

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

GRy. THAYRR'S DIRIGIBLS BALLOOISs.-[See page 400.]

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.

o. D. MUNN

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year. postage included...One copy, six mont hs, postaze Included.
Clubs.-One extra copy of TEL ScIentific Angrican will be supplied aratis for every club or tive subscribers al
same proportonate rate. Postage prepald.
Remit by postal order. Address
The Scientific American Supplement
is a distinct paper from the SciEntipic A Axrican. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages uniform in siz
 \$s.00 a year, postage paid, to subscribers. Single coples, 10 cents. Sold b all newsdealers throughout the country.
Comblined Rates.-The scientific american and supplibment
will be sent for one year, postage free, on recelpt of seven dollars. Both Wapers to one address or different addresses as destred.
The safest way to remit is by draft, postal order, or rexistered letter.
Address MUNN \& CO.. 311 Broadway, corner of Frankiti Street, New Fork
seientific American Export Edition.
The Scisntipic Am Erican Export Edition 18 a large and splendid pert-
odical, issued once u month. Each number concains about one hundred larue quarto pagen, profusely lllustrated, embracIng: (1.) Most of the plates and pages of the four preceding weekly issues of the SCIENTIFIC AMERI-
CAN, with its splendid engravings and valuable information; (2.) Com CAN. With its spiendid engravings and valuable information; (..) Com-
mercian, trade, and manufacturing announcements of ledding houses.
Terms for Export Edition. $\$ 5.00$ a yearr, sent prepaid to any part of the wor.d. Single coples, 50 cents. \&er Manufacturers and others who desire to secure foreign trade may have large and handsomely diss
nouncements published in this edition at a very moderate cost.
The Scinvtiric AMERIIAN Export Edition has a larige guaranteed irr-
culation in all Conmercial places throughout the world. Address MUNN culation in all commercial places throughout the world. Address MUNN NEW YORK, SATURDAY, DECEMBER 26, 1885.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

NO. E21,

For the Week Ending December 26, 1885. I. enginerering.-A Ninety-eight Foot Crane.-With full desorip-
tion and 2 engravings ... Conpled Verticul Engine........................
Kxplosion of a Miltury Mine at Arrasing. Explosion of a Military Mine at Arras.- Manner of conducting
warfare by minees.-Mines used by the anclents.-Construction of minee.-Cause of this explosion... 831
An Underground Flue.-The Inlet and outlet.- With engraving... 832

1. TECHNOLOGY.-Wealake's Improved Organ.-With full deecrip Cion of the parts and the operation ofthe same
Mounting Photographs Correctly. -2 figures Mounting Photographs Correctil. -2 figures.
The Princlples involved in the Construction o The Principles Invoived in the Constraction of Spray Tubes.-By Lamp for Heary Oils
Chemical Procens for Remie..
Artinclal
Artifichal Lilthographic Stones
New York Landries - Clase of

II. ELEECTRICITY, LIGHT, AND HEAT.-Simultaneons Telegraphy and Telephony.-The Van Rysselberghe apparatus. \rightarrow engravings,
IIght vs. Heat Radiatlons.-Experlments by Mr. SHELFORD Bidwell..
V. ARCHITECTURE.-Farm Bulldings.-With 2 engrurlngs....
Royal Academy Traveling Studentship Design for Block of Royal Academy travell
Honses.-An engraring..
Hater.-An engtaring... The insects. -The wax tree.-The wax...
The insects. -The wax tree.-The wax...
Intelligence of the Dos.-Teaching dors to read by the method
used in temching deaf mutee--Inebilt used in toenching deaf mutes.-Inability of animais to count and to alstinguish colors.
The Bed of the 0

2. Horticliditure.-Product
I.- Medicine. Phy iolo.... L.lghtning Stroke.-From a paper by Dr. Lixan..
Tisaue Coloring--Study of Tissue Coloring.-Study of
papor by Prot. EfRLich papor by Pror. Fhblich.
Annual Meeting of the Ame dresses and Reports on Chol Public Health Assoclation.-Ad. Censes and reports on Cholera and Hor Cholera; 8 mallpox in
Canea predisponing to pulmonary diseaces, etc......... Therapeutio Kriects of Tobscco.-
Therap.- By 1. J. M. Goss, M.D.
Hereditability of the Color iof thout Incision.................................. Wittrock.
7ul. Mis reklia NEOLS.-The Present Condition ofithe Yellowstone Natlonal Park.-By E. D. Cope.-Treating of the protection of A Novel Parkerc...
A ormation of Snow Cry

natural gas hoteg.

The Allegheny River was recently the scene of a serious accident, occasioned by the collision of the tugboat Iron City with the natural gas main crossing the stream. When the boat struck the pipe, a leak was made, and the natural gas forced the water twenty feet into the air. This was quickly followed by an explosion, and the whole hull of the boat from stem to stern was torn to pieces. The gas came up on both sides of the vessel, and filled the hold. As soon as it reached the engine room it became ignited, and the explosion followed. The flame of the burning gas hissed and roared around the boat, and had the wind not carried it down stream, none of the crew could have escaped. As it was, they were all, with one exception, more or less seriously injured. • This accident deserves notice from its exceptional nature, and it should carry a strong warning not to be forgotten in the future. Natural gas has, in common with its great industrial merits, a number of less desirable qualities which call for extreme caution in its use. Especially should the pipes used in its transportation be so constructed as not to leak, for its suffocating nature is but too well known, and so located that there is little or no chance of disturbance from surface movements. It seems almost inexplainable that a main should be placed in so unguarded a position as to make a river collision possible.
Ainong the most important of the late discoveries of natural gas is that at Cleveland, Ohio. For more than a year the Cleveland Rolling Mill Company has been sinking a well for gas on a lot near its wire mills. A vein of shale or surface gas was struck at a depth of 750 feet, but the flow was almost cut off by a strong body of salt water, which made it necessary to put a casing in the well.
At a depth of 2,050 feet a large bed of rock salt was encountered. Several mishaps occurred, and decided the company to limit the boring to 3,200 feet. Fortunately, a little before this point was reached, at a depth of 3,160 feet, a strong vein of gas was struck, and when lighted the stream gave a flanne 18 feet high. It has since decreased to ten feet.
The supply is believed sufficient to heat several boilers and light the company's offices. The boring will be carried somewhat deeper, in the hope of securing an increased flow. Other wells will be started at once, and the discovery, it is hoped, will be of great importance to the iron industries of the city, which have undoubtedly suffered from the superior fuel advantages of Pennsylvania localities.
It is possible that the gas monopoly which is in full force in Pittsburg, or soon promises to be, may prove a serious drawback to that city, securing the national foundry for ordnance. The Philadelphia Gas Co., which has control of the greater portion of the city's supply, has a capital stock of five millions, and is already regarded as a monopoly almost as 'powerful as that of the Standard Oil Company. Mr. Andrew Carnegie, our author ironmaster, has associated several leading firms with him in a scheme for building the largest steel plant yet known in America, and it is their ambition to make themselves the only firm in the country able to cast the great guns wanted by the Government. The proposed plant consists of a pair of open-hearth furnaces, two seventeen ton Bessemer converters, and hydraulic machinery capable of forging
the heaviest armor plating needed. Mr. Randall, howthe heaviest armor plating needed. Mr. Randall, howwhile he admits the advantages of natural gas, he sees a power which may at any time make it more expensive than coal. He has expressed himself as believing that than coal. He has expressed himself as believing that burg's prospect of securing the national contracts.
Mr. Westinghouse, the patentee of the famous compressed air brake, and other gentlemen identified with the natural gas interests, have been experimenting with the Flannery process of making water gas. There are already one hundred and fifty cities in the United States which use this gas as their sole illuminant. The gas has strong heating qualities, but needs carbureting before it can be used as an illuminant.
Natural gas has almost the same defects, and it is believed that the process used to prepare the one for an illuminant will be equally successful with the other. The contract for the erection of the necessary machinery for carrying this proposition into effect has now been made, and it is expected that the plant will be ready for operation some time in January. The inventor of the process, Mr. Jos. Flannery, of Philadelphia, has taken out a number of patents, and claims to be able to produce an excellent illuminant free from impurities and smoke. Should his claims be substantiated by the practical test, the illuminant will find a large field in Pittsburg and the vicinity.

Subscribe for the Scientific American and Scientific American Supplement for 1886-\$7 a year for both papers-and you will surely have all the latest and best scientific, mechanical, and engineering news of the period from every part of the globe. A new volume commences next week on both papers. Sub-

PHOTOGRAPHIC FOTES.

Rendering Paper Negatives Transparent.-Castor oil is generally recommended to be used in making paper transparent, but, as it soon drys out in spots, its value is only temporary; a more permanent method we find recommended in the Photographic News is as follows:

A mixture of one part of lubricating paraffine is made with three or four parts of vaseline. This is thickly smeared on the back of the negative, and the front of this latter is held in the steam issuing from the spout of an ordinary kettle, at a distance from it of about an inch. Almost instantly the back of the negative turns white opposite to where the steam is playing. This is always a sign that the material used has sunk into the paper, and that when the negative has become cool it will be transparent. The action of the steam keeps the negative quite limp, and prevents it from curling up, a matter of greater importance than those who have not tried the process of rendering paper coated on one side with emulsion transparent might imagine. The whole operation can be gone through in about half a minute with an ordinary kettle, while a degree of transparency is produced which we have not obtained by any other method which we have yet tried. We imagine that by constructing a special flat nozzle for a kettle, so as to produce a flat jet of steam, the operation could be performed in a few seconds.

It might be supposed that the emulsion films would be melted by the heat of the steam, but we have not found it so. Indeed, a jet of stean will not affect the film of a pyro developed negative, even on glass, although in this case water enough is condensed, before the glass is heated, to melt the film readily enough were it sufficiently soluble. In the case of a paper negative the film heats so instantaneously that no appreciable amount of water is condensed, and, as is well known, dry heat will not melt gelatine.
" We should mention that it is always advisable, especially in damp weather, to thoroughly dry the paper negative in front of a fire before the vaseline composition is applied. The excess of greasy matter may be removed from the back of the negative, after transparency is gained, with a dry rag. If any get on the front, it is well to use a cloth wetted with methylated spirit to insure the removal of the last trace of grease, which might, if it remained, affect the printing paper."
The oil referred to is heavier than ordinary paraffine, and is such as is used for lubricating purposes.
Directions for Working a Forur-wick Oil Lantern.The advantages of an oil light for a magic lantern are thus concisely stated by Mr. Thomas W. Thornton in the British Journal of Photography: "A large majority of amateurs do not care to have a disk more than ten feet in diameter, and for this purpose I maintain the four-wick lamp is not only the cheapest, but the most easy to manipulate, and will answer the purpose better than a lime light. True, it will smell in bad condition, but I will undertake to show my four-wick lamp in any drawing room in the presence of the most fastidious without causing them the least inconvenience in consequence of the smell or dirt. My method of working is as follows:
' First and foremost, clean your lamp yourself, and after every exhibition pour out the oil into a bottle, take out the wicks, carefully dry them, and cut the tops into a very flat are or segment of a circle; when the lamp is again required, pour in the oil very carefully, so as not to spill on to the lamp, and. as an extra precaution after filling, wipe it thoroughly with a dry duster, and then polish with a wash-leather; by keeping the lamp scrupulously clean, any slight trace of dirt or drop of oil is readily seen and as easily removed. Then light your wicks, turning them down very low, and allowing them to burn at least ten minutes before they are turned up full. If this is done, the lamp will burn for at least two hours and a half without attention, or smell, or dirt, and give a brilliantly illuminated ten foot disk, with the minimum of cost, and work, and worry. But let the lamp get into the hands of one who does not understand its peculiarities, and it will smell and fume until it drives its possessor to the use of bad language or worse."

Lone of Plate Glame.

Upon the steamer Critic were shipped eight cases of plate glass for conveyance from Newcastle, England, to New York. The British and Foreign Marine Insurance Company insured the plate glass against damage caused by stranding, fire, shifting of cargo, or contact with water. The voyage was made in tempestuous weather, and by the tilting forward of four cases the glass in them was broken, although the cargo had been properly stored. The owners, Semon, Bache \& Co., having made claim upon the company for indemnity, the loss being $\$ 816.26$, the question of liability turned upon the meaning to be attached to the phrase "shifting of the cargo." Ex-Judge Fancher, as arbitrator, has decided that the change of five inches in position of the tops of the cases came within the meaning of the clause, the language to be taken most strongly against the party using it, and that the claim for the insurance money was valid.

ASPECTS OF THE PLANETS FOR JANUARY.

 vendsis evening star, and easily wins the first place on the January record, for during the month she takes on her brightest phase. On the 13th, at noon-day, she reaches her period of greatest brilliancy as evening star. There are two of these periods. One occurs thirty-six days before inferior conjunction, when she is evening star, as at present. The other occurs thirty-six days after inferior conjunction, when she is morning' star. On these occasions. she is 40° distant from the sun, and appears as a waning crescent, with about onefourth of her disk illuminated. Before the period of greatest brilliancy, her increasing diameter as she approaches the earth more than counterbalances the loss of light as less and less of her illumined face is turned toward us and her light increases. After this period, the loss of light more than counterbalances the increasing diameter, and her light grows dim. When she first becomes evening star, her diameter is $\mathbf{1 0}^{\prime \prime}$. When she closes her course, her diameter is about 64'
There is no necessity for calling attention to this beautiful star during the month, for no one can look at the western sky in the early evening without feeling the spell of her presence, and wishing to imprison her there forever. This fascinating planet will repay close attention under her present conditions for observation. For, when most brilliant, she casts a perceptible shadow, as may be easily seen. She is also visible at noon-day to the naked eye, when her position is known, and the atmosphere is clear and calm, appearing like an intense white point in the sky. She is most lovely in the telescope when seen in day light as a crescent of pearly luster growing larger sharper, and thinner as she pursues her course. The fact of her approach to the sun may be easily verified by intelligent observers who watch her position night after night, and note the lessening time of her stay above the horizon. Her light will be lost in the evening sky, 36 days after she glows in her brightest colors, and 20 months must pass before she comes round again to her present position in the heavens. Venus lacks but one element for making her conditions for observation as perfect as possible. She is not in her highest northern declination, although she is turning her steps rapidly northward

The right ascension of Venus on the 1st is 21 h .53 m . her declination is $13^{\circ} 4^{\prime}$ south; her diameter is $34^{\prime \prime}$; and she is in the constellation Capricornus.

Venus sets on the 1st soon after 8 o'clock in the evening; on the 31st she sets about a quarter after 7 o'clock.

SATURN

is evening star. He wins the second place on the monthly record, for he is the sole planet visible in the early evening skiy in the eastern portion of the heavens. He is almost bright enough to dispute the starry sovereignty with his fairer rival, who holds her court in the west. He has this advantage, for while Venus sinks below the horizon a few hours after sunset, Saturn graces the sky the livelong night, serenely shining alnong the brilliant galaxy of stars that sparkle in the winter sky. He is one among them, but not of them, for while they pierce the star depths with their own inherent light, his light is borrowed from a sun far less in size than many of the bright points sparkling around him. Saturn is still beautiful to behold; though perihelion and opposition have passed, he has not yet reached his highest northern declination. He scarcely changes his position during the month, though slowly retrograding in his course
On the 10th, Saturn occults Mu Geminorum, a star of the third magnitude. Unfortunately, the phenomenon occurs at 5 o'clock in the morning, when Saturn is too near the western horizon for observation; star and planet will, however, be near each other during the night. The occultation of a large star by a planet is a rare occurrence, and observers may thank their stars if they are so situated as to see the sight.
The right ascension of Saturn on the 1st is 6 h .19 m . his declination is $22^{\circ} 32^{\prime}$ north; his diameter is 19.4° and he is in the constellation Gemini
Saturn sets on the 1st a quarter before 7 o'clock in the morning; on the 31st he sets soon after half past 4 o'clock.

