

A WEEKLY JOURNAL OF PRACTICAL INFORIIATION, ART, SCIENCE, MECHANICS, CIIEMISTRY, AND MANUFACTURES.
Vol. LIIV.--NO. 23.]
NEW YORK, JUNE 5, 1886.
${ }^{[85,20, ~ p e r ~ A n n u m . ~}$

STONE STEPS AT HIGH BRIDGE, NEW YORK CITY.
The Harlem River in the vicinity of High Bridge, across which flows the entire water supply of New York city, has long been a favorite resort, the western bank and wooded slopes affording many secluded and cool resting places. For sightseers the central attraction is the famous bridge, at the western end of which are the mammoth pumps that raise the water to the reservoir on the extreme top of the hill. On the bank of the reservoir, toward the river, stands the stone tower, which serves as a smaller reservoir, furnishing water to the more elevated districts.
The bridge at the opposite side of the river is about on a level with the top of the hill, and it is from this side that the majority of visitors reach the aqueduct. Along the shore runs the railroad track, and through the first arch, a little way up the hill, passes one of the main roads leading to Jerome Park. In former times the searcher after quiet and refreshing nooks reached this stage of his journey feeling encouraged by the few

Abstract

obstacles he had encountered tending to increase by exertion the effects of summer heat; but the first view of the old wooden steps, representing every degree of dilapidation, leading from the road to the summit, and the thought that up these his way led, dispelled all isions of coolness. About three years ago relief was combined philanthropy with business, and erected an nclined railroad up the hill. But last year the Department of Public Works came forward, and built the stone steps shown in our frontispiece. These enhance the natural beauty of the puard journey, and enable the traveler to more fully appreciate the beauties of the more attractive opposite shore, as it gradually expands before him. The steps, coping and caps are of bluestone, all the rest being built of gneiss. The coping is 2 feet wide, the lowest flight of steps 16 feet wide in the clear, the top flight 12 feet wide, and the intervening ones 8 feet. The extreme width from out to out is 43 feet. The total length of the steps is 207 feet, and the vertical total length of surroundings and harmonize well with the massive bridge, to which they form a most fitting approach. As will be seen from the engraving, there was no ttempt by the designer at forced or profuse orna-

The sheet iron covering for cotton bales, which we have heard considerable about lately, if it proves not to be too expensive, and its weight not objectionable, and one can be used several times, will prove a uccessful invention. in transit ubstantial appearance, no matter from what point it in various ways. The iron covering would materially may be viewed. The short flights, separated by lessen the risk from fire, keep the cotton clean, and roomy landings, serve to lessen the fatigue of the the bales from depletion.

Šnentific Ammericam.

ESTABLISHED 1815.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, postage included...One copy, six months, postage included
Clubs.-One extra copy of THE SCIENTHFIC AmrRICAN will be supplie
cratis for every club of tive subscribers at 83.20 each; additional copies same proportionate rate. Postage prepaid.
Remit by postal or express money order. Address
MUNN 8 Co 361 Broad wiv, corner
To., 361 broad
The Scientific American Supplement
is a distinct paper from the Scientiric Ambrican. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages. uniform in size is issued weekly. Every number contains 16 octavo pages. uniform in size
with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT 85.00 a year, postake paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined Rates.-The ScIENTIFIC AMERICAN and SUPPI.EMRNT will be sent for one year, postage free, on receipt of
papers to one address or different addresses as desired.
The safest way
registered letter
Scientific American Export Edicion.
The ScIENTIFIC AmERICAN Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four precending weekly issues of the SCIENTIFIC AMERI-
CAN. with its splendid engravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely displayed announcements published in this edition at a very moderate cost.
The Scientific American Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN
CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, JUNE 5, 1886.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

No. 544.

For the week Ending June 5, 1886. Price 10 cents. For sale by all newsdealers.

III. ASTRONOMY.-A New Induction in Spectroscopy:-Constitu-

IX. MISCELLANY.-Christopher Columbus' Egg.-An ingenious toy.

2. illustrations

another patent nullification bill

We give in this issue the text of a bill (H. R. 4,458) that threatens very gravely the interests of the invent ors of this country. It was introduced in the House of Representatives by Mr. R. W. Townshend, of Illinois. During the last two years, it has often been our office to comment on proposed enactments that had the same bad tendency-a tendency to the abridgment of the rights of patentees. We have reiterated the expression of the best jurists that this country has ever seen, that the inventor is a pre-eminently useful member of the community, and deserving of every protection and encouragement that the law can afford him. Judge Story, and other judges only less eminent than he, support this view of the case. Notwithstanding such support, the House of Representatives, for some reason, during the last two years, has had a paroxysm of activity in the production of bills impairing the standing of patentees in the courts.
But the present bill has gone further than most of its predecessors. It has, after consideration, been reported favorably by the Committee on Patents, and presumably is in a fair way to pass the House. A glance at its provisions is enough to condemn it. It strikes at the root of our patent system, and threatens a gross injustice to the inventors of the country. A patent already granted is a pledge, and any curtailment of its rights is a violation of that pledge. The effect of the present patent system has been to place America in the van of nations, as regards her progress in the technical and industrial arts. Almost any change must be for the worse, when the original has proved so good. Yet such violation of contract and such change of a practically beneficial system, as proved by years of efficiency, is to-day proposed in Congress.
The first provision of the bill deprives the United States courts of jurisdiction in patent cases where the amount in controversy does not exceed two hundred dollars. By this provision, infringernent is by law allowed on the majority of inventions. By one clause the most meritorious inventions, and those that contribute the most to our comfort in every-day life, are declared unworthy of compensation. There is no need to refer to the records of patents to identify them. Sewing machines, churns, washing machines, straw cutters, plows, mowing machines, hardware, boots, shoes, clothing, furniture, stoves,-all these and innumerable others would fall within the two hundred dollar limit. Had this law been in force for the last fifty years, no small inventions would have been made The inventor would have no incitement to use his talent, save in the larger class of subjects. None of the minor improvements in household conveniences, pro-
ductive of health as well as comfort, would have been carried out. Our lamps might smoke, for who would invent anything to improve them under the two hun dred dollar limit? Our coffee would be ground with mortar and pestle, or in inferior mills. Our culinary utensils would not be coated with enamel, but the
poisonous copper vessels of old days would still be used. Our sewing machines, if manufacturers succeeded in maintaining the price above two hundred dollars, would not be provided with automatic tension devices, hemmers, and fellers, for the line of invention in the direction of such small objects would be closed. Many an inventor of small capital has fought his way to success by small but important improvement. This law would end the career of all such workers.
This first provision declares in effect that an inventor must submit to infringement by any individual to that extent before he can sue for relief.
If his patent is infringed, he cannot strike at the evil in the beginning, but must patiently wait until a wrong of a definite extent has been committed. Again, he may suffer great injustice by a multitude of infringers, none of whom may pass the two hundred dollar limit.
In such a case, he can do nothing. Any one can infringe with impunity if he does not exceed this amount. In this provision, injustice and absurdity are rivals. It licenses and encourages infringement. It would seem that such a clause would stand not the shadow of a chance of passing, were it not that the presumable temper of the House has been shown in the recommen dation of the bill embodying it, by the Committee on Patents.
The next provision aims at the rights of the "innocent purchaser," of whom we have heard so much the position of the innocent violator of a law, and in fact is such, and should be so treated. He should for the good of the community be subject to the same penalties as the willfully infringing purchaser. To make any law operative, the knowledge of its provisions on the part of the violator must be presumed. This is the experience of all governments. The patent riyht in an invention becomes valueless if the ignorance of an infringer is to protect him against the consequences of infringement.
The bill provides that purchasers of a patent right for actual use shall not be liable for its value, or for infringing the same in any manner, if, at the time of it
claims of a third person. In other words, if a fraudulent patent is obtained, and sold to a manufacturer, he can work under it quite regardless of the rights of an riginal and anticipating inventor.
The proviso of ignorance, at the time of purchase only, of such claims on the part of the purchaser is included. The clause is a blow at the equities of the case. The most admirable provisions of our patent laws are devoted to guarding the rights of original inventors.
Interference proceedings in the Patent Office and test cases in the courts continually arise for the purpose of determining priority of invention. By this act, all these safeguards are nullified, and such priority is made a secondary consideration, and subsidary to fraud. The purchase of fraudulent patents is legalized, and a reward is offered for perjury. The bill in the same clause excludes from liability the innocent purchaser of a patented article, until a written notice of the existence of the patent has been served upon him personally. This is a minor provision following the same erroneous line of action.
All these provisions are a direct temptation and incitement to fraud. They do no good to any class of the community, except as a law depriving laborers of their wages might be held to benefit capitalists. Inventors are the servants of the community. They have served it faithfully in the past century, as the splendid record of over three hundred thousand patents shows. It now remains to be seen whether their compensation is to be taken away from them.
The ingratitude of such an action counts for little, unfortunately; its injustice should count for more but its shortsightedness and impolicy should be within the scope of every legislator. It is to be hoped that the House will not follow the action of its com mittee. If any influence has been brought to bear upon the latter, the whole body, it is probable, will be free therefrom. Though only one step on its road to enactment, we should be sorry to see the House o Representatives committed by the passage of this bill. Even where a bill ostensibly aimed at the further protection of inventors, we have counseled conservatism. The patent law is best let alone. It has done good work; it has been systematized, codified in standard text books, and is understood by all. A radical change in it is always to be feared, but especially when it has a direct tendency toward injustice. We hope the bill will never reach the Senate; we hope that the full body of Representatives will effectually kill it, and relieve the air of so threatening a menace.
We hope that the House of Representatives will not pass this measure. If they do, the Senate will be under a great responsibility to the country for their action in the matter. If it should become law, then the majority of inventors will be deprived of their granted rights. Thousands of small industrial establishments, in all parts of the country, will be obliged to close and discharge their workers.
All who feel interested in preventing the consumma tion of this great error should lose no time in writing to their members of Congress, and protest against the passage of the bill, giving their reasons as fully and as forcibly as possible.
The members of the present Congress have taken a more favorable view of another class of intellectua works, the productions of authors. International copyright has been favorably considered, and the bill re ported by the Senate Patent Committee, and the grant of patents to foreign authors, not members of the community, many of whom never have and never will see this country, is now in a fair way of being realized. In the same breath, the legislature that thinks so well of ostering foreign authors proposes to undo the laws protecting home inventors. If a book, as the product of the brain, is entitled in any sense to protection, a fortiori is a title to such protection due to an actual invention, which has assumed a tangible form under the clause of the patent laws requiring full and clea description and operativenessor utility. Inconsistency could go no further than this-to refuse to home in ventors what is granted to foreign authors.

GLOUCESTER FISHERS.

Contending with perils at sea and Canadian armed cruisers inshore, the life of the Gloucester fisherman is not a happy one. If, however, he can escape from the first and elude the second, he is pretty certain to find a good profit awaiting him, for rarely is there a glut in the deep sea fish market. Mackerel may be so plenty as to be almost given away, as was the case at Fulton Market, New York city, recently, during the early run of young mackerel or "tinkers;" but a large supply of halibut, cod, hake, and haddock only tends to so far reduce the price as to bring them within the means of the many. The "mackerelers" and the "bankers" may fairly be looked upon as two distinct orders of fishermen, for while the latter sometimes engage in mackereling in summer seas, the mackerel men rarely risk the dangers of the stormy Banks in winter.
The visitor to the Gloucester wharves will be surprised to find that the "bankers" are manned by young prised to find that the "bankers" are manned by young
men exslusively ; perhaps it would be safe to say that
at least half of these fishermen are under twenty. In many cases the skipper himself is as young as three and twenty. Indeed, it is said at Gloucester that there is no "old" bank fisherman; that is to say, there are none who have for many years continued to fish during the winter on George's and the Grand Banks.
Grim death menaces the life of the Bank fishermen in too many ways to permit of such a career. A few successful seasons of this fishing will often put several thousand dollars and sometimes very much more in the pockets of a single hand. Then is the time for him to quit the business: He usually does this, and employs himself thereafter in less hazardous enterprises afloat or ashore
The statistics show that the number of fishermen lost on the Banks has averaged nearly one hundred and fifty a year for the past decade from the port of Gloucester alone. Heavy seas, fierce winds, and fogs and thick weather prevail on the fishing grounds all winter and these serve, of course, to intensify the peculiar dangers to which these fishermen are exposed. Most of the time the fishing schooners must be hove to under storm trysail ; for shnuld they come to anchor, the holding ground is so uncertain that, swinging with the tide, they are like to foul it and, athwart seas, ear their bows out with plunging. Sometimes dur ing gales, they drift down on to one another, and this nearly always means disaster. Another and no less serious danger is that of being run down by the ransatlantic steamers, for they lie almost directly in their track. Perhaps the most menacing dange of all is that experienced by the "trawlers" in setting and hauling in their nets. The "trawlers" al ways set four nets at some distance from their vessel. One of these nets is ahead another astern, and one on each quarter. Two men go ut in each dory, and ar sometimes gone for hours. If the weather be thick, the fog horn is kept going on he schooner, but those to windward are not always able to hear, and those to eeward not always able, if a heavy sea is running and a gale blowing, to ge back. Now, to be adrift on George's or the Gran Banks in a dory under such conditions of weather is more than dangerous, it is perilous. If a crew have their net aboard, they are likely any moment to be upset, and their only hance of a rescue lies in the possibility of drifting down upon some other fisherman and of being picked up.
The crew of a banker has

made of heavy timbers and planking, without plaster ing or sheathing), and covered with gravel or metal, No wooden Mansard or French roofs allowed, as they are regarded as "lumber yards up out of reach of water," furnishing so much additional material for the fire to feed on, as well as greatly increasing the risk of fire from adjoining property.
Girders and Columns.-To be made out of the best Southern pine timber. Iron girders and columns not allowed.
Floors.-To be made of " mill construction," consist ing of heavy Southern pine timbers from 5 to 10 feet apart, according to the burden they are expected to carry ; covered with three inch tongued and grooved plank ; then two layers of asbestos or other heavy floor paper (in stores and warehouses an inch of lime mortar can be used instead), and then an inch flooring above These floor timbers and floors to be left exposed beneath, without plastering or sheeting.
Elevators and Stairways.-To be placed in brick well holes extending at least two feet above the roof, and crowned with a skylight having an iron frame and thin glass protected with a wire screen. All openings share in the catch; this share, under certain circumstances, amounting to onehalf the fish they take. But the skipper and the cook, who is always next in rank, get the largest share. They are a sober, steady, and fearless lot of men, these fishers, whose habits and customs differ wholly from those of the ordinary Jack before the mast.

${ }^{66}$ Slow Burning', Construction.

The Boston Fire Underwriters' Union have issued several circulars recently which are full of suggestiveness to property owners. One of these gives rules for the proper construction of fire doors, so as to meet the requirements of the underwriters. Another important circular gives a brief standard schedule of what is needed to construct a slow burning building. We print this last mentioned circular in full for the benefit of the many whom it concern :
Mills, factories, stores, warehouses, and other buildings used for similar purposes, constructed in accord ance with the following instructions, will be slowly combustible, and will receive the lowest ratings from the Boston Fire Underwriters' Union, viz.:
Walls.-To be of brick; of such thickness as the in tended occupancy and building laws of the city may require, and not to exceed 60 feet in height from the sidewalk. The inner surface to be left plain or plastered direct on the brickwork.
Cornices.-To be of brick.
Roof.-To be flat and of "mill construction" (i. e., pores.
on the various floors to be protected with standard tin clad fire doors.
Well Holes for Light.-Not allowed in this class of buildings.
Shutters.-To be placed on all windows and other openings at the rear and sides of buildings, when exposed by other property or by another section of the same property cut off by division brick walls. To be of standard construction, and the fastenings so arranged that they can be opened from the outside.
Blind Attics.-And other concealed places that cannot be readily readily reached by firemen not allowed. Boilers.-For heating or power, to be placed in separate buildings or fire proof rooms, and provided with regular boiler chimneys.

Preservation of wood.

The prevention of decay in wood is said to be effectively accomplished by exhausting the air from the pores and filling them with a gutta percha solution, a substance which preserves the wood alike from moisture, water, and the action of the sun. The solution is made by mixing two-thirds of gutta percha to liquefy the gutta percha, when it is readily introduced into the pores of the wood, the effect of the gutta percha being, when it becomes cool, to harden the

NIGHT SKY.-MAY AND JUNE.
 by richarda. proctor.

