

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES
NEW YORK, MARCH 12, 1887.
[$\$ 3.00$ per Year.

THE COLLEGE OF THE CITY OF NEW YORK-THE TECHIICAL COURSES. -[See p. 165.]

1. Microecopy. 2. Obemical Lahoratory. 8. Blowpiping. 4. Wood Lathe. 6. View of College. e. Iron Lathe. T. Phyaical Laboratory. 8. Drawing Room. 9. Mellonis Apparatuk 10. Blackimith Bhop. 11. Carpenter Bhop

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

 publisied weekly atNo. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TRRMS FOR THE SCIENTIFIC AMERICAN. One copy, one year. postape Included....
One oopy, six months, postake included.

MUNN \& CO.. 361 Brosd was, oorner of Franklin Street, New York.

The seientific American supplement

 papers to one add
Pho siateat way
reatiered leter.

NEW YORK, SATURDAY, MARCH $12,1887$.
Contente.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 884.
For the Weok Ending March 18, 1887 Price 10 cents. For sale by all newsdealers.

HRW NAVAL ATD MULTARY INDUBTRIES.

The Congress which has just concluded its labors has been a notable one. The American navy has gradually gone on the downward path until the country is well nigh without defenses. The forts, while still maintained, are out of date, and the ordnance is far behind the age. The attention of the Senators and Representatives has at last been effectually aroused, and large appropriations, amounting to many millions of dollars, have been made for new works. It is yet too soon to know the exact amount, but enough has been designated to have a ve
effect upon the industries of the country. effect up
The naval vessel of to-day is a structure of iron and steel. In the generalities and details of the process of
its manufacture and of the ultimate construction all its manufacture and of the ultimate construction, all branches of mechanical engineering are involved. The features of the construction are no longer settled, as was the case with the old sailing ships, by precedent. The former navy was the creation of sailors and shipbuilders. The modern ships of war are the creation of inventors and of enginears. The same applies to ordnance. The successful originators of machine guns breech loading cannon, and torpedoes must be unfettered by precedent. Originality must be the keynote of success.
This much refers to the product; but in the plant required for its production a great fleld for industrial enterprise is offered. For these appropriations to be expended, new plant of a type not existing in this country will have to be installed. New rolling mills for heavy plate, steel works for casting cannon ingots, all have to be organized. It seems probable that the 49th Congress, by its appropriations for these objects, will have exercised a most marked influence on the iron America has preserved to the present day one item of her prestige undiminished. She is still the land of inventors. In the expenditure of these amounts a great field for her inventive talent seems opened. The people of this country do not want to follow blindly in the tracks of other nations. We should originate improvements in ships and guns ourselves. In machine guns we have already led the world. Our record in heavy pieces should be, and we hope will be, as great. Com plaints of the failures of foreign artillery are frequent. The recent bursting of an Armstrong cannon on the Collingwood, and more recent criticisms of Krupp's guns, show that perfection is not yet reached. Even in the material there may be a change. We are now the leading manufacturers of aluminum; we may yet be the first to apply it successfully to the inanufacture of ordnance.
We have already taken the ground that America, from her isolated position, does not need the standing army and the reserve supplies that alarmists consider requisite. Yet in the expenditure of these new appropriations we can see a promise of much good. They will stimulate invention and industry, because the amounts are a premium for whatever is new and
valuable. valuable.
In fortification, which now has to be on new lines, owing to the increased power of artillery, there is also a vast field for original work.

WAR AND INVERTIOL

 (Conduded from preges?

 (Conduded from preges?}It will readily be perceived that war in European coun tries, where a very large percentage of the effective man hood of each nation is sent to the field or into garrison, calls for as many labor-saving inventions in the arts and manufactures as it does in purely warlike directions. Given a machine that will do the work of ten meneven though at no saving of expense on the cost of the manual labor whose place it takes-it will fund in war time innumerable uses which might not be accorded to it in peace. Similarly, a machine that can be managed or tended by a woman will take precedence
in war time of one doing the same work but requiring the care of a man. These facts should be remembered by inventors when deciding in what countries they will take out patents. They should also bear in mind that in Europe, while inventions which are wanted by the government-particularly those directly devoted to war purposes-may be appropriated to government use without the patentee's consent, it is customary for the government to reward the inventor according to the importance of the invention and the use made of it In Great Britain it is now the practice for a board of officers to pass upon the value of the invention, and to recommend the amount of royal grant which shall be inade to the patente
Of course, one of the important requisites of a land campaign is an efficient transportation service for food ammunition, clothing, arms, hospital stores, general supplies, and for the sick and wounded. Anything which simplifies or lessens the cost of transportation becomes almost a necessity to a great arms. Thus, in addition to the improvements in the ordinary running scope in steam motors capable of going anywhere over
shoes and harness of draught animals may afford oppor tunity for successful invention. Pontoon and other styles of bridges, suitable for rapid transportation in sections, or designed for construction from growing timber, would be generally used in a European war. While it would probably be difficult to mention all the varieties of invention that would, or should, receive a special impetus from a great war, the following alphabetical list includes the greater number :
Accouterments, aerial machines, air-guns, alloys for gun metal, ambulances, ammunition, amputating instruments, anæsthetics, antiseptics, artificial limbs, armor for ships and forts, arms of all kinds, artillery and carriages, balloons, balsas, bandages for wounds, battery guns, battery forges and tools, bayonets, beacons, bombs and bomb proofs, boilers, breech-load ing arms, bridges, bullets, bullet machines, buoys cables, caissons, cannon, cannon balls and projectiles carriages, carts, cartridges, clothing for soldiers, com passes, derricks, diving apparatus, drydock machinery dynamos, electric appliances, explosive compounds ferry boats, field guns, field telegraphs, fire arms, floating batteries, flying machines, fog signals, fuses gun carriages, gun equipments, great guns, harness, hydraulic machinery, horse shoes, intrenching tools life boats, lubricators, machine guns, magazine fire arms, medical appliances, mining appliances, nautical appliances, oil-burning furnaces, ordnance, propellers, pontoons, powder-making machinery, priners, pro jectiles, railway rolling stock and appliances, rams road-making machinery, reaping and other agricultural machinery, rockets, saddles, shells, splints, steam machinery, submarine appliances, surgical appliances tents and fittings, tools, torpedoes, torpedo craft tourniquets, well diggers, woodworking machinery wrecking machinery.
The foregoing list, extended as it is, embraces only the general heads of products and machinery which would receive a special impetus by a European war The inventor will readily add thereto the thousand and one developments and subdivisions of the list. Enough is given to show that the inventive genius of our people can be actively and profitably employed in case the great powers unhappily should prefer war to peace.

CELEBRATION OF THE CENTENTILAL OF THE

 ENACTMENT OF THE PATENT LAWS.To the Editor of the Scientific American
The first patent law was enacted in U. S. A. on the 10th of April, 1790. I would suggest that inventors meet in 1890 at some place for centennial celebration, for the purpose of showing the great progress made by the American genius under the protection of the law would like to hear from others. F. M. SHields. Coopwood, Miss.
[As the locality for such a convention, we would sug gest this city. The patent law was passed by the first United States Congress, whose first two sessions met in New York, the first session lasting from March 4 to September 29, 1789, and the second from Jannary 4 to August 12, 1790. An exhibition of inventions, of early productions of the pioneers of the arts, might be organ ized in connectiou therewith, and a really memorable centennial might be celebrated. We echo the sentiment of the last sentence of our correspondent's letter. Others should be heard from.]

Tho Largent Farm in the World.

In the extreme south west corner of Louisiana lies the largest producing farm in the world. It runs 100 mile north and south, and many miles east and west, and is owned and operated by a syndicate of Northern capitalists. Their general manager, J. B. Watkins gives an interesting account of this gigantic planta tion, which throws the great Dalrymple farm in Dakota into the shade completely.
"The 1,500,000 acres of our tract," Mr. Watkins said was purchased in 1883 from the State of Louisiana and from the United States Government. At that time it was a vast grazing land for the cattle of the few dealers in the neighborhood. When I took possession I found over 30,000 head of half-wild horses and cattle. My work was to divide the immense tract into conveni ont pastures, establishing stations or ranches every six miles. The fencing alone cost in the neighborhood of $\$ 50,000$. The land I found to be best adapted to rice sugar, corn, and cotton. All our cultivating, ditching etc., is done by steam power. We take a tract, say half a mile wide, for instance, and place an engine on each side. The engines are portable, and operate a cable attached to four plows, and under this arrange ment we are able to plow thirty acres a day with only the labor of three men. Our harrowing, planting, and other cultivation is done in a like manner; in fact there is not a single draught horse on the entire place We have, of course, horses for the herders of cattle, o which we now have 16,000 head. The Southern Pacifi Railroad runs for thirty-six miles through our farm
We have three steamboats operating on the waters of We have three steamboats operating on the waters of rable waters. We wavich hous yard, and a rice mill."-St. Louis Republican.

Preserving Hides with Eleselguhr.

In the treatment of hides and skins with a view to preserve them from injury through rotting, maggots, and other products of decomposition, Mr. E. A. Brydges of Berlin, proposes to treat them with kieselguhr or berghmehl, which corresponds to the fossil meal diatomite, or infusorial earth of the English, and consists of the shells of minute animals of such extreme fineness that a cubic inch of fossil meal contains upward of forty thousand million shells. This fossi meal consists, chemically considered, of over 90 per cent of silicic acid and a small percentage of potash and organic matter, which latter can be removed by simple calcination, and is extraordinarily hygro scopic, being, in fact, capable of absorbing an enor mous quantity of fluid. The invention of $\mathbf{M r}$ Brydges consists in a novel treatment or process o treating raw and other hides or skins prior to tanning, tawing, or other treatment, in order to free them from all fluid matter which could promote or assist putrefaction, and to deprive them of all nourishment or insects, which cause such enormous damage to hide and skins during transport. It may be mentioned that according to Berzelius this fluid matter composes two thirds, while the fibers weigh only one-third of the entire hide
The advantage of the kieselguhr is that, although it possesses the property of absorbing fluids and othe matter in solution with great energy, it is not itsel absorbed or in the least degree affected. Mr. Brydges employs the kieselguhr in various manners; for in stance, he takes it as it leaves the mine, and simply dries it, or he calcines it, either exposed to the atmophere or in closed retorts or other apparatus, so that the meal is carbonized. Both systems of cal cining-that is to say, (a) exposed to atmospheric in fluence by calcining in the open air or in an ordinary calcining furnace ; (b) by calcining in closed retorts or vessels-can be readily carried out, and will give ex cellent material for preserving hides. All organic matter having been removed, the absorbing power of the mineral is increased, but Mr. Brydges does not estrict himself to employing it calcined, as washed and dried or raw dried kieselguhr or fossil meal of any kind in a dry state can be employed; neither does he restrict himself to any special manner of treating the hides, as they can be manipulated in various ways without departing from the nature of the invention.
The hides for transport, or hides which are to be dried rapidly, are spread out on a layer of the minera with the epidermis or the fleshy side downward, and are then covered with a second layer of the mineral. The hides, if not required for immediate transport, are allowed to lie for a time, and can, if desired, be subjected to pressure, although Mr. Brydges believes that this will seldom be found necessary or even advisable. It is, furthermore, advisable in the case of perfectly raw hides-that is, hides fresh from the car casses-to replenish or change the layer or layers of the mineral, so as to facilitate the drying process. Hides for transport can also be rolled up or packed in kieselguhr, so as to protect them from all injury during the sea or other voyage, the weight of the mineral being so small that the freight difference will be of little or no importance. Spent kieselguhr can be rendered fit for re-employment by simply calcin ing it, so as to destroy any and all organic matter contained in or absorbed by it.

Great Pumpe.

At a recent meeting of the Engineers' Club, Phila delphia, Mr. Henry R. Cornelieus read a paper relat ing to the two large centrifugal pumps at Mare wark Foundry and Machine Company
The pumps, the dimensions of which are 42 inch lischarge pipes and 66 inch runners, are each driven lirect by a vertical engine 28 inches diameter by 24 inches stroke, and were designed to remove the water trom a dock 529 feet long, 122 feet wide, and 36 feet leet deep, with a capacity of $9,000,000$ gallons.
After being erected on foundations prepared by the covernment, a test trial was made by a naval board, :he following being extracts from their report
At the final trial of the two pumps together, the water was admitted to the 23d altar, the dock concaining 7,317,779 gallons, being 7 feet above the center of the pumps.

Everything moved most admirably, and the per ing. By watching the water in the dock, it could be seen to lower bodily, and so rapidly that it could be letected by the eye without reference to any fixed point."
"The well which communicates with the suction tunnel was open, and the water would rise and fall, full of rapid swirls and eddies, though far above the entrance of these tunnels."

Through the manhole in the discharge culvert the issuance froin the pipes could be seen, and it volume was beyond conception." "It flowed rapidly through the culvert, and its outfall was a solid prism
of water, the full size of the tunnel, projecting far into the river."
"During a pumping period of 55 minutes, the dock had been emptied from the 23 d to 2 inches above the 6th altar, containing $6,210,698$ gallons, an average throughout of 112,922 gallons per minute. At one time, when the revolutions were increased to 160 per minute, the discharge was 137,799 gallons perminute. This is alnost a river, and is hardly conceivable."

The engines worked noiselessly and without shock or labor. At no time during the trial was the throttle valve open more than $1 / 8$ inch.

The indicator cards taken at various intervals gave 796 horse power, and the revolutions did not exceed 160 at any time, though it was estimated that 900 horse ower and 210 revolutions would be necessary to attain the requisite delivery, so that there is a large reserve of power available at any time.'

The erection of this massive machinery has been admirably done. All the parts are strong, and of excellent design and workmanship; simple, and without ornamentation."
"Looking down upon them from a level of the pump house gallery, they are impressive and massive n their simplicity."
"The government is well worthy of congratulation in possessing the largest pumping machinery of this ype and of the greatest capacity in the world, and the contractors have reason to be proud of their work."

Photographs on Glame, Pottery, etc.

An improved process of producing photographs on pottery ware, glass, etc., known as a photo-ceramic process, has been patented by the Hon. Denis Lawless, of the Barracks, Aldershot, and a few notes concern ing it may be of interest to your readers. The pat entee says (I quote from his specification, which is No. $358,1886)$:

My invention relates to a photo-ceramic process for producing pictures, photographs, or other designs on tiles, plaques, or other objects of pottery ware, or on plates or other objects of glass, metal, or other similar substances, by impressing on them a raised and depressed surface corresponding to the lights and shades of the picture, photograph, or other design, by means of a die or mould into which, or with which, the clay, glass, metal, or other material used for making the object is pressed or moulded. The die or mould is made by casting in metal, or by electrotyping from a reverse inould, or it may be made in plaster, wax, gutta percha, or other material, the mould being taken from a 'gelatine relief,' or from a reverse mould thereof, or the 'gelatine relief' itself may be used direct for impressing the object with the raised and depressed surfaces. After the object has been moulded or impressed, it is glazed or enaineled with a colored glaze, enamel, or other vitreous substance which is more or less transparent, and is then fired or heated to a temperature sufficient to melt the enamel, which then runs into the depressed parts of the object, which correspond to the darker or shaded parts of the picture or design, leaving the raised parts corresponding to the lighter parts, thus producing the original picture or design, with all its graduations of shade, in whatever color the glaze or enamel may be, if the body of the object is white, or modified, if it is colored, according to the color of the glaze or enamel. By the use of various colored enamels the picture or design on the ohject nay be produced in colors. The 'gelatine relief' may be made according to Poitevin's process by allowing the light to act through a negative or positive transparency of the picture, photograph, or other design, or in some cases the picture or photographic print may itself be used as a transparency, on to a surface of bichrowated the a the amount of relief required. The bichromated gelaammonium to a warm solution of gelatine and afterward allowing it to set and dry on a level surface such as a glass plate, or the gelatine mass may be bichromated after it is set by soaking it in a solution of bichromate of potassium or ammonium. After the dried surface or film of bichromated gelatine has been suff ciently exposed to the light under the transparency of the picture or design, it is placed to soak in water, which causes those parts which have been protected from the light to swell up by absorbing the water, while those exposed to the light remain unswollen in a greater or less degree, according to the transparency or opaqueness of the various parts of the negative or positive transparency. The mould is then taken from the 'gelatine relief,' while the mass remains in a swollen condition. The 'gelatine relief' may also be produced according to the 'Stannotype' process by washing away in hot water those parts which have not been reudered insoluble by the action of light. In this case some pigment such as Indian ink should be added to the bichromated gelatine forming the surface or fllm. In making the bichromated gelatine mass, I find a suitable proportion of quantities to be ten grains of potassium or ammonium to one ounce of gelatine; or, instead of using only gelatine, I some
times use a mixture of sugar and gelatine in the proportion of one part of sugar and eight parts of gelatine. In the application of the process to metals or other substances that can only be mouided in a molten condition or stamped or impressed under great pressure, I prefer to take an electrotype of the cast or mould from the 'first' or gelatine mould, and then proceed as hereinbefore set forth."
The patentee says that "he is aware that it is no new to produce 'first moulds' by the bichromatized gelatine process ; neither is it new to glaze articles by dipping them in, or coating them with, glaze or en amel, and then firing then. But by the combination of these known processes, carried out in the manner de cribed, he produces artistic results never before attain ed by a purely physical process.-J. T. N., in Eng. Mech.

