

a Weekly jourval 0f practical information, art, scievce, mechanics, chemistry, and manufactures.

 pull of the pivoted armature away from the mag net.
The box has attached to it an ear trumpet or re flector that surrounds and extends outward from the diaphragm. Both limiters have. adjusting screws. By hese iheir freedom movement may be varied They can be adjusted so that they will be in con tact one at a time only with the armature and arm In this case a make and subsequent break, or cor responding and considerable changes in intensity of current, will produce two blows, thefirst on the upper limiter and the second on the lower. On the other hand, by screwing out the limiter screws to a fuller extent, this oscillation will be gradually reduced until no break is possible. Then makes and breaks of the current, "or varumens-1 intensity, will no longer produce blows, but a true telephonic sound on the diaphragm. If connected in circuit with a micro phone transinitter, it will talk; and if two are connected having closed or ground circuit with battery, or if steel or cast iron magnet cores are used with out any battery, they will act as receivers or transmitters, and form a complete telephonic system.
The apparatus is a per fect telephone, immeasur ably superior to anything shown in tbe Bell patents of 1876 or 1877 . The sub ject of Figs. 1 and 3 of our drawing is a reproduction of the model accompany. ing the patent, which model was destroyed in the Patent Office fire. Its sides in the elevation are broken away to show the interior construction. In the section $j t$ is shown in use as a receiver. The inventor's idea of his ear

RGYAI-P: HOUSE'S TELEPHONE OF 1868.

The two figures described above are exact copies of the patent drawings. To adapt it to modern use some minor changes in proportions and material have been introduced, which are illustrated in Fig. 2. The frame or body is constructed of cast iron. The magnet cores are screwed into one arm of this frame, and bobbins are placed around them. An ebonite ear or mouth piece screws on the open end of the frame, and clamps the metallic diaphragm in position. This ear piece is made shorter than was the corresponding part of the model of the patent. A two branched limiter is substituted for the pair of separate limiters of the original. The result is a inore compact instrument. A cover of brass or German silver incloses the principal working parts. Bindingpostsare attached to one of the arms of the frame opposite to the magnets. Thus the frame forms the back piece of the magnet. The double limiter is provided with adjusting screws. This instrument is a serviceable, distinct telephone. We very recently were present at a trial of its capacity over a fair length of line. Four Leclanche cells were in circuit. The saine in struments were used for receivers and transmitters. The action was perfect There was no choice of sounds. Sibilants were as clearly transmitted as any other utterances. The writer in listening to them had several standards. He had listened to one of the flrst-of the Dentetephrones in 1877 or thereabouts, at the Stevens. Institute in Hoboken. The other standards were reproductions of the Reis telephones, which he had also experimented with. The House telephone was far superior to either of these. Its work was fülly as good as that of the Bell telephone and Blake transmitter of to-day. The modern instruments, it will be noticed, do not differ except in construc tive detail from the device of the patent. They are a true reproduction of it. It is most intemsting to place the name of the inventor of the first printing telegraph by the side of Reis, Edison Bell, and Gray, as the inventor and constructor of one of the early telephones
The Wallace Telephone Co., of 150 Broadway, N.Y., will soon be prepared to supply these instruments.

The Japanese Government paper mill is manufacturing pocket handker hiets and clothing of paper pulp containing a mixture of linen threads.

Suintifit gmmicam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. pUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERIS FOR THE SCIENTIFIC AMERICAN.

One copy, one year. postage included....
One copy, six months, postageincluded.
830
80
50

The Scientific American Supplement

Scientific American Export Edition.

NEW YORK, SATURDAY, NOVEMBER 13, 1886.
Contents.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT INO. 587.
For the Week Ending November 13, 1886. Price 10 cents.'For sale by all newsdealers.

the bell trlisphone patert pzobably broken The claims of the Bell patent as at present construed by the courts cover the art of transmitting speech eleetrically. In the face of the famous Morse decision, a construction of claim fully as broad as that refused to Morse has been contended for and obtained by the Bell advocates. It is coffstrued to cover the transmission of speech by the "undulatory arrent." By this current the diaphragm of a receiving instrument is assumed to be kept under perimanent control of the diaphragm of a transmitter. It is all theory, but as accepted by the courts as a standard for judging of mechanical constructions, has a most important bearing on the extent of protection afforded by the Bell patents. It makes this protection absolute for all and every imaginable electric telepb ne.
The scope conceded to this claim is quite incompatible with the state of the art as illustrated by the Reis device alone. If any one had affirmed a few years ago that from the records of the American Patent Office a complete anticipation of this broadly interpreted patent of Bell would be exhumed, none would have credited the assertion. Yet this has now been done. A telephone far superior to Bell's crude and inoperative device of 1876, or the somewhat better one of 1877, is illustrated in our columns elsewhere. It is an exact reproduction of a device patented by the early telegraphic inventor, Royal E. House, in 1868. His name is one of the best known in connection with the early history of the art. He was the first inventor of a printing telegraph. He stands side by side with Prof. Morse and Prof. Bain in the history of electric progress. To-day, nearly eighty years old, he still lives, conuecting the paist with the present.
Royal House, in 1885, patented what he termed an Improvement in Electro-phonetic Telegraphs. No relay was used in this system; by increasing its sensibility, he hoped to avoid the necessity for one. In this way Morse's claims would not be infringed. Not satisfied with his progress, a second improvement under the same title was patented three years later, and the new device was a telephone.
This 1868 patent describes a perfect telephone, de signed to work as a telegraph receiver. The loud and very disagreeable clicking that a telephone under certain circumstances produces is familiar to all. It works as a sort of magnifier of sound. To make the
sound produced by the make and break of a weak cur sound produced by the make and break of a weak cur House availed himself of this telephonic principle. He invented a sounder that could work with very weak currents, because it was a telephone. It possessed a diaphragm and tube adapted for listener or speaker, just as the Bell telephones in his patents of both 1876 and 1877 did. The instrument may be adjusted so that changes in current will produce blows upon the diaphragm, or by adjusting screws the production of blows may be prevented and changed into that of impulses only. When this change is made, the apparatus for production and use of the "undulatory current" appears. According to the description of the House patent, a minute change in the adjusting screws will
effect this. He contemplates a motion of the armature of only one hundredith of an inch. An adjustment to this extent by screws shown in the patent drawings is therefore enough to prevent the hammering.
That this species of adjustment came within the literal scope of the patent is not only evident from the presence of the adjusting screws, but is proved by the following very remarkable clause in the specification : "I have found, by experiments, that when the force of an armature of a receiving magnet is expended on limiters, $F^{\mathbf{1}}, F^{2}$, by limiting the motion of the armature a distinct, audible sound is produced, even when the electrical power is only sufficient to produce motion." The inventor, in other words, had tried the effects of reducing the play of the armature, and there is no doubt that eight years before the inventionn of Bell, Royal E. House had heard the inpulses of a telegraphic current audibly reproduced telephonically by the "undulatory current." The inventor, it is true, did not realize the full powers of his invention. Two of these instruments actuated by a battery or by their residual magnetism will operate as well, or better, than a pair of the modern Bell telephones. Prof. House did not specially claim or describe them as speaking instru-
ments in his patent. Neither did Bell ments in his patent. Neither did Bell do so in his 1876 patent with reference to his instraments. But a device is protected by letters patent for all possible uses, and broe very curious results may yet follow if suits, are brought against the Bell Company under this patent.
An interesting confirmation of our views so frequent ly expressed as to the Bell claim is afforded by this patent. It overshadows, in importance, the Reis inventions, as it is so much their superior in efficiency. Neither is it a crude and impracteable telephone, like the earlier Bell devices. On the contrary, by legiti mate inventive work, Royal E. House, 妇e contempo rary of Morse, constructed a telephone as cood as the instrument in use at the present day.
One fortunate circumstance in connection with this instrument, as concerns its use in litigation, is that all instrument, as concerns its use in litigation, is that all
the facts can be so concisely proved. The patent, in a
clear drawing and description, shows what the instrument is. A simple inspection shows that it is a tele phone. By conpecting two of them in a circuit they will talk, thus practically showing that they are telephones. The date of the invention is far enough back to remove all danger of claims of priority of inven tion on Bell's part. The bearing of this invention on the extravagant claims of the telephone monopoly would seem very evident. If it can ever be brought before the courts, it will be an entirely new matter and will justify a new decision by a circuit judge. At present these judges are governed by decisions already rendered. But this new matter in the shape of a prior patent, the most convincing of all proof, must certainly force a new decision that will limit the Bell claims. An attempt is now to be made to bring it beore the circuit court on a final hearing.
Interesting in the abstract as this case may be as a feature in the history of.the invention of the telephone, it assumes great importance in view of the aspect that the Bell controversy has recently acquired. Charges affecting the integrity of the methods of the Patent Office have been recentlymade an issue in government proceedings against the Bell patents. It is alleged tha the Bell patents were fraudulently granted, that Bell was given access to Gray's caveat, and that corruption marked the whole of the proceedings in the matter of his 1876 patent. So serious were these allegations that the government suit mentioned above was instituted solely on their account, and is now in progress to deter mine their truth or falsity. The confirmation afforded them by this discovery falls little short of absolute proof. The examiner must have known of the House patents. Their inventor's name was famous. The subjects of the Bell and House patents were similar or almost identical. The drawings resemble each other closely. Interpreted by the specification, Bell's device is anticipated by a vastly superior apparatus. It is unfortunately a matter hardly susceptible of doubt that the contents of the House patent were known to the authorities when the Bell patent was granted. For the general public this patent will seal the condem nation of the Patent Office proceedings. The inatter should have a great effect on the government suit.
Meanwhile, some of the old cases are beginning to appear in the Supreme Court of the United States On the first of the present month motion was made in that court to advance and hear together, immediately after the February recass, all the telephone suits on the docket. Twenty-five thousand printed octavo pages are in the records of these suits. The argument on the united cases is expected to occupy a week. They include the Dolbear, the Molecular, the Clay Commercial, the People's (or Drawbaugh), and the Overland suits.
Progress in these suits will be watched by all with much interest. Unfortunately, none of the cases repre sents the full proofs, as they are all burdened with concessions, or characterized by omissions of some parts of the facts in the case. More results may rea sonably be looked for from the House telephone than from the Supreme Court.
the recent boiler explosion at charlotte, n. C. In our issue for October 30, we gave an account of the explosion of a boiler at the Cotion Compress Works, Charlotte, N. C., in which our correspondent tated that it was an Abendroth \& Rood boiler that gave way. The boilers of this firm are well known throughout the world as safety boilers, the water being contained in small, strong tubes ${ }^{6}$ which alone are ex posed to the fire, and are capable of enorinous resist ance. The principle of construction is such that only by gross mismanagement could the hoiler proper be made to explode. We are therefore not surprised, on receiving additional particulars, to learn that it was not the boiler proper that caused the mischif but it was an old, worn out steam drum that exploded, and which the cotton press people had caused to be constructed and attached to the boiler, wholly without the advice or knowledge of the boiler makers. We have seen a letter from Mr. H. W. Edwards, superintendent of the Charlotte Cotton Compress Com pany, who positively certifies to the above effect, and t settles the question.
We deem it only just to Abendroth \& Root Mfg. Co., and to their many customers in all parts of the country who have their boilers in use, to make the above facts known.

a remarkable railway accident.

A recent accident at Perkasie, Pa ., tunnel shows the importance of their ventilation. The above tunnel is about half a mile long. Repairs are being made there in. Onthe 3d inst. some fifty men were at work near the center of the tunnel, when a freight engine, unable to draw its train through the tunnel, became "stalled near the place where the men were at work. Fresh coal was put in the locomotive furnace, and the fan blast set in motion. Soon the train started; when it acted as a piston in a cylinder driving the gases from the furnace before it; and when the gases struck the the furnace before it; and when the gases struck the
men who were working in the tunnel, they nearly all
fell as if dead. With no premonition, about forty of them became almost instantly unconscious, and fell as they stood.
One of the men, only partially affected, made his way to the tunnel entrance and gave the alarm. A gravel train, with flat cars, happened to be standing there. It was run in to the place of the accident, and the bodies of the fallen men were dragged upon the cars and taken out to the fresh air. All were supposed to be dead, but, to the surprise of the rescuers, the recently dead men soon began to show signs of life, and in a short time all were themselves again, except one poor fellow, who died, and who, in his fall, sa into a pool of water, and probably was drowned.
One of the unconscious men was found hanging on a ladder, head downward, suspended by his feet.

THE NEW NAVY

The recent expression of opinion, by naval authorities here and abroad, as to the needs of our navy and how far the types of the new ships are likely to meet them, furnishes us with important data. By far the major part of the testimony confirms the view frequently expressed in these columns that small, fleetfooted cruisers are more to be desired than ponderous, unwieldy fighting ships, and that torpedo boats are necessary to an effective defense. While it can scarcely be said that the new ships, as far as constructed, are altogether satisfactory, eminent authorities on both sides of the water seem to be agreed that we have made, at least, a good beginning; that, under the circumstances, it is not. surprising that mistakes have been made or that errors, at first insignificant, should have multiplied as the work of construction progressed. It is only by such practical experience, they say, that anything like perfection.can be attained in so difficult and undertaking as that of trying to combi
In order to better understand the recent criticisms on what has already been accomplished by our naval constructors, and what they have proposed to themselves, it is necessary to have the list of new ships before us. Here it is

		Guns. Breech doading Rifles.	灾	Condition.
Amphitrite	3,815	4 10-in.	12	Incomplete.
Monadnock	3,815	4 10-in.	12	Incomplete.
Terror.. ${ }_{\text {Miant }}$	3,815	$410-\mathrm{in}$.	12	Incomplete.
Miantonomoh	3,815	${ }_{4}^{4} 10-1 \mathrm{~m}$.	${ }_{13}^{12}$	Incomplete.
Puritan.	6,000		13 15	Incomplete.
Boston.		$2^{7} 7$-in. $\}$	14	\{ Armament
Atlanta	3,000	$\left\{\begin{array}{c}6 \text { c-in. }\} \\ \text { do. }\end{array}\right.$	14	$\begin{gathered} \{\text { incomplete. } \\ \text { do. } \end{gathered}$
Chicago		${ }_{4}^{4} 8$-in. ${ }_{6}$-in.	15	Incomplete.
Gunboat No. 1				
Gunbeat. No. 2.	1,800	${ }_{4}{ }_{6}^{6-\mathrm{in}}$.	12	Not commenced
Newark	4,000	12 6-in.	18	Not commenced
Charleston	3,730	$\left\{\begin{array}{ll}2 & 10-\mathrm{in} . \\ 6 & 6 \text {-in. } \\ 6 & \text {-in }\end{array}\right\}$	18	Not commenced
Baltim		$\left.\begin{array}{\|cc\|}4 & 8 \text {-in. } \\ 6 & 6 \text {-in. } \\ 6\end{array}\right\}$	19	Not commenced
Armored cruiser		$\left\{\begin{array}{c}4 \\ 4 \\ 6\end{array} 10-\mathrm{in} . \mathrm{in}.\right\}$	16	Not designed.
Armored battle ship.		$\left\{\begin{array}{l}218 \mathrm{in}-\mathrm{in} . \\ 66 \mathrm{in}\end{array}\right\}$	16	Not designed.
Pneumatic dynamite gun ship.. One first class torpedo boat.	-		20	Not designed.

The Dolphin is a dispatch boat, not intended for fighting, nor fast enoügh to overhaul modern merchant steamers. The Atlanta has made 13 knots over the measured mile-a test always made under favorable circumstances-which places her, in point of speed, scarcely ahead of the anctent Iroqiois" now so years oId. Like the Boston, the Atlanta is a nondescript. Each has a battery consisting of two 7 inch and six 6 inch guns, and hence, with their limited speed, frail sides, and inability to carry heavy batteries, have neither the power to fight, the strength to stand assault, nor the ability to run away. Of the Chicago, which is larger than either the Atlanta or Boston, and has not yet been tried, Admiral Porter says: "She contains absurd mass of machinery. The engirres are of the type known as side levers-a cumbrous, fric-tion-generating kind, unfit to put in the hold of a man-of-war. I take upon myself credit for having a change made in the valve arrangement which will better things somewhat. I succeeded in having the plans for poppet valves altered and slide valves substituted The clanking of the side levers will be like the noise of a chain gang. I know of a merchant steamer with a single screw, plying between New York and New Orleans, that has a side lever engine. She is under repairs more than the other ships of the line, although she is fast. For a man-of-war, the Chicago's engines are as bad as can be."
It is but fair to say here that it is not the contractor, as the public is inclined to believe, कho is responsible for this kind of work. He only carries out the design placed in his hands. It is the Bureau of Steam Engineering, quoting again from the Admiral of the Navy: "An ax to grind here, a pet hobby there, a patent arrangement yonder, and there you have it. I would not allow the Bureau of Steam Engineering to touch a plan or alter an engine provided by a contractor.
signers of the engines, to call it no wo
to such direful results as we have seen."
The Admiral and other authorities who have recently spoken upon the subject believe that private firms should be called upon to design the engines. In other words, they should be expected to furnish engines whicb, yould give a certain speed. The rest is easy. If
required speed is not obtained, the ship is not accepted. But when the engines are designed by the department, and the contractor ex pected to get speed out of them, disaster usually fol lows. All seem agreed that, to be éfficient, a fleet should be composed of three classes: First, commerce destroyers-fleet-footed unarmored vessels, carrying two or three heavy guns; second, armored fighting ships; third, torpedo boats. As to how many of each are required, or the proportion of one class to the other, opinions differ; the majority, however, believing our requirements would be best served by torpedo boats and light-footed, unarmored cruisers. The National Line's steamer Amêrica is thought to be a good type of what these cruisers ought to be. She is much broader than the Oregon type, and can steam 17 knots an hour, not only on the meassured mile, but continuously through the day's work. The English cruiser Inconstant, also of 17 knots speed, is an admir able specimen of this class, but is thought to be alto gether too large and, consequently, too costly for our needs. What would our 13 and 14 knot unarmored ships do in the presence of an Inconstant, which could always choose her target and the most favorable firing point, and get away when the odds were against her The general opinion of the two 4,000 ton unarmored ships is that they are too large, or, rather, needlessly large.
John Herreshoff, the ship builder of Bristol, Rhode Island, is perhaps as good an authority on speed as there is to be found. He designed and built the Stiletto, undoubtedly the simplest steam yacht afloat. He pins his faith on swift-moving torpedo boats as a main reliance. He says that torpedo boats built on the same lines as the Stiletto, but of steel, instead of wood, and of 150 feet length, could be made to steam a speed of 30 miles an hour. The Stiletto has made 27.
That the swift-moving torpedo boat is likely to take a very important part in the future naval wax there can be little doubt. Even the French Admiral Aube and Sir Spencer Robinson, Sir Edward Reed George Mackron, of the Thames. Ship Building Company, Mr. Watts, the constructor at Elswick, and exChief Constructor Warren, of the Chatham Royal Navy Yard, were all spoken to recently on this subject, and either expressed confidence in the efficiency of torpedo boat attack or, if not affirming the propo sition, were unwilling to deny its truth.
In view of this, it seems strange that the nava board should have contented itself to advise the construction of "one first-class torpedo boat."