The Great Bear (Ursa Major) occupies all the upper ky from west to north, except a small space occupied by the Hunting Dogs (Canes Venatici). The Pointer are in the northwest, almost horizontal. A line from the Pole Star (α of the Little Bear-Ursa Minor) to the Guardians of the Pole, β and γ, now occupies the position of the minute hand of a clock three minutes past an hour.
Due south, low down, lies Cassiopeia, while above, somewhat toward the east, we find the inconspicuous constellation Cepheus. The Camelopard is in the west f north, and getting upright.
Low down in the northwest lie the Charioteer Auriga) and the head stars of the Twins (Gemini) further west. The Crab (Cancer) is nearly due west the Sea Serpent (Hydra) holding his head almost ex actly to the west point. Above is the Sickle in the Lion, its blade curved downward, and the tail of the Lion (Leo) lies above, toward the south of west.
On the Serpent's back we find the Cup (Crater) and the Crow (Corvus), in the southwest and to the south of southwest respectively. Above these constellations, and extending beyond the south toward the east, the Virgin (Virgo) occupies the mid-heavens.
Above the Virgin we see the Herdsman (Bootes), his head and shoulders nearly overhead. Low down in he south is the Centau (Centaurus), bearing on his pear the Wolf (Lupus) as an offering for the Altar (Ara), which, however, is invisible in these latitudes. Above the Wolf we see the Scales (Libra), while the Scorpion (Scorpio), one of the few constellations which can at once be recog nized by its shape, is rising balefully in the southeast The Serpent Beare Ophiuchus) bears the Serpent (Serpens) in the mid heavens toward the south east, the Crown (Corona Borealis) being high up in the east, close by the Serpent's head.
Low down in the east is the Eagle (Aquila), with the fine steel blue star Altair, the Swan on the eft about northeast, and above it the Lyre (Lyra), with the still more brilliant steel blue star Nega. Her cules occupies the space between the Lyre on the one side and the Crown and the Serpent's head on the other. • He is high up, due east.
Lastly, the Dragon winds from between the Point ers and the Pole round the Little Bear, toward Cepheus, and then eastward toward the feet of Her cules, close by which we see his head and gleaming, eyes, β and γ.

The Textile Manufacturer, London, thinks there is likely to be a great deal of trouble growing out of the winding up of the New Orleans Exposition. The governments of Honduras, Ecuador, Peru, the Ar gentine Republic, the Samoan Islands, Uraguay, Chili, Santo Domingo, Hayti, Nicaragua, and Russia sent goods under the guarantee that all expenses of trans portation to and fro would be paid by the Exposition Company. Even Dom Pedro, Emperor of Brazil, has his son on the way with goods, in expectation that the show would be open into the fall. The enterprise has closed a miserable failure, and the goods of these nations are held for the charges due. It would seem not at all improbable, from the mora support the United States gave the affair by graut ing it subsidies, that it would in good faith be bound to take these goods out of pawn and send them back

Brooks Comet No. 3.

On the evening of May 22, Professor Brooks, of Phelps, N. Y., discovered another comet, having a right ascension of 11 h .51 m .15 s , and a north declina tion of $8^{\circ} 55^{\prime} 15^{\circ}$. The wanderer is reported as large but faint, and has a slow motion to the southeast Its discovery secures to Professor Brooks the first second, and third Warner prizes of the year.

IMPROVED PLANING MACHINE

We illustrate a special planing machine for planing heavy pedestals, made by Rushworth \& Co., of Sowerby Bridge. This machine, as will be readily seen from the engraving, which is from Engineering, is of exceptional strength and rigidity for the size of work which can be passed through it. It is designed to plane objects up to 7 ft . in length and 4 ft .6 in . square. The bed and uprights all fit level on the foundation; the bed itself is of double box section with strong box bed itself is of double box section with strong box
bars, and the table, which is 4 ft . wide, has T slots
worked by steel screws and a steel shaft, and self-acting in horizontal, vertical, and angular feed. The vertical range is 15 in ., which is of great importance for this class of tool, for planing inside a pedestal or a valve chest. The two tool boxes on the upright stands project the same distance from the cross slide, so that all the four tools, when in use, finish the cut together These tool boxes are balanced by weights inside each upright, and are self-acting vertically. The feed mo tion is very simple and durable, and is operated from
a wrought-iron rack on each side; all the tool boxes

Ice in the Sick Room.
A correspondent of the National Druggist makes the following seasonable suggestion:
"The writer's son suffered with typhoid fever during the heated term of last summer, when the temperature of the room often rose to 90° or 95°, and the patient's temperature ran up to $105^{\circ} \mathrm{F}$. and over.
"A number of tubs were placed in the room, and kept filled with ice, and the doors kept closed. The temperature of the room sank to 80° or less, an average of 12° or 15° below the temperature of the other rooms

IMPROVED PLANING MACHINE.
planed out of the solid with slot holes on each outer have a variable feed, self-acting, from one-sixteenth to $\operatorname{\text {inthehouse;andthecooleratmospherenotonlyadd-}}$
diameter running in gun-metal bearings at each end, and engaging with a gun-metal nut 2 ft . long, made in two parts, so that the slightest wear in the thread can be taken up.

At each end of the screw there are double-thrust bearings; that at one end consists of a tail bar with an adjustable steel pin, and that at the other end of a bridge, with gun-metal washers 8 in . in diameter. By this arrangement the bevel gear on the screw is always kept in the same position. The bevel gear is steel, and is driven by pulleys of 30 in . and 24 in . diameter for the cutting and return strokes respectively. The machine has two strong tool boxes on the cross slide
edge. It is driven or worked by a steel screw $41 / 2 \mathrm{in}$. in seven-sixteenths, a range of feed which cannot be got ed to the comfort of the patient, but aided in keeping seven-sixteenths, a range of feed which cannot be got $\begin{aligned} & \text { ed to the comfort of the patient, but aided in keeping } \\ & \text { down the body temperature, and materially contrib- }\end{aligned}$ the wheels on the screws and the shaft on the cross uted to a final recovery." slide are all cut from wrought iron. and the feed wheels in the tool boxes are of gun metal. The loose disks or adjusting strips to the slides are also of wrought iron, so that there is no danger of their breaking, however tight they are nipped when doing the heaviest of work. The machine can be stopped or at the extreme end, both sides of the machine are left entirely clear for the workman to stand in front of the tool boxes, etc. The bed is fitted with lubricators. The tool boxes, etc. The bed is fitted with lubricato
approximate weight of the machine is 12 tons.

The Next Louisville Exposition.
For three years past, commencing with 1883, the exhibitions held at Louisville, Ky., have been brilliantly successful, alike in the attendance and in the variety and excellence of their display of works of art, industry, and agriculture. This year the exhibition opens Aug. 28 and closes Oct. 23, and its managers propose to make the show contribute materially to the attractions which Louisville always presents to visitors at that season.

IMPROVED FREIGHT CAR DOOR LOCK

 This lock for the sliding doors of freight cars is ope rated from the roof of the car ; it is simple in construction, safe, and reliable. The squared upper end of a vertical shaft journaled in the roof of the car projects into a recess in the gang planks. In one end of the recess is hinged a hasp provided at its middle with a square hole fitting the end of the shaft; the free end of the hasp has a slot to receive a staple. Secured to the
abBott's Improved freight car door lock.
lower end of the shaft is a disk, to opposite points of which are pivoted rods which extend to the sides of the car, and can be passed into holes in the upper parts of the doors. The rods are guided by clips on the under side of the top beams of the sides, as indicated in Fig. 2. The position of the locking rods is shown by a groove in the top of the shaft, which extends in a direction across the car when the doors are locked. To lock the doors, the shaft is turned by means of a key, to move the rods toward the sides, when the hasp is placed over the squared end of the shaft, the staple passing
ends of the machine, and revolved away from each other, so that they will cut in opposite directions when the log is moved back and forth. In this case the shafts are not shifted, and the saws revolve in the same plane. The top saw runs in the same plane with the saw that is moved out for action.
This invention has been patented by Mr. John P. Moore, of Snow Hill, Maryland.

The Transportation of Young Shad

The United States Fish Commissioner's car recently arrived at Portland, Oregon, with a large consignment of young shad. It started with a million, but about three hundred thousand died en route. Half a million were placed in the Columbia River, at Wallula Junction, and the remainder in the Willamette River, at Albany. During the journey across the continent, the experiment was made of hatching the shad in the car while enoroute, and proved entirely successful. Six hundred thousand eggs were taken into the car at Havre de Grace, Md., and placed in four Macdonald jars. A pump was kept constantly at work moving the water to preserve its freshness. In addition, fresh water was obtained at every available point. During the nine days' journey, which covered a distance of 3,000 miles, fully 95 per cent of the eggs were hatched. Most of the loss was due to premature hatching.
These prairie-born shad have also been placed in the Willamette River at Albany.

HAY LOADER.

This hay loader collects the hay from the ground, aises it to a suitable height, and discharges it upon the hay rack of the wagon. The wheels are rigidly attached to the axle, to which, or to the spokes of the wheels, is secured a large drum. The ends of the axle revolve in bearings near the rear ends of side bars of a frame, the forward part of which is provided with a staple to engage with a hook attached to the rear end of a hay rack. To the upper ends of inclined and properly braced standards secured to the forward ends of the side bars, is journaled a small cylinder. Around the two cylinders are passed endless belts united by cross bars, to which are attached teeth having their outer parts curved forward slightly, so that they will take hold of the hay more surely, and carry it up the elevator and discharge it more readily at the upper end. Upon a cross bar uniting the rear ends of two bars pivoted to the ends of the axle are held the rake teeth, which are bent forward and then downward, and theirlower parts are curved forward into the slot. A padlock is then passed through the sta-| until the lower ends are near the ground beneath ple and sealed, or a car seal of the usual form can be passed through the staple and closed.
This invention has been patented by Mr. James Ab bott, of 836 North Main St., Elmira, N. Y.

CIRCULAR SAW MILL.

The shafts carrying the two lower saws can be moved longitudinally in their bearings, to bring the saws alternately in position for action. One end of each shaft is held in a bearing secured to the side piece of the frame, and the other end revolves in a bearing secured to a heavy bar sliding endwise in the main frame of the machine, for shifting the shaft and saw attached to it. Upon one of the moving bars is a rack with which meshes a pivoted toothed segment operated by a hand lever, to move the bar in either direction. This construction is clearly shown at the left in the engraving. The other moving bar is operated from the first one by a centrally ful crumed lever, the ends of which enter recesses formed in the facing edges of the two bars. The belt from the driving pulley passes over the pulley on the shaft of the saw at the right hand, then around the pulley driving the second lower saw, then over the pulley on the upper shaft. In this manner of applying the belt the lower saws are revolved in opposite direc tions, both toward the center of the machine. The teeth of the saws are pitched toward the center, so that one will act when the log is carried in one direction, and the other when the log is moved back, the required saw being brought forward by operating the lever. The lower saws may be made with their teeth pitched in opposite directions, outward toward the

the axle.

As the machine is drawn forward, the rake teeth collect the hay, and the carrier teeth carry it up over the small cylinder and discharge it into the hay rack. In the rear ends of the side bars of the frame are holes to receive a pin, by which the rake teeth can be raised more or less from the ground. When detached from the rack, the forward end of the machine is supported upon a hinged leg.
This invention has been patented by Mr. B. D. Spilmin, of Fort Meade, Dakota.

gPILMAN'S HAY LOADER

EXTENSIBLE CANE, ETC.
The object of this invention, patented by $\mathbf{M r}$ Arland H. Allen, of Red Wing, Minn., is to provide an extensible rod adapted to various uses, but more especially for closing the lids of outside burial cases after the cases are lowered into the grave. At the upper end of the tube forming the body of the cane is the usual head, and at the lower end is an internally threaded flange. Within this tube is a second one having a collar at its upper end and a cap at its outer end threaded to fit the flange. In a slot through the end of the inner tube and cap is pivoted a hook formed with a sihoulder engaging with a shoulder on the tube, when the hook is unfolded as shown at C. When the rod is contracted, A, the inner tube is held within the outer one by the cap screwing into the flange. When the rod is extended, B, the inner tube is drawn out, so that its collar engages with the flange. The hook is then opened, C, so that it forms a right angle with the tube. The lid of the burial case is closed by bringing the hook into engagement with a staple projecting from the free edge of
the lid. This device may also be used for reaching otherwise inaccessible objects in show windows and other places.

FURNACE FOR BURNING FINE COAL

The accompanying views show a furnace for burning soft coal screenings, commonly known as "slack" or "culm," either alone or in combination with hard coal or coke screenings. This furnace is the invention of and has been patented by Mr. Anton Hardt, of Wellsborough, Pa. Above a firebox of ordinary form are placed two fireclay retorts, similar to those employed in gas works. In the bottom of each retort is an opening that may be closed by a slide, made of fire clay, and near the rear end of each retort is a fireclay tube, extending upward to near the top and downward within the firebox. The front ends of the retorts are closed by doors provided with peep holes. The fire is started in the usual way on the grate, and when sufficiently hot the retorts are charged with fine coal. After the coal has been converted into what the inventor terms "semi-coke," one of the slides is drawn forward by an implement inserted through an opening just below the retorts, when the coke drops down upon the fire, being shoved and drawn to the opening.
After one retort has been emptied it is refilled with fine coal, and as soon as required the second one is

HARDT'S FURNACE FOR BURNING FINE COAL.
emptied and filled again, the retorts being used alternately. The gas driven out of the coal passes through the tubes into the firebox, where it ignites and fus nishes additional heat.

Cleaning Petroleum Pipes.

The pipes by which petroleum is transported from the oil regions to the seaboard are cleaned by means of a stem $21 / 2$ feet long, having at its front end a diaphragm made of wings which can fold on each other, and thus enable it to pass an obstruction it cannot remove. This machine carries a set of steel scrapers somewhat like these used in cleaning boilers. It is put into the pipes and propelled by the pressure transmitted from the pumps from one station to another. Relays of men follow the scraper by the noise it makes in its progress, one party taking up the pursuit as the other is exhausted. They must not let it get out of their hearing, for if it stops unnoticed its location can only be established by cutting the pipe.

HORSE DETACHER.

The object of the invention herewith illustrated is to provide a simple and efficient device for releasing horses from vehicles in case of a runaway or accident. In a recess in the outer end of the ferrule on the end of the whiffietree are pivoted two arms, one of which is extended along the side of the ferrule, and has its end formed with a bevel and shoulder to receive the end of a bolt sliding in a socket, as shown in Fig. 1. A spring holds the bolt into engagement with the arm. A spiral spring tends to push a shoulder formed on the front or lower arm against a shoulder on the other arm. Normally, the free ends of the arms are separated, as shown in the full lines in Fig. 1; and when it is desired to place the traces on tbe arms, the

TEETER'S HORSE DETACHER.

front one is moved toward the other, against the pressure of its spring, into position indicated by the dotted line, when the trace can be readily put on. The spring then forces the arm away and retains the trace in place. Near the middle of the singletree is an equal armed lever, that receives in its opposite ends the cords secured to the sliding bolts at opposite ends of the tree. These cords are led, as shown in Fig. 2, within easy reach of the driver. The strain of the traces comes mainly upon the upper or rear arm. By pulling upon the cords the bolts are withdrawn, and the rear arm, being released, is pulled into the position shown in the dotted lines, when the arms, being parallel, allow the traces slip from them.
This invention has been patented by Messrs. S. M and C. A. Teeter, of Tuscola, Ill.

IMPROVED PNEUMATIC ACTION FOR ORGANS.
The pressure applied to the keys is resisted, especially in large organs requiring much wind and consequently large valves, by the compressed air in the wind chest and the valve springs. This resistance has been a source of trouble, as it affected the touch of the performer, and made the pressure required to depress some of the keys so great as to be fatiguing. To a certain extent, this annoyance has been overcome by means of pneumatic bellows, or comparatively small supplemental bellows in connection with the larger valvesthose offering the most resistance-and under the control of the keys through the intermedium of levers, connecting rods, and valves, the smaller bellows being also in communication with the main bellows and shut off therefrom alternately as the keys were operated. The air pressure produced by the main bellows was thus utilized to aid the performer in opening those valves presenting the greatest resistance.
The accompanying engraving shows a pneumatic action-the invention of Mr. Ira Bassett, of 453 West Harrison Street, Chicago, Ill.-which is remarkable for its simplicity and compactness, for promptness of action, and for the ease with which it can be taken apart for repairs, if necessary, after years of use. The organ pipes are arranged upon the chest, as plainly shown in Fig. 1, and are controlled by means of slides, which constitute a part of the stop movement of the organ. The connections between these slides, the pneumatic bellows, and the keys are plainly shown in the engraving. The channel board, which constitutes the back of the chest, consists of an outer and inner wall, between which are diagonal strips and horizontal intersecting blocks that divide the space into separate compartments or comparatively small air chambers, h, as shown in Fig. 2, which is an enlarged view of one of the pneumatic actions. In the outer wall are two valve openings, $i i$, for each compartment, and in the inner wall is one opening, j, for each compartment
The lower side of the pneumatic bellows, P, is rigidly connected to a heel piece, k, in which is an opening, but the upper side is hinged. The rear ends of the two sides are connected by an infolded material, and the sides are constructed as usual to permit inflation. Too great inflation is prevented by a tape, o. The bel-
lows are attached to the rear side of the channel boar by means of angle plates, R , having slots, m, formed in their depending parts to receive screws, which hold the bellows firmly in place and yet permit of their easy removal. The opening, k, corresponds with the lower opening, i, in the compartment. The trackers, T, are joined to the small arms, s, applied to the expanding ends of the bellows. These trackers lead to levers con nected with the slides in the chest.
Connected with the lower ends of the bell crank levers, A, are trackers, B, leading to levers operated by the keys. The other ends of the levers, A, are attached to wires, D, carrying the valves, E ; these wire pass through the upper openings in each chamber Springs, F, hold the inner valves closed and the outer ones opened. Depressing a key tilts the lever, A, opens the inner valve and closes the outer one, when the air in the chest enters the compartment, passes into and inflates the bellows. As the bellows is inflated, it raises the tracker, T, whose lever is tilted to draw down its other tracker, which moves its slide to allow wind to pass through. and sound a pipe. The air producing this result is of course under pres sure, the chest being in communication with the main bellows. When the key is released, the spring returns the valves, E , to their first position when the bellows exhausts, a spring at the same time closing the slide in the main wind chest. The air escapes from the bellows through its opening in the heel, k, and the open valve E. The large view shows six sets of pneumatic actions each one being similar to the one shown in detail in Fig. 2. As usually made, each row of pneumatic bellows has a chest for supplying air to the bellows and levers for operating the valves But by supplying air to the bel lows by means of a vertically arranged channel board divided into chambers, as described, much less space is occupied, since the bellows are separated from each other only sufficiently far to permit of their inflation. By loosening one screw, m, the bellows can be removed

A Trade Mark Decision.