In reply to inquiries where these plates may be ob tained, one of our experts to wholn we referred th matter gives the following information:
There are no perfect tints in the market that will do or the Meisenbach or interference process. Each in dividual who has worked the process in this country has had to either rule the plates for himself or else en gage either a steel plate engraver or a metal ruler to rule the plates for him. The difficulty lies in the wear ing of the cutting or the scraping tool. In engraving a ruled tint of, say, one hundred or one hundred and twenty lines to the inch, say ten inches square, one thousand lines or one thousand two hundred lines would have to be cut, or the equivalent of a line te thousand inches long. Before the tool has traveled this distance, the sides of it are worn away so that the line cut is perceptibly narrower than on the start and you have to suppose that no accident or clog ging of the tool has occurred in this long journey. The same holds good in cutting through the most deli cate friable ground on glass in order to obtain a direct negative. Another and just as important reason for not obtaining the desired result is the fact that the whole tint must be cut at one sitting without stop or rest until the work is done. Any stop will show on the tint especially a close one. The writer has spent som thousands of hours and of dollars in the attempt to get the desired result, and has never yet seen a per fect tint ten inches square of even one hundred lines to the inch, much less one hundred and twenty or on hundred and thirty lines. To accomplish the result you must have, first, a perfect screw in your ruling machine, and a tool that will never wear out. When you get this, find, if you can, a metal that won't clog and a man that won't tire, and you can perhaps get your perfect results. On glass, you must have a com position that will neither clog the tool nor strip from the glass, and if you want to make a negative from tint, and get one hundred and twenty lines to the inch from a printed tint, you will have to find some new means of printing the tints, to get them perfect enough to get the desired negative. This is not said to dis courage the process people, who want perfect tints, but simply to explain why they are not in the market You can of course get an approximate result, which is really all any of them get.

Treatment of Bright's Disease.

Semmola, of Naples, in an article in the Wiener Medizinische Blatter, No. 49, advises strongly against allowing a patient who is suffering from nephritis to come in contact with cold in any avoidable way. Such patients are excessively sensitive to cold, and cold baths are followed by great shock and depression Violent massage and exercise of the muscles the autho also strongly deprecates as followed by great shock and weakness.
He would advise the patient to live in a dry and quable climate ; to strictly avoid all exposure or going about in severe winter weather; to practice mild gym nastics in a comfortable room rather than ventur into a temperature below 18° or $20^{\circ} \mathrm{C}$. The autho emphasizes the remarkable sensibility of the skin of the sufferer with Bright's disease to all variations of temperature. Sodium iodide and chloride is advised in doses as large as tolerated. When, after two o three weeks, albumen has not entiroly disappeared and dropsy has been relieved, phosphates of sodium or calcium are given in quantities as large as 40 grain or a drachm daily. The efficacy of these drugs the author believes consists in their power to promote the assimilation of albumen
The methodical inhalation of oxygen, which Sem mola has urged since 1867, has been repeatedly proved to be of the highest benefit. Albumen soon disappears after its use, and although casts may re main in the urine, the patient's general condition is so much improved that the author thinks we have here an argument for the dyscrasic or hmmatogenic origin of Bright's disease.
All astringents are considered not only valueless, but also injurious. Especially is the action of ferrun sesquichloratum and plumbum aceticum thought in jurious, because of their astringent influence on the capillaries of the skin.

DERAILING AND REPLACING ATTACHIENT FOR

 STREET CARS.To the bottom of the car is secured a bracket, shown detached in Fig. 2, carrying a curved guide, which bends from the bracket downward and toward both ends of the car, passing below the axles. Mounted to slide in the guide is a crosshead, on which is centrally pivoted a forked arm, carrying on its lower end a wheel. Secured to the crosshead are the two ends of a chain,

heinitg a rettig's derailing and replacing attachicent for STREET CARS.
guide, around a pulley at one end of the car, and around a sprocket wheel attached to a turning shaft on the front platform of the car. When, for any reason, it is desirable to run the car off the track, the shaft is turned so as to slide the crosshead toward the front This forward and downward motion of the crosshead brings its wheel in contact with the ground, and when the crosshead is in its lowest position, directly under the front axle, the car is raised and the front wheels are above the rails, as shown in the cross section, Fig. 3. The car may then be hauled off the track, either to the right or left. On account of its pivoted arm, the wheel turns in the direction in which the car is moving. The car can then be driven around an obstruction and brought upon the track again. As soon as the front wheels stand above the rails the shaft is turned in the opposite direction, to bring the crosshead back to the center of the car, thereby lowering the front end. By moving the crosshead to the rear end of the guide, the rear wheels of the car can be raised in a similar manner.
This invention has been patented by Messrs. Albert F. B. Hennig and Adam Rettig, whose address is 1314 Tenth Street, West Denver, Colo.

DAMPER FOR STOVE PIPES, CHIMNEYS, ETC.

The stove pipe is provided with an opening and a suitable cover, which is shown in the illustration as a

SOHM'S DAMPER POR STOVE PIPES, CHIMNEYS, ETC.
slide working in guides. Within the pipe are placed two cross pieces, that form bearings for the tapered ends of a vertical rod provided with a series of laterally inclined arms, fastened to which is a plate which is wound around the rod so as to form a cone-shaped spiral nearly filling the interior of the pipe. The plate is so formed that when in position on the rod a central opening is provided which permits the exit of products of combustion. Upon the upper end of the rod is a small pinion engaging with a somewhat larger gear wheel mounted upon a shaft having bearinge in the pipe. One end of the shaft is threaded to receive a nut and the other end is squared and receives a crank. Ohio. Brooklyn, N. Y.
official time in Maine.

The pipe is provided with two latches, one of which is formed with a recess to fit the squared end of the shaft, so that, when no movement of the damper is desired, this latch may be moved to engage its recess with the squared portion of the shaft, which will thereby be held. The other latch is designed to prevent lateral movement of the shaft by its free end dropping between the nut and face of the pipe. This latch also serves to keep, the gear wheels in engagement with each other. By raising this latch, the shaft may be shifted, $s o$ as to separate the wheels, when the damper will be free to be revolved by the action of the heat and products of combustion passing through the pipe by the natural draught. In cases wher insufficient draught exists in the chim ney, the right hand latch is moved so as to free the shaft, while the left hand latch is placed in position to keep the gears in engagement. The shaft is then turned, causing the screw propeller to revolve rapidly, thus creating a suctio and forcing the products of combus tion quickly up out of the pipe, there by increasing the draught of the chim ney. To check the draught the part are held stationary by the right hand latch, when the smoke will pass slowly ap through the spiral. It is obvious that when the spiral is locked, the exit of the products of combustion will be checked in their passage through the screw, and, in consequence, much of the heat that is now carried up the pipe will be saved. When the screw is left free to rotate, it will still check the flow of the products of combustion,

IMPROVED COAL OR ROCK DRILL

The forward end of the main bar or stock of th drill is provided with teeth adapted to be forced int the side of a hole made in the rock by a wedge drivel into the hole. To the wedge is pivoted the end of brace rod, the back end of which enters a slot made it a heavy lug formed on the main bar. The rear endo the rod is threaded to receive a pair of jam nuts, which after the wedge has been driven tightly in the hole will be screwed hard up to opposite faces of the log, a shown in Figs. 1 and 3. The main bar will thas b stiffened or strengthened to give substantial suppor to the drill-operating mechanism which it carries, s that the drill will work with little or no vibration, and its operation be made more easy and effective than i otherwise would be. At the back end of the main ba is a semi-spherical socket, formed partly in the bar and partly in a plate held to the bar by bolts, and in thi socket is fittcd a ball bearing (Fig. 3), provided with threaded stein passing through the lower end of a hea piece (Fig. 2), and receiving a nut within a slot of thi head piece, as shown in the engraving. The top of th head piece is threaded to receive s illow screw fer bar, provided at its outer end with a hand wheel. Th spindle of the drill is fitted to turn freely in the bar The spindle head or socket, in which the drilling too is held, abuts one end of the feed bar, and the hanc crank, by which the drill is turned, abuts the other enc of the feed bar. By turning the hand wheel one way the drill may be forced forward to cut deeper, and by turning it in the opposite direction, the tool may be withdrawn from the hole. The ball bearing may be urned in its socket to set the drill at any requirc angle, up or down, or to either side, as will be readily understood. The drilling tool is made with three cat ting points or teeth. This assures quick cutting action, and as the twist of the body portion increases in pitch but in a less degree than when it is prevented from moving. The opening in the pipe is of such size as to admit of cleaning the screw and other parts should it become necessary.
This invention has been patented by Mr. Charles E. Sohn, of Hamilton,

AUTOMATIC FIRE EXTITGUIBHER.

This fire extinguisher is especially applicable for use with car heaters, and is designed, in the event of a collision or overturning of a car, to automatically extinguish any fire exsting in the heater, and thereby pre vent a conflagration. The cylindrical

WILLIAYB' IMPROVED COAL OR ROGE DRILL. case shown in section in Fig. 2 is pre erably made of brass, copper, or equivalent material, |from the point to the heel, the tool is self-clearing, on and upon the inside of the bottom is provided with four inclined rods forming a seat for a heavy metal ball. Held centrally in the top of the cylinder is a glass vessel inade as thin as possible at the bot tom. Screwing into and forming a cap for the cylinder is a conical top provided in one side with an from the point to the heel, the tool is self-clearing, sut
that the cuttings will not bind or clog in the hole, butg will be carried backward and discharged as fast made, which insures the free and easy working of tha tool to any required depth.
This invention has been patented by Mr. John Williams, of Shenandoah, Pa. outlet, over the outside of which a stout metallic tube is secured. The end of the tube is adapted to beinserted in the stove or heater above the fire pot, and is provided with an inclined surface having a hinged lid, the object of which is to prevent the heat passing up the tube. Between the pipe entering the heater and that portion connected to the cap is a flexible connection. The position of the stove, cylinder, and connecting tube is clearly shown in the perspective view. In ope

The plan of throwing a bridge over the Straits Messina, that separate Sicily from Italy, will, whe consummated, be one of the most striking feats of mo ern engineering. The place selected is where channel is two and one-half miles wide and three ha dred and sixty-one feet deep, and two piers will suppo a viaduct of steel rails to a height of three hundr ration, the cylinder is filled with a solution of carbonate of putash or soda, and the glass vessel with sulphuric acid. The cap is then screwed on and the extinguisher placed upon a bracket, a convenient. distance from and
above the stove, being held above the stove, being held in position by a band or othe appropriate means. The pipe connected with the cap is then the sow downward through the stove, and its end held above the fire pot. In the event of a collision, or of the car being thrown upon its side, the heavy ball will strike and break the thin glass vessel, thereby liberating the sulphuric acid. The carbonic acid gas then generated will pass through the tube, spray over the heated fuel, and extinguish the fire. This fire extinguisher is the invention of Messrs. F. L. Hotchkin and P. A. Raby, of 423 Fulton St.

The Eastern standard is the

HOTCHKIN * RABY's AUTOMATIC FIRE EXTDFGUIREBR

DCPROVED BEVEL.

Upon each side of the body at the ends is secured a brass plate having a circular projecting portion. The plates upon one side are formed with circular apertures centrally made in the projecting portions, while the plates upon the opposite side are formed with square

WITTER'S MIPROVED BEVEL.
apertures. Pivoted upon a screw bolt passing through these apertures are the two blades, shuped as shown in Fig. 1; Fig. 2 being a sectional view, showing the blades folded in suitable recesses provided in the body. Each bolt is provided with a circular thumb nut, having milled edges and a groove cut centrally around its edge to facilitate turning. The nuts may be further tightened by means of a nail set inserted in a hole made in their edges. The blades will be securely held in any desired position by these nuts. Near the pivotal point of the short blade, the top plate of the body is provided with gauge lines, to which the blade may be adjusted when it is desired to cut on a square or at an

gerstenberg's plucber's trap.

angle. The short blade is especially useful in working from plans, as both blade and liandle are brought close thereto. Then, as the bevel is turned over to mark the wood, the thicker part of the handle is brought against the board to be cut. By the use of two blades in conbination, alwost angle may be obtained, aud in cutting hips, valleys, and jack rafters the small top blade will be found especially useful. It will be seen that the means for tightening the blades are entirely out of the way, and not liable, therefore, to form an obstruction in handling the tool or become broken or disarranged from a fall.
This invention has been patented by Mr. Frank E. Witter, of Brooklyn, Conn.

IMPROVEMENT IN EYE GLASSES.
Ordinary eye glass frames, connected by means of the usual curved nose spring, can be adapted for use by
different persons by springing the frame apart more or

IMPROVED EYE GLASSES.
less, but.in so doing they are necessarily turned in fling planes, thereby rendering them useless for ling cylindrical lenses
We annexed engraving shows a recently patented eye frame, in which the two lens-holding frames preTe their parallelism as they are separated or allowed epproach each other.
This invention consists in a pair of parallel bars atthed to the lens-holding frames, each bar being proFided with a loop for receiving the other bar, and a spiral spring surrounding one of the bars between the
loops, and arranged to draw the lens-holding frames
toward each other. This frame is especially adapted for holding cylindric lenses, such as are used by persons having astigmatic vision. It is of vital importance to mount such lenses so that their axes will preserve their parallelism when the eye glasses are adjusted to the nose. The improved frame accomplishes this result in a very simple and effective way.
While this franne is especially designed for mounting cylindrical lenses, it is not confined to that particular use, as it may bo employed to advantage in mounting the ordinary spherical lenses.
Further information regarding this invention may be obtained by addressing Mr. J. B. Laurencot, 33 Maiden Lane, New York City.

How to Promote Health.

After all that has been stated of the effects of the atmosphere in high altitudes or at the level of the sea, the influence of forests and ocean, of sea coasts and interior places, humidity and dryness, cold and heat, the winds, electricity, and ozone, and no matter what of other conditions, the paramount considerations for the promotion of health are an abundance of pure air and sunshine and out-door exercise. Without these, no climate is promotive of health or propitious for the cure of disease; and with them, it is safe to say, the human powers of accommodation are such that it is difficult to distinguish the peculiarities of any climate by their joint results on the health and longevity of its subjects.-Bell's "Climatology."

PLUMBER'S TRAP.