THE DYNAMO COLOSSUS AT WORK by w. h. hale, ph.d.

An account of the newly invented process of smelt ing by the Cowles system of electric furnace was given in the Scientific American of May 22, 1886 (p. 328) The dynamo Colossus, the most powerful ever con structed, was illustrated and described in the Scien tific American of August 28 last.

On the 16th of September, I had the good fortune to pay a visit to Lockport, N. Y., just in time to find the dynamo engaged in smelting its first run of metal which was an alloy of aluminum and copper.
Although the process of electric smelting is capable of reducing the most refractory ores, and securing many costly metals; such as potassium, sodium, magnesium, and the like, besides metalloids, boron, silicon, etc., yet the company now aim especially to secure aluminum in large quantities, because of the many valuable properties of that metal and its alloys, and the almost infinite variety of uses and inexhaustibility of demand for them at the reduced price which this process renders possible.
Both the Cowles brothers, Eugene H. and Alfred H., the joint inventors of the electric furnace, were pres ent-the latter having only the day before returned from Europe, where he had been exhibiting specimens of product as previously obtained By smaller dynamos at Cleveland, having secured, among other fruits of his trip, an order from Whitehead, manufacturer of torpedo boats, for 6,000 pounds of the 10 per cent aluminum and copper alloy. No other visitor was present. The big dynamo was running at 380 horse power, though capable of 500 horse power when required. It was making 420 revolutions per minute, and, as the electricity was drawn off, it scintillated in a brilliant and continuous fusillade of sparks varying in color from white to emerald green, and oc casionally flashing out in a burst of unusual splendor, yet perfectly controlled and free from danger to the pectators.
The dynamo is driven by water power. The water ways were constructed by Holley, and are replete with ingenious appliances for utilizing all the power there is, and for keeping the water at a uniform level. The
shaft, each turbine being eight feet in diameter. The dynamos-for there is also a•smaller one-occupy wheel room and the furnace room.
Passing to the furnace room, we see where the energy of the dynamo is being expended. The furnaces are built larger for the Colossus than those used with smaller dynamos, and are charged with 60 pounds granulated copper, 60 pounds corundum, and 30 pound coarse charcoal, besides the pulverized lime-coated charcoal used as packing. This mixture contains over 32 pounds of aluminum or about 54 per cent of the corundum. Into the furnace thus charged pours the current from the Colossus, fusing the almost infusible corundumlike wax, causing itsmolecular structure tobe broken up into its elements, and raisingthe temperature of the entire mass to a very high heat. Vent holes are left in the covering of the furnace, through which escape the liberated gases and some of the volatilized aluminum, the whole glowing with a bright flame which sometimes darts up to the height of many feet. The amperemeter on the wall shows with what force the current is flowing, and the attendant must watch it closely to keep it at the desired gauge. A force of 2,000 to 2,400 amperes is generally preferred. As the index approaches the higher limit, the carbon elec trodes are from time to time drawn asunder, till at last they stand wide apart, and the current flows freely through the ertire furnace. The process of reduction takes about two hours.
Returning to the dynamo room, we find at the end of the run that the bearings of Colossus are not raised to the temperature of blood heat; and it proves to be the case that it may be run continuously without be coming overheated, thus demonstrating the excellence of its construction under the personal supervision of Mr. Brush. The bane of dynamos is overheating.
What do we find in the furnace at the end of the re duction? The products of the electrical furnace have urnished the theme for several papers already before scientific societies, and will supply a probably fruit ful field of research for time to come. Since the first run of the dynamo, I have on several other occasions visted the works and seen the charges with drawn from the furnace. The product appears in the form of a fused mass of metal embedded in the surounding carbon. Most of this mass is an alloy of copper and aluminum, varying much in the propor tion of the two. Mostly it exceeds the 10 per cent of aluminum which gives the alloy of maximum strength, and is a brittle white metal, which is again fused with the addition of more copper to such an alloy as may be equired.
But the furnace gives many other products. Someimes there are found small fused rubies and sapphires The sub-oxide of aluminum-never found in nature and never before known to exist or to be capable of ormation-is always present in larger or smaller quan ities. I have also seen specimens of beautiful, white fibrous alumina. With other charges, sub-oxides of silicon and titanium are found-very curious products indeed. The intense heat even partially fuses the car bon, and the electrodes are converted into graphite.
The rush of visitors has been so great that the com pany have been compelled to restrict facilities for ad mission latterly.
Important economical as well as scientific results have been already attained by the dynamo. The price f aluminum alloys has been reduced to a scale adopted by reckoning the value of the contained aluminum at $\$ 2.50$ a pound, previous sales of that metal having been at the rate of 75 cents an ounce.
The 10 per cent alloy is said to be the strongest metal nown, though alloys of a less per cent have great utility, being tougher, but not so strong. Krupp cannon require a tensile strength of 70,000 pounds pe square inch of wrought steel, the labor on which raise its cost to 75 cents or a dollar a pound. Some specimens of the alloys made by the Colossus, which are simply cast, not wrought, have recently shown the phenomenal strength of 131,000 pounds per squareinch. Since writing the above, I notice the statistics of production of different metals in the United States for 1885, as given in the Scientific American for Nov. 6,1886 . In that table the whole amount of aluminum produced during the year is stated as $\boldsymbol{3}, 400 \mathrm{oz}$., alumi num being then regarded as a precious metal.
The capacity of the Colossus will enable it to reduce larger amount than this, in the alloy with copper, within the period of twenty-four hours.

Alloy of Aluminum and Tin.

A useful alloy of aluminum and tin has been obtained by M. Bourbouze, by melting together 100 parts of the former metal with 10 parts.of the latter. This alloy is whiter than aluminum, and has a density of 2.85 , a little greater than that of the pure metal, so that it is not too heavy to replace aluminum in instruments re quiring great lightness of their parts. It is less affected by reagents, etc., than is aluminum, and also is more easily worked. Another of its merits is that it can be soldered as easily as brass without any special prepara tion.

FROGLESS SWITCH.
In the switch herewith illustrated the switching rail is so secured that its butt end rests against the meeting ends of the inner rails of the main track and-switch. These rails are so joined together that the end is the same size as that of a single rail. The point of the switch rail is beveled off from each side, so that it will

COLP'S FROGLESS SWITCH.
fit snugly against either the outer rail of the siding or against the rail of the main track. This rail is prevent ed from spreading by two sets of stops, placed as shown n the engraving. Connected with the switch rail by tie rods is a second rail, placed on rollers along the outside of the main track. One end of the second rail is held in place by a staple, while the other end is connected to the lever of a switch stand by a link. The movement of the lever moves the auxiliary rail and the switch rail to the position indicated by the dotted lines, and thereby opens the siding.
This invention has been patented by Mr. Abraham Culp, of Mount Carmel, Pennsylvania.

CYLINDER COCK.

This device is intended for use in connection with the steam cylinders of a locomotive or other form of engine; the object being to provide for the automatic discharge of the water of condensation at each strok of the piston. Beneath and connected with the cylinder, A; by tubes, a, are placed two valve chambers, B, each of which has a bracket, in which the rod, c, is loosely mounted. This rod is so connected, by the lever, C , and rod, d, as to be within reach of the engi neer. The plug valves, D, fit loosely within the cham bers, and in the inclined seats are formed apertures, n, th rough which the water of condensation entering the chambers is discharged. The extended ends of the valve stems, f, are held in apertures formed in the for ward ends of cylinders, G, which are adjustably con nected to rod, N, pivoted to a rocker, P , carried by the arm, H, which is clamped to the rod, c, by means of the plate, h. Steam entering the front of the cylin der, A, passes into the chamber, B, through the tube, a, and forces the valve against its seat. This movement of the forward valve throws the rear one away from its seat, and allows the water that was behind the piston to escape through the opening, n. The movements are reversed when steam enters the othe end of the cylinder. If necessary, the engineer can close both of the valve chambers at the same time by properly adjusting the rod, d, or can open both.

This invention has been patented by Mr. William Stoffel, of McHenry, Illinois.

Mixture for Cleaning Grease Spots.-Equal parts of stronger ammonia water, ether, and alcohol form a valuable cleaning compound. Pass a piece of blotting paper under the grease spot, moisten a sponge, first with water to render it "greedy," then with the mixture, and rub with it the spot. In a moment it is dissolved, saponified, and absorbed by the sponge and blotter.

ORE SEPARATOR. 1

By means of the simple machine herewith illustrated, ores of various kinds may be washed and separated, and the valuable mineral and tailings separately and closely graded. The pan is, formed of a flat plate, having down-turned aprons at the tail and head edges, and up-turned flanges at the front anderck ends. The front end lies about at right angles to the tail, while the head preferably makes an angle of from twentyfive to thirty degrees with the tail. By means of simple mechanism arranged on the frame beneath the pan, the latter is given a horizontal movement. The front end of the pan is provided with fixed bearer feet, which rest loosely on the tops of the large heads of screws threaded into lugs of the frame. By adjusting these screws, the front end of the pan may be raised to give the desired inclination from the front to the rear end, and from the tail corner to the head corner. At the opposite or sharp end of the pan is fixed a bowed arm, at the end of which is swiveled a shoe, sliding in the grooved head of a screw provided with a lock nut. The pan may be thus vertically adjusted to give the necessary inclination from its front end toward its rear end. This method of supporting this end of the pan also provides for giving it a greater or less lateral throw toward and over the mineral box, which is supported under the head of the pan to receive the washed and graded. mineral. This is accomplished by holding the groove or slideway of the screw head at any desired angle to the stroke line of the pan. The back ends of the mineral box and tailings box, which is supported beneath the tail edge of the pan, are connected by a conduit, through - which excess of water in the mineral box may pass to the other, and thence out through a suitable spout. Water is supplied to the pan from a pipe placed along the head of the pan, the water being delivered in gradually diminishing quantity from the front toward the back end. This graduated water supply allows the coarser and finer ore particles on the pan to be thoroughly washed with a minimum quantity of water; this also prevents the finer valuable ore particles from being washed into the

KRAUSE'S ORE SEPARATOR.

refuse box. The crushed ore is fed to the pan through a box located at the front end, about over the driving shaft. As the pulp flows toward the back end of the pan, the quick movement of the pan toward its highest point will throw the heavier particles in that direction, while the lighter ones will arrange themselves down the slope, according to their weight, and the current will wash all the worthless material into the refuse box, while the valuable mineral will be carried into the mineral box in condition for smelting. Both the tailings and valuable mineral will be graded into different sizes in their respective boxes, and the larger particles of the former may be removed and reduced for subsequent treatment.
This invention has been patented by Mr. Henry \mathbf{C}. Krause, of Lake Linden, Michigan.

Gapes in Fowls.

The fact that the disease known as gapes in poultry is prod uced by a parasitic worm (Syngamus trachealis), which infests the trachea of the birds, was settled long ago, and for most of our recent knowledge of the worm and the disease we are indebted to the prize essay of Plerre Megnin. According to this author, the mature worms and their eggs are coughed out of the throat of the infested fowl, and the disease is spread by its associates picking them up along with their food or by drinking water in which the eggs may have hatched into larvæ. No suggestion is allowed of any intermediate host. Mr. H. D. Walker, in an apparently carefully prepared paper on this stubject (Bulletin Buffalo Society Natural Sciences, v., pp. 49-71, 1886) details many experiments which he has tried, and several of them point very strongly to the conclusion that the earth worm may, in many cases, play a part in the distribution of the pest. The embryos have been found living in the earth worm at all seasons of the year, and earth worms from infested localities, when fed to chickens, almost invariably produce the disease. Dr. Walker has also produced the disease in robins, and claims to have found the embryo of the lung worm of calves (Strongylus micrurus) in the earth worm.-American Naturalist.

RAILROAD FENCE

Thisfence is designed to exclude roving animals from the track, and at the same time make available for grazing purposes all that part of the railway property ying outside of the track proper. The lower ends of the fence posts are placed in holes in the ends of the ties, and the upper parts of the posts are bentoutward, as shown in the engraving. To each pair of posts are connected rails held by staples or by coupling blocks or heads. The staples are held to the rail and

COOLEY'S RAILROAD FENCE

post by nuts, and the blocks have eyes to receive the rail and a socket to receive the post and a key which clamps the block firmly to the post. This fence may be erected very quickly, and when dismembered for ransportation it occupies but little space.
This invention has been patented by Mr. James A. Cooley, of West End, Knoxville, Tenn.

Smelting of Iron Sand.

A method by which the immense deposits of iron sand which abound on the coast of New Zealand can be successfully utilized has lately been discovered at Auckland. The feature of the new process consists in uniting a quantity of scoria with the sand when put in the blast. This has the effect of preventing the iron from oxidizing, an obstacle that has heretofore never been successfully overcome in smelting iron sand.

CUTTING APPARATUS FOR MOWERS AND REAPERS

The principal feature in this cutting apparatus is the method of supporting the knives between roller bearings. The inner parts of the knife blades rest upon spherical rollers held in suitable grooves. Attached to the upper surface of the blades is a knife bar formed with a rear beveled edge, upon which, and upon the blades, is another series of rollers held in place by suitable grooves. The upper row of balls is slightly in ad vance of the lower one, so that the front part of the knife is pressed downward and made to cut close to the guards, thereby making it impossible for the knives to choke up. The knives are self-adjusting and self-cleaning, and, owing to the ball bearings, no more power is required to run the knife itself when cut ting than when not cutting. The frame forming the grooves for the upper rollers can be adjusted forward or back as may be necessary.
This cutting apparatus is the invention of Mr. John C. Voss, of El Paso, Texas.

VOSS CUTTING APPARATUS FOR MOWEBS AND REAPERS.

IMPROVED SLEIGH.

This invention, which has been patented by Mr Samuel T. Beswick, of Blair, Wis., consists in a diverging construction of the runners relatively to the line of draught. The runners are turned up in front as usual, and are fitted with suitable metal shoes, which are made of tapering width on their bases and with shelving sides throughout the greater portion of their length, being narrowest at their rear ends. The forward portions of the shoes may be made of equal width so that their sides will be parallel with the central line of draught, or the taper may, if desired, extend the

BESWICK'S IMPROVED SLEIGH.

whole length of the shoes. In some cases it will be found advantageous to make the base line or surface of the shoe taper upwardly in a backward direction throughout the length of the side taper. This construction of the shoes reduces the friction and allows the rear end of the sleigh to sink somewhat, and so prevent the front end from cutting the snow too deep; the sleigh can also be turned easier, and will keep to the track more readily.

FLOUR CHEST AND SIFTER.

The accompanying engraving represents a flour ches and sifter invented by Mr. H. G. Filson, of New Cum berland, W. Va. Extending across the mouth of a conical hopper secured in the receptacle near the middle is a bar, which supports.' a central stud carrying a

bevel gear wheel formed with two or more arms, and carrying upon its upper surface a sieve, which is near but not in contact with the mouth of the hopper. This gear wheel meshes with a horizontal shaft, one end of which extends through the side of the receptacle and is provided with a crank handle. In the bottom of the receptacle is a
drawer, and on the top is fitted a cover. The receptacle is designed to contain a supply of flour. When flour is needed the crank is turned, thereby rotating the sieve and discharging a quantity into the drawer, from which it is taken for use. The cross bar not only serves as a support for the stud, but also as a stirrer for breaking up lumps of flour and causing it to be more rapidly sifted

IMPROVED PROPELLER.

The propeller herewith illustrated can be attached to either wooden or iron vessels, and is designed as an aid for sailing vessels in a calm. The screw is mounted upon a short shaft, journaled in the lower part of the

SYLVEN'S IMPROVED PROPELLER.
frame. The inner end of the shaft is formed with a clutch, which connects with a similar clutch on the outer end of a shaft journaled in a bearing in the keel and in a pillow block located within the vessel. At the perpendicular edge of the frame is a T-piece fitting in a flanged guide attached to the keel for holding the propeller in proper position. When not in use, the propeller is carried upon deck, and is raised and lowered by means of two chains arranged as shown in the engraving. A simple device is provided for guiding the T-piece of the frame, so that it will easily enter the guide, while a lip formed at the bottom of the socket prevents the propeller frame from dropping too far. The inner end of the main shaft is provided with a pulley, over which passes a belt leading over a pulley on deck. When the Jatter is revolved by any suitable hand or other power, the screw is turned to propel the vessel. A stop spring is adapted to spring over the upper end of the T-piece, and lock the propeller in the socket. This spring may be drawn out to release the propeller, by means of a cord reaching to the deck. It will be noticed that when the propeller and its frame are lifted on board, nothing is left in the water to make any resistance or cause fouling.
This invention has been patented by Mr. W. T. Sylven, whose address is care of Messrs. William Cramp \& Sons, Beach and Norris Sts., Philadelphia, Pa.

REVOLVING TARGET.

The revolving target herewith illustrated is the invention of Mr. W. H. Adams, of Fort McIntosh, |rapidly extending to the grinding surface. The ap Laredo, Texas. Framed into the main post, which is proximal surfaces do not seem to be attacked more mounted upon an upright metal spindle secured to the than in other patients. He believes the disease to be base of the target, are cross arms of equal length, and the ends of which are slotted to receive the upper and lower horizontal arms of the target frames, to which are secured the plates on which the bull's eye and rings of the target are painted. The revolving portion of the target is locked in place to hold one of the plates in position to receive the shot, by a spring secured upon the base, and provided with a rod by which it may be depressed to disengage the target by a foot bar extending to a shelter behind which the target tender stands. .This target is easily constructed and durable, and the frames may be readily removed and replaced when the plates require renewal.

ELECTRIC CLOCK

The clock herewith illustrated is constructed with two toothed wheels on the same shaft, one wheel having one or more teeth than the other, and both being operated by the samepawls, so that one is moved faster than the other; and by means of hands the relative positions of the wheels and the time are indicated. On the pendulum rod, Fig. 1, is an armature interposed between two electro-magnets connected by wires with one pole of a battery and with contact pieces on the ends of the shanks of a U-shaped anchor pivoted to swing on a suitable fixed support. These contact pieces are interposed between and arranged to be struck by contact plates near the free ends of an inverted anchor, also pivoted on a support, the plates being connected by wires with the other pole of the battery. In the shanks of the upper anchor are adjustable screws, which are alternately struck by the swinging pendu lum rod.
With this construction, when the pendulum starts to swing to the left, it strikes the left-hand screw, and throws the corresponding contact piece on the upper anchor against the contact plate on the lower one, thereby closing the circuit through the left-hand magnet, which attracts the armature and gives the pendulum an impulse to the left, accelerating its motion slightly, until the contact piece slides off the plate and on to the non-conducting tip of the lower anchor. The circuit is thus broken and the pendulum allowed to swing by its own gravity to the right, when a similar impulse is imparted to it. The motion of the pendu lum is thus maintained constant.
Attached to the upper part of the pendulum is a rod secured to a lever provided with two pawls connected one a bove ant one below its pivot. The motion of the pendulum causes the pawls to engage alternately with the teeth of both wheels, which are thereby revolved. These pawls may be arranged in different ways, as shown in Figs. 2, 4, 5, 6, and 7, Fig. 3 being an édge view of Fig. 2. The pawls act alternately, and each one always acts upon both wheels, so that when one wheel is revolved the other is revolved with it; and as one has less teeth than the other, it is evident that when the larger wheel has completed one revolution, the smaller has made one revolution and a few teeth more. The numbers of the teeth are such that the relative movements of the wheels will take place in times corresponding to the subdivisions of time into hours, minutes, and seconds.
This invention has been patented by. Mr. D. T Garcia ; particulars can be obtained from Mr. G. Castanos, of Guadalajara, Mexico.