The case of Davis et al. vs. Davis et al., decided by the United States Circuit Court at Boston, arose upon a bill in equity filed by the plaintiffs to re strain the alleged infringement of their trade mark. The plaintiffs manufactured and sold what was known as "Welcome Soap," and the defendants what was known as "Davis' Old Soap." The plaintiffs, who had their trade mark registered under the laws of the United States, alleged that the arrangemeat by the defendants of the cakes of soap in boxes with alternate red and yellow wrappers was an infringe-

BASSETT'S IMPROVED PNEUMATIC ACTION FOR ORGANS
the merchandise. In reference to the claim that the trade mark consisted of the colors in the wrappers, the court said that this seemed to be no less than an attempt to claim a patent for an idea under the guise of the registration of a trade mark.

THE FLUTTERING FLY.

A very important article in the equipment of the sportsman who with rod and tackle essays to tempt the shy trout or black bass to exchange his icy brook for a soft bed of leaves in a fishing basket, is his assort ment of artificial flies. Heretofore they have been ar ranged so that the fly headed toward the line. In this position the wings offer consider able resistance to the air when the line is being cast, and lie so close to the body when the fly is drawn through the water that the motion of a live insect is not very success fully simulated. A much more satisfactory arrangement is that just patented by Mr. Wakeman Holber ton, of Hackensack, N. J., in which the fly or other bait is headed in the opposite direction, that is, toward the point of the hook, as
 shown in our illustration. When so arranged, the wings offer less resistance to the air in casting. As the fly is slowly drawn toward the angler the wings expand, and give it a fluttering, life-like motion, much more alluring to the fish. The patent for tying artificial flies in this manner is controlled by Messrs. Abbey \& Imbrie, the well-known manufacturers of fishing tackle in this city.

Resting after Meals.

A friend of the writer's, who has suffered from dyspepsia during almost her entire life, considers the suggestions in the following extracts from an article in a recent issue of The Journal of Health to be the most in accord with her own experience of anything on the ubject lately published.
Hurried eating of meals, followed immediately by some employment that occupies the whole attention and takes up all, or nearly all, of the physical energies, s sure to result in dyspepsia in one form or another. Sometimes it shows itself in excessive irritability, a sure indication that nerve force has been exhausted; the double draught in order to digest the food and carry on the business has been more than nature could stand without being thrown out of balance. In another case, the person is exceedingly dull as soon as he has a few minutes of leisure. The mind seems a dead blank, and can only move in its accustomed channels, and then only when compelled. This, also, is an indication of nervous exhaustion. Others will have decided pains in the stomach, or a sense of weight, as if a heavy burden was inside. Others, again, will be able to eat nothing that will agree with them; everything that is put inside the stomach is made the subject of a violent protest on the part of that or gan, and the person suffers untold agonies in consequence. Others suffer from constant hunger. They may eat all they can, and feel hungry still. If they feel satisfied for a little time, the least unusual exertion brings on the hungry feeling, and they can do no more until something is eaten. It is almost needless to say that this condition is not hunger, but inflammation of the stomach. Scarcely any two persons are affected exactly in the same way, the disordered condition manifesting itself according to temperament and occupation, employments that call for mental work, and those whose scene of action lies indoors, affecting persons more seriously than those carried on in the open air and those which are merely mechanical and do not engage the mind.

All, or nearly all, of these difficulties of digestion might have never been known by the sufferers had they leit their business behind them and rested a short time after eating, instead of rushing off to work immediately after hastily swallowing their food.
Nature does not do two things at a time and do both well, as a rule. All know that when a force is divided, it is weakened. If the meal were eaten slowly, without preoccupation of the mind, and the stomach allowed at least half an hour's chance to get its work well undertaken before the nervous force is turned in another direction, ment of their (plaintiffs') trade mark. The court in patients suffering from dyspepsia would be few. denying a motion for an injunction held that the A physician once said: "It does not so much matregistration, in so far as it could be interpreted to cover the sale of boxes of soap, was entirely void, for the reason that the object or thing included in the inscription was not such a thing as could be lawfully registered as a trade mark. The trade mark, the court said, must be something other than and separate from
ter what we eat as how we eat it." While this is only partly true, it certainly is true that the most healthful food hurriedly eaten, and immediately followed by work which engages the entire available physical and mental forces, is much worse than a meal of poor food eaten leisurely and followed by an interval of rest.

photographic notes.

Decline in the Price of Magnesium.-Owing to the great sensitiveness of the present dry plates, a new field urnishing an actinic artificial light whereby pictures can be readily secured at night. This, together with improved and cheaper methods of producing it, has recently led to a marked decline in the price. The fall in England has been from 15 shillings to 2 shillings and 6 pence per ounce, or nearly seven times cheaper than formerly.
It is probable that the same product will be sold in this country at the rate of 75 cents per ounce instead of $\$ 3$, as heretofore.
For obtaining a uniform actinic light in the making of enlargements and positive prints on gelatino-bromide paper, the magnesium ribbon is unexcelled. It will, in fact, be as cheap, for this purpose, as common gas. The reduction in cost is likely to bring the metal into more extensive use for photographic purposes.
Simple Remedy for Frilling.-For plates inclined to frill, Mr. A. L. Henderson, of London, recently suggested the following plan, which we find in the British Jour. of Photo. After exposure and prior to development he flows over the plate a solution of gelatine and water (5 grs. of gelatine to each ounce of water), and allows it to dry.
Then the plate is putin the developer, and frilling will be prevented; the additional film of gelatine does not in the least affect the action of the developer. By a simple experiment, he discovered the value of this remedy. Taking a plate which was cast aside because of its frilling tendencies, he coated half of it with the gelatine. When placed in the developer, the portion not protected at once frilled to an extraordinary degree, while the part coated with gelatine remained smooth and unaffected.
Reproducing a Brilliant Negative from one that is Overtimed.-In the American Journal of Photography appears a practical account by Mr. Wm. H. Rau of his plan to obtain good duplicatenegatives from a poor his plan to obtain go
original, as follows:
We had made upon large plates exposures of the interior of a handsomely furnished room, especially arranged for the occasion; and imagining that we had given the correct time or near it, and not for an instant suspecting an overexposure, we confidently placed the plate in the normal developer. The image did not begin to appear at once, but almost immediately on its appearance began to overcast. We at once saw that the exposure was probably four times as much as it should have been. We were anxious to save the plate, as the conditions for making another exposure were no longer possible.
It was very tame and flat, but full of detail. We added more pyro. and bromide, in order to give it the density necessary for printing, and, when sufficient strength was had, fixed it in the usual manner.
We then resorted to the following means for getting a brilliant picture by reproducing the negative.
We took a rapid plate, and exposed it for one second under the negative to the light of an ordinary gas flame, at a distance of 18 inches.
Great care was necessary in developing this positive, and we used the following proportions of developer, to secure as much contrast in the impression as possible.
We made the following solutions:
A.

Carbonate potassa.... .. 4 oz.
Water to make up to 16 oz.
Water to make up to 16 oz .
B.

Water... oz. 2 oz. Sulphite soda, cryst.................. 2 oz.
Sulphuric acid (added slowly) 1 ro.
Pyrogallic acid Pyrogailic acid
Water to make
Of these solutions we took of :

Solution of bromide potassium (30 grs. to oz...................1/2 dr dre.
The development proceeded slowly, and gradually
built up a vigorous and plucky positive, full of detail and crispness.
We then used this positive to reproduce the negative, employing a rapid plate, giving the same exposure, and using the same developer.
The final negative had all the appearance of a properly timed plate.
In connection with the above, it may be of interest to know the value of Farmer's solution as a local reducer of too great intensity, either in a negative or print.
It consists of a mixture of hyposulphite of soda and ferrid cyanide of potassium, commonly called red prussiate of potash.
A solution of each is made of equal strength, say one ounce to a pint of water ; when used, one-half drachm of the ferrid cyanide is added to one ounce of the hypo, the negative is plunged in the solution, and as the high lights are attacked first,they may be effectually reduced lights are attacked first,they may
before the shadows are touched.

The solution may also be used for reducing overprinted photographs upon paper without affecting the one in the least.
Simple Apparatus for Making Lantern Slides.-At a recent meeting of the Photographic Society of Philadelphia, Mr. C. R. Pancoast, according to a description published in the American Journal of Photography, explained a simple way of copying transparencies from negatives. Upon a board he had hinged a frame held in an upright position at right angles, and on the frame were two parallel strips, sliding vertically, provided with grooves for receiving the glass plate. The strips could be used to approach each other by sliding up and down on the frame,and thus accommodate different widths of plates. On each face of the frame was marked a scale commencing from 0 (naught) at the center to inches on each side. In this way a negative could be quickly centered, and any portion of it could be readily brought to the center, or opposite the lens. The camera was placed on the board behind the negative frame, the space between the latter and the camera being covered by a dark cloth. The apparatus was easily made, and at the same time was simple and effective.

House Bill 4,458.

The following is the text of a bill introduced in the House of Representatives, January 26, 1886, by Hon. R. W. Townshend, of Illinois :

A bill to limit the jurisdiction of United States courts in patent cases, and to protect persons who, without notice, are bona fiae manufacturers, purchasers, vendother things for the exclusive use, manufacture, or sale of which a patent has been or may hereafter be granted.
$B e$
Be it enacted by the Senate and House of Representatives of the United States of America in Congress
assembled, That hereafter the United States district assembled, That hereafter the United States district
and circuit courts shall have no jurisdiction to hear or a try any case arising from the actual use of any patent right, or its infringement by such use, by any per-
son in or citizen of the United States or the Territories son in or citizen of the United States or the Territories, wherein the amount in controversy does not excee two hundred dollars against one person or citizen.
ual use shall not be liable to damages, royalty, or for ual use shall not be liable to damages, royalty, or for
value of the same, or for infringing the same in any value of the same, or for infringing the same in any
manner, who at the date of such purchase had no manner, who at the date of such purchase had no
knowledge of the claims of any third person, or that the inventor of the same has an interest therein ad-
verse to the seller thereof. That no person who shall verse to the seller thereof. That no person who shall
in good faith purchase, use, manufacture, or sell, within good faith purchase, use, manufacture, or sell, with-
out previous knowledge of the existence of a patent therefor, any article, machine, machinery, or other thing for the exclusive use, sale, or manufacture of
which any patent has been or hereafter may be ed to any person, persons, or corporation whatever shall be liable, in damages or otherwise, for an infringement of such pateut until after written notice of the
existence thereof shall have been personally served on existence thereof shall have been personally served on
such person or persons or corporation, as the case may such person or persons or corporation, as the case may
be, and such infringement shall be thereafter conbe, and
tinued.
SEC. 3. That all laws or pa
herewith are hereby repealed.
SEC. 4. That nothing herein
any pending suit or proceeding in any of the courts o the United States or in any court of any of the several states.

Improvements in Heliogravure.

The art of heliogravure, writes Herman Reinbold in the Inland Printer, has been brought to great perfec tion lately. The processes have not only been simplified, but the results obtained have been more satisfactory, and the cost of printing cheapened. Some of these methods and improvements obtained are hereby described.
heliotypegravure for simple line work.
This process is very valuable for the reproduction of lithographs, steel or copper plate prints, especially when the subject is to be reduced. The zinc plate, after having been well washed and polished, is coated with a solution of 100 parts of water, 10 parts of gelatine, 25 parts of honey, 8 parts of bichromate of potash, or 12 ounces of water, 2 ounces of sirup or molasses, 4 drachms of bichromate of ammonia; and dried in strong heat.
A reversed negative is laid on the surface of one of these plates, and exposed for four or five minutes to sunlight. When it is printed, the plate is taken out and exposed to steam, which is done best by holding it over a pan containing boiling water. It will then be
noticed that the parts not exposed to the light will get moist, while the other remains dry. The moist places will now take emery powder, which is put on the surface with a fine camel's hair brush, while it will not stick on the dry places. The plate is now dried once plate of type setal placed in contact wher hydraulic pressure. By this procedure the emery powder will be pressed into the metal, and there produce a fine grain. From this plate impressions can be printed the same way as is done in steel plate printing.

mezzotint heliogravure.

The plates are prepared in the same manner, and a good negative (half tone) placed on it. Now expose for one minute in full sunlight, putting the plate under a right angle to the rays. The light. will change only
the lightest parts under thenegative, and consequently only these will remain insoluble, while all the rest will
take the emery powder. After having the plate dried, the impression is made on the printing plate, whereupon the film is taken off, and a new coating given to it. It is then exposed under the same negative for two minutes, dampened, and dusted with emery powder and a second impression made on exactly the same place where the first impression was made. This will bring out the middle tints. A third exposure for three minutes on print and impression will make the darkest parts, and the plate is ready to be printed from. Care has to be taken to get all three impressions on the same place, to get the picture exact, and if this is done, the effect is surprising.

atmography.

Under this name a new process has been brought out n France, by which it is made possible to get the printing plate right in the camera, thus saving the trouble of making a negative, and though a little more expensive, saves time and gives better results than copying.
The action of the light on chrome salts is very slow, compared with its action on silver salts; its action on the former being due to the decomposition of the alkaline salts into a simple chrome salt and chromic acid. It has recently been discovered that bichromate of lithium decomposes about as quick as nitrate of silver A zinc or copper plate coated with the following mixture, and exposed like a negative for the same time as is given by the wet plate process, will give very satisfactory results : 4 ounces water, $13 / 4$ ounces albumen, 2 drachms bichromate of lithium.
The solution must be kept in a well corked bottle, and will not be valuable longer than two weeks.
After the plate has been exposed it should be immediately placed in cold water, and afterward in a fifteen per cent solution of sulphuric acid in water; again washed, and then placed in a vessel containing a bicarbonate of soda solution. The unnecessary moisture should next be taken off with a wool roller, and the plate covered with lithographic or etching ink, and dusted with asphaltum and heated. The back should then be covered with asphaltum, and etched slowly with sesquichloride of iron in alcohol until sufficiently deep. The plates made in this manner can be printed on a steam type-printing press.

The Last of the old Handloom weavers.
In the manufacturing districts of the West Riding of Yorkshire the handloom will soon be as rare as is now the spinning wheel or the "tummer." Not often in these days is heard through the open cottage door the click-clack of the shuttle and the rattle of the "yelds," or the soft thud of the beam closing up the weft. Seldom will the traveler (says the Pall Mall Gazette), in the dark afternoons and long evenings of winter, be puzzled by the quick and regular glancing of candle gleam through the blindless casements, as the to and fro motion of the weaver's beam alternately hides and reveals the light within, reminding the beholder of the revolving ray of a lighthouse in its sudden appearing and disappearing, except that the alternation is much more rapid. In the former times, when with the dark days of winter "waking and water porridge" began-a local phrase which expresses more than can be concisely explained-on many a hillside there might be seen these lights of the loom flashing and fading in quick exchange, like the dancing of Jack o'lanterns in the valley below; here for a few moments a steady gleam, while the weaver refilled his shuttle or "took up" a broken thread, and then again the quick exchange of gloom and gleam. Nowadays we do not, without some surprise, meet man or woman, lad or lass, with the donkey, "going abunting "-which to the uninitiated may be explained simply as carrying to the weaver's home the warp and weft to be woven, and again carrying back the completed piece of cloth. Very, very rarely is a man or woman seen with the leathern strap across the forehead and the huge burden-bigger far ard heavier than any illustrator has ever ventured to place on the poor Pilgrim's back-weighting the step and bending the back.

Arizona Alum.

According to the Clifton (Arizona) Clarion, Graham county in that section has a valuable alum deposit. As exposed, the entire face of the bluff for at least 500 feet is a solid bed, chief part of pure alum, though in other parts highly impregnated with copper. As it appears on the face of the bluff, it is a mixture of quartz, iron, and copper, but as the hill is penetrated the quality mproves in purity The vein proper, or that which carries the larger percentage of alum, cuts through the mountain and is plainly visible from a distance. The trend of the vein deposit is northwest and southeast, although no trace of the mineral is found on the east side of the creek. In many places the deposit closely resembles the carbonate beds which occur in Nevada, especially in the Eureka district. The mass is solid where not exposed, and will require blasting. Pockets are found frequently almost of pure alum, nearly up to the standard of the marketable com modity.