JUPITER

is morning star. Those who watch the breaking of the dawn will find him a superb object in the morning sky, brightly glimmering in the rosy or golden light that heralds the sun's approach from his high position in the zenith.
Jupiter and Uranus, who have long been near each other, meet and pass on the celestial road. The conjunction takes place on the 24th, at 8 o'clock in the morning, Jupiter being at the time $1^{\circ} 51^{\prime}$ northwest of Uranus.
Jupiter is becoming more favorably situated for obervation as he approaches the earth. Astronomers have already begun to take advantage of the improved conditions. Mr. Denning, a specialist in Jovian interpretation, observed the famous red spot on the morning of the 25th of October. He describes it as plainer
than it was when seen on the 8th of July-his latest observation before the conjunction of the planetthough not so dark as the equatorial belt, nor nearly so conspicuous as it was five or six years ago. The spot was distinctly outlined, notwithstanding the low altitude of Jupiter, and retained nearly the same size and shape as when previously seen. This marking has now been observed for seven years, and its present aspect eems to foretell that its existence will be indefinitely prolonged. It may therefore be regarded as a feature of singular permanency. The prospect is that during the coming opposition the red spot will attract genera observation. Astronouers have always the excitement that something unexpected may reward their patient work. It is not impossible that during the present year light may dawn upon the meaning of the myste rious red spot, so long an unsolved problem. Amateu observers sometimes find prizes where scientists fail astronomical triumphs are gained by those who have not yet won their laurels.
The right ascension of Jupiter on the 1st is 12 h .22 m . his declination is $0^{\circ} 58^{\prime}$ south; his diameter is $35{ }^{\prime} 8^{\prime \prime}$; and he is in the constellation Virgo.
Jupiter rises on the 1st about a quarter past 11 o'clock in the evaning ; on the 31st he rises about half past 9 o'clock.
is morning star. He keeps on his monotonous course meeting with nothing of importance on h's way, bu growing larger and taking on a more ruddy tint as h draws near the earth
The right ascension of Mars on the 1st is 11 h .35 m . his declination is $5^{\circ} 48^{\circ}$; his diameter is $9 \cdot 6^{\prime \prime}$; and h is in the constellation Virgo.
Mars rises on the 1st soon after 10 o'clock in the eve ning; on the 31st he rises about half past 8 o'clock.

MERCURY

is morning star. He is at his greatest western elonga tion on the 8th, at 7 o'clock in the morning. He then $23^{\circ} 26^{\prime}$ west of the sun. If it were not for his great southern declination, he would be visible to the naked eye, at and near elongation, in the morning sky before sunrise. A sharp-eyed observer who knows his exact position may succeed in finding him.
The right ascension of Mercury on the 1st is 17 h .18 m .; his declination is $20^{\circ} 32^{\prime}$ south; his diameter is $7 \cdot 6^{\prime \prime}$ and he is in the constellation Scorpio.
Mercury rises on the 1st at half past 5 o'clock in the morning; on the 31st he rises about a quarter past o'clock.
drands
is morning star. His conjunction with Jupiter on the 24th has already been referred to.
The right ascension of Uranus on the 1st is 12 h .28 m .; his declination is $2^{\circ} 22^{\prime}$ south; his diameter is $3 \cdot 6^{\prime}$; and he is in the constellation Virgo.
Uranus rises on the 1st about half past 11 o'clock in the evening; on the 31st he rises about half past 8 o'clock.

NEPTUNE
is evening star. At the close of the month, Neptune Saturn, and Venus are on the western side of the sun and are evening stars. Mars, Jupiter, Uranus, and Mercury are on the eastern side of the sun, and are morning stars.

The right ascension of Neptune on the 1st is 3 h .24 m .; his declination is $16^{\circ} 50^{\prime}$ north; his diameter is $2 \cdot 6^{\circ}$; and he is in the constellation Taurus.
Neptune sets on the 1st about half past 3 o'clock in the morning; on the 31st he sets about half past o'clock.

THE MOON.
The January moon fulls on the 20th, at 2 h .45 m. A. M. The waning moon is in conjunction with Mercury on the 3 d , at 1 h .40 m . A.M., being $2^{\circ} 34^{\prime}$ north. A close conjunction between the moon and Venus takes place on the 9 th, at 1 h .45 m . in the morning, the moon being 38^{\prime} north. Moon and planet are invisible at the time of conjunction, but the three days' old crescent and the evening star will make a charning picture on the evening of the 8th, as they approach their nearest point. On the 15th, the moon pays her respects to Neptune, at 11 h .36 m. A.M., being $2^{\circ} 58^{\prime}$ south. On the 18 th , she is at her nearest point to Saturn at 7 h .59 m . A.M., being $4^{\circ} 8^{\prime}$ south. On the 23d, she is in conjunction with Mars, at 8 h .43 m . P.M., being $2^{\circ} 56^{\prime}$ south. On the 24 th, 48 m . after noonday, she is very near Jupiter, being 17^{\prime} north. On the 24th, she is also near Uranus, at 3 h .5 m. P.M., being $1^{\circ} 9^{\prime}$ north.
occultations.
The moon occults both Jupiter and Uranus on the same day for the enjoyment of some favored mortals on the earth's crust. The occultation of Jupiter takes place on the 24th, 48 m . after noonday; that of Uranus on the same day at $3 \mathrm{~h} .5 \mathrm{~m} . \mathrm{P} . \mathrm{M}$., Washington mean time. Observers whose position corresponds with the position of the moon, as seen from the center of the earth, if they are on the dark side of the earth, and between the limiting parallels of 52° north and 20° south, may see the occultation of Jupiter. Under the same conditions the occultation of Uranus will be visible between the limiting parallels of 88° and 86° north. Ob-
servers in this vicinity will find on the evening of the 24th that Jupiter has survived the occultation, and is shining with his usual luster, near the moon. The noon also occults Aldebaran. The occultation occurs on the 16th, at 2 h .4 m. P.M., Washington mean time, an unfavorable hour for our side of the earth.

Jandary

bears testimony to a quiescent condition of the sun's family. All days are not field days, and our celestial brothers pursue their tireless course with but few meetings and partings on the ruad. Those who folow the movements of the planets learn to take warm personal interest in these celestial wanderers, feel for hem a kind of reverential friendship, a personal own ership as it were. Especially is this the case with the three planets that will brightly shine in the January sky. Venus, to lovers of the star, is the queen, the fairest of the stars. Jupiter is the symbol of royalty, and Saturn is the magnificent potentate among the brotherhood. Venus in the west, Saturn in the east in he early evening, and Jupiter looking down from the zenith in the early dawn, will crown the star-lit beauty of moonless nights throughout the first month of the new year.

Driving at Night.

How to illuminate a road in front of the horses in driving at night is an important matter.
The usual side lamps on carriages, or the attaching of a lantern to the dash board, fail to reflect the light where it is most wanted, and the suspending of a lan tern to the front axle is objectionable for many reasons, but it is the best plan for shedding the light where it is the most needed that we have seen tried.
But a Philadelphia physician suggests the attaching of the lantern to the breast collar of the harness, which he says he has tried with perfect satisfaction; and he has evidently had some experience with the ordinary methods of lighting, for he says the various forms of dash lights are pretty much the same, in that they put the light just where it is not wanted, illuminating the horse's tail and hips and the buggy thills with a brilliance quite unnecessary, which intensifles the blackness of the shadow cast by them just where one most wishes to see clearly.
"My light is a common tubular lantern, with a reflect or, and a spring for attachment to the dash. In place of putting it on the dash. I slipped the spring over the middle of the breast collar, directly in front of the horse. Every part of the road in front of me was plainly seen, so I could drive with as much confidence as in broad daylight. The conditions necessary for success are a level headed horse, with fair breadth of chest, and a shoulder strap attached to the check hook, to prevent the lantern sagging down between the horse's legs when for any reason the traces slack. It would be well to have a short strap sewed to the in side of the breast collar, to slip the spring through, so as to prevent any lateral motion.

To Make Translucent Paper.

Take a negative on the paper and pin it, paper side up, on a board. Apply butter (cold) all over it, with the fingers; put on plenty. Then hold the negative over a paraffine stove, with the flame turned low. The butter will at once begin to melt. While it is melting, hold it in the left hand, and with the fingers of the right keep the melting butter moving over the less greased portions, and with the left hand move the negative about. Continue till an even surface is obtained, which will be in about five minutes or less, de pending on the size of the negative. Then lay, paper side still up, on a board or cloth, and, while warm, rub off the surplus butter with tufts of cotton wool; it will probably be necessary to rewarm the negative several times during this operation. Should any butter, by chance, get on the film side of the negative, warm it and rub it with cotton wool, and it will at once come off. Give a final rub with cotton wool dipped in al cohol, and the negative is ready to print from, and has a fine ground-glass appearance.-J. Ville, Photo. News.

Invent Wisely.
The remittance of $\$ 3.20$ for one year's subscription to the Scientific American for the coming year will be a good investment; but there is one that will pay better, and that is to send $\$ 7$ and receive both the ScIEN tific American and Scientific American SuppleMENT during 1886. With the weekly receipt of the two papers, the subscriber will have placed before him all the scientific, engineering, and mechanical news of the day.
Engineering works, new machines, inventions of imby sunce, and novelties of all kinds will be illustrated scriber preserves his numbers of both editions, he will have at the end of the year four large volumes, of 416 pages each, containing information and illustrations of great practical value and interest, not obtainable elsewhere. Remit by postal order, check, or registered letter to Munn \& Co., publishers, 361 Broadway, New York.

dradalt devige for vehtcles.

The device herewith illustrated is designed to assist the draught of vehicles of all kinds by utilizing the jars of draught and the jolting of such vehicles to accumulate power on the axle, in order to give such part a forward motion. The wheels, B, are fixed to stub axles, A, journaled in bearings, as shown in Fig. 1. On each axle is a ratchet wheel, C, having peripheral teeth engaged by a pawl, and edge teeth engaged by what the inventor for convenience terms a "second

PAEsaLER's DRAUGHT DEVICE FOR VEHICLEs,

wheel," D. The whiffletree, F, is pivoted in a slot supplied with a spring to ease the forward motion, as will be understood. From each end of the whiffletree a cog band, F^{\prime}, passes back around the second wheel, and is secured at its rear end to a spring supported by the framing. When the whiffletree is drawn forward, the band turns the second wheel, which also turns the ratchet wheel and contracts the spiral spring, E. The pawl holds the wheel at the point to which it is moved, and the axle is given a forward impulse by the action of the spring seeking to relax itself. The band is drawn back by its spring, when the draught is released by the stopping of the horse or other cause. This backward and forward motion of the connections alter nately tightens and permits the spiral spring to impart a forward motion to the axle. In the construction shown in Fig. 2 the chain is connected at one end to the body, and after passing under the second wheel is secured to the spring, G; in this case the operation of the second wheel depends on jolts to depress the body, which in rising will revolve the second wheel.
The inventor of this device, Mr. T. H. Paessler, of Malvern, Ohio, claims that it would be of great use where heavy hauling is done with drays, lumber wagons, etc., and that its ase would greatly reduce the labor of running a bicycle or tricycle.

DUOYANT PROPELIER FOB

 STEAMBOATSThe two hollow cylindrical floats that support the body of the boat are pre ferably made cigar-shaped, and each is placed upon a central shaft journaled at central shait journaled at their ends in uprights at-
tached to the body, so that the floats may be revolved for propelling the boat. For this purpose the floats are provided with spiral blader at their rear ends. It will be noticed that these blades are only formed for a short distance from the ends of the floats -about one-third of the length-so that the water will not be ruffled directly under, but only in the rear of the float. The various means by which the floats can be revolved will vary according to the shape of the body, which may be in the form of a flat boat decked, as shown in the engraving. One arrangement for operating the floats consists of a crank shaft carrying a gear wheel meshing with a pinion of the float shaft; this gear wheel is connected by an intermediate gear with a pinion on the recond float shaft. This invention has been patented by Mr. Wm. Hall, of 178 Bank St., Waterbury, Ct.

In a paper by the Rev. Philip Neale, late British Chaplain at Batavia, in Leisure Hour, speaking of the great inundation from the sea caused by the Krakatoa earthquake, Java, he says: "One of the most remarkable facts concerning the inundation remains to be told. As we walked or scrambled along, we were much surprised to find great masses of white coral lying at the side of our path in every direction. Some of these were of immense size, and had been cast up more than two or three miles from the seashore. It was evident, as they were of coral formation, that these immense blocks of solid rock had been torn up from their ocean bed in the midst of the Sunda

OTOMATIC PULLEY TURNITG ATTACHMERT POR

 LATHES.This attachment consists of a tool holder bolted to an ordinary lathe carriage in place of the tool post. A stand is fastened to bed piece of lathe near the head stock. A small rod from this stand connects with a ever on the attachment. As lathe carriage feeds along, this device causes the tool to describe the segment of a circle. By simply moving the slide on the lever to or from the tool, it will turn all the shapes shown in sections, or any desired shape from a flat to a round face. The attachment will give correct shape to face of pulleys up to 36 inches wide
As lathe centers do not have to be set over out of line, it will take a heavy chip, and increase the capacity of the lathe from one-third to one-half. It is a simple, practical, and positive working tool. It is manufactured by Amerian Twist Drill Company, Meredith, N. H.

Hartholdi in America

The eminent sculptor, M. Bartholdi, who has just re turned to France, after a visit of a few weeks in America, had several inter views during his stay in this country with the Secretary of War and other members of the committee who are to decide upon the

AUTOMATIC PULLEY TURNING ATTACHMEET FOR LATHES,

 design for the statue of Lafayette soon to be erected at Washington. While \mid Straits, borne inland by the gigantic wave, and finally no definite contract has yet been made, it is understood left on the land several miles from the shore. Any that M. Bartholdi will in all probability be the artist one who had not seen the sight would scarcely credit selected for the execution of the work. His models are considered by far superior to those submitted by any of the competing artists.The erection of the statue of Liberty naturally engrossed much of the sculptor's attention. The pedestal cannot be completed before midwinter; and as the statue is of such great size, and must be put up slowly and with the greatest care, the entire work can hardly be completed under about five months. M. Bartholdi proposes that the dedication shall take place on the 3d of next September, the anniversary of the signing of the treaty of Versailles, which secured peace after the war of the Revolution, and guaranteed the recognition of the American republic.

Underground Wires.

The Standard Underground Cable Company, of Pittsburg, have lately laid in this city an experimental electrical cable, connecting the headquarters of the Police and Fire departments. A trench about 4 feet deep was dug along the gutter on the north side of Houston Street, in which a wooden box to contain the cables will be laid. The cables consist of six insulated copper wires pressed in a malleable lead pipe and laid side by

hall's buoyant proprller for stramboats. the story. The feat seems alinost an impossible one. How these great masses could have been carried so far into the interior is a mystery, and bears out what I have said in previous papers as to the height of this terrible wave. Many of these rocks were from twenty to thirty tons in weight, and some of the largest must have been nearly double. Lloyd's agent, who was with me, agreed in thinking that we could not be mistaken if we put down the largest block of coral rock that we passed as weighing not less than fifty tons.

