuil page engraying. An olegant deedgn. Residence of George W. Childs, Keq., at " Woot-
ton," Delaware Co., Penn. Half page engrav. Exhibition of Fine Arts, Venice. With one A Hungarian villa. Half page engraving. Design for a Store and Stable adjolning. W A Carriage House and Stable of moderate cost. Semi- detached Dwellings at Evanston, II.
Haif page engraving.

The new Addition to the Metropolitan Museum
of Art. Central Park, New York. With an en-
gravting.
The Historic Monuments of France: The Ro-
man Arch of Mars, at Helms. Half page engraving.
The Towe

路 page engraving.
Two Churches of moderate cost, with perspect-
ive views and ground plans. 20. Residence of Mr. Arthur Lawrence, Maidenhead
Thicket Berks, near London, Ahowing per-

The Scientific American Architects and Builders
Edition is issued monthly. 82.50 a year. Single

Special.
Says Frank sladall: "I Inhale Compound Oxygen
neariy
overy day or my iffo it invikorates the nerve

 afloe at any hour that I am able to ret away from my ndures throughout the day, Then I Come stralaht back and buckle to work agaln. I am a well man now, and continue its use only as an invigorator: but both my
wife and son have tried it (the former for serious complaints) with the most satisfactory results."
"Dr. Starkey left a lucrative practice to apply the
rruits of long researches; and if he had advertised as I rults of long researches; and if he had advertised as I
have done, he would now be a millonalre. But he and have done, he would now be a milllonalre. But he and
his partner, Dr. Palen, are well known. Here is Judke
Will his partner, Dr. Palen, are well known. Here is Jodke
William D. Kelley, the father of the House of Representatives,' as he is called. Ael him."
"Yea," said Judge Kelles, "I can
"Yea," sald Judge Kelles, "I can Indorse aul that Mr. "adall has sald sbout the benefts of Compound Oxygen. overything else mad falled, and I thought i must die. I had frequent hemorrhagos. But Compound Oxyren came "my notice: I tried it and was saved."
"I have known Dr. Starkey for thirty years," resumed
Mr. slddal. "He is worthy of my moast
 remedy."
Drs. Sta
Drs. Starkey \& Palen, 1529 Arch Street, Phuladelphia, anybody who will write for 1

ßusiness and æersonal.

The charge for Insertion under thes head is One Dollar
a Inne for each insertion; about eight words to a line. a Tine for each insertion; about aight voorde to a lina.
Adoertioments murt be rocotvod at publication aftece Adoertiomments mumt be rootiod at publication apfice

The Repablic Reduction Workn, Repnblic, Michigan, have recently erected a 12 inch Sturtevant Mill for grind-
ing specular iron ore with most excellient results. They are now arranging to add two 20 Inch mille to increase machioe is much larger than by any other process, and
the cost of grinding much lese

Electric Mats, Burglar Alarm, under Carpets. Only
Secarity. (Thieves remove panel or glass. Old Alarms
 stores, Offces, Door Open.
Inventors, patentees wanted. "J.," P.O. box 3101, N. Y.
Stationary and boat enginee, boilers. Best and cheap.
st. 1 to 10 H. P. Washburn Kngine Co., Medina, Ohio.
Water power and mill site on the Little Kit at Nort gast, Md., hair way bet ween Philadelphia and Baltimore. is feet fall. The old Orawford sclu property. Plenty of an eetate. Call on or addrees John M. Slmpers, North-
east, Md.; or A. D. Atkinson, New Brunswick, N. J.