The Tunnels of the Ancients.

Leaving Naples by carriage, the road immediately leads through a tunnel three-quarters of a mile long, and cut right through a mountain eight hundred feet high. This tunnel is driven through a volcanic tufa. This tunnel of Posilippo, as it now exists, was cut through only twenty-seven years before Christ. Augustus Cæsar's great minister of public works, Marcus Agrippa, made the present tunnel, or he may have enlarged it from a smaller one that answered the commercial communications and necessities of the days before the Empire. This tunnel is to-day the great high way to the heart of Naples, as it has been for more than 1,900 years. The great Appian way ran to Capua within thirty miles of Puteoli ; thence this magnificent Roman high road, under the name of the Consular Way, was continued to Puteoli, and the then Con sular Way pushed on through Neopolis, Herculaneum, Pompeii, Stabia, Nucera, Salernum, Paestum, down to Rheulm. This tunnel of Posilippo was formerly called the grotto or tunnel of Puteoli. The ancients began their perforations at each end, and also from above, in two places equidistant from the termini of the tunnel. The guide-books, both Murray and Baedeker tell that the shafts from above were made by Alfonso I., in the fifteenth century, which is altogethe wrong. No less than four tunnels of Roman construction existed in the vicinity of Naples, and they, all of them, even the latest, rediscovered and open in 1842 have shafts from above.
The Romans were great road, tunnel, and bridge builders, and we have never yet given their engineers half the credit which we should for their great science and skill. Nowhere, not even in the city of Rome or on the Roman Campagna, are there so many evidences of their engineering skill as are to be found in the vicinity of Naples. At the recent meeting of the British Association of Science, held at Aberdeen, Scot land, Mr. B. Baker, an eminent British civil engineer, read a paper recalling certain engineering feats of the ancients. Mr. Baker says: "I have no doubt that as able and enterprising engineers existed prior to the age of steam and steel as exist now, and their work was as beneficial to mankind, though different in direction. In the important matter of water supply to towns, indeed, I doubt whether, having reference to facility of execution, even greater works were not done 2,000 years ago than now. Herodotus speaks of a tunnel eight feet square and nearly a mile long; driven through a mountain in order to supply the city of Samos with water; and his statement, though long doubted, was verified in 1882, through the abbot of a neighboring cloister accidentally unearthing some stone slabs. The German Archæological Society sent out Ernest Fabricius to make a complete survey of the work, and the record reads like that of a modern engineering undertaking. Thus, from a covered reservoir in the hills proceeded an arched conduit about 1,000 yards long, partly driven as a tunnel and partly executed on the 'cut and cover' system, adopted on the London underground railway. The tunnel proper, more than 1,100 yards in length, was hewn by hammer and chisel through the solid limestone rock. It was driven from the two ends like the great Alpine tunnels, without intermediate shafts, and the engineers of 2,400 years ago might well be congratulated for getting only some dozen feet out of level, and little more out of line. From the lower end of the tunnel branches were constructed to supply the city mains and fountains, and the explorers found ventilating shafts and side entrances, earthenware socket-pipes with cement joints, and other interesting details connected with the water supply of towns."
This tunnel of Posilippo is also a fine specimen of ancient engineering. Millions of, human beings have each year, for nearly twenty centuries, passed through it. Roman chariots and other ancient vehicles have left their autographs scraped and scratched into the lining stone, and modern wagons and carriages still rub their hubs against it, still rub their hubs against it,
leaving their traces for generations to come. Strabo wrote about this tunnel. Seneca described his passage through it. Petronius satirized it, and Petrarch, Boccaccio, Cappaccio, and more modern writers have told us their thoughts about it ; and it seems good for a thousand years to come. Virgil's tomb is just above its eastern entrance, and his farms (where he wrote part of both the "Georgics" and the "Aneid") are over it.

ERUPTION OF MOUNT ETNA.

On May 17 an eruption of Mount Etna began, which, according to the latest dispatches from Catania, Sicily, is daily increasing in proportions, and now threatens destruction to a number of the villages scattered over the lower slopes of the mountain. Vast volumes of flame and torrents of lava are issuing from 11 of the smaller openings to the south of the main crater, and in the neighborhood of Monti Rossi. Earthquake shocks are constantly occurring. A stream of lava, in some places 200 meters broad, flowed toward the town of Nicolosi, advancing at the rate of 40 meters an hour. At last reports, it was within one kilometer of the town,

and has in all probability repeated the violence of former years. The adjacent country has been desolated over large areas, and the people forced from their homes. All the streams and water courses in the district have dried up, and a water famine prevails.

Mount Etna, or, as the Sicilians commonly call it, Mongibello, is one of the most celebrated volcanoes in the world. It is situated on the eastern seaboard of the island of Sicily. Its name signifies the burning mountain, and was known to the earliest classical writers, by whom it was invested with many legendary terrors. To them it was the prison of the fabled giant Enceladus. The flames were his breath, the thundering noises his groans, and, when he turned on his side earthquakes were the vibrations produced by his ponderous frame. The ancients had very exaggerated notions of the size of the mountain, and computed its height at three and even four miles. As recently determined by the Italian Government, its true height is 10,868 feet. It must, however, be remembered that the cone of a volcano is far from constant in its dimensions, a diminution of more than 300 feet having been produced by a single eruption. The impressiveness of its elevation is due largely to the fact that it rises directly

1. Place of the Eruption. 2. Monti Rossi. 3. Village of Nicolosi.

ERUPTION OF MOUNT ETNA, MARCH 22, 1883.

from the sea, while few of the interior peaks attain 0 such a height above their respective plateaus. From the summit, the radius of vision gives an included area of 39,900 square miles. The circumference of the mountain is approximately 91 miles, and its area 480 square miles. The accompanying illustration represents Mt. Etna as seen from Catania, Monti Rossi and Nicolosi
being on its southern slope. The map shows their respective locations.
There are two cities, Catania and Aci Reale, and 63 villages on the mountain. In spite of its tragic history, Mount Etna is far more thickly populated that any other part of Sicily or Italy, no less than 300,000 per sons living within its area. Its general aspect is that of a pretty regular cone with very gentle slopes. On the eastern side, the uniformity is broken by an oval valley, four or five miles in diameter, called the Val del Bue. It is bounded on three sides by nearly vertical precipices, from three to four thousand feet high, and is entirely sterile.
The mountain itself is divided into three distinct regions. The lowest of these, the Coltivata, is extremely fertile, and produces an abundance of semi-tropical fruits and grains. When decomposed, the lava makes fruits and grains. When decomposed, the lava makes
a very rich soil. This zone covers the entire base of the mountain, and extends to an elevation of about 2,000 feet. Above this is the Selvosa, or woody region, which is covered with large forests. From its upper limit, at a level of 6,300 feet, to the summit is the Deserta, a dreary waste of ashes and lava. For a large part of the year this remains permanently covered with snow. A characteristic feature of Mount Etna is the large number of secondary cones scattered over its sides. There are at least eighty of these cones which possess some prominence. If one counts the monticules, there are between six and seven hundred.
The first eruption of the volcano within the historic period happened during the seventh century B. C. Since that time we have a record of seventy-eight different eruptions, many of which, however, have been of a comparatively harmless character. One of the most disastrous of the earlier eruptions was that of 1169. A violent earthquake destroyed Catania in a few minutes, burying 15,000 people beneath the ruins. In 1669 another terrible outburst occurred. Nicolosi was entirely destroyed. An immense stream of lava poured down the sides of the mountain. On reaching the walls of Catania, it accumulated without progression until it rose to the top of the wall, a height of 60 feet, and poured into the city in a fiery cascade. The lava flood covered at least 40 square miles of territory. In 1693 Catania was again destroyed by an earthquake, and in all Sicily between sixty and a hundred thousand people lost their lives. On the 26th of August, 1852, a very violent eruption occurred, which lasted for nine months. A party of English tourists were climbing the mountain at the time, and had a very narrow escape. The mass of lava ejected during this period is estimated to be equal to an area six miles long by two broad, with an average depth of twelve feet.
In 1864 earthquakes were frequent, and in 1865 an eruption of some violence took place. After that the mountain remained in a quiescent state until March 20,1883 , when an outburst occurred in almost the same locality as the destructive eruption of 1669 . It created great consternation, but the phenomena ceased on the third day without causing damages. The present eruption occurs in almost the same part of the mountain, and were it not for the interval of time which has elapsed, could readily be considered a resumption of the hostilities then begun.

Geologically, Mount Etna is somewhat older than Vesuvius. Lyell states that its formation probably began in the newer Pliocene period.

Another Inventor Gone.

Mr. E. F. Loiseau, formerly of Philadelphia, and well known as an inventor of a practical method of making compressed artificial fuel, died in Brussels, Belgium, on the 30th of last April.
Mr. Loiseau was enthusiatic on the subject of compressing coal dust with adhesive substances for fuel, and he went abroad several months ago to erect machinery at some Belgian collieries for the manufacture of fuel from the coal waste. A short time before his death, he wrote home that he had been obliged to bury his machinery to prevent its destruction by the infuriated laborers, who objected to the introduction of his machinery in the mining districts.

The latest invention in hat lining is a map of the city of London printed on silk, so that any stranger or gay young fellow may find his way home or see at a glance if cabby is taking him the nearest route to his destination.

Steamers to Run Fifty Miles an Hour.
At a recent meeting in London of the Society of Junior Engineers, Westminster, a paper was read by Mr. C. Hurst, explanatory, among other things, of the power necessary to obtain a speed of 40 knots in steam vessels. Mr. Hurst explained that the power necessary to be introduced into steamers of light construction in order to obtain any required speed could not be determined by the old method of reckoning the resistance as proportionate to the midship section, but was to be ascertained by Reech's law, taking the actual speed and proportions of a first-class torpedo boat as the basis of comparison.
According to Reech's law, the speed attained by a model with any given power will illustrate the speed attainable in a large vessel having the same proportion of power, the speed of the large vessel being in all cases greater than that of the sinall in the proportion of the square root of the increased dimensions. Thus, if we take a first-class torpedo boat for our model, 110 feet long, 12 feet broad, and 6 feet 3 inches draught of water, and $521 / 2$ tons displacement, the speed, with 470 horse power, will be $213 / 4$ knots, and these elements will enable us to determine what the speed of a vessel would be of the same form and of the same proportionate power, but three times larger every way. Such ves larger will be 330 fee long, 36 feet broad, and 18 feet 9 inches draught of water; her displacement will be 3^{8} or 27 times greater, or it will be $521 / 2 \times 27=1,4171 / 2$ tons. As each $521 / 2$ tons displacement must have 470 horse power, the total power will be $470 \times$ $27=12,690$ horse power. We shall then have two vessels in all respects identical, except that one is constructed on three times the scale of the other.
Although; however, the power is strictly proportionate in the two cases, the speed will not be the same, but by Reech's law the larger vessel will be the faster in the pro portion of the square root of 1 to the square root of 3 , or $1 \cdot 732$ times. If, then, the speed of the smaller vessel be $213 / 4$ knots. that of the larger will knots. that of the larger will be $213 / 4 \times 1732$, or 37.6 knot per hour. If we take the
larger vessel as four times the size of the smaller, the speed, with the same proportionate power, will be twice greater or it will be $213 / 4 \times 2=431 / 2$ knots per hour. The power necessary to attain this high speed will be 4^{3} or 64 times $470=30,080$ horse power. The displacement of the larger vessel will be $4^{3} \times 521 / 2=3,360$ tons, and the displacement due to the machinery will be $805 \cdot 71$ tons, taking the weight at 60 pounds per horse power, as in Thorneycroft's engines. The total number of horse-po wer required will be 470×4^{3}
$=30,080$ horse power. The dis
placement will be $134 \cdot 4$ tons per 1 foot of draught. The weight of the machinery will therefore increase the immersion by 5.9 feet; and if we take the weight of the hull as equal to the weight of the machinery, the draught of water with water in the boilers and the vessel ready for sea, except coal and stores, will be 11.8 feet, leaving a balance of $13 \cdot 2$ feet for coal and stores. If we take the consumption of fuel at 2 pounds per horse power per hour, the consumption of coal will be 26.8 tons per hour for 30,080 horse power ; and if we take the speed of the vessel at $431 / 2$ knots per hour, equal to $49 \cdot 4$ statute miles, the time required for a voy age of 3,000 statute miles in length will be $3,000+49 \cdot 4$ $=60 \cdot 8$ hours. Consumption of coal to be provided for will be $26.8 \times 60 \cdot 8=1,629.44$ tons as total consumption for the voyage.

This weight of coal will depress the vessel $12 \cdot 12$ feet, which brings up the draught to $23 \cdot 92$ feet, leaving a margin of about 150 tons for extra fuel and for stores. The result of the whole calculation is to show that a speed of 40 knots, or thereby, is attainable on an Atlantic voyage with a vessel of moderate size and light
construction and without any inordinate consumption of fuel ; and it rests, says Mr. James C. Paulson, in the Engineer, with those who challenge the accuracy of this computation to show wherein it is erroneous, if they can. In merchant vessels advantage has not hitherto been taken of the quality of lightness for the attainment of high speed, and it is important that this essential condition should now be taken into account.

Calorific Power of Coal Gas.

The Annales de Chimie et de Physique recently contained a description, by M. Witz, of his experiments for determining the calorific power of coal gas. The method pursued was that of Berthelot, and consisted in the instantaneous combustion of an explosive mixture in a shell plunged in the water of a calorimeter

THE GREAT SPHINX AS NOW CLEARED FROM THE ENCUMBERING SAND.

THE EGYPTIAN SPHINX

For some months past, excavations have been carried on at Ghizeh, near Cairo, with the view of freeing the famous Egyptian Sphinx from the masses of sand which have gradually buried the monument. M. Maspero, the Director of the Boulak Museum, has superintended the operations, which have proved remarkably successful, and in a recent letter he states: "The result is beyond all my hopes. The face, raised fifteen meters above the surface, is becoming expressive, in spite of the loss of the nose. The expression is serene and calm. The breast has been a good deal injured, but the paws are almost intact. We have nearly reached the limits of the diggings of Mariette and Caviglia. The work now going on is in beds of sand, which have not been disturbed since the first centuries of our era." Later he writes: "The stones of the right paw are covered with Greek votive inscriptions, while the left have none-an indication that the piety of the faithful was called into play more on the south side."
Accordingly, M. Maspero thinks that there might have been direct communication be tween the Sphinx and the gra nite temple to the south, and that in the intervening space either an unknown chapel may be concealed or some group of statues, such as Mariette discovered at the Serapeum. Another important question to be solved by excavation is whether the Sphinx rests on a bed of rock or on a specially hewn out pedestal. Egyptian sculptors represent the Sphinx on a pedestal ornamented with designs similar to those on early sarcophagi; and if their representation prove true, there is a prospect, according to M. Maspero, of finding the door of a temple or a tomb on the eastern side.
In thiscase the pedestalmay have been buried by the time of the Roman occupation, and the Ptolemies may have erected their monumental stair over the sand which covers it This question will be decided when M. Maspero unearths the first steps. Our illustra tion is from a sketch by Mr. Charles Royle, Alexandria.The Graphic.

The Mercurial Preventive of Phylloxera.

Prof. E. W. Hilgard, of Berkeley, Cal., in a note to Science, says : It appears per fectly practicable to protect vines planted in uninfested ground from attack coming from without, by surrounding the stocks with a sufficiently thick (eight to ten inch) layer of mercurialized soil, which, without obstructing or repelling the entering insects, will insure their being fatally poisoned before they can pass through it. This would leave the choice between grafting on resistant stocks on the one hand and
the elevation of the temperature of which could be exactly measured. A number of trials led to the determination, for a well-purified gas, of a calorific power of 5,200 calories per cubic meter of gas at 0° temperature and 760 millimeters pressure, saturated with aqueous vapor. This result was obtained from a gas mixed with six times its volume of air. Before passing through the scrubber and purifier, the same gas had a calorific value of 5,600 calories; so that it lost some thing by purifying. If the heat developed by the explosive mixture of one volume of gas and six volume of air is taken as the standard for comparison, it is found that the same gas gives 5 per cent more heat when fired with $1 \cdot 25$ volumes of oxygen. With 11 volumes of oxygen, on the contrary, the calorific power is less by 4.6 per cent. It, therefore, decreases with dilution in oxygen. It is not so when gas is mixed with air. When diluted with 11 volumes of air, the calorific value is greater by 2.5 per cent. than when the gas is mixed with only 6 volumes of air. Thus the effect of the extra dilution is inversely to what might have been expected upon general principles.
the mercurial protection on the other, in the planting of new vineyards, the cost being (in California) about the same in either case; it would also serve for protection against threatened invasion, in the case of vineyards already planted, since, apart from the case of open soil cracks giving access to the vine roots, the stocks are the only known route by which the phylloxera reaches the root. Such are the presumptions created by our small scale experiments; how far the process will prove available in large scale practice remains to be determined by experience.
As regards, however, the treatment of ground and vines already infested, our experiments tend to show hat the diffusion of the mercurial vapor is too slow, at he ordinary soil temperatures, to promise success especially in the case of clay soils, which absorb and render inert a large amount of mercurial vapor before an effective excess can be obtained. It has been abundantly shown that the mercurialized soil exerts no unavorable action upon the growth of the vine; and there is every reason to expect that an application once made will remain effective during the life of the vine.