Dental Caries in Bakers.

Professor Dr. Hesse, of Leipsic, in the Deutsche Monatschrift, points out the deplorable condition of the teeth of bakers, and says that he is often able to tell the profession of the patients by the condition of their teeth. The caries is soft and rapidly progressive. The principal parts attacked are the labial and buccal surfaces of the teeth, commencing at the cervix and

ADAMS' REVOLVING TARGET.

 due to the inhalation of flour dust, the caries being caused by the action of an acid which is formed in the presence of fermentable carbohydrates.
MEASURING PUMP.

The measuring pump herewith illustrated will pump one-half a gallon or any desired fraction of that amount at each stroke. The pump is se ured at the bottom of the tank by braces, and is provided with a hollow piston head and tube which is connect ed to the operat ing lever placed on top of the tank. To this lever is connected, by a rod, a measuring device or register, so that the up and down move ment of the lever will move the pointer in front
 pointer the graduated dial a distance bearinc a cortain dial the lever. The dial is graduated in pints, quarts, and gallons, ac cording to the capacity of the pump. The mechanism for operating the pointer is very simple in construc tion, and reliable. The upper, curved end of the pipe is attached to a funnel for directing the flow of liquid into any receptacle. To draw any desired quantity of liquid, the lever is raised until the pointer indicates the desired quantity on the dial, when the lever is simply forced down, which will cause the exact quantity to be thrown out by the pump.
Further particulars concerning this invention may be obtained from the patentee, Mr. W. B. F. Sims, of Corydon, Indiana.

slag Cement

The possibility of using the slag or scoria resulting from the smelting of iron and other metals for the pro duction of cement, is an idea that has presented itsel to many inventors, and has engrossed a vast amoun of time, hitherto with very little practical result. We read that this subject has attracted the attention of "several cement manufacturers on the Tyne banks," and that experiments are being made "to utilize the residuals from the blast furnaces in making Portland cement of higher quality than that produced by the ordinary process." A short time ago the Middles brough ironmasters spent a good deal of money in sim ilar attempts, and before that we were assured that Mr. Ransome had succeeded in turning various de scriptions of slag to profitable account in the prepara tion of cement said to be superior to Portland cement So far, however, the new cement has made but little impression on the market, and we are almost despair ing of its ultimate introduction. To the superficia observer this problem is doubtless an attractive one Portland cement, even in these days of competition and low prices, is a relatively costly material, and iron slag is a drug upon the market, and a commodity which some people. haveeven to pay to get rid of; and if, in deed, by some simple process we could convert these millions of tons of scoria into cement, not only would he production of iron become cheaper than ever, but the manufacturers of Portland in the ordinary way would have to close their works, while, with cheape cement, one more excuse for bad mortar and jerry building would be removed.
So far, however, the would-be inventors, though they may have been skillful chemists, have shown them sel ves singularly unable to deal with the chemical fact involved in the production of Portland cement.; and though we have to some extent considered the chemi cal aspects of this question on previous occasions, it nay, perhaps, not be amiss to remind our readers, and those who take an interest in this important subject, of certain facts which militate sadly against the employ ment of slags for the manufacture of Portland.
-The double silicates of lime and alumina, burned to the point of incipient vitrification to form the clinker of Portland cement, vary but little in composition, no doubt, from the fused mass drawn from the blast furnace. Indeed, certain of the "basic slags "resulting
from the recently introduced processes of Messrs. Gilchrist and Thomas are, chemically speaking, but little different from Portland clinkers; but, as every practical cement maker is aware, there is all the world between a properly burned clinker and one in which the firing has been pushed too far, and which has become, as the term is, slightly "blued." Very hard burned clinker is a most treacherous and dangerous material; not only does it tear the stones all to pieces to grind it, but it resists the combination with water, and becomes hydrated either very slowly, or, if the clinker was actually fused, not at all, while a very small proportion of overburnt clinker will, if it be not picked out, spoil the contents of an entire kiln. The reason for this clearly is that what we have to prepare is a double silicate, capable of hydration, that is to say, capable, when reduced to a fine powder, of entering freely into combination with and of solidifying a certaln propurtion of water, and of thus binding together the particles of stone, graviel, sand, etc., with which the cement is employed. When the silicates have been fused, or "dead burned," we get a crude glass, as little capable of becoming hydrated on admixture with water as so much sand would be, or we obtain, perchance, a large proportion of these inert silicates, mixed with a quantity of feebly hydraulic silicates of a most dangerous and unreliable character, some of which will inevitably "blow" in the work, i. e., combine with water only after the surrounding particles have set, and have become more or less indurated.
It is, of course, well known that molten slag, when run into water, is mechanically reduced to a very fine state of subdivision, and the silicious particles thereby produced have long been used in-place of sand. Some slags, also, when exposed to the action of the atmosphere, will " weather" or crumble, owing to some slow decomposition of the silicates, and to the presence of iron in small quantities. We have yet to learn that the decomposition of slag could be at once effected by any chemical means, which should, as is stated in the article from which we quote, "reduce it to its elements of silica, lime, and alumina" in an uncombined form. Such a chemical discovery would indeed be one of marvelous significance. Many years ago, while this plan of making Portland cement from slag was unthought of, it was proposed to add to molten slag an excess of slaked lime, in the belief that it-might be possible in this way to produce hydraulic limes at a cheap rate but the difficulties of introducing the lime, and of causing it to become thoroughly and intimately mixed with the slag, were found to be insuperable, and the silicates produced were, even with a large excess of lime, extremely insoluble.
Strangely enough, though the ordinary varieties of slag are so inert in themselves, they have some of them
which they are suitably mixed, even more hydraulic, and of stimulating in this way chemical action; and it has been proved by Dr. Michaelis that it is possible to mprove a good sample of Portland cement by adulter ating it with a small proportion of crushed slag. 'That this action is not simply a mechanical one is proved rom the fact that other inert substances have not a similar effect, and it is contended, thertore, by a cer tain section of the authorities in Germany that an adulteration which tends to improve the compound is not an adulteration, and that the addition of slag to Portland cement should be permitted. This manner f employing blast furnace slag is, of course, wholly different to that contemplated by the Newcastle ce ment makers, but it is worthy of consideration by hose who have undertaken the experiments on the Tyne.
The question of the preparation of cement from slags turns upon the solubility or otherwise of the silicates. An insoluble silicate is manifestly incapable of being apidly acted upon by water, and of undergoing any such rearrangement of its particles as takes place during.the "set" or hydration of a sample of Portland cement. The German gentleman who has proposed to educe slag into its elements must also undertake to recombine the silicic acid with the lime and alumina in a form capable of gelatinizing when treated with acid, and this, we fear, he will fail to do without exposing them to a good red heat-a costly matter to obtain, s the cement maker full well knows. The saving to be effected by the use of the new process would in this event be that only of the cost of the raw materials, less the expense of reducing slag into its elements (which sureiy cannot be done for nothing), and in this case the cement makers elsewhere need not alarm themselves. If, on the other hand, the German patentee has discovered a means of detrifying slag, and of giving us a compound which requires no firing and which grinds itself, and all this as a sort of supplement to the reduction of the aforesaid molten slag into its elements, we can only say that his invention is one of the most wonderful we have ever even dreamed of.-G. R. R., Building News.

The Charleston Earthquake.

The earthquake which visited the eastern part of North America on August 31 was one of the most re markable in our history, both in its extent and in its serious results to the southeastern portion of the country. Its occurrence naturally excites inquiry as to the possibility of our being more frequently visited than heretofore by this scourge. The numerous earth trembles common to all countries are of little moment, but against such destruction as has visited Charleston we must, if possible, provide.
It is well known that there are lines of abrupt change of the geological structure of the earth's crust which are known as faults. These are more or less elongated fractures, on one side of which the strata occupy a much higher position than they do on the other. The depressed side may not receive deposits of much thickness subsequent to the fracture. If in this case the elevated side is not removed by erosion a range of monoclinal mountains is the result. If, on the other hand, deposits are laid down on the deand the elevated tract is mowed downby "frost and fire," the mountain range disappears, an but the geologist can detect the fault or fissure The shrinkage of the earth is supposed to have been the cause of the elevation of many mountain ranges, which are wrinkkes, of the surface. In the formation of these wrinkles, faults often occur. In the formation of the greatest changes of surface, they are nearly always produced. Such abrupt changes of structure The at or hear the sea horders of most continents the depressed region is occupied by the sea and by the de
shore.
Such a line of fault extends throughout the Eastern United States. It commences at the sea coast of Staten Island, and extends southwest to Trenton, Philadelphia, Wilmington, Del., Baltimore, Washing ton, Richmond, Raleigh, Columbia, S. C., etc. This is a very important line in the economy of the country Here the hill country ceases and the plain of the sea board begins. In many of the States it marks the head of tidewater and of navigation. It is here that the most important cities of our Atlantic States have been built. The presence of water power or of tide water, or the conjunction of both, has determined their location. Other conveniences make them desirable dwelling places. Such is the equal accessibility of the fruit and vegetable products of the plains with the grazing and dairy products of the hills. Such the equal accessibility of sea shore and elevated places of summer resort. Professor Cope pointed out this interesting geological position of our Eastern cities sev eral years ago.
The position has, however, the disadvantage of being on the line of fracture of the border of the continent. This line is the hinge on which the flatter region of the coast has in past geological ages moved up and down. Many times this region has been sub-
merged, and as many times it has been elevated above the sea level. More than half of it in the lati tude of New Jersey, that is, a width of one hundred miles, is submerged at the present time. Its sea border from New Jersey to Florida has been slowly creeping westward, since observations began to be made on our coast. The most exact of these observations have been made by Professor George H. Cook, on the coast of New Jersey. Geologists know that the present state of affairs is not a permanent one. There is no reason to doubt but that the line of fracture referred to may not again become the coast line, or, on the other hand, that the width of our coast region may not be extended one hundred miles out to sea. The plains of this region will then be submerged or elevated. In the former case, if the process be rapid, the loss of life will be great. But it will probably be slow, with occasional slips of one side of the old faults on the other, which will jar the rocks over large areas. Under these circumstances there is no reason to suppose that our region can continue to be exempt from earthquakes. We are to expect periods of repose alternating with periods of disturbance.-American Naturalist.

Annual Fair of the American institute, New York. Although this exhibition has now been open about ix weeks, the crowds in attendance every afternoon and evening show no diminution. Those who have been frequent visitors to the fair in former years gen erally want to go at least once with each recurring season, while strangers never fail to find much that is entertaining and instructive. The silk loom is this year weaving handkerchiefs on which the New York and Brooklyn Bridge is represented, and they are very much sought after by out of town visitors. The ice making machines, with their frost-covered pipes, look refreshingly cool, and a large proportion of the passers by are constantly putting their hands on the icy conductors to satisfy themselves that the ice is real printing presses are at work on large sheets of adver tisements; the workman who is moulding clay into vases, jugs, bowls, and all sorts of pottery has an interested crowd at all times around him; near the man who is noisily selling the potato parer are two Stiles \& Parker presses at work stamping out of sheet metal the knives for making the parers. In the woodwork ing department tobacco boxes are being made, and a reat variety of fancy wood articles; sewing machine and attachments fill a considerable space, and the work of fancy stitching and embroidering is practically illustrated by deft manipulators of the various mpróved devices represented; diamond cutting, as practically shown, always has a crowd of curious onookers, and the exhibitors of power hammers, stone breakers, and other noisy machinery are frequently starting up their appliances as the crowd happens to gravitate in their neighborhood. There is a full exhibit of the Pierce well drilling machines, the Delama ter small pumps and engines, and the New York trade schools of Mr. Auchmuty show some very creditable work in plumbing, wood carving, and carpentry exe cuted by the students. Among the most noteworthy of the exhibits is that of the Ball Electric Light Company. The Ball dynamo has two armatures, each of which rotates within the inductive influence of only one pole of a field magnet, and it has made a wonderfully good record within the four years since its introduction. Mr. Charles Wager Hull, the general manager of the exhibition, has now had so many years' experience in the conduct of these fairs that everything onnected therewith proceeds with almost the regular ty of an established business, to the satisfaction alike of exhibitors and .the public.

The New Eight-Inch Thirteen-Tion Gun.

The .Ordnance Department is much pleased-the Army and Navy Register says-with the performance of the new 8 inch steel gun at Sandy Hook. "This gun, which weighs 13 tons, and whose length of bore s 30 calibers, was manufactured at the West Point Foundry. Theotube and jacket were obtained from Whitworth, and the hoops and the breech mechanism orgings from the Midvale Steel Company. The gun was first tried with the German brown prismatic powder, when the following results were reached: With a charge of 100 pounds, and with a shot weighing 182 pounds, the muzzle velocity was 2,145 feet, and the pressure 29,500 pounds ; with a 235 pound shot the elocity was 1,942 feet, and the pressure $32,250^{\circ}$ pounds; with a shot weighing 286 pounds the velocity was 1,795 feet, and the pressure 32,800 pounds. The gun was next tried with Du Pont's brown prismatic powder, the charge being the same. The velocity with a 235 pound shot was 1,937 feet, and the pressure 32,950 ounds; with a 286 pound shot the velocity was 1,820 feet, and the pressure 35,450 pounds. The gun has been fired thirteen times, and will now be turned over to the testing board. It is worthy of remark that when this gun was designed, the computed velocity with the 286 pound shot was 1,825 feet, and the computed pressure 36,000 pounds. This is almost exactly verified by the firing with the Du Pont powexact"

Sorrespondence.

A Preservative wanted.

To the Editor of the scientific American
One firm in our town has sold for grape covers, in raisin making, during the past two months 42,000 yards of heavy cotton cloth (Cabot A brand). Of course many thousand yards were in previous use, and in crease of acreage will necessitate further large expendi tures in this direction in the future. Now, it would be of great value if some one could give us a cheaps effective, unrotting preservative for this vast amount of cotton cloth, which we nightly spread over our grapes during the rasin making season. Who will be this during the rasin making season. Who will. be thic benefactor? \quad D. Edson Smith. public benefactor?
Santa Ana, Cal., Oct. 27, 1886.

An Incident Pertaining to the Earthquake at

 Savannali.To the Editor of the Scientific American:
In your last issue of the Scientific American you quote from Professor John S. Newberry, who, in his lecture, said that "an earthquake wave coming from below often exerted its greatest force on the surface, as in the game called by boys snapping the whip.' This, I think, finds direct verification in the following fact:
On the morning following the 31st of August shock at Savannah, the weathercock (in form an arrow) on the spire of the "Independent.Presbyterian Church" was seen to be bent, not in the middle, but nearest to the arrowhead.
The church is a very solid granite structure. The top of the spire is 223 feet from the ground, slender and graceful, and suggestive of elasticity. With the exception of some cracks in the ceiling, there appears no damage to the building.
It is difficult to understand why the arrow did not bend at point of contact with the lightning rod on which it revolves.
Savannah, Ga., Oct. 30, 1886.

Large Railway Maps.

To the Editor of the Scientific American :
During my last trip in Europe, I noticed the use made by railroad companies of large wall surfaces in their stations for charts of the railroad system to which the station belonged, and also other connecting lines, or, in one instance, in the depot of the Kaiser-Ferdinand railroad at Vienna, showing Middle Europe, with all railroad and steamboat lines on a large scale, which I found very convenient to myself and fellow travelers, for selecting best routes to different places.
These charts are made, printed, and finished to the wall as common wall paper, and furnished by a large wall paper firm.
This, I think, would also be of great value to the traveling public of this country, and as an advertisement to the railroad companies, in large stations where great halls and waiting rooms offer bare wall surfaces, which at the same time would be ornamented by such charts.
A. Gartner, C.E.

Savannah, Ga., October, 1886.

Dietetic Fallacies.

at there is any nutriment in beef tea made from extracts. There is none whatever.
2. That gelatine is nutritious. It will not keep a cat alive. Beef tea and gelatine, however, p certain reparative power, we know not what,
3. That an egg is equal to a Dound of meat, whid, that every sick person can eat eggs. Many, especially those of nervous or bilious temperament, cannot eat them; and to such eggs are injurious.
4. That, because milk is an important article of food, it must be forced upon a patient. Food that a person cannot endure will not cure.
5. That arrowroot is nutritious. It is simply starch and water, useful as a restorative, quickly prepared.
6. That cheese is injurious in all cases. It is, as a rule, contra-indicated, being usually indigestible; but it is concentrated nutriment, and a waste repairer, and often craved.
7. That the cravings of a patient are whims, and should be denied. The stomach often needs, craves for, and digests, articles not laid down in any dietary. Such are, for example, fruit, pickles, jams, cake, ham or bacon with fat, cheese, butter, and milk.
8. That an inflexible diet may be marked out, which shall apply to every case. Choice of a given list of articles adlowable in a given case must be decided by the opinion of the stomach. The stomach is right and opinion of the stomach. The srong, and the judgment admits no appeal.
A diet which would keep a healthy man healthy might kill a sick man; and a diet sufficient to sustain a sick man would not keep a well man alive. Increased quantity of food, especially of liquids, does not mean increased nutriment, rather decrease, since the digestion is overtaxed and weakened. Strive to give the food in as concentrated a form as possible. Consult the patient's stomach in preference to his cravings and if the stomach rejects a certain article, do not force
it.-Journal of Reconstructives.

decisions relating to patents.

U. S. District Court.-Northern District of Illinois. WETHERELL v. KEITH et al.
Blodgett, J.
In order to defeat a patent on the ground of prior use, such use must be established beyond reasonable doubt. (Coffin v. Ogden, 18 Wall., 120 ; Washburn \& Moen Manufacturing Company v. Haish, 4 Fed. Rep., Moen
900.)

Where a witness testified to his use of a patented invention sixteen years before the time when he testified, and that he employed some ten persons in its manufacture, and yet could not tell the names of any of such persons, held that his testimony failed to make out a defense.
Two witnesses testified in 1884 to seeing the patented device in use in 1864; but their testimony was indefindevice in use in 1864; but their testimony was indefin-
ite and çontradicted in many important particulars, and none of the alleged prior devices were produced. Held insufficient to defeat the patent.
Letters patent No. 116,411, granted June 27, 1871, to Charles C. Carpenter for an improvement in hoop Schwab, at Ottawa, Illinois, and that seen by Robert G. Lester and ${ }^{\circ}$ August Seligman in 1864.