An undivided half of a metallurgical patent, having about is years to run, will be given for prosecuting in
fringers in Anal judgment in the courts. The damage accruing against infringers are already about 85,000 a
day. Address Inventor, room 8 , 3 d 1000 , 160 Broadwas. day. Addre
New York.
Press for Sale-Quick acting. Hole in bed 8x5 apindle Drill. A few second-hand engines in Arst-class conaltion. B. W. Payne \& Sons, Elmira, N. Y.
United States rights for an egg carrier for sale. Ap ply, ELd. Ghexnasder, New Orle
Leach, 585 Broadway, New York.
For the latest improved diamond prospecting drills address the
Chicaro. III.
The Australian-American Trading Co., 20 Collins St. West Melbourne. Sole aasencles for Amertcan noveltites
desired. Correspondence sollited. Care of Henry w desired. Corresponden
Peabody \& Co., Boston.
The Ralliond Gazette, handsomely illustrated, pab lisbed weekly, at 73 Broadway, New York. Specimen
ooples free. Send for catalogue of rallrond bonke
The Knowles Steam Pump Works, 118 Federa st.. Boston, and so Liberty st., New York, have Just is
uod a new catalogue, in which are many new and im proved forms of Pumping Machinery of the single nnd
duplex, steam and power type. This catalogne will be duplex, steam and power type. This
malled free of charge on application.
The Startevant Mills are being largely and favorably rock, cement, and other hard and refractory phosphat Circulars, with full information and references, may be
bad on application to the Sturterant Mill Co., Boston, Link Bodting and Wheels. Link Belt M. Co., Chicago Presees \& Dies. Ferracute Mach. Co., Bridgeton, N.J Woodworking Machinery of all kinds. The Bentel \& Nickel Plating.-Sole manafacturers cast nickel an dee, pure nickel salts, polishing compositions, etc. $\$ 100$
Lettle Wonder." A perfect Electro Plating Machine. Sole manufacturers of the new Dip Iecquer Kristaline Complete outat for plating, etc. Hanson, Van Winkle d Iron Planer, Lathe, Drill, and other machine tools o Catalogue of books on civil and mechanical engineer ing, electricity, arts, trades, and manufactures, 116 pages sent free. F. \& F. N. Spon, 35 Murray St.. New Yort. Catting-off Saw and Gaining Machine, and Wood
Working Machinery. C. B. Rogers \&Co., Norwich, Conn. Ponoer, 118 Liberty St., N.Y. \$1 per yr. Samples free Billings' Double-acting Ratchet Drills. Drop Forgings Universal \& Ind both bor \& round body. Cushman Chuck Co., Hartford.ct Get estimater from Christiana Machine Co., 806 North and kearing before ordering elsewhere
The Improved Hydraulic Jacks, Punches, and Tabe Hoisting Engines. Friction Clutch Pulleys, Cat-on

Veneer Machinea, with latest improvements. Farrea
Fdry. Mach. Co., Ansonia, Conn. Send for circular. Tight and Slack Barrel Machinery a apecialty. John
Groenvood \& Co., Rochester, N.T. Soe illum, adv., p.28. Curtis Pressure Regulator and Steam Trap. See p. 288. Iron and Steel Wire, Wire Rope, Wire Rope TramLick Telescope and all smaller aives built by Warner s Swasey, Cleveland, Ohio
Send for new and complete catalogue of scientifc
Beoks for sale by Munn \& CO., 381 Broadway, N. Y. Free an application.

Audamis
 HINTS TO CORRESPONDENTS.