Steam Lifeboats.-An Opportunity for Inventors.
During the last meeting of the Institute of Nava Architects, the question of using steam lifeboats was made the subject of a very interesting and useful discussion. Messrs. Benjamin and Taylor have designed a very ingenious steam lifeboat, and they read a paper describing it, and exhibited a model. The boat in question is, of course, intended to be unsinkable, and, as we understand the description, she is also to be uncapsizable. A shallow hull has a rounded structure built up on top of it, within which the rescued crew of a ship are to find shelter, safety, and even a warm bath. Propulsion is effected by screws under the bottom of the boat, and partly incased in semi circular tunnels, excavated, so to speak, in the floor of the hull. So far as can be seen, the craft does not possess any of the characteristics that a lifeboat, as the term is now understood, has. But, whatever the defects of the scheme, it possessed the advantage that, as we have said, it elicited a very good discussion.
It can hardly have failed to strike thoughtful people that oars and men are in many respects the worst propelling agents that could be employed in working a lifeboat; and numerous proposals have been made for using steam instead. It is of the utmost importance' that a lifeboat should get alongside a wreck as soon as possible; but hours are now spent in pulling from the shore to a wreck, when each minute may mean a life lost. Indeed, so fully is the inadequacy of manual power recognized, that at all large and important lifeboat stations, such, for example, as Ramsgate, the lifeboat is invariably taken out by a tug steamer to windward of the wreck, down to which the lifeboat then drops. When a rescue has been effected, her sails are hoisted and she runs for a port. But there are dozens of lifeboat stations where no tug is available; and in not a few cases the lifeboat has been unable to do any good, simply because she could not be rowed or sailed to the could be provided with steam power, a very large number of lives now lost each year would be saved. There is consequently the greatest possible stimulus to invention, and nothing, we believe, but the utter hopelessness of the task has prevented inventors from solving the problem set before them. No doubt the magnitude and exceeding difficulty of the problem are not fully realized. Captain Chetwynd, of the National Lifeboat Institution, a man of over thirty years' special experience, set these difficulties very clearly before the Institute of Naval Architects, and when he sat down his hearers must have felt certain that whatever power may yet be used for the intended purpose, steam aannot be employed. Captain Chetwynd explained that none but those who have, like himself, been personally engaged in lifeboat work can form any adequate conception of the force and fury of the waves on, for example, the Goodwin Sands. It is easy to talk about metacenters, and centers of gravity, and buoyancy; but in a heavy conused sea the laws of stability seem to be in abeyance. Over and over again, a 30 foot lifeboat stands literally on end against a sea. On two occasions, lifeboats have been turned clean over endwise. To say that they roll their gunwales under is nothing. The motion in them is simply inexpressibly violent, and apparently taking place in every direction at once. Apart from this, the seas continually break into them with tremendous violence. "When," said Captain Chetwynd, "I have often urged a boat's crew to go off in a heavy gale, they have met my expostulations with the argument, 'Our backs would be broken by the seas falling into the boat.'" He had experience of cases in which a breaker has tumbled over the bows of a boat, without the slightest injury to men forward of midships, while the men in the stern were maimed or disabled by the smash of tons of water into her stern; those forward being saved by the sea leaping clean over their heads. In addition to this, the boat must not draw 3 feet, or she cannot get through the shallow water of breakers to go alongside a wreck. On the Goodwin Sands, the lifeboats on a draught of but 3 feet are constantly thumped down on the bottom when they get in the trough between two waves. The graphic picture drawn by Captain Chetwynd places the indomitable courage and hardiness of our ifeboat crews in a stronger light than ever. Most of his hearers for the first time in their lives realized the character of the work done night after night on our coasts, and the wonderful qualities of the boats themselves. The National Lifeboat Institution possesses 270 self-righting boats. These latter craft have gone out 4,700 times and saved 12,000 lives, and in only thirty-nine instances have they been capsized, while in only 21 were lives lost. Of large boats the Institution possesses 22. These have been out 653 times and saved 1,668 lives, without once being turned over. The possibility of using steam has been anxiously considered by the Lifeboat Institution. They experimented as far as was possible for two years in this direction, and a special committee was formed at Liverpool to consider the subject. They came reluctantly to the
conclusion that steam could not be used for the pur pose.
It is not quite impossible that a suitable engine and propeller could be employed. The difficulty lies in the boiler. It is very difficult to see how a boiler could be fired at all; but even if it could, it is clear that the water and steam would be continually changing places. What, for example, would occur when a boat stood up on end? And without going so far as this, it is plain that no gauge yet made could so far as this, it is plain that no gauge yet made could
give the give the smallest trustworthy evidence as to what
was the level of the water in the boiler. The only was the level of the water in the boiler. The only
attempt that could be made at using a boiler would be to hang it in gimbals. Again, the propeller must be at times working in air, then deeply submerged. If placed anywhere outside the hull, it would probably be torn off. If put under her, it must in the nature of things be very inefficient. It is worth notice that neither Mr. Benjamin nor Mr. Taylor thought it worth while to deal with the boiler problem as if it was of any importance. Indeed, their proposed lifeboat, being comparatively a big, heavy craft, would not labor under the same difficulties as an ordinary lifeboat would. The weight of such a boat is about two and a half to three tons. That of four large boats possessed by the Institution is ten tons each. The lifeboat of Messrs. Benjamin and Taylor weighs twenty-seven tons empty. But, as Captain Chetwynd showed, such a large craft would be useless in loreakers. The modern lifeboat is a remarkable ϵ xample of the skillful adaptation of means to an end, and to depart from its type in any way is, to say the least, an extremely doubtful experiment.
There is another difficulty in the way of the adop tion of steam at sea which we have not yet considered. It is the grave objection which lies in the way of experimenting with an invention of this kind. Let us suppose that in a heavy gale a steam lifeboat put to sea with a dozen men on board. If the machinery broke down or became inoperative-let us say from excessive priming due to the rapidly changing position of the boiler-the lives of all on board would be lost. No one in authority would take the responsibility of trying so perilous an experiment. It is obvious, however, that before steam lifeboats can be pronounced satisfactory, such an experiment must be
made, not once nor twice, but many times. Among inventors, none has had any experience of lifeboat work. It is said that one enthusiastic individual, who believed that he had solved the problem, went out one night with a lifeboat crew to gather experience. Some hours subsequently he found himself on shore half dead with cold and misery; sorely beaten and bruised and shaken; almost drowned and wholly miserable; when he had recovered, one of his first act was to tear up his drawings and burn his models. Even with such an experience before them, there are no doubt men who will still invent in this direction, and to such we would tender a word of advice. From any steam engine or other motor dependent on fire, nothing is to be hoped. If it were possible to put a motor on board which would not depend on such aid, it would, no doubt, prove very useful. It is a sine qua non that the motor must be of such a kind that it will leave the men as free as they are now to use their oars or sails, so that, should the motor fail, the crew would run no. additional risk because of it presence. There is but one scheme which holds out even a faint chance of being practicable, and that is the use of electricity. It would be possible to put storage batteries into a lifeboat, and to so secure them
that they would continue to work under any conditions short of turning the boat upside down. The electrical launch shows that such a mode of propulsion is, under certain conditions, possible, and the ex periment of using electricity might be tried withou much risk of life. But when we have said so much, we are bound to add that nothing has yet been done in electrical marine propulsion which leads us to believe that it can be applied with success
to lifeboats. It may be that a steam engine may yet be devised on, say, the Lamm hot water sys tem, which would render the use of a fire in the boat unnecessary; but of this we see, we confess no hope. However, no one can place a limit to the power of engineers. We have set the broad facts of a most interesting problem before our readers; po sibly, they may find its solution.-The Engineer

The Poisonous Scorpion of Mexico.

At a recent meeting of the Academy of Natural Sciences, Philadelphia, Dr. Leidy read a communication from Dr. V. Gonzalez, giving an account of the scorpions of Durango, Mexico, and the deadly effects of their sting. They are found everywhere in the city and every effort has been made to exterminate them,
but without effect. A reward of a cent and a half for males, and double that amount for females, is paid by the authorities, and the records indicate that some years over one hundred thousand are captured and de stroyed. The sting, especially in the case of children, is invariably fatal; the victim, if under two or three
few minutes, in strong general convulsions. No antidote for the poison has as yet been discovered, and the assistance of Dr. Leidy is asked by the writer in his en deavor to determine some successful mode of treat ment. It was suggested by Messrs. Horn, Heilprin, and Leidy that the Mexican scorpion must differ from the species found in Florida and California, as the sting of the latter is not usually graver than that of a wasp.

Making Enameled Brick.

The obvious suitableness of enameled brick for use in many places exposed to moisture, or where contam inating vapors might be present in the air, has doubt less suggested itself frequently to those who have noticed its growing introduction within a very few years past; the great superiority of such bricks to painted brickwork in kitchens, laundries, courts, and cellar areaways does not admit of question, while they may also be used to advantage in many places for wainscoting in halls, as well as for ornamental fronts and trimmings.
Such brick must not, however, be confounded with cheap glazed one, which has been sometimes used, only to open up like a chestnut burr after the first winter's frost. This description is, of course, cheaper than good enameled brick, but the materials and workmanship that are necessary to make the latter are ab solute requisites if one is looking for lasting qualities. But on account of the high cost, and the difficulty of making a good quality of enameled brick, enough of these inferior glazed ones have been used to impede the more rapid introduction of the best quality, and there are now but three or four establishments in the country which make them.
It was not until after many unsuccessful experiments that good enameled brick were produced in this country, the recipes of English and German enamelers not working well with our clays; and it is always to be borne in mind that the various proportions of the differentingredients have to be slightly changed ac cording to the amount of oxide of iron, lime, etc., that the clay may have. In one of the enameling compounds used for a building brick, the following proportions are used : Fluor spar, 150 parts; Paris white 60 parts ; lime, 50 parts ; oxide of tin, 50 parts ; kaolin 50 parts. These ingredients are pulverized and tri turated to an impalpable powder, reducing the whole to a homogeneous mass, which is calcined in a crucible. After cooling, it is again reduced to a powder, water added, and the whole triturated to form an enameling compound of about the consistency of cream, in which is to be dipped that portion of the brick to be enameled, the latter to be then subjected to a sufficient tempera ture to fuse the enamel on the surface, this being done in seggars, or fireclay cases, holding four or five bricks each. The enamel is usually applied only to the one face or head which will be exposed after laying in the wall, except with those intended to be used for corners and reveals or window and door jambs, which have one face and head treated, and are termed "rights" and "lefts" when so moulded that they cannot be used for any corner. A black surface is made by adding to the above ingredients black oxide of cobalt, black oxide of manganese, and umber, prerious to pulverizing and calcining; blue, by adding black oxide of cobalt; green, by adding suboxide of copper ; red, by adding suboxide of copper and red oxide of iron; and almost any desired shade or tint may be given by the use of varying proportions of different ingredients.
These enameling compounds may be used on the sur face of ordinary red front brick, but pressed brick are better, that the surface may be as smooth as possible while they should be free from sand, or the enamel will not adhere. The amount of capital and the plant necessary to engage in a moderate way in the busines of enameling brick, as given by a contributor to the Clay Worker recently, is as follows :

In the first place, it is necessary to have a kiln adapted to this work. It is better to have a muffle kiln; but in the absence of this, a kiln can be erected with a capacity of from 6,000 to 10,000 brick for about $\$ 600$ to $\$ 800$. Then comes next in order the seggars these are made to hold five brick each. They are made fireclay, uniform in size, and burned hard, costing at the factory sixteen cents each. Next, we have the mill or pulverizer to grind the enamels in. This will not exceed twenty dollars. Indeed, any one can make a first-class one that will not exceed half that amount and be equally as good. Next in order we have the tubs, buckets, and cups. These will cost for an estab ishment of this capacity about fifty dollars. Here we have an establishment all complete, except the building and enameler to do the work, for less than $\$ 2,500$. With a kiln of this capacity and the assistance of a man who understands burning, an enameler and two boys can produce on an average 40,000 enameled brick

er month."

The cost of enameling, as figured by this writer, is as low as $\$ 12$ to $\$ 15$ per 1,000 , which certainly leaves a large margin for profit, at to-day's prices, but this is counting on the work being that of a good enameler counting on the work being that of a g.
and such men are said to be very scarce.

COLOR CONTRAST．

by prof．ogden n．rood，of columbia college，assibted by thomas EWING．

At the recent meeting of the National Academy of Sciences，Professor Rood gave some account of the experiments on color contrast now in progress at Columbia College．Previous experiments have been altogether qualitative ；the present ones are the first quantitative experiments ever undertaken．
Colors of all objects are altered by their surround ings．An instance cited was that of a house which the Professor supposed to be of an orange yellow brown color，until he saw it in winter，when it was vident that there was not a particle of red in the color．The apparent red was caused by contrast with the green grass．
There are two kinds of contrast，simultaneous and successive．These investigations were of simultaneous contrast，which is very difficult．Successive contrast would be still more so，on account of the inability of the memory to recall slight shades of color．
The investigation was conducted by causing colored disks to revolve in such a way as to blend the colors．
The simplest case is that of uniform color all around the circle，as in the case of a disk of green sur－ rounded with a gray ring，and that again with an－ other green ring，Fig． 1.
The interposed gray appears rosy by contrast with the green．
In order to measure the intensity of the apparent redness of the gray ring，two methods were adopted－ first by comparing it with a revolving disk of the color complementary of the green，but partly cov－ ered with black and white，and varying the amount of the disk thus covered till the color appeared to be of the same intensity as that of the gray ring， Fig． 2.
The second method of measuring was by extin－ guishing the induced red by partly covering with green，Fig． 3
Still another method resorted to was copying
The degree of lightness of the gray disk is not ma－ terial unless it is made very dark indeed
It is found that the induced sensation produced by a red disk is extinguished by 8 per cent of the com－ plementary green；that of a green disk，however，re－ quires 33 per cent of the complementary red；and that of a blue disk， 50 per cent of the complement－ ary yellow．No reason is known for this physiolog－ cal effect．
It is found also that in passing from the red to the violet end of the spectrum，the induced colors vary more and more from the true complementary．
With a green disk，the induced color appears more pink than the complementary ；and with a blue disk， the induced color differs widely from the true comple－ mentary．
If the coefficient of a red disk be taken as 1 ，that of the emerald green disk which just balances it and pro－ duces white light is $1 \cdot 7$ ，Fig． 4.
Green when darkened looks bluish ；but if you di－ minish the brightness more than one－half，you only di－ minish the subjective effect one－third．
With blue，one－third the brightness produces fully one－ half the subjective effect Bluish colors are more effect ive than others subjectively．
A more difficult problem is to find the most neutral point in comparing colors not strict－ ly complementary，as in the ase of emerald green and ver ailion．In this combination milion．In this combination the most neutral tint is no gray，but yellow．To illus－ trate this combination of col ors，an inner disk of black and white may be introduced Fig． 5.
In order to aid the memo－ ry，an inner disk may be used of the same colors as the oute ring，which is set at the point f the previous experiments， while the outer ring is slid a little one way or the other ill the vertical point is reach ed，Fig． 6.
It should be understood that in all these experiments， the disks are compounded of two capable of slid－ ing one above the other，so as to expose a greater or a less proportion of each color，the individual color－ ed disks having each a slit，which enables them to be adjusted ；each color covering a disk of this construc－ tion，Fig． 7.
The second part of the investigation was to ascertain the quality of colors that are not true complement aries．

Two colors， \mathbf{A} and B，were taken，nearly，but not absolutely，complementary，A」being used as the stand－ ard．
The value of B having been determined，as in the first experiments，it was combined with a third color C ，which was a little further up the spectrum than A c would be combined with D ，which was still a little further from the starting point．Thus all the colors of the spectrum were compared through a gradation of fifty colors．This is an entirely new process．
As a result of these and other experiments，he claims that Newton＇s diagram of colors should be arranged in

CHEMICAL VEGETATION．
a circle，not in straight lines，as Newton hadit．In tead of Fig．8，we have Fig． 9.
White occupies the center of the circle，and lies on line drawn at right angles to the palest tint．Some of the experiments in corroboration of this are of the fol lowing nature
Let the three fundamental colors be supposed to represent weights at the end of a system of bars Fig． 10.
Then white represents the center of gravity．
If the system were arranged as follows，with the blue off at one side，white would still represent the center of gravity；but the amount of blue necessary to counterpoise the system would be much greater，Fig． 11.