Appellate Court.-First District of Illinois.
WOLLENSAK, APPELLANT, v. BRIGGS, APPELLEE.

Bailey, R. J.

The bill in this case is to compel the specific performance by the defendant of certain contracts between him and the complainant. By these contracts the defendant undertook to produce and construct by his labor, skill; and inventive genius certain improved machinery for manufacturing speaking tubes. Said machines, as the bill alleges, were to embrace and embody various new and useful improvements and inventions made and to be made by the defendant. No details or specifications are given in the contracts as to the form, material, structure, principle, or mode of operation of the proposed machines, all these matters being left wholly to the judgment and discretion of the defendant. Indeed, it is difficult to see how it would have been possible to give any specifications and details of the machines, as some, and perhaps many, of them had as yet no existence in the minds of the contracting parties, but were to be invented and developed by the defendant by means of subsequent thought, study, and experiment.

There are at least two insuperable reasons why these The first is that courts of cifically enforced in equity: The first is that courts of chancery will not entertain bilis to compel the specific performance of contracts for personal services. Especially is this true where the services stipulated for require the exercise of mechanical skill, intellectual ability, and the exercise of judgment. Although some cases may be found in the earlier reports holding contrary doctrine, the rule as we have stated it is now well settled.

If a court of equity should attempt to order a specific execution of the contract in this case, it is manifest that insurmountable obstacles would immediately present themselves. It would be impossible for the court to specify or describe in its decree the machines to be constructed, their form, material, or structure, or if it attempted to lay its mandate upon the defendant to proceed with the invention and con-
struction of the machines stipulated for, it could never know with certainty whether its order was obeyed. If it should attempt to take the execution of the contract intaits puph hands. it would be met with equal difflculties. Its officer charged with the performance of its
decree would be powerless. The court would thus find itself unable to either compel the defendant to execute the contract or to cause it to be executed through any of the agencies by means of which courts of chancery ordinarily enforce their decrees.
U. S. Circuit Court.-Northern District of Illinois. RACINE SEEDER COMPANY v. JOLIET WIRE CHECK

Blodgett, J.
In a suit for inf ringement of the fourth claim of Let ters patent No. 76,903, of February 21, 1868, for a broadcast seeder, the only proof as to the kind of machine made by the defendant was the testimony of a witness that the defendant was making a seeding machine with two feeding holes and a disk. Held, "this proof does not make even a prima facie case of infringemen't without proof showing that the feeding holes and disk in defendant's machine perform the same function as those covered by the. fourth claim of the Floyd patent."
Assignment of Patent.-Where a party owning the title of record to a. patent for over six months conveyed it for a valuable consideration to a corporation competent to purchase and hold it, and whose title was made a matter of record in the Patent Office, held that this title could not be attacked for fraud in the assignor to the corporation.
S. claimed that a bank had, against instructions, delivered a deed to a patent without payment of pur-
chase money, instead of holding the deed as collateral
to secure a note given in payment. It appeared that S. knew of the action of the bank, but took the note and discounted it: Held, that S. could not be allowed, even against his immediate assignee, to treat the deed as having been obtained by such fraud as would vitiate it.
Personal License under a Patent not Assignable.-S. empowered H., by contract in writing, as his lawful attorney, to sell rights under a patent, at prices to be approved by S., for the then unexpired term of the patent, and authorized H. to manufacture under the patent at a certain royalty, but reserved the power to revoke the contract in case H . should not faithfully perform his agreements under it. Held, that the contract both as a power to sell and as a license was a merely personal one, and not transferable by H. except with the consent of S., and that when S. parted with his title to the patent he parted with his right to sanction or vivify any assignment from H .

Volcanic Dust.

The California State Mining Bureau and the California Academy of Sciences have both received samples of the dust, or ashes, ejected by the more active volcanoes of Pabloff, situated west of Pabloff Bay, Alaska. This volcano has. been more or less active for years-perhaps for centuries; but on the 12 th of August last put forth all its.strength about 6 A.M., and sent cinders and ashes a wondrous distance skyward. Some of these were collected and sent here. Wm. Attwood, who examined the specimens sent to the Mining Bureau, states that there are indications of some magnetic substance.
Captain John Ross, of the schooner Unga, was fishing off Unga settlement on the morning of the eruption, and saw what appeared to be a fast-rising thunderstorm to the westward. This was the more remark able, inasmuch as thunder is very rare in that region. Yet it was so like an electric-laden mass that neither the captain nor his companions doubted for a moment its aerial character, and to further convince them they heard a continuous rumbling between 7 and 8 o'clock, with several loud roars resembling distant claps of thunder.
The mass was slowly moving eastward, and at 9 o'clock it was over and around the vessel, darkening the sky considerably, and so thick that they could not see the land, though but a mile off the shore. They expected rain, but none came, and the air remained crisp and dry. For a time they were at a loss how to account for the phenomenon. After a while, however, some of the men would blink and shake their heads, and assume a questioning mien; then another and another, until all hands were winking and sneezing. Finally, some one discerned minute particles resembling emery on his clothing, and they discovered the character of the "dry rain."
The sky began to clear about 2 P.M., and in the evening the air was clear and the sky bright. From where they lay at anchor, the volcano was distant about 65 miles. The captain has heard that ashes fell to the eastward, off and on Kodiac Island, in plenty. -Min. and Sci. Press.
$\frac{\text { A Torpedo Camnon Eall. }}{\text { The Avenir Militaive gives us some particulars con }}$ cerning a torpedo cannon ball invented by Captain Coudray, of the navy. Four years ago the captain presented his projectile to the authorities, who at once ordered experiments to be made with it at Gaves, near Lorient. We are told that for some time past the modest inventor has been engaged in manuracturing mis projectiles under the supervision of a special commission named by the Minister of Marine. At first it was found that all the projectiles discharged at the mean velocity of 150 meters a second rebounded on striking the object at which they were fired. Time was afforded to Captain Coudray to improve his invention, and it seems that, in spite of much head shaking on the part of the savants, he.has succeeded in curing the defect complained of. The torpedo cannon ball, we are assured, now travels at the rate of 300 meters a second, and instead of rebounding on striking a ship, glides along its side, and never loses contact until it explodes. The last cannon balls constructed contain a charge of 40 pounds of guncotton, although 25 pounds is said to be sufficient to blow up the biggest vessel. It is stated that these projectiles can be fired to a much greater distance than the Whitehead.

Industrial Exhibition at Venice.

The site of the exhibition which is to be opened in Venice on April 25, 1887, is in the public garden at the end of the Quai des Esclavons. The building will have an area of about 6,000 yards, and it will be occupied by painting, sculpture in marble, bronze, and wood, mosaics, glass, and all kind of work that can be considered as related to art. The modern plan of eking out the interest by means of concerts, games, fireworks, etc., is also to be adopted; and as the exhibition is to remain open for six months, a great many people are likely to select Venice as the region for next year's holiday.

A GIGANTIC KITE.

After remaining for a long time an object of amuse ment merely, the kite is becoming one of study for the mechanician, who finds in it a means of applying and verifying formulas relating to the resistance of the air, and of thus contributing to the progress of the difficult and complicated problem of flight. So we believe it will be of interest to give a summary of two recent studies-one of them purely scientific and relating to the theory of the kite, and the other an experimenta ne, in which the author suc ceeded in raising from the ground a gigantic apparatus, powerful enough to carry a weight equivalent to that of a man.
In a communication to the French Association for the Advancement of Science, at the meeting held at Greno ble, in 1885, Mr. J. Pillet teacher of machinery draw ing at the Polytechnic School presented a very simple and legant theory as to the equi librium of the kite, and deduced therefrom certain general principles that may be useful to some of our reader s a guide in the construction of this affair
In a kite, the elements to be considered are its weight P; its plane surface ; the position of its center of gravity
which the trial has the effect of bringing very near the lower extremity ; the center of the wind's pressure, which, as a general thing, is confounded with the geometrical center; and, finally, the point of attachment of the string.
Theory indicates that it requires a certain ratio between the position of the center of gravity, the center of pressure, and the point of attachment of the string, in order to obtain with a given kite a maximum of altitude and of ascensional force. The point of attachment should be pon the straight line passing through the cen ters of pressure and grav ty, higher than the cen ter of pressure, and so that the distance from the center of gravity to the same point of attachment of the string shall be triple the distance from the cen ar of pressure to the sam point of attachment. A calculation of the tension of the string in a properly conotructed kite show that such tension varie between very narrow limit only, whatever be the ve ocity *f the wind. In incte wind all that the tring does is to hold ring does is to hold the clly wh thangs verti er value of the tension is the equal to the weight, P, of the kite and its tail. In an infinitely swift wind, the upper value of the tension of the string is equal to 2 P only. This weight represents quite a feeble tension, ${ }^{\cdot}$ and one which even quite a fine cord could easily with tand. Consequently when the kite is pulling very strongly, this prove that it is badly attached, and not, as one is tempted to suppose, that it is pre pared to rise well
We trust that Mr. Pille will complete his .study and let us know the con iderations that he has drawn from it relative to he best form to give a kite, as well as the conse quences relative to the problem of flight. The note presented at Grenoble stops at the principles that we have just recapitulated.

Fiog 2 Querschnitt nach c d (in Fio. 3.)
1:135

Fif. 3. Grundriss nach ab (in Fig. q.)

the velocity of the wind and its variations. Two assistants prevent a lateral inclination.
After firmly fastening the cord, which was 820 feet in length, Mr. Maillot and his assistants lifted the top of the kite and let the wind in beneath. The affair then arose, and lifted a 150 pound bag of earth to a height of 32 feet above ground. It is in such a position that it is shown in the accompanying figure. Each operator pulled in or paid out the cord according to the velocity of the wind, and the kite preserved a certain amount of stability.
In the discussion that followed the communication to the French Society of Aerial Navigation regarding these experiments, Mr. H. De Villeneuve recalled the fact that the English journals had once spoken of a woman being lifted by a kite in the last century.

It was the constructor's idea that the maneuvering of the cords that regulate the inclination ought to be performed by the person lifted in the place of a bag of ballast; and the kite would then have been connected with the earth only through the main cord. This bold and dangerous experiment was opposed by the spectators on the 16 th of May last, when Mr. Maillot operated his kite in the presence of This kite is a regular octagon, having a superficial the members of the Society. It was rightly feared area of 85 square yards, and the frame of which weighs that Mr. Maillot, after he had been lifted, might not 150 pounds. The canvas and cords weigh 99 pounds, manipulate the cords properly:-La Nature. and the kite has lifted a bag of earth weighing 150 pounds. The structure of the affair and its unusual dimensions render the maneuvering of it peculiar. Two cords, maneuvered from the earth, and connected with the two extremities of the vertical line passing through the geometric center of the kite; permit of

THE NEW TUNNEL, KONIGSTRASSE, BERLIN.

This tunnel is about 52 feet wide, 14 feet high, and 188 feet long, and is arched, as is shown in the accompanying cut. The masonry of the crown of the arch, that is to say, the central fourteen feet of the curve, is nd from these points to the impost its thickness is about 2 feet 5.3 in . The abutments and arch are faced with Greppin brick, and the frontal face and projecting edges with hewn stone.
The abutments ar made of hard burned brick set in cement, and the voussoirs are arranged ac cording to the line of pres sure. To.effect a saving of masonry, the abutments are not solid, but are built with openings ; and to pre vent the tipping of the abutments before the completion of the arch, 9 in braces were placed 6 ft . 6 in. apart, and walls were built from the arch to the outermost limits of the street. These walls, as well as the wings, the faces, and the under surface lof the arch, are faced with Greppin brick.
The arch was very care fully built of narrow vous soirs, so that when com pleted the crown sank $1: 5$ millineters. The centering had to be arranged so as not to interfere with the traffic of Konigstrasse. So
d. two passages, each 10 ft . wide, were left for the vehicles, and a passage about 5 ft . wide was left on each side for pedestrians. Tubs filled with sand were used for the support of the centering, and each of these tubs was provided with a plug, all of which plugs could be removed at the same time when the arch was finished, so that the tubs could be emptied, and in this manner an even and rapid settlement of the arch was accomplished.

In calculating the strength of the arch, moving weights were considered
The entire cost of the tunnel was about \$5,964.00.-$Z$ eitschrift des Archit.

Economy of Triple Expansion Engines.

The Coot is a vessel of 2,650 tons dead weight carrying capacity, is 270 feet long by 37 feet beam, and 18.5 draught above keel. Her triple engines have cylinders of $191 / 2$ inches, $321 / 2$ inches, and 53 inches diameter by 36 inches stroke, working on three cranks, and are all fitted with piston valves and dynamic valve gear. The Moorhen, a sister ship with which comparison of coal consumption and speed was made, is a vessel by the same builders, having a dead eight carrying capacity of 2,455 tons, is 260 feet long by $321 / 2$ feet beam and $19 \cdot 3$ draught above keel. She is fitted with ordinary compound engines by an eminent North Country builder, the cylinders being 33 inches and 62 inches in diameter, and 39 inches stroke.
On the completion of the voyage, Captain Croft, the marine superintendent of the Cork Steamship Company, reported that the Coot had steamed 8,258 miles on a consumption of 526 tons of coal, of which 320 tons were North Country coal of very inferior steȧming quality, and 206 tons Welsh procured at Malta. The Moorhen steamed 7,555 miles on a consumption of 692 tons, the ship having still 703 miles to go to make up the distance covered by the Coot, and the 692 tons coal being made up of 552 tons of Welsh and 140 tons of West Hartley coal. Gaptain Croft further states that " there were exceptional circumstances telling against the Coot, head to wind for several hours going from Alexandria to Smyrna, through heavy rolling and the cargo getting adrift; and on homeward passage from Malta the Coot had strong head winds, while the Moorhen had fair wind and fine weather."
The average speed of the Coot in moderate weather is $91 / 4$ knots per hour when fully laden.
Mr. F. C. Kelson, of Liverpool, the engineer-superintendent to the owners, reported: "As far as we can at present make out, the Coot burns 25 per cent less fuel than the Moorhen for the same length of steaming, which is of course very satisfactory, considering that the Coot's average speed is quite equal to the Moorhen's, and also that the Coot has greater carrying capacity than the Moorhen."

EXPERIMENTS IN EQUILIBRIUM OF FLUIDS.

o'gonor sloane, ph.d.
In the last issue was described a simple construction of the well known cup of Tantalus. In the cuts are shown two additional illustrations of siphon action, in which the expansion of thin India rubber is used to indicate the effect. A lamp chimney having a projecting flange around its lower edge is used. A piece of ing flange around its lower edge is used. A piece of
the thinnest pure gum India rubber sheeting is placed across and covering the opening of this end. A rubber band is sprung over it, so as to confine it to its place. As this connection must be very secure, a strong band is essential. A ring such as is sold for use on umbrellas for confining the ends of the rods is very good. This

SUCTION OF A SIPHON

will force the sheet against the glass and into all irregularities, so as to make a watertight joint. The rubber is not to be stretched in doing this, but is kept a little loose.
A tight cork of India rubber with one perforation, or if with two, one must be stopped, is provided that fits the upper end of the chimney. A tube of glass is inserted in the opening in the cork and is connected to a flexible tube of rubber. This forms the siphon. The chimney is filled with water. The rubber will bulge a little under the weight, but not very much. The cork is then inserted and the end of the flexible siphon tube is immersed in a vessel of water standing on the same level as that occupied by the chimney.
To illustrate suction, the chimney is lifted up unti
two feet or more of siphon tube depends from it. The rubber is now pressed in and upward. It expels air from the siphon and charges it; or fills it.with water Suction immediately begins to be felt, and the rubbe curves inward. If the column is of a particular heigh with reference to the thickness of the rubber and diameter of the opening, nothing more than a slight inward bulging will thus be produced; but if the rubber is pressed further inward with the fingers, it will gradually yield to the pressure and rise up and in

PRESSURE of A SIPHON.
more and more. After getting started. it will slowly rise up without assistance, growing thinner until so transparent as to be almost invisible. The way in which the pushing upward seems to help it is to be noticed particularly. This increases the area on which atmospheric pressure can be exerted.
To illustrate the pressure at the lower end of a siphon, the position of things must be reversed. The chimney is lowered and the vessel of water is raised up. Therubber immediately straightens, and begins to curve outward, and gradually assumes an almost perfectly spherical shape. Thus it also affords an illustration of the equality of hydrostatic pressure in all directons.

In both these experiments, the chimney should be held over a basin or pitcher, as there is danger of breaking the thin rubber.
The last experiment shown is one illustrating the mechanics of a drop of water, and incidentally some other laws of equilibrium of liquid bodies. A hoop of wood or metal, from fourteen inches to two feet in diameter, is required. This may be made from a cheese b.ox, or a hooped section may be sawed off from a wellmade barrel. A piece of the same thin rubber is spread over it, and tied on securely. To make it act well, the tension on the rubber must be just right. If too much or too little, a poor result will follow. For a fourteen inch hoop a slight tension is enough. A string wound tightly around it for five or more turns, and then tied, will secure it. Tris is then supported over

Water is then poured into it. As it is introduced, the rubber takes the form of a portion of a sphere, and descends more and more as water is added. At last a point is reached when it is in unstable equilibrium, and the addition of a little more water causes it to suddenly descend two or three inches, and change its shape materially. These two conditions are shown in the drawing, the first by a dotted line. Sir William Thomson uses this in illustration of the equilibrium of a drop of water, as showing that it has two forms of rest. If the amount of water added is just right, the rubber will remain in either of the two positions indifferently. If added as just described, the withdrawal of a small amount will effect the purpose. The original paper of Sir William Thomson, published under the head of Capillarity, in the Scientific American SUPPLEMENT, Nos. 562 and 563, may be referred to

If the amount of water is a little less than is required to.produce the lower position, and the hand is immersed n it, the same effect is produced as if water were added; as the hand is lowered, the rubber descends in the most curious manner, receding from the hand. If a coin is previously placed in the center, and an effort is made to extricate it, the effect is quite peculiar. A paradoxcal aspect is given by the fact that apparently no weight is added. As everything immersed in water is buoyed up by a force equal to the weight of the water displaced, so the hand is.pressed upward by this factor. But an upward pressure implies an opposite
and downward one, and under this the water. descends. Another way to treat the question is based on the fact that the pressure of water varies with the depth. By introducing the hand as described, the water is made to rise by the displacement. Hence a deeper column acts upon the rubber, and presses it down.
In constructing the apparatus, the thinnest rubber sheeting is the proper substance to use. Of course, no woven fabric, such as is used for waterproof cloaks, is available. If this and the question of tension are at tended to, after one or two trials the apparatus will be successful. The tension will probably not work well on the first trial. The size of the hoop is important. It is not worth while to try it on a small scale. The sizes given really represent the minima from which a satisfactory result can be obtained.