price.
mer ment for en enamination shoold be distioctly
marked or labeled.
(1) W. W. Q. writes : I have two baths which I have been using for plating; one is of cyanide
of siver and the other of cyanide of gold; how can I reduce these baths so as to obtain metalic sillyer and
gold? A. Preciptate with zinc clippinge and sulpharic cid, and ciseolve out the excess of zinc with more sal pharic acid. Do not work at
poisonooss gas may be evolved.
(2) S. M. M. desires a recipe for pre serving rose leaves, as we see them in jars in art stores.
A. Pat a handrul of salt on the bootom of an earthen arr, then a layer of leaves, and repeat this alternately
ntil the jar is alled. Keep the jar as much as posel not in the jar is liled. Keep the jar 28 moch as poses
ble we not to be exposed.
(3) A. F. asks : 1. Will paper varnished nee in an Induction coill, A. Shellac ts generally need, ond will save time in drying. The other will anower, bave a manll nuagneto-electric machine, such as is osed ip ringing telephone bells; will It work a small indaction
coil, and what kind of a current doee it produce, no com. mutator beling used? A. It will work a mall indiction coil. giving the usaal "sbattle" current. 2 I
have a large number of small spools wound with No. ouncea of wira; can I Inee the wire for making an indac tion coil, and if so, how should the spools be connected snd how should the layers be ingalated, A. You can are the wire, but must rewind it. See SUPPLIMEST
Noe 180 and 180 , for foll instractions.
(4) J. M. G. asks: 1. Can you give me
 Yarch 5. 1887, for this information. 2. Can yon tell
ne how to burn or boil lineed oill? A. Unseed oll in me how to burn or boil linneed oill A. Linseed oll in
the proportion of 1 gallon with $9 / 4$ ponnd litharge is Nlowed to simmer with frequent sutrring antil a akin exins to form, which scam is then removed, and when decanted and called bolled oil. \& What effrct has engar of lead on printing inke? A. if combined with the linseed oll, it would tend to make a quick-drying
(5) T. H. K. writes : In tinning copper ressels, I have them scoured out with sand after they I come to tinning, ase a forze heat, and tin with pure block tin and sal ammoniac, bat the tinning will not sdibere to the copper on mome parts. A. A Yorge betat tin takees. A charcoal farnace to better. You shoold sprinkled on the sarface, by poaring on the melted tun, having it quite hot, and allowing the surplus toran off at once back into the melting pot. A ilttle powdered
al ammonluc will help the fow it it becomes lumpy Brushing the clean earface of the copper with a satur ated solution of zinc and sal ammoniac in hydrochloric cid (tunman's acil) shoold also work well, pouring the hot tin quickly. We fear that
from the treacherous forke Are.
(6) J. E. S. asks the best explanation of the fact that the moon appears larger when near the
horizon than when high in the heavens. A. The at mosphere by ite refraction acts as a lens, producing an apparent increase in diameter near the horizon. Som consider that the atmoophere as seen from the surface of the globe las section of a vast lens whose radias is a small increase in the size of objects seen through it and a still greater increase when seen in the obliquity of the horlzon, in the same manner as an object is sen
at a low angle through a long focas lena, or by turning at a low angl
it edgewise.
(7) A. S. E. asks (1) how to clean Quincy granite when rusty, after being exposed to the
weather a few years. A. Use atrong lye, or make a weather a few yearas. A. Use strong lye, or make
bot solution of 8 pounds of common washing oode dies zolved in a gallon of water. Lay it on the granite with
a palnt brush. 2 What is the cause of Iullan marbl having a greasy appearance after being in the weather a the air, and the marble can be cleaned simillarly to the method as above given.
(8) G. R. R. asks how to restore the Iaster of morocco leather, snch as is ased for blinds and
addees in harneea. A. It is prohably patent or ja panned leather on your harneses, instemid of morocco such luster in put on by baking on a apecial black var nioh in an oven. A partie suitichie to preserve glose of patent heather and prevent cracking io made or wax
with a little olive oul, lard, and oll of tarpentino, mixed when cooled
(9) J. E. writes: I have a large ash can which I wish to obe for walko around the houve, and durable walk? A. Mix ordinary clay with jon ashes, and it will make a good walk. 8. Aloo how to
clean a marble slab that has become discolored from ase? A. Take 2 parte of common sodn, 1 part of pumice
stone, and 1 part of fnely powdered chalk; sift stone, and 1 part of fnely powdered chalk; sift
throngh a ine sieve and mix $i t$ with water; then rub
well all over the marble, wabling with soupp and wator.
(10) E. G. G. desires some method of wholly or partially decolorizing vinegar. A. Filler ihrough charcooll or add a handful of charcoal to a bar
rel contuining it. Agitate thoroughly and then alter.
(11) J. E. A. asks : What will clean white Derby hat? \mathbf{A}. Wash lin a hot solution of carbon-
 dencroying the orginal inilah.
(12) R. B. W.-For plain directions for anking a simple telephone, see SUPPLIMIKRT, No. 14 for making
49 and 817 .
(13) C. H. desires a receipt or preparaRab with equal portions of ane coal sahes and sode with a iltule wate
(14) W. B. H. says : Will you please sive me the height of printer's type as nsaall
thousandthe of an Inch. A. ind of an inch.
(15) J. M. D. asks : 1. What will be the resint if 1 introduce a mall amount of compreseod alt ato bollers sapplying steam to ran compressor?
ir and steam comblined for motive force is an old idea which has been tried and has falled; it costs more to introduce the air than its ralue. It will do no harm
and litte good. 2 . What is the beat labricant for cylin. and litle good. 2. What is the best thobricant for cyln
ders of enginee driven by compreseod air? A. Uoe light ders of engines driven by compressed air! A. Use light
mineral oil. 8. What is meant by "clearance spece"
and in cylinder! A. Cloarance is the space between the cyl atroke, and the steam paseage between the ralve and cylinder.
(16) W. H. S. asks for something, in yquid or any other form, good for purifying air in othing where acide and gases exiet. A. We know come are presenmably itronger than anything you could se to neatralize them.
(17) C. E. B. asks : What material is ased in taking a mould of one's head and shonlders, proparatory to makking bust of plaster of Paris or clayy? Aloo, how can one prepare or cover the harry portions
of the head and face? A. The person mast lle on hie or the head and face? A. The person must he on his
back, his hair belng tied behind; into each pootril pat Conck, hisal hair beeling tied behind; into each postril pal conical piece of paper, open at each ena, wo alow ,
breathing. The fuce is to be lighly olled orer, and the plaster being properl' prepared is to be poored over he face, taking particular care that the eyes are abut. till the plaster is a quarter of an inch thick. In this way a mould is to be formed from which a eecond cast 1 be taken, that will fornish a cast oxactly lice the
 Norember 27, 1888