The annexed engraving represents an improved plamber's trap, especially designed to prevent sewer gas from entering the house through the waste pipe. The horizontal waste pipe extends from one arm of the D-trap, while the vertical unain outlet pipe enters the other arm. From near the end of the outlet pipe extends a branch overflow pipe. One side of the trap is closed by a plate which may be removed for clearing the trap or repairing the valve. The upper part of the trap, where it connects with the waste pipe, is on a higher level than the lower end of the outlet pipe, which is, therefore, always water sealed. The trap is formed with an upper chamber, within which the valve is placed. The valve proper, Fig. 2, is composed of a plate bent at right angles. Secured upon the upper surface of the lower portion is a packing of leather or other soft material to form a tight joint with the lower end of the outlet pipe when the valve is closed. The upper portion of the plate is connected to the lower arm of a bell crank, through the angle of which the valve is pivoted to a stud projecting from one side of the chamber. The other arm of the bell crank is provided with a weight which overbalances the lower part of the valve, so that the latter will close auto matically when the water stops flowing from the main outlet or overflow pipe. Any gas that may find it way through the water retained in the trap will be prevented from entering the outlet pipe, and any pressure that might result from accumulated gas in the trap would only serve to force the valve more firmly against the end of the pipe.
All further particulars concerning the invention may be obtained from the patentee, Mr. F. C. Gerstenberg, of 1107 First A venue, New York City

DMPROVED CABE OR TUB.

This invention is applicable to barrels or tubs in which the staves are formed with a groove to receive the heads, the object being to secure the heads against outward displacement, and to support the staves beyond the groove against any blow delivered upon the exterior of the staves that would tend to break off their ends. Secured within the staves, and outside of the head or bottom, is an angle iron hoop having one flange overlapping the head or bottom, and the other lapping the chine or projection of the staves and terminating at or near their ends, as shown in the accompanying cuts. The head or bottom is thus securely held in place, and the ends of the staves are sustained beyond the croze. Such a hoop of angle iron may be employed in connection with the outer hoop, which encircles the staves at their ends, and rivets common to both hoops may be inserted directly through the inner and outer hoop and the interposed staves. In connection with the hoop of angle iron as applied to the bottoin of a tub, there may also be provided a second angle iron hoop, arranged upon the inner side of the bottom, and rivets may be passed directly through both the angle iron hoops, the outer hoops, and the staves, as shown in Fig. 3. By this construction the botton is held both against downward pressure, which would result from the weight of the contents of the tub, and against any upward pressure or blow which would result from the tab being thrown upon a stone or other obstruction that would strike the bottom. This invention, without materially increasing the cost of manufacture of casks and tubs, adds greatly to their strength.
Further particulars may be obtained from the patentee, Mr. George R. Nafls, of 266 Monroe Street, Brooklyn, N. Y.

DCPROVED VEHICLE POLE.

The vehicle pole herewith represented is the inven tion of Mr. John J. Ryan, of Sardis, Miss. This pole is so designed as to permit of the use of a straight piece of timber in its construction in lieu of the ordinary curved pole, and which will allow hitching the horses nearer the vehicle. The curved bar is provided at its ends with pole couplings for attachment to the running gear. To the top of the center of the bar is secured a curved standard, the upper portion of which extends along the under side of the rear end of the pole. A brace rod extends from the center of the curved bar to the pole, while two side braces extend from the pole to

byaf's niproved vehicle pole.

the ends of the curved bar, the ends of these braces being extendud sufficiently to form the pole couplings. The whiffletrees may be placed at the extreme rear end of the pole, if desirable, thus permitting of bitching the horses near the vehicle where they can pull to greater advantage, or the whiffletrees may be secured by passing the' bolt through any one of the series of holes cormed in the rear end of the pole.

COVERING FOR TRACTION CABLES

This covering is designed to protect the cables and car grips from the extreme wear to which they are at present subjected, while it will in nowise innpair either the flexibility or efficiency of the cable. On the cable is strung an endless series of tubular sections-one of which is shown detached in Figs. 2 and 8-one end of each of which is concaved and the other correspond-

MCANTN'S COVERING FOR TRACTION CABLEs.

ingly convexed. The convered end of each section fits closely and smoothly in the concave end of the next succeeding one, so that a ball and socket or universal joint is formed between each pair of sections. The sections are preferably made of cast metal, as iron, but may be of any other material capable of withstanding the great wear. They are strung closely on the cable, and at the splice may either be made in halves, secured together, or they may be formed by pouring melted metal into suitable moulds surrounding the cable. A continuous fiexible covering is thus formed, which will receive the wear now falling on the cable strands.
This invention has been patented by Mr. Thomas E. McCann, of 1631 Catharine Street, Philadelphia, Pa

Nitrate or silver scains.

Dip the fingers into a strong solution of cupric chloride. In about a minute the silver will be converted into a chloride, and may then be washed off with hyposulphate of soda solution.

hafig diproved casi or tub.

degision belating to patents.
 U. 8. Oircuit Court.-District or Maine

Willised et al. v. Cooper. SAME $\boldsymbol{0}$. Thomes.
Colt, J.:
In these suits the respondents are charged with infringing letters patent No. $\mathbf{2 4 0} \mathbf{6 3 0}$, granted to Henry E. Willard, April 26, 1881, for improvement in fishing apparatus. The object of the improvement is to provide a pocket or bag into which the fish, which have been caught in a seine, may be transferred and kept alive until they are dressed for packing. The apparatus consists of a pocket attached to the vessel's rail, and hung upon two booms which project from the side of the vessel. The booms are attached to the hull of the vessel, so as to move freely in different directions. There are guys at the outer ends of the booms, which serve to adjnst them in a lateral direction, while they are raised and lowered by means of tackle extending from the masts to their outer ends. Outhauls connected with the outer corners of the bag serve to lower and raise the outer edge of the bag. Lace lines are permanently attached to the center of the head line, and run each way through grommets which are fastened to the head line. There are supporting lines connected with the center of the bag's head line, which are of use when the vessel rolls heavily. The seine is brought alongside the pocket by the seine boat. The outer edge of the seine is then fastened to the edge of the bag along the whole front of the bag, between the outer ends of the booms. This is done by thrusting the corks of the seine between the lace lines and the head line and then pulling the lace lines taut. The claim is for the pocket in combination with the seine, lace lines, grommets, outhauls, booms, head line, corks, supporters, and guys.
The defendants introduce a prior patent, granted to Benjamin Merritt, Jr., in 1858, which shows a net for catching fish attached to the side of a vessel, and stretched out upon two movable booms projecting from the vessel. Numerous witnesses are called who testify to the use of fish pockets with and without booms in connection with a seine prior to Willard's device. Many of these witnesses are not wholly disinterested, and for this reason this evidence is not entitled to the weight it would otherwise have; but, while receiving this evidence with caution, still, in view of what was manifestly old and well known, we cannot discover more than the exercise of mechanical skill in the construction of the Willard apparatus. We can find no invention in combining a fish pocket with a seine in the manner described, nor in the use of booms which are attached to the vessel in the same way as the old boat's boom, nor in the use of guys, head lines, grommets, and other well-known apparatus. In making and working a fish pocket, fit seems to us these old and familiar things would immediately suggest themselves to one skilled in the art. In our opinion, Willard made no invention or discovery, in the sense of the patent law, such as entitles him to a monopoly, and therefore the bill must be dismissed.

stoam Torpedoen.

There is at the present time undergoing consideration by the British Admiralty authorities a system of propelling traveling torpedoes by means of steam instead of by compressed air, devised by Mr. Edward C. Peck, who is engaged in the constructive department of Messrs. Yarrow \& Co.'s torpedo boat yard at Poplar. The torpedo is of the usual Admiralty pattern outside, the dimensions being 14 ft . long by 14 in . diameter, and it will carry in the forward part an explosive charge of 100 lb. of gun-cotton, together with the firing apparatus. The shell will be constructed of metal, and will be sufficiently strong to resist the external pressure of the water and atinosphere when a vacuun is formed within it. At about the center is a hot water reservoir, 4 ft . long and $111 / 2 \mathrm{in}$. Internal dianneter, and capable of withstanding a given pressure. This reservoir will be surrounded by a coating of non-conducting material, three-fourths inch thick, and between the outside of this and the skin of the torpedo will be a space of threeeighths inch.
The reservoir is to be charged with about 160 lb . of hot water, taken from the main boiler of the torpedo boat or other vessel from which the weapon is to be discharged. The water will be transferred very rapidly, at a pressure of about 400 lb . per square inch, by ineans of a tube fitted with the necessary inlet and outlet valves, and there will be means for raising the temperature of the water, if necessary, during its transfer from the boiler of the boat to the reservoir of the torpedo. The charging operation will not occupy more than half a minute, and it is calculated that the torpedo will keep steam at the pressure necessary for driving her engines for at least an hour after it has been charged. The quantity of water carried will possess sufficient sensible heat to supply the propelling engines with steam of a slowly decreasing pressure during the run of the torpedo. The space between the reservoir and the skin of the torpedo, as also a portion of the space in the body of the torpedo not otherwise occupied, is utilized as a surface condenser for the steam
after it has done its work in the engines. By this means the weight of the torpedo will be precisely the same at the close as at the commencement of the run The torpedo will be fitted with engines of 60 horse power indicated, and capable of propelling it through the water at a speed of 32 knots an hour. It will be fitted with the usual fins, rudders, and regulating ap paratus, to insure its travelin The advantared direction
The advantages of a steam-driven torpedo would ap pear to be very considerable. In the first place, weight is saved in the torpedo itself, and the pressure being only about one fourth of that in the Whitehead torpedo using compressed air, there will be no difficulty in keeping all the joints and connections tight. In the next place, compressed air will only give a three quarter min ute run, while it is calculated that steam will give a run of a minute and three-quarters. The speed with com pressed air is 24 knots, and the average range 600 yards, while with steam Mr. Peck reckons on a speed of 32 knots and a range of 1,800 yards.

IMPROVED GATE LATCH.

The gate is hinged in the usual way, and is provided with a latch rod, which engages with the latch, shown in detail in the sectional plan views, Figs. 2 and 3, secured to the post. The latch, D, is composed of a frame, tumblers, b, pivoted in a chamber of the frame, and the plate, c, pivoted to the frame on the pin, c The tumblers are nearly circular in form, and each is formed with a projection and straight shoulder, the

pUGSLEY's Diproved gate latge.
latter serving as a stop to strike the frame and prevent the tumbler from swinging outward too far-that is, beyond the point at which the projection stands in the path of the latch rod to act as a stop to the gate, A when the latter is closed. The front edge of the plate, c, is notched to form two projections, between which the gate rod, C, stands when the gate is closed. The outer ends of the plate are beveled, so that the rod will strike these edges when the gate is closed, and swing the plate back to permit the rod to pass the projection. By this arrangement the gate may be locked from either direction by turning one or the other of the tumblers to the position shown in full lines in Fig. 3. The latch rod has a spring action, so that it will pass the tumbler, which it strikes in closing the gate and swings to the position shown in Fig. 2, so that the gate will not open of its own accord. In pushing the gate open, the rod strikes the shoulder of one tumbler and
swings it to the position indicated in Fig. 3. This action moves the rod inward, and causes it to pass the tumbler without friction.
This invention has been patented by Mr. Samue Pugsley, of New Rochelle, N. Y.

Progrese or Electric Lighting.

When the last census was taken, to wit, in 1880, the census man did not consider the electric lighting investment of sufficient importance to warrant him in collecting the data. Capital was at that time in a condition which might be called undecided, so far as the electric lighting field was concerned. The great promise that had been made for electric lighting by illadvised persons had not then been realized, and the difflculties in the way-difficulties which, it should be said, always array themselves in the path of novel en-erprises-seemed to present an insuperable barrier to the development which, at that time, was thoughtlessly promised and is now being realized. We say thoughtlessly promised because, while such develop ment was not an impossibility in the future, the claims that were made of inmediate profits were absurd, and investors unfamiliar with the field and its possibilities, who had been encouraged by these rash promises to come in, were soon stainpeded.
But there were men with brains, as well as capital, in the electric light business. It was enough for them that the prospects were bright, without that they got
an immediate profit. The demand for the light inreased as the apparatus for its distribution was perlected, and as improveinent was constant, the business grew. At first, as we have said, it was slow, then faster, until finally it sprang into public favor at a bound. and is now recognized as one of the best paying industries. We say that its rise and progress have been phenomenal, and if any one doubts it let him study the following figures, which we have carefully collected from the best known sources, and are approximately corthe b
rect :

Amount of investment in voltaic arc plants in the United States on Nov. 1, 1886
 Incandescent plant.
 nvestment by manufacturers of arc and incandescent $15,000,000$
 Invested in manufucturing other apparatus connected
 with electric light apparatus, including condaits,
 cables, etc.
 Invested in the manufacture of carbons, aboat.........................000,000
 Estimate of the value of patents, as made at the Patent
 omice by experts. 15,000,000
 Total.. . . . $8107,000,000$

And how long has it taken for this vast sum to be attracted to the electric lighting field? Only six years ! Looking at the rate of progress, we find that from 1881 o 1882 the business of supplying electric light alinost doubled, and has doubled year by year ever since. It cannot, of course, go on at any such rate as this much onger, for, as we know, the doubling process, if continued, mounts soon into inflnity.
We find that there are over 650 local electric lighting ompanies in the country to-day.
We have been to no little pains to collect data look ing to a reliable estimate of the number of arc lights now aglow in the country, because so many conjectures have been made and so much haphazard guesses indulged in. This has not been an easy task, because of the disinclination of some of the arc companies to give their returns. From this survey we discover that at least 125,000 voltaic are lights are now lighted nightlya very pretty showing truly
In the incandescence field, a careful estimate, throwing out all figures of projected installations and sticking closely to what is really being accomplished to-day, we find that there are about 640,000 and some odd incandescence lamps aglow to-day in the United States.
The question as to electric lighting popularity has always been one of economy. No one ever doubted that electric lighting would be popular, but many did doubt if it would ever be cheap enough to be generally used. Happily, the cost of distribution, the cost of apparatus and of lamps, has become less and less yearly, indeed, we were about to say monthly, for those who are watching the movement have been surprised to see how quickly one improvement has to give way to another. To-day the cost of an electric lighting plant is less than one-half what it was six years ago, and there is every reason to believe that six years from now almost an equal decrease in cost will have been at-tained.-Electrical Review.

Platinum Orea.