Improvement in the Manufacture of Mineral wool

This highly useful product from blast furnace slag was first made practically available by a German in ventor some ten years ago, but sẹveral subsequent improvements have been made in its manufacture, im proving the average quality and lessening the cost Perhaps the most important of these is that covered by the recent patent of a Pennsylvania inventor. The wool is usually made by blowing jets of steam or air against a small stream of molten slag, converting the latter into fine vitrified fibers; but in this process, a heretofore conducted, only a part of the slag is con verted into fiber, the rest forming hard granules or hot, which it has been difficult to separate from the fiber, the operation having a tendency to break up the fibers and make several inferior grades of mineral wool. By the re cent improvement. the stream of molten slag falls nto a space in front of a central steam jet pipe, with lattened orifice, tending to hrow the strean of slag in fan-like shape; side jets are arranged to then meet the spreading stream of slag and force it inward and upward, where it is again met by other jets, giving it a swirling or twisting motion but all the time under the action of the steam jets, until the stream of molten slag is discharged in conical shape, and enters the end of the receiving chamber. By this means, it is claimd, the entire product of the blow is what is known side in the boxes. The latter when closed up are to be as No. 1 wool, the product being light and soft, unicovered with roofing pitch. All the wires of the fire alarm telegraph running out of the headquarters in Mercer Street are to be removed from the tall masts in front of the building and connected with the under ground cables, and the police telegraph wires are to b similarly treated.
form in quality, and free from granules or shot. This mineral wool is adaptable to so many purposes, more particularly in building, and, among engineers, as a non-conductor of heat, and it can be so cheaply made that we are not surprised to learn of its coming into extensive use.

A CONVENIENT BLOCE FOR BLOWPIPE WORK.
Those who have heretofore used a piece of charcoal on which to melt small specimens of metal with the blowpipe will see at a glance the advantages of the improved soldering, melting, and ingot block herewith illustrated. It is made of homogeneous asbestos, with a narrow strip of wood on each side to protect the hands from the heat, and with a thin coating of whiting in the bowl to prevent borax or other flux from adhering. The asbestos is not only itself almost entirely unaffected by the heat, but it is so poor a conductor that one can hold this little block, about six inches long, in the hand for a sufficient time to conduct, any ordinary melting without inconvenience from the block becoming too hot to hold. It is also so porous that an article can be readily fixed on the block in any desired position with pins or other fastening as shown in Figs. 1 and 2 where a ring and watch case are shown affixed in convenient position for an ordinary soldering operation, as the work is done by jewelers.

Fig 3 shows scraps of metal in the bowl with the blowpipe flame directed upon them, and Figs. 4 and 5 give the block itself in different positions. Connected with the bowl by a narrow inlet is a shallow depression, into which, on holding the block vertically, ith a small asbestos cover pressed down by the thumb over this depression, the melted netal will run, and form an ingot. Fig. 4 shows such an ingot as being removed, and the other views clearly illustrate the varying details, Fig. 1 showing the asbestos cover set vertically just beyond the apex of the flame, o better concentrate the heat on the work. Asbestos board has heretofore been used to considerable extent by jewelers, several hicknesses being united to form a base on which to melt metals by the blowpipe; but the different layers did not make a compact and homogeneous mass, and so would curl up and separate, which is not possible with this form of melting block. The many uses to which this little device is applicable are so obvious that a de tailed reference thereto is hardly necessary.
Apart from its applicability in the trade of the jew eler and silversmith, and in various other kinds of fine soldering work, chemists and mineralogists will at once see in it an extremely convenient means of making many tests which have heretofore been possible only in a much more roundabout way, with nore compli cated apparatus, and generally at considerable expense It is so simple a thing to fit up a blowpipe, with which fragments of almost all the metals may be melted with the heat from even a common tallow or wax candle that there is no more convenient way of making many most interesting and valuable experiments. The ordinary blowpipe is a light brass or tin tube, about ten or twelve inches long, one-fourth or one-half inch in diameter at one end for the mouth, and one-sixteenth inch or thereabout at the jet end, the latter having generally a platinum point, to resist the heat, and being slightly curved, so that the flame will be thrown sidewise upon the object, so that the effect will thus be more readily observable by the operator. With a little practice one can, with this device, keep up a constant stream of air directing the flame, which it is best at first to hold in rather large volume over the entire ob-

HUSSONG'S ICE VELOCIPEDE.
difficulties which this device entirely obviates. This invention is the subject of an application for a paten account of the Chalmers-Spence Company of 41 Eighth Street, New York city.

Remarkable Pigeon Flight
The return to the loft of A. P. Baldwin, Newark, N

Every Man His Own Pomtal Clork.

An English invention is designed to do away with complaints about a want of post office agents for the sale of stamps, especially in large cities, and also with the complaints of those storekeepers who, without profit to theusselves, feel obliged to sell postal cards
and stamps to accommodate customers. The apparatus is a mechanical box which automatically transacts the business of selling stamps, etc., and may be put up on lamp-posts like the letter boxes. It contains a supply of postal cards, stamped envelopes and paper, and has apertures like a child's savings bank, through which to drop pennies. If a citizen wants to buy a postal card, he drops a penny in the box; this releases the lock and allows him to open a drawer in which he will find one postal card. If he wants a stamped envelope and sheet of paper, he drops two pennies into two other slits, and a stamped envelope and sheet of paper are delivered to him in the same way. If the supply runs out, a plate rises with the word empty engraved on it, and at the same time the corresponding slit is covered so that a coin cannot be dropped into it. The top of each box serves as a writing desk. They cost less than twenty-five dollars each, and it is estimated that if they sell only two stamped envelopes and five postal cards a day, they will yield eleven per cent interest.

TIPROVED VELOCIPEDE.

The invention herewith illustrated-patented by Mr. James M. Dillon, of Jackson, Tenn.-relates to improvements in the driving of velocipedes, such as tricycles, quadricycles, etc., either for railways or ordinary roadwus. The two driving wheels are rigidly mounted on the ends of an axle journaled in a U-shaped frame, which has an upwardly projecting part in its rear cross piece, in which the steering wheel is journaled. A fork projects toward the front from the lower ends

BLOCK FOR BLOWPIPE WORZ.

., from Pensacola, Fla., about 1,000 miles, September 26 , was the blue checker, Reg. 1.035 , since named Arnoux. The bird is bred from a bird imported by Louis Offermans from one of the best lofts in Antwerp; was a winner of many prizes in club races and in two government races open to all Belgium. The journeys of the bird Arnoux this year include the distance from Morgantown, N. C., 535 miles, and a month later from Bristol, Tenn., 510 miles. These, with the previous fies in club races and the later journey from Pensacola give a distance of 3,153 miles as the season's work-the greatest known to have been covered by a homing pigeon in a single season.-Homing Pigeon.

ICE VELOCIPEDE.

The frame upon which the runners are mounted consists of two bars united to a vertical standard at their orward ends, and at their rear ends curved downward, in order that the runners may be secured to them. The shank of the forward runner, the turning of which erves to guide the machine, is journaled in the vertical standard, and is operated by a lever within convenent reach of the right hand of the rider. The drive wheel frame is pivoted upon a cross rod joining the sides of the main frame; the shaft of the wheel is journaled in the rear free ends of this frame. The driving wheel has sharp points on its periphery, and is centrally fixed upon the shaft, which carries a sprocket wheel driven by a chain passing around a larger sprocket wheel on a crank shaft provided with the ordinary form of pedals. By means of the left hand lever arm, the wheel may be raised clear of the ice or pressed downward with considerable force. When this lever is thrown forward to elevate the wheel, the points of two brakes, one attached to each of the rear ends of the main frame, are lowered so as to scrape along the ice. Both of the brakes and the wheel can be held just clear of the ice by placing the lever in a notch in a rod projecting forward from the seat bar. A ward from is so arranged that it may be made to vary the pressure of the wheel upon the
of the inner blue flame on the part where the metal is ice. This ice velocipede is the invention of Mr. Joseph desired first to yield. By putting a piece of charcoal Hussong, of Camden, N. J. over the bowl containing the fragments to be melted, the heat will be confined and the operation facilitated By the old way of using the blowpipe on metals on a flat or scooped-out piece of charcoal, the melted metal was hard to manage and pour into moulds as desired,

The Liverpool Custom House has levied a duty of about $\$ 200$ on the challenge cups won by Sir Richard Sutton with the Genesta. The case will probably be the fork carrying the small wheel, on the front end of this fork is a pin, which passes loosely through a block sliding on a bar uniting the side pieces of the frame.
This block is operated by a wire guided to and along the front upper cross bar of the frame; by moving a ball or handle secured to the rope at the cross bar, the wheel can be turned to steer the machine. On the axle is rigidly mounted a double ratchet wheel-one having two ratchet rings-and at each side of the wheel is a loosely mounted pulley. Properly arranged pawls on the pulleys engage with the ratchet teeth. Pivoted to the frame at each side of the steering wheel is a foot lever; the swinging end of each lever is provided with two prongs. Over each pulley is passed a metal band secured at the middle of its length to the rim of its pulley. The front end of one band is secured to a prong of one lever, and the other end to a prong of the other lever. The other band is secured to the levers in the same way. A brake is arranged above the rim of one wheel. The operator depresses the treadles alternately. When one lever is pressed down, the front part of a band is pulled down; this turns the pulley and ratchet wheel, and revolves the driving wheels. At the same time, the rear part of the band raises the other lever

dillon's mproved velocipede.
with which it is connected. This method of propelling velocipedes utilizes nearly all the rider's weight, and reduces the friction to a minimum. It will be seen that this construction is applicable to the driving of various machines, such as coffee grinders, feed cutters, lathes, etc., in which cranks are used. If necessary, a saddlelike seat could be used with this device

at lifproved graing seat for vehicles,

In the illustration herewith, the seat is shown with its top board broken away for one-half the length of the seat, in order to show the arrangement of the springs, which is the same on both sides. The seat has lower boards, one on each side, pivoted centrally in hangers below the seat board, the lower boards having cleats to hold the seat upon the wagon box; the inner ends of these lower boards are connected with the ends of flat steel springs, by links and hooks, the other ends of these springs being secured by clips or bolts to the under surface of the seat board. The connection of these springs with the inclined lower board by hooks is such that one, two, or more of the springs may be easily detached from the boards, according to the weight or number of the persons to

French rock asphalt pavement in the city of London still holds its own; and while no asphalt has ever been taken up to replace it with wood, there have been cases whire the wood has been taken up and replaced with asphalt. The asphalt is confined to "the city," however, where it was introduced to relieve the intolerable noise of stone pavements, and to get something cheape than macadam, which under heavy traffic is the most expensive of all pavements, and always dusty or muddy. There are about eleven miles of asphalt in "the city," and two miles of it only in other parts of London. In the West End the new pavements are largely of wood, which is so noiseless and, while it lasts, so smooth that it is quite popular. It has to be re placed every six or seven years, and for the last two o three years of its life it is somewhat rough, but the Londoners seem willing to stand the expense and trouble of renewing it so often in order to do away with the racking noise and wear and tear of stone pavements. Nearly all the main lines of travel west from the Bank of England, and the principal cross streets, such as Regent Street and St. James Street, are paved
ride upon the seat. The object of this construction is to provide a seat that may be adjusted to ride as easily with one as with two or more persons, having no endwise or lateral pitch, but always a level up and down movement.
This invention has been patented by Mr. Charles Van Horn, of Bethlehern, Pa.

American shipping.

The seventeenth annual list of merchant vessels of the United States, as prepared by the Commissioner of Navigation, shows as follows as compared with the list of previous fiscal years:

Number of	1882	1888.	1884.	85.
Sailing vessels.	.18.459	17,528	17,598	17,167
Steam vessels.	5,628	5,825	6,111	5,705
Unrigged vessel	2.648	2,784	2,821	2,640
Total merchan	24,738	28,187	28,630	26,518

It is stated that the decrease in the number of vessels is more apparent than real, as is evidenced by the fact that there were many vessels on the list of 1884 which had been lost or sold to foreign traders. That they were retained on the list is due to a failure on the part of their owners or inasters to report their loss or sale. It is estimated that the real decrease in the number of vessels owned in the United States during the last year was only about 200 , and not 1,117 , as shown in the table.

APPARATUS FOR IRRIGATING LAND.

The engraving represents an improved apparatusthe invention of Mr. Elias Briggs, of Coleman, Texasfor irrigating land in the most beneficial manner, and which is simple in construction and not apt to get out of order. The tank for receiving the water, liquid manure. etc., is provided with an outlet pipe having a valve; a screen or strainer prevents solid matter from passing out of the tank and into the irrigating pipes. Below the spout is a trough having a series of tubes extending downward, and connected by elbows with irrigating pipes running underground in different directions. The pipes are lapped at the sides to form slots, as

BRIGGS' APPARATUS FOR IRRIgating land.
shown in the enlarged sectional view, in which notches are formview, in which notches are form-
ed through which the liquid can pass out. The overlapping parts prevent the earth from closing the slot.
The pipes are placed at such a distance underground that they cannot be injured by plows or spades. The tops of those pipes through which it is not desired to lead the water can be closed by plugs. As the tank and trough are some distance above the surface, the water has sufficient pressure to keep the slots clean and to pass into the ground. Although this apparatus is shown constructed for sub-irrigation, it may be used as well for surface irrigation.
with wood. The asphalt does not seem

to have spread i

 ad the West End of London, as they are only familiar with the rock asphalt variety, which becomes very slippery under heavy traffic, and is quite different in this respect from the American or Trinidad variety.In Paris nearly all the inner and the outer lines of
boulevards are paved with wood, as well as a portion boulevards are paved with wood, as well as a portion
of the Avenue des Champs Elysees. The broad Place de la Concorde is now being paved with it. Nearly all of these have been laid in the last four years. The engineers of the Municipality decline to express any positive opinion as to its durability until it has had a longer trial. It is laid at a ruinous expense, under a system of annual payments (instead of cash down). These payments, in addition to the annual maintenance, make the cost about $\$ 1.10$ per yard per year, and the contract runs for eighteen years. The asphalt in Paris, which is also of the rock variety, had got into very bad order in 1883, owing to failing contractors on the maintenance, and this and its slipperiness combined to make it unpopular, so that it has not been extended greatly, and remains about thirteen miles in extent, as it was five years ago. New contracts have been made for its maintenance with responsible companies at 33 cents per yard per year, and it is now in very fair order again, although somewhat wavy in places as well as slippery.
In Berlin the wood has been tried in the last three years, but has broken up very rapidly, and is pronounced a failure. The rock asphalt pavements have been largely introduced, and about ten miles have been
laid in the last five years. Except for its slipperiness laid in the last five years. Except for its slipperiness
it is very popular, and is kept up for ten cents a yard a it is very popular, and is kept up for ten cents a yard a
year, the traffic being very light in comparison with London and Paris.
In all the great capitals of Europe it seems to be def nitely established that they will not tolerate the roar of stone pavements, and that smooth and quiet pave ments will be laid as fast as they have the money to lay them. Once laid, they take great pains to keep them in perfect order and perfectly clean. They are scrubbing, washing, cleaning, sprinkling, sanding them, and picking up manure at all hours of the day and night. There are only two cities in America that compare with the European cities in this respect-Washington and Buffalo. Washington has the most asphalt (sixty miles), but Buffalo has the cleanest streets, the amount of asphalt being about twenty miles. Omaha also has very good streets, having about eight miles of asphalt. All of this is the American asphalt, which was adopted and perfected in Washington after a great deal of study. In Boston it has been laid on streets in the heart of the business section, where the traffic is as heavy as anywhere in London or New York. To the surprise of most people, it has worn well and without any repairs for four years. This American variety has a large amount of sand in its composition, and is not so slippery as the French variety.-N. Y. Tribune.