(18) J. C. G.-Galvanized pipe for water or hoose sapply is not poisonous if the water be kept he water that the pipe contains shoold be drawn of before any water is nsed in the morning. The black pipe ives with rust nater, | anea |
| :--- |

(19) A. L. P. asks what to use to paint cast ron vases with, white, that wil stand tho weather. A. White gapan analan temperature of 2 ges is is the only
or drying room at a ter white that will stand the weather. All air-drying paints
(20) W. S. C. asks how to make black tencil blacking wich is sold in cakes. A. Triturato ogether 1 part pare soot and 2 parts Pruslan blae with
litule 1 y cerine, then add 8 paris gam arable and gnfl lent glycerine to make the deaired conalatency.
(21) G. A. writes : We have an island on which poison ivy grows. What to the best means to ing? A. The rines can only be removed by digying them up or burning them away. They cannot be destroyed except with other vegetation throngb Arre and
similar means. As an antidote, bathe the parts affected imilar means. As an antlidote, bathe the parts affrected
with a tablespoonfal of sulphate of copper disoolved in a mmall teecuptul of bolling water.
(22) W. S. asks (1) a recipe for a candy called batter scotch. A. Take 1 poand of sugar, $\$$ pint
of water, and set over a slow fre; when done, add $11 / 2$ ablespoonfuls of batter, and lemon jalce to alavor. 2
 3. How is ginger ale made? A. see article on "Sammer Beverages," given in Scrixtirfio Ararioan Sur-
(23) J. E. P., Jr., asks a receipt for overcoming the odor of cordaroy. A. We doabt there beligg sny practical remedy, oxcept the equivocal one of sab. tituting some other more powerful odor. There
sinds of cordury which do not have much odor.
(24) A. C. D. asks how to make a filter for oll that has been used once in dynamo oill cappe. ing through cotton or cotton waste is the simpleat manner of purifying the oll, if it is not very dirty. When a
more tharough altering to noeded, heat the oll with an
equal quantity or water to 212° Fah, agltate for a
(25) A. B. C. desires a recipe for maki
arat clase sticky ay paper. A. In a tin veswol melt to
gether 1 pound of realn and add 2 fauld drachme of Inseed oil : while the mixture is warm, dipa spatala into maper. Different amplest of resin regaitio varying pro paper. Diferent samples of resin requiro varying pro
(26) A. C. B. asks about painting posts wind of coal is used, and the best mode of pulverizing it aind of coal is used, and the best mode of puiverizing
A. Use charcoal, which can be easily pulverized in a mortar. Coating posts, which have been charred with coal tar is a better preservative, the absorben lar to penetrate to a good depth.
(27) W. J. E. asks : What proportion an iceberg
its volume.
(28) H. O. W. asks : 1. Is there any govow can it be sequired by eetleres A. Addrese the Land Comminsloner of the states referred to. There is also an officlal of that title in Washington whom you may consult on these pointa. 2. Will tincture of can out injury, and how is it applied? A. It is an irritant, Ind is the busis of many hair invigoratore, bat exile of It is the basis of many hair invigorators, bat falis of tion is: Scald black tea 2 ounces, with 1 gallon boiling cantharides ist and add 8 ounces glycorine, unctas well by shaking, and then perfume. 8. What will ro move tan or sunburn from the face? A. Use a mixture
of magnesia in soft water, spread on the face, and of magnesia in soft water, spread on the face, and
after a minute or two whesh off with Castile soap suds and rinse with soft water.
(29) L. M. asks (1) for some receipt for promoting the growth of hair. A. See preceding
answer to H. O.W. 2 One to remove the same without injury to the skin. A. Use a strong solution of barium should be mapplied immediately powdered starch. I shonld be applied immediately after it is mised, and
allowed to remain there for B or 10 minates. If no used very carefully, it may injure or mark the skdn.
(30) G. H. S. asks : What will take oil grease, butter, or any subatance of an olly nature ou
of writing paper? A. Uee pipe clay, powdered, and mired with water to the thickness of cream; leuve it on or some hoars.
(81) Derfia asks how to restore a type writer ribbon where the ink has become dried in. A For a dew ribbon, or complete renovating, take of ani ine black $\$ \mathrm{~K}$ ounce, pare alcohol is ounces, and con centrated glycerine 15 ounces. Diseolve the anilline black in the alcohol and add the glycerine.
(32) W. S. asks : What is liquid anhy drons ammonia? Can you favor me with the method of making same on a small scale? A. It is liquefed am-
moniacal gea, NH by leading the anhydroas ammoniacal gas into a tube plangod in a freesing mixtare composed of cryatallized calcium chloride and ice, having a temperature of $-30{ }^{\circ}$
(33) T. R. J. asks: Which of the commetals are most susceptible to heat and cold Mercary and zinc.
Minerals, etc.-Specimens have been received from the following correspondents, and have th results statod.
P. R-The metalitic portion to pyrite or salphide of iron, and atterly valuelene.