Experiment shows，however，that the amount of blue

hemical vegetation

r．o＇conor sloane，ph．d．

Many of our readers have tried the old time classic experiments with solutions of different metallic salts， in which tin trees，lead trees，or silver trees were pro duced．A bar of zinc suspended in a dilute solution of acetate of lead precipitates metallic lead very beauti ully，producing the effect of an inverted tree．This was the Arbor Saturni，or Saturn＇s tree of the old school．A silver tree is produced by an analogous method，and was called Arbor Dianœ，or Diana＇s tree By the battery，aborescent growths of metal may be produced on an electrode，which，exhibited in the magic antern especially，produce very striking effects．
By the use of silicate of soda，chemical precipitations can be brought about that still more closely resemble vegetation，in some cases corresponding in color with their model．Crystals of metallic salts immersed in a moderately dilute solution of this silicate，or water glass，as it is often called，send out shoots of precipi tates varying from stalagmitic formations to the finest threads．Each of the available salts produces a highly characteristic appearance．In some cases the resem blance to the lower forms of plant life is remarkable
Silicate of soda is made by combining silica with soda．Some form of silica is heated under pressure in a solution of caustic soda，when combination takes place，and a thick solution is obtained．
It is thus prepared in large quantities for commercial use，and can be purchased by the experimenter cheape than he can make it．In composition it is precisely analogous to glass，but is soluble to almost any extent in water．Notwithstanding this，when once in the solid condition，its solution is only effected with diffi culty．This gives it a certain value as a cement Broken glass and china can be mended by it quite sat－ isfactorily．
As sold，it is a very thick fluid，resembling strong starch solution．For the experiment in question，it must be diluted．A clear glass bottle or any suitable vessel may be used．It is about one－third filled with silicate of soda solution，and the remainder is filled with water．By shaking and stirring，the two must be mixed perfectly．In doing this，a good opportunity is afforded for observing the action of a liquid of low dif fusive power．The silicate solution mixes with much difficulty with the water，gathering into a lump or drawing out into threads．It gives a good illustration of the difficulty we should be placed in，were there no power of diffusion in liquids．Without this power to help us，it would require a long time and prolonged stirring to mix a cup of tea or coffee containing suga and milk．
When the silicate solution has been thus diluted and mixed，a layer of sand，half or a quarter of an inch thick，is introduced into the bottle．It is best to pour it through a wide tube，reaching nearly to the bottom to avoid discoloration of the fluid．Then crystals of dif ferent salts are embedded in the sand．The object of the sand is to hold the crystals in place．It plays no active part in the experiment．The crystals must no protosulphate of protosulphate of iron，or

COLOR CONTRAST．

 required to neutralize the others is a minimum，which \mid be observed．The iron in the course of a few hours proves that the blue is on a line at right angles to the line forming red and green．Germany has eight schools of forestry，where five years＇training is required of those who seek position under the Government，although a course of study half as long may be taken by amateurs．France sup ports a single school at Nancy．
 ＂copperas，＂sulphate of cop per，or＂blue vitriol，are good salts to start with．Clea crystals，the size of a pea should be selected，dropped into the bottle，and by a rod pressed down into the sand until half embedded．
The bottle is then put aside in a quiet place，where it will not be shaken．In a few hours the crystals will begin to sprout to a perceptible extent．The finest possible green filaments，resembling seaweed，will start up from the iron crystals in a nearly vertical direction．More slow－ ly，similar filaments appear with the copper crystals as nuclei，while the alum sends up a most characteristic growth of pure white stalag mites．These three forms are represented in the cut．They can be identified•by the de－ scription．The iron growth is greenish ；the copper，light blue．
A curious difference in ra will have sent up its filaments several inches，while the copper and alum will be much more gradual in their progress．After a while the iron filaments reach the surface，and another phenomenen shows tself．Where each filament touches the surface，it spreads out，and，as the iron oxidizes，loses its green color．After a while，it becomes too large for the floatative powers of the solution，and sinks until
it is caught and sustained by some of the neighbor ing filaments. In this way the filaments become terminated with expansions, several of which are shown in the drawing.
Many other salts can be tried, and separate growths produced in different bottles. In addition to the salts already named, sulphates of chromium, nickel, cobalt, and combinations of other acids and bases might be tried. To those who have never used silicate of soda, the behavior of this curious solution will in itself be an interesting phase of the experiment.
To arrest the growths, the silicate solution may be displaced with clear water. To do this, water must be poured in very gently through a tube reaching nearly to the bottom of the bottle. As the liquid overflows, the silicate will be carried away and water will take its place. Where it is not desired to preserve the growths, it is preferable to dispense with sand, as the process can be more closely watched without it. The only object of using it is to hold the crystals in place where the bottle is subjected to movement.

Ships' Boats.

The lifeboats of the British National Lifeboat Association have iron keels, a very extensive provision of air cases, and valves for discharging water through the bottom; they have a flat laid in them, and have so much inclosed buoyancy that if a sea breaks over them they are able to discharge through the bottom all the water as far down as the flat. They have further so much stability that if capsized they will soon right themselves. Of course, boats so completely lifeboats as these could not be made practical use of as ships' boats, they would be so very heavy and cumbersome. The official standard of the Board of Trade as regards lifeboats is that one and a half cubic feet of airtight compartment shall be provided for every person carried in the boat, and the number of persons carried is assumed to be one for every ten cubic feet of the boat's content. It will be seen that this is a purely arbitrary scale, and is prescribed because some quantitative regulation is necessary.
Of course, other things being the same, the more airtight space the better in a lifeboat; and, on the other hand, any boat is the better fitted for saving life by having ever so little either of airtight space or of space filled with cork. The specific gravity of cork is $0 \cdot 24$, consequently, a compartment filled with cork is for every cubic foot of its content equal in efficiency to threequarters of a cubic foot of air space. A cork-filled compartment has, however, the advantage that if damaged or leaky but little harm is done, as water cannot get into the space occupied by the cork. It has been found necessary to specify the material of which air cases for lifeboats may be made in order to insure their being and remaining efficiently watertight. Thus zinc cases are not allowed, and copper cases are not admitted in a boat the shell of which is iron. Even copper cases have sometimes been found to be defective through having been fraudulently constructed of material little thicker than tin foil. The material most commonly employed in the construction of air cases is well seasoned yellow pine coated with waterproof canvas. It is also required that lifeboats shall be built both ends alike, similar to whaleboats; that they be fully and completely equipped; that the equipments, fully and completely equipped; that
including a supply of fresh water, be always in them including a supply of fresh water, be always in them
ready for use; and that they can by means of davits ready for use; and that they can
be readily lowered into the water.
Ships' boats are constructed in as diverse fashion and of as many or more kinds of material than ships themselves. The clincher built boat is that which probably has the greatest strength for its weight. The material most frequently used in its construction at the present day is larch. The diagonal built boat is also very strong, and is a good type of boat when it is desired to use very thin hard wood plank; this system of construction is often adopted in boats of the largest size. For the heavy longboats of sailing vessels, which have to be seldom got out except at ports, where they are required to be used in transporting cargo, in which service the boat should be able to put up with some rough usage, the old fashioned carvel construction presents many advantages. Iron, or rather iron coated with zinc, known usually as galvanized iron, has for many years been employed in the construction of boats, but has not made its way into very common use. A well known type of iron boat is one in which the metal is corrugated in such a manner that the boat's bottom looks very much like that of a clincher built wood boat. The consequence of this arrangement is that the boat is locally, and indeed altogether, ment is that the boat is locally, and indeed altogether,
much stronger than if constructed with plain sheets of much
A very efficient and strong composite boat is carried by the American mail steamers which run regularly between Liverpool and Philadelphia. The skin of this boat is iron, but the frame is of live oak, and consists
of bent planks arranged longitudinally at intervals. In these boats there is no necessity for the metal skin In these boats there is no necessity for the metal skin
to be corrugated. Metal boats have two important adto be corrugated. Metal boats have two important ad-
vantages over others : they may be carried near the
funnel or in hot climates without liability to shrinkage and consequent leakiness, and the outer skin of the
boat can be made to form the sides of the air cases, boat can be made to form the sides of the air cases,
thus saving both weight and space. The disadvantage is that these boats cannot be very easily repaired; in fact, cannot usually be repaired by the carpenter of the ship.
Canvas and similar materials are, and have been for many years, used in the construction of boats, although their use is chiefly associated with one important type, which we propose to notice at some length. From the earliest times the skins of animals stretched over bent osiers or branches of trees have formed a convenient and easily transported boat, and on certain parts of the Irish coast boats in which painted canvas takes the place of plank have been employed from time inmemorial, and are even now used for fishing purposes. The portable folding boat of the Berthon Boat Company depends for its flotation upon canvas made watertight by a special paint. The framework consists of a number of longitudinal frames which are broad and flat, having their edges to the curve of the shape of the boat, and are jointed together at the upperpart of the stem and stern post. They lie in parallel planes side by side when the boat is collapsed, like the leaves of a closed book, and they stand out at different but definite angles, radiating from their common center, when open. The upper one on each side, when the boat is open, forms the gunwale. The boat has two skins of waterproof canvas, one attached to the inside of all the frames, the other to the outside. She thus has a double bottom and sides, and the space between is divided into separate compartments by the wood frames. The wood frames, upon which, with the keel and stern post, the boat depends for longitudinal strength, are of American elm. The boat is carried in the ship in its folded condition, with all the oars and gear, including water breakers, in position, and all wrapped up in a canvas cover. When it is required, the canvas cover is cast off, and the boat is lifted by hooking on the davit tackles to two slings, one near each end, which are attached to the gunwale.
As the weight is taken, the boat opens, then two men jump in her and place the struts which keep her open, and she is then ready for lowering into the water and for use. It is claimed that the boats when folded only occupy one-fifth of their width when open, and that one of them can be stored between the ordinary wooden boat and the ship's bulwarks. The folding boat is also much lighter, and is said to cost less than an ordinary boat of the same size. It is obvious that if the Berthon boat is thoroughly reliable, it affords a means of carrying sufficient boats to take all the passengers and crew of an emigrant ship. One objection which readily suggests itself is that holes would be soon eaten in them by rats, but we are told that the Admiralty experience of them is proof to the contrary. The store where they are kept in Portsmouth dockyard abounds with rats; and although nests have been found in the canvas boats, in no other case have the rats eaten the canvas coated with the composition, one of whose special merits appears to be that rats do not relish it. These boats have been used by the Admiralty for the last ten years in the Indian troop ships, the only ships in the Royal Navy which are unable to take sufficient ordinary boats to carry all hands on board. They are not employed to do ordinary boat work (probably if they were they would soon wear out), and they are not considered to be nearly as durable as ordinary wooden boats, but they afford a ready means
of carrying a sufficient number of boats for any emergency.
They have been used for landing troops, and we believe that on the occasion of one of the troop ships being aground in the Suez Canal, all her Berthon boats were put out in the water and used to lighten the ship. The Admiralty have also used canvas boats in connec tion with small torpedo craft, which had not rown to carry an ordinary boat. We should not think that
folding canvas boats are likely to come into use for ordinary purposes in the mercantile marine, although they may be, and we believe are often carried in yachts; but they certainly do afford a means of almost indefinitely multiplying the boat accommodation of a large ship, without taking up very much deck room.Nautical Magazine.

Fatal Trichiniasis.

Eugene A. Rau, of Bethlehem, Pa., gives an account of recent cases of fatal trichiniasis arising from imper fectly cooked measly pork which had been eaten for a week from January 6,1886 . The family consisted of a man and wife and two daughters, aged five and thir teen years. The older daughter and the mother, aged thirty-seven years, have died; the other members of the family, although affected, are recovering. In the under the microscope three to nine, the rectus femoris two to six, and the diaphragm one to three, trichinæ in a field view about one-fifth of an inch in diameter. In the daughter, who died February 19, trichinæ were
tions as many as forty-two being counted on the field of view under the microscope.
No other portions of the daughter were examined; but the lungs, heart, liver, spleen, and kidneys in the mother were found to be unaffected. The pork used was home-raised, and, according to the owner, the animal did not at any time show signs of ill health. An examination of two other hogs raised on the premises was made, but no trichinæ were found. As usual in such cases, the meat was imperfectly cooked or fried, the tenderloin, sausage meat, spare ribs, etc., all being freely used. For several days while in water, the human trichinæ showed signs of life, coiling and uncoiling when freed from the muscular fiber ; but the stage of development found in the pork showed no activity under the same conditions.

Eggs by Weight.

It is annoying to the breeder of blooded and fine fowls to find, when he offers for sale eggs nearly twice as large as his neighbors', that they bring no more per dozen than do the smaller ones. Also, the consumer is often vexed to find that he must pay the same price today for a dozen eggs weighing a pound that he yesterday paid for a dozen weighing a pound and a half Besides, an egg from a well fed fowl is heavier and richer than one from a common fowl that is only half fed, so that weight compared to size is an indication of richness. Thus, eggs of which eight will weigh a pound are better and richer than those of apparently the same size, of which ten are required for a pound. Of course, with eggs at four and five cents a dozen (and hundreds of dozens have been sold in past years at these figures), it is not much matter as to the size; but when the price ranges from twenty-five to fifty cents per dozen, it is a matter worth looking after. It is high time that this old style of selling and buying eggs were discontinued. It is a relic of the past, and reminds us of the time when dressed hogs sold for a dollar each without regard to size, and were dull sale at that. Insist upon it, then, you who raise poultry and eggs for market, that the price for eggs shall be so much per pound, and then it will be some inducement to farmers to raise a better class of fowls, and all will get what is their just due.-American Rural Home.

Manufacture of Aluminum

We have heretofore described the electrical process of obtaining aluminum. Another, and the more common, method of producing aluminum is by heating substances that contain the chloride of aluminum in connection with the metal sodium. The chlorine combines with the sodium and leaves the aluminum in the metallic state. The process is easy and simple, but very expensive, owing to the high cost of the sodium. Three pounds of sodium, which now sells at retail for from $\$ 4$ to $\$ 5$ per pound, are required to obtain one pound of aluminum.
Any mode by which sodium can be more cheaply obtained will, as a matter of course, lessen the cost of naking aluminum. Mr. H. Y. Castner, a chemist of this city, has discovered a new process of distilling sodium, by which it is said the metal can be produced at the extremely low cost of 25 cents per pound. With sodium at this low price the problem of cheap aluminum seems solved, and with it magnesium, silicon, and boron, all of which depend upon sodium for their manufacture. The production of sodium at this low figure means far more than cheap aluminum. Who can state the future of either magnesium, silicon, or boron, as each may be prove to be of as great value in the arts and sciences as aluminum? When sodium can be had for 25 cents a pound, aluminum should not cost over $\$ 2$ a pound. Of course, this seems a rather high price for any metal that may be extensively used, but in reality it is but slightly more expensive than tin at 50 cents a pound.
A cubic foot of aluminum weighs 166 pounds, while the same bulk of tin will weigh 445 pounds. The uses of aluminum are indeed unlimited, even when it is produced at $\$ 2$ a pound, as may be easily conceived from its many valuable properties. It is unaltered in air even when heated, and is not tarnished when exposed to an atmosphere contaminated with sulphurous gases, which would affect almost every other metal. It is ductile, and may be drawn out in extremely fine wire. It may be cast in moulds of either sand or iron. As a conductor of electricity it ranks equal with silver, which is the best known conductor. The vegetable acids are without action on it ; and when all these properties are taken in connection with its extreme lightness, it may indeed be termed one of the most valuable of metals. Above all other metals, aluminum possesses the property of forming alloys of great variety and extreme usefulness, and owing to its cost formerly it has been confiped in its uses almost exclusively to these purposes. The alloy known as " aluminum bronze," consisting of copper 90 per cent and aluminum 10 per cent, has been somewhat extensively used of late, and with the production of cheap aluminum it will undoubtedly largely take the place of brass and ordinary bronze, as it possesses all their varied properties in a far bronze, as it possesses a
more valuable degree.

ENGINEERING INVENTIONS.

A rotary engine has been patented by Mr. Karl A. Ekman, of Bofors, Sweden. This invention consists of a cylinder body having an .liptical
groove in which operate pistons fulcrumed on a revolv ing cylinder head, which is attached to the main shaft. carrying a disk valve, while there is a fixed cylinde A driving mechanism for suspended cars has been patented by Mr. John A. Enos, of Pea body. Mass. The supporting truck has wheels resting upon a single rail, combined with an electric motor, the revolving armature of which is rigidly fixed upon the
same shaft as the wheels of the suspending truck, the same sbaft as the wheels of the suspending truck, the
current being taken from the lower rail and passed current being taken from the lower rail and passed
through the motor to the upper rail, the invention being an improvement on former patented inventions of the same inventor.

miscellaneous inventions.

A pumping apparatus for oil wells has been patented by Mr. David T. Lane, of Franklin, Pa This invention covers a novel combination of parts and series of oil wells from a single driving mechanism.
A dental plugger has been patented by Mr. Rebert B. Kice, of Richmond, Mo. It consists of a dental engine with a hollow standard and an air pump, the plugger being connected by a flexible tube, and the will be entirely under the control of the operator.