The importers' price for refined platinum has risen teadily since 1883 , when it was $\$ 6.50$ to $\$ 7.50$ per ounce, according to quantity bought. It is now worth $\$ 7.50$ $\$ 8.50$.
The inost important sources of platinum are the hydraulic mines at Nizhne-Taglsk and Forgo-Blagodat, n the Ural Mountains. About 80 per cent of the world's production comes from this source. Next in importance are the gold washings of the Pinto, in the United States of Colombia. About 15 per cent of the entire product comes from this source. It is also found in Brazil, Borneo, Hayti, Peru, India, Australia, and in the sands of the Chaudiere River, in Quebec. It has recently been found in a quartz vein in New Zealand. The interest in the deposit lies in the fact of the extreme variety of platinum in place.
Platinum has been found in small quantities in various parts of this country, associated with free gold in placer deposits, but it is only from the placers of California that it has been produced in merchantable quantity, which amounts to between 100 and 200 ounces per annum, and is sold at 75 cents per troy ounce. It contains about 85 per cent of the metal, and is shipped to London to be refined.
The platinum used in this country comes almost entirely frou Russia, and the imports amount to between 3,000 and 3,000 pounds annually.
Platinum "ore," as it is called, contains iridium, rhodium, gold, copper, and iron. It is sometimes, though seldom, found crystallized in cubes and octahedrons, but more usually in rounded or flattened grains, or "sand," having a metallic luster. It is very rarely found in place, but mixed with placer gold sands.
The principal consumption of platinum is in the manufacture of chemical apparatus, but within the past few years the use of incandescent electric lights, and also gas jets made luminous by a heated platinum spiral, have caused an increased demand for the metal. and the steady rise in price during the past three years may be referred to this cause.-Georgetown Courier.

the collige of the city of hew york-the

 techincal courar.The tendency of modern educators is every day more directed in the way of manual training. The first steps in children's education by the kindergarten method of Froebel, and the followers and amplifiers of his system, consist in a training of the faculties of observation and manual accomplishment. It is claimed that by this system a child need only commence to learn to read when seven or eight years of age, and that, owing to his kindergarten training, he will pass by one who may have learned reading several years lessons. The object system being established as foundation for educational training, the extension of the sanne system to the higher courses seems only logical. A strong movement to effect this has become prominent here and in other cities during the past year. In New York the project of establishing such classes in the public schools has been susiessfully carried out. Considerable notice has beer. tàken of the atternpts. The work of the students has veen publicly exhibited, and commented on in the papers. While his has been going on in the grammar schools, and be ore this period, the College of the City of New York has unobtrusively, and without attracting any notice carried out a similar advance. Manual and technical ducation is firmly established there. From black suithing and carpentry up to chemistry and physics, the leading branches of technical training have a place in the course.
The president of the college, General Alexander H . Webb, saw from an early period the necessity in a col lege course of making men think for themselves. Thus, to render the lectures in ancient art and history con crete, reference could be made by the professor to the sollege collection of pictures and wodels. If the Venus ictrix or Apollo Belvedere was spoken of, a picture or cast of the statue was at hand for illustration. Athens and its Acropolis became more than names when the views of the city and its buildings were presented to the student. The courses in chemistry and physics, from the beginning of the college, were profusely illustrated by the experiments of Professor Doremus, who, in his reputation of a demonstrator, is without rival in this country. Thus the eye has always been appealed to as well as the purely intellectual faculties, and this was the beginning of the advance. Within a few years the practical lessons of the laboratory, workshop, and drawing room have been added and made a part of the course. Some views of these are given in our illustrations.
The main college building is familiar to all residents of our city. It is situated on the southeast corner of Lexington Avenue and 23d Street. Soath of it a new building, devoted principally to the natural history department, was erected some years ago, and more re contly a building devoted to the technical work of the students was erected to the east of the main building. These new departments are the ones illustrated in this issue.
Recognizing the practical, every-day importance of the microscope, the students are instructed in its use. The substances examined by it are principally commercial products. The obvious intention is to give the tudents a lesson that may be of service in business life, where these products are dealt in. The same is to be said for the blowpipe class, where mineralogy and examination of ores is studied. The construction of the blowpipe from a clay pipe, a cork, and a bit of glass tube will be familiar to some, but probably new to the reater number of our readers, These branches are in the charge of Prof. Willian Stratford.
For the study of practical and analytical chemistry a aboratory that in many respects is superior to any in the city is provided. The ceiling is very high, and rises in a series of parallel gables running east and west and glazed upon the north slope. These act as a series of skylights, admitting the north light only, and excluding all direct sun light. The effect is the most perfect illumination for work. The room is flled with laboratory tables, each table having its own set of reagent bottles, with name and symbol blown upon the glass of each. At the end of the room is an elevated platiorm, with lecture table and blackboard, for the use of the professor or instructor in charge of the
laboratory. Various detailsabout the desks are worthy of notice. No separate funnel or filtering stands are ased, a series of sockets being provided that hold movable supports for the funnel. For every four desks a ink and water faucets are supplied, a distinct advance upon the old system of a single sink for a whole laboratory. Qualitative analysis is taught here ; quan titative analysis as yet being given to but few of the students. Balances are, however, provided, so that the laboratory is equipped for both classes of work.
Physical scieuce, as a rule more quickly appreciated by students than chemistry, is practically studied in laboratories devoted to it. Air pumps, gas analysis apparatus, elect rical apparatus, gasoneters, apparatus for illustration of heat and light, are here all used and is worked at by sections of four or five students at a time with Melloni's elassic apparatus. Those who have
attended a good course of lectures in physics may form some idea of the work when it is stated that practically he students themselves repeat all the experiments incident to such a course.
Prof. Doremus, in whose charge these two departments are, lectures on the subjects of chemistry and physics, with all the illustrations the college's collections afford. His lecture room, as not appertaining to the students personal work, is not shown. It is provided with every maginable appliance, including the great air pump driven by steam
The practical division, including the laboratories, is directed by Dr. Charles A. Doremus, together with Dr. L. H. Friedburg. The work of inspiring an army of students day in and day out with the magnetism necessary for their work is a most trying one, as any educator can testify. Upon the work of the laboratories, and upon this inspiration the success of the course depends.
The instruction in drawing on the blackboard, and on paper from relief models, and from memory, is a necessary feature of the programme. Besides relief nodels, natural history is made to supply subjects. On the boards the structure of mollusks and other types are drawn. In this way the art may be made the exponent of a branch of natural history, and by such reference acquire a new spirit of life and reality.
What we have thus far described is the work in the natural sciences. Practical and useful though the design is, a more striking, because on its face a lower and more every day, form of manual training is next to be considered. In an extensive workshop, wood and metal working are thoroughly taught. Some of the scenes are illustrated.
The treatment of iron begins with lorging. The general principles of the art are given by the instructor, with blackboard illustrations. The students then don their aprons, light up their own fires, and in groups work at the assigned tasks. A number of portable forges with hand blowers keep all the students at work. On the occasion of our visit, all the class were occupied chain making. Another day, some other piece of forging would be erecuted. In this way a knowledge of this most artistic work is acquired. In no art can effects more characteristic of the pure work of the hand be produced. The achievements of the old time blacksmiths in decorative forgings can stand comparison with the work of any artifcers.
The blacksmith shop is next to the lathe or turning shop. Here a large number of lathes for metal turning, both speed and engine lathes, are in daily use. Having learned how to forge his material, and acquired some idea of vise work, flling, etc., the final work of turning is taught. From our illustrations, owing to limited space, only an imperfect idea of the number of lathes and completeness of the equipment can be obtained. Between the lathe shop and blacksmith shop is an electric plant for supplying electricity for the general needs of the scientific department.
Next to the metal turning lathes come the wood lathes. There are about the same number of these. The students who have gone through the carpenter shop, and have learned joinery, are ready for wood turning. All the lathes are driven by power.
Finally, the carpenter shop is shown. A number of complete benches, with full outfit of tools, give every facility for good work. In this connection the subject of sharp tools is not lost sight of. The students receive special instruction in sharpening their saws, plane irons, etc. For the lessons in saw fling, strips of brass are supplied, which the student files into teeth for practice. This economizes material, and really affords, if anything, a better substance for a criterion of the student's work. The making of the different joints, such as mortise and tenon and dovetail, with other points in carpentry, are features of this course.
Thus it will be seen that the city of New York affords to the sons of her citizens a complete technical training free of all expense. With great judgment the stadents are not restricted to the regular hours for work in the shops. Late in the afternoon they may be seen bending over the lathes, or carpentering or doing some other class of work. Yet we believe we risk little in saying that we are disclosing what is to many a new fact-the existence of such an opportunity for the poorest as well as the richent of the city's
future citizens. The work of the college has been done so quietly and unostentatiously that less is known of it than should be.

The Shrinkage of Flannel.

To keep flannels as much as possible from shrinking and felting, the following is to be recommended: Dissolve one ounce of potash in a bucket of water, and leave the fabric in it for twelve hours. Next warnt the water, with the fabric in it, and wash without rubbing, also draw through repeatedly. Next immerse the flannel in another liquid containing one spoonful of wheat flour to one bucket of water, and wash in a similar manner. Thus treated, the flannel becomes nice and clean, has barely shrunk, and almost not at all felted.

Sorrespondence.

The Army comparicon.

To the Editor of the Scientiflc American:
Your item copied from the Sun
French army, peace footing 285,000
United States Army of pengioner. 445,000
400,000
conveys a false impression, which I believe you are willing to correct. The pensioner is only partly supported by the government. The pay and allowances of a soldier are several times as much as the average pension. For instance, a captain's pay and allowance are about $\$ 140$ a month. His pension varies from $\$ 5$ to \$20, according to the degree of disability.
S. N. Stewart.

Philadelphia, Pa., February 28, 1887.
Experiments in the Cuitivation or Beote.
Prof. D. G. Marck, of the University of Koenigsberg, has for several years been making an interesting series of studies upon the influence exerted by orientation in the cultivation of various plants, especially beets. He finds that, recording as the lines are parallel with or at right angles to a north-south direction, the yield in quantity and weight show notable differences. We hall confine ourselves to a citation of the principal results as given in the very long and detailed report published by the performer of these interesting experiments.
If we suppose the weight of a beet deprived of leaves to be 16 ounces, and that of the collar and leaves to be eight, the difference in weight of the beets sown in the north-south direction, as compared with the east-west. amounts to +2.98 per cent for the weight of the roots and -8.44 per cent for that of the leaves.
Supposing a crop of $33,000 \mathrm{lb}$. of roots and 16,500 of eaves per acre, these differences are equivalent to $+1,080 \mathrm{lb}$. of roots and $-1,418 \mathrm{lb}$. of leaves and collars. As regards polarization, the north-south lines always xhibit the highest figures, the surplus fluctuating between +0.16 and 1.33 , and the average being 0.48 per ent
It may be conceded that the north-south lines yield the most saccharine beets. As regards the quotient of purity, the greatest purity was, except in one case, ob tained in the north-south lines, the quotient fluctuat ing between -1.20 and +4.33 per cent. It may be concluded, then, that the north-south lines furuish the purest beets. If, therefore, concludes Prof. Marck, wo sowings of beets are cultivated under the same conditions, with the lines oriented in contrary direc tions-north-south and east-west-the north-south lines will yield a crop which is superior as regards weight of oots, saccharine richness, and purity, but will furnish less quantity of leaves.
Prof. Marck explains these differences as due to the unequal action of the solur light and heat. They are more sensible where the beets are cultivated in ridges or shelving beds than they are where the culture is in even ground. When the lines run north and south, the surface looking toward the east receives the solar rays in the morning, while the one turned toward the west receives them in the afternoon, and the absorption of heat is greater than when the direction of the lines is parallel with the east-west direction.-La Nature.

The Rimgobhaped Atoma.

August Bernthsen and Hugo Scweitzer.-Among the most interesting results of recent chemical investigation must rank our recognition of the fact that there xist certain so-called "ring-shaped" groups of atoms, tike those of benzol, naphthaline, anthracene, and pyridine, which are widely distributed, and which are ormed with exceptional readiness. Ainong these a peculiar interest attaches to that ring which exists in anthracene, and which is characterized by having two phenylen groups connected by two groups of atows, which, in the benzol residues, take up the ortho position to each other, so that with the carbon atoms in question they form a third ring of six members.
Two compounds analogous to anthracene, acridine and thiodiphenylamine, have been investigated in the Heidelberg Laboratory. These compounds, like anthracene. produce beautiful coloring matters. Thus, chrysaniline is a diamido-phenylacridine, and thiodiphenylamine passes, by the intussusception of amido groups or hydroxyles, into the leako compounds of coloring matters, of which methylene blue is the most prominent representative. Hence it seemed to the authors desirable to efannine if other diorthodiphenylene derivatives are capable of existence, and if they also are chromogens. Such a body is phenazine. The are nors prove that methylphenazine and phe ise to coloring matters of importance. The safranines (which contain one phenyl group more than the coloring matters of the tolaylene-red group) must be referred to a phenyl derivative of phenazine, or rather of hydrophenazine.
gectioinal steel boat for Mr. stanlley.
The boat shown in the accompanying cut was constructed by Messrs. Forrestt \& Son, in thirteen days, for use on Mr. H. M. Stanley's expedition in relief of Emin Pasha. It is constructed of Siemens-Martin steel, galvanized, and is divided into twelve sections, each weighing 75 lb . India-rubber is placed between the points of intersection, to prevent leakage, while the fore and aft sections are water tight, to give additional buoyancy to the craft. It is 28 ft . long and 6 ft . beam
to which it is united are mounted loosely upon the shaft, but by shifting a suitably arranged lever, the drum and its pulley may be so moved as to bring the two pulleys into engagement. When the lever is released, the drum and pulley swing away from the first pulley, and their shaft revolves independently of the drum. Upon the crank shaft there is also a worm, which may be moved to throw it out of engagement with the gear wheel driving the windlass mechanism.
with the gear wheel driving the windlass mechanism.
It is evident from the simplicity of this apparatus,

The first three proof rounds of the powerful new gan supplied by the Elswick Works for her Majesty's bar bette ship Benbow wore fired February 10, at the butts at Woolwich Arsenal, the result so far going to show that this is the finest specimen of artillery yet produced in this or any other country. Among the "Woolwich Infants" it is like the famous Queen Elizabeth's bronze gun in Dover Castle among the old carbeth's bronze gun in Dover Castle among the old car-
ronades. In length it is 524 in., or nearly 44 ft . The

1. The twelve sections. 2. Carrying a section; weight. 73 pounds. 3. The boat afoat.

SECTIONAL STEEL BOAT FOR STANLEY'S AFRICAN EXPEDITION.

and 2 ft .6 in . deep, and is furnished with ten oars and and the consequent fewness of the parts, that there is |inner tube is of solid steel throughout, strengthened by
a large lug sail. The boat way be very rapidly taken apart and put together again, und each section may be carried by two men.-Illustrated London News.

CONVERTIBLE ANGHOR AND FREIGHT HOIBTING

 apparatus for vessels.Every large steamship is provided with several small independent engines, so distributed about the vessel that the work of loading and unloading may be most expeditiously carried forward. In addition, there is usually a special engine designed to handle the anchor, and which, of course, performs no other service. By means of the invention shown in the accompanying engraving, this anchor hoisting engine may be also employed for the handling of freight, thus atilizing a machine that would otherwise be idle except during a very brief period, and thereby providing, practically, additional power without corresponding expenditure. The steam capstan windlass used in connection with this appa ratus is well known and appreciated, being used by all the most importan lines upon this side of the water. As all parts of the windlass are connected to the same plate, the whole must always remain in line, independent of the twists and strains to which the deck may be subjected. The engines are counter balanced, and, together with the locking gear of the windlass and the friction levers, are placed in the most convenient position possible. An extremely simple device, placed in a well just below the worm gear, provides for the automatic lubrication of each tooth as the wheel revolves; this reduces the friction, and prevents cutting and vear.
Upon one end of the crank shaft is mounted a sprocket wheel, over which passes a chain leading to a like wheel on a shaft pro vided with a grooved fric tion pulley, which may be engaged by a second pulley on a shaft carrying the hoisting drum. This second pulley and the drum

CONVERTIBLE ANCHOR AND FREIGHT HOISTING APPARATUS FOR VEsskLS.
inner tube is of solid steel throughout, strengthened by jackets of comparatively thin steel hoops. The length
of the bore is $4871 / 2$ in., or about thirty calibers, and the of the bore is $4871 / 2$ in., or about thirty calibers, and the
rifling, which consists of a multitude of sinall shallow grooves, extends for 397.2 in ., or about 83 ft . The di ameter of the bore is $161 / 4 \mathrm{in}$. The diameter of the powder chamber is a trifle over 21 in ., and its capacity 28,610 cubic inches. The twist of the rifling commences with one in 120 calibers, and increases to one in 56 calibers. The gun is mounted on a fine cost steel truck which weighs 95 tons, and on the proof rounds it ran which weighs 95 tons, and on the pro
up the incline from about 50 to 70 ft .
The first round was fired with 600 pounds of Westphalian powder and a cyiindrical projectile weighing 1,800 pounds. The velocity attained was $1,635 \mathrm{ft}$. per second, giving an energy to the projectile of about 35,240 foot tons for the penetration of armor. The sec ond round was with a shot of like weight and 700 pounds of the same powder, being the largest charge as yet fired in England. The velocity attained was $1,843 \mathrm{ft}$. per second, the energy acquired being about 48,100 loot tons. The third round was with a similar projectile of 1,800 pounds and a powder charge of 800 pounds. The velocity attained was 2,007 ft . per second, and the ener gy rose to some 50,000 foot tons. The pressures of the gases within the chamber of the gun at the time of the powder discharge were 9 tons with the 600 pound charge, 12 tons with 700 pounds, and 15 tons with the 800 pound charges. The recoil of the gun in the last round was controlled by the hydraulic buffers with in 4 ft .6 in. The inner tube of the gun was in per fect condition at the ter mination of the day's fir ing. It is expected that when the next date of proof firing is determined, powder charges of 850 pounds, 900 pounds, 925 pounds, and 950 pounds will be used with projectiles of 1,800 pounds weight, and an energy on the projectile of 62,700 foot tons may be expected to be developed, capable of penetrating ar mor more than 3 ft . thick.