TO INVERTORS

An experience of forty yearr, and the proparation o more than one hundred thousand appllications for pe-
tents at home and abroad, enable us to anderatand the laws and practice on both continonts, and to posesese unequaled facilities for procuring patents everry werr. synopais of the patent laws of the Unitod States and ail
forelga countries may be had on applicaulion, and person forelgn countries may be had on applicatlon, and person
contemplating the securing of patenta, either at home o abroed, are invited to write to this ofice for prioes,
which are low. In accordance with the times and our extensive facilities for condacting the businesa. Adaread
MUNN \& CO., omice ScIENTITIC AMERICAN, 881 BroadMUNN \& CO..
way, New York.

INDEX OF INVENTIONS
For which Lettore Patent of the Unitod staten wore Grantod

May 31, 1887
AND BACH BEARING THAT DATE.
[See note at end of list about coples of these patenta.]

${ }_{364,08}^{308}$
camera. See Photngraphic camern
Camera shutter, automatically operating, w.C
 Car, complined Chair and Car coupling, L. Champagn Car coapling, H. Gallager.:

 Car coupling, automatio, L. W. Iavto
Car door fastening, C. C. Wranshall

Car man..

 Way, C. M. Podzorak1.

Carpeting, etc., produeing improved oolor effoot

 Contor marking device, B. F. T. Bell
Conterige machine, Wood \& Pice.. Chatin, drive, B. A. Lexg.............
Check rower, M. W. \& D. M. L.
Cheonae knife, H. M. Handahy.......

Cheese vat, R OIp
Chimney cleaning apparatus, G. Haive
Charn motor, M. Y. Connett
Cider or wine pres, J. H. Brabaker. Cigar bunching machine, Steinle \& Senn.............. 88810001
Cigar mould, F. C. Miller..................... 88.188 eaner. See Gun clean

Comb. See Carry comb. Combligg machines, nber Ruide for, II. Beet........
Copper from Its ores, extracting, Hant \& Douglei
Jr............................
Correr iron, shoet metal, Lu LI...............
Cot and canoph, folding canvas, 8 . F. Sedly. ot and canopy, folding
Cot, folding, C. J. Bken..
 Curf fastoner, D. Stono.

Fowles........................
Cultivator, uatod corn,
Carry comb, R. Grove
Curtala pole \&ooket, R 8. Gould.
Cut-oII, automatlc, A. F. Picke
Cyclometer, M. H. Downe.... Dontistry, C. McLe. Mean............ Deek, cohool, C. E. Dreusior....:
Dish, coverod, W. E. Hawkins Dlatilling ammonia and producing refrigeratio
W. C. Wren. Distiling wa
m. Coyle.
Door check,
Door Check, G.... Whito Dredging apparatus, A. B.
 Drying ompl and other wot producta, machine nat collector. J. J. Gerard.... Earring, H. K ilokman.
 tion eotrical conductors, machine for
lesen lead covered, \mathbf{C}. L. Kitwon..

Engiza See Rotary engine. Traction engine.
Rlectic motor, G. F. Card....................

Elevators, eleotrien safoty derice for, R. . . . Cu

Embaloliag
Envelope machine, F. H. Richarde.
Envelope machines, band mechanium for, F. . E
Rlcharde..........

Kxplosive compound, E. Du Pon
Fare box, w. T. Dryden
Feeding stock, device for, J. G. Riobardeon.
Felted articlea, pouneling, J. C. Wison...
Fence, J. C. Ruficorn..
Fence post, sawyer socket, J. Ruy.......
Fences, machine for making wiro and slat, J.
Fifth wheel, G. M. Bedger
Yire escape, derrick, otc., H. Opp.
Fire escape, portable, W. H. Roberte
Fire extlogulsher hand, J. . Zerbe.
Fire extlinguisher, hand, J. 8. Zerbe.
Fire kindier, 8 milh \& Joh
Fire kindier, \mathbf{H}. Wiloox
Fire kindier, H. Willoox.
Flood aate, M. T. Betford
Fodder stacker, W. J. F. Yohnka
Fuel, apparatus 1or reeding, T. Vlcurs, Br., et at..
Furnaces, mechanicul feeder for, G. Alexit
Gurniture pad. E. L. Dunkloe.....
Game apparatus, W. 8. Reed.
Garment sapporter, Olmstead \& Naeon................
Gas, apparatus for generating Illuminatiog,
Gas burner, GH \& Foley
Gas burner, G. H. Gregors
br night and by dar J wrbane consumptio
Gate. Beo Flood gate. Rallway gato.
Gate, H. V. Pbilpott.
Gate, Von Steln \& White
Hepworth
Glova, mitten, etc., o. T. Jennings
Glue, etc., oase for lliquid, R. Brooks.
Governor, atoam ensine, H. T. Giles.
Graln feoder and paok

Graln scourer, J. Yates.