Fireproofing Wood

A mode of rendering wood incombustible not generally known is described as follows : Soak 27.5 parts by weight of sulphate of zinc, 11 of potash, 22 of alum, and 11 of manganic oxide in lukewarm water in an iron boiler, and gradually add 11 parts by weight of 60 per cent sulphuric acid. The wood to be prepared is placed upon an iron grating in an apparatus of suitable size, the separate pieces being placed at least an inch apart. The liquid is then poured into the apparatus and the wood allowed to remain completely covered for three hours, and is then air dried. The mode of application described is, we fear, a serious obstacle to the general use of this process for timber employed in building, especially as the rough timber, before being worked or framed, could only be conveniently treated in this manner. If joists, ceiling beams, and all joinery exposed to fire could be treated after being fixed with some chemical solution of proved resistance to the action of flame, we believe many ar chitects would be found to employ it.

Longevity of Turtles.

${ }^{\circ}$ In 1824 Mr . J. W. $\dot{\mathrm{W}}$ arrington, one of the pioneer pedagogues of this vicinity, found a small Testudo carolina Linn., on the plastron of which he engraved with his penknife, "J. W., 1824," and set it free near Albion, Ill. Some time during 1865 Mr . W. Hodson found it in the same vicinity .where it had been set free forty-one years before. He engraved the letter W" on the carapace and again set it free. Nothing more was seen of it until August, 1885, when it was found by Mr. Herbert Hodson (brother to W.), about one-half a mile from the spot where it had been set free twenty years before. He put it into his cellar, where it remained until this (1886) summer, when it by ac cident was poisoned by "Rough on Rats," and died from the effect. The engravings are all apparently as clear as when first made. The tortoise was below the medium size, and appears to have grown very little since the first engraving was done, sixty-two years

WATER DROP.
ago. The shell is darker and smoother than usual On the back is a scar, which appears to be the remains of an extensive fracture. Mr. H. Hodson has three other tortoises that were engraved twenty-one, sev enteen, and sixteen years since respectively. In illus tration of the slow growth of these reptiles, I will mention that more than a year since, he broke open an egg in which was found a young tortoise. This he has since kept in confinement. It has made no perceptible progress in size during this time. Several years since, I kept a young Pseudemys elegans Wied. in confinement for more than two years. 'It made no perceptible increase in size, yet it partook quite freely of food.-J. Schneck, Mt. Carmel, Ill., Amèrican Naturalist.

Bessemier Converters in the United states.
At a recent meeting of the Iron and Steel Institute London, Mr. James P. Witherow, of Pittsburg, whose converter had been described by Mr. Hardisty, said that in America, within the past two years, considerable headway had been made in the development of the Bessemer process with the fixed or stationary type of converter. Up to the present, however, sufficient reliable data have not been obtained to enable the claims that might be advanced to be fully determined and demonstrated. The reason for this fact is twofold. First, because the year 1884 was consumed in experi menting with and remodeling the Clapp-Griffiths type of converter by Messrs. Oliver Brothers, of Pittsburg, to the type the speaker now recommends, and which he now has in successful operation; and, secondly, because in such experimental stages it is more difficult to obtain reliable data, and even when obtained it is of ten more difficult still to get those interested to credit the facts put before them. However, the results of the working of Mr. Oliver's new converter, which was substituted for that of the Clapp-Griffiths, were such that during the winter and spring of 1884-85 contracts were closed for seven distinct plants, about onehalf of which were in use during the past summer, and all will be working in the coming winter. From this fact, the speaker thought, it would be seen that a fairly extended field was at command from which he could gather reliable information, the area of observation extending indeed from the Mississippi to the Schuylkill. Oliver's plant, the speaker continued, apart from being the pioneer in America, was constructed from very crude designs, sent over from England, from which the makers were forbidden to deviate or in any way change. This was unfortunate, as it led to failures in working at the commencement, and although the difficulties had been overcome and excellent work had been done by Mr. Oliver's plant during the past year, they found the first unfavorable impression very difficult to eradicate. Bessemer practice in the United States owed much to Mr: Oliver's experiments, for before that time, Mr. Witherow stated, they had no idea of being able to make boiler plate or flanging steel, and it was only after his investigations had been published that workers by the Bessemer process began to experiment on low silicon, and this was accomplished by blowing small or half charges in the converters. By dint of great care and attention, following Messrs. Oliver's practice, the Bessemer workers have been able to approach it in the matter of quality, but seem indisposed to carry it out to a successful commercial issue. The Bessemer works of the United States that have been built for the rail trade are of little use, the speaker thought, and of no benefit to theneral iron and steel trade of that country. It was true that in times of depression they forced themselves into the market and sold blooms, billets, and plates. But consumers had to accept whatever qualities of steel the makers happened to be producing, no matter how irregular in quality it might be, or unsuitable for the purpose required. Consumers were never allowed to complain, as the steel makers considered their practice infallible. But the moment they fill up with rail orders the general consumer is completely ignored, and thacefowo it bohnowns the trade to seek other means of
supply. It. is for this reason that the small fixed converter seems destined to play an important part, and the speaker thought that, in the United States, such a description of plant will take the place of the more general type for supplying the sinaller alass of-wack. Mr. Witherow had only been able to obtain practical that of Messrs. Oliver, and another of the Western Nail Company, of Belleville, Illinois. The first is one of Mr. Witherow's latest designed converters, but it is smaller than those more recently erected. It would blow from $3,500 \mathrm{lb}$. to $4,000 \mathrm{lb}$. of iron at a charge, while the latter will blow from $6,000 \mathrm{lb}$. to $6,500 \mathrm{lb}$. The Western Nail Company's plant is of the latter size, but there is one now in construction which will take over $8,000 \mathrm{lb}$.
At Messrs. Oliver's, with two small converters working alternately, i. e., following each other instantly on blast and charging, there has of ten been made 125 tons in a day of 24 hours, and over 75 tons has been made in a single turn. When working up to this output Mr. Oliver states that he can make his ingots at a cost of five dollars. per ton, including waste, labor, ferro-manganese, and refractories, everything, in fact, but pig iron. The allowance for waste is two dollars, and it averages from $121 / 2$ per cent to 14 per cent. All the cinder in slag from the converter and all collections of shot about the platform are remelted in the cupola, and by this plan the waste is said to be reduced by at least two per cent.
Experiments have been made at Oliver Brothers' works with phosphorus pig, ranging in mixture up to from 0.34 per cent to 0.44 per cent. of phosphorus, and from this excellent cut nails were made. At the Western Nail Company's works, last July, similar experiments were made under the direct inspection of Dr. T. M. Drown, professor of chemistry of Boston, Massachusetts, and his observations were embodied in apaper
he had prepared on the "Little Bessemer Process," and read before the American Society of Arts. In conclusion, Mr. Witherowsaid that no doubt his unpretending type of the Bessemer process has to contend against great odds, and as it is in the beginning of its development, it is impossible to obtain complete data to sup port the claim made by the few friends it possessed. If, however, positive proof of his claims could not be submitted in a year's time. then metallurgists and steel makers would have -sufficient groynds for treating his statements with indifference.

ROCK Bersers.

According to the usual course of things, we would hardly look into the class of mollusks-the very name of which is derived from mollis, soft-to find an animal fitted for drilling holes in solid rock. Yet, nevertheless, it is here we find the rook borers. They are bivalves, the shells being thin, bat brittle and hard, more valves, the shells being thin, bat brittle and hard, more rasp-like spines. The animal itself is either club-shaped or worm-like; the mantle is closed in front with the exception of an office through which the truncated foot is passed; and the siphon tubes are long and united nearly or quite to the ends. The species are rather numerous, and inhabit most parts of the world. The question as to how these mollusks bore out their dwelling places in the rocks has been a subject of much discussion. The supposition thet the shell is the instrument of terforation originated with Bonanni, in 1684, and the present century most naturalists have
favorably entertained it. Cailliaud is a great upholder of this theory, and thingse he has cloanly proved

ROCK BORERS.

by numerous experiments that such is the case. Geffreys says it is easy to scrape with the edge of a limpet shell a cavity in chalk or shale, such as the rock limpet occupies; but can it be imagined that in this case the shell instead of the foot is naturally employed for that purpose? The fine and regular striæ or grooves, which are plainly marked on the sides of the cell or hole of the rock borer, are unquestionably caused by the friction of the spinous ridges that ornament the shell. These grooves are wanting at the bottom of the cell, and are replaced there by a far more delicate elaboration, which is, without doubt, produced by the sucker-like motion of the foot. Prof. Owen attributes part of the process to the action of the foot, which is sucker-like, and enables the animal to fix itself to the substance which it intends to perforate. The sof tness of the foot off ers no obstacle, for it is certain that the capable of wearing away a harder one, subject to the friction of a softer surface, and, not like it, susceptible of being repaired. Lewis says the soft muscular disk is perpetually renewed, and the hard limestone has no self-renovating power; and thus, just as falling water wears away granite by the incessant repetition of gentle blows, so do these mollusks excavate rocks or wood by the incessant repetition of muscular friction.
Some writers have affirmed that the foot is armed or studded with silicious particles, thus forming a perfect boring instrument, on the principle of a "diamond drill." Others, again, declare that no such instrument exists in any of the species.
It has been generally supposed that the rock borer does not secrete an acid. However, both Thorrent and Cailliaud have discovered that they, at least some species, do secrete an acid, which may assist them in perforating the rocks they inhabit.
The work of boringinto such rocks as gneiss must be extremely slow. It takes about a year and a half for a pholas to arrive at maturity; by that time it has made a hole five or six inches deep.
The property the rock borers possess of giving forth phosphorescent light in the dark is remarkable. This property is not confined to the skin or outer membrane, into pieces each portion is luminous, and much of the water that drops from them sparkles brilliantiy. Out of fifteen living specimens obtained by Cailliaud, at the end of April and in December, ten or twelve only gave
out phosphoric light: In none of these did the footex-
hibit any luminosity. Geffreys says: "I am disposed to believe that this light is caused, not by the rock borer itself, but by extraneous microscopic organisms ; but," he adds," the subject ought to be further investigated."
The rock borers have been found inhabiting new red sandstone, slate rocks, coal shale, hard rocks, chalk, márl, and submarine wood.
A curious little boring mollusk, the Martesia cunei formis, is sometimes found in the oyster shell along our coast. In a large shell from the Chesapeake Bay, Md. I cound six excavations made by this little borer None of the holes, however, went èntirely through the shell. There was no mistake as to what animal drilled the canties, for each of them contained a Martesia.
C. Few Seiss

The Dreams of the Blind.

A paper read before the biological section of the American Association for the Advancement of Science was on "The Dreams of the Blind," by Dr. Joseph Jastrow. The object of the paper was to determine the extreme age at which a child may become blind and yet lose all memory of the visible world, so that it no longer sees in its dreams.
Almost all dreams of normal persons aresightdreams, and a dream is often spoken of as a vision. The blind are deprived of this most importantsense; but if they have not been born blind, they may remember enough of what they have seen to enable them to imagine how thingsionk, and when the imagination has free play in sleep, to picture themselves as in full possession of all their senses. Physiologists would explain this by saying that during the years in which they saw, a certain part of the brain has become educated to receive and interpret all these messages which the eye sends, and that when this part of the brain acts spontaneously in sleep, the person dreams of seeing. Such a portion of the brain would be called the sight center.
If now we find out the latest age at which blindness may set in and yet the person keep on dreaming of may set in and yet the person keep on dreaming of
seeing, we shall find out the time it takes for this sight seeing, we shall find out the time it takes for this sight
center to develop. For this purpose about 200 blind persons of both sexes were questioned at the institu tions for the blind in Philadelphia and Baltimore, and it was found that those who became blind before their fifth year never dreamed of seeing; of those whose sight was lost between the fifth and the seventh year, some did and some did not see in their dreams; while all.whose eyesight was destroyed after the seventh year had quite as vivid dream visions as seeing people The fifth to the seventh year is thus shown to be the critical period. This period corresponds with the age which authorities assign as the limit at which a child becoming deaf will also become dumb, and also with the age of one's earliest continuous memory of one's self. It is interesting to note that blind persons dream quite as frequently as normal people, and that with those who do not see in their dreams, hearing plays the principal part. When dreaming of home, for instance, they will hear their father's voice or their sister sing ing, and perhaps will feel the familiar objects in the room, and thus know they are at home. We, in such a case, would see it all.

Cold and Tobacco Smoking.

Dr. Chudnovski publishes in the Russkaya Meditsina an account of a series of observations made on twel ve soldiers th a military hospital, who were perféctly healthy with the exception of slight injuries, with the object of determining the effect of cold applications to the epigastrium upon the rapidity of digestion. The stomach tube was of course freely used, and the completion of digestion was taken to be marked by the disappearance of solid particles in the gastric contents, as revealed by drawing them up through the tube. The author found that when ice bladders were applied next the skin over the region of the stomach, digestion was retarded in nine out of the twelve cases. Six of the men were smokers and six non-smokers. In the former the time required for digestion averaged seven hours, while in the case of the non-smokers the mean period of digestion was only six hours.

An Interesting Monument.

M. Clermont-Ganneau has communicated to the Academy of Inscriptions and Belles Lettres a note relative to a discovery made by him in an old building at Jerusalem. It was a block of stone, with a Greek inscription signify.ing that any stranger who should have passed that limit. would be condemned to death. It is evidently a fragment of one of the posts which formed, in the temple built by Herod, a dividing line between the exterior inclosure of the Gentiles and theinner precinct reserved for the Jews. It will be remembered that St. Paul barely escaped stoning when he was accused of having introduced Greeks into the inner circle with himself. The stone has been removed to Constantinople, but a cast has been taken, which will be preserved in the Museum of the Louvre.-Cosmos.

A SUMPTUOUS MANTEL.

To design a mantel for a room of such height as the one shown in the accompanying illustration, so that it shall not be dwarfed and petty in appearance in comparison with the other features of so noble an apartment, and yet not be given an obviously undue importance, is a work which calls for very careful judgment, as well as an educated taste. The manner in which the artist has in this case dealt with the difficulty is not only extremely satisfactory for just such a room as that here shown, but it will be at once suggestive of many ways in which a similar method of treatment can be adopted for smaller and less richly decorated apartments. In place of the elaborate carving and large proportions of what here forms the framework of a picture, the mantel with its open fireplace constituting the base, and all according witl'the.sumptuous character of its surroundings, a smaller and more simple style of room would call for mouldings corresponding with those of the framework of the doors and windows, and with a degree of ornamentation proportioned to that expenided upon other features of the apartment.

NATURAL HISTORY NOTES.

A young female hippopotamus was placed on exhibition at the Central Park Menagerie last week. From Saturday, October 16, when it reached this port on the steamer Eider, until the following Wednesday it remained boxed up without room enough to turn round. Placed in the lion house, near where its tank was being built, it watched the men at. work and marked the progress of construction with evident interest; for having once before lived in \mid In 1872, the hippopotamus in the London Zoological \mid ci a tank-at the Handels menagerie of Carl Hagenbeck, the animal dealer of Hamburg-it seemed to understand what was going on.
Theee times a day it is fed, and without taking the trouble to rise to its feet, opens its mouth like a young bird and receives its food. Three or four quarts of oats or cut feed, washed down with a few gallons of clear water, constitute a meal with the hippopotamus, and when it is over a nap foliows, and then the eyes of the great beast are fixed once more on the workmen putting the finishing touches on its tank. The specimen weighs about 1,500 pounds, is dark on the back and pinkish-
white about the shoulders, and may be considered at the present time rare, because the recent troubles in North Africa, where these animals abound, fras rendered it impossible to get hippopotami.

This one was captured in the Nile waters when but a mere infant, some three years ago. It was so small then that it was carried some distance in a man's arms, and was brought to Cairo on a camel's back. When lying down out of the water with its chubby legs curled under it and the huge folds of flesh hanging in festoons on either side of its back, it looks not unlike a prize hog. It is said to be unusually good natured for a hippopotamus; wagging its six inch bristling tail when approached, and, though of a most forbidding aspect, is harmless.
Naturalists are not yet agreed just how long a hippopotanus can remain under water. Usually the time is from half a minute, as is the case with that seen at the Park, up to $21 / 2$ minutes. Butinstances are recorded where they remained under water much longer than this. Here is a remarkable case:

THE NEW HIPPOPOTAMUS AT CENTRAL PARK, NEW YORK. mother, before docile and good natured, became fierce been known. and intractable. She growled and showed her teeth whenever her keaper approand at times evinced the same hostility to her offspring.
The second morning afte its birth the infant could not be found. At first it was thought to be in the tank, and the keepers waited in vain for it to appear.

After some 15 minutes' waiting, it was determined to let out the water, in hopes of finding the body. The old one growled savagely when she discovered the water lowering, and after lashing the water furiously, finally climbed up on to the bank, and a moment later the young one appeared on the surface as lively as ever. It had been under water all this time.
Two black panthers from India (Felis pardis. Linn.), one full grown and measuring 6 feet from tip to tip, and a pair of striped hyenas (Hyaena striata) came over on the same ship with the hippopotamus; and are now on public exhibition. The black panther is to its class what the albino is to the human species, or the black sheep to the remainder of the flock. It appears occasionally in the litter of the yellow or tawny colored panther, and has the same habits and characteristics as its ordinary prototype. The American puma, which is a panther, gives birth at times to the black variety.

Some authorities maintain that the black panther is a distinct species, which they call Felis melas; but there would seem to be little, if any, evidence to sustain them in this. Others, seemingly with some reason, object to classing the panther with the leopard (Felis jubata), which it is custor ry to do. When the prophet Habakkuk spoke of the Chaldeans as "That bitter and hasty nation. Their horses also are swifter than the leopards," he could scarcely have referred to the pard or panther, for he is slow, whereas the leopard is capable of maintaining a very rapid pace.
An authority says that if the appearance of black panthers is only accidental, it is rather curious that they do not occur few hours

The panther, unlike the tiger, may be said to be untamable and treacherous. By nature he is vicious, and though he be reared from a cub in captivity, is not to be trusted. He may be docile for months, and then all upon his keeper and tear him to pieces. He will even at times suddenly attack his cage mate of the same species, kill him, and eat his fill of the victim.
The newly arrived hyenas are from South Africa, and a råre variety ; the common being spotted instead of striped. They have bristling - manes, which rise when they are vexed, and their coats are much finer than those of much finer

Feed Water Pipes Should Have Valves.

Power says : Care should be taken in making boiler monnoctions to have some steam or water in case of breakage. Connections that are not thus protected are always a source of danger, and among the worst is the water grate. If one of these burst there is no means of shutting off the water, and the boiler will snon be blown empty. But there are other places where a neglect to provide a valve is the result of pure carelessness. It is not uncommon to find the feed pipe connected without a valve between the check and the boiler. Then, if any accident happens to the latter, thefe is no way of getting at it while stean is on.