The Temperature of the atlantic.

The captain of the steamer Olympia has been accustomed for some time past to make daily observations of the temperature of the surface water of the ocean during his transatlantic voyages. On his last westward trip, in the early part of November, he found the average temperature of the Atlantic along the fortieth parallel to be about 72.5° from Gibraltar to 68° west longitude. In crossing the Gulf Stream, however, the warmth was considerably greater. In previous years the average temperature was only about 70° for the month of October, and considerably below this during November, so that this year the water seems to have been at least three degrees above the temperature of former years. This difference is slight, but it shows a backwardness in the approach of winter compensating in a measure for our tardy spring.

FEED TROUGE FOR ANIMALS.

By means of lugs projecting from the bottom of the trough, and pivoted to upright beveled boards, the trough can be swung back and forth upon the rear and front bevels. The trough is provided with cross partitions; between the ends of the partitions and one side of the trough is a slide which can be placed at different partitions, so that the trough can be adjusted for receiving a greater or less quantity of food. When but a small quantity is reso adjusted that the food will be in one-half or onethird of the trough, the othe part being shut off. The trough is placed at on end of a stal formed with ions, betwee which the animals can poke their heads. Pivoted to the base between th
stanchionsar bars whose upper ends are joined

LANINGS FEED TROUGH.
to a cross bar connected with a handle piece as shown. The trough, having been filled with the milk or liquid food, is swung into the position shown in the cut. The heads of the animals are held between the stanchions and pivoted bars; by moving the handle in the right direction, the bars can be swung along side of the stanchions, and the animals released.
This invention has been patented by Mr. George Laning, of La Salle, Illinois.

Quinine Hair Tonic.

C. W. Peters (Fort Madison, Ia.) desires the formula for a preparation containing quinine to prevent falling out of the hair. The following is highly recommended

Rub the quinine with the glycerine, and add the other ingredients in order named. The addition of fluid extract of jaborandi is recommended to stimulate the growth. -Western Druggist.

AN IMPROVED WAGON HAY RACK.

The invention herewith illustrated shows a hay rack so made as to permit the front wheels of the wagon on which it is placed to turn under the rack to the wagon reach, so the wagon and rack may be turned in a small space. Fig. 1 is a perspective view, and Figs. 2 and 3 are sectional elevations, in which A represents the main timbers of the rack, supported

CONAELLY'B HAY RACK

by bolsters, D, E, and held at their proper distances by stakes, d. O represents a crosspiece to brace and strengthen the rack, $M \mathrm{M}$ are sideboards, and R is a diagonally arranged frame to which the line support, Q, is hinged at its lower end. By this special construction, the rack, with its bolster supports or frames and main timbers, is arranged to come outside of the bolster stakes, so as to stand between the bolster stakes and the wheels of the wagon.
This invention has been patented by Mr. Hugh Connelly, of Colton, St. Lawrence County, N. Y:

GEN. THAYER'S DIRIGIBLE BALLOOIS.

As Gen. Thayer's system of ballooning bas attracted much attention in war circles, we present to our read ers several illustrations of his inventions, and a descrip tion prepared from material kindly supplied by the inventor. It will be remembered that this system was presented in detail before a recent meeting of the Military Service Institution at Governor's Island, and that working models made by Gen. Thayer are now under consideration at the British War Office. These facts are of importance, since they give assurance that the invention has been worked out in sufficient detail to make it tangible for examination.
Although taking advantage of the experiments of Capt. Renard and M. Krebs and others, Gen. Thayer has planned a balloon which is quite novel in its prin ciple of operation.
His attention has been directed chiefly to the use of the balloon in war. He has devised two systems of dirigible balloons, in the first of which the balloon moves at any level, and entirely independent of the earth, while in the second the plane of motion is determined by means of two wires, denominated by the inventor as the balloon-way, which guide the aerial craft, and by means of an electric current effect its propulsion. The first of these, the independent dirigible, is of much the greater importance.
In Gen. Thayer's balloon, the buoyant portion of the structure is made in the shape of a circular spindle, as shown, in which the longer axis is equal to thre and two-thirds times the diameter amidships. This shape is found to give the least resistance to motion to comply with the conditions of stable equilibrium and to permit of easy steering. The ascending force as usual, is obtained by the use of hydrogen. One of the motors for propelling the independent air-ship consists of a high speed air compressor, coupled directly to a specially devised carbonic acid gas engine. This is connected with a reservoir placed underneath the platform or deck on which the machinery is located. Compressed air is forced into this reservoir, or vapor is allowed to flow into it, until the required pressure per square inch is obtained. The rear end of the reservoir
is so arranged that, at given intervals of time, the confined energy is suddenly released, thus producing a powerful forward thrust. By the use of the gas engine, the necessity of coal and water or other weighty appliances is obviated. The other motor consists of a powerful wheel, which effects the continuous discharge of a large volume of air through a nozzle pointed sternward This develops a powerful propelling force. If a hollow truncated cone be placed over the nozzle, the discharge of the blast draws in outside air through the annular opening, and by imparting velocity to it increases the volume of the discharge, and decreases its velocity. The use of several such conical tubes, one outside the other, as shown in Figure 1, considerably increases the efficiency of the motor. In experiments with water, the addition of five cones to the discharge tube gave an increase of fifty per cent. The force of this motor is not true reaction, as usually interpreted, but the recoil action induced by the discharge of matter at a high velocity in an opposite direction.

The buoyant part of the balloon is made of superposed tissues of strong silk and rubber, and is at all times perfectly inflated, so as to be taut and rigid. Broad bands are used in preference to netting for the support of the deck. The discharge nozzle is fitted on a ball and socket joint, which permits it to be moved in any direction at pleasure. The man at the wheel, shown on duty in our illustration, controls the direction of the nozzle, and thus steers the balloon without the necessity of other rudder. In the interior of the buoyant portion of the structure is placed a large silk sack connected with the air compressor on the deck. A pipe leads from the exterior envelope to the tube leading to the nozzle at the stern. Both of these pipes are provided with cocks which can be opened or shut at pleasure.
Four cylinders filled with compressed hydrogen stand on the deck, and are connected with the interior of the exterior envelope. By withdrawing hydrogen from the exterior envelope and forcing air into the interior sack, the buoyancy of the balloon is diminished without altering its form, and the ship descends. The reverse of this operation-withdrawing air from the sack, and forcing hydrogen into the exterior envelope-in the buoyancy, and causes the balloon to ascend.
This arrangement permits the balloon to travel at any desired elevation above the earth, and to ascend or descend without the use of ballast. It is claimed that a balloon constructed in the manner indicated could readily attain a speed of from 25 to 30 miles an hour. If found practicable its uses would be manifold. In times of war, it could lay an entire country under tribute. With dynamite bombs and other explosives, it could, under cover of the night, do an amount of damage that is simply inestimable.
In Gen. Thayer's second system of aerial navigation, the dependent dirigible balloon, the air-ship is directed by two wires or light cables stretched across the country on ordinary poles, with U-shaped iron arms on their tops. The balloon itself is similar in shape and their tops. The balloon itself is similar in shape and
design to that already described. The motive power,
however, is electricity, generated at the end of the line and transmitted to a dynamo machine on the deck of the balloon through wheels, which are thus impelled along the cables and move the balloon. The buoyancy of the structure supports the entire weight, and the wires of the balloon-way simply transmit the power to the motor, and enable it to be applied for propulsion. It is stated that the balloon can travel at the rate of from 60 to 70 miles an hour, under ordinary conditions of weather. This system of transportation would be valuable in an unopened country, where the expense of laying a railroad would be out of the question. It can be put up very rapidly, crossing rivers, valleys, and swamps without the necessity of intermediate supports.
General Thayer states that such a road could be built at the rate of from three to four miles a day, and a cost of about $\$ 1,500$ per mile. So bulky a structure chained to so slight a support presents an appearance of unstability, but it is to be remembered that no weight is brought to bear upon the cables, and that their only mission is to direct the course of the balloon and convey the necessary motive power to its dynamo. General Thayer anticipates a large usefulness for this system, both in times of peace and war. It can run across a country in a direct line where it would be impossible to build a railway. Men and ammunition can be rapidly transferred from one point to another, and he suggests that as an army advances into an enemy's country, the balloon-way could be put up in its rear, and thus establish a line of communication with the base of supplies. Both systems of balloons have been illustrated by carefully constructed models, the independent dirigible being thirty feet in diameter. They have given such promise of success that it is much to be hoped that they may be reproduced in actual size, and their merits practically tested

A Suggestion to Subscribera

This issue closes another volume of this paper, and also another year of the Scientific American SUPPLEMENT.
Several thousand subscriptions to each edition of the paper expire with the next issue, and it is the wish of the publishers not only that every present subscriber will promptly remit for a continuance of his own subscription, but that he will convince some neighbor or friend that it is for his interest to join him.
The Scientific American Supplement, published at the same office and at the same time as the Scienfific American each week, has attained a large circulation, and is valued for its practical and interesting articles on engineering, manufacturing, and scientific subjects. The numerous large illustrations which em bellish every number add attraction to the usefulness of the paper, and constitute a feature greatly appreci ated by the reader.
Thousands of volumes of both editions of the ScIEN tific American are bound every year, and thus preserved for reference. Most of the large manufacturing establishments keep both papers on file in their count ing rooms.
No public library or reading room is complete with out both the Scientific American and Scientific American Supplement, and the patrons of any of these institutions that do not have the papers on their files should insist upon the managers or librarians pro curing them.
RATES FOR THE SCIENTIFIC AMERICAN PUBLICATIONS Scientific American.
year. $\$ 8.20$
Scientific Ambrican Supplement..
.. 1 "، 5.00
Scientific Akerican and Supplement 7.00

The safest way to remit is by check, postal order, ex press order, or registered letter, made payable to the order of Munn \& Co., and address all letters to 361 Broadway, New York.

Export of Locomotiven.

The United States is now sending abroad about $\$ 3,000,000$ worth of locomotives per annum, the total value of those exported in the last fiscal year being $\$ 2,819,946$. This, at an average of $\$ 10,000$ each, represented about 290 engines. In the fiscal year ended June 30, 1882, the number of engines shipped did not exceed 133 , the estimated value being $\$ 1,455,717$. Of the 282 locomotives exported from the United States in 1883-84, 65 went to the Argentine Republic, 49 to the United States of Colombia and Panama, 34 to Mexico, 32 to Brazil, 27 to the Dominion of Canada, 19 to Chili, 14 to Australia, 13 to Central America, 14 to Cuba, 6 to Spain, 3 to San Domingo, 3 to Sweden 2 to Venezuela, and 1 to England.

Gorrespondence.

EXPLOSION OF A SODA WATER FOUNTAIN BOILEB

To the Editor of the Scientific American:
An explosion occurred November 18, at 2 P. M., at Wilfert's drug store, northwest corner of Fourth and Walnut Streets, Cincinnati, Ohio. During the winter the firm sell "hot soda" : the water is heated in a copper boiler, 12 inches long, 7 inches diameter, about one-sixteenth inch thick, the end slapped and soldered on. The only vent the boiler had, was at the fountain faucets; it had no safety valve whatever. A little oil lamp was constantly alight under it, to keep it hot, and the pressure could accumulate to any extent. The result was an explosion. The front end was blown off to A, breaking the marble at C ($11 / 2$ inches thick) in two, the main portion passing through a cupboard to B. Several persons were there, but no one was in-

regard to such apparatus in the future; a safety valve s needed just as much as in a boiler. A. R. P. Cincinnati, Ohio, November 19, 1885.

Link Movement for Reveraible Enginos.

To the Editor of the Scientific American:
In your issue of Nov. 7, you describe and illustrate a new link movement for reversible engine. I beg leave to state that an improved form of the link motion was devised by me in the year 1860-61. After making a working model, I found that I was anticipated even at that early date, as the Ardrossan Harbor Co., Ardrossin, Ayrshire, Scotland, had a steam crane with oscillating engines and the above link motion in use at their docks before that time; but by whom invented I cannot say.

I would respectfully call your attention to the following sentence in your description of the motion:
"The action of the link hastens the opening and closing of the ports, and the steam therefore works more expansively than when the ports are operated by an eccentric.'
Now, this is not strictly correct. But for reasons exactly opposite, the above mentioned steam crane had its engines changed back to the old reliable eccentric.

David L. Kelly.
97 Central Ave., East Buffalo, Nov. 16, 1885.

Improved Dog Muzzle Wanted.

To the Editor of the Scientific American:
Hydrophobia would appear just now to be almost epidemic in some sections of the country, and stringent measures are being called for to protect our citizens from this dreadful canine malady. Whatever may be the merits of M. Pasteur's system of treatment, prevention in this, as in all other cases, is better than cure. That the disease is more prevalent in summer than in winter is an erroneous idea, and the enforcement of the dog laws only during three of the hot months in the year is little better than a farce. The recent casualty in this city, of three school children having been bitten by a rabid dog, has roused even our municipal authorities to discuss the propriety of either making the "dog pound " a permanent institution or of ordering the indiscriminate slaughter of all dogs running loose and unmuzzled in the streets. Certainly some protection ought to be afforded pedestrians from the many worthless curs that infest our thoroughfares, but let us not forget that the dog is both a noble and useful animal, the friend of man as he has been called, and there is no necessity to be cruel.
Dogs, like human beings, must have exercise to be healthy, and it is only an unhealthy dog, unless he be bitten by a rabid one, that goes mad. By all means, nuzzle all dogs when running loose in the streets, but let it be done mercifully. The present muzzles in use are barbarous contrivances, and very difficult to apply. Cannot some of your readers devise a dog muzzle that, while giving all necessary protection, would be less cruel to the poor animal, and that could be more readily put on, without risk, than the muzzles now in the market? The demand for such a muzzle, or any other efficient means to take the place of a muzzle, would necessarily be very large, and it would be both a benevolent and a profitable invention.

Crtizen,

Newark, N. J., Dec. 5, 1885.