Grinding mill, B. Tenya, Fu
Halr erimper, \boldsymbol{B}. G. Gulld
Hummock suspension device, Btulz \& Wilson
Hanger. See Door hanger.
Harnese, F. I. M. Grante
Harvester, c. Mille
Hat, R. Plato
Hay ruke and to
Heater. See Sad iron comblned, C. M. Maxeon. Heatiog appacatue, water, J. Hitching post, c. s. Hurd. Holdbect, A. R. Enton stop for, T. W. Heermans. Holder. Bee Billiard chalk holder. Label holder Tool holder.
Hook. See Hat hook. Pulley block hook. Horacehoe, F. \& S. A. Ward. Hose cart, J. E. Oillesple. Habs, shell band for, J. Muris Incubator, withams ic
Indicator. See Tuyere indicator.
Induction coll, J. Ritchle.
Ingot monld, compound, E. Wheeler............... iron. See Corner iron.
Jewelry, mountligg for, G. W. Ryan.................
Knife. See Gheese knife. Putty knife. Bole cisaoneilink knife.
Knitting machine, circular, J. Adams...............
Lubel holder for pigeon holes, etc, , C.
mann..........................
Iacing hooks, maehine for seeting Ledder, M.M. Hughes
tension, J. E. Gillee-
Lamp extinguisher, autiomatic., i. o..................
Lamp shade support, Blik \& Pollock
Lasting tool, J. I. Vict
Lathe, ball turning, T. Draper
Laquids, apparatue for tidicin
quantity of, J. J. Tylor.
Lobster trap, J. M. Steward
Lock. See Car liock. Nut lock. Seal look. Time Locomotive coupling, A. Selkirk
Looms, weft stop meehanism for, D. Dunn.
Lubricator. See Axle lubricator. Lubricator. ©See Axle lubricator. Lumber register, J. Thompeon.
Mangie and wringer, combined olothes, T. Collier
Mccool..............
Metal drawing machine, W. A. MoCool
Mill. 800 Gas metor
Mines, device for automatically opening and shutting doors in noal, Case \& Whitaker
Monld. See Gigar mould. Ingot monld. Money changer, W. H. Staats..
Mop, J. W. Oulton.
Motion, tranamitting rotary, E. J.
Musicul instrument, mechanical, H. B. Morris
Musical instruments, keyboard attachment for H. Richards

Nail plate and out nail, G. T. Waller..
Necktie, J. H. Irwin
Nocktie, H. Tintrop.............
Neoktle fastening, J. H. Carter........
Net for horses, Ay, G. W. Kelsey....
Non-conducting compoation, J. Coft

361,0
108
834,01
984,1
Numbering apparatus, W. R. Bacon
Nut lock, J. L Hal Oatmeal machine, A. W. Woodward Ayor..................... Overshoe, Vry \& Beredict........
Overshoe fastener, w. Kennedy
Pactane cont Packare conveser, J. M. Smith................. Paint box, Y. E. Helnig.
Paint, waterproof root,
Pan. See Bed pan cot, Walker \& Miller
Pantorraph, C. 8. Rich
Pants, F. Kahn ot al.
Paper box machine, G. H. Cushman...
Paper or board, Areproof, J. G. Merril
Paper or board, Areproof,
Parquetry, \mathbf{C} J. B. Jensen
Pegring Jack, I. Miller.
Photroleum burner, crude, F. E. Thomans et al....
J. Loeber........................

Pigeonhole block for keeping checks and vono........
ers, M. L. Sage.......
Pin. See Separable pin.
Pin. See Separable pin.
Pipe wrench and cutter, w. R. Clayton.
Planter, oorn, A. Winston....
Platform. See Vehicle spring platiorn.
Platiorm adjustment, W. F. Olin.
Plow, W. Stralt (r)
Plow whel, II. T. O wens.
Mather......................
Post. See Fence post. Hitching post.
Pot. See Coftee pot.
Power press, N. C. stiles
Power press, N. C. stiles 884,
Press. See Baling press. Cider or wine preas.
Power press.
Printing machine, box, J. Casy.