ERNBT WERNER SIEMEMES.

In the fields of steam engineering, of metallurgy of iron and steel, and of electricity, no name occupies so prominent a place at once in all three as that of the Siemens brothers, Werner, Carl, William, and Frederick. A review of the life of Sir William, with his portrait, has already been published by us.* In most of the Siemens inventions he had some part. Dr. Werner Siemens has won his principal fame as an elec rician. He was born at tenthe, near Hanove December 13, 1816. He entered the Prussian army in 1838. His mind was early occupied with studies in electricity, the problem of electrogilding engaging his attention. In his experiments on the new art, as it was then, he was joined by his brother William, six years his junior. His first patent on the subject was taken out in 1841. A year later George Elkington had executed successful plating in Birmingham. This was the beginning of the great electro-plating industry. The Siemens invention was introduced into England in 1843. Still working with his brother, he was a joint inventor of the process of astatic printing. It was described in one of Faraday's lectures in 1845, and represents the beginning of the reproduction of prints and drawings. It was mechanical and chemical, the resinous matter of the ink of a printed page being destroyed by caustic baryta or strontia, and the letters being then transferred to a zinc plate by pressure. Photographic processes have now superseded this method.
In 1844 he assumed the charge of the government artillery works at Berlin, but continued to devote himself to electricity. In 1847 he laid the first sub-aqueous telegraph line, insulated with gutta percha, across the Rhine at Cologne, a distance of one-half mile. A year later he experimented at Kiel with submarine mines explodel by electricity through his cable. In 1849 he left the army and founded the great telegraph construction house of Siemens \& Halske, in Berlin.
To the year 1856, a period when the mechanical generation of electricity, founded on Faraday's researches, was in its infancy, the old Siemens H armature is referred. This antedates the Pacinotti ring four years. It is not easy to ascertain to which brother it is due, or if to both. The prolific nature of both makes it difficult to accurately define their individual work. Sir William took out about one hundred patents of his own, while forty or fifty inventions stand to the credit of the brothers jointly.
In 1858. Werner Siemens, with Herr Halske, his partner in Germany, and with his brother William, founded the English house of Siemens \& Halske, at Charlton, West Woolwich, a branch of the Berlin establishment, and principally in Sir William's charge.
Eleven years after the invention of the armature, Werner sent a very remarkable paper to his brother, in - Sec Scientific Aurrican Supplekent, No. 388, and Scientific anerican, vol. xilix., p. 388.

London. On the 14th of February 1887, Sir Willian read it before the Royal Society. Its subject was "On the Conversion of Dynanic into Electrical Force without the Aid of Permanent Magnets." A paper on an identical subject was read by Sir Charles Wheatstone on the same evening. In these papers, for the first time, the principles of the dynamo-electric machines were laid

DR. WERNER SIEMENS.

cables-something essential to the economical succes

 of long subinarine cables.The business and engineering enterprise and achieve ments of the firm of Siemens \& Halske in telegraph construction is worthy of notice. They are the only rivals of the Telegraph Construction and Maintenance Company, of East Greenwich, England. The Indo European overland telegraph line was built by them, through almost unexplored countries, across Russia and Persia to India. It was built under the agreement that no payment should be made to the firm until a dividend of $121 / 2$ per cent had been earned on the paid-up capital.

Years were consumed in the work, which has proved a commercial success. The connection of the firm with it terminated in 1882. The story of the difficulties encountered and overcome in this work reads like a novel. They laid the direct U. S. cable, the Brazil line, the North China line, and the ocean is everywhere underlaid by their cables, placed in position by their special cable-laying ship, the Faraday.
The Siemens armature, already spoken of, was the old grooved or H armature. The more recent one, the drum armature, resembling in its theory the Gramme or Pacinotti ring, is to-day used in probably a third of existing dynamos. A great proportion of motors also embody it in their construction. The Weston dynamo, as made by the United States Electric Lighting Company, contains it. The Siemens electrical lamp also stands very high in order of merit.
Thus Ernst Werner. Siemens stands as one of the pioneers of electricity in alnost all its applications-electric plating, telegraphy, subinarine cables, mechanical generation of electricity, and electric lighting. In much of his work he cannot be separated from his brother.

MECHANICAL DYEDTG

That modern industry ceaselessly aims to make itself independent of hand labor is a fact well known, and many useful apparatus and contrivances have been already devised for effecting this object in the different branches of the tinctorial trades. The dyeing of loose wool and cotton also

The discovery is claimed, as independent inventors, by Varley and Hjorth
The subject of electrical railroads engaged his atten tion for many years. He proposed to establish thein in Berlin, but the city authorities interfered and stopped it. He exhibited one at the German Industria Exhibition in 1879, and eventually built a short line in the suburbs of Berlin, the Lichterfelde road, which was opened in 1881. At the Paris Exposition of Electricity in the same year, he ran a line carrying many thousand people successfully and without accident. The Port rush line, in Ireland, is worked largely on the same plans, and was built under the supervision of his brother.
Among his inventions may also be named the method for determining the position of faults in submarine
have had their share of attention at the hands of inventors, without, however, bringing forward any very striking changes over the old methods until within the last few years. The process under conideration may be considered as a thoroughly modern method. It relies, of course, on the well known and necessary principle of effecting a circulation of the dyeing or mordanting liquids; but, unlike the older systems, the material is left standing while the liquids are kept in motion. It is to the mechanical arrangements, therefore, that our attention must be first given, and then to the amount and quality of the work perormed.
As will be seen from the illustration, the dyeing apparatus consists of a cistern in which the dyeing or mordanting operations are performed. The material

is placed in the cylinder, which is a perforated vessel of copper, or even galvanized iron, according to the nature of the bath, and this cylinder is fixed at the bottom of the cistern and put in communication with a centrifugal pump, which forces the dyeing or mordanting liquors through a pipe into the cylinder, and after reacting on the material through the perforations all over the surface of the cylinder, back again into the dyeing cistern. This latter is fllled only with sufficient liquor to affect the dyeing or the mordanting of the material, and consequently it is possible to work with stronger liquors, which means also a saving in the fuel, since only small quantities of liquors have to be heated, and not as in the old process of having to heat comparatively a large amount of liquor for a small quantity of the material. The liquors in the cistern only average in all about 15 inches.
The coustruction of the cylinder or receptacle for holding the material to be treated differs according to the nature of the inaterial itself, and consists either of a plain cylinder with a perforated column in the middle, with which it communicates with the punp, or the apparatus is of more complicated construction, having one central cylinder and several others protruding from it, in which the material is placed, and is especially suitable for the dyeing of tops. In both cases the main cylinder is supplied with a lid to press down the material and keep it in its place, and at the same time to allow, by means of a hook at the top of the lid, the whole of the cylinder to be lifted up and down by a crane, and thus a great saving of labor and handling is effected.
To this inust also be added the advantage of its being possible to do all the operations of mordanting, dyeing, or washing without removing the material from the cylinder. The drying may similarly be done without removal of the material, it being only necessary to put hot air through after the drying and wasbing off are completed, since from the first placing of wool in the apparatus to its being completed in a dyed and thick state, there is no handling required. As to the amount turned out, three men will do $12,000 \mathrm{lb}$. to $15,000 \mathrm{lb}$. of wool a week, of course according to the quality of the wool. The dyeing of blacks especially seems to be effected with special ease and thoroughness by this
system, either for wool in the sliver or loose wool ; the method of dyeing being the well-known process of mordanting with bichromate. This operation lasts one hour ; the dyeing itself takes one and one-half hours for the washing, er,two and one-hall hours in all.

We have seen the process at work in the extensive establishment of Messrs. Markendales, in Salford, and are thus enabled to give details.-Textile Manufacturer.

Grano-metallic stome.

The grano-metallic stone, the invention of Mr. J H. Bryant, of London, is composed of blast furnace slag and granite, which are crushed, chemically treated, dried, and mixed with Portland cement. For use these ingredients are brought to a pasty consistency with an alkaline solution, and laid. It possesses the important property of always having a rough sarface, which is due to the atoms of the vitreous slag always presenting themselves just above the other ingredients, which are more readily worn. This stone has nndergone a special trial in one of the metropolitan gas works, where a section was laid at the request of the engineer. It was there successfully subjected to tests which natural and artificial stones have, it is stated, been unable to withstand. It is found to stand not only the wear and tear of heavy horse and van traffic. but the sudden and extreme alternations of temperature incident to the slaking of coke upon it. Valuable as this material has proved itself for paving and road making purposes, however, it has now been proved to possess the additional important feature of being highly refractory.
A cement kiln lined with this stone has stood a number of burnings without any repairs having to be done. Even where the lining happened to be torn away by a portion of adhering clinker, there is not the least sign of the stone having been injuriously acted upon by the heat. This is certainly a most crucial test, and the satisfactory manner in which the stone has passed through it stamps it at once as an absolutely fire proof material, and, therefore, of special value for constructive purposes.-Iron.

Umbrellac.

The Chinese and Japanese, long, long ago had their queer parasols, and in Burina a man's rauk is known by the number of umbrellas he is allowed to carry, the king limiting himself to 24. Jonas Hanway introduced the umbrella into England more than a hundred years ago. The people all made fun of him, but may be it was because they hadn't sense enough to get out of the wet when it rained. There are more than $7,000,000$ of umbrellas made every year in the United States. If they were placed open in a row, allowing three feet of space for each, they would make a procession more than 8,000 miles long.

THE EPIORNIS

Michelet, in his book, "The Bird," thus speaks of the epiornis as the conqueror of the giant saurian, the plesiosaurus :
"Who would have met face to face the horrible leviathan? The capacity of flight was absolutely needed, the strong, intrepid wing which from the loft iest height bore down the Herculean bird, the epiornis, an eagle twenty feet in stature and fifty feet from wing tip to wing tip, the implacable hunter, who, lord of three elements, in the air, in the water, and in the deep slime, pursued the dragon (plesiosaurus) with ceaseless hostility."
This rhapsody of our brilliant writer has for text little more than the egg which is illustrated in our cut. Michelet's imagination has supplied most of the material, and has done well. It is certain that the egg never could have produced so marvelous a creature. The epiornis was probably a strictly terrestrial bird, incapable of flight. Nothing has been found to determine its conditions and way of existence, except some eggs and a few other semi-fossil remains. The giant bird of Madagascar otherwise belongs to tradition. The Sakalawas of Madagascar tell of a bird that kills cattle and devours them. To it they attribute these eggs, still occasionally found. The fact that new species are continually being discovered on the island lends some probability to the expectation that a living epiornis may yet be seen. Its remains occur in recent alluvia

bgG of the kpiornis.

deposits, and from their recency are classified as sub fussils. The legend of the ferocity and carnivorous habits of the bird are groundlers. In all probability it was a vegetable feeder. Tradition has brought down to us a similar tale of the extinct dinornis of New Zealand. It is said to have been seen by some sailors, who, frightened at its size and height, left it unmolested. But while the remains of this bird include organic tissue, and bones still impregnated with gelatine, the epiornis has left no such recent relics. All that has been found of it belongs to an earlier period.
In 1850 Isidore Geoffroy St. Hilaire exhibited the egg of the epiornis to the French Academy of Sciences, and named its producer the E. maximus. The museum in Paris placed the egg in its collection, and a few of the bones, constituting enough to classify it imperfectly, were brought to Paris a short time after. Three and possibly four well defined species of the genus, placed in the family of Struthionidæ (ostriches), have now been identified. It comes in the same order with the dinornis and the rare apteryx, soon to become extinct also, though at first there was some disposition to con-
sider it reptilian. The extinct dodo of the Mauritius Islands, immortalized by Du Maurier in his illustrations of "Alice in Wonderland," gives a probable type as regards its appearance. Though five or six times larger than the ostrich, its height is not supposed to have exceeded ten or twelve feet.
Its egg is of gigantic size, as may be inferred from the cut. Its exact dimensions are given by De Chenu, in his "Encyclopedie d'Histoire Naturelle," Paris, 1875. Its largest diameter is 13.38 inches, its smallest diameter 8.86 inches. The largest circumference is 33.46 inches. Its capacity is 77 quarts. Compared with those of existing birds, its capacity is equal to that of fifty thousand humming bird, of six ostrich, of sixteen and a half cassowary, or of seventeen emen eggs. The thickness of the shell is given by the same author as a little over one-tenth of an inch. In the Magasin Pittoresque, for 1851, one of the earliest references to it may be found.

The discovery of these eggs recalls the roc of the "Arabian Nights," and in the natural histories we even ind this allusion. But they do not come near the size requisite to remove the roc from the realms of myth.
There is a curious confusion noticeable about the spelling of the name. It is spelt æpiornis or epiornis. St. Hilaire, in naming it, is said to have derived its title from the Greek words $\varepsilon \pi 2$, above, and opv25, a bird, presumably in allusion to its size. If this derivation is correct, a very general error in the spelling seems to have been fallen into by modern naturalists. The diphthong is used in the article on birds in the last edition of the "Encyclopædia Britannica."

Ingtantaneous Method of Retting Flax.

The retting of flax is an operation designed to convert the pectose that surrounds the fibers of cellulose, in the green plant, into pectic acid, which, in the retted material, constitutes the brilliancy, and facilitates the sliding of the fibers in a longitudinal direction during the various operations of spinning. The detaching of the boon is a useful consequence of this transformation of the pectose.
Flax is usually retted by allowing it to undergo the ong and irregular action of fermentation. In the Bulletin de la Societe Industrielle du Nord de la France, Mr. P. Parsy describes a method which he calls "instantaneous retting," and which consists in converting the pectose into pectic acid by a method pointed out by the chemist Fremy, that is to say, by heat. He first submits the flax to the action of water under pressure, at a temperature of about $150^{\circ} \mathrm{C}$., and then finishes the operation by substituting for the water steam under pressure at the same temperature. Under the action of the heat, the transformation of the pectose begins. The steam, which has not the same dissolving effect as the hot water, permits of afterward maintaining the temperature necessary to finish the conversion of the pectine into pectic acid, without the loss of any of this valuable substance. The operation takes but an hour and a half.
By this process, Mr. Parsy succeeds in giving the retted fiax either a blue or yellow color at his pleasure. For blue, he uses the water of a preceding operation, which is then slightly acid from the organic acids of the flax that it holds in solution. For yellow, it is only necessary to employ a slightly alkaline water.
One of the principal advantages of the method resides in the rapidity with which the drying is effected. Mr. Parsy states that the flax, on being removed from the steaming apparatus, contains but one and a half time its weight of water.

Varied Accomplishments or an Armiese Man.
There recently died at Potsdam, St. Lawrence County, N. Y., Richard Donovan, who was in some respects one of the most remarkable men in northern New York. Twenty years ago, when a boy, Donovan worked in a flour mill. One day he was caught in a belt and received injuries that necessitated taking off both arms at the shoulders. This misfortune did not discourage him, and, after recovering his health, he set about earning his livelihood as best he could without the use of hands or arins. Part of the time he had lived alone, and from the necessity of helping himself he became wonderfully adept in performing all kinds of work, using his feet and mouth principally. He owned a horse, of which he took the entire care, harnessed it, fastened and unfastened the buckles with his teeth, and drove with the reins tied around his shoulders.

Being in need of a wagon, he bought wheels and axles, and built a box buggy and painted it. He went to the barn one winter day and built a cow stable, sawing the timber with his feet, and, with the hammer in one foot and holding the nail with the other, he nailed the boards on as well as most men could do with their hands. He dug a well twelve feet deep on a farm in this town, and stoned it himself. He could mow away hay by holding the fork under his chin and letting it rest against his shoulder. He would pick up potatoes in a field as fast as a man could dig them. He would dress himself, get his meals, write his letters, and in fact do almost anything that any man with two arms could do.-Boston Transcript.