Judge Samuel Treat, in the United States Circuit Court, lately delivered an interesting opinion in the case of the Missouri Pacific Railway Company against the Chicago \& Alton Railway Company, which throw light upon the vexed question of ownership of and responsibility for cars given to another road in the regular course of railroad traffic. Said the court
It appears that the course of through traffic among railroads requires each to receive cars owned by other than the transporting road, and forward the same; and accepting the general principle stated in 109 Illinois Reports, 135, that each road as to said cars by it so received and forwarded to the next road is under the obligations of a common carrier, the case before the court shows that there were 10 cars to be delivered to the Advance Elevator, and received by the defendant for that purpose. Six of these were actually delivered, and were in possession of said ele vator. Four of said 10, still in actual possession of the defendant, had been tendered to said elevator and remained in the custody of the defendant from the inability of the elevator to receive the same when so tendered.
All of these cars were destroyed by fire without any fault of the defendant. As to the six cars actually delivered and so destroyed, there evidently can be no recovery. The duties of the defendants as to the other four of said cars were simply those of a warehouseman. When a common carrier transports merchandise and delivers the same to the consignee, its obligations with respect thereto are at an end. If, however, the same are tendered to him, and through no fault of the carrier he does not, or will not, receive the same, the carrier can cause the same to be stored at the risk of the consignee or retain possession of the same simply as a warehouseman. Were this not so, the through traffic from one part to the other of this vast country would compel not only the breaking up, but the stoppage of trains, if at the intermediate points of delivery the consignee failed or refused to receive consignments.
In this case, if we treat the transportation of cars as if merchandise to be received and delivered to the consignee, it appears that these cars, with their contents, were to be delivered loaded with grain to the elevator. If both the cars and their contents are to be covered by the same rule, then the delivery of the cars with their contents terminates the obligations of the defendant.
The court is not prepared to say that where a railroad car, in the course of through transportation, is received to be delivered to another railroad, and has been so delivered, it is bound to cause the same to be returned either to the owner of the car or to the railroad from which the same was originally received; cover in its own name from what may ase a happen with respect thereto. In this case, as already $\left.\right|_{\text {hold, except at the round hatch in the center. At this }} \left\lvert\, \begin{aligned} & \text { ral, Mr. J. J. King, determined its total weight, includ }\end{aligned}\right.$ stated, there can be no recovery as to the ten cars shipped to the Advance Elevator.
Two other cars were delivered to the defendant to be sent by it eastward, which were destroyed by the fire alluded to, the value of said cars being $\$ 602$, $\$ 100$ of the wrecked material having been received by the plaintiff. As to said two cars, the obligations of a coumon carrier existed, consequently the defendant is liable for the sum of \$502, for which judg. ment is ordered.-st. Louis Rep., Nov. 7.

Marking Ink.

Rhimann gives the following recipe for a marking ink: $1 \cdot 1$ pts. nitrate of silver, $2: 3 \mathrm{pts}$. spirit of ammonia, 2.2 pts. soda, 5 pts. gum arabic, 0.2 pt. sapgreen, 2 or 3 pts disgreen, 2 or 8 pts. distilled water. After marking apply a hut
fat-iron until the trac-fiat-iron until the trac-
ing in perfectly black.

Fig. 2.-A SUBMARINE TORPEDO BOAT-THE TORPEDO APPROACHING THE VESSEL
same was oribinally receive;
hatch is a well, provided with a door on one side leading into the hold. Placed at each side of the keel is enough lead to load the boat to the water's edge; and to sink the vessel below the surface there are several small compartuents, which can be filled with water and emptied as required. Over these compartments on each side and beneath the floor, are a number of 6 inch iron pipes, which can be filled with compressed air, to be liberated as the air within the boat grow foul. The propeller is turned by an ordinary dynamo run by storage batteries, which also furnish electricity for the incandescent lamps lighting the interior. A common rudder steers the boat to starboard or port, while a horizontal rudder, centrally hinged in a frame at each side of the stern, will elevate or depress the stern, and thereby guide the vessel further from or nearer to the surface, independent of the action of the water ballast pump.
The well hole in the center of the deck is fitted with an air tight hatch, which can be removed from within. The individual wishing to go on deck when the boat is submerged dons an ordinary diver's suit, the air pipes of which connect with the interior, enters the well closes the door behind him, and after the well has filled with water removes the hatch. In the well are suit able devices for directing those inside for elevating, lowering, and propelling the boat. When leaving the well, the hatch is closed and the water allowed to run into the water ballast compartments, when the door leading to the interior can be opened
When used in warfare, it is designed to sink the torpedo boat to the proper depth, approach the vessel to be destroyed, and, as the torpedo passes beneath her release a strong insulated wire carrying two cartridges -one at each end-filled with some powerful explosive and lightened with cork, so that they will rise against the bottom of the vessel. The torpedo is then run ahead to a safe distance, when the cartridges are exploded by electricity, through wires leading frou the boat to the cartridges. Just astern of the hatch is a cu pola, having glass windows. In the engravings, Fig. 2 shows the torpedo approaching the vessel, and Fig. 1 shows the torpedo passing away, the cartridges having the De Lamater Iron Works, this city. The boat The been released. Fig. 3 is an enlarged view of the tor pedo directly beneath the vessel

A Large Garnet.
While making the excavations for a sewer on 35th St. between 7th Ave. and Broadway, New York city, the workinen recently uncovered a large garnet which was inclosed in the gneiss about nine feet below the level of the street. The crystal was a well defined trapezohedron, having its angles truncated and beveled by the rhombic dodecahedron and the hexakisoctahedron, a combination quite characteristic of the garnet. The crystal had been a little mutilated by the workmen, but all of the uppe workmen, but an of the uppe ing a little quartz and serpentine attached to the lower portions, to be nine and a half pounds. The horizon tal axes were six inches. The exterior of the crystal was slightly weath ered, but a fresh frac ture showed a fine red color.

Display of Meteorm. A grand display of meteors was witnessed by Mr. P. Benson, at Ishpeming, Mich., on the evening of Nov. 27th. They appeared, he says, with few excep tions, to radiate from a region bounded by the constellations Aries, Andromeda, Pegasus, Lyra Corona, Borealis and Ursa Major. Be tween six and seven o'clock Mr. Benson counted as many as thirty in five minutes The appearance of many of them was very striking, and all seemed moving in a westerly direction.

PORTABLE EABEL.

The North of England School Furnishing Company are issuing this under the name of the Darlington Academy Easel. The somewhat interesting portrait underneath shows its employment when the artist or writer is standing or walking. But its use is varied. It is valuable to the author who is frequently engaged in literary work while traveling by rail, road, or water to the reporter when note taking at open air meetings, and when transcribing during the journeys from the scenes of his labor to the newspaper offices; to the tourist who records the experiences of his travels; and to every writer at the fireside who requires to lean back in an easy chair, instead of being compelled to bend the upper portion of the body over a table. The easel is entirely supported by the body, and moves with it. the right hand resting on it, and thus it always maintains the same position under very adverse condi tions, even when the person using it is inside a fast going rail way carriage or on the deck of a moving ship. The easel affords accommodation for drawing pads, pencils, pins, rubber, squares, etc., and when closed resembles a small flat box, less than one foot square by an inch and a half in depth, which can be carried after the manner of an opera glass. Its weight slightly exceeds a pound and a half. The two halves, which are folded together, are of equal thickness, and when opened out form the flat, firm easel represented in the engraving. In service it is firmly supported by the strap from the left shoulder, and the inner corner which presses on the right side is cut away, so as to allow it to fit the body. The easel is an exceedingly convenient one, and deserves a trial.

CARNIVOROUS PARROT8.

In the region of New Zealand, like that of Australia in its singular fauna, there lives a large species of parrot, called by the English Nestor, and by the natives kea. The former name is applied to a small but remarkable group of parrots, all peculiar to this region. The type species was Psittacus meridionalis, of Gmelin, founded on a species described by Latham, and subsequently termed by him P. Nestor in allusion to its hoary head. It is now known as Nestor meridionalis, the specific name being transferred to the genus.

It is called kaka by the Maoris and the English settlers. It was at one time very abundant, and is now equally scarce.
Forster, who accompanied Cook in his second voyage, described this bird in his manuscript, in 1773, naming it P. hypopolius. It was found in both of the islands.

The general color of the species is an olive brown, nearly all the feathers being tipped with a darker shade, giving thereby a scaly appearance to the body. The crown is light gray, the ear coverts and nape a beautiful purplish hue, or bronze in the reflected light. The rump and abdomen are strikingly varied by a deep crimson, varied singularly by an orange, and sometimes by a brilliant yellow. The kaka is about the size of a crow. This is the familiar Nestor of the settlers and naturalists, and is the one generally indicated, by those not having accurate information concerning the subject, as having the curious carnivorous habits attributed to the Nestor of New

Zealand.

The truth is, there is a species considerably larger than this, the Nestor notabalis of Gould, which is the veritable bird that has long since been arraigned and convicted of sheep killing. We say long since; the truth is, it is comparatively of late years since the actual verification by scientific authority.

In 1856, Mr. Walter Mantell, an English naturalist, well known as an authority in many important observations in New Zealand, particularly with reference to the natural history of the wonderful birds found indigenous to that region, discovered the bird in question, which he learned was called by the natives kea. Its discovery, like that of numerous others since become familiar, was the result of an exploration by his party of the higher interior mountain ranges, a section of country until then not attempted by explorers.
Like many other New Zealand forms, these parrots are so distinct they are regarded as entitled to constitute a separate family as Nestorida.
Their osteology seems fully to call for this distinction.
It appears by the history of this parrot, from observations made since the settlement of the country by English people, that nothing of a distinctly carnivorous habit was observed for a long period
Its habits were somewhat those of the woodpeckers in addition to the love of fruit so common with many birds of the tropical countries. It was expert in peck-
ing and extracting worms from under barks of trees though one would judge that the enormous beak, and the strange diversity in the length of the two mandi bles, would naturally prove clumsy features in an implement for such work. As will be seen in the figure here presented, the upper mandible is greatly elongated, and curves considerably; which, though a powerful weapon, appears but ill adapted for grasping in the manner of pincers, as seen so well developed in the woodpeckers.

It is difflcultat times to account for the peculiarity of certain organs, which, judging as in this case, seem to be ill adapted for the purpose of exercising what seem to be their legitimate functions. These birds seem to have an abnormal growth of the upper mandible, and remind one of the long, undue growth of the ncisors of some rodents.
It is well understood, we believe, that this species of Nestor has only since a comparatively late date shown a tendency to molest domestic animals; and it is now believed that the habit of attacking sheep has developed since the latter have been kept by the settlers. This

wonder, and is cited as one of the few instances of change in habit among animals.
An error has crept into the newspapers, or has ori ginated among them, regarding the size of the kea. A short notice of this carnivorous habit of the keas appeared lately in a country paper, in which the bird is
described as a "small one, about the size of a thrush." On the contrary, as we have seen, it is one of the largest of the parrots.
A pair in the Museum of Natural History in Centrai Park are conspicuous for their size and their generally different aspect, both in shape and colors, while their long sickle bills are strikingly unlike those of other species. There are few parrots larger than the kea The black cockatoo, from Australia, is much the larg est, and has a bill nearer the latter in shape than thers.
The Maoris claim that the carnivorous habit has been developed by the keas during cold seasons, when pressed by hunger. They will then alight upon the sheep, and, despite the most vigorous resistance, peck holes in the sides of the helpless creatures, often biting out the intestines, and thus deliberately killing them; then they feed upon the remains. The wounds are said to be so uniformly made in one place, or in parts most easily reached for disemboweling, that there can be no question as to the motive of the attack.
These birds are well known carrion eaters, in addition to their usual food, which consists of fruits and seeds, and the grubs of wood-destroying insects. To get at the latter, the bark is stripped from the trunk.
The amount of injury done by them in their raids on the sheep folds of New Zealand has been exaggerated, says Dr. Menzies, an authority on the subject, who states that "on one run, where the loss was unusually large, the proportion of sheep attacked was about 1 in 300. Those pasturing below the elevation of 2,000 feet are seldom disturbed."
Dr. Buller, an authority on this subject, states that those that frequent the sheep stations appear to live almost exclusively on flesh.

They clain the sheep's heads that are thrown out from the slaughter pen, and pick them perfectly clean, leaving nothing but the bones."
An eye witness has described this operation to Dr. Hector as follows: "Perching itself on the sheep's head or other offal, the bird proceeds to tear off the skin and flesh, devouring it piecemeal, after the manner of a hawk; at other times holding the meat down with one foot, and with the other grasping the portion it was eating, after the ordinary fashion of parrots."
Dr. Buller relates instances of tame parrots devouring their comrades in captivity; but the kea is the only parrot known to eat flesh when flying wild.
In $1864, \mathrm{Mr}$. Mantell told Mr. Gould, the celebrated author of "Australian Ornithology," that the natives claim that the bird has not been seen by them in Middle Island for a considerable length of time. They said the birds came usually to the coast during hard winters. The total length of the kea is 18 inches, the bill being $21 / 2$ inches.

Grane for Carp Ponds.

Dr. Rud. Hessel says that he has found carp eggs adhering in greater numbers to Festuca fluitans than to any other plant. "Its narrow, long, strap-shaped, thin leaves spread softly over the water's surface, as also its numerous branches in the water, affording to the fish the sought for opportunity to deposit its eggs pon the tender leaves."
This grass is known to American botanists as Glyceria fluitans. It is called Glyceria on account of the sweet taste of the seeds. This genus is known by the common name of nanna grass. This species grows to a height of from 3 to 5 feet, and has leaves about 1 foot long. It grows in shallow water, and blossoms from June to August. Its spikelets contain from seven to thirteen flowers each. It is frequently found in the United States.
In addition to its usefulness in holding he eggs, it is valuable on account of the sweet seeds, which drop from it into the water and are eaten by the carp. Persons owning carp ponds can frequently find it growing wild, and transplant it to their ponds by securing the aid of some local botanist to identify it. In cases of uncertainty in regard to specimens supposed to be Glyceria fluitans, it would be well to send for identification a specimen containing leaves, flower, and fruit.Bulletin U. S. Fish Commission.

Improved Beasemer Steel
A recent improvement in the Bessemer steel process as carried out at the Edgar Thomson Steel Works, near Pittsburg, will have the effect, it is said, of making Bessemer steel equal in quality to the crucible product, and at only about one-tenth the price. The change conists in a thorough mixing of the spiegeleisen with the molten iron in a ladle, in such a manner as to make the carbonization much more uniform than at present. Bessemer steel can be produced at a cost of a cent to a cent and a half per pound, while that made in crucibles costs at least eleven cents a pound.

Engitrerma inventions.

A locomotive vaive gear has been pat ented by Mr. Wallace J. Lewis, of Tyler, Texas. It consists of a combination of rockers, shatts, arms,
levers, links, and connecting rods, worked from the croskecad of the locomotive exclusively,
A car truck has been patented by Mr. Charles L. Morehouse, of Brookilyn, N. Y. By this invention one set of wheels rans on the rails, the presesure
of the car being tranumitud to their axlest by anothe of the car being transmitted to their axless by another
set of wheels, whereby the friction is reduced to a mintset of wheels, whereby the friction is reduced to a mini-
mum, and the construction is such that the wheels will mam, and the construction
not slip or grind at curves.

agricultural inventioms.

A sulky attachment for plows has been patented by Mr. Theodore Johnson, of Peterrburg. Ind.
Combined with a frame attached to uprigh arms of an Combined with a rrame attached to o pright arms of an
arched axle are various novel features of construction and arrangement whereby the plow can be supported
from the ground and readlly drawn from place to place, from the ground and readlly drawn from place to place,
and the operation of the plow can be easily regulated. A revolving sulky hay rake has been patented by Mr. Byron Collins, of Galion, \mathbf{o}. This Inparts to promote convenience in operating and controlling revolving salky hay rakce, in which the rake head is readily gu.
the carriage.

hiscellaneous inventions.

A grain separator has been patented by Mr. Hezekiah Bailey, of St. Thomas, Ontario, Canada.
It is constructed with the ecreen and the dampers of the fan blower connected by ewinging bars, three-armed levers, and connecting rods, whereby the strengtt of
the alr blast will be automatically regulated by the guantity of material on the screen.
A stop motion for coloring machines has been patented by Mr. Frank P. Fitz Simons, of Clark's
Mills, N. Y. It consists of a mechanism whereby the enarls and knots occurring in the yaru to be colored are nade to stop the machine when they come to the

hus prevent the breaking of the yarn.