Printing machine dellvery meobanis............ 883,888

Beckler.
rinting pre
rinting presses, automatio perforator for, G. ${ }^{\text {R. Kennedy }}$
Printing web fnbrics, process of and machine for,
J. Macnab...................
Pulley block hook, T. Barber.
plore, machine for the manufacture of, Falrbanks.....
ump, A. Warth.
Pump, force, Kendig \& Landis, Jr Pump, measuring lift, L. D. \& P. W. Muler Putty knife, F. J. Brauch.
Railway frog, J. Green...........
Rallway gate, O. H. P. Cornell.
Rallway rate, т. H. Fennell............................ Rallway route abstract, T. F. Neleon. Railway safets track, N. C. Locke.. Rellway signal, B. H. Gedke.
Railway pike, A. Welsh..... Railway splke, A. Welsh........
Rallway tracks, apparatus fo Flisher.......................... Rallways, automatic stop for abutung ralls of
 Rallways, krip apparatus for cable, N. Abbott...
Rallways, portable frog or car replacer for, w.
Cooke...
nake. See Hay rake.
eqister. See Lumber rex.....
Riveting machine, Thomson \& Unbehend
R1veting machine, J. J. Unbehend..
Rosester, $\mathbf{8}$. C. Drumheller.............
Rolligg car wheel tires, machine for, J. Munton
Ren oils, manuracture uf, J. S. Atki Rosettes, constructing, w. Whitmor Ring. See Curtain ring. Earr rine
Ruchipg for deocrative purposes, R. A. Bohm
nuling machine, engraver's, F.. . Balley.... sad Iron heater, J. H. Watson. Sedale, harness,
Sam, J. J. Ralya.
Sawmill dor, A. B. Landis.
Sew seting machine, A. Schnoor............ Mix
Saws, machine for sharpening circular, Marvin.
Scale, apring, E. A. Witherell.
School seat, W. M. Hickman.
Bcourer. See Graln scoure
Scriblng attachment, W
Seul lock, J. H. Fisher
eat. See Blcycle seat. Car seat. school seat
seeder and fertilizer distributer, combined, I. Prariklin.................
Separable pin, J. F. Foley.
ewage and drainege, system for colle..............
ratlink, and disinfecting, T. Dark
Sewage, apparatus for treating, W. R. HInddale.
Sewing machine, buttonhole, T. F. Hart....363,821 Sewing machine feeding mechaniem, J. ${ }^{\text {Deveen }}$ W Sewing machine ruming attachment, J. S. Backe
Bhafts and ordnance, manufacture of, J. H. Fla ler..................................... hirt bosoms, making, J. G. Wallach Stgnal. See Rallway stganl.
Bignal box, H. A. Chase....
sled, W. Schau.
Sled, w. Schau, J. Po........
Sodium carbonate by ammonla, process of and a paratus for making, H. Frasch... Sole chapnelling knife, E. P. Seward.
Sower, seed, M. Freeman.......... Speaking tube, carriace, G.
Bpindie stop, \mathbf{C}. S. Trask (r)
Bpring. See Car spring.
Square, miter bevel, and level, combined, J. Car-
son............................. Stamps, etc.,
W. Birge.
Stanchlon, cattle, D. Manwaring.
Stanchion, cattle, J. 8. McCartney.................. 863,0
Staple drivers, device for automatically supplying
Heysinger.,.................................
Steam and water boiller, J. C. $\boldsymbol{\&}$ G. B. Gibbo
Steam generator, multiple, I. M. Chase....
Stirring or mixink apparatus, L. Stantert.
Stone, etc., composition
Gersheim......................
Stopper rastener, G. Y. W
Stove, ras or nil heating, N. A. MoCary........ E ${ }^{2}{ }^{2}$

| $.363,075$ | Stump extractor, J. Cornellus....................... 884,002 |
| :--- | :--- | :--- |
| 388,880 | 8upporter. Soe Abdominal sapporter. Garment |

 Swing, J. O. Lyon..
Table. See Embel
Table. See Embalming table.
Tablewere, article of, G. Leonard Tank. Soe Rallway water tank. Tean. kettle in I. Van Hagen.............
Telegraph system, multiple, c. Selden Telephone desk, J. D. Richardson... Thill coupling, McMillan \& \mathbf{H} Thrashenpa, das, J. Torrance ©onve.............. Tie. See Umbrella tie.
Tile, illuminatiog, J. Jac