The oleomargarine law went into effect Nov. 1. All of it and of butterine now sofd must pay a tax of two cents a pound, and be plainly designated to dis tinguish it from butter.

ENGINEERING INVENTIONS

A car coupling has been patented by Mr. John P. Ketteringham, of Natchez, Miss. It ha
pivotal parallel coupling bars, with enlarged circula pivotal parallel coupling bars, with enlarged circula pivoted eds, and the link is made with a square body
having central projections, with arrow headed ends, while there are other novel features, the whole designed to make a simple, strong, and effective coupler, which
can be operated conveniently from the top, end, or side of a car.
A revolution or stroke counter has been patented by Mr. William Voit, of Magdeburg, Prussia, Germany. It is operated be enine, the leve
pressure in the cylinder of the driving engion connections heretofore in use being dispensed with, and
the connections between the counter and the cylinder the connections betwgen the counter and the cylinder
being made by small pipes or tubes, and the whole ap paratus being one that can be placed in a small box en tirely closed, so that
with by a stranger.
A metallic railroad tie forms the subject of two patents issued to Mr. Ellery C. Davis, of
Crookston, Minn. The tie consists of two parallel bar Crookston, Minn. The tie consists of two parailel bars
with a channel between them, blocks fitting into the channel and having hook projections to fit upon the the bars, so that the rails can be readily secured to the ties and will be held securely in place ; provision is further made for recessed spacing blocks, and spikes and
wedges adapted to the recesses, whereby the rails can wedges adapted to the recesses, whereby the rails can
be readily leveled when thrown out of level by the frost.

mechanical invention.

A take up and let off mechanism for looms has been patented by Mr. Matthew C. Williams of Adams, Mass. The construction is such that with
every beat of the lay the let off roller is revolved with a every beat of the lay the let off roller is revolved with a
positive movement a fixed distance, to let off a given pongth of warp, and at the oppoite end of the loom, by
len
correspding mechen corresponding mechanism, the take up
positive positive movement, revovest
the slack of the cloth continuously.

agricultural invention

 A cotton chopper has been patented by Mr. John R. Rector, of Salado, Tex. It is a chopping hoe so made as to be readily applied to any ordinarycultivator, and not be liable to catch upon stumps or other obstructions, and not likely to bruise or otherwise other obstructions, and not ikely
injure the plants left for a stand.

miscellaneous inventions.

An ice creeper has been patented by Mr. Michael S. Weller, of Charlestown, W. Va. It has a pin sapporting plate, adapted to be movably supported
in the heel, whereby its pins may be projected out of or
inceed within the heel with yarious novel incased within the heel, with various novel features of action and combination of parts.
A machine for making wire bale ties has been patented by Mr. .intion covers a compact an
rokee, Kansas This invent simply constructed machine, which is easily op øated,
and by which wire bale ties can be made with less labor and by which wire bale ties can be made with less labo
and more rapidily than heretofore.
A car starter has been patented by Mr. Robert T. P. Allen, of Farmdale, Ky. It is a novel
construction, providiAg mechanism for storing up the force represented by the momentum of the car when it
is stopped, in such a way that on statting is stopped, in such a way that, on starting, this
exercised with a great leverage to start the car.
A coat has been patented by Mr. John G. Weimer, of New York city. It is closed in front and
open at the rear, and has hand protectors and pockets open at the rear, and has hand protectors and pockets
covered by a shield, and is intended especially for the mainly from the front.
An annunciator has been patented by Mr. Charles H. Dowden, of Newark, N. J. It is so con
structed that thesignals disappear automatically after they have been exposed to view, and require no specicial
manipulation by the operator to remove them, while manipuation by the opprator to remove them, while
the adjustment may be such that the signals will reA breeding calendar has been patented by Mr. John W. Snider, of Fairland, Ind. It has cer tain novel constructions and combinations of parts
whereby the calendar may not only be ised as a change able or perpetual one for ordinary purposes, but as a special one for breeding unes, and alsoo in the hatching of the eggs of poultry or birds of different kinds.
A paints hanger has been patented by Mr. Andrew Flieger, of Portland, Oregon. It consists
of a yoke provided with a central hook, and with two pairs of auxiliary hooks, whereby a number of pairs of pants may be hung oupon a peg or hook not more than
six inches in length, and no matter how long they are so suspended, they will not wrinkle or break.
A wrench has been patented by Mr James G. Lesilie, of oregon, Ill. It has a flized and a
movable jaw, a locking lever, and various other novel features, being a simple and inexpensive construction but adapted to gripe and turn square or round objects
of various sizes, such as nuts and pipes, or_shafts, and A separable button has been patented by Mr. Albert H. Graves, of Central City, Neb. It has
a front plate with apertured or slotted rim, a slotted a front plate with apertured or sloted rim, a slotted
bottom plate, spring pressed bolts with thumb pieces, bottom plate, spring pressed bolts with thumb pieces,
with other novel features, making a button whitch may be readily taken apart, and which, when put togethe
An incubator has been patented by Mr. Clarence L. Wells, of Quincy, Ill. It has a lower
heating section, an intermediate brooder section, and an apper tray section, there biing a novel construction of air drum with upwardly extended flue and tabes, with
appliances for regulating the heat and keeping the temperature as desired..

A mirror frame has been patented by Messrs. George Jones and Herman W. Trognitz, of nillamsport, Pa. It has a curved bar pivotady conadapted to hold it at any desired inclination, also a loose pivotal support at the bottom which will per
te mirror to be inclined and turned upon its axis.
A puzzle has been patented by Mr. Alexander W. Butterworth, of Poughkeepsie, N. Y. It consists of a squareblock, marked off into small squares, six each way, a hole or socket in the center of each

ne of squ

A fifth wheel has been patented by Mr. Henry Hafker, of New York city. Combined with the pper and lower ring plates, with grooves in their ad-
acent faces, and optosite toothed ribs or racks, are jacent faces, and oppsite toothed ribs or racks, are
wo disks running in the groves and connected by. Lothed shanks which engage the racks, being intended oo give effective support to the body of he veficle and
allow it to be turned to either side with little friction.
A telegraph key has been patented by Mr. John M. Biggs, of Louisville, Ky. It has short and long arms, the former having adifnger piece and the lat-
ter a contact point, combined with a switch and conductor for conveying the current from the switch to the stationary contact point of the key, the object being that a slight movement of the fingers shall prod
A device for closing openings in the halls A device for closing openings in the hulls
of vessels has been patented by Mr. John Speirs, of Jorsey clamping a plate or covering over the opening, having such form of brace bar and hook and angle bars hat any suitable plate may be clamped over an aperture
nd the bar can be applied with dispatch and easily re orsed when necessary.
A centerboard for vessels has been patatea by Mr. David McFall, of New York city. This f parts in a centerboard ris which allows the center boara to be quickly set and removed, as sailing condi-
tions and emergencies may tions and emergencies may require, and also allows the
operation of the centerboard by a helmsman at the speration of the
tern of the vessel.
A convertible street car has been patnted by Messrs. Philip J. Smith, of Long Island City and John F. McEvay, of Brooklyn, N. Y. By a special
construction, arragement, and combination of parts, the sides may be raised to a position at the top of the the car, so that it can be easily converted into an
A combined note book holder and lin dicator has been patented by Mr. Albert H. Merrill, of Sanfora, Fla. It is for use by type writers and others, ny consists in a board supported upon a standard or with a clamping device, combined with a line indicato and pawl and ratchet mechanism, for moving the line a
Agauge attachment for printing presses has been patented by Mr. Frederick F. Byington, of
Oakland, Cal. It is for attachment to the platens of job printing presses, to fix the position of the cards o blank sheets, to cause them to properly register in re-
ceiving the impression from the type, and consists of carved spring bars, made tapering, combined with a

pecial form of holder.

A lubricating compound has been pat ented by Mr. David L. McKenzie, of Winnipeg, Mani-
toba, Canada. It consists of animal fat, mineral oil refuse, slaked lime, and manganese, compounded and prepared in a specified way, to make a lubricator for a.long time its properties without decomposition or de-

A door sill has been patented by Mr. ormed of metal, its under surface being cored ribs to reduce weight, and it has a square shoulder to
keepert water, with other novel features, being designed, in connection with a weather strip, to a ford

A game has been patented by Claes E. ranchell, of Willmar, Minn. A circular flat disk has will rest, the disk having holes or apertures in a circle on its face, and one in the center, the game then being o hold the disk so steadily and truly that the marble may be made to roll by all the holes and around the one in the center back to the place of starting.
A windmill has been patented by $\mathbf{M r}$. that are rigidly connected to arms that are pivotally connected to supports carried by a hub fixed upon the
crank shaft, the parts being so arranged that the arms arrying the floats may be expanded to throw the floats into the wind, or backward to cause them to present

A furniture pad has been patented by Mr. William H. Hertz, of Hazelton, Pa. It has a soft
rubber top or outer portion, and a hard rubber base rubber top or outer portion, and a hard rubber base
apertured to receive a fastening, and a driver for driving the screw or fastening into the article to which the ad is to be attached, the object belng to make a pad to ry to walls.
A shutter worker has been patented by Mr. Thomas N. Lupton, of Winchester, Va. It con-
sists of a curved parallel motioned bar, combined with and jointed to a swinging link, a crank arm of the same with other novel features, to facilitate working the shutters of a window from the inside without hoisting the

A skylight cover has been patented by
with the skylight are rails at the opposite sides and raming, with rollers embracing the rails, the object be ing to provide a construction which shall protect the
skylight from damage in case of fire, and from storms, skyilight from damage in case of fre, and from storms
.., while being simple anà nespeens.
A valve has been patented by Mr. Owen L. Whiteman, of Haydenville, Mass. This invention "gate" valves, and consists in the manner in which the gates are suspended on the carrier; whereby a rotating or rockigg adjustment is obtained, each gate having a
motion opposite to the other, in the same direction, the one a horizontal and the other a perpendicalar rocking motion.
A gate has been patented by Mr. Geo. W. Watters, of Deer Lodge, Montana Ter. This inven-
tion relates to gates of that clase which are lif ted end tion relates to gates of that clase which are lif ted and sild across the roadway, and are operated by hinged
lifting bars, which in turn are operated by pulling on lifting bars, which in turn are operated by pulling on
cords antached to overhead levers to which the gate
liet cifting bars are connected, and provides therefor a s imppe
lind substantial construction, in a gate that can be ope rated by a person in a vehicle or on horseback.
An axle and box for wheels has been patented by Mr. Louis steinberger, of New York city.
The inner surface of the box consists of two straight bearing surfaces of different diameters, and the bearing surfaces of the axle are made to correspond to the axle box, being smailer at the outer and larger at the inne
end, by which a space is allowed for lubricating mate end, by which a apace is allowed for lubricating mate-
rial, and the axle is strengthened at the inner end where receives the most strain.
An electric temperature alarm and ther motat has been patented by Mr. William H. Stiegel.
maier, of Geneva, N. Y. Combined with the mercury tube and case of a balance thermometer, an electric con tact is carried by the tube, and adjustable contact in position to be touched by the contact carried by the tube, to make and break the electric circuit by
the rise and fall of temperature
A combined lock and latch has been patented by Messrs. Si meon J. and John W. Hicks, of
Chicago, Ill. The operating mechanism is inclosed partly within a cylindrical case and partly within the partbs arranged in connection with the latch, there be ing certain novei features involved, the outer knob be
ing disconnected from the latch in a peculiar and novel ing.aisconnected rom the atch in a pecaliar and novel
manner, and the lock being arranged to be operated meither side of the door.
A bobbin winder for sewing machines has been patented by Mr. Henry Lefeber, of Philadel
phia, Pa. It is designed for winding the bobbins of sewing machines while at work, without further attention from the operator than placing the bobbins in the
winder and pushing a frame toward the drive wheel, winder and pushing a frame toward the drive wheel,
the winding being stopped automatically when the bobthe winding being stopped automatically when the bob
bins are filled, and the winder being one which may be employed with bobbing or silc
winding coils of magnets, etc.
A photo-chronograph has been patent ented by Mr. John'J. Higgins, of New York city. It has rying a light-refecting surface, combined with a motor and slow calibrating wheel whose period of rotation signal bein reation to that of hel, the device being t determine the period of exposure of any drop shutter or make a permanent record from which the duration
of the exposure may be determined.
A wire fencing picket has been patent ed by Mr. Joshua Horrocks, of Brooklyn, N. Y. The pickets suitable for forming border railings for lawn and garden walks, but also available for other uses, the pickets being made in U -shape, and having eyes in th side parts of their bends, the eye of each picket being
made of sufficient size to receive an arm of the adjacent picket, and being formed by spreading the strands of he desired point.
A self-locking wire picket forms the subject of an additional patent granted to the foregoing
 the wires, a pin or other form may be inserted betwee he strands when they are being twisted together
A fencing machine has been patented by Mr. George L. Sutton, of.Platteville, Iowa. It is to make wire and slat or paling fences, and is so con-
structed that a crank shaft may be placed in position, and wires hooked into clatches thereon, when, by turn Ing the shaft, the pairs of wires are spread to permit of he palings being woven into the proper position, the
apparatus being simple and strong in construction, and

NEW BOOKS AND PUBLICATIONS
Esoteric Christianity and Mental
Therapeutics. By w. F. Evans. Therapeutics. By W. F. Evans.
H. H. Carter \& Karriek, publishers, 3 Beacom Street, Boston, Mass.
As the author puts it, this work is intended to open Evans believes that disease is due rether to mental than"a physical condition ; in fact he says that "there is nothing in the body that has not had a prior existence
in the mind or soul." He takes advantage of what we all believe in to a greateror less extent-the mysteri. ous influence of mind on body-and tries to develop ditions can be altered to correspond with some accuired state of the mind. So illness is simply a state in which we believe our bodies to be in an abnormal condition, and by a due exercise of will the mind may be brought
into a state of healthfulness, which the body will soon all in correspondence with. We believe we are well, and with a magic touch we are cured. The author makee
frequent appeals in support of his theory to Scripture Buddha, Plato, Swedenborg of his theory to Scripture,

Special.

a SOLDIER'S STATEMENT.

 Io thing so obviously right, and a thing that I am myelf doing at every favorable opportunity. viz, state for he beneft of
You certainly and most cheerfully have my unqualiffed
ermission to use any information concerning my case at you have use any information concerning my case
 What it did for me is so remarkable that it is with difsnown.
You remember the cause of $m y$ trouble is that during he war, at the battle of Frederickibu r, a Minie ball ent crashing througa mons said, as close to the spinal cord as it coutd and not sever it., Infiammation was only prevented by con-
stant applications of ice, at Washington, fora month aferward. By spells since, and sometimes for about a year
ogether, the suffering amounted to extreme agony, so ad I not insanity it seems must have been the result ompound Oxygen. The last "pull") I had (and I had them at intervals of about two years) ended w
of Compound Oxy gen, in the summer of 1882 .
The day the Compound Oxygen came I was not able sit up to have my bed made, so sat up in bed to inhale,
nd thought as I did so, "Sold again, this willamount to nothing.
However, determined to follow directions, I inhaled hine that evening, as on the last evening before, I only ook one small dose. and sliept more than usual, and beter. The next night took no morphine and slept tood
ight hours, and in less than two weeks walked (on rutches) a quarter of a mile at a time
Like most of all who get up feeling "so good," but nose jet downent is as feeble as the body, I would overdo owns and ups covered a space of perhaps three months. ince which time I have not been conflned to'the bed nor
house for a day; but, of course, an injury so great is a permanent one; of such nature is the injury, that at imes (more likely after a spell of writing) any person
tanding close to me, when I turn my head slowly, can knife on a whetstone. Of course such a mangling and earing of the nerves centering (do they not?) along the spine, leaves me in a constantly enfeebled condition; ive. a few days' use of the Compound Oxygen brings ack (has every time so far) an increase of vitality, and all the health that can be put into a body that has been
harshly handled, and much more than you doctors encouraged me to hope for when 1 asked yourladvice con-
erning it . I regard Compound Oxygen as nature's cerning it. I regard Compound Oxygen as nature's
strong right harid for repairing bodily waste and dam-
age. Yours truly, REV. J. C. SUNDERLIN. ht hand for repairing bodily waste and dam-
Yours truly, \quad REV. J. C. SUNDERLIN.
Flemington, N. J., Sept. 20, 1886 . Dear Sirs : I remain comparatively comfortable,
The "house I live in" is shattered and torn, and as it is mpossible to tear the whole house down, I have to do meins" best thing, viz., to "strengthen that which remains as well as I can, and my resort has constantly In the use of this
In the use of this auxiliary of nature there is no re-
aarkable shock of any kind given to the system markable shock of any kind given to the system.
I am now satisfled more than ever that the ABSENCE of such shock or thrill to the system is just precisely that should be.
Nature, in all her normal and healthful operations, works silently and quietly, and if measured by the mo-
ment, or perhaps even by the day or week, would be If we had not beencentibstained all our livess by breathing in the seeming nonsense of breathing? It seems a mere othing that we inhale and exhale times a minute. and yet we are dependent upon it for
ife. We could not endure its privation for fiveminutes. nd yet that atmosphere can be so contaminated, and
ithout arresting the attention of one of the senses. that without arresting the attention of one of th
t would not support life for twelve hours.
Such are the subtile influences which should be thought of, by those who have an idea that this remedy (Com-
pound $O x y$ 位) is not efficientsimply because it is taste-

How foolish (?) to swallow down the tasteless draughts tained without that tatsteless beverage?
The glorious light of heaven comes to us in a quiet ay, yet who can compute the actual uplifting power of and tons of water and other material in the formof grains, grasses, and fruits, actually lifted up from the earth by the quiet influence of the sun? Just such are he silent influences, though mighty forces, which are
daily busy bullding up our physical structure, the myserious temple which is so beautifully adapted for our In connece here a little while.
In connection with such thoughts I can easily appre-
end, though I may not fully an I can how.the light accomplishes all its wonders, w this beautiful but potent vitalizer of the human It might be interesting to me to know (though not
nore useful) how the Compound Oxygen brings me a more useful) how the Compound Oxygen brings me a
quiet, restful feeling that induces sleep, and puts nature aiet, restful feeling that induces sleep, and puts nature pairing damages; but though I may not know how the
sunlight silently lifts, and colors, and improves all naure; may not know how the silent forces of attraction old all things in their places; ;may not understand all and so not know how this sweet vitalizer and restorer of ature (Compound Oxygen) does its work; it is sufficient There must be does.
his that there must be for the natural growth of anyhing else, and then there will be the samerejoicing in I am itil realization of healthful happiness.
Yand stil as well as could be expected, taking the comriction, and need to run easieer. But when, after an inittle better the first or second nit. I generally sleep a sleep induced by narcotics. Without it I have reason to believe I should not now be alive. $\begin{aligned} & \text { Yours truly. } \\ & \text { J. C. SUNDERIN. }\end{aligned}$
To learn "what Compound Oxygen is-its mode of action and results" send your address to Drs. Starkey \&
PALEN. 1529;Arch Street, Philadelphia, Pa., and you will receive free, by mail, a work of two hundred pages, giv-
$\mathfrak{B u s i n e s s}$ and Personal.
The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line Advertisements must be received at publication office

Wanted-Competent draughtsmen, experienced is blast furnace and steel works construction. State ex
perience. Address G. S. L., P. O. box 773, New York. All Books and App. cheap. School Electricity, N. Y Economic gas engine cheap. W. E. Lewis, Corry, Pa. Hasp lock patent for sale. C. P. Pond, Camden, N. Y Important legal decisions and Patent Officerules conby W.X. Stevens, solicitor of patents.
For Sale-Complete fixtures of a well equipped jo
nachine shop, including blacksmiths', pattern makers and pipe fitters' oucfits; also 500 miscellaneous patterns All in place and in working order. Price, $\$ 4,000$. Terms
$\$ 1,000$ cash; balance, easy payments. Inventory fur$\$ 1,000$ cash ; balance, easy payments. Inventory fur
nished on application to J. F. Hammond, 117 South 16 th St., Omaha, Neb.