A hansom cab has been patented by隼. or roof, and the sides and back panels are so jointed and atted that the whole apper part of the evicicle can
be folded down to form an open phaeton, or the open be folded down, to form an open phaton, or the open carriage may be again
with very little troable.
A handle cap fastening for hand bag Irames has been patented by Mr. Louls B. Prahar, of
Brooklyn, N. Y. The cap has perforations in its oppo. site sides, and the posts, rigidily attached to the frame and having their apper ends bent liward, are inserted binging the handle cap to the frame.
A fire escape ladder has been patented with a series of rounds connected to oppooite side mapes or chalns by tying or knotting the ropes or chains around the rounds, in connection with a metal bracket
hanger, making a ladder that can be quickly adjasted,

and will be atrong and inexpensive.

A furnace has been patented by Messrs. John A. Toplif, Edward S. Crose. William S. Cox, and
Jobn A. McCollum. It has a fuel chamber located on the eame level with the combastion chamber, and a heating darum above both, so arranged as to be specially
adapted for burning soot coal, and consuming all of
An inprovement in neckwear forms the New York city. Thl invention consists in an smith, of neckwear formed of a backing on which a serics of layerro of paper, fabric, etc., are e eld, the eseveral layers be-
ing united loosely and detachably, so as to permit of earing of
A harness ring has been patented by A harness ring has been patented by
Mesers. Quaintus Cato and Charies A. Spacaling, of
Este Park, Col. It congists of a jointed bar ring, with a spring fastening for locking the ring cloeed, and made In such manner an to be especially adapted for nes as as
spreader for inside check ineze, and also for keepping the A ing wiste
A sash balance has been patented by Yr. Jacob Weber, of New York city. The welghts have racks engaged by pinions engaging with the racks
of the subhece, and there are guide platces, ach cast or formed in one piece, with the walls of chambers receiving and guiding the weitght, wodiepense with cords and
pulleys in the application of weights to wind pulleys in the application of weights to window suehes.
A churn has been patented by Mr. Yrank L. White. of Gainesville, Tex. The daeher
wheel is operated by a driving mechanism connected wheel is operated by a driving mechanism connected
with an upright standard on a base plate, and is so ar with an upright standard on a base plate, and is so ar-
ranged that oo allow the latter to be taken from the base plate, with
A gold st arrator has been patented by Mr. Samuel C. Olithant. of Novinger. Mo. It is eepeci.
ally adapted for working gold sands or gravels, and to Ally adapled for working gold sands or gravels, and to
mecure the finer particles of gold with a minimum nup-
 ply or watef, using a maln water
ling and reciving cank, and having
in the main tank by a jigger arm.
A tin roof cleat has been patented by Mr. Warrun C. Rockwell, of Mount Carmel, Pa. It is
formet of a fat piece of sheet metal having a square Mcaple incorporated in a bend of fts lower end, and with
un uppere cul adapted to be folded and fastened in the
 ing. cotton kin has been patented by
 ainl arranyermurut of parts wherchy the liward move.
ment of the bearing blocks of the brueh yhaft can be

Himited, and the brash can apring without binding, and
the the brush can
A felt glove or mitten has been patent
ed by Mr. Walter P. Hyath, of Matteawan, N. Y. This livention covers a procese or making seamleas arrucies quired pattern, a layer of material which prevenis the bats from coming in contact except at the eagee, and then uniting the edges
ing and fulling process.
A boot has been patented by Mr. James F. Shaw, of Jackson, Mich. It consists of a felt
knit, or wool foot pisce, with a leg projected above the nnit, or wool foot pisce, wilh a leg projected above the
lastep portion, and a leg proper or protector,of leather or similar material. Aited over the leg portion of the footpiece, the leg extending in tront down over the vamp to
apoint over the instep, and thus strengghening the
A fire escape has been patented by Jennie R. Fuller, of Toledo, O. This invention pro-
vides an escape bridge made of sall cloth or canvas, be conveniently thrown across to a bailding on the oppoeste side of the street, wante a rope eadder is also
dropped down in the street at the side of the building, the entire device being adapted to fold in small space

A siding rest
ohn McDonald, of Central City, Neb. It is for hr Ing siding in position aquinst the ettude, to be accuratel and quickly scribed, and walle being nailed, and consists of a rest and gauge made in one piece, baving a
rigid suspension point on one end, to be driven into a joist, and a step on the opposite end apon which the
aring is to be upporte.
A weighing apparatus has been patented by Mr. William F. Irvine, of Lampasas, Tex. Com-
bined wiih a weighing pan in a suitable case is a series of independent shot holders pivoted and suspended around sild pan, and so arranged that any one of the
holders may be tilted and its contents discharged by pulling a knob on the outside of the case, the quantity being a dial in front of the case.
A necktie and collar fastener has been patented by Mr. Robert \mathbf{t}. Coffer, of Waco, Texas. It and next the neck, in combination with a hollow stud on the middle of the convex side, with a separable head,
spring catches, and bent hook sections, to hold in prospring catches, and bent hook sections, to hold in pro-
per relation to each other the shirt band, collar, and eecktie.
A shutter for photographic cameras has been patented by Mr. William C. Hadden, of New
York city. This invention relates to divided or double York city. This invention relates to dividee or or doubs
pivoted shutters, nsed for taking instantaneous pictures and having a reciprocating action daring the time of
exposure, sabject to control by a spring, providing a novel combination and arrangement of parts whereb great compactness and efficiency are obtained.
A churning device has been patented by Mr. Foontaine L. Fonshee, of Batesville, Ark. It is
so constracted that by rocking a lever up and down on a plovot a dasher shart will be rotated quickly in reverse directions in the churn body, bringing the butter quick Iy, while the appilication of the power is very direct and
effective, and the churn may be "knocked down" and
packed in small space for shipment.
A nail extractor has been patented by Mr. Thomas M. Brintnall, of Maryville, Mo. Its con-
struction is such that the base piece may be placed ac curately alongside of the nail to bedrawn, and prongs will hold it from slipping during the operation of the age to start the nail and a long one to draw it, by which the nail may be drawn without bending it
An armature for dynamo electric ma chines has been patented by Mr. Charles T. Jackson, of
New York city. This invention consists of an armature formed of iron wires placed on disks on a sbaft parallel with eaid ehart, the wire being bound together by wires
placed clicularly around them, and then covered wit ingulated copper wire, whereby an intense current may be obtained with a low speed withont heating the arma-
A running gear for vehicles has been patented by Mr. John M. Bonck, of Gouvernenr, N. Y. reach proper to the front axle and bolster by a sliding and laterally rocking attachment that permitt the axle
and bolster to have a back and forth and sidewise moveand bolster to have a back and forth and Bidewise move-
ment independently of the reach, so that the front bol ment independently of the reach, so that the front bol-
ster and axle will accommodate themselveg to the load on the springs.
A sewing machine waxing device has been patented by Mr. Benjamin F. Landie, of St. Jo-
seph, Mo. This invention provides for keeping a con seph, Mo. Tins incen wax running from the reservoir to he needie cap, thence overflowing into a receptacle be
ow by gravity, the wax belng then strained of impuri ties, and mechanically retarned to the reservoir, the
shutle race and needle dip cup beling heated by the A date has been patented by Messrs. Josiah Austin and Roseco Chamberlain, of East Liberty,
o. This invention covers improvements on three Pormer patented inventions of the same inventors, and hinge that liftro the gate bodily, and as the gate is opened mechanically by being permitted to swing down at an incline, there are means provid
coming the momentum accaired.
A sheet inusic holder has been patented by Mr. Gerard C. Bcoth, or Bradiord, Pa. Combined strip held on one cover parallel with the free edge, with npring fungern projecting from the strip to hold sheets
of varions sizes in such way that they can be easily of varion sizec in such way that they can be easily
turned over or folded. A back for chect music patented
uy the by the eame nurentor consists of a fabric strip, on one
sarface of which two gummed paper strips are secured longitudnally, the inner edges of the gummed stripe ing a convenient means for uniting several sheets of

Special

DIPHTHERIA ROBBED OF ITS TERRORS.

 lons in Boston is that which bears thancial corp cullar name of "The Massachusetts Hospltal Life in surance Company." It was incorporated in 1818, and bythritty and prosperous business has no thrifty and prosperous business has now outzrown ite
odd oflce on State Street. The stately ealifce which it Is erecting, a fer doors from the old place, is one of
most solid and beautiful of modern ofice bulldings.
Δ few days ago our
to call on samuel Keene. Ksta., who has for many years
been in the service of this company They ant
he old ofllee, and talked over matters concerning
That ilthe girl of yours, Mr. Koene, who
heria; you say she is entrely recovered?"
therk; you say she is entirely recoverred?"
"Not only entirely, but tapeodll. \mathbf{I} will tell you how th Wass. She was about eleven years old. The attack or sttacks do. It proceeded as far as to the appearance o he diphtheritlc white spots in her throat. We cured old practitioners, but none the worse on that account." "And may I ask what it
aoses of the old doctors?
 tack or diphtherta came on; for I had been using it for evoral years for other purposes. 1 kave it to my
daukhter as soon as her disease was distinctly deflined She inhaled it as hot as she could bear itt, and the erfect
 this did, or to be more thoroughly cured without leaving
an unpleasant after-efiects. You know that after an any unpleasant after-ergects. You know that after an
attack of diphtheria which is treated by the old remeattack of diphtheris which is treated by the old reme
dies the throat is foet in a weakened or trritated condies the throat is left in a weakened or irrily
dition for months, and sometimes permanentiy. "You had some experrien
other cuses, Mr. Keene?
"Yes; my experienco with it has been very pleasant. Several years ago it was recommended to me by my
tamuly physiclan. 1 took it repeatedily for seerere colds. 1 have never seen a anyththg which will break up a cold
aulcker or quicker or more suceosesfulls than this oxygen. 1 do
oot bellere to learing a cold to take lis chance of run ting out of tiself. Too often it runs tn, and settles on of Comprund Oxygen ; then tit is gone to a day or two. "I have two boys, one nine yenrs old, the other eleven.
I have found the oxygen of kreat advantage to them,
 had
Oxy
and Oxygen has chectred that., mo that I now have
that he wil be aflicted with this odious dissase.
"My "My wire, too, has been greatly benefted by Com-
pound oxyken. She was for years distressed with dyspeppia, and nothing but Compound Oxysen gave her re-
lier. She is not yet entiraly free from for her case is one of lonk standing. But she is in far
better health than she ever could have boen has it not better health than she ever could have beem.
been for the use of this wonderral remedy.
"Compound Oxygen is now all my physic, and all my
 you see we do not have a great deal of stcknoess now. I
have recommended it to many triends, and they all ave recommended it to many friends, nad they.
speak woll of it. Amous others, 1 may mention Mr.
A. nephew of the president of this company, and is one our rising young lawyers. He was troubled with lung weaknesfand symptoms of consomption, but is now en-
tirely recovered. Say for me, if you choose, that Comirely recovered. Say for me, if you choose,
pound Oxygen is the best remedy I know of."
Truly wonderful it is how alseases of such diverse
character as those above mentioned flee before the power of Compound Oxygen. And not only these, but many others, as will be seen by reading the interesting rom Mrs. M. J. French, of Ludington, Mich., who tells her experience in the use of Compound Oxygen with
one of her children in diphtheria. This will be mailed free of charge ω ail who send for it. Address Drs.
STARKEY \& PALEN. 1529 Arch Street, Philedelphla

ƏBusiness and \$ersonal.
The charge for Insertion under this hoad is One Dollar a line for each inertion; about eight words to a line. as carly as Thursday morning to appear in next iserus.

The Socialist, a monthly magazine, is addressed to progressive men, who are not the slaves of old Ideas.
Specimen copy gratis. Sociaust, Gor Walnut Street.

To Engine Builders.-For Sale.-The American pahe Continent; not yet introduced in the U. S. Cheapes to bulld, most economical in gas, notseless. and simple. pared to introduce the engine. C. F. Crosby, P. O. box 6, Boston, Mass.
Billings' Patent Breech-loading Single Barrel ShotGeo. E. Lloyd \& Co., Electrotype and Stereotype Mahinery, Fol
Cicago, Ill.
Nickel Plating.-Sole manufacturers cast nickel andes, pure nickel salts, polishing compositions, etc. 8100
Little Wonder." A perfect Electro Plating Machine. ole manufncturers of the new Dip lacquer Kristaline. O., Newark. N. J., and 92 and 94 Liberty, St, New York. Grimshaw.-Steam Engine Catechism. A series of Groughly Practical Questions and Answers arranged
so as to kive to a Young Engineer Just the Information required to it him for properly running an engtne. By
Robert Grimshaw. 18mo, cloth, $\$ 1.00$. For sale by
Kbint
The Knowles Steam Pump Works, 44 Washingtin The Knowles Steam Pump Works, 44 Washington st.. Boston, and $\begin{aligned} & 8 \text { Liberty st., New York, have Just is- } \\ & \text { sed a catalogue. to which are many new and Im- } \\ & \text { proved forms of Pumping Machinery of the single and }\end{aligned}$ uplex, steam and power type. This catalogue will be
Haswell's Enaineer's Pocket Pook
Hasvell's Engineer's Pocket-Book. By Charles H. Ing Tables, Rules, and Formulas pertaining to Mechan-
ics, Mathematces, and Phystes, Archltecture, Masonry, Steam Vessels, Mills. LImes, Mortars, Cemente, etc. 900
pages, leather, pocket-book form, 4.00 . For sale paxes, leather, pocket-book form, 4.00 . For sale by
Munn \& Co., 801 Broudway, New York.