Time lock, E. \& H. C. Stockwell. Time lock, E. Stockwell	

Ttre blooms, machine for shearing, J. Muntca.
Toboggan sllde, L. H. Roger
Tool handle, J. G. Misch
Tool holder, T. Barber Traction engine, J. Price
Transom, J. C. Brown....
Transom, J. C. Brown....
Trap. See Lobster trap.
Trap. See Lobster trap.
Trousera stretcher, J. B. Hale..
Tube. See Speaking tube
Tube expander, T. Beverl
Tux attachment, hame, C. C. schwaner
Tuyere, C. Grekory Type distributing apparatus, A. A. Low...........
Type writers, etc., attachment for, W. McDer-
Type writing machine, A. W. Houchin
Type writing machine, T. D. Worrall
Umbrella, folding, J. W. Rid
Umbrella tie, ${ }^{\text {H. }}$ C. Batley...
Valve gear, steam enkine, F. M. Rites................
Valve for water service plpes, stop, D. Kearnej..
Valve for water service plpes,
Valve, radiator, C. R. Behnike...
Valve, asfety, W. Simpkti.......
Vave, throtte, w. T. w wilard.
Vapor burner, G. M. Vols.
Vat. See Cheese vat.
Vehicle spring platform, H. W. Van Antwerp.
Vehicle top, B. F. Nye............
Velocipede seat, J. Harrington.
Vendtug apparatus, G. A. Macbeth
Vignetter, H. Kuhn
Washing machine, Fauntleroy \& Osborn
Washing machine, J. Healvilin
Wath, G. e. Hert
Watch, G. E. Hart
Watch balances, manu
Watch case, C. K. Giles.
Har case pendante,
Waich dial, G. e. Hart
Watch movement plato, G.
Wartch, stem winding, G. e. Hert Watches, transparent dial for, c. Hambert, 34,011 Water closets, foor connection for, B. Havanagh Water meter, piston, H. C. Ahrbecke
Weatherbonrd gauge, J. H. Smith... Weutherbonrd gauke, J. H. Smith..
Welding links, die for, J. B. Baugh. Wells, device for ralsing oil trom otl, J. A. Boals.
Wheel. See Car wheel. Plow wheel. Fufth Whiffetree coupling, H. Streif. Whip, E. B. Knapp.....
Windmill tower, H. C. Addis....
Window shade ixture, J. W. Barnes..
Windows and doors, tly trap and screen for, R. J.
Wire stretcher, D. Cleaver...
Wire stretcher, W. B. Weat.
Wrench. See Pipe wrench.
Wrench, W. C. Marr......
DESIGNS
Chain lut, T. A. Shinn....
Cups, etc., handle for, w. . Berker. Rtatuary, group of, J. Rokers... Type, font of printing, H. iblenburg.

TRADE MARKS.
 Colors for paper and paper hanktings and for other
purposes, preparation for use in the manufac-
 Desks, seasts, and slmilar articles of school, off
and business furriture, F. W. Dickerman....

Glue, Hould Anh, Le Page's Liquid Glue and CeGlue, havic tinh, Le Page's Liquid Glue and Ce-
ment Company....................14,48, 14,400,
Gum arabic or mucisge, substitute for, C. MornGum arable or m
ingstar \& Co..
Harmoncas, Rogge \& Koch.......................
Linen and half linen goods, Remy, schmidt
Pletssner...............
Mattreseses, Pack \& Son.
Mitts, gloves, hose, and hand and arm coveringa,
A. G. Jennings $\&$ Sons........................... Peas, A. B. Cleveland Company.............................
Remedy for the cure of rheumatism and for in. ternal use, A. H. Warner.......................... Stays, corsets, health waiste, and elnstlc body sup
ports, dress, Warren Featherbone Company Tools for mechanics and farming tools, edge, Kansas City Hardware Company. Vermin, compound for exterminating, J. W. Elitis.
Wine. champagne, Veuve Binet, Flie \& Cle..14, s5s,
 Blankensteyn \& Hennings.

A Prinsed copy of the spectications and drawing or
suy patent in the foregolng let. alioo of any patant
itsued since 1808 , will be furnished from this office for 25 cents. In ordering please state the number and date of the patent desired, and remit to Munn \& Co., 381
Broadway, New York. We also furnish copies of patents granted prior to 1886; but at increased cost, as the
specifcations, not being printed, must be copled by hand.
Cnnad
Canadian Patente may now be obtained by the
inventors for any of the inventions nemed in the fore going list, provided they are simple. at a cost of \$40
ench. If complicated, the cost will be a iltlle more. For

わrovertisements.

R Print Your Own Cards
 ELECTRIC CONVEYORS.-DESCRIP

NAVAL ARCHITECTURE.-AN IN