Worth Remembering. Every inspiration of the lungs, every pulse throb of th
heart, every sweep of the arm, even our very thought as they speed through the brain, all create waste matte that must be constantly removed if there is to be tha
beautiful harmony of functional effort which constitute health. Nature's remedy is the sure and eminently wise
one of expelling, by proper purgation, the humors which cause disease, and Dr. Pierce's "Pleasant Purgative
Pellets " are natüre's great ally in the cure of digestive Pellets" are nature's great ally in the cure of digestiv
disturbances, and an unfailing remedy for constipation and its pernicious effects.
Small Metal Goods of every description made to orde Machinist Foreman wanted who to advantage and increase their production by latest im proved ways of doing work. Address P., care of Wil Friction Clutches from \$2.25 on. J. C. Blevney, New ark, N. J.
Haswell's Engineer's Pocket-Book. By Charles H ing Tables, Rules, and Formulas pertaining to Mechan les, Mathematics, and Physics, Architecture, Masonry Steam Vessels, Mills. Limes, Mortars, Cements, etc. 90 pages, leather, pocket-book form, \$4.0.
Woodworking Machinery of all kinds. The Bentel \&
Margedant Co., 116 Fourth St., Hamilton, o. Margedant Co., 116 Fourth St., Hamilton, 0
A Catechism on the Locomotive. By M. N. Forney.
With 19 plates, 227 engravings, and 600 pages. 250 . With 19 plates, 227 engravings, and 600 pages. $\$ 2.50$. Sent in receipt
Guild \& Garrison's Steam Pump Works, Brooklyn, now ready
The Knowles Steam Pump Works, 44 Washington St., Boston, and 93 Liberty St., New York, have just issued a new catalogue, in which are many new and im-
proved forms of Pumping Machinery of the single and duplex, steam and power type. This catalogue will be mailed free of charge on application.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Concrete Apparatus, etc. Frnest Ransome, S. F., Cal. Nickel Plating.-Sole manufacturers cast nickel an odes, pure mickel salts, polishing compositions, etc. \$10
"Little Wonder." A perfect Electro Plating Machine. Sole manufacturers of the new Dip Lacquer Kristaline Completeoutflt for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St., New York. Iron Planer, Lathe, Drill, and other machine tools of Send for catalogue of Scientific Books for sale by Send for catalogue of Scientific Books for sale by
Munn \& Co., 361 Broadway, N. Y. Free on application. Supplement Catalogue.-Personis in pursuit of infor mation of any special engineering, mechanical, or scien-
iffc subject, can have catalogue of contents of the SciENTIFIC AMERICAN SUPPLEMENT sent to them free. The SUPPLEmENT* contains lengthy articles embracing selence. Address Munn \& Co.., Publishers, New York. Curtis Pressure Regulator and Steam Trap. See p. 142. Wrinkles and Fecipes. Compiled from the Scientiprocesses, and directions, for the practical suggestions, Farmer, and Housekeeper. With a Color Tempering Scale, and numerous wood engravings. Revised by Prof
Thurston and Vander Weyde, and Engineers Buel and Rose. 12mo, cloth, 82.00 . For sale by Munn \& Co., 361 Broadway, New York.
Best Automatic Planer Knife Grinders. Pat. Face Plate
Chuck Jaws. Am. Twist Drill Co., Meredith, N. H. Iron, Steel, and Copper Drop Forgings of every de cription. Billings \& Spencer Co., Hartford, Conn.
Rubber Belting, all sizes, 77112 per cent regular list.
All kinds of Rubber Goods at low prices. John \mathbf{W} All kinds of Rubber Goods at low
Buckley, 156 South Street, New York.
We are sole manufacturers of the Fibrous Asbesto Removable Pipe and Boiler Coverings. We make pure 419 East 8th Street, New York.
New Portable \& Stationary Centering Chucks for rapic conte

Stesm Hammers, Improved Hydraulic Jacks, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York.
Send for free Catalogue of Booksof Annusements, Dream Books, Debates, Letter Writers, Etiquette, etc. Dick \& Fitzgerald, 18 Ann St., New York.
60,000 Emerson's 1886 Book of superior saws, with Supplement, sent free to all Sawyers and Lumbermen.
Address Emerson, Smith \& Co., Limited, Beaver Falls, Aa., U. S. A.
Safety Elevators, steam and belt power ; quick and Astronomical Telescopes, fromes' to largest size. Ob servatory Domes, all sizes. Warner. a Swasey, Cleve and, 0
Magic Lanterns and Stereopticons of all kinds and prices. Views illustrating every subject for public ex-
hibitions, Sunday schools, colleges, and home entertainnent. 136 page illustrated catalogue free. McAlliste ment.
Manufacturing Optician, 49 Nassau St., New York.
"How to Keep Boilers Clean." Send your address
free 88 page book. Jas. C. Hotchkiss, 93 John St., N. Y. Planing and Matching Machines. All kinds Wood Split Pulleys at low p. Aog and ppearanceas Whole Pulleys. Yocom \& Son's Shafting

MWhest (4anims

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters, or no attention will be paid thereto. This is for our
information, and not for publication.
Rivences to former articles or answers should
give date of paper and page or number of question give date of paper and page or number of question.
n quiries not answered In reasonable time should
De repeated, correspondents will bear in mind that
some answers require not a little research, and, some answers require not a little research, and,
though we endeavor to reply to alll either ry letter
or in this department eack must take his turn.
pecial Written Iuformation on matters of pecial Written information on matters of
personal rather than general interest cannot be
eipected without remuneration.
cientific Amerrican Supplements referred to may be had at the oftice. Ppriements refer cents each.
Books referred to promptly supplied on receipt
Mrice.
vinerals sent for examination should be distinctly
marked or labeled.
(1) S. \& C. ask how to keep the frost, (1) S. \& C. ask how to keep the frost, keeping the inside air dry, or by innersash made tight, so that the air in window - inclosure will be cold, and entilated from the outside. A partial remedy is to
ave venthating openings in the top of the window sing.
(2) M. M. A. asks if there is any hand than a pair of oars. A. We know of none that gives as good results as oars.
(3) W. S. C. asks why it is that some am gauges are made larger than others. A. Only as matter of taste. The smallganges are quite as relia-
le as the large ones, all being tested for the same ressures as indicated by their faces.
(4) F. B. S.-The so-called malleable on is not fit to make castings of; it is as difficult to melt as wrought iron. You may melt steel at a very to the melting of soft gray iron. Good cast iran scrap mixed with charcoal or Scotch pig will make good, sound castings. See Greenwood on Steel and Iron,
which we can mail you for $\$ 2.00$.
(5) J. G. M. asks : 1. What pressure roduced in compressing 1 cubic foot of air into $1 / 2$ abic foot of air and $1 / 4$ cubic foot of air? A. 1 cubic oot to $1 / 2$ cubic foot, 15 pounds pressure; 1 cubic foot to
cubic foot, 30 pounds pressure.
2. Can this $1 / 4$ cubic foot, 30 pounds pressure. 2. Can this be done
with a 20 inch Buffalo blower driven by hand? If not, how can it be done? A. It cannot. It requires a pison pump made for compressing air, which is on sale ny the steam pump trys pipe stand? A. $1 / 2$ or $3 / 4$ inch 9 gas nary $1 / 2$ to $3 /$ inch gas pipe stand A. $1 / 2$ or $3 / 2$ inch gas
pipe, if properly welded, will stand 1,000 pounds per quare inch and upward.
(6) O. C. M. writes : I have a small flat one will not answer the purpose. Galvanizing alon will do well, but is not quite bright enough to appear well. How would it answer to first galvanize and
then tin? A. You can tin over the galvanizing without then tin? A. You can tin over the galvanizing without
removing all the zinc by immersion in the tin bath, removing all the zinc by immersion in the tin bath, ork; but the tin bath will soon deteriorate by abhe tin bath often, you will succeed.
(7) E. N. C. writes : A number of mechanics of this'place respectfully ask : Does the entir slide valve engine) without reaction? A. The entir steam nracqure is upon the valve. This is only par atting off; the cushioning at the end of the stroke (if y), and the slight exhaust back pressu
(8) W.\& S. ask how to distinguish iron from steel. A. By breaking and comparing crystallized surface, or by immersing in nitric acid 1 part, water 3 parts, for a few minutes. Steel will show a homogene surface, or try whether the article is susceptible of tempering
(9) D. P. B. asks how to prepare rinter's ink so as to print on muslin with wooden pe. A. Thin with boiled linseed oil, if it be absolely necessary, but by doing the work slowly, and with the skill a good printer would exe
(10) W. F. E. asks how the acid for etching glass is made, that leaves the glass white and
semi-opaque. A. See the article on "Fluoric Acid, its Preparation and Use in Glass Engraving," contained in ientific American Supple
(11) G. M. asks a receipt for making yeast to manufacture vinegar by fermentation. A. Boil 9 ounces of hops with 3 pails of water, put 9 pe hop water ${ }^{2}$ er it to make it into a stiff paste, beat it up thoroughly, strain in the rest of the hop water into the paste, let it stand until lukewarm, then add $41 / 2$ quarts of stock yeast. It will rise 1 to 3 inches, but do not disturb it until it drops.
(12) G. Z. asks (1) whether there is any nethod of restoring paper which has been acted npon
by oxalic, acid, which was used to remove carmine ink stain, and turned the paper yellow. A. If the fiber of the paper has been destroyed by the acid, which is. most likely, you cannot restore it. A. little gum water
nay restore the finish of the paper. 2. What library may restore the finish of the paper. 2. What library
contains the most books on chemistry? A. The library

Columbia College, corner 49th Street and Madiso
(13) C. A. C. writes : I am inaking paper canoe, and I would like to have the receipt fo the edges of the paper ther A One quarter of a ounce crude gutta percha dissolved in carbon disul phide to the consistency of mucilage.
(14) C. L. S. wants a receipt for liquid pentine 1 gill, water 1 gill, sugar 1 ounce.
(15) E. H. C. asks the market value in New York or Brooklyn of the metal molybdenum or has a value of about $\$ 50$ a pound, but as there is n demand for it, it is unsalable, cept in small quanti ties for museums or collectors. The mineral molyb denite is salable only to dealers in minerals.
(16) I. S. F. wishes to know the con tents of a wall measuring 3 feet by 12 feet by 30 feet. A. The wall contains 1,080 cubic feet. If it is a rubble cubic feet, and will contain 43j perches. If it is masonry, it will be measured by the foot cube; and
if brickwork, by ${ }^{\text {tiene number of bricks it contains, viz., }}$ if brickwork, by te number of bricks it contains, viz.
24,300 .
(17) E. E. S. asks: 1. Will you give some kind of wash or stain for brickwork that wil protect the brick and not wash off without oil, and be permanent? A. To make a good wash for external pur poses, rinse $11 /$ bushels of white lime with. 3 pecks of hydraulic cement (say Rosendale or Portland) and add
sufficient water and color as may be desired. Another is formed of $1 / 2$ bushel of sluked quicklime mixed with y pound of sulphate of zinc, 1 pound of common salt and 1 gallon of sweet milk. 2. What is understood by a sounder (telegraphic) of 20 ohms? Does it mean 10 ohms on each spool and 20 on the pair? Or does it mean 20 ohms on each spool? A. A sounder of 20 .ohms
means one having a total esistance of that current on means one having a total esistance of that current on
both bobbins. 3. Will a core made of inch iron wire o for magnet core on 20 ohm sounder? A. It would.
(18) A. B. B. says : I have a pound and half of No. 18 cotton covered wire. Will you pleas nform me how I can make a continuous spark coil fo gas lighting? A. You need much more wire. About fundle of short iron wires, eight inches long and an ch in diameter will give good results.
(19) C. J. M. asks : 1. Can it be possi ble that permanent magnets could be so constructed so motion) the ame cell fluid bsttery? A Uness our present theories areall wrong it is impossible We believe nothing can be done by experimentation in this direction. 2. Where can I obtain electric lamps suchlas described in Scientific American of October 16 1886? A. Trouve, of Paris, makes such a lamp. Address Stout-Meadowcroft Company, 82 Fulton Street, (20) G. W. C. asks how to preserve ole peaches so as to retain their natural size and color? A. Peaches are thus prepared for show pur poses by submitting them to a bath of sulphur gas and liberal use of antiseptics.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted,

October 26, 1886,
AND EACH BEARING THAT DATE.

[See note at end of list about copies of these patents.]

Adding maehine, F. A. Bone.......................
Air and gas compressors, cylinder for, A. Snyder.
Air brake, S. R. Kneeland.

$\begin{array}{r}351,487 \\ 381,665 \\ \hline\end{array}$

Ammonia and illuminating gas from tank waters,
obtaining, J. Van Ruym
Animal trap, C. A. Hollarfd
Animal trap, F. J. William
Auger, earth, Jungbauer \& Seielstad ${ }_{351,703}^{351,678}$
Axes, die for making, Bustle \& Siegel................. 351,
Axle, vehicle, J. Coleman........................... 351,425
Bag. See Paper bag.
Bale ties, machine for making wire, W. A. Laid-
Barrel, H. Wessel...
Barre lowering device, J. W. Gill
Bed, bureau, A. Kulich.........
Bedclothes holder, H. O. Thomas..
Bedstead, invalid, C. M. Littlejohn..................
Belt clamp, J. W. P. Johnson.........
Blue, soluḅle laundry. G. W. Barlow
Boiler. See Steam boiler.
Boiler furnace, steam, L. Stevens......
Boilers, sput for, II. W. Shepard
Bolt. See King bolt.
Book or show case, C. H. Bangs........
Bottle capping machine, J. F. Wittem
Bottle, ink, B. C. Wilson..........................553,
Bottle, nursing, H. C. Have
Bottle stoppers, machine for forming wire bails
of, J. G. Rehfuss..

Bottles, machines for wiring corks in, F. G. Riley. ${ }^{351,1714}$
Bottles, machines for
Bottles, wicker case for, A. Boeker.............. 35
Brake. See Air brake. Car brake. Railway
brake.
Brazing, preparing solder for, \mathbf{c}. W. Walther......
brazing tubes, charging spoon for, C. W. Walther
Brick for facing walls, J. C. Anderson.......
Brick for facing walls, J. C. Ancerson..............
Brick machine, dry pres, H. . Barker.........
Bronze or other powders, apparatus for distributBronze or other powders, apparatus for distribut-
ing, J. W. Baldwin

Burglar alarm system, P. K. Stern............... $\therefore 351,408$
Burner. See Gas burner. Lamp burner. Burner. See Gas burner.
Button, cuaf, F. Cook.....

Button fastener, A. Hall.. | 351.579 |
| :--- |
| 351,437 | Button fastener, A. Hall... 351

Button fastening, A. Shipley
Button for pants, elastic suspender F B. Button, separabele, A. H. Graves.................... 351,434
Calipers, K. P. Dahlstrom.................. 511,363 Camera obscura, Sharpe \& Blake........................ 351.532
Car brake, J: Morrow....519
 Car coupling, S. D. Locke.
ar coupling, J. P. Ketteringham
Car coupling, S. D. King....
Car coupling, A. ink, D. Tufts.
Car starter, R. T. P. Allen.
Car wheel, R. N. Allen..
Car wheel, R. N. Allen... 351,
Car wheel, cast steel, H. W. Fowler.
Car wheels, machine for rolling. \mathbf{H}. W. Fowler..... 351,430

Carrier. See Cash carrier.
Cart, hand, F. J. Aubeuf............................. 351,561
Case. See Book or show case.
Cash carrier, Flagg \& Clafin....................... 351,506
Cash register and indicator, H . J. Patterson et al.. 351,160
aster, furniture, C. A. Whitney..................... 351,418
Centrifugal machine, D. M. Weston........... 316
Chair, G. E. Underhill.. 351,671
hest. See Flour chest.
Chopper. See Cotton chopper
Churn, D. Savage.. 351.655
Chute for feed mangers, J. W. Fiske..................................51,505
lamping device, C. A. Weller....................... 351,550
Clasp. See Rope clasp.
lays, clay shale, etc., machine for disintegrating,
J. C. Anderson......................351,614, 351,617
lay rea er and pulverizer, J. C. Anderson...... 351,618
Clothes rack, D. D. Gordon.
Clutch and brake for power presses, H. S. Hitch
cock
cock.....................
Coffin, Rappleyea \& Sparks (r)
Colter, rolling, T. C. Belding
Condenser, J. B. Edmiston...
Cotton chopper, J. R. Recto

otton gin, J. Ralston.

Cultivator, J. R. Suter..1,720
Detector. See Electric time detector.
Displaying device for primary scholars. J. Du
Displaying device for primary scholars, J. Du
Shane.................................. 351,694
Ditching machine, J. W. Humphreys..............351.701
Door opener, electrical, Henzel \& Wood......... 351,600
Door opener, Mectocald \& Courtney..................... 351,457
Dor spring, McDonal
Draw bars, manufacture of, M. Kirker.......... 351,382
Drier. See Tobacco drier
Drill. See Seed drill.