A Large Engino.

Messrs. Douglas \& Gránt, Dunnikier Foundry, Kirkcaldy, have at present in hand a compound Corliss engine of a very large description, for a cotton mill in Bombay. The high pressure cylinder of this large engine is 40 in . diameter and the low pressure cylinder 70 in ., each having a stroke of 0 ft . The fly wheel, which weighs about 110 tons, is 30 ft . in diameter by 8 ft .6 in . wide, grooved for 38 ropes, by which the power is to be transmitted to the various lines of shafting in the mill. The engine is to run at 60 revolutions per minute, giving a speed of ropes of considerably over one mile per minute. The crank shaft, made of Whitworth fluid compressed steel, is 25 in . in diameter in the body and 20 in the bearings. The steam pressure is to be 100 lb . per square inch, and the engines will work easily up to 2,500 horse power.

IFEW TORPEDO BOAT FOR THE SPANISH GOVRERICENT.
In view of the large sums recently appropriated by Congress for the construction of war ships and torpedo vessels, the new vessels and improved naval structures of other governments assume especial interest on this side of the Atlantic. We give herewith illustrations of a remarkable torpedo boat lately built in England for the Spanish government, for which, and the subjoined particulars, we are indebted to the Engineer. The name of the vessel is El Destructor.
She is a twin screw cruiser of nearly 200 feet length. Her beam is 25 feet, and her depth 13 feet. She is built of high tension steel, and consequently her scant lings are light ; but to give her the requisite rigidity she has a large number of partial bulkheads throughont her length. In order to avoid the ravages of corrosion as much as possible, every piece of steel or iron in her is galvanized. It is usual in small vessels such as torpedo boats to galvanize the whole of the material to the height of the water line; but we know of no vessel which can be called seagoing which is galvanized throughout.
The scantlings in torpedo boats are so light that the greatest care has to be taken in looking after these boats; but in a vessel which is intended to act as a cruiser it is an indispensable condition that those who have charge of her should not be in such fear and trembling as they would be if her scantlings were those of a torpedo boat. Hence in the Destructor it has been necessary to have many parts in excess of requirements of strength, solely to avoid the risk of effective damage

The effect of this is that the preesure on the compar. atively small portion on the fore side practically balances the twisting moment caused by the pressure on the after side. This results in a double advantage -the first is, that the strength of all the steering apparatusimay be very small ; the second is, that as long as the proportion between the areas is properly maintained, the rudder area, and consequently the turning or maneuvering power of the boat, may be increased indefinitely. This rudder has not the disadvantage of the completely balanced rudder which has been fitted in vessels of the Royal Navy, for the pressure against the upper deadwood caused by the reaction of the pressure on the rudder is very effective itself in turning.
Further, the advantage of having the vessel completely under control when going full speed astern is very great, and has never been attained by an ordinary rudder. The part of the rudder on the fore side, in this new plan, then acts exactly as an ordinary after rudder would, because it is on the after side of its axis. This form of rudder has been very successfully fitted in some torpedo boats built for the British government by Messrs. Yarrow \& Co. One of these boats was tried recently, and our contemporary, Engineering, in a recent issue, speaking of these trials, says: "The helm was put over at once, as fast as the powerful steam gear would work it, either to port or starboard. The result was remarkable, not to say startling. The enormous rudder area would at once throw the stern round, and the great column of water would rise up aft, the boat would heel inward somewhat, and the cir-
practice of torpedo boats, which is from 4 inches to 6 inches, and the results in consumption of fuel and condition of boiler were most satisfactory. The boilers did not show a single weep or sign of leakage, and the consumption for four hours was only at the rate of $2 \cdot 1$ pounds per I. H. P. per hour, showing that the ves sel could steain at full speed for about 700 knots. There is no other vessel afloat that could go $\mathbf{7 0 0}$ knots in thirty-two hours, or even could go 525 knots in twenty-four hours, which is at the same rate. There twenty-four hours, which is at the same rate. There
was no reason, at the end of the four hours' official was no reason, at the end of the four hours' official
trial of this vessel, why she should not have gone on at the same speed for twenty-four hours. The radius of action of this vessel at $11 \frac{1}{2}$ knots was proved to be 5,100 knots.
This vessel is the first of a type which has long been asked for by naval officers. Placed under the charge of any of our best young lieutenants or commanders, such a vessel would be of the greatest service to a fleet. Vessels of this type are not expensive.
Why is it that with the best skill in the world in ship designing, with the best experience in naval con struction, and with the most energetic and able naval officers in the world, our Admiralty allow themselves to be hopelessly beaten by a private firm of shipbuilders? Why cannot they do in vessels of this class, as we understand the Spanish Minister of Marine did in the case of the Destructor, state his conditions and ask private shipbuilders to produce designs in competition? If the conditions are clearly stated as to armament, radius of action, tonnage, complement and sail area, leaving the builders to say what speed

EL DESTRUCTOR-NEW TORPEDO BOAT FOR THE SPANISH GOVERNMENT.
from corrosion. It is obvious that in a vessel of this size, attaining, as she does, such an enormous speed as 23 knots, the greatest attention must bave been given to saving of weight in the hull and machinery. Her designers and constructors, Messrs. Thomson, are both torpedo boat and cruiser builders, and consequently this vessel has partaken as much as possible of the advantages of the torpedo boat without sacrifice to her qualities of seagoing cruiser. As may be seen from the illustration, she has a ram bow, which would be used without much hesitation by a daring commander. She has a bow rudder, which has been fitted to her partly to assist her maneuvering and partly to act as a leeboard when she is under sail. It would also be of advantage in case of derangement of the after rudder. It is not, however, of so much importance in this vessel as it is in the ordinary torpedo boats in which it is usually fitted, for the Destructor has a new type of rudder fitted, known as Thomson and Biles' patent sternway maneuverer, which is a development of the rudder we described as heing fitted to the Russian torpedo boat Wiborg, in our issue of October 22. This rudder, in the Destructor, has an area of 80 square feet. The lines of the ship are carried out to the back of the rudder, and the profile view of this back gives the stern the appearance of an ordinary narrow yacht's rudder.
A closer examination shows that the ship is divided by a horizontal plane at about the water line, and when the helin is put over, the whole of the after part of the ship below the water line swings bodily round. The deadwood is arched up sufficiently to allow the two propellers to be as near as possible: but the ohief point of value in this rudder is the partial compensation on the forward part. It is known that if a plane surface is advancing through water at an oblique angle, the pressure on the fore end of the dane is very much greater than on the after end.
cle was completed in a inarvelously short space of time." We gave the results of the turning trials of the Destructorin our description of December 25. The steering gear which works both bow and stern rudder is an arrangement of Messrs. Muir \& Caldwell's, and it has the additional capability of being able to work the capstan. The torpedo armament of this vessel consists of two tubes in the bow and one in the stern, each tube having two torpedoes appropriated to it. Two broadside tubes are to be fitted on the upper deck, but the exact type is not yet decided. The gun armament consists of one 9 centimeter central pivoted gun on the forecastle, four 6 pounder rapid firing guns on the broadside, and two 37 mm . Hotchkise revolvers orward.
With this armament the Destructor ought to be capable of justifying her existence if ever she meets a fleet of torpedo boats. She is divided into thirty nine water tight compartments, some of which are again divided by having a double water tight side, so arranged that the space between the two skins forms bed places. The engines are in two separate com partments, the boilers are in four. The boilers and engines are completely encircled by coal bunkers. The bunker bulkhead abreast of the machinery is $3 / 4$ inch thick, and affords protection against small gun fire. A cross bulkhead forward of a circular form is fitted to protect the boilers, engines, magazines, and steering gear from raking fire. A circular conning tower, affording protection from small gun fire, is fitted well forward. There are three masts, with a fore and aft rig. These masts hinge down, the whole being arranged so that the operation of striking the masts may be done in a few minutes. The engines are triple expansion. The boilers are of the locomotive type, and the full power of 3,800 horses was attained for the moderate mean air pressure in stokeholes of $21 / 4$ inches. This very moderate pressure compares well with the usual
they will guarantee and what price they will charge the whole matter will then be in a form for settlement by any person of common sense. Naturally the Admiralty constructors and engineers will wish to criticise the designs, but if the firms selected for the competition be limited to those really competent, the criticisms of the constructors and engineers will not be any hinderance to the work of selectiug the best, for the matter will be, in the way suggested, largely a question of who will guarantee the most speed, and is the highest speed offered worth the price asked? We may very well take a lesson from the Spaniards in this matter, and release some of our ablest naval constructors and engineers from their work of discussing these questions so wearily over and over again with every new official who has the power to ask questions and the wish to be educated, and to give them an opportunity of using their well recognized skill and ability in bringing our dockyards to the level of private shipbuilding yards in economy of production and in rapidity of delivery.

Cheap Mothod of Platinizing Motale.

In this new process, the metallic object is covered with a mixture of borate of lead, oxide of copper, and spirits of turpentine, and submitted to a temperature of from 250° to 330°. This deposit, upon melting, spreads in a uniform layer over the object. Then a second coat is laid on, consisting of borate of lead, oxide of copper, and oil of lavender. Next, by means of a brush, the object is covered with a solution of chloride of platinum, which is finally evaporated at a temperature of not more than 200°.
The platinum adheres firmly to the surface, and exhibits a brilliant aspect. If the deposit be made upon the first coat, the platinum will have a dead appearance. Platinizing in this way costs, it is said, about one-tenth the price of nickel plating. - Le Genie Civil.
engineering invertion.
A car coupling has been patented by Mr. Rooben E. Woods, of Montgomery, Minn. Comis pivoled within the drawhead above the link chamber, and a block arranged to awing downward within the link rocese, and beneath the coupling pin when the link is withdrawn, making a coaple
be set for automatic coopling.

AGRICULTURAL INVENTIONE.

A potato planter has been patented by Mr. William C. Davideon, of Grandville, Mich. This invention covers a novel construction and combination
of parta in a machine aaapted to open furrowe, drop the of parts in a machine aadapted to open furrowe, drop the
geed, cover them, prese the soil down, and mark the seed, cover them, press the soil down, and
rows as the machine is drawn across the feld.
A thatched cover for stacks has been patented by Mr. Robert Griswold, of Woody, Kauses. with ropes having loose upper ends to be thed, and witt ropes having loose apper ends to be tied, and
loose lower ends to recive balancing welghts, makking an adjuntable cover w
whille excluding rain.
A fertilizer distributer has been pat ented by Mesers. Bryant Smith and Henry C. Jenkins, of Brownerille, Ala. It may be drawn by y hore or op eratiod oy a man to distribute the fertilizer in drims over
from three to five acrea of land in a day, the machin being inexpensive, and using the fertilizer withou

A reversible sulky plow has been pat ented by Mr. James Willson, of Tomah, Wis. Its constraction is such that the plows can be easlly reversed,
the main frame leveled on laterally inclined ground, the main frame leveled on laterally inclined ground,
the plows raised from the ground or adjusted to work the plows rijied from the ground or adjusted to work
to any deaired depth, and the plows tilted laterally to to any deaired depth, and the plows theed laten

Miscellangeots inventions.

A saw mill dog has been patented by Mr. Thomas Manleg, of Prince Albert, Northwest Terri Cory. Canada. It hae novel features of construction, logs, bat is alloo adapted for dogzing large straight logi or for holding the half sawed log.
A windmill has been patented by Mr. Peter Kohnz, of Avon, Ohlo. It is self-governing, and all the salis of each sectlon have a uniform motion in
moving in or out of the wind, the piatform carrying moving in or ont of the wind, the piatiorm carrying a
nomber of rollers on which there is moanted a a turn table with two boxes or bearings, in which is moante the malin sbaft.
A cork fastener has been patented by Mr. Abwith rightangled arm and diek to in. the cork, the plate being apertured at one end and having a tongue at the othere end, the devvie being a a lingle
piece of un, which can be readily bent to form an effect piece of un,
ive fastener
An ant trap has been patented by Mr. Waiter R Heccllium, of Waelaer, Texas. The body has inward projecting tubes, with provecting caps on vex and baving apertures of greater diameter than the bore of the inner end of the tabe, making a simple and

A fence has been patented by Messrs. John and Anton E. Reif, of Branch, Wle. It is a port principally of the foot pieces, in apertures of which al the lower ends of the posts, making a fence which very stable and not liable to be
10 very simple in conatre
A marine brat slide has been patented by Mr. Harry H. Schaefer, of Point da Chene, N. B. coand way, with its lower end extending benedth reme or tice of the water, the keel of the boat slididing in run ners, and the edges of the boat heving goards to pre vent the water from splashing upon the passeugers.
A washing macbine has been patented by Mr. Charlee \mathbf{W}. Turner, of Meriden, Kaneas. The construction is cheap and simple, and the machine is
adapted for use with any tab, clamps or fastenings being unnecessary, as the operator in bearing down apon the handle in working holds the machine and im parts pressare to the
forced through them.
A two wheeled vehicle has been patThe construclion is such that the body marr be ad justed to vara its leverage action npon the springe ot adapt
the springs to the weight of top rider. and this adjuptthe springs to the weight of the rider, and this adjuat-
ment can be effected without removing nuts and bolte, ment can be effected without removing nuts and boite,
and the body is so supported that horse motion is in and the body 18 so support
A stone and ore crusher has been pat ented by Mr. Daniel Brennan, Jr., of Salterville, N. J. In a suitable supporting frame is a ixed die and a movable die, a reciprocating ram and saitable mechanism denly againat the movable die and with great fore the invention being designed to make the crushing and discharging action more effective.
A machine for forming sheet metal has been patented by Mr. Michael T. Durkin, of Brooklyn, stralght or carred mouldings in sheet metal by means of diee adepted to an ordinary drawing or foot press, by
which the fat edges of the gulding dies are presented to which the flat edges of the gulding dies are presested to
the curved surfaces of the work, so that the work is not the curved surfaces of the work, so
indented by the corners of the dies.

A machine for grinding hand cards has been patented by Mr. William S. Burton, of Maryville
Tenn. In connectlon with an emery grinding cylinde Tenn. In connectlon with an emery grinding cylinde
which is antomatically vibratod in the droction of th
eagth, are means for convenilenty y holding the hand angle to the erthding eurrace, the machine being adapt el for carde of variable length..and. width.
An extractor for headless shells has Aen patented by Mr. Charles H. Keenan, of Fort ofleck, Nevada. It is 2 cylinder with the general form
ofrridge and having a head anted to the receas 1 id or a cartrige and having a ead alled th a her ececes in ing its entire length, the cyllinder having a notch in one side, in which is loosely placed a dog retained by the od extending through the bore of the cylinder.
A lamp trimmer and extinguisher has Aend patented by Mr. William W. Haviland, of Plaindeld, Mich. The trimmer is mounted on the wick Cormed with colamps that partially encircle the wick hamber, a thumb wheel operating jaws to remove the harred remains from the top of the wick, while the ising of the jaws makes them act as an extinguisher.