A banjo has been patented by Mr. Henry Hoseus, of Brooklyn, N. Y. Combined with the im, head, and stick of a banjo is a wire ring, support ing brackets, regulatingsprings, and an adjusting screw, ness of tone of the instrument.
A powder puff has been patented by Mr. William H. Hudswell, of Brooklyn, N. Y. It is so ted or felted by the weight of the puffs, and when the puff is applied to the powder the box cover is in place apon the box, so the dust will not be distributed around.
A log turner has been patented by Mr. Robison Shelbourne, of Blandville, Ky. This invention with devices acting automatically and under ready control, the work of turning logs on the mill carriage may be done by the machinery of the mill and without using cant hooks operated by hand.
A cloth beam for looms has been patented by Messrs. Harrison Underwood and Sharle schweizer, of New York city. It is made in two corre-
sponding semi-cylindrical parts, attachable to and detachable from a revolving shaft, and having an outer
casing, the beam being to wind cloth upon as it is woven, casing, the beam being to wind cloth upon as it i
and from which it is to be afterward removed.
A head protector for horses has been patented by Mr. Martin F. Corley, of La Salle, IIl. I is formed of feited fabric, having its sides notched, and
with attaching cords, being so made as to soon take the with attaching cords, being so made as to soon take the
shape of the horse's head, and retain and distribute moisture thereon without dripping, to protect horses rom the effect of the sun's rays when desired
A buckle has been patented by Mr. Nils J. Kjellstrom, of East Cambridge, Mass. It is a cam lever buckle, in which the plate on which the strap o grooves, whereby a strap can be quickly clamped, the hold being more secure as any strain is increased, and the device being simple in construction.
A dough kneading machine has been patented by Mr. Joseph G. Tourangeau, of Quebec, cylinder having a door or opening, and means for rais ng it, a beater frame within the cylinder and shafts fo operating it, whereby the dough may be kneaded and the cylinder raised and rotated to discharge the dough.
A combined plumb, level, and rule has een patented by Mr. John Morrison, of St. Louis, Mo traight made in hinged sections, , which can be used for general measuring or conveniently adjusted for leveling and plumbing, while it can be
folded to a size convenient for carrying in the pocket.
A fire escape has been patented by Mr. Dauiel B. Kimball, of Syracuse, N. Y. It is portable, and comprises a suitable frame upon which is mounted a series of cog wheels and a clock escapement, to gov-
ern the speed of the escape belt from a drum, the belt having a suitable attachment by which a person may be upported while being lowered from a building
A photographic camera has been patented byMessrs. William H. Lewis and Erastus B. Bar parts connected with the camera box and bed section, also a novel deta copic pictures, and a means for securely holding the camera in its stand, and for its ready detachment.
A"swing back camera" has also been patented by Mr. William H. Lewis, the patent covering eleased and fastensd on both sides of the camera by operating the fastening device from one side only of the instrument, thereby saving time and being much more convenient.
A secondary battery or acceumulator has been patented by Mr. James Pitkin, of Clerkenwell, Middlesex Co., Eng. The element is constructed of a the spongy lead or peroxide is held by perforated plates of ebonite, the lead plate having ribs cast on its faces which divide up the faces of the plate into cells into which the active material is packed, the object being to prevent the latter from becoming detached from the
plate or support, and to avoid liablity of short circuitplate

Special.

aNOTHER HOUSEHOLD NECESSITY."
porter's interview with Mr. Joseph Wild, the venerable porters indervew with Mr. Joseph wila, the venerable
and estimable head of the frm of Joseph Wild \& Co., of
82 and 84 Worth Street, New Y York, in which 82 and 84 Worth Street, New York, in which ne related
his experience in the use of the remedial agent known "Compound Oxygen," a An error in the heading of the article gave to Mr. Wild the credit of being the inventor of "Linoleum," which,
as the letter below will show, Mr. Wild hastens to disclaim. JOSEPH WILD \& CO.
$82 \& 84$ WORTH ST. AND $11 \& 13$ THOMAS ST., New York, May 13,1886
Drs. Starkey \& Palen, 1529 Arch St., Philad'a, Pa. Dear Sirs: The article entitled "Another Hous hold Necessity-Mr. Wild, the inventor of Linoleum,
notes a discovery as valuable as his own," published in notes a discovery as valuable as his own," published in
the Scientiric American of May 8, is misleadng, as tating that Mr. Joseph Wild was the inventor of Lino$\& 84$ Worth St., New York, are the owners of the patent
in the United States and sole manufacturers of Linoleum in the United States. Please insert the above in the pa ers that have had the mistaken advertisement.
JOSEPH w

Ⓑusiness and æersonal.

The charge for Insertion under this head is One Dolla

 a line for each insertion; about eight words to a line. Advertisements must be received at publication officeas early as Thursday morning to appear in next issue.

Manufacturers of or dealers in wire nail machines address Wilsen Hoop Co., West Bay City, Mich. State
range of work, capacity, price, and features of importance.
Wanted-A practical and competent man as superinendent of a large sewing machine factory now in operation. State age, experience, and refere
dress "Henley," P. O. Box 773 , New York.
Wanted, -Party representing and traveling throngh the West for orner interests wants also to represent a frm manufacturing common stove pipe iron. Must be a
good grade of cheap iron ; no other iron wanted. A No. 1 references. Address B. Y.. Chicago Journal of Com
Wanted-A capitalist to take a half interest in or to manage a valuable patent on Automatic Freight Car
Brake. A splendid chance to the right man. For further particulars, address R. B. V., Box 607, Iowa Falls, Iowa. Send to the Railroad Gazette, 73 Broadway, New
York, for a catalogue of Locomotive, Track, and other York, for a cat
railroad books.
Emery Wheels of unusually superior quality for wet
grinding. The Tanite Co., Stroudsburg, Monroe Co., Pa Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Pumps for liquids, air, and gases. New catalog wready.
Nickel Plating.-Sole manufacturers cast nickel andes, pure nickel salts, polishing compositions, etc. $\$ 1100$
"Little Wonder." A perfect Electro Plating Machine. Sole manufacturers of the new Dip Lacquer Kristaline.
omplete outat for plating, etc. Hanson, Van Winkle Complete outflt for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St., New York. Send for catalogue of Scientific Books for sale b unn \& Co., 361 Broadway, N. Y. Free on application.
The Knowles Steam Pump Works, 44 Washingto t., Boston, and 93 Liberty St., New York, have just is proved forms of Pumping Machinery of the single and duplex, steam and power type. This
mailed free of charge on application.
Machinery for Light Manufacturing, on hand and If to invention has not been patented in the United States far more than one year, it may still bepatentedi
Canada. Cost for Canadian patent, $\$ 40$. Various othe foreign patents may also be obtained. For instruction address Munn \& Co., Scientific American patent gency, 361 Broadway, New York.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.. Iron Planer, Lathe, Drill, and other machine tools of Ny design. New Haven Mrg. Co, New Haven, Conn Nystrom's Mechanics.-A pocket book of mechanics
and engineering, containing a memorandum offacts and connection of practice and theory, by J. W. Nystrom mo, roan tuck. Price, $\$ 3.50$. For sale by Munn $\& \mathrm{Co}^{2}$ 361 Broadway. New York city.
Hercules Lacing and Superior Leather Belting made
by Page Belting Co., Concord, N. H. See adv. page 238. Supplement Catalogre,-Persons in pursuit of info ation of any special engineering, mechanical, or scien tiflc subject, can have catalogue of contents of the Scl
ENTIFIC AMERICAN SUPPLEMENT sent to them free PNTIFIC AMERICAN SUPPLEMENT sent to them free
The SUPPLEMENT contains lengthy articles embracing the whole range of engineering, mechanics, and physical Iron and Steel Wire, Wire Rope, Wire Rope Tram was. Trenton Irou Company, Trenton, N. J. Curtis Pressure Regulator and Steam Trap. See p. 142. Universal \& Independent 2Jaw Chucks for brass work, , The Improved Hydraulic Jacks, Punches, and Tu
xpanders. R. Dudgeon, 24 Columbia St., New York. Friction Clutch Pulleys. D. Frisbie \& Co., N.Y. city Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co., Rochester, N.Y. See illus. adv., p. 350. Astro Astronomical Telescopes, from ${ }^{\prime \prime}$ to largest size. servator
land, \mathbf{O}
"Bac

Backward, turn backward, o Time in your flight,
Make me a child

> Make me a child again. just for to-night," the exclamation, in thought, of many a me
suffered through a long life from some distressing dis ease, that he might have cured with a few bottles of medicine like Dr. Pierce's "Golden Medical Discovery,
which cures all blood and skin sumption or scrofula of the lungs. If he were " n child again," he would know enough to have a bottle of th Discovery "to-night," and in old age would not implore Father Time to "fly backward" for his special beneft.
Hence, "Be wise to-day, 'tis madness to defer." Get a

Madict Murnies

HINTS TO CORRESPONDENTS.

(1) B. A. W. asks : 1. Why are boilers ested with cold water and pump? A. Because it is pressure of steam than it was tested with by cold water A. No; it should not be used at more than 50 per cent
of the test pressure. 3. Which is best-a square box of the test pressure. 3. Which is best-a square box
boiler or a cylindrical one? A. Cylindical boilers are generally best, cheapest, and most durable. 4. Does a tub of water weigh any more with a live ten pound flsh
init in suspension than with no fish in it: A. Weighs the same, provided the tub is brimming full in both cases.
(2) A. C. desires a receipt for a preparation to restore the gloss of elegant bindings in dif ferent colors. A. Take of Canada balsam and clea dissolve
3) L. M. asks : Is there any cheap way making white a straw hat which lostits whitenes from wear, an he straw of which the hats are made A. The foliowing receipt is a simple and inexpensive ne : Obtain a deep box, air tight if possible; plac at the bottom a stone; on the stone a flat piece of iron red hot,or a pan of charcoal, on which scatter powdered brimstone; there should be hooks in the box on which to hang the hat; close the lid, and let the hat remain night. Another receipt for bleaching straw is to soak the goods in caustic soda and afterward to use on
them chloride of lime or javelle water. The excess of chlorine should be re jave water. The excess of chlorine should be removed by hyposulphite of soda,
called anti-chlor. In first method, the hat should be moistened, as a dry fabric will not bleach.
(4) N. N. C.-So-called paste diamonds and other imitations of precious stones are made in simply crystals of quartz cut and polished. Yellow stones are sometimes dipped in a dilute solution of anlline violet to make them appear bluish white.
(5) L. O. K. asks: What rate of speed can I expect from a stern wheel pleasure boat 32 feet by 6 feet, two engines each 31/2 inches bore by 2
inches stroke, 150 pounds pressure. Draught of hull 12 inches, with sharp bow, well proportioned. Engines work direct (not geared). A. You will get a speed of work direct (n
6 to 7 miles.

INDEX OF INVENTIONS

Which Letters Patent of the United States were Granted

May 18, 1886,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]
Abdominal supporter, I. W. \& A. Fox................ 342,294
Air compressor, E. Swartz. 342,310
Alarm. See Clock alarm.
Amalgamator, B. Tyson
Anchor, J. Barton.
Annunciator and f. Paxton et al......................
Axle, C. H. Rich 342.13
Axles, machine for turning, J. N. Spencer....... 3420
Banjo, H. Hoseus.
Bar. See Toe calk bar.
Barrels, machine for the manufacture of veneer
J. R. Allgire..........

Bath house, floating. W. T. Lorimer.................. 442, 34,17
Belt protector and guide, M. Stansel................ 342,26
Bicycle pedal, E. A. Richardson.........
Blind slat adjuster, J. Naylor........................... 342,12
Bolt. See Flour bolt.
Bolt blank machine, w. E. Ward............ $341,970,341$,
Bolting reel, H. P. Cavanaugh....................... 342.28
Book, pad, J. W. Cummings..........................
Boot or shoe jack, A. Wicks...........................
Boot or shoe tree font, O. I. Howe.....................
C. S. Fiffeld,
son...........................
Bottle stopper, C. M. Hanson.
Bottles. machinery for securing corks or stopper
in, R. I. Howard.......
Box. See Post office box.
Box former, M. F. Wilson............................ 341.978
Brake. See Vehicle brake. Wagon brake
Brick, iron coated fre, J. P. Comins......
Brick machine, A. Marlor.
Brick machine, hydraulic
Bridge machie, J. Starka..
Brush for bolting reels, H. P. Cavanaugh
R. C. Fellows.
8.
 Buckle, N. J. Kjellstrom..12,110
Buckle, T. Mitchell........

Buckle attachment for straps. W. Smith.......... 341,58 | Buckee, suspender , or C. Straps. Wy........................ 3424,047 |
| :--- |
| Buckle, suspender, J. Spruce.................. 342,145 | Bung, Collins \& Weatherhead Burner. See Gas burn

Button, J. T. Rich....

Button, M. D. Shipman............................ 311,452
Button attaching devic
Button fastener, T. R. Hy
Button fastener, G. W. P
Button fastener, J.
Button fastener, safety, R. T. Che
Buttonhole loop, safety, F. C. ChurchillButton, sleeve, F. H. Gladding......

Cameras, instantaneou mhutter for, E. E. Colli- son, Jr

Can. Slee Sheet metal can...........................$~$
Can flling apparatus, . Cerruti...................... 341,9
Can opener, G. H. Tansleg
Can opener, G. H. Tansley................................... 341,996
Cane, machine for slicing sugar, A. Stromberg... 341,959

Car coupling, P. J. Norton...
Car, railway, A. B. Harrls.....

Ears,
Enos.. 342,246
Cars for cable railways, grip for, Wright..... 342,312
Cars grain door
Cars, grain door attachment for railway, T. Hoad

arriage spring, J. E. Simm
Cash register, W. Aldrich
ement for brush making and other purposes, B
C. Fellows.. 342, 31,

Chair. See Exercising chair. Rocking chair.
hairs, clamping device for reclining, E. Kelsey... 342,019
T. J. Ford... 341,898

Goodrich......................
Chart, anatomical, J. T. White
Churn motor, s. C. Randles..
Churn power, J. . R. Douglas
Clamp, C. W. Cornell.....
Clasp, L. Mandle..................
Clay tempering mill, R. Wiling
Cleaning toon, C. I. B. B. Perkin
Clock alarm, L. Hubbell...
loset. See Water closet. \& O. Haenichen....... 342,086
Cloth folding machine. J. D. Elliot....
Coffin, S. E. Baker...
Collar pad, horse, F. Burkhart......
oloring compound, A. M. Jacobs..................... 341, 34,
Coloring matter, production of yellow azo, \mathbf{E}
Bender..
Compressor, J. A. Gaboury...
Cooking vessel, A. G. Stanton
cooling reom and disposing of noxious gases
therein F
Cornice. F. Mankey
Corset, nursing, B. B.........
Corsets, manufacturing, B.
Coupling. See Car coupling. Pipe coupling. Thill ${ }^{3}$
coupling.
Crusher. See Ice crusher.
Crushing and grinding mill, J. F. Winchell..342,158, 342,311
Cutivator, straddle row wheel, A. Cox............... 341,889
Curtain, window, C. Darland................ 341,998
utlery handles, manufacture of, Jeralds \& L..919
ton
Cutter. See Straw cutter. Veterinary incisor cut-
ter. Veterinary molar cutter.
Cutting instrument. c. R. Heizmann............... ${ }^{342,251}$
Dental mouth tube, T. W. F. Rowney............ 342.042
Dental plen
Dental mouth tube, T. W. F. Rowney............... 342,042
Dental plugger, R. B. Kice................... 42,10
Dentistry, mechanical, W. D. Mayfeld............ 341,929
Diaper, L. S. Samuel......................... 32,443
Diaper, L. S. Samuel..........
Diger. See Potato digger.
Dikes and dams, apparatus for repairing, G. Dem-
brun
brun .. 342,077
Disinfectant, M. Souvielle...............................32,931
Ditching machine, Plumb \& Wise.............
Door check, G. W. Randall.................... 342224
Doubling and winding machine, Briggs \& Webb.. 342,063 Drum, snare, G. W. Be
Egg boiler and steamer, W. L. Chipley................... 3421,888
Ejector for vacuum brakes, E. D. Eames......... 341,894
Electric circuits,
Electric circuits, device or means for making an
Electric circuits, indicator for, o. 342,157
Electric machine, dynamo, C. Batchelor............ 341,99
Electrical conduit. J. R. Burdick.............. 342,2
Elevator. See Tobacco elevator.
Engine. See Gas engine. Multi-cylinder engine.
Rotary engine.
Exercising chair. J. M. W. Kitchen 342,020
Exercising chair. J. M. W. Kitchen 342,020
Fabrics, making textile,. . Maertens. 341,927
Farm gate, L. C. Hunter...................... 342,299
Farm qate, L. C. Hunter...24,113
Farm kate, J. A. Lease..................
Faucet for beer and other liquids, A. Stover..... 442,052
Faucet for beer and other liquids, A. Stover,.....
Saunders....
Feed roll, A. Rodg
Fence, в. A. Rogers.
Fence machine, J. Williams et al.............
Fence machines, tension device for, M. C. Hen-
Fence, metallic, II. M. Walker
Fence bost, w. W. Mc
 Fences, mach,
Fertilizer, J. Van Ruymbeke.........................
Fertilizer from tank waste, making a, J. Va
Ruymbeke.......