Air Compreseors, Rock Drilla. J. Clayton, 43 Dey st.,N.Y
Shafting, Couplings, Hangers, Pulleys. Fdison Shaftin Sharting, Coaplings, Hangers, Pulleys, Edison Shafting
Mfr.Co..s8 Goorck St., N. N. Send for catalogue and pricea Iron Planer, Lathe, Drill, and other machine tools of Wanted.-Patented articles or machinery to manufac
ture and introduce. Lexington MIg. Co., Lexington, K For Power \& Economy Alcott's Tarbine, Mt. Holly, N.J Machinery for Light Manufacturing on hand and
bult to order. E. k. Garrin \& Co., 130 Center St., N. Y. Send for Monthly Machinery List to the George Place Machinery Company,
121 Chambers and 103 Reade Streets. New York. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J. If an invention has not been patented in the United
States for more than one year, it may still be patented in States for more than one year, it may stlll be patented in
Canada. Cost for Canadian patent. \&to. Various other
. Canada. Cost for Canadian patent. \&o. Various othe
forelign parents may also be obtained. For instructions
wdiress Munn \& Co., Scientirio Amrican patent

Sapplement catalogue.-Persons in parsuit of infor macion of any special engineering, mechanical, or scien tifo subject, can have catalogue of contents of the Sclintific Amirican Supplemgnt sent to them free
The Bupplement containa lengthy artioles The SUPPLImicNT contalns lengthy articles embractn soience. Address Munn \& Co., Publishers, New Yort Guild \& Garrison's Steam Pamp Works, Brooklyn,
N. \mathbf{y}. Steam Pumping Machinery of every description. Send for catalogue.
Send for deecriptive circular on lubrication. Charles H. Besly \& Co., North American Agents for Reisert'
Celebrated Solid OII, $175 \& 177$ Lake $\operatorname{st.}$, Chicago. 11. Send for catalogue of Scientific Books for sale by
Munn 4 Co., 311 Broad was. N. Y. Free on application. Keystone Steam Driller for all kinds of artesian wells. Wood Working Machinery. Full line. Williamsport We are sole mannfacturers of the Fibrous Asbestos remestos roods of all kinds. The Chalmers-Spence Co 41 East 8th Street, New York.
Universal and Independent 2 Jaw Chucks for brass
work, etc., both box and round body. Cushman Cnuck Co., Hartford, Conn.
The Crescent Boller Compound has no equal. Cresnt Mr.Co.,
Curtis Steam Trap for condensation of steam pipes,
high or low pressure. Curtis Regulator Works, Boshigh or low
ton, Mass.
Steam Hammers, Improved Hydraulic Jacke, and Tub R. Dudgeon, $2 t$ Columbla st., New York. Emerson's Ry' Book of Savos fros. Reduced pricos for 1885. 50,00 Sawyers and Lumbermen. Ad
Emerson, Smith \& Co., Lumited, Beaver Falls, Pa. Hoisting Engines, Friction Clutch Pulleys, Cat-off "How to Keep Boilers Clean." Send your addrese Berrel, Keg, Hogshead, Stave Mach'y. See adv. p. 76 . Mineral Lands Proepected, Artesian Wells Bored, by The "Improved Greene Engine" can be obtained only om the soll bulderr. Providence sieam Engtne Co., R. I Timber Gaining Machine. All kinds Wood Wor
ing Machinery. C. B. Rogers \& Co., Norwich, Conn.
Patent Elevators with Antomatic Hatch Covers. Cir Brands cat in Wood, Pattern and Brand Letters
Vanderburgh, Wells \& Co.. 110 Fulton St., New York. Brass and Iron Working Machinery, Die Sinkers, Split Pulleys at low prices, and of same strength and Works. Drinker St.. Philadelphia. Ps \& Son's Shaftin

HINTS TO CORRESPONDENTS

Namen and Add dreas muta accompany, all leters

 thongh we endeavor to reply to all, either by lett
or in this department, each must take his turn.
specil Witen In
personal rather

(1) C. H. C. asks: How much cheaper can a ecientific education be obtained in France or Germany than in America, all things incladed, and
what sum is needed to complete a four years' conree A. A scientifc education wonld cost you about as much
mand A. A scientic eadcation wonld cost you abont as much
in Germany or France as it would in this country. sapposing in both cases you set oat to be economical
in the matter. In some of the smaller In the matter. In some of the smaller German univers: thorough edication for $\$ 85$ to $\$ 80$ per month and even less. of the total cost, the tuition charges alone would
(2) J. I. K. asks: Will water colors mixed with ox gall do to color maps? A. If the mape are made on good drawing paper, the simple water gall is need in combination with water and water colora in order that they may wash evenly over the surface, especially on such suberances tracing cloth, where the surface is apt to be greasy. We wonld advise you to
purchase the preparation already made, as it is best to it of the proper strength.
(3) N. G. B. asks: Can I heat an apart and carrying about 40 pounds pressare? Distance

 the coils by a small pipe with valve, bat should prodie means for draining all the water from the coile expensive, and is not recommended for a single apart nemt
(4) H. B.-The newspaper account which you saw was entirely incorrect. Such a death morphia or other preparations of opium is at arst stimulating, and subsequently stupefying. A dose sufficiently large to be fatal sometimes canses so much Irritation of the stomach as to produce vomiting, and the life of the person may thus be saved. If the vom-
iting does not come within a short time, say an hour iting does not come within a short time, say an hour
at the farthest, sleep follows, increasing in heariness at the farthest, sleep follows, increasing in heariness
antil it becomes torpor with parfect anconsciousness, which continues uninterrap death. The struggling indicatedin your question does
(5) J. B. S. asks: 1. What is the cause, lso the cure, of a kind of boll coming on the face, and after coming to a head the skin atill retalning the red passed away, always allows the redness of the skin to remain for quite a long time after the pain has ceased. Nothing is needed but time. 2. I have an electro marnet with a current breaker which did at one time furnish strong shocks, but lately has lost this property.
What is the cause of this? A. This can scarcely be anWhat is the cause of this? A. This can scarcely be anmay exist for the fallare of action.
(6) W. asks: 1 . Is it healthy to work with my hands continually in the water? I have been working at it for four years, and have not increased in
size or strength since I began. 4 . Your failure to insize or strength since I began. A. Your failure to in-
crease in size and strength is, in all probability, due crease in size and strength is, in all probability, due
to other causes than that which you specify. The only effect likely to come from your hands being in the cold, it will do you no harm. 2. Is porter atrengthening? I do not wish to take it if I can avold it. A. Let the portalone. You do not need it for any reason whatever. It will not give you strength.
(7) W. F. G.-The dipleidoscope or dipleioscope was invented by Bloxom in England, and consists of a triangular prism. polished on
three sides and silvered on two of them. One of the silvered sides must be adjasted to a horizontal plane. Its unsilvered face must be adjusted at right angles to the meridian. Then, apon observation of the sun or other object passing the meridian, a reffected image from the first surface and a doable reflected image from the interior surface will approach each other when the
object is approaching the meridian, coincide when on the meridian, and recede after the meridional passage. It is not an instrament of precision. Having no means of adjustment, other instruments have to be used; but when once fixed in its proper po-
sition, it affords an easy means of observing the mesition, it affords an easy means of observing the me-
ridional passages of celestial objects. It is not known ridional passages of celestial objects. It is not known
to be made or in ase in the United States. You will to be made or in ase in the Knight's Mechanical Dictionary. We consider it of no
(8) E. B. asks whether there is any ure for sweating of the hands. A. No remedies seem to have any great efficacy, except where the trouble is
caused by some local difficulty. Application of sulphur ointment at night, to be washed off with very free use of soft soap in the morning, is one of the best modes of treatment.
(9) W. M. K. Writes: Many of our on this curbing are iron posts to which are attached drooping chains. Rust from this iron has stained the stone seriously. Many. say that there is no acid or is, and that you can tell what it is. A. The stains of fron rust may be partially removed by washing the stone with hydrochloric acid diluted with 4 parts water. Then wash with clean water. If the stone is marble, use oxalic actd in solution of water. There is little
use of removing stains without also removing the cause of the stains. Iron posts should be galvanized and set in the ground or in dark colored stone blocks. The chain shonld also be kalvanized. Stone carbing
should be made of red sandstone to wear well with should be made of red sandst
iron railing or poets and chains.
(10) O. L.-1. A paint composed of black lead. lamp black, and boiled linseed oil, which you can make to suit yonr own taste as to proportions, makes a good durable paint for steam pipes. 2. Sulphur may be melted over a coal ire in an iron ladle large enough
to hold, without apilling, the quantity for a single pourto hold, without spilling, the quantity for a single pour-
ing. Lay a piece of sheet iron on the ladie for a cover; heat siowly so as not to take fire. If you can set the be convenient and asfe. It should not be heated so hot as to take fre by the vapor. 8. You can test s boiler with cold water by any means that will produce the required pressare. It matters little where the gange is required pressare. It matters little where the gange is
placed, so that it indicates the true pressure in the boiler. It should, however, be placed on alievel with
the water in the boiler, otherwise it might indicate a the water in the boiler, otherwise it might indicate a
little more or less than the true pressure. 4. To post you on examination we recommend Roper's "Engineer's Handy Book," \$3.50, and Roper's "Questions and
(11) W. A. P. asks (1) how to color soft iron blue. A. The blue color of iron articles, as also even finish with emery paper or other means. Then even finish with emery paper or other means. Then
heat over a fire or in an oven until the desired color 18 obtained, when the articles are to be quenched in
water, wiped, and dried, or may be cooled in an air
blast. 2. Which is the hardest to ride-a high bicycle
or a low one? \mathbf{A}. \mathbf{A} low one is the safest if you are inexperienced.
(12) L. N. C. writes: I desire to know what quality or mixture of cast iron to nse in situa and to alternations of temperature ranging from say ast longest and be least llable to fracture when woun bove? Would like to have your reason in the sele tion of any particular kind of iron for this purpose
Iron to be ased in cylinder 12 inches in diameter, and Iron to be ased in cylinder 12 inches in diameter, and
protected from direct action of are by Are bricks. A. protected from direct action of Are by are bricks. A.
The hand iron No. 8 or 4 will stand the heat the best. The hardiron No. 8 or 4 will stand the heat the best.
If the cylinder is to be inisbed, the hardest Iron cannot be used. There is no mixture of iron that will to 800° whe after long use at varying lempera casting may be made with No. 8 and machinery scrap mixed and if not to be dressed, No. 4 and machinery scrap make a good mixture.
(13) C. S. P. asks a receipt for making with 4 pails of water for abont 5 minntes of then hop off enough of the liquid among 8 pounds of good sifted four in a tab to render it into a stiff paste, working in up thoroughly with a clean stick; then add the rest of the liquid to the paste; let it stand till lukewarm, and
pulverize any remaining lumps with your fingers pulverize any remaining lampe with your fingers.
Now add about 8 pounds malt and stock yeast; allow it to work in a warm place till it rises and falls again, a hair sieve and stand in a cool place. In warm weathe 4 gallons cold water might be added to the above previous to stocking away.
(14) J. M. G. writes: If a horizontal vacuam tube one thonsand feet in length and ten feet
diameter had transparent ends, conld a person through it, or would light pass from one end to the other! A. Yes, light passes through a vacuum.
(15) C. W. F. asks: In what can I disolve old rubber so as to form
or cloth? A. Coal tar benzole.
(16) J. F.-Artificial limbs are generally made of wood or cork. If properly varnie
(17) M. L. P. \& Co. write: We have man running a farm thrasher steam engine, who main it requires more power to run it than it does when the machine is as low or lower than the enyine, other things being equal. A. It does not.
(18) W. H. M. asks whether hydrogen peroxide or Naquet's bismathic dye will permanently tioned change the color of the hair that is teat permanently, but the new
be of the original color
(19) Dr. A. E. F. asks about Chinese opium smoking. i. ©., what kind of pipes they use
how they prepare or mix the crude opium. A. The es sential part of the plpe is the head or bowl, made generally of terra cotta, bat capable of being produced from a variety of materials. This bowl on its onter
surface is provided with a small apertare, measuring perhaps one-sixteenth of an inch in diameter, ronnd Which the extract is placed. On the side of the bow opposite to this aperture it is fixed to the tube through
which the smoke is conducted to the mouth. This tabe, of bamboo or any hollowed ont wood, is from 12 to 16 inches long from the bowl to the moath piece from 4 to B inches beyond the bowl in the direction op posite the mouth plece. The Chinese use a mixture
of opiam with sam-sha (a variety of gin) made up in the consistency of treacle. The ordinary pharmacopoeial
(ad) may be used.
(20) C. W. S. and H. P.-Wax method of engraving: The picture or drawing of which it is graphed or traced apon a very thin film of wax covering a perfectly smooth copper plate. The lines on the wax are then cat ont with an ordinary graver'
tool. Names and flgures are pressed in with tye tool. Names and figures are pressed in with typ
slightly heated. The untoached surfaces of the wax -these elevations forming in the completed block de pressions corresponding to the routed portions in the common wood block. The height of the built ap por
tions depends apon the distance between the lines tions depends apon the distance between the lines
where the lines are near together, no building up being necessary. From the engraved wax plate an electro plate is made in the usual way. The composition of
the wax used is a secret; it mast cut freely without pulling, mast be tough but mot hard enough to crack orming of clean, sharp lines.
(21) S. A. S.-We believe that sheets pure rubber are impervious to the vapors of mer
(22) B. F. D. desires a nethod of treat g fence posts and wash poles to prevent their de Dipping the wood in a mixture of 25 gallons of wate . Dipping the wood in a mixture of 25 gallons of wate
in which 5 pounds chloride of zinc has been diesolved is said to be an excellent remedy. Dipping the ends to be buried in coal tar is likewise recommended. The efficiency of the last named ag
ends are arst slightly charred.
(23) R. B.-Gas stoves are not as eco nomical as coal stoves, and are not healthy unless venThere are at least a dozen formulas for it. Five in gredients are usually considered essential-chloroform, morphia, hydrocyanic acid (prussic acid), oil of pep
permint, and molases. An excellent formala is given permint, and molasses. An excellent formula is given
on page 420 of the present United States Dispensatory
(24) J. G. S. asks for a receipt for clean ng filigree silver work that has become tarnished by lution of cyanide of potassium. If not very badly tar-
nisbed, probably a solution of hyposulphite of soda
will clean it. If there is no base metal about the orWill clean it. If there is no base metal about the or-
nament, you might clean it by bolling it in sulpharic
acid. 2. Has there ever been invented an automatic water pitcher that will fill the tumbler and then regain its position? A. We have never seen a water pitcher oot used as clothing if . Why is it that glass cloth We think that glass cloth, although somewhat fiexible,
would be too friable for general use as a material for would
clothing
(25) F. S. L. asks: 1. How much manganese does lt lake to ill a porous cap of the Le clanche battery, and what does it cost by the pound or quart as they well it? A. It depends on the size of te porons cap. The cap should be filled entirely around the carbon rod. Graniated lack oxide o anganese costs ten cents per pound. 2. I am making how they are worked and what way are they connected, and can they be worked with a Leclanche battery If not, what kind of a battery can be used? A. For information on electric clocks, consult Supplement, Nos. 191. 198, and 44. 8. I want to make a motor to
make six tights to go by steam. Will you let me know nake six lights to go by stcam. Will you let me know query whether you mean the steam motor, electric notor, or water motor, or whether you have inadvert
(26) G. W. K. asks: What cement will nite metallic foil to card or wood? A. Dissolve glue in glae, then stir in sufficient wood ashes to produce varnish-like mixture while hot; the surfaces to be anited mast be covered with this compound and pressed together. A solution of shellac and gum mastic disolved in alcohol. to every pint of which 1 teaspoonfa
of glycerine is added, is said, on excellent authority, good for this purpose
(27) F. A. M. asks how to make a pre paration that will take the black of nickel on stove and make it look like new. A. A little rouge with lin
seed oil on rag will clean the nickel, or if neceseary ase the metal paste recommended for polishing, in
answer to query 20 in Scientipic Axrrican of May answer
2. 1885.
(28) B. H. G. asks for the composition of sulphur ointment. and what kind of soft soap is
used with it. A. Sulphur ointment is made by mixing ogether 1 ounce sablimed salphur and 2 oances lard. with somp for or readily procure a soft soap from any competent drag gist. Its preparation is described in the U. S. Dispen-
-

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted,

December 8, 1885

AND EACH BEARING THAT DATE. [See note at end of list about coples of these patents.] Adjustable seat, M. Milles.