A diffraction camera has been patented y Mr. John Vansant, of St. Lonis, Mo. The diffrac ion diaphragm is formed of two very thin stripe of suitable material secured together and having slits at
right angles to each other, forming a rectangular aperhre, whose diameter must in no case exceed seventee calculated to give clear cut and well defined photo graphic pictares.
A machine for testing the friction of etais has been patented by Mr. Ezra L. Post, of New York Clity. It has a non-conductive frame supporting eyed centrally thereto, independent weighted levers pivoted upon each box, and incased thermometer encered through the boxes and metals to a bearing on the

A cotton picking machine has been paented by Mr. John C. Johnston, of Douglaeville, Ga. The box or frame of the machine is in two parts, beween which the rows of cotton plants pass, and barbed ngers which rotate horizontally project into the piants ripped off and dellivered into a suitable receptacle, the mechanism for operating the fingers constituting the leature of the invention.
A heel for boots or shoes has been patanted by Mr. John T. Gruy, of Gray, Dakota Territory he main body of the heel is cat away to form a reces ion left at the forward part, and in the part cut away is atted an anuular metal plate, within which is atted a leather lift or diak, preventing uneven wear of the
beel, without the heel making the sharp metallic click wear.
A telegraph sounder has been patented Mr. Reaben C. Rutherford, of Quincy, Ill. It has an asing containing the sounder and having an adjustable resonant cover for receiving the blows of the hammer, the device being portable, and adapted for recelving
mesgages direct from the line, or through a relay and ocal circuit, or to produce signals audible at a distance ocal circuit, or to
A spring bed bottom has been patented Mr. George Steinson, of Guttenberg, N. J. Com to a suitable frame are shackles for the esprings, to prevent their being too far distended by heavy weight pon the bed, the springs having loops or hooks at each and to connect with chain shackles, and there being metal conpling with headed arms to connect the chains to form
A fare box forins the subject of two patents issued to Mr. Timothy L. Beaman, of Knox-
ille, Tenn. The inventions relate to an arrangement a sinnous pay inventions relate to an arrangement area therefrom, both sitaated in the apper part of the are box, which is of a kind to be used in etreet railiroad may be repaired conveniently should the glass be broken, and has more effective salegnands against the abstraction of fares than other slmillar boxes.

NEW BOOKS AND PUBLICATIONS.

The Principles and Practice o CANAL AND RIVER ENGINERRING.
By David Stevenson, F.R.S.E.,
M.I.C.E., author of a Sketch of
Civil Engineering in North Anerica,"
etc. Edited and revised by his sons
David A. and Charles A. Stevenson. Third edition. New York: Scribner 18 Welford. Pp. 406, large octavo, The arst edition
The arst edition of this valuable work was published in 1838 , belng revised and enlarged from the artiEncycloppedia Britannica. in the eighth edition of the much new matter, appeared in 1872. This edition is out of print, and the inquiry for the work has grown into such a demand as to necessitate a third edition. The frat two chapters are devoted to a brie?
sketch of the early history of barge canals, sketch of the early history of barge canals, giving a
general description of some of the famons ship canals of the world. without entering into the technical de tails of their construction. The second and larger part of the work contains a general and technical review of river engineering, presented in a clear and interesting
manner. Among the topics treated of we note the ollowing as being of timely interest: The compart ments of rivers defined; the tides of rivers, their varia tions; the general rules for taking soundings, with
applications; American methods of taking eleva tions along a tidal river without leveling. The disfloods, methods of stadylug currents. The water sheds of rivers, and methods of rendering small rivers
aavigable. Tidal propagation and curronta of rivers.

Removal of obstructions to tidal fow; the dredping
of navigable streams, the discussion of " jettying." the improvement of rivers. Docks, tide basins, harbo bars and bariess rivers. The reciamation of land, and the crossing of navigation tighways by bridges. The Amsterdam, and Suez Canals, charts of Dornoch Firth Ame Dee the and suez caials, charts if Dornoch Firth the Clyde and the Foyle. Diagrams of tidal lines of the river Dee, during food of a spring and an ebb tide and diagrams of tidal waves in the Firth of Forth and in the Clyde. The work is marginally annotated for ready reference, in addition to having a well classitied index. American engineering practice is largely drawn apon throaghont the work, and many valuable record fact are heroln embored a pery the United States vast amount of money paid out by the United States
Government annually for river and harbor improvements has made the reappearance of this atandard work of imely importance to all American engineers.
Die Schiffsmaschine, Busley. Ship machinery, its conotraclon and manipuialion, a hand men-of-war and merchant steamers machinists otn dents, ship builders, and others interested in marine engineering. There are two volumes of text and one volume containing 170 lithographic plates, comprising 1,300 colored agares taken from the working drawings. The pablishers are Lipsius \& Tischer, of Kiel, Ger many. This exhaustive work appears now in an en-
larged second edition, and comprises every machine larged second edition, and comprises every machine
ased on board of men-of-war and merchant steamers, ased on board of men-of-war and merchant steamers,
and, in point of completeness, outrivals any work of ike nature ever pablished. It is not a dry complia chines; but it gives in concise language the physical laws governing the construction of machines, the ma full and complete description of the construction and arrangement, with the resaltant operation and details, overy machine on board of a steamer. It is needless to say that the aathor has selected, from every type The various tables contain comparisons of the use of coal and steam, strength of parts, the relative propor tons of French, German, and English men-of war, etc. The plates, which are bound in a separate volume, ar magnificently axecuted, the sections being colored according to the colors of the respective materials, and
every figure is drawn to a scale. The work is hand somely boand, and the publishers deserve great credit or the manner and style in which they have pre Professor in the has again proved that Germen savants deserve the re putation which they enjoy for thoroughness, dee tady, and completeness of thought, and last, bnt not least, for belng thorough
ments of modern times.

2Business and 2ersonal.

The charge for Insertion under this head is One Dollar a line for each insertion; about eight voords to a line. Advertisements must be rocoivod at publication affice

For the latest improved diamond proapecting drills, Chicaso, 1 ll .
Wanted to Bay-Three wrought iron shafts, 8, 10, 12, hat will cut or turn somewhere near these sices One inat will cut or turn somewhere near these gisos. One
bollermaker's rolls, that wtil roll sheet 16 feet long. One team winch or holster. Not particniar as to sizes o any of the above. Send hist and prices of what you
have. Address A. Y. McDonald. 168 Lake St.. Chicago. All Books, App., etc., cheap. School of Electricity, Telescope Lences. Lowest prices. Gardam, 36 Maiden Best tempering fuid known-Mercury, potash, and hydrochloral. 82.00 per gallon. Sam
Link Botting and Wheels. Link Belt M. Co., Chicago. The Railroad Gazette, handsomely illustrated, published weekly. at 73 Broadway, New York. Specimen
coples free. Send for catalogue of rall rond books. Protaction for Watches.
aguetic influences. Crotection from all oloctrit and makuetic Influences. Can be applied to any
watch. Experimental exhibition and explanation at Anti-Magnetic Shleld \& Watch Case Co.", 18 John St.,
New York. F. 8 . Glles. Aft.. or Where full assortment of Anti-Mancotic
be had. Send for full descriptive aircular
Woodworking Machinery of all kinds. The Bentel \& argedant Co., 116 Fourth St., Hamilton, 0 .
Concrete patents for sale. E. L. Ransome, S. F., Cal
Guild \& Garrison's Steam Pump Works, Brooklyn, oiv ready.
The Knowles Steam Pump Woriss, 44 Washington St.. Boston, and 88 Liberty 8 L., New York, have Just iscued a new catalogue. In which are many new and imroved forms of Pumping sachinery or the single and
uplex, steam and power type. This catalogue will be

Preseses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Nickel Plating.- Sole manufacturers cast nickel an. des, pure nickel salts, polishing compositions, etc. $\$ 100$
LLttle Wonder." A perfect Electro Plating Machine Sole manufacturers of the new Dip Lacquer K ristaline. Complete outat for plating, etc. Hanson, Van Winkle \& Iron Planer, Lathe, Drill, and other machine toole of nodern deeign. New Haven Mig.Co., New Haven, Conn. Supplement Catalogue.-Persons in pursait of infor mation of any special enstineering. mechanioal, or solen-
thici atobect, can have catalogue of contents of the Sclintific Amirican supplemint sent to them free. The BUPPLEMRNT contalias lengthy articles embractng
the Whole range of onkineering, meochanios, and physical

Curtio Preseure Requlator and Steam Trap. See p. 45. Iron and Steel Wire, Wire Rope, Wire Rope Tram Best Antomatic Planer Knive Grinders. Pat. Face Plate huck Jaws. Am. Twist Drill Co., Laconia, N. H. Billings' Patent Adjastable Tap aud Reamer Wrencb . Bilinges \& Spencer Co., Hartford, Conn.
Cushman's Chucks can be found in stock in all harge
ittes. Send for catalogue. Cushman Chuck Co., Hart. ties. Bend
ond.
The Improved Hydraalic Jacks, Punches, and Tabe Friction Clutch Palleys. D. Fribbie \& Co., N.Y.city. Veneer Machines, with latest improvements. Farred Tight and Slack Barrel Machinery a apecialty. John Catarrh Cured.
A clergyman, after years of suffering from that loathsome thast found a pre th last found a prescription which completely cured and
aved him from death. Any sulferer from this dreadrul aisease sending 2 seir-addressed stamper envelope to
Dr. Lawrence, 212 Ehat Pth St., New York. will receive cipe free of charge.
Cutting-off Saw and Gaining Machine, and Wood Woodworking machinery, planers, surfacers, matchra, be
Lick Telescope and all smaller sizes built by Warner Swasey, Cleveland. Ohio.
Send for catalogue of Scientiac Booke for sale by
unn \& Co., 331 Broadway, N. Y. Free on application.

hints to correspondents.

winerals sent for examination should be distincty
marked or labeled.
(1) T. D. McC. asks : 1. For what kinds of work is the diamond carbon battery suitable? A.
For intermittent or open circuit work only. 2. Can electri
(2) P. J. McC. asks the reasoning by which the following algebraic expression is reached. The age of a father is represented by a, the age of
his son by b. The problem is to deduce a formala for determining the space of time (in years) in which the age of the father will be n times that of the son. The solution is $\frac{a-n b}{n-1}$ years. How is it deduced? A. StartIng with the father, aged a years, and the son, aged b ears, as time advanccs the same increment is added to ge, or the quantity n, depends apon this factor. After expiration of any given time x, the ratio of the
gee will be denoted by $\frac{a+x}{b+x}$ This by the conditions
of the problem is equal to n, giving us the equation
which reduces to
$n=\frac{a+x}{b+x}$
and solved with $a+x=n b+n x$
$=\frac{a-n b}{n-1}$
(3) G. A. B. asks : Would not cypress reet car tracks than either white or yers and ties for No. Cypress. is more durable in damp places than
pine and is stronger, but it has the serious disadranpine and is stmager, but it has the serious disadran-
tage of springing in its length, which renders it unft tage of springing in its length, which renders it unft
for car track stringers, although some varieties are free from car this objection, and could be used for the parpoee. The cost of cypress is about one-third higher than ne, which is in itself a drawback to its nes.
(4) H. A. asks (1) what process there is of fixing a billiard ball which has a small piece
chipped out. A. Use white mastic 80 parts, shellac 90 parts, turpentine 6 parts, and spirit of wine 90 per cent strong 350 parts. Use as a cement. 2. Also of changing white to a dark red. A. Soak in a solution of aniline red, which should be very slowly heated to eshag point. 3. How far does a rivet on feet, travel in a lane a mile long? A. The cycloidal
(5) C. E. K.-The 20 ohm sonnder with three cells should give slightly better results, as re ards sound.
(6) J. F. H. asks (1) how far the Panama Canal is completed. A. No portion of the
canal is fally completed. 2. What chemicals are used for coating dry plates? A. See Scientific American Supplement, No. 541, for full particulars.
(7) W. K. D. asks if fish are ever frozen up in ice and transported allve in that condition by the Government Fish Commissioners or by any one A.
The Fish Commission have never used this method of transportation of live fish; freezing kills them. Com-
miseioner Bleckford saya the asortion thet thie hee
been done is derived from somebody's unattested ex
periment, and is entirely impracticable. 2. If a canno be placed in an exact vertical pooition and a ball fired therefrom, would the ball fall back into the cannon mouth, or where probably? A. The ball will fall aheai of the cannon in the direction of terrestrial motion, (8) J. A. L. asks: How many cells o Leclanche battery will be required to operate one 8 can de power incandeacent lamp? Will an Increased num ber of lampe require an increase in the number of die power lamp as for an 8 candle power? \mathbf{A}. It will de power lamp as for an 8 candie power? A. It wilhont porous cup. The more lamps the more cells will be needed. For a 16 candle lamp about double the number would answer. They would only light the lamp for a very short period before weakening and needing rea The proper battery is a large bichromate battery.
(9) J. G. \& Co. write: A party has had in nee for some time a Ball electric light dyfrom pullegs on each end of dynamo, 18 inches diame ter. He is advised to abandon the use of one belh, on the ground that a single belt is ample and that dynamo
will run better and not use any more power. He thinks such advice is more in the interests of the owner of the dyamo to recure a steady light regardless of powe and IIfe of machine, as it was constructed to be used with two belta, which view is correct? A. We think two belts preferable to one of the same width, as they can be rau looser than a single belt of the same size. By the journals conpled and separated is little or nothing.
(10) W. S. B. asks for a soldering mixtare which can be used to solder the terminals of the platnam wire in an incandescent electric light with that the heat from the platinum wire will not melt the solder. A. A galvanic soldering of copper would size, we think ordinary silver solder with borax wonld
(11) J. S. asks how to make a good otrong dry sand core for iron moniding, something that can easill be handled without breaking and will come
ont of the casting easy and without much trouble. A. Dry sand cores for iron castlngs are uanally made with new sand with as little four paste as will make th core hold torether. The leas paste, the oasier the cor to
ts drawn out. Bake the core in an oven, dry enough to brown the sarface, but not hot enough to weaten the
(12) T. S. M. asks : What proportion am raise to a height of fifteen feet, with a fall of three feet, and in it practicable to use a ram with only three feet of fall? Will water flow through a small plpe as is there not more friction in the emall plpe? A. Your ram will ntilize about one-afth the water fiowing through the supply pipe. Supply pipe should be from ble for the size of the ram. A large pipo has lesa fric tion in proportion to its area than a small pipe.
(13) W. V. R. asks a short description of the motion of the sun spotes across the surface of the
sun, as seen from the earth. A. The sun's axis being sun, as seen from the earth. A. The sun's axis being
inclined to the ecliptic, the sun spots at different times In the year move in a direct line, inclined apward or downward equal to the inclination of the solar axis while at intermediate times they follow a curved line downward when the north polar axis is toward ns apward when the south

Merer Merch.
(14) C. F. H. asks how to make phosphorized oll. A. Phosphorus is soluble in any of the med ollo. Dis of cottoneed or olive oll
(15) D. E. M. asks : Can I make a motor or the same style as dynamo "Slemeas," described SCPPLEMEXTT, No. 161, of eufficient strength to run a velocipede carrying two persons, and how many cells of the Grenet battery are needed ? A. The motor you
refer to would not ran such a velocipede. You wonld refer to would not ran such a velocipede. You wonld
need aboutj 100 Grenet cells to give jou one man power n the onter circalt.
(16) A. Y. C. asks : 1. Why cannot compreseed air be used as a motor for light vehicles? A.
It is too bulky, and requires too heavy reservoirs to It is too bulky, and requires too heavy reservoirs to sostain the pressure. It also cools on expansion, there-
by involving a lose of power. 8 . If it can, could not compresaion be effected by windmill power in portable boxes, to be placed in the vehicles? A. It conld. 8 . What would by the welght and dimensions of a box of best material to contain enough alr, say of 20 atmo-
gpheres, to propel a light carriage to contain two persons, making 8 milces an hour for 8 hours, over an average good road \boldsymbol{f} A. An average of one horse power for
8 hours could be maintalined by a cylinder abont 100 in . long and 80 in . diameter, filled with air compressed as yoo deacribe. The cylinder should be at the lowest estimate, if of steel, three-tenths inch thick. The power
woald continually run down, of course. ©. How is the "lethal chamber" constructed for the "painless re moval" of animals, as inave some doga I wish to get
rid of A. Pat the dog in a tight box, with a eaucer fall of chloroform, or invert a tight box over him and all it with coal gas. Have no lamp or Are
(17) H. D. R. asks how to polish geologi cal specimens, nuch as coral, onyx, jasper, and other tone anewers the purpose of grinding a facet or grinfee for ehowing the texture or crystallization of minerale
and geological specimens. -For ease of polishing, make he surfactis silghtly curved. A piece of sole leather asing palverized pumice stone and water on the leathe plece of felt or heavy woolen cloth, tacked on a board, aso makes a good polisher. Use for polishing, oxide of in, called putty powder by the marble workers. Ap loth with with water the pliances and plenty of mascle the amateur will develop he characteristics of ordinary specimens.
(18) J. P. S. asks how the preparation nown as " beef, iron, and wine " is manufactured. A Liebig's extract of beef......... $1 / 4$ oz. avds. Ammonio-citrate of iron Spirit of orange (1-10) Sherry wine, enough to make... Dissolve the extract of beef in the wine, add the spirit water, and mix the solations.
(19) Acoustic.-There is but very little ound produced by the string alone in a violin, which stretching it with the hand, drawing the bow. It is the vibrating soanding board that gives volume and tone. (20) A. D., of East Orange, N. J., writes : We have at this place a ire alarm, consisting of a 5%
oot tire (steel) of a locomotive driving wheel. It saspended in a tower and rung with a hammer operated rom the ground. It does not sound as lond as is deired, and I would like to know whether the volume of
ound can bejincreased by cutting a piece from the sound can be’increased by cutting a piece from the
tire. A. The sound of the steel tire will have a much larger volume at a lower tone by catting. It need be at only once across, and slightly opened by springing Find the best po
(21) J. C. R. asks a good formula for a lue lacquer, anch as is ased on watch springs, etc. A. Watch springs are blaing shellac varnish, made thin with 25 per cent alcohol, with indigo blue or smalt
(22) J. B. asks : 1. A recipe for polishong gun stocks, in which neither varnish nor shellac appears, as they are not allowed. A. Mix boiled linseed oil and turpentine, equal parts, for a polish. Rub the
cun stock with a piece of parafine or clear beeswax. Then rub the stock with a fow drops of the polish on a woolen cloth to a smooth surface, and brighten with a
dry cloth. 2. How can lead be silvered A. By elec ry cloth. 2. How can lead be silivered \& A. By elec ro-plating, making the anode about three times that re but not too intense. Let there be a good deal of free cyanide in solation.
(23) G. S. asks what is good to put in a ambling barrel to poltifin brass and zinc, and how is charcoal are used. Also leather skivings and charcoal. Oxidize brass by exposing for a few minates to the fames of sulphur in a close box.
(24) R. S. asks : Is water compressible ? or a long time liquids were regarded as being incomthis subject by several phyaicists, and their results have shown that liquids are really compreesible. In Ganot' Physics, in the chapter on Hydrostaucs will be found an interesting acconnt of the method of determining the compresibility of a liquid by means of an apparapresilion of 0.00005 part of tier original volume The compresuibility of sea water is only uboat 0.000044; it is not materially denser, even at great depths; thus at the depth of a mile its density would onily be about one one-handred-and-thirteth greater. For water and
mercary it was also found that within certain limite nal to the pressure
(25) J. A. W. asks : I have an old relay it is wound to 240 ohms resistance. Can the same oys, etc. 9 (should eay it was wound with No. 84 wire.) If so, how many cells of (one gallon cellis) improved automatic battery (bichromate of potash and an
phuric acid) would it require to ran it 9 There is a white sabetance that croepe over top of my gravit batlery Jars. Whal is the cheapest battery for notor, say for sewing machine? the coils is very high for a motor in general terms, the more cells you nee, the better. Small cells and numer ous are better for your case than a few large ones. The white subetance is sulphate of zinc ; it is useful a
disinfectant bot is highly polsonous. For a motor, a large blchromate battery is, all things considered, the
(26) F. W. K.-If the earth should cease revolving, it would elightly change its form, and become
a perfect globe, when gravity on the surface at the equator would bo somewhat greater than now. As it it agiven weight at the equator weighs more at the polee d length
(27) C. R. asks : 1. How can I make cotton cloth. such as American drill, calico, etc.
waterproof without painting, or having to spread anything on it that would demage its texture or softnese A. See the articles on this subject contained in Scrizn tific Aigerioan Suppanienty, Nos. 58 and 317. 2 There is a freezing mixtare composed of sal-ammonia, saltpeter, and common soda. Can you give me the
formula? A. Take 8 parts of sulphate of sode, K parts formula? A. Take 8 parts of sulphate of soda, K parte each of sal-ammonls and saitpeter. When aboat in
(28) B. \& G. ask : Is there any prepara lon which will prevent liles and other ineects from ghting on and kpecking windows, etc. \boldsymbol{f}. Make a in water. When cold apply it to the glase, and for alies and ineecta,
(29) M. F. S. asks : What will make a plating powder is less durable than electro-gilding, an that wears only according to the thickness of the de posit. You might try the following : Wash thoroughly
one-fourth ounce chloride of gold, then add it to solution of two ounces cyanide of potasalum in a pint of clean rain water; shake well, and let it stand unt the chloride is dissolved. Add one pound prepare spanish whiting, expose to the air till dry, and the
make into a paste. In applying, rub it on the surface of the article with a piece of chamois skin or cotton fiannel. The surface of the article should be th
cleansed before applying the plating powder.
(30) J. W. asks: 1. Will you give formnia for waxing meerschanm pipes, and the procese
for bolling A. The bowls of the pipes, when im ported into Germany, are prepared for sale by soaking ing them with thare then in wax, and inally by polish ing tem whith share grass. The coloring process as
condncted by dealers is secret. 2 . How can the color ing for pipes be made to cover the entire pipel some solvent of nicotine. 8. Is there such a thing a ing mecrschaum by smoking ? A. Yes.
(31) G. W. C. asks how to make stain Por the soles of fine shoes after they have been buffed
A. The most common method of making a red sole . The most common method of making a red sole ture of borax and oxalic acld, made in a ruther strong solation, and when nearly dry apply white bottom balls or French chalk; a pittle chrome yellow is also some times used in addition to the above. Many manufac turers have special stains, intended to be more durable and to connteract the effect of acids need in making
(32) E. H. R. asks the average per cent gain in compounding the engine, or what it would be ttilng 1010 pounds stem 50 and zonches vacium, rection of appliance.
(33) J. O. S. asks : How can I polish o varnigh plano legs that have become dingy' A. To do
such work well is laborions. Clean and smooth the surface well with rotten stone on a wet woolen rag, an 2 ounces of melted white or yellow wax' add 4 oances 2pentine, and give a good covering coat.
(34) M. H. M., Kentucky, asks : What will take barnt grease off of a boil
(85) S. T. S., Newark, N. J., asks hy does metal, a nedele for instance, breken off The flesh, travel to different parts of the body? by various canses and infinenced by local conditions. \& Are the American people, as a rule, thinner than the English or German, and if so, how do you account fo it? A. They are said to be so, and it is probably the result of the climate. Nervous people are apt to be thinner than others, and the typical American is thin. 8. Peease
state average weight of English, American, Scotch state average weight of English, American, Scotch answer such a question.
(36) Miss M. M. G. asks how to mak retzele. A. Take of tour $1 / /$ pound, fresh butter $3 /$ pound, sugar $1 / 4$ pound, add one whole egg, one yelk aweet cream. Mix thoronghly on a paste boerd, und mould this paste into bretyels or small wreaths, wash them over with the yelk of an egg, strew them with olor on a baking plate larded with batter.
(37) J. B. J.-If you desire a darker ber 25, use an increased amount of silver nitrate and les of the copper. Experience shows that the dye given produces excellent results.

TO INVERTORS.

An experience of forty years, and the preparation of
nore than one hundred thousand applloations for peonts at home and abroad, enable us to understand the awn and praotios on both continents, and to posesess unnopsis of the patent lawa of the United States and all orelgn countries may be had on application, and persons contemplating the securing of patents, elther at home or abroad, are invited to write to this ofloe for prices,
hich are low. in accordance with the times and our ax, which are low. In accordance with the times and our
tensive faclilities for conducting the business. Addrese MUNN \& CO.. ofice ScIENTITIC AMERICAN, 981 Broadway. New York.
INDEX OF INVENTIONS
For which Letters Patent of the

February 22,1887 ,

AND EACH BEARING THAT DATE.
[see note at end of list about coples of these patente.]
Aerated water, apparatus for making. W. Raydt.. 388.165
Air brakes, automatic regulator for, C. A. Baco... 368,142 Alarm. See Gas alarm.
Anchor, J. Tieboat.........................
nnunciator, telphone. J.
Ant trap, W. R. MoCallum
Atmospheric burner. B. F. Gennert
Bars, woven fabric for forming senmless, B.
Hardenbrook................
Barber's chair, B. Berning haus

Voltalo battory.
Bayonot. H. H. Conklin
Bedatean, folding. H. . . Alb
Bedstead. metal, W. H. Edeall..
Berth, swioging or self-leveling
Berth, owlosing or
Bevel, \mathbf{F}. $\mathbf{~ E . ~ W I t t e r . . ~}$
A. P. Bio....................
... 888,1
.. 888
.. 888
.. 88.

Bib. E. F. M. Spiea...................................
Boilier for heating water for bathing or other pu
por pores, E. Honford.
Boller furnaes, 885,271
858881 Boller gange and alarm, automatio, J. Narro berger............ Boot, India-rubber, G. Wat......
Boot or shoe beel, J. T, Gray Bottle, E. C. Willis. . Watkin Bottie, nursilig, R. . C. Bake
Box. Soe Packing box. . 258,2209 Boxte, sur Pag, in C. Baker.............................. 8888.008
80x.
Bee Packing box.
 Bretzel and cracker sixing and selting meohina D. R. \& W. A. King.. Brickrard shea, J. C. Shumach Buckle, R. Olliver Bugky, buckboard, Barager..................................... 888000
Bung. c. G. Dodge. Jr.... 888081 Burial case. R. W. Gtimith Burner. Boe Atmospheric burner. Gas burner.
 Caster, furniture, L. T. Lawton. Casting, mould for, A. Ki. Outerbridge, Jr........ Cement, E. Densmanore....
Chain wheel, J. M. Dodge Chain wheel, J. M. Dodge 8888888881288
Chair. Soe Barber's chalr. Dressmaker's Atting chasir.
Chairs, adjustable foot rest for, J. Hogan.......... 358,154
 Churn. H. P. Markiey.................................. 38883
Churn power. J. W. Castoel........ Alkoever......................... Clip. Bee Paper clip.

H. Hawken... 358,200
858,088

Confee, manufacture of Hquid extracts of, M.
Collar. horse, c. Blo... 88

Counter, J. s. Dunlap.................................
Couplling. See Car coupling. Lubricator coup-
ling. Thull coupling.
cultivator,

Cultivator, tongueless wheel, C. A. Brostrom...... 388,284
Cultivator, tongueless wheel, E. P. Ljnch......... 8888901
Culltvator, wheel, A. LIndgren............... 388,210
Culitivators, wheel, A. Linagren.....................
Cutio foot for tongueleen, R. J.
Curtaln Axture. T. m. Brintnall............................
wilkes ss8s18
Cutter. See Stalk cutter. Twie and elautio mato-
Cutting and bevelling textble and rials, apparatus for, Parker \& Ganning.......... 358,00
Cutting double plle fabrics, machine for, J. A.
Campbell Dampeners for prexes copying brooka, ,iabolica, ota.
Construction of reservorr, I. B. Bertram......
Damper for stovepipes, chimneys, etc., C. E.
sohn.......................................
Damper. stove. Blakesley \& White............

Dlgger. See Post hole digrer.
Dip plpe and sealing cup, anti-realing. E. Lands-
ley.

Dress supporting devioe, A. Benjamin...............
Dreamaker's neting chalr, E. Gulon............
Drill. See Coal or rook drill.
Drill, fertlilizer sower, and cbeck row marker, F.

'

Electric lighting system, J. E. H. Gordon...
Electrio machine, dynamo. R. Eickemeyer
Electric macher

 Elevator. See Water elevator.
Elevators, brake apparatus for, C. W. Baldwin.
Embossing tool, J. W. Hyatt............... Egine. See Gas engine. Rotary engine Eyeqlasses, I.

Fanning mill, I. H. Lamoreux....

Faucet, J. Deasey Feed water heater

Fence, R. Mackie.... Fence, J. \& A. . Reif

Fence machine, J. A. Minnick. Fence machine, adjustable

$\begin{aligned} & \text { Fer } \\ & \text { Fif } \end{aligned}$	

Fitth wheel, D. Wilco
Filter, J. w. Hyatt. Filtering machine, J. A. Crocker.............................. Firearm, magaxine, F. F. Knous........... Fire escape. J. C. Betten.
Fire escape, P. G. Parts. Fire escape, P. G. Parts..
Fire escape, C. I. Pittman Copeland.......... Fishing rods, line quide for, J. Wright.............
Floors, ete.. manufacturing coverings for, R. F Nenninger...................
Flour and meal chest. Huft
Frame. See Eyeglass frame. Fruit. milk, etc., vessel for he
K. Sumerwel..............
Furnace. See Boller furnace. Furnace. See Buller fur
Furnace, w. C. Higgins.
Fuse used to explode gunpowder, machine for
calibratirg the, A. F.

Gauge. See Boiler gauge. Galvanic battery, Tasker \& Jon
Galvanic cell, W. Frishmuth Gas alarm, electrical, W. McVay...
Gas, apparatus for enriching, H. J. Gas, apparatus for the manufacture of, H.
Gas burner, w. Boekel. Gas burner, Argand, E. F. Genn
Gas engine, R. Von Kalkreuth Gas meter, W. Cowan.... Gate. See Swing
Governor, engine, A. D. Quint.
Governor, steam engine. A. D. Grain cleaner, W. E. Sergeant. Grain cleaning machine, W. E. Sergeant
Grain elevating and discharsing Grain spout, J. S. Metcalf. Grape stemmer, W. H. Wo
Grapple, F. M. Uhler......
Guard. See Watch guard.
Guard flnger and flnger bar, A. McCormick.
Gun barrels, flues, etc, device for cleaning, Gun barrels, flues, etc, device for cleaning, J.
Hame, adjustable, J. C. Sharp
Hand hole plate. C. P. Higgins
Harrow and cultivator. J. G. Bailey..
Harrow and cultivator. D. J. Williams.
Harvester, W. N. Whiteley.....
Harvester, krain, L. W. Noyes.
Harvesters, cutting mechanism for, Duncan
 D. M. Osborne.
Hat, J. R. Miller

Hay baler, W. D. Arne
Hay press, J. Billings
Headlight, locomotive. W. Hufman

Hitching strap or other line holding device,
Hurd..
Holder. See Boit holder. Leaf holder. Pape
or fle holder.
Holder for poles and other articles, M. H. Ver

Hot water system, circulating, Smith \& Fuller. Incubator, A. E. Shackford...
adicator B cator Induction coll, M. M.
Ironing apparatus, C. F. N
Jack. See Trousers Jack.
Jar. See Electric battery jar.
Adams.....................................
Knife. See Mincing knife. Painter's hacking Enife, A. Wee
Knife, A. Weck...............................
Lace, etc.. foundation for embroidere
ker..........................
Ladder, etc., combined, I. E. Pearsall.
amp burvier, J. S. Russell
mip, electric arc, Crowdus \& Sutton.
Lamp, miner's, E. Thomas.
Lantern, tubular, E. Boesch
athing forn, combined, J.C. Craig G. Kelly
eather splitting machi
chath Soc Headight

ROCK DRILLS

 IR COMPRESSORS, BOILERS, HOISTS, grvera hinive machinerf. ngerssoll Rook Drill Co., QP勆Print Your Own Cards!
AUTOCOPYIST

?

5゙5 VELOCITY OF ICE BOATS. A COLLEC

 THE COPYING PAD.-HOW TO MAKE

SCIENTIFIC AMERICAN SUPPLEMENT. AnY desired back number of the SciENTIFIC
AMERICAN SUPPLEEMENT can be had at this offce for
10 cents. Also to be had of newsdealers in all parts of
the country.

ARTESIAN WELLSS.-BY T. C. CHAM
berlain.-Princtple of artesian wells. EEsential features.
The water-bearing beds. The contining beds. Inclina-

 ENew Catalogue of Valuable Papers and
CAAALADAWAEALALASA
OCVONVVEVYOVN:

NEWSPAPER FILE

$\underset{\text { Publishers ScIE }}{\text { MUN }}$