File or holder. paper, J. H. Stu
Fitter J. T. Walls..............
Filter. J. T. Walls..

Fire escape ladder, folding, F. W. Hofele (r)... .
Fire extinguishing system, automatic, F. Gray... Fire extinguishing syste
Flour bolt, M. W. Clark.
Flour bolt, 0 .
Flour bolt, \mathbf{O}. H. Titus............
Frame. See Glass cutting frame.
Fruit drier C. F. B. Caspari.
rrame. See Glass cutting
Fruit drier, C. F. B. Caspari
Fruit jar, O. Gerow.

Furnace, G. A. Colbb..............
Furnaces, device for feeding fuel to, E. Fales...
Gag runner, W. V. Kay..
Gauge. See Micrometer
Gauge. See Micrometer gauge.
Galvanic battery, A. C. Harris ...
Game apparatus, H. Meelhausen.
Gas burner, seif-closing,
Gas distribution, means for, R. H. \& W. F. Smith. Gas electric advertiser cock, Lenaerts \& L'Olivier
Gas engine. L. H. Nash..............................
Gas engines, operating, L. H. Nash...........
Gas lighting apparatus, electric, A. F. Cogswell
Gate. See Bridge
Gate, W. D. Ellis.
Gearing, toothed, G. H. Reynolds.........
Generator. See Hydrocarbon generator Glass and other metal articles together, securing,
Glass cutting frame, Woerner \& Nies..............
Glove fastening, E. Flagg
Governor, steam engine, w. Mo......
Governor, steam engine, F. M. Rites
Grain, apparatus for purifying, G. T. A. Niedere
Gathmann.......
Grate and grate bar, F. F. Landis.
Grate, freplace, C. C. McCloskey, J
Grinding machine, L.
Grinding machine, I. W. Andrews...
Grinding mills, rolls for, J. B. Alltree
Gun, air, J. N. Colby.....................
Hanger. See Picture hange
Harness, hip strap attachment for, S. s. Sargeant Harrow, L. Newton..
Harrow, disk, J. S. Corbin
Harvester, grain binding, wrain binding, J. J. Dewey.
Harvesters and other machines, seat for, E. M
Harvesters, butter board for, J. J. Dewe
Hay rake, horse, H. Gale
Hay rake, horse, E. Risley
Hektograph, R. H. Smith
Hektographs, production of, R. H. Smith.........
Hide working machines, oylinder for, A. E. Whit
Hinge, end gate, F. B. Spees
Holder. See Book holder. Lamp shade holder.
Railway rail holder. Sign and bill holder. Spool holder.
Hook. See Meat h

Horse detacher, Keenan \& Gardner. Horses, head protector io House. See Bath house.

Hydrocarbon generator and burner, J. B. Deeds. Ice crusher, J. H. Dunbar........
Indicator. See Station indicato
Indicator lock, C. F. Green.
Ink, composition for removing,
Insecticide, H. W. Armington..
Iron. See Sad iron.
Ironing machine, A. Niles,
Ironing machine, C. Wolff
Jack. See Boot or shoe jack. Lifting jack.
Jar. See Fruit jar.
Kettle, confectioner's, J. S. Huyler
Kiln. See Charcoal kiln.
Kneading machine, dough, J. G. Tourangeau..
Knife. See Hay knife. Pocket knife. Table knife.

Odson.

Lamp, E. B. Requa
Lamp, incandescent electric, Crossley \& Hicks. Lamps, suspension, device for. R. B. Perkins.........

Laryngoscope, electric, H. B. Bayles...
Leather matching machine, C. S. Fifield.
Lenses, apparatus for measuring focal lengths of
Lifting jack, C. A. Sulıman.
brake lock.
Locomotive ash pan, J. B. McCune.................
Locomotive engines, blast pipe for, H. \& W. W .
Adams..
Log turner, R. W. Shelbourne
Loom shuttle, R. Cavenaugh.
Looms, cloth beam for, Underwood \& Schweiz
Low water safety attachment, J. S. Griffith.
Magnets, armature for ele
Manure pouch, J. Bellerjeau.
Meat hook, Finnegan \& Alexander
Mechanical movement, o. \& C. W. Arnold
Metal, drawing, G. C. Reese
Micrometer gauge. W. \& A. W. Cross...............
Mill. See Clay tempering mill. Crushing and Mil. See Clay tempering mill. Crushing and
grinding mill. Quartz mill.
Mirror, hat, L. . . Ernest....................

Mixing and agitating machine. A. C. McEwen..
Moulding press, pulley pattern, Wheeler
Cokely...
Motor. See Churn motor
Motor, J. M. Hall.

Dutton.
Muffs, making and blocking, J. A. Spitzer
Multi-cylinder engine, F. Wynne.
Nailing machine. F. F. Raymond, 2d.
Necktie fastener, B. M. Fish
Nut lock, W. H. Wright.
Nut tapping machine, W. E. Ward
Oven. baker's, C. Bellstedt.
Pad. See Collar pad
Pad. See Collar pad.
Paint, mixed. A. T. Boone
Paper cabinet for sanitary

342,100 342,18

342,189 342,189
34289

342,295
342,279
341,868 Stirrup, C. H. Allen.....
Stirrup, safety, E. Allen
Stone breaker and ore crusher, P. W. Gates... tore service apparatus, \mathbf{k}. Go
Stove, gas cooking, Somerville \& Webber.......... 342,232
tove pine elbow, H. Zopfl.... 34,195

pail, I. L. G. Rice.

Strap loop protector. R.
Straw cutter, G. . Garth.
Straw stacker, W. Butler
Straw stacker, W. Butler.............
Suppository machine, F. G. Uhlich.
Syringe, Perkins \& Sutton.
Table, C. A. Burrows.
Table knife, M. A. Morehouse.
Tablet for stenographers, practice, W. L. Jenkin
Tackle, J. Vida.............................
Teaching spelling, apparatus for, F. S. S.
Tether, H. J. Hurd.....
Thermometer, A. W. Paull....
Thermostatic circuit controllin
Thill coupling, F. P. Musser
Thrashing machines, dust protector for the at
tendants of, w. w. Barber (r)

Tire upsetter, E. Patterson...
Tobacco elevator, A. R. Cott
Tobacco elevator, A. R.
Toboggan, S. McCormick
Toe calk bar, J. D. Hall.
Too calk bar, J. D. Hall............

Trolling spoon bait, G. M. Skinn
Truck, logging. T. Carter......
Tube. See Dental mouth tube.
Tube. See Dental mouth tube.
Tubes, etc., joint or coupling for, w. Green.......
Tubes, method of and apparatus for treating, E
Puning hammer, L. Steetz.
Tuning hammer, L. Steetz.........................
Turning terret rings, machine for, W. s. Bishop.
Type writing machine, D. E. Kempster.........
Type writing machines, inking apparatus for, L.
S. Crandall...........................
Valve, balanced slide, M. N. Packard..

Valve, electric. W. S. Johnson.
Valve. gear, J. B. Pitchford.....
Valve gear, engine, J. B. Pitchf
Valve gear, engine, J. B. Pitchfor
Valve, governor, J. P. Walters.
Valve, slide, , D. Tufts............................ 342,
Valves, muffier attachment for safety, Richardson.
Vehicle brake, J. E. Packar
Vehicle spring, T. \mathbf{S}. King
Vehicle spring, T. s. King..
Vehicle, spring, Mack \& Ha
Vehicle spring, J. J. Woife.
Vehicle top support. Scott \& Leidigh
Vehicle, two-wheeled, F. Wienberg.
Vehicles, spring gear for, J. R. Walker Velocipede, A. Hoak.
Ventilator. See Car v
Vernier, variable, J. т. Honeycu Veterinary incisor cutter, E. P. Smith
Veterinary molar cutter, E. P. Smith Vise, J. P. L. Halyburton.
Wagon bed, A. Crawford.
Wagon bed, A. Crawford....
Wagon brake, G. B. Althouse
Wagon brake lock, W. Moore..
Washing machine, J. F. Pingerton
J. T. Healy..................

Water closet, Harvey \& Wells...........
Water meter, double piston,
Weighing apparatus. grain, J. A. Mitchell....

Wheels, ri.

Window, incid, L. L. Hitt.
Wire, barbed, C. J. F. \& A. C. H. Kraft.
Wire, machine for covering,
Wood jointer, F. J. Bergquest.....
Wrench. See Pipe and nut wrench
Wrench, C. A. Alapaw.

Wrench, J. W. Miller.

Zylonite and other pyroxyline compounds and
articles mad
G. Jarvis....

DESIGNS

Comb, F. v. Jones...
Name plate, F. W. Hor
Oilcioth, C. T. \& V. E. Meyer..................................16,693 to 16,50
Jones...
ewing machine, J. C. Cochra.
ng machine braider, N. P. Poor
wing machines,
F. H. Chilton.
Shears. See Animal shears.
Shingle sawing machine, G. E. Cooke
hingling bracket, Sharpe \& Crenshaw..
Shoe and leggin, rubber, F. T. Welton....
hoe shanks from the forming
for conveying, H. H. Jenkins.
houlder brace and bust supporter, A. E. Stout.
Sign and bill holder, T. McGui
Skate, roller, C. C. Davis..
Sled propeller, J. Heidorf
Sleigh knee, F. J. Bartlett
moke bell attachment. W
${ }^{3}$ moke consuming furnace, E. Fales, ${ }^{34,080,342,081,342,083}$
pinning machine . Chapman..................... 341,995
pool holder, G. D. Crawford.
pring. See Carriage spring. Vehicle spring.
tanchion
tation indicator, watle, C. Risser.
tation and hoop, pail, I. I. G. Rice
jeres............... $\begin{array}{r}34,095 \\ 342,030 \\ \hline\end{array}$

TRADE MARKS.
Bath tubs and sinks, Standard Manufacturing
Company......................................322
Cakes or crackers designated nuts, W. G. Wilson.. 13,324 Chocolate and cocoa, Gebr. Stollwerck.......13,321,
Cigars, cigarettes, manufactured tobacco, and Cigars, cigarettes, manufactured tobacco, and
snuff, Downing Cigar Manufacturing Company.
Cocks and stops and boxes for the same for water
and gas supply pipes, stationary stop, F. Adee

Stollwerck....
Cosmetic, H. H. A
Feathers for bedding purposes, F. A. Hall.......... 13,313 Hair curling preparation, New York Polyform
Manufacturing Company......................... Manufacturing Company.........
Hoes, Iowa Farming Tool Company
Hose, rubber, New York Belting
Company...
Liniment and ointment, J. Seitzinger
Liniment and ointment, J. Seitzinger..........
Saws, E. C. Atkins \& Company.
Schober \& Mitchell.........................13,315 to
A Printed copy of the specitications and drawing of
any patent in the foregoing list, also of any patent
issued since 1866 , will be furnished from this office for 25
of the patent desired, and remit to Munn \& Co., 36
Broadway, New York. We also furnish copies of patents
granted prior to 1866; but at increased cost, as the

Pfovertisements.

CET THE BEST AND CHEAPEST

axclusive Agents and Importers for the United States
of the
PERIN BAND SAW BLADES,

ROCK DRILLS IR COMPRESSORS, nimbal minivd macilierb. ngersoll Rook Irill $C 0$,

Prikter.

LOVEGROVE \& CO. mann a woms.
H. P. and upward.

Cheapest in the market.

 Special Mac.
inery ford Chr
Work and
anthest
Wortoved
Wood Working

STAMMPED METAAL GOODS,
 granted
specifica
hand.
Canadian Patents may now be obtained by the
inventors for any of the inventions named in the fore-
nventors for any of the inventions named in the fore-
going list, at a cost of $\$ 40$ each. For full instructions address Munn \& Co., 361 Broadway,
(

$\frac{\text { Branch office and Factory, } 59 \text { Duane street, New York. }}{\text { COUNTERSINK and DRILL COMBINED }}$

 PORTABLE BRIDGES. - DESCRIP-

AMERICAN STEAM BOLLERINSURANCE CO.,

INTERNATIONAL INSTITUTE FOR Liquefied Carbonic Gas.

To Business Men.

 The value of the Scientific American as an adver-tising medium cannot be overestimated. Its circulation is muny times greater than that of any sity journal ries, and is read in all the principal libraries and reading ooms of the world. A business man wants something more than to see his advertisement in a printed news-
paper. He wants circulation. This he has when he paper. He wants circulation. This he has when he
advertises in the ScIENTIFIC American. And do not let the advertising agent influence you to substitute
some other paper for the SCIENTIFIC AMraican when selecting a list of publications in which you decide it is for your interest to advertise. This is frequently done, for the reason that the agent gets a larger commission ed on the ScIENTIFIC AMERICAN. For rates see top of first column of this
dress
MUNN \& CO., Publishers,

361 Brondway, New York.

 Samples and descriptive Price List free by mail.

THERAPEUTICAL EFFECT OF THE nternal Administration of Hot Water in the Treat-

HARRIS-CORLISSENGINE With Harris' Pat. Improvements, from 10 to 1,000 H. P'

PATENTS.

MESSRS. MUNN \& CO. in connectinn with the publifor Inventors.
In this sine of business they have had forty one yearr'
experience. and now have unequaled facilities for the

 for books, Labels, Reissues, Assignments, and Reports
on Intrinemento of Patents. All business intrusted to
them is done with special care and promptness, on very tat pampuet seit troe of charga, on aphication oon-
 We, elso send, free of charge, a synopsis of Foreign Pa-
tent La ws, sho wing the cont and method of socuring
patents in all the principal countries of the worla. MIUNN \& CO., Solicitors of Patente,

A FAIR OFFERE.
If you will put a JENK INS BROS. VALVE on the worst place you can fnnd, where you
cannot keep other Valves tight, and if it is not perfectly tight or doesnot hold Steam, oils, Acids cannot keep other Valves tight, and if it is not perfectly tight or does not hold Steam, Oils, Acids-
or other fluids longer than any other valve, you may return it, and your money will be refunded

To avoid imposition, see that valves are stamped "Jenkins Bros."

JENKINS BROS.,

NOVELTY ELECTRIC CO. Ererything Electrical.

MODEL and $\begin{gathered}\text { Mendiforcircolars. } \\ \text { FXPERIMEITA } \\ \text { C.E.Jones\&Brc. }\end{gathered}$ сімсімиат, 0.
 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

qRovetuc

ฐ́rientific Amrexicau

The Most Popalar Scientific Paper in the World. Onls \$3.20 a Year, including Postage. Weekly This widely circulated and splendidly illustrated
aper is published weekly. Every number contains sixeen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Englneering Works, Steam Machinery Chemistry, Electricity Telegraphy, Photography, Archihemistry, All Classes of Readers find in the Scientific American a popular resume of the best scientific inormation of the day; and it is the aim of the pablishers present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in every community where it circulates.
Terms of Subscription.-One copy of the ScIenpostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty cents by the publishers; six months, \$1.60; three
months, $\$ 1.00$. months, ${ }^{\text {Clubs.00. }}$
CAN will be supplied gratisfor of the Sctentific Amertat $\$ 3.20$ each ; additional copies at same proportionate rate.
The safest way to remit is by Postal Order, Draft, or Express Money ,rerty money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Ad-
dress dress all letters and

MIUINAT \& CO.,
361 Broadway New York.

TEIE

Scientific American Supplement.
This is a separate and distinct publication from
THi Scientifio American, but is uniform therewith in size, every number containing sixteen large pages. The Scientific American Supplement is published weekiv, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology. Astronomy,
Chemistry, Electricity, Light. Heat, Mechanical Engineering. Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography,
Technology, Manufacturing Industries, Santary EnTechnology, Manufacturing Industries, Sanitary Enmy, Biography, Medicine, etc. A vastamount of fresh and valuable information pertaining to these and allied subjects is given, the whole prorusely hustrated with
engravings. engravings.
The most i
The most important Engincering Works, Mechanisms, and Manufactures at home and abroad are represented Price for the SUPPLEMENT for the United States and Canada. 85.00 a year, or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPLEMENT, both mailed ERICAN and one copy of the SUPPLEMENT, both mailed
for one year for $\$$ ti.00. Address and remit by postal order. express money order, or check.

MUNN \& Co.. 361 Broadway, N. Y.,
Publishers ScIENTIFIC American.
To Foreign Subscribers.-Under the facilities of
the Postal Union, the ScIENTIFIC AMERICAN is now sent the Postal Union, the SCIENTIFIC AMERICAN is now sent by post direct from New York, with regularity, to sub-
scribers in Great Britain. India, Australia, and all other British colonies ; to France, Austria, Belgium, Germans Russia, and all other European States; Japan, Brazil, Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted,
84, gola, for Scientiplc Amprican, one year ; $\$ 9$, gold \$4, gold, for SCIENTIFIC AMERICAN, one year; $\$ 9$, gold,
for both SCIENTIFIC AMERICAN and SUPPLEMENT for one year. This includes pcstage, which we pay. Remit by postal or express mones order. or draft to order of
MUNN \& CO., 361 Broadway, New York.