Egg tester, Vansant \& Cooke..551,54
Elastic fabric, J. Bidmead..
Electric battery, c. J. Hirlimann................ 351,66
Electrtic conductors. reel for, J. M. Bowye.............. 31.61,488
Electric current indicator, R. H. Mather........351,388

Electric machines, reversing gear for dynamo,
Houghton \& Collet..........................
mo, L. G. Woolley............ 351,41
Electric time detector, J. C. Wiison.............. 351,68
Electric wires, underground
Greene.................................... 351,697
Electro magnetic regulator, T. E. Adams........351,51

Eyeglasses, D. V. Brown................................ 351.62
Fabric. See Elastic fabric.
Fanning mill, J. A. Ingram......................... 351,511

Fence wire stretcher, E. Bolton.....................
nick $6 .351,646 ~$
Fertilizer distributer. H.
Fifth wheel, ,H. Hafker.... ...
Fishing float and connection therefor, E.
Fishing reel, A. B. Hendryx......
Flour chest and sifter, H. G. Fils
Fluid discharging apparatus, W. T. Messinger,
Fly catcher, Z. F. Xevers..
Folding machine, strip, Marsh \& Laubscher.
Fond compound, P. B. Rose.........................
Frame. See Embroidery frame. Mirror frame.
Rock drill frame. Wift and warp spinning
frame.
for the conduction of liquid, c.
Mitchell..................................... 351,391
nel, device for the consumption of liquid, \mathbf{c}.
Mitchell. 551,30
Furnace. See Boiler furnace. Ore roasting fur
Furniture pad, W. H. Hertz. 351,509
Gauge. See Sliding aatige.
Game table, C. s. Tilt............................. 351,6
Garment fastening device, s. Blumenkrohn.......................351,668
Gas burner, regenerative, C. M. Lungren..........
Gas engine. P. Murray. Jr.............. 351,993 to

Cas regulator，C．M．Lungren．．．．．．．．．．．．．．．．．．．．．．
Gate．${ }^{\text {See Railway crossing gate．Wire gate．}}$
Gilass and vitreous or Gate．See Railway crossing gate．Wire gate．
Glass and vitreus or porcelaneous product
making，J．T．Wainwright．．．．．．．．．．．．．．．．．．．．．． Glove and glove fastening，H ． Glue．making fish，W．N．Le Page．．．

Grain binder cord holder．W．W．Mayberry Grate，A．L．Goodenow．．．．．．．． Hanger．See Spring hanger．
Harness
trimming．W．F ，Graha Harrow and seeder，disk，A．Corbin， Hat brims，machine for curling．Hooper \＆Kel Hat sweat，F．E．Randel．
Has elevator，C．E．Hunt et al．．．．．．．．．．．．．．．．．．．． Hay or cotton press，J．
Hay rake，J．H．Felt．．．
Heater．See Feed water heater．

Hinge，spring．A．Schweinfurt
Hoisting apparatus，C．W．Hunt Holder．See Bed clothes holder．Cork hoter Horses＇hoofs，snow and ice guard for，D．Goff， Horseshoe nail machine，G．J．Capewell．．．． Horseshoe nails，manufacture of，
Hose conduit for railways， H ．Geis Hose reel，v．H．Buschman House．See Drying house．
House clamp and anchor．C．H．Simmon Hub attaching device，W．A．Clar
Ice creeper，M．S．Weller Ice machine，F．V．De Cop Incubator，C．L．Wells．．． Camppeell．
Indicator．

Indicator． Inhaler，F．A．Chesebro． Inhaler，T．B．Wilcox

In haler，T．B．Wilcox．．．．．．
Insulating telegraph wire，etc．
Alexander．．．．．．．．．．．．．．
Jacquard machine，J．Jackson
Journal bearng，W．Lahey
Ky．See Telegraph key．
King bolt．G．W．Simmons
Knitting machine，circular，G．C．Converse． Knitting machine．circular．G．H．Gilber Ladder，extensin，sursel \＆Kelchner
Lader，step，Purser \＆
Lamp chimneys，heating attachment for，P．Sar Lamp．electric，w．S．Hill． Lash loop fastening，E．N．Parker．．．．． Lathe，metal turning，A．M．Powell．
Laundering machine，R．H．Cornett． Lens，signal，$\dot{\text { Q．A．Macheth．．．．．．．．．．．．．．．．．．．．．．．．．．．}}$
Loom take－up and letoff mechanism，M．C．Willi
 Malt，machinery for making，Brown \＆ Manure carrying machine，c．Stubbs．．． Metal shearing machine，C．A．Bertsch． Meter．See Water meter． Mill．See Fanning mill．Rolling mill Mining and a malgamating cold mil．

Mirror frame，Jones \＆Troknitz．
Motion，device for converting，W．P．Allen．．．．
Motion，device for converting
Motor engine，A．Jacobs．
Musical instruments，key board for，E．Stroud．．．．． Schwarzer．．．．．．．．．．．．．．
 Oil from tallow and kerosene for lubricating．霍
forming，A．A．\＆D．E．Andrews．．．．．．．．．． Ore roasting furnace，J．\＆W．Applegarth．．．．．．．．
Ores，extracting gold，etc．，from，H．R．Cassel Packing，asbestos，R．N．Pratt．
Packing，flexible joint，
 Paint，mixed，o．Kall．
Pan．See Dust pan．
Paper bag，W．P．Hill
Paper box top and bottom covering machine， P
Hauck
Paper，moth and disinfectant，W．H．H．Childs．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Pen，fountain，A．B．Davis． Pen，fountain，W．W．Stewart．．．．．．．．．．．．． Picture frames，etc．，device for hanging，H．Vos burgh．
Pipe clean
Pipe cleaning device，W．H．Degges．
Pipe coupling，W．L．Warne
Pipe coupling，W．L．Warne
Pipes，device for supporting，C．E．Knapp．
Piston，A．Ball．．．．．．．．．．．．．．．．．．
Plane，rabbet， \mathbf{W} ．H．Buswei．
 Phees ．．．．．．．．．．．．．．．．．．．．．．．．．
Plow，P．P．Benson
Poles，etc．，flag and other，W．R．Pitt
Portfolio，W．C．Allen．
ering，W．Scott．．．．．．．．．．．．．．．．．．．ing and deliv
Printing，M．A．Bancroft．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．618，
Printing machine sheet delivery apparatus，
Sulleyt or cluteh，frietion，H．Inman
Pump and vent，air，T．B．Carroll．
Pump，measuring．W．B．F．Sims
Punch，for perforating paper，hand，G．W．McGill
Punch，ticket，R．Woodman．
Quilting machiné．I．Schultz
Rgilway brake，vacuum．R．Solano
Rallway crossing，F．Kobinson．．．．
Railway orgssing gate，M．Wilder．
…．．

Willi．${ }^{35}$
 ． 3

351，574 351，573 351,573
351,771 351，688 351，407 Sc

3551．495 351．415

351．415
351,368
351,729

351，494

$\stackrel{.}{351,577}$ | 351.611 |
| :---: |
| .31512 |
| 351,00 | 351，42．

$.351,472$
． 351,624
． 3151,59
$. .351,622$

，622

r－
.
$.351,658$
351,601

$.351,658$ $.351,601$ $.351,700$.35151

351,726
$.351,42$
.35123

$.8351,410$
y 351.627
．351，619
351，562

351，728

351,728 351.515 31,560
 \section*{.31 .515 .351 .560 .351 .534

}| 351,639 |
| :--- |
| 351，604 |
| 351，477 |

351,400
351,478
351,45
351,552
发递皆䈭

$.81,404$
$.8351,69$
$. .851,695$

$.351,458$
$.351,380$

．351，3

第菏它

r－

351,420
10,775
351,45
${ }^{351,463}$
，351，68

． 351,471
$.351,447$
531

351，556
$.351,49$
351,468
Windmill，F．Fanning ．
Windmill，s．S．Simpson
Windmill regulator，H．L．Ferris
Wire gate，J．F．Hanna．．．．．．．．．．．．．．．．．．．．

$3,351,499$
.
51,499

．351，440
351，501
$.351,693$
．351，482
． 351,426

． 351,426
$.351,400$

351，593
Badge，J．F．Kelly．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 16,983
Basin slab，veash，W．Bunting，Jr．．．．．．．．．．．．．．．．． 16,949

The Shipman Automatic Steam Engine．

1，2，3，4 and 5 Horse Power Engines，Automatic in their fuel Spectally adapped for uspe in boats．Speed
from six to ten miles per hour．No coal dust． Printers，Mechanics，Farmers，Carpenters and Manu－
facturers use them．
 SHIPMAN ENGINE CO．， 92 Pearl St．，Bosion，Mass．

Barnes Fnot－Power Machinery Mmplete outfits for Actual Worksnop
Busions．Head whit a customer says：
Considering its cancity und the

W．BAKPR \＆CO．，Dorchester，Mass．
MINERAL WOOL

 COLD AB A CAUSE OF DEAFNESS－－A

Machine Knives， L．\＆I．J．WHITE，
Planing，Moulding．Shingle and
Stave，Hoop and Veneer．Plated

\％New Catalogue of Valuable Papers

MUNN \＆CO．，

IMPORTANT BOOKS

 ASSA Y Y Tinc．

 Avermin．The Mantatatuor steel．

HENRY CAREY BARD \＆CO．

MALLEABL

A
BIC OFFER．

ACAAALADAWAEALALASA

FOREIGN PATENTS．
Their Cost Reduced．
The expenses attending the procuring of patents in duced the obstacle of cost is no longer in the way of
large proportion of our inventors patenting their inven tions abroad
less than the cost of a United States patent，and the former neludes the Provinces of Ontaric．Quebec，New
Brunswick，Nova Scotia，British Columbia，and Mani－ the number of our patentees who avall themselves of the cheap and easy method now offered for obtaining
patents in Canada is very large，and is steudily increas－ ing．
ENGI，A．ND．－Thenew English law which went into
torce on Jan． 1 st．1885，enab es parties to secure patents iorce on Jan．Ist． 1885 ，enab es parties to secure patents
in Great Britain on very moderate terma，ABritish pa－
tantinad orfan Finplanh Scotland，Wales，rieland and the
 Invention is like y to realize as much for the patentee him at hrme．and the small cost now renders it possible
for almost every patentee in this country to secure a pa－ for almost every patentee in this country to secure a pa－
tent in Great Britalu．where his rights are as well pro－ tected as in the United states．
on very reasonable terms in France，Belgium，Germany Austria，Russia．Italy．Spain（the latter includes Cuba
and all the other spanish Colonies），Brazil，Britisb ludia Anst：alia，and the other British Colonies．
Av experience of Forty years nas enabled th publishers of The Scientific American to establish foreign countries，and it has always been their aim to is done and their interescs faithfully guarded． A pamphlet containing a synopsis of the patent laws of all countries．including the cost for each，and oth
information useful to persons contemplating the curing of
this office．
MUNN \＆（＇O．，Editors and Proprietors of The Sci－ ENTIFIC AMERIOAN，cordially livite all persons desiring
any information relative to patents，or the r gistry trade－marks，in the country or abroad，to call at the offices， 361 Broadway．Examination of inventions，con－
sultation sultation，
ddress，MUNN \＆CO．， Brance Offices：No． 822 and Broadway，New York． Building，eear 7th Street，Washington，D．C．

（Q）
Enery

 NPW YORK BELTIFG \＆PACKING CO．

ICE \＆REFRIGERATING otto cas encine．
 LIGHTNING GRIP WOODWORKERS＇VISE． $\mathrm{E}_{\mathrm{E}}^{\mathrm{E}} \mathrm{E} \mathrm{K}$ K．PATENT

Engineers and Firemen ROPER＇S HANTD BOOKS． These Books treat on all classes of steam Enyines and
Steam Boilers．Catalogues mailed free on application to PUBLISHER －．E．or．Walmut $\&$ Tentis St s，Phlladephla，Pa

CABABNGINE．

w d Orton Mfg．Co．． P．O．Box 148．STERLING，ILL PRESERVATION OF TIMBER．－RE

DRAWING \mid Inatatat patagent INSTRUMENTS．${ }^{\text {Went }}$

The American Agriculturist，

which tor half a century has been the recognized leading periodical of its char－
acter，which now contains far more illustrations，is harger，and in every way
inducements．Every number contains 100 original illustrations and contributions

SPLEENDID ENGRAVINGS FREE！！！ HOMES OF OUR FARMER PRESIDEETS

nor

暆

 Indorsed by the Government ；Vol．©th，Tent Census，U．U．S．sys：

 Bena str cent for maniliag you grand Donbie Num－
 Doearpition by Parton．
 Address，PUBLISHBRS AMERICAN GGRICOLTORIST

 Sth \＆Locust sta，Philadelphis
Tb＇THE STEEL MAANUFACTURERS The attention of all steel manufacturers of the United Department in the way or armor－platese and heary fund
orings，for the prosecution of work already authorized This atvertisement initites all domestic manufactur－
rs of stel to specif，in competition with each other，

ORKSHOP RECEIPTS．

 RT Send for our complete Catalogue of books，free to Uo
In ordering gingle volumes，be particular to men－
thon the＂reries＂wanted． Sent postpid by MUNY M，CO．， 361 Brondwav，
New Yorls，on receipt of price．

$2=5=2$

CONSUMPTION GURED

AND LUNG AFFECTION8

CURE Finild AF

[^0]Jfovertisements.

 5
If you want a Scroll Saw only, with a Driling,
Attackment, Rubber Blower and Lever Clamp,
the Rogers gaw for $\$ 3.50$ is the one to buy the Rogers saw for $\$ 3.50$ is the one to buy.
If you want the best Larhe in marketincludIng scroll Saw Attachment, with all tools and
improvements to the.very latest date, get the
Goodell Machine for $\$ 12$. We guarantee them Goodell Machine for $\$ 12$. We guarantee them
to be better than any otherkins. We will forward either machine on receipt of the price,
or will send a Catalogue with full description,
if f you order ${ }_{74}$ it. ${ }^{\text {Chambers Street, New York. }}$

 Order from our "'Special List BUFPATO, N. Y.PUMPING MACHINERY.-BY E. D.
 ENTIFIC AMERICAN SUPPLEMENT. No. 49.2. Price
cents. To be had at this oflce and from all newsdeal
ers.

\$10.00 to \$50.00 $\begin{aligned} & \text { per night. pa } \\ & \text { light and pro } \\ & \text { fitable bu ii }\end{aligned}$

 VELOCITY OF ICE BOATS A COLLLEC

Mostagrina (feem

 (1) Send Greenstump torlosstype specimens.
Hall Type Writer. Price \$40

 , mamanuili By J. W. Hill, M.E. Price 81.25 . PATENTS. cation of the SCIENTIFIC AMERICAN continue to ex-
amine improvements, and to act as Solicitors of Patents for Inventors.
In this line of business they have had forty one years'
experience, and now have unequaled facilities for preparation of Patent Drawings, Specifcations, and the prosecution of Applications for Patents in the United
States, Canada, and Foreign Countries. Messrs Munn \& States, Canada, and For eign Countries. Messrs Munn \&
Co. also attend to thepreparatiemet Cuyeats, Copyrights Co. also attend to thepreparatiowod Caveats, Copyrights
for Books, Labels, Remssues, Assignments, and Reports for Infringements of Patents. All business intrusted to them is done with special ca
reasonable terms.
A pamphlet sent free of charge, on application, con-
tanning fullinformation about Patents and how to pro-
cure them direction an

MUNN \& CO.g Solicitors of Patents, 361 Broadway, New York.

[^1]
3, WIQUID PAINTS

These Paints are in every respect strictly tirst-class, being composed of the best and purest materials obtainable. They have a larger sale than any other paints made in this country or abroad, and, although they cost a trifle more per gallon than any others, they will do more and better work for the same amount of money, owing to their wonderful covering properties, while their superior durability renders them the most economical paints in the world. Sample Cardeyed Descriptive Price List free by mail.
H. W. JOHNS MANUFACTURING CO.,
H. W. Johns' Asbestos Fire and Water Proof Sheathing, Building Felt, Steam Packings; Boiler Coverings, Roof Cement, Roof Paints, Fire Proof Paints, Colors in Oil, Varnishes, etc. 87 MAIDEN LANE, NEW YORK.

 PATENT
JACKET' KETTLES,
Plain or Porcelain Lined. Tested to 100 lb
pressure. Send for Lists.
HAN $\&$ co

ARTESIAN

INTERNATIONAL INSTITUTE FOR Liquefied Carbonic Gas.

PATENT RIVETED MONARCH RUBBER BELTING.

Best in the Worla.

Specially adapted for PAPER MILLS, SAW MILLS, and THRESHING MACHINES.
THE CUTTA PERCHA and RUBBER MFG. CO., Now York, Chicago, San Francisco, Toronto.

 SCIENTIFIC AMERICAN SUPPLE-
 VALUA BLE PAtent for Sale for cash and royalty.
Has immense sale.

THEAMERCANBELH THPRHONECO 95 MLL ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March th, 1876, No. 174,465, and Japuary 30th, 1877, No. 186,787
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.
THE COPYING PAD.-HOW TO MAKE nd how to use; with an engraving. Practical direections

BARREL, KEG, Hogshead, STAVE MACHINERY.
OVer 50 varieties manu--

Ruply

Šicutific Americau

The Most Popular Scientific Paper in the Worid. Onls $\$ 3.00$ a Year, including Postage. Weekly.
This widely circulated and splendidy illustrated teen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam representing Engineering Works, Steam Machinery
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Pbotography, Archiecture, Agriculture, Hor iculture, Natural History, etc. All Classes of ileaders find in the Scientipic American a popular resume of the best scientiflc in-
formation of the day; and it is the aim of the publishers ormation of the day; andit is the aim of the publishers possible abstruse terms. 'To every intelligent mind, this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. very community where
Tific American will be sent for one vear- 52 numberspostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars by the pub-
lishers; six months, 81.50 ; three months, $\$ 1.00$. ishers; six months, 81.50 ; three months, $\$ 1.00$. OAN will be supplied gratisfor every club of five subscribers at $\$ 3.00$ each; additional copies at same proportionate The safest way to remit is by Postal Order. Draft, or of envelopes, securely sealed, and correctly addressed seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., pay-

MIUNTN .\& CO., 361 Broadway, New York. TEXE.
Scientific American Supplement.
This is a separate and distinct publication from
THII SCIENTIFIO AMERICAN. but is uniform therewith SHI SCIENTIFIO AM ERICAN, but is uniform therewith in size, every number contalining sixteen large pages.
THIC SCIENTIIIC AM ERICAN SUPPLEMENT is published weekly, and Lncludes a very wide range of contents. It presents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geclogy, Mineralogy,
Natural History, Geography, Archæology, Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography, ineering, Agriculture, Horticulture, Domestic Econoand Biography, Medicine, etc. A vast amount of fresh ubjects engravings.
The most
The most important Ensineering Works, Mochors, nd desufactures at home and abroad are represented Price for the SUPPIEMENT for the United States and ERICAN and one copy of the SUPP of the SCIENTIFIC AM, or one year for $\%$ \%. 00 . Address and remit by posta order. express money order, or check.

MUNN \& Co., 361-Broadway; ${ }^{\text {N. Y. }}$. Publishers Scientific american.
To Foreign Subscribers.- Under the facilities of
the Postal Union, the Scien tiric American is now sent Postal Union, the SCIENTIFIC AMERICAN is now sent cribers in Great Britain. India. Australia. and all other British colonies; to France, Austria, Belgium, Germany Mexico, and all States of Central and South Americs. Terms, when sent to foreign countries, Canada excepted, 84, gold, for Scientific American, one year; $\% 9$, gold,
for both ScIENTIfIC American ana Supplement for one year. This includes pcstare, which we pay. Remit by postal or express money order, or draft to order of
PRINTING INKE:

[^0]:

[^1]: BRANCH OFFICES. - No. 622 and 624 F. Stre