C. Welnspach

tus for cooling. H. F. Hodges
nima l trap, C. M. Crowe
nimal trap, F. Wolfe
Apron slat fastening, W. F. Dickison
Artist's sketch box, W. T. Brunder
Auger, earth, 8. Cary......................
Ax poles, machine for finishing, T. Rya
Axle box, car, C. H. Kock.
Axle box, car, J. Sarmelster
A xle, vehicle, J. I. McCalop
Baling press, M. H. Durst
Baling press, T. M. Work
Barrel, 8. H. Raymond...
Barrel attachment. fiour, J. R. Payson, J
Basin and trap. wash, W. L. De Wole
Basin and trap. Wash, W.
Bearing, ball, J. M. Marlin.
Bed or bed bottom, spring. X. A. \& F. M. Jeffery,
Bed, sofa, A. Schrock......
Bed, spring, P. H. Mellon.
Belts, manufacturing textile, M. Gandy
Benzylated acld violet, manufacture of, H. Has.
sencamp.
Benzylated \mathbf{n}
Hasyed methyl violet, manufacture of \mathbf{H}
Bit. See Bridle bit.
Blower, Areplace, G. W. Geissenhainer.............. 332,0r2
Board. See Brald bocrd.
Board. See Braid bocrd.
Boat hull, L. P. Rider...
Boiler. See Upright bolle
Boiler fue cleaner, J. M.
Bolting reel, C. F. King.
Ferguson...............
coot and shoe nailing
chine, E. B. Allen
Boot or shoe strap. J. Wal
Bottle, ink, L. H. Thomns.
Bottless, time dose Indicator for, J. s. Noel

Bracelet, P. Lettre....
Braid board, C. E. Bar
Brake. See Car brake
Brake head and shoe, J. J. Lappt
Brick making machine, J. H. Williamson.
Bridze. M. Balgle....
Bridge gnte, F. Hack
ridge gnte, F. Hack
bridle Dit. G. M. Hubbard....
Broom support, W. T. Shafer.
of, E . Vore. trel.
of
Bucket and stool. milik, F. F. F. Drake
Bucke, suspender, G. F. Atwood
Buckle, suupender, G. F.

cleaner.
Cleaning fuld, C. T. Mutchler......................... 831.81
Clevis, plow,

Clothes drier, . F. F. Buehler................................ Sheldon..........................
Conee roaster, c. . W. Shearer..
Coffn, A. . Lovett..............
Collar and hame, combined
Collar, horse, \&. B. Davis...
Collar housing, horse, R. Br
Collar, horse, S. B. Davis......................................
Collars, fastang horse, R Brownen.
Collars, fastening for sweat pads for horse. A.
ortmayer ... 381.19
Colter, rolling, Ball \& Bender..............

Corst, M. M. Jonec...
Cotton elevator and cotton g in feeder, A .
Thomas....................................... 3332
Cotton gin rib, F. C. Gammons........................ 8331
Cotton stalk chopper, H. Thile..........
Coupling. Seo Hose coupling. Pipe coupling.

Cultivator, garden. P. D. Graham.
Current wheel, A. R. Nellin...........................
Curtaln, adjustable wladow, McManes \& Losee. Curtain, Inture, Paxe \& We
Caspldor, M. H. Levelle...
Cusplaor, M. H. Levellle.
Cuspidor, O. W. Smith...
Cutter. See Bread cutter.
Cutter head, A. Hopplns.
Cullnder engine, revolving...............
Damper
Damper resulator, electric, W. E. Facer
Dead centers, device for overcoming, s . T. Short
ess.....................................
Dental suction plate former, J. Spyer.
Detector. Detector. Se Time detector.
Ditching and tile laying machine, J. C. White. Ditching machine, D. Fisher. Door check and closer,
Door hanger, J. Braun
Dough, converting forur into.......................
Dough, mechanism for convertlig fithour int Dough, mechanism $\begin{aligned} & \text { Fmith........................... }\end{aligned}$.
Dre Drawers and overalı, L.
Dredger, J. N. S. WMliams.
Deser Dredses rotary cutter for, J. H. B. Bollies.
Dress shield, D. C. Hall....... Drier. See Clothes drier. Frult drier.
Drier, D. Henderson................................
Drop movement for pocket utensils, s. M.

Electric machine regulator, dynamo, B. F. Orton,
331,814

$331,814.1331 .816$
....... 311880

Electric register and recorder for fares, etc., E.
A. Scales …............................ 331,828

Electrical transmission of power, w. M. Sc...
ger........
Elevator. Se Cash carrier elevator. Cotton ele-
vator. Lumber elevator.
Elevator and distributer, comblne
Elevator and distributer, comblned, J. H. Hunt.. 831,88
Embroidering machine. J. S. Fbneter............ 331.98
Embroldering machine, F. Von Martini.......... 832,024
Embroidery show card, I. Neuburger........... 332,102
Embroldery show card, I. Neubureer...................
Engine. Soe Condensing engine. Cylinder en-

Feed water puriner, \boldsymbol{A}
Fence, P. J. Wagner...
Fence, post, J. S. Don
Fence post, S. H Heks.
Fene,

331,864

332,168 381,628

 382,168381,68
3382982
331,750 3311.81
331,763
 331,811
332,2069
831,922 331,983
331,779
33,798
832,244
831,885

331,913 332,125 331,90 332,156

332,156 331,986 331,01 332.104

332,101
332,03
332,016
832,101
331,980
$833,1,989$
33,108
331,944
331,810

32,199
832,189
381,991
381.777
331,916
31,815

31,818

IILUSTRATIONS.

Cable grip. Anders: Cables. kripping, method
Cactas, candelabra,: 875
sson. Mctoverr's
Camera, photractor, ha bevel... 218
Canal locks. Manchester........... 263
1al, Panama.................. 111
al, st. Mary
apler
couplers
Car coupling feld s............. 14
3
Car of military bailoon............ 323
Car replacer.
stretcher. Taylor's........ 2^{20}
Cartridese and exploders......... 227
Catamaran, steam................. 279
Cattle, Holsteln.................. 9
Cemetery, new plan
Char elevator, Are \cdot. ${ }_{51}^{281}$
rall Jacques '.............. 51
r, rockin
\mathbf{k} for music boxes........... ${ }^{689}$
ney cap, new 292
mneys and
urn. Monarch
Clamp for scafiolds..... 356
Clock, a novel ${ }^{187}$
ndu. the
Collur nng stock
Colorertnolng maccinin
ndenser, substage............. 197
Conserratory, ornamental...... 169
Cork attachment, Haywurd's..... ${ }^{\text {\% }}$ /3
ton chopper attachme
r for vessels 46
chimnes, Lane's....... 20
-
e. frreen ton......... 213
0

MISOELLANY. Fikuresp procoded by a star (${ }^{(0)}$ reter

maxarf Puilumburumb

LIST No.
Andres.-A Practical Treatise on the Fabrication of
Volatile and Fat
anringes , Lacquers, Sicatives

Bnri,-A Practical Treatis on High-Presaire Steam

解 free and free of poetape to oovy one HENRY CAREY BAIRD \& CO.,

 T: O. LOIDI,
 owner and exclusive manufacturer o
THE NEW BAXTER PATEVT PORTABLE STEAM ENGINE, These Engines are admirably adapt-

NEW YORK BELTING AND PACKING COMP'Y.
 3 \% Hmery Uhe日is
 Warehouse: 15 Park Row, opp. Astor House, Now York

POPULAR

SCIENCE MONTHLY

CONDUCTED BY

E. L. \& W. J. YOUMANS.

Mhe popular science monthly for 1886 will contlnue, as heretofore, to supply its
readers with the results of the latest investigation and the most valuable thought in the vartous departLents of scientilic inquiry
Learing the dry and technical detalls of science, which are of chier concern to speciaists, to the journals
devoted to them, the Monthiv deals with those more general and practical subjects which are of the greatest inerest and importance to the pubic at large. In this work it has achleved a foremost position, and is now the
is country.
Trims: 8000 per Annum; Single copy, 50 canta. 3, and 5 Bond 8treet, Now York EABY STAR LEASONS. By Richard A. Proctor
 REIS TELEPHONE.2.2" telephones antedate and do not infringe any telephone
patent.
G. K. MNWNKNKN
ro Washington Street, Boston, Mass.

NO CAPITAL REQUIRED.

CURE

Peev's Patent Improved Oushioned Ear Drums PERFECTLY RESTORE THE HEARING, and periom the work of he Xatural Drum. Ampasi

DEAFNESS

 Pat.steol shafting. Internal Clamp Couplings. A. \& F. BROWN, 43 PARK PLACE, NEW YORK.

PRINTER'S sletting Machinos, for inserting large eyelets in SHOW
CARRD. Price, $\$ 12.50$. J. T. TURNER,
P. O. Box 282.
Baltimore, Md
PROPOSITIONS FOR GAS

ELECTRIC LIGHTING.

NEWSPAPER FILE

TELEPHONES SOLD.

DRAINAGE.-A SERIES OF VERY

 Helve Hammer ,

INJECTORS

FRE MEN
A BIC OFFER

\qquad

Pldvertisements.
 Engravings may head eadrert iements ot

HIW.IOHNS' ASMESTOS

Steam Packings, Boiler Colt, Fire Proof Paints, Cements, Etc,
Samples and Descriptive Price Lists Free. H. W. JOHNS M'F'G CO., 87 MAIDEN LANE, N. Y 175 Randolph St., Chicago; 170 N. 4th St.. Philadelphla

dJACKET KETTLES,

Transmission of Power WIRE ROPE Wrenton Tron Go.

$2{ }_{2} \mathrm{C}$.

PULLEYS

ROUGH Johnt. Nope iffe.co. FINISHED

AMd general statistes, FREE.
AMERIGAN MAN' CO.
Leffel Water Wheels, With Important Improvements.
11,000 IN SUCCESSFUL OPERATION.
TME NZW PAMPELET FOR 1885 ent free to those intereste
JAMES LEFFEL \& CO.,
Springfield, Ohio

ICE-HOUSE AAD REFRTGERATRR,

Wina, A. RGAREREXS,

PATENTS.

RUBBER BELTING, PACKING, HOSE

 RUBIERGOODS,MECHANICAL AND MANUFACTURING PURPOSES THE GUTTA PERCHA AE RUBBER MFG. CO.,

amme inprove for Inventors.

for Inventors.
Int this inin of business they have had forty years' ex
perience ind

 on Infringements of Patents. All business intrusted
them is done with special care and promptess

Designs, Patents, Appenls, Reissues, Infringements, A tents, etc.
We also send, free of charge, a synopsis of Forelgn P patents In all the princelpal countries of the world. pench orfices hroaty BRaNCH OFFICEs.-No. 62 and 64 F 8treet, P
titic Building, near

JENKIN \mathcal{H} ROS, VALVES
 Gate Angle, Cheok, and Safety.
 MANUFA,

Te avoid imposition, that valves are stamped "Jenkins Bros."
Send for Price List "A." T FINEIINS EREOS

Rider's New and Improved COMPRESSION
Hot iir Puminimg Bnine New and Improved Designs.
delamater IRON WORKS, Foot of West 13th Street, New York, U. S. A.

WITHERBY, RUGGG RICHARDSON. Manufacturers
of Patent VOD Working Machinnery of every deserip
of ent
 PRICTION PULLEYS CLUTCHES and ELEVATORS

WAGIC LANTERNS

Aluminum Bronze, Aluminum Silver, Aluminum Brass,

SIIITOON BEOINRE,

Furnished in Ingots and Castings, Rods and Wire Made to Order. We have no Sheet Metal. Our Malleabr Castings can be made of over 100,000 pounds tensile strencth, with extroordinary power THE COWLES ELECTRIC SMELIING AND ALUMINUM CO., CLEVELAND, 0 .

ELECTRIC

PATENT
(OLD ROLLED
SHAFITNG.

$\underset{\substack{\text { st } \\ \text { ot } \\ \text { W }}}{\substack{2}}$

-SILICOIN

Wodenvare manfaturures, so to town soaures

Clark's Compresede Paper Skate Rollers.

DRAWING
INSTRUMENTS.

THE CURTIS
GT尸A MI TFA』. For returning steam condensed un-
der pressure automatically into the
borlir, whet her taken from above or
below the boiler lever, without loss
or waste Woil HE CURTIS REGJLATOR CO.,
boston, mass BOSTON, MASS.

ICE-HOUSE AND COLD ROOM.-BY R.

 G. Hatfileld. With directions for construction. FourTHE NEW "GRESHAM" PATENT

Aitonatic Prestarining Iinector?

Nathan Manufacturing Co.
 95 MILK ST., BOSTON, MASS,

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 877, No. 186,78
The transmission of Speech by all known forms of Electric Speaking Telephones inringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use and all the consequences thereof, and liable to suit therefor

MODEL, and MXPERIMENTA WORK SPEAATTY.
 Send for Circmars. C.E.Jones\&Bro.
 Cincilinatl, o.

TELEPHONES Eor promat mect

Barnes' Patent Poot and Hand Power MACHINERY, $\$ 15$.

The Scientific American.
THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.

Publlehed Weekly, *8.20 a Xear; $\mathbf{\$ 1 . 6 0 ~ S l x ~ M e n t h s . ~}$ This unrivaled periodical, now in its forty-first yenr, continues to matntain its high reputation for excellence,
and enjoys the largest circulation ever attalned by any scientiffe publication.
Every number contalns sixteen large pages, beautifully printed, elegantly 1llustrated; it presents in popula
style a descriptive record of the most novel. interesting, and important advances in Science, Arts, and Manufactures. It shows the progress of the World in respect to New Discoveries and Improvements, embracing Machin-
ery, Mechanical Works, Engineering in all branches, Chemistry, Metallurgy, Electrieity, Light, Heat, Archiecture, Domestle Economy, Agriculture, Natural History, etc. It abounds with fresh and interesting subjects for discussion, thought, or experiment ; furnishes hundreds of useful surgestions for business. It promotes
Industry, Progress, Thrift, and Intelligence in every community where it circulates.
The Soientiric American should bave a place in every Dwelling, Shop, Office, School, or Tibrary. Workmen, Foremen, Engineers, Superintendents, Directors, Lawyers. Physicians, Clergymen, people in every walk and profession in life, will derive benefft from a regular erms for the United States and Canada, 83.20 a year $\$ 1.60$ six months. Specimen coples free. Remit by MUNN or Check.
\& CO., Publishers,
TEETE
Scientific American Supplement.
The scientific American Supplement is a sepa-
te and distinct publication from The Soientific AMERICAN, but is uniform therewith in size, every number
containing sixteen large pages. THE Screntific American Supplement is published weekly, and includes a very wide range of contents. It presents the most reant papers oy eminent writers in all the principaraleBartments of science and the Useful Arts, embracing Light. Heat, Mechanical Engineering, Steam and Rail-
way Engineering, Mining, Ship Building, Marine Ensineering, Photography, Techhnology, Manufacturing ndustries, Sanitary Engineering, Agriculture, Horti-
culture, Domestic Economy, Biography, Medicine, etc. A vast amount of freeh and valuable information per-
taining to these and allied subjects is given, the whole
profusely profusely illustrated with engeravings.
The most important Enoineering Worla
d Manufactures at home and abroads, Mechanisms,
Ind described in the Supplement.
Price for the Supplembnt for the United States and Price for the SUPPLEMENT for the United states and
Canada, 85.00 a year, or one copy of the Scientipic AMERICAN and one copy of the SUPPLEMENT, both mailed
for one year for $\$ 7.00$. Address and remit by postal order or check, MUN \& Co., 361 Broadway, N. Y., To Foreign Subscribers.- Under the fachitles of by post direct from New York, with regularity, to subscribers in Great Britain. India. Australia, and all other
British colonies; to France, Austria, Belgium, Germany. Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted,
\&4, goll, for SoIENTIFIC AMERICAN, one year ; for both SCTENTIFIC AMERICAN and SUPPLEMENT for one year. This includes postage, ॠhich we pay. Remit

PRINTINE TNRS:

