
a Weekly journal of practical inforilation, art, science, mechanics, chemistry, and manufactures.


## Spontaneous Combustion.

Mr. C. C. Hine, editor of the Monitor, relates the following: "The Institute of Technology, at Boston, long ago decided upon the danger of steam pipes passing through and in contact with wood. It was shown that the wood, by being constantly heated, assumes the condition, to a greater or less degree, of fine charcoal, a condition highly favorable to spontaneous combustion. Steam was generated in an ordinary boiler, and was conveyed therefrom in pipes which passed through a furnace, and thence into retorts for the purpose of distilling petroleum. Here the pipes formed extensive coils, and then passed out, terminating at a valve outside the building. To prevent the steam
when blown off from disintegrating the mortar in an pposite wall, some boards were set up to receive the force of the discharge, and as often as the superheated steam was blown, the boards were set on fire.

NEW YORK, SEPTEMBER 19, 1885.
THE GREAT TANGENT GALVANOMETER OF THE COR NELL UNIVERSITY
The cut represents a standard galvanometer constructed at the Cornell University from designs of W A. Anthony, Ph.B., Professor of Physics, to meet the want of a standard instrument for the measurement of heavy currents, and for the direct calibration of the commercial instruments in use for measuring the cur ents employed in electric lighting, etc.
For the measurement of heavy currents there are
four circles, two 2 meters in diameter and two $1.6 \mathrm{me}-$ ters diameter, mounted according to Helmholtz's plan at distances apart equal to their radii. The conductors forming these circles are copper rods, three-fourths inch in diameter. The needle is suspended by a silk
 very rapidly. By a peculiar arrangement of mirrors
and telescope the deflections are read directly in angu lar measure on a circle 50 inches in diameter to within three-tenths of a minute of arc. The copper conductors are mounted on a brass framework accurately turned and adjusted, and the dimensions are all known within one five-thousandth.
For the measurement of small currents there are two circles, about 1.5 meters diameter, each having two conductors, and comprising altogether 72 turns of No. 12 copper wire
The indications of such an instrument, of course, de pend upon the value of the horizontal intensity of the earth's magnetism, and without some means of determining this quantity in the place where the instrument tands, and at the time when a measurement is being de, no greataccuracy is attainable
For making this determination a coil, 1 meter in di(Continued on page 182.)


THE GREAT TANGENT GALVANOMETER OF THE CORNELL UNIVERSITY.

# Srientific Gmmitam. 

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

## TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, postage included....One copy, six months, postage included.
Clubs.-One extra copy of The Scientific Amprican will be supplied gratis for every club of five subscribers at

## Remit by postal order. Address

## MUNN \& CO., 361 Broadway,

She Stientic Street, New
is a distinct paper from the Scientific american. THE SUPPLEMENT with Scientific American. Terms of subscription for Suppienent $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined Rates.-The Scientific American and Suppiement
will be sent for one year will be sent for one year, postage free, on receipt of s
papers to one address or different addresses as desired.
papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter. Address MUNN \& CO., 361 Broadway, corner of Franklin Street, New York Scientific American Export Edition.
The Scientific American Export Edition is a large and splendid peridical, issued once a month. Each number contains about one hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the plates
and pages of the four preceding weekly issues of the ScIENTIFIC AMERICAN. with its splendid engravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
word. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely displayed announcements published in this edition at a very moderate cost.
The Scientific American Export Edition has a large guar
The ScIENTIFIC AMERICAN Export Edition has a large guaranteed cir-
culation in all commercial places throughout the world. Address MUNN $\&$ CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, SEPTEMBER 19, 1885.


TABLE OF CONTENTS OF

## THE SCIENTIFIC AMERICAN SUPPLEMENT

## NO. 507,

For the week Ending September 19, 1885.
Price 10 cents. For sale by all newsdeaters.
 figure.....................................
Balancing the Rotary Parts of Machine
Jacomy's High-Speed Motor
Jacomy's High-speed Motor.-2 figur
II. TECHNOLOGY.-Useful Directions for Taking Portraits I........ ithout a Skylight.-By L. P. Ferris.
Photography in a Balloon.- With engraving
How Norwich Shawls are Made.
The Cylindrograph.-A new panoramic photographic......................... 8010
-3 figures.
Optical Telegraphy.-Description of the portable optical appara
III. ART AND ARCHITECTURE.-The Erection of the Dure

Wellington's Statue at Aldershot.-With engravings.
Cottages.--Askham, York. -2 engravings
The New Federal Building, Brooklyn, N. Y.-With engraving...
IV. PHYSICS, BIOLOGY, ETC.-The Mechanical Production of
Cold and the Effects of Cold upon Microphytes.-By J. J. CoLeman and Prof.J. S. MCKendrick. -1 figure.
Biological Study of Water.-A pparatus used. -5 figures. A Useful Acaridan.-3 figures.
GEOLOGY.-A Talk about Geology.-Origin of the word.-Surface workof the globe.--W ork of rain drops, great rivers, the ocean,
freezing water, etc.-- Effect of pressure -Work of living things... I. BOTANY.-The Northern Pitcher Plant, or the side Saddle Vi. BOTANY.-The Northern Pitcher Plant, or the
Flower, Sarracenia Purpurea, L.-By W. K. HIGLEY..
VII. PHYSIOLOG Y, HYGIENE, ETC.-Physiological Curiosities.fecovery of Good Sight after Twenty Years' Blindness. The Treatment of Freckles, Moles, etc.
Insanitarv Houses.-A caution.
vii. miscelicaneous.-How to Care for Our Poor -ens.-A review of an interting and valuable work by Exiti

The Lapps.-Their appearance; manner of life; dress; origin religion; sorcery ; etc. -4 engravings.

## CYLINDRICAL NUTS

The substitution of cylindrical nuts for those of a square or a hexagonal form has been advocated, with very good reasons as a backing. Recently an opportunity was given to see a practical illustration. A machinist had an order for a small ornamental steam engine, to be placed in the show window of a coffee and spice establishment, and on it he used cylindrical nuts instead of hexagonal ones. The engine was a horizontal one, with steam chest on the top of the cylinder, and all the hold-down bolts were furnished with cylindrical nuts, through the tops of which protruded the flattened convex ends of the bolts, making a very neat finish. The bolts were three-eighths of an inch diameter and the nuts three-quarters of an inch diameter; to have made them hexagonal they would have been a trifle over seven-eighths of an inch from corner to corner, and if square they would have been a full inch across corners, and neither the hexagonal nor the square nut would be any stronger than the cylindrical nut-the protruding corners give no additional strength. For a wrench he took a tool with opening jaws operated like a pair of pliers. These jaws, while slightly cpen, were reamed to fit the diameter of the nut, so that when closed on the nut the jaws would embrace almost its entire circumference; the leverage of the handles made a very slight pressure necessary to set up the nuts. The wrench did not have a short biting jaw, like a pair of pipe tongs, which dig into the pipe at each grip, but the inside of the jaws were perfectly smooth, and left no mark on the nut in using.

The method of making the nuts produced them in a very rapid manner. A bar of steel, of the proper diameter to finish to size after being turned, was fed through the head of a turret lathe, the end squared, a hole drilled in it, the tap run in, the surface turned, and the nut cut off; all done by fixed tools in the turret and the cross cutting off tool. The finished nut dropped, and the bar was advanced for another nut There was no planing, milling, or seating on an arbor as would be the case in forming and finishing rectangu lar nuts. Every machinist knows that lathe work is cheaper and quicker than reciprocating work, whether planer or milling machine.
In addition to these advantages of quick work, almost self-acting, the rapid production of the nuts and their finish from the first inception, there is the ad34 vantage of the requirement of less metal for the requisite strength. The embracing jaws of the wrench have a bearing on almost the entire circumference while on the square and hexagon nuts the bearing of the wrench is on only two opposite sides.
Another advantage that the cylindrical nut has over the angular nut is that the wrench may get a grip in moving through the smallest arc of a circle; an advantage that will be understood by the setters-up of machinery under difficulties. With the square nut an entire quarter turn is required before, in a confined space, the wrench can get a new hold; and with the hexagonal nut not less than one-sixth of a revolution is necessary before the wrench can take a fresh grip. When the wrench handle is long and the working plac is limited, these considerations are of consequence.

## RAILWAY IMPROVEMENTS NEEDED

The recent disaster near St. Catherines. Ontario, where a heavy passenger train drawn by two locomo tives went through a swing bridge into the canal brings to mind the fact that a similar accident occurred at the same place eleven years ago, and that about 1854 one of the most serious disasters on record occurred under similar circumstances near there on the same road at a canal bridge that has since been removed or abandoned.
There are appliances that will, if kept in working order, effectually prevent such accidents. It is true that accidents do happen occasionally on roads that are equipped with the most approved means of safety, but this is chargeable to the neglect of those who have the care of the appliances, rather than to any inherent defect. The liability of switch and drawbridge signals to become inoperative seems to be the principal reason set forth by railway officials for refusing to adopt them, and this objection may be removed by a more simple construction, which would render them reliable and proof against derangementSimplifying their construction would also reduce the cost and remove the only remaining objection to their general adoption. Most of the signal devices brought forward of late are expensive, and require nuch skill and constant watching. An automatic signal that is not reliable at all times is more dangerous than those which are operated independently by an attendant. because greater reliance is placed upon the former and it is not as closely watched by engineers. The recent accident occurred at midday, but the engineer rails at the pier, when he promptly moved the lever to apply the air brakes, but they failed to act. He then called for hand brakes, but it was too late. The primary cause of the accident was the lack of a proper signal, and the immediate cause was the failure of the
brakes to operate. 'This is the fifth train that has met destruction on this side of the Atlantic within two years from failure of air brakes, and accidents less serious are frequent from the same cause. Doubtless the bridge would have been provided with an auto matic signal were it not for an occasional failure of these appliances, and their excessive cost, and it would not seem a difficult matter to remove these objections.
Air brakes are usually placed under the care of sillful mechanics, whose business is to give them thor ough inspection and all needed repairs at the end and before the commencement of each trip, but notwith standing these precautions they sometimes refuse to act, and the results are usually serious. Brakes and signals that are more simple in construction, and re quire less skill and expense to keep in working order are in demand.

## AS TO THE SINKING OF THE WIRES.

The time given to the electrical companies in New York city to present plans and come to an agreemen as to the system to be adopted in burying the wires has now gone by, and, according to the law passed by the last legislature, they must accept the plan chosen by the Electrical Subway Commission, or have heir wires buried by it vi et armis.
Unhappily for the New York companies, the com nission contains neither an electrician nor a scientific expert, and however good their judgment may be, it is scarcely probable that they will be able to discover a means of efficiently working long lines of telephone, atleast, underground, when a score of experts employed by the companies have failed in a similar search
It is pretty evident, too, by recent action of some of he companies, that the constitutionality of the law is to be thoroughly tested before they succumb; the Commission in the mean time being enjoined from in terference. From reports which have reached us, the grounds on which an injunction will be asked may thus be summarized:
Having once had authority to string the wires through the streets, and there having been no proviso to restrain them at any moment from further operation of aerial lines, they cannot be constitu tionally forced to change the mode of operation without compensation. The right of the legislature to forbid any further stringing of wires, save what is required to keep the original lines in efficient working, is admitted. But to compel the companies to make the great outlay required in taking their wires down and placing them underground would be to mulct them in damages for doing what under their charters hey have a clear right to do, and it was intended they should be protected in doing. The case of the elevated railroads might be cited as in many ways parallel. Having legislative authority to build the road the incorporators went to the expense of construction. They took a certain risk. Had the project proved a failure, they would have had to stand the loss-the State, of course, would not have compensated them. Now, the project having proved a success, can the legislature step in and regulate the rates at which they are to carry passengers? Eminent authority decided that it could not, and the Governor refused to sign the bill.
How conclusive this reasoning may be, the writer has no intention of trying to determine. There is reaon, however, to believe that the courts will be called upon to do so.

## SHOP INDEPENDENCE.

Unless one has an "independent fortune," one making him independent of financial circumstances, there is no condition in civilized life preferable to that of a hop mechanic. Especially is this the fact if the mehanic is competent and feels an interest in his work. He has a comfortable shop, pleasant fellow workmen, good tools, and a job that will amount to something when it is done; this is enough to content a man who has a pleasant home or a comfortable boarding place. And yet there are some who look upon shop life as rksome and perfunctory.
There are others who do not. An illustration is recent. A fine workman, a machinist, possessing other valuable qualifications as an executive manager, a public speaker, and with great personal power of persuasion, was induced to take the superintendency and management of a Young Men's Christian Association. He filled the position satisfactorily and creditably; but at last he tired and resigned. Strong influences were brought to induce him to change his determination. He refused, and for nearly two years has worked in the shop as a tool maker. He gets good pay, but refuses to be a boss-only an inspector-and works very day as any ordinary workman.
Recently he was seen, and asked if the change from a public life to a shop life was agreeable. He was quite enthusiastic in his praise of shop life; he was independent; had no meddling suggestors to bother him ; could can his day's work in the morning, and see it done in the evening : was nobody's slave or servitor ; did not
have to modify his plans to suit a committee ; his eight
or ten hours per day was his absolute limit of work and all the remainder was absolutely and really his and his family's. This is the sort of mechanic that recommends shop life, and proves that it is one of the most independent that a sensible man can follow.

## death valley.

The name is fearfully suggestive, and yet few places in the world deserve their appellations so well as does the Death Valley of California, nor is it easy to find any other locality in any country whatever which gathers about itself so much that inspires horror and dread. A region where a man can die of thirst while he has water within his reach, more than he can drink, may well bear the most terrible title that can be given it; and this name-Death Valley-given from the first known event in its history, thirty-five years ago, will known event in its history, thirty-five years
doubtless cling to the spot to the end of time.
It is in the southeastern part of Inyo Co., Cal., and the point at which the meridian of $116^{\circ} 45^{\prime} \mathrm{W}$. crosses $36^{\circ} 10^{\prime} \mathrm{N}$. is as nearly as possible in its center of horrors. Probably only one other spot of which we have any knowledge, the Guevo Upas, or Vale of Poison, in Java, exceeds the fatality of Death Valley.
The valley itself is 40 miles by 8 , running nearly north and south, and every portion of this is desert and barren in the extreme, as is in fact the entire sur rounding country; but a narrow central space along
the eastern side, about fifteen miles in length, embodies the eastern side, about fifteen miles in length, embodies
the typical features in their highest intensity. Into this, not Porte d'enfer, but Puit d'enfer, very few per sons have ever gone, that is, who returned to tell the tale, and what is here related pertains to the higher and comparatively moderate parts toward the borders of the valley
The dangers are the result of atmospheric conditions solely. Lack of water may be a fatal evil, but this can be avoided; supplies of water may be carried, or better still, it is now tolerably well ascertained that water is available by sinking even shallow wells in much the greater extent of the upper portions of the valley.
But the water fails to afford its usual life-giving value from two causes. The first of these is the heat. Of course this is moderated during two or three of the winter months, and for that space of time a residence on the borders of Death Valley is possible without any exceeding great risk. But this soon passes away, and the furnace is in blast. By about April the average (of day and night) is from $90^{\circ}$ to $95^{\circ}$; by May it is $95^{\circ}$ to $100^{\circ}$; and a little later it averages over $100^{\circ}$, reaching often $120^{\circ}$ to $125^{\circ}$ in the coolest place that can be found. If this was with a damp atmosphere it would stifle any human life with great rapidity, but a certain amount of dryness enables it to be borne with more safety.
Here, however, comes in the second of the two evils Here, however, comes in the second of the two evils
which have been indicated; the intense dryness of the atmosphere. This is so excessive as to be in many instances fatal, in spite of every precaution. The writer has never tested the full severity of this feature in Death Valley itself, but his experience along its immediate border renders him ready to give full credence to the statement that many cases of death have occurred " when water was plenty, but could not be drunk fast enough to supply the drain caused by the desiccative power of the dry, hot air." In fact, in one instance he himself nearly reached that condition, and a few hours longer of the heat and dryness would have placed his own name among those of its victims.
It has been said that birds drop dead in attempting to cross the valley. Mr. Hawkins, who visited it in 1882, says that he "picked up, at different times, two little birds, a mile or so from water, whose bodies were still warm, having evidently but just dropped dead." The bodies of men and their horses are liable to be encountered at any time; they have been found within a mile of water, and in one case with water still in their canteens, and a supply of food as well, showing that the climate was the cause of death. With these facts in view, it is not unreasonable to say that the name Death Valley is well bestowed. And if this is the state of things on the elevated borders, ranging from 1,200 to 2,000 feet and more above the sea, what must be the heat and the dryness in the very focus? For one of the additional wonders of Death Valley is that its central region lies away below the level of the sea. There is perhaps no other spot on the globe which at so great a distance from the ocean globe which at so great a distance from the ocean
reaches such a depression-159 feet. The Dead Sea, reaches such a depression-159 feet. The Dead Sea,
with the gorges of the Jordan and the Arabah, of course greatly exceeds this, but it is not widely separated from the eastern parallel border of the Mediterranean.
The climatic violence of this deep trough of Death Valley must be left to conjecture. It is certain that no man could survive there long enough to secure continuous observations of any extent.

An Association for the Protection of Plants has been started at Geneva. The object is to preserve Alpine rarities from the extermination with which
the annually increasing number of botanists, mercenthe annually increasing number of botanists, mercenis said to menace them.

The Great lacht Race.
re sailing ure sailing craft of Great Britain and the United States,
which was to have been completed during the week which was to have been completed during the week commencing September 7, was interrupted by a most unlucky accident, necessitating delay. The conditions of the race made it necessary that the yachts should go over the course of forty miles in seven hours, and on the first appointed day there was not sufficient wind for this purpose. The Puritan and the Genesta made the trial, but did not either of them reach the stakeboat, the wind being so light that it seemed rather a drifting than a sailing match. The next day, September 8, was then appointed for the first race. On this occasion the wind was good enough to promise a spirited contest, but, in taking position to cross the starting line, the Puritan crossed the course of the Genesta, with the result of disabling both yachts, the Genesta, with the result of disabling both yachts, the
former's mainsail being torn and the latter losing her jib boom. The judges decided it the fault of the Puritan, and, ruling her out, offered the Genesta the privilege of going over the course. This her owner declined, saying they had come over for a race and not for a "walkover," the occurrence having been undoubtedly entirely accidental, though indicating extreme sharp work by the sailing masters.
To give time for necessary repairs, the first race was set down for Friday, Sept. 11, the second one for Sept. 14 , and the third, if it should be necessary, to take place on Sept. 16. The Genesta's owners found no difficulty in getting quickly fitted out in New York yards with a new jib of Georgia pine, while the Puriyachts ready for the race on the 11th inst., which, like the first day's attempt, was a failure, the wind iike the first day's attempt, was a failure, the wind
being too light for the yachts to go over the course in the required time of seven hours, although both crews exhibited fine seamanship for several hours in their attempts to get ahead of each other.
The "sailing measurement" of the two yachts, as made out by the official measurer of the New York Yacht Club, was as follows: Genesta, perpendicular, from topmast head to deck, $97 \% 2$ feet; base, from end of boom to tip of bowsprit, 140.5 feet, gaff, 46 feet; water line, 81.6 feet. Puritan: perpendicular, 102.01 feet; base, $144 \cdot 6$ feet; gaff, 47 feet; water line, $81 \cdot 1$ feet. This measurement made the sailing length of the Genesta
83.05 feet, and that of the Puritan 83.85 feet, so that the latter had to give the Genesta a time allowance in the race of 31 seconds.

## History of the Tomato.

In an article upon "Kitchen Garden Esculents of American Origin," in the American Naturalist, Dr. E. L. Sturtevant has some interesting remarks upon the tomato, from which we make the following extracts:
"Tomatoes were eaten by the Nahua tribes, and were called (singly) tomatl (plural tomam $\alpha$ )." The tomato "was described by various European botanists of the sixteenth century." . . . It seems to have been grown in European gardens as a fruit, from its first introduction, judging from the references in Dodonæus and Gerard; but Parkinson, 1656, speaks of it as grown in England for ornament and curiosity only. In Italy, Chateauvieux, 1812, mentions its cultivation on a large scale for the Naples and Rome market. It is probable that its use was at first more general among southern nations, as we find that the Anglo Saxon race was the last to receive it into the kitchen
garden. Thus, in 1774, Long describes the fruit well, and mentions its frequent use in soups and sauces, and adds that it is likewise fried and served up with eggs. In 1778 Marre and Abercrombie mention five varieties as known, two of which are described as scentless and burnet-leaved, and add that they are eaten by the Spaniards and Portuguese in particular, and are in high esteem.
'In the United States its introduction preceded by many years its use as we at present know it. It is said to have reached Philadelphia from St. Domingo in 1798, but not to have been sold in the markets until 1829. It was used as an article of food in New Orleans in 1812. The first notice of it in American gardens was apparently by Jefferson, who notes it in Virginia gardens in 1781. It was introduced into Salem, Mass., about 1802, by an Italian, but he found it difficult to persuade people even to taste the fruit. Among American writers on gardening, McMahon, 1806, men tions the tomato, but no varieties, as 'in much
esteem for culinary purposes;' Gardiner and Hepburn, 1818, say, 'Make excellent pickles;' Fessenden, 1828, quotesfrom Loudon only; Bridgeman, 1832,'says, ' Much cultivated for its fruits in soups and sauces.' They were first grown in western New York in 1825, the seed from Virginia, and in 1830 were not produced by the vegetable gardeners about Albany; yet directions for cultivating this fruit appeared in Thorburn's Gardeners' Kalendar, 2d edit., New York, 1817. Buist writes that as an esculent plant in 1828-29 the tomato
was almost detested, yet in ton years more every variety of pill and panacea was 'extract of tomato.' Mr. T. S. Gold, Secretary of the Connecticut Board of Agriculture, writes me that 'we raised our first tomatoe
about 1832 , only as a curiosity, made no use of them, though we had heard that the French ate them. They were called love apples.' D. J. Browne, 1834, describes six varieties, and says: 'The tomato until' within the last twenty years was almost wholly unknown in this country as an esculent vegetable.' In 1835 they were sold by the dozen in Quincy Market, Boston. In the Maine Farmer, October 16, 1835, in an editorial on tomatoes, they are said to be cultivated in gardens in Maine, and to be 'a useful article of diet, and should be found on every man's table.' In a local lecture in one of the Western colleges about this time a Dr. Bennett refers to the tomato or Jerusalem apple as being found in the markets in great abundance, and in the New York Farmer of this period one person is mentioned as having planted a large quantity for the purpose of making sauce. In 1844 the tomato was now acquiring that popularity which makes it so indispensable at present, writes R. Manning." From this it appears that "the esculent use of the tomato in America does not antedate the present century, and only became general about 1835 to $1840 . "$

## No Right to Steal Away Your Employer's Business.

In Van Wyck vs. Horowitz, New York Supreme Court, special term, 28 Daily Reg., 305, the question as to the right of a party to use another name upon his business cards, etc., by saying " late with," etc., is discussed. In this case the defendant, who had been em ployed by plaintiff as a workman upon jewelry and in the repair of watches, set up in a business similar to that kept by plaintiff, and put upon his cards and upon a sign in his store "Late with James P. Van Wyck." This use of his name the plaintiff sought to restrain, and he court granted a motion to continue an injunction, aying: The statement of the case evokes instant condemnation from the hearer, and an analysis of the thoughts which produce such instantaneous conclusions will show that it rests upon sound legal principles as well as upon the conscience of the hearer.
The defendant has no right of property in the name nor in the reputation of that business which he seeks to use with his own name and business so as to give his own prominence at the expense of the other If the defendant had been a stove blackener, or hostler, or an errand boy in the employ of the plaintiff, or a clerk discharged for want of fidelity or competency, he could with just as much truth advertisehimself as "late with James P. Van Wyck." The extreme supposed cases are put to illustrate the danger of the counsel's position. It cannot be that a man who has sustained any position toward or had any employment for a well known individual, that thereby he obtains the right to use that name in connection with his own, so as to advertise himself and his business at the expense of his former patron and employer, and to do it in a manner which is likely to, and often must, deceive as to the nature of the relations to him.
The motion to continue the injunction must be ranted, because-
First. The defendant is, without authority, using he plaintiff's name, which is the use of another's proprty for his own benefit and to the injury of its owner Second. He is attempting to transfer to himself a part of the reputation of the store and business of the plaintiff, which also belong to the plaintiff as really and as truly as his name or his personal property of which he is the actual owner.
Third. The mode and manner of the use by the defendant of the name of the plaintiff are such as oftentimes to deceive, and because liable to deceive, and thus benefit the defendant at the expense of the plaintiff, such use must be held to be unlawful.

## value of the Are Light.

Says the Journal of Gas Lighting: Sir James Dougass and many other disinterested observers of the course of events have for some time recalled electricians to a sense of the blunder they commit in devoting so much attention to the incandescent lamp and neglecting the arc light. It is notorious that the end and aim of incandescent lighting was simply to supersede gas. The extent to which this result is likely to be achieved is now pretty well understood. Electricians themselves are willing to admit that they cannot compete by means of incandescent lamps with gas at its present cost. The are light, on the other hand, is susceptible of application for many purposes at a marked economy as compared with gas; and it is undoubtedly suitable for use in many places where gas cannot be obtained.
The older arc lamps brought themselves into disfavor by their unsteadiness; but this has, to a great extent, been remedied by improvements in the carbons, and by not expecting too much light from the power available. Arc lamps are still rather more liable to sudden extinctions than are incandescent lamps; and this failng will always cause them to be distrusted for street lighting and the illumination of large buildings frequented by the general public. On the whole, however, the field for profitable arc lighting is wider and more promising than that remaining for incandescent ighting. For many purposes there is no comparison between the arc and any other kind of artificial light.

## IMPROVED BOILER FEEDER

The engraving illustrates an invention that relates to the use of water cylinders which are alternately filled and their contents run into the boiler in succession. The two vertical water cylinders shown in Fig. 1 are placed contiguously in any convenient position, with their bottomsslightly below the water level of the boiler. In each cylinder is a substantially made float placed loosely upon rods stepped in the lower ends of the cylinders, and extended through stuffing glands in the upper heads up to links connected with the ends of a piv-


HAIGH'S IMPROVED BOILER FEEDER.
oted beam. Between the cylinders is a steam chest (Fig. 2), fed from the boiler; and containing a slide valve moving on a seat having two steam ports leading to the cylinders and an exhaust opening leading to the condenser. Above the steam chest is a steam cylinder whose piston rod extends downward and connects with the valve in the chest. Steam is admitted to the cylinder by a valve actuated by a rod connected with the beam. 'The movement of the piston rod is limited by collars which come in contact with rubber buffers on a guide bar, as shown in the sectional view. The water cylinders have each a pipe connected in their lower heads for inlet of water from an elevated supply, and also for outlet of water to the boiler.
A stop cock in the pipe from the feed tank being opened, the water fills the cylinder that is not open to the boiler, the other cylinder being already filled. As the water level in the boiler lowers, the water in the cylinder open to the boiler by one of the ports will be gradually run out until the float, falling, comes in contact with a collar on its rod, which is moved down, the beam being thus moved to shift the upper valve to admit steam to its cylinder; the valve connected with the piston rod is shifted to close one port and to open the other, to admit steam into the filled water cylinder, which will empty as soon as the pressure has. equalized. The steam in the cylinder just emptied now exhausts into the condenser, and the vacuum created starts the flow of water, so that it again refills. This operation is repeated so long as the water supply continues. This inupply continues. This inMr. Samuel Haigh, of Co Mr. Samuel Haigh, of Co
quitlam, New Westminster, British Columbia, Canada.

## Strophanthin, the New

 Diuretic.Professor Fraser's paper on Strophanthus hispidus, read in the section of Pharmacology and Therapeutics, at the meeting of the Association at Cardiff, places us in the possession of a new and valuable heart remedy and diuretic. It appears that the drug is extensively used in many parts of Africa as an arrow poison. In the Mangauga joint that allows it to assume any position and take in district, near the Zambesi. it is called "kombe," while in Senegambia and Guinea the name "inee" is more commonly employed. Dr. Livingstone, in his "Narrative of an Expedition to the Zambesi," refers to this poison, and says the arrows are usually made in two parts. "An iron barb is firmly fastened to one end of a small wand of wood, ten inches or a foot long, the other end of which, fined down to a long long, the other end of which, fined down to a long
point, in in nicely fitted, though not otherwise secured,
who cultivate both the arts of tricycling and photo-
graphy, and this is why we make known to our readers
a combination which is of a nature to render them a combination which is of
some service.-La Nature.

## IMPROVED STEAM BOILER.

The accompanying engraving represents an improved steam boiler-the invention of Mr. George Fox, of 509 West 34th St., New York city-that effects economy in fuel by means of a supplementary boiler placed in the fire-box, and suitably connected by pipes


## FOX'S IMPROVED STEAM BOILER

with the main boiler. This is fitted in the furnace, which is preferably of the reverberatory kind, in the ordinary way, and beneath it is placed the supplementary boiler, made concave in form with a downwardly projecting pocket, and provided with fire tubes through which the flames from the fuel pass for heating the water in the boiler. -The pocket is to receive any sediment that may be deposited in the supplementary boiler, a hand hole at one end permitting cleaning. Water is supplied to the supplementary boiler from the main one through inlet pipes, which pass from the lower part of the main boiler down below the other, which they enter at the bottom, so that the the other, which they enter at the bottom, so that the
water will be considerably heated in the pipes. Return pipes entering the main boiler above the water line conduct the water back from the lower boiler. A space is left between the two boilers, through which the heat can pass. 'The lower part of the supplementary boiler is at the point of intensest heat in the furnace, thus utilizing the maximum amount of heat. When the boilers are filled with water and the fire started, the with water and the fire started, a con and from the supplementary boiler.

## A Hurricane at Charlestcn,

A storm of wind and rain which probably has not had its equal in the same section in a hundred years past, broke over our southeast Atlantic coast at daylight on the morn ing of Aug. 25. It was most severely felt at Charleston S. C., but did considerable damage also at Sa vannah, Ga., and Jacksonville, Fla. At 7 o'clock in the morning the apparatus in the roof of the signal office at Charleston wa demolished, and the last observation then denoted a wind of 68 miles an hour The storm did not, however, reach its height until about 9 o'clock, when, from the additional destruction it had caused, it was estimated that the wind had attained a velocity of 75 to 80 miles an hour. The latter pressure is styled in aerodynamics a hurricane, with a 100 mile an hour rate as a cyclone. The joint that allows it to assume any position and take in wiad pressure per square foot, when blowing at 70 he subject to be reproduced, in a few instants. Three miles an hour, is 24.1 lb ; at 75 miles , it is 27.7 boxes, each containing six plates, $61 / 2 \times 43 / 4$ inches, are lb .; and at 80 miles it is 31.49 lb .; so that within reach of the hand, and can bequickly substitut- it is easy to compute the force that was exerted ed for each other in measure as they are needed. The in tearing down buildings, destroying wharfs, photographic apparatus may be either left upon the etc., the ground in many places having been tricycle itself or be placed upon a tripod when the best $\mid$ described as cleaned off as though its structures had been sheared off by a razor. The dama Chal in is dollars.

## SAFETY CHECK FOR MUSICAL BOXES.

Musical boxes are operated by one or more more powerful springs, the speed being controlled and regulated by a series of wheels and pinions connected with a fly wheel. Now if the fly wheel be broken or removed, or any of the wheels get loose from the pinion when the spring is wound, the cylinder will revolve with light ning rapidity, and bend or break the pins on the cylinder as well as the teeth of the comb in such a manner as to ruin the instrument forever. In order to prevent such accidents (which occur almost daily), Mr. C. H. Jacot, of the firm of Jacot, Juillerat \& Co., 37 Maiden Lane, New York city, has invented an attachment


JACOT'S SAFETY CHECK FOR MUSICAL bOXES.
herewith illustrated, by which these accidents will be impossible, for as soon as the cylinder revolves too fast a pawl will engage in the ratchet wheel and hold it firmly. The action of the pawl is positive, and it has no chance to fail in working.
Secured rigidly to one end of the shaft of the cylinder is a ratchet wheel, A, formed as clearly shown in the engraving. Pivoted so as to engage with the teeth of this wheel is a pawl, B, having a weighted outer end; the upper part of the inner end of the pawl is formed to fit the recesses of the teeth, and the lower part is so formed that each tooth, as it moves by, will raise the outer or weighted end. This movement brings the upper inner end of the pawl into one of the recesses, but before the tooth touches it the lower part is freed from its tooth, allowing the weighted end to drop and thereby remove the upper part away from the wheel, as indicated by the dotted lines. This motion is of course made possible by the slow movement of the cylinder. But if, from any cause, the cylinder should move rapidly, the pawl would be brought into engagement with one of the teeth of the wheel, and the motion of the cylinder would be arrested. The device, as will be understood, is positive and absolutely reliable in its action, and can be placed upon any instrument without necessitating a change in the arrangement of the parts.

A New Rubber Supply.
We mentioned some time ago that a new industry was attracting attention at Rio Pardo, Minas Geraes namely, the production of rubber from the milk of the mangabeira, a tree of the family of Apocyneas and very common there, as well as in the north of the empire. According to a empire. According to a
letter written from the city (Rio Pardo), at first only the fruit was used, but later it was proved that the milk, very abundant in the trees, and which may be extracted in the same manner as is in use with the Sypho nia elastica, by incisions, nia elastica, by incisions,
becomes readily converted into excellent rubber, equal if not superior to, as we are assured, that produced in the Amazonas. Further, it is stated that the prepara
tion is very easy, for if 85 grammes of alum dissolved in $\mid$ duct disengaged is benzine-a volatile liquid employed 3 liters of pure water be added to 3 liters of the milk, coagulation is perfectly secured and rubber obtained, whici. should be exposed to the sun for a few days. The latter states that a jug (garrafa) of this milk sells in Rio Pardo at 200 to 250 reis, and that many people are employed in its extraction; also that the first shipment of rubber had been made to Bahia; it weighed 250 arrobas, and the result is anxiously awaited.-Rio News.


Fig. 1.-ARRANGEMENT OF A LOCOMOTIVE BURNING PETROLEUM.

The use of petroleum for heating boilers presents decided advantages in certain cases, since we thus obtain a fuel which, although it is perhaps of a higher price, possesses twice the calorific power of coal, and allows us to increase the vaporization, while at the same time diminishing the charge. This is a valuable feature, as regards its application to steamboats (especially to torpedo boats), as well as to the locomotives of express trains, upon which, in fact, petroleum furnaces are often used.
Mr. Urquhardt, engineer of the Gratzi-Tsaristsin Railway (southeastern Russia), has made a specialty of

Fig. 2. PETROLEUM INJECTOR.


PETROLEUM AND ITS APPLICATION TO THE RUNNING OF LOCOMOTIVES.
The petroleum industry is, as well known, daily becoming more and more extensive. The naphthas derived from the country of the ancient Guebers of Baku, and especially from the peninsula of Apcheron in the Caspian Sea, are now being collected industrially, and seem as if they were to come into formidable compe tition with those of America. In fact, there are at present more than six hundred wells in operation in the Baku region, where, in 1873, there were but a few 1832 was 2,500 tons, rose to 28,000 in 1870 , reached 410,000 in 1880 , and even exceeded this figure in the first half of 1884 . The wells are operated by powerful corporations, and notably by the Societe Nobel, which alone extracts half the oil that the Baku region yields, and which has applied some improved apparatus that has permitted it, so to speak, to completely trans form this industry.
The naphtha deposits are concentrated around Baku in strata of Miocene marls and limestone that are peculiarly contorted, and exhibit numerous folds, which form so many res ervoirs, in which the mineral oils collect. The boring of the wells presents no very great difficulty in these calcareous rocks, and, as a gene ral thing, the wells are not driven to a greater depth than from 260 to 325 feet. 'The work is thus effected under more advantageous conditions than it is with American petroleums, the deposits of which are met with at a much greater depth. The yield of the wells is very variable by reason of the great irregularity of the folds of the calcareous strata, some wells be ing found that are perfectly dry right along side of others from which petroleum spurts in abund- this question, and has succeeded in constructing fur ance. There is even cited a well recently driven by naces which are peculiarly well adapted for the comthe Societe Nobel that would have discharged 8,000 bustion of petroleum, and by means of which he has tons per 24 hours had not the necessary arrangement been made to shut off the flow and collect the oil only for a few hours during the day.
The extraction of petroleum in the Baku region is concentrated around the village of Balakhani, about nine miles distant from the town of Baku, whither the crude oil is carried in order to be distilled in the refineries situated in the suburbs. At present the carriage is effected upon a small railway constructed for the purpose; but there has also just been laid, as in America, a pipe line, in which the oil will run directly from the wells to the distilleries.
As cast iron allows carburets of hydrogen to ooze through it, the pipes, which are from 7 to 8 inches in diameter, had to be made of forged iron.
The material as it reaches the refineries is in the form of a dark brown liquid, which, upon distillation, gives products that are more or less volatile. The first pro-
bustion of petroleum, and by means of which he has ives.
Figs. 1 and 2 show the latest form of the apparatus, nd Fig. 1 gives the general arrangement of it upon a locomotive and tender. It will be seen that the furnace is internally provided with brick domes. These are designed to protect the metal, and, at the same time, through a combination of flues, to secure an intimate admixture of the petroleum with the sucked-in air. The petroleum is forced by a current of steam into an injector, which is shown in detaii in Fig. 2, and from thence to the bottom of the furnace. Here it becomes lighted in contact with the current of sucked-in air that enters, as shown by the arrows, through a trap in front of the ash box. This air has already been heated on traversing A by coming into contact with the two masonry arches of the furnace. A portion of the flame o the bottom of the tube plate, which it strikes directly. An inspection of Fig. 1 will show at once how the apparatus operates. The petroleum contained in the front compartment of the tender is heated by a current of steam from the boiler that enters through the pipe, S , and after traversing the worm enters the side of the feed pipe, P .
On making its exit from the latter, the petroleum enters the injector, shown in section in Fig. 2, and flows around a central noz zle, $B$, which is traversed by steam that is coming from the boiler through the pipe, C . The mixed current.that forms is disengaged, as shown in Fig. 1. In former arrangements the injector was adapted to the top of the furnace frame, and had to cover both that and the side of the fire box, thus making it more costly.

It will be seen that it is very easy to regulate the combustion from the engineman's cab by acting upon the injector through a rod, D , that terminates in an endless screw, which gears with the pinion of the nozzle and permits of opening the latter to any degree desired. In this way the combustion is regulated with as absolute certainty as could be done with gas, and all waste of fuel is avoided.
Before entering the reservoir of the tender the petroleum passes through a filter that retains foreign matters, and is again filtered upon making its exit. The arrangement of the nozzle is such, however, as to
give passage to any solid matter that the current crusting room, where it remains over night. The next might carry along. At the bottom of the tender there morning the blocks are scraped, or rather the crust cut is a special reservoir, in which accumulates the water off with sharp knives, and are wrapped in blue or that crude petroleum always carries along with it, so that the oil reaches the injector in a very pure state.
The firing up of this apparatus is effected by means of a current of steam from a neighboring boiler. The steam is directed into the vertical pipe seen back of the fire box, and following the direction shown by the arrow, reaches the injector and causes the petroleum to flow in.
Another portion of the same current is directed by a three-way cock at the orifice of the pipe into the blower conduit, and finally enters the smokestack and increases the draught. The pressure quickly rises in the boiler, and reaches three atmospheres in 45 minutes, and even eight in 20 minutes with water that is already warm.
It should be remarked that there are certain precautions to be taken in firing up, in order to prevent the explosion that might occur through the petroleum vapors already accumulated in the furnace. The injector is first blown out by a current of steam, while at the same time the doors of the ash box and the blower are opened in order to suck the vapors out of the furnace. After this there are placed therein a few rags soaked with petroleum, which are lighted in order to communicate fire to the jet that is entering from the injector. The fire thus started afterward keeps up normally without any difficulty and without there ever being any need of tightening up the escapement in order to quicken the draught, seeing that the flame meets with no obstacle to its disengagement
The regulation, moreover, as we have just seen, is effected with the greatest ease by acting upon the rod, D , of the injector nozzle. The discharge of petroleum is estimated according to the position of the said rod in its fixed nut, and the behavior of the fire can be watched through the sight-hole, $H$. In a word, we have here a very clean and easily managed fuel, and one that is in certain cases more economical and more advantageous than a solid one. It produces no sparks, and does not appear to be accompanied with any danger from fire in cases of accident.-La Nature.

## How Starch is Made.

The Indianapolis Sentinel describes a visit to the Franklin Starch Works of Thompson, White \& Co. where so called non-chemical starch is made.
The works are located in the northeast part of the eity on a ten acre Tof, usually known as the Old Fair Grounds. The buildings cover three acres of ground The main building is 150 by 200 feet, two stories high Just south of the main building is a large crib with a capacity of 70,000 bushels of corn.
Near the east side of the main building are the large vats for the reception of the coarse feed, and a little farther southeast are the gluten vats-two in number, 16 by 200 feet, and about 4 feet deep. Near the south east corner of the main building the corn is carried by a belt from the crib to the sheller, which has a capacity of over 1,500 bushels a day, and is run by a separate engine of forty horse power. After the corn is shelled it is carried to the "cleaner," where all the dust and dirt is removed. It is then by means of an elevator deposited in a long bin in the upper story. By means of separate spouts the corn is conveyed into fourteen large "steep tanks," holding 600 bushels each. After being covered with hot water it is allowed toremain six days, or until it is sufficiently soured. It is then by a screw conveyer and elevator taken to the millstones hopper. Just before it reaches this point it passes through a revolving wire screen, which separates the corn from the water
It is then conveyed to the mills, four in number, be ing mixed again with water, and after going through two sets of four foot millstones it passes below to the "shakers." These are vibrating boxes, open at one end and covered with a wire and satin sieve. Here the starch and gluten are separated from the solid particles of the corn, which is called "coarse feed." This de scends into a well, and is pumped up by means of a powerful force pump, and run off into vats for its reception, where it is drained and is ready for sale. After passing through the "shakers," the starch and gluten is conveyed to the "run house," receiving on its way a stream of water. The run house is a room 100 feet square, con taining 56 troughs, about 18 inches wide and 100 feet in length. These runs are slightly inclosed, and while passing through them the starch settles to the bot tom, while the watery part passes off and is run into the gluten vats. The starch is then conveyed to the agitator wells, and, being mixed with cold water, is thoroughly agitated by means of a revolving rake. It is then pumped up and passes through a bolting reel, where all the impurities are separated, and the pure starch conveyed, by means of pipes, to 63 settling tubs. The water is then drawn off, and the starch, pure and white, is conveyed to a large receptacle, where it is placed into the mould boxes.
After remaining in the mould boxes three to four hours it is cut into blocks about 6 inchessquare, elevated to the second floor, placed on cars, and run into the
off with sharp knives, and are wrapped in blue or bronze paper, by one person, at the rate of 800 pack ages per hour. These packages are placed on cars with slatted frames, holding 392 packages each. About 100 of these cars are used. As they are filled they are run into the dry room, which is kept at an average tem perature of 160 degrees by means of steam pipes. The starch is kept here until it is thoroughly dried into the prismatic form in which it is purchased in the market. The cars are run to the wareroom and the packages wrapped in blue paper or packed in boxes while those in brown paper are conveyed to the packer and packed in barrels by means of a flour packer, at the rate of 200 barrels a day
The principal brands of starch manufactured by the Franklin Works are the "Acme," for laundry purposes "Pure Corn " and "Powdered," for confectioners and baking powder manufacturers. All of these brands have a high standing in the market, and find ready sale in all the principal markets of the country. The machinery is all of the most approved pattern, and is, by various ingenious devices, made to do the principal part of the work. Still, about fifty men are employed when the works are in operation
To obtain a superior quality of starch the corn mus first be properly steeped, and the operator in this de partment must have skill and experience. To secure starch from corn in paying quantities it must be prop erly ground. The next important point is in the siev ing. The smallest hole in the sieve will admit impure matter, which it is hard to eliminate. Again, particular attention is required in the precipitation of the starch on the inclined plane. In the dry room great attention must be paid to the temperature; too high a temperature will produce a scorch, and too low a mould.

## The Synthesis of Ammonia.

Mr. G. Stillingfleet Johnson has recently published a condensed account of the proceedings of himself and others in the direction of producing ammonia from atmospheric nitrogen. Mr. Johnson has on previous occasions explained the fact that ammonia is not always obtained in the course of experiments intended for its synthetical preparation, by starting the hypothesis of a second form of elementary nitrogen, having the same relation to the ordinary form of the element as ozone has to oxygen. He is inclined to hold that this active form of nitrogen loses its power by being heated, resembling ozone in this characteristic. Like other chemists, Mr. Johnson has failed in all attempts to produce ammonia by passing atmospheric nitrogen, recently heated and then mixed with hydrogen, through red-hot tubes in presence of platinum sponge. He has, however, obtained ammonia from atmospheric nitrogen which had not been heated, by mixing it with pure hy drogen in the presence of platinum sponge.
The nitrogen was first made to pass into a glass gas holder, traversing a vessel filled with sawdust saturated with freshly precipitated ferrous sulphide. The nitroen was then allowed to stand for some days over water holding ferrous ferrocyanide in suspension; and was afterward passed in succession through caustic potash, alkaline pyrogallate, strong sulphuric acid, and Nessler reagent. The hydrogen used was carefully purified by uccessively passing it through a mixture of chromic nd sulphuric acids, and throurh Nessler reagent The nd sulphur a gent. The cept when the nitrogen had been heated. The quantity of ammonia was small, never exceeding $11 / 2$ milligrammes from 10 liters of hydrogen.
The crowning experiment for the production of ammonia by direct synthesis is thus described by the author: Into an ordinary eudiometer tube, full of mercury, admit a measured quantity of pure nitrogen gas. Next introduce three times its bulk of pure hydrogen, and insert in the gaseous mixture a fragment of wood charcoal which has previously been ignited in hydrogen gas, or, better, in a mixture of three volumes of hydrogen with one volume of nitrogen. Let the spark be now passed continuously through the wires of the eudiometer. About 4 to 6 cubic centimeters of the mixture are combined and absorbed by the charcoal per hour, until the whole of the gas disappears. The charcoal will now be found impregnated with amnonia.

Forty-five models have been submitted for the statue of J. J. Rousseau, which is to be erected in Paris. M. Carrier-Belleuse, who is neverstereotyped, reprosents the philosopher in the fields studying a flower which he holds in his hand, and several other sculptors have been inspired with a similar idea, although they may have not carried it out so well. Jean Jacques Rousseau is looked upon in England simply as an impassioned writer who was one of the forerunners of the Revolution, the "Declaration of the Rights of Man" being an bstract of his "Contrat Social." But he was also the uthor of a dictionary of botany, and his love of the ountry exercised an influence on his speculations.

## PHOTOGRAPHIC NOTES.

How to sensitize and tone albumenized paper. Mr. W. B. Tyler, of San Francisco, Cal., Secretary of he Pacific Coast Amateur Photographic Association, gives the following as the method he has successfully worked: A sensitive silver bath is first made in the following proportions:
Distilled water...
. .1 oz.
The sheet of paper is floated on this for 90 seconds, hen drawn off over a glass rod at one end of the bath, drained, and blotted off with blotting paper, and finally dried with heat.
The sheets are then hung up in a fuming box having saucer containing some strong liquid ammonia placed on the bottom. After remaining in the box for 20 minutes and sometimes longer, which corrects al acidity that may have been in the bath, the paper is emoved and then is ready for printing.
The paper should be printed rather deeper or darker han is customary for several toning baths, otherwise t will bleach out too much.
After using the nitrate bath it is carefully sunned, and is then decanted and filtered, perhaps once a month. The

Toning Bath
is made of:
Water ... .......
Bicarbonate of soda, quant. suff
to make the bath slightly alkaline when tested with red litmus paper.
A pinch of common salt is also added.
Before toning, the prints are carefully washed in three or four waters, a small quantity of acetic acid being added to the first water. The toning should be carried up to a rich purple; the prints are then washed and fixed in fresh and strong solution water and hypo sulphite soda, known as the "hypo bath," for fifteen minutes.
We have seen some excellent prints made by this formula; it can be recommended as being reliable.
reducing gelatine chloride prints.
Messrs. Ashman \& Offord relate in the Photographic News, their method of reducing overprinted chloride prints which have been toned and fixed, and are still very much too dark, is to put into a reducing agent composed of:


The prints should be agitated in the above solution until the desired reduction has taken place. When it is intended to reduce glass positives by this means, it will be better not to tone quite so much, since the reducer has a tendency to slightly gray the image.

ENLARGING DIRECT BY REFLECTED LIGHT.
The same gentlemen suggest the use of the gelatine hloride picture on opal glass as a medium to be copied and enlarged from.
When large-sized pictures are required from a small but satisfactory negative, it is usual to make the trans parency and enlarged negative by transmitted light. Objections to this plan have been frequently pointed out. In the gelatino-chloride process a good positive on an opal plate obtained by contact printing is first made, and this is copied direct by the camera, the image being enlarged in proportion as the camer is placed close to the picture.
The resulting enlarged negative contains all the delicate shading shown in the opal plate, without any grain.
The color of the print on the opal can be easily varied to suit the strength of the negative, and the surface can be worked up in monochrome, which does not in any way affect the enlargement, unless the latter exceeds four diameters.

## City and Town Schools.

A report on the city school systems of the United States has been prepared for the Washington Bureau of 'Education by Dr. J. D. Philbrick. The latest ac counts which are available are those of 1882 , and up to that year the total expenditure on 259 cities and towns was $\$ 27,894,427$. The school property was supposed to be worth $\$ 94,294,153$. There are two plans proposed for promoting industrial education. One is by annexing the workshop to the school for general education, whether elementary or higher. This mode is some times called the putting the workshop into the school. The second is by establishing technical schools for ap prentices, consisting primarily of the requisite shops, with appliances for giving the theoretical instruction applicable to the trade taught. This mode has been denominated the putting of the school into the work shop. Dr. Philbrick advocatesuni versal evening draw ing schools, evening technical instruction similar to the English science and art classes, evening technical schools after the French model, the establishment of one or more apprenticeship schools in each city, simple manual training schools for the smaller towns, and more highly organized ones in the greater cities.

## the wonderful new star in andromeda

On Wednesday, September 2, a cablegram was received at this observatory, via Harvard College Observatory, announcing the discovery by Hartwig, of Strassburg, of a star-like nu.cleus in the great nebula of Andromeda. The same evening being beautifully clear, I turned the large telescope upon the object, and was astonished at the marvelous spectacle. I am as familiar with the great nebula of Andromeda as the page of an oft-read book, having examined it hundreds of times in making my cometary sweeps. All that was ever seen before at the center of the nebula was a broad, diffused condensation; but here was a bright star-like disk, hard and well defined with all powers of the telescope, high or low. A new sun had suddenly appeared, apparently in the middle of this well-known nebulous mass. In later observations it had attained to the sixth magnitude in brilliancy, and was perceptible to the naked eye. A small telescope will show it well. In large instruments, with a low power and wide-field eye-piece, sufficient to take in the whole nebula, which is two degrees in length, the sight is a fine one, especially to those who are familiar with the former aspect of the nebula. I append a drawing of the nebula with the new star therein. The form of


NEW STAR IN ANDROMEDA NEBULA.
the nebula is a very elongated ellipse. On a clear night it is visible to the naked eye as a misty patch of light, and has been often mistaken for a small comet. The following directions will enable any one to find it:
First find the constellation Cassiopea, which in the early evening is well up in the northeastern sky. It resembles a chair now lying on its back. A line drawn southward through stars forming the front corner of the seat and the bottom of the back leg of the chair will nearly intersect the nebula, which is situated at a point on this line about three times the distance from the lower star as the space separating the two stars mentioned.
Every intelligent person should obtain a view of this celestial wonder, one of the most remarkable in astronomical annals.
Is it a temporary or variable star between us and the nebula? Or is it the condensation of the nebulous mass into a central sun, and hence a marvelous confirmation of the nebular hypothesis?

Willifam R. Brooks.
Red House Observatory, Phelps, N. Y., Sept. 5, 1885.

The Commercial Production of Hydrogen.
The old problem of the cheap production of hydrogen by decomposition of steam is being attempted afresh by MM. Hembert and Henry. The process employed by these chemists consists essentially in passing steam, superheated to the point of dissociation, over incandes cent coke. There is thus immediately produced a gaseous mixture formed of equal volumes of hydrogen and carbonic oxide. This mixture passes into a second retort heated to a full red, into which is admitted a fresh quantity of steam at the same temperature as the former. This steam acts upon the carbonic oxide, and causes it to pass into the higher state of oxidation, that is, into carbonic acid. The volume of hydrogen produced by this second reaction goes to join that already formed; so that, when the operation is perfectly managed, 3,200 cubic meters of hydrogen can be obtained from a ton of coke. The hydrogen is afterward purified with lime, to get rid of the carbonic acid; and there remains with it only a small proportion of carbonic oxide.
MM. Hembert and Henry are now organizing a fac tory for the production of hydrogen by their method; and they hope to find a use for the gas in heating and lighting. In what way, says the Journal of Gas Lighting, this hope is to be realized we are not informed. At present it would appear that nothing could be much more useless, in a commercial sense, than hydrogen prepared in this way, and at the cost which must necessarily be incurred. The only novelty in the proposal lies in the suggestion to divide the process into two stages; but the practical utility of this idea remains to be proved.

## ©orrespondence.

## The Solar Nucleus.

To the Editor of the Scientific American:
In regard to the experiment mentioned in the Scientific American for August 8, 1885, of heat becoming invisible on account of intensity, may this not show that the nucleus of the sun, which is disclosed during sun spots, is dark simply on account of the excess of heat? According to the experiment, the heat required to darken is very moderate indeed, not the one one-hundredth part of the estimated temperature of the sun; and if equal brilliancy of light implies equal intensity of heat, the solar excess might be accounted for in some such way as this.

Edward J. Patek.
361 Carroll Ave., Chicago, Ill.

## Poisonous Lard oil.

## To the Editor of the Scientific American :

A recent experiment with what is termed low grade lard oil, or bolt oil, has convinced me that machinists and others cannot be too careful to keep it from any slight abrasion of the skin, as the following will prove. Having to fit some new dies to my bolt cutter, and testing their operation, my hands became covered with this so-called lard oil. A slight and almost unnoticed abrasion of the skin below the nail of my left thumb allowed it to come in contact with the flesh beneath; in about an hour it became, first red and painful, then tumid, and finally black, showing unmistakable signs of blood poisoning, which resisted all remedies until cauterized with caustic potash.
Upon'this becoming partially healed, I returned to my experiments, having taken the precaution to well protect the injured part by wrappings; but some of the oil found entrance under the edge, and remained in contact with the skin all day, the consequence of which was that the animal poison was again absorbed by the sound but tender skin, and became diffused all over the thumb and as far as the wrist. It could only be checked by further cauterization and poulticing, bathing the wrist and arm with iodine and aconite, and at every renewal of poultices bathing the broken skin with a tepid weak solution of carbolic acid, viz., 3 drops saturated solution ( 20 per cent water to crystals) to 1 pint of soft water. The skin has separated from nail to wrist, and after intense suffering for two weeks is slowly healing under a covering of old linen dipped in " cosmoline." Query: Was this oil made from the fat of diseased animals, that is, $\because$ boneyard oil $"$ ?

Opera Mundi.
Syracuse, Aug. 21, 1885.

## American Inventions Wanted in Egypt

To the Editor of the Scientific American:
I have been requested by some of the principal land owners to call the attention of American makers of agricultural machinery to the fact that there does not exist a satisfactory thrasher in Egypt. Some few have been imported from England and other countries, but the results have been unsatisfactory, and the machines laid aside.
To bring this properly before the manufacturers of such goods, I can think of no better method than asking a place for this letter in the columns of the Scientific American.
The amount of land sown in wheatis probably about $1,000,000$ acres, producing about $15,000,000$ bushels. Low prices have recently caused a greater breadth to be devoted to beans.
The Egyptian grain is rather small and tough, particularly that of lower Egypt. The complaint is made that the thrashing machines brought out here are useless, as they crush the grain. The manipulation of the straw is also a very important point.
The actual process of getting out the grain is perfectly described in the sculptured and printed scenes in the tombs and temples handed down from the days of the Pharaohs, thousands of years ago, or from the scene given in the illustrated Bible.
In the former case, we have a herd of animals driven around and around the mass, treading out thc grain and pulverizing the straw. In the second, a small car with a number of sheet iron wheels is driven around the mass until it is completely triturated. Then follows the winnowing in good old scriptural and Pharaonic fashion.
This process is naturally a matter of time, in fact about two months are required to get out the crop.
As the Government has now arranged that the collection of taxes shall be by installments as the different crops are ready for market, time, a long neglected quantity, becomes valuable, and at last there is pressing need for some cheaper and more expeditious method of getting out the grain.
Although there some very large landed estates in Egypt, except in the case of the Daira and Domains (the estate formed by Ismail Pasha, ex-Khedive), there are but few large tracts, containing upward of 1,000 acres, the property of any one individual
The village system tends very much to the infinitesi-
mal division of land. We may safely assume the average area of a village at 1,000 acres, and that one-third of this would be pianted in wheat, producing about 4,500 bushels.
At harvest all the wheat from the 300 acres would be brought up to the thrashing floor and stacked in as many piles as there are owners, with the exception of that belonging to the wealthy proprietors, who have generally small villages near the main etors,
one.
Eac
Each proprietor now sets to work to get out his grain, either by treading it out or by using the car or horag.
Of course nothing can be done with the grain until the whole mass of straw has been winnowed out.
As for the straw, it has been cut and pounded into chaff, the ends of the broken bits being rounded and softened.
The next village would be situated at a distance of one or two miles; this brings us to the point that one of the essential conditions of success for a thrasher in Egypt is that it must be transportable, and, allow me Egypt is that it must be tra
to add, over very bad roads.
There is also the straw to be considered: whether it be that the Egyptian straw is very hard, or else highly glazed, or that the cattle are not properly educated, it is said that animals will not eat it unless it has been subjected to the process of trituration, as shown in the treading.
Therefore some means must be found of preparing he straw.
It is generally understood here that it is sufficient to explain a need to an American manufacturer to have him set to work and produce the required machine, provided he sees a proper profit; it is also said that the American manufacturers have furnished machines suitable to the varying requirements of their own people and neighbors, and that they perfected a mackine for use in Russia.
Believing this, my friends feel sure that should some of the American establishments turn their attention seriously to the study of the wants of Egypt, a proper machine would quickly appear, and that its successful adoption would be most handsomely repaid.
It must be borne in mind that for agricultural machinery Egypt is almost a virgin soil, and that it will pay any house a very handsome profit to properly study her needs. The harvest in Egypt lasts during the months of April, May, June, and July. At the same time, attention might be turned to plows or cultivators for cotton and cane.
A properly protected patent in the United States and Europe would be respected here, as manufacture of such implements in Egypt is almost impossible, owing to the high price of skilled labor and the necessity of importing all the materials.
I shall be most happy to assist any one coming to Egypt with a view of studying this question, and promise to present him to some of the principal land holders and agriculturists, who will see that every facility is given for study and examination.
I only ask that such person be a responsible agent of some well-known firm. I have the honor to be your obedient servant,
a. Macomb Mason,

Cairo, Egypt, Aug. 14, 1885.

## Nets versus Torpedoes.

For some years past the attention of naval officers in England has been directed to perfecting nets,for defending their ships against the attacks of offensive torpedoes. The series of maneuvers executed by the evolutionary squadron in Blacksod Bay, Ireland, proves that the nets employed in the British navy afford a perfect protection against any torpedoes in use, without seriously retarding the speed of the ships, as is so well shown in the sketch and article on this subject by Mr. F. Villars in the Graphic of the 18th of July. But no sooner has this system of defense been perfected, at a cost of $£ 75,000$, than they are called upon to find other means for defending their ships, as the "Berdan" system of torpedoes renders these nets perfectly useless. This is done by employing two torpedoes in place of one; the first of these being accurately steered against the net serves as a fulcrum for the second, which (although possessing its own motive power, is partly towed by the first), by means of a horizontal rudder which drops when the towing cord is slackened, dives under the net, and is then by the same cord directed upward until it explodes under the bottom of the ship. Therefore, in the opinion of experts, the net is an advantage to this system, rather than a disadvantage, as it furnishes the means for striking the ship at a more vulnerable point than when the torpedo strikes her side, which it must do if nets are not employed.
This system, as shown to the English government, has also another mode of attack, which consists in exploding the first torpedo against the net to form a breach for the second one to pass through and strike the side of a ship, but it is believed that the first system is preferable, owing to the advantages stated.-
Constantinople Express,

THE GREAT TANGENT GALVANOMETER OF THE CORNELL UNIVERSITY.
(Continued from first page).
ameter, consisting of 100 turns of No. 18 wire, is suspended, so that its center coincides with the center of the instrument, by means of a single phosphor-bronze wire, which is itself attached to a torsion head reading to 10 seconds of arc. By the aid of this coil, observations may be taken at any moment for the determination of H by the method proposed by Sir Wm. Thomson.
The instrument is mounted in a copper building (shown in the small engraving), from the construction of which all iron has been rigidly excluded. Several conducting wires connect the building with the dynamo and other rooms of the physical laboratory, 550 feet distant, and switches in the building serve to send the currents through the several coils of the galvanometer singly, in series, or in multiple arc, direct or reversed. By this means currents from 1 milliampere to 250 amperes can be accurately measured.

Revival of an old Armor Belt.
Mr. McIntyre, late superintendent of construction of the English warships Swiftsure, Triumph, ard Terror, has patented a new type of armor plate. The design includes the complete protection, at the water line, of warships by a $>$-shaped armor belt.
The two plates forming the belt would have a horizontal projectio of 5 feet and a vertical height of 10 feet, or each plate would be on an angle of $45^{\circ}$. The upper plate, in a design submitted, would be 8 inches thick by 7 feet wide, the lower plate 5 inches thick by 7 feet wide, and below all is a vertical plate 9 inches thick by 2 feet wide. The apex of the " $>$ " would be at the water line.
Mr. McIntyre calculates that the resisting power to shot is doubled by the inclination of the plates, and that the saving in weight over vertical plate of equal resistance is as 7 pounds to 10 pounds. Among the other advantages it makes ramming by an enemy's ship dangerous work to the attacking party, the overhang forms a good point of attachment for torpedo netting, and, by adding to the ship's beam at the water line, it will materially steady the vessel in rough weather. Engineering News says the expedient is simple and seems effective, but the idea is practically antedated by the rams Vindicator and Avenger, built about 1864 for service in the Mississippi Squadron during our own late war, where the " $\triangleright$," however, was solidly packed with wood.

## Salicylic Lemonade.

As a "hospital beverage," says the British and Colonial Druggist, which has lately been found of great value in typhoid and other fevers, scurvy, and gout, the following cannot be too widely known, it having been, we understand, first devised by a late medical officer attached to the Soudan expedition: Fruct. limoni, No. 10; acid citric, $1 / 2$ oz.; acid salicylic, 200 grains; sacch. alb. and water, q. s. Squeeze the lemons, and put the juice aside; boil the fruit in half or threequarters of a gallon of water for fifteen or twenty minutes; after standing for six hours take out the lemons, and again press them before throwing the exhausted and again press them before throwing the exhausted
pieces away. Add the juice and citric acid to the
quired to be in a "bright" condition, add, when cold, a little beaten up with white of egg. Boil for three minutes, and filter. If found too harsh for some tastes, dissolve in the boiling liquid, before straining, half an ounce of Nelson's patent opaque gelatine, previously swelled for five hours in cold water.

## A Western Cannon.

On memorial day in Griggsville, Ill., a cannon was used which was presented to the late Col. R. B. Hatch by the 7th Iowa Regiment in 1861, at Cairo.
This cannon was manufactured in a machine shop in Iowa or Missouri by an ingenious mechanic.


## GALVANOMETER BUILDING.-CORNELL UNIVERSITY.

 brass bearings.The live rollers, which are of wrought-iron with caststeel centers and steel shafts, are driven by means of cast-steel spur and miter gear, the motive power being supplied by a pair of reversing engines with cylinders 8 in . in diameter and 15 in . stroke. The whole of these rollers are carried upon heavy cast-iron girders with

These rolls form part of an exceedingly fine blast furnace and steel rolling mill plant with all the most modern appliances and improvements, including blooming, roughing, and finishing mills, reversing en gines for rollers, the latter being of wrought iron with steel centers, steel shafts. and steel miter wheels. The plant also embraces a fine powerful shearing machine which weighs 85 ton, a hydraulic crane for lifting the cross ends from the shears, a hydraulic push-over gear for moving the blooms from the roughing to the finishing mill, a powerful sawing machine for cutting the steel hot with a neat arrangement of stopgear, and rail bench, nearly 100 ft . long, with an apparatus for moving the rails.
Engineering says: "The whole of the details have been carefully worked out, and reflect great credit on the engineers."

The Boys in the Rennsylvania Coal Mines.
By a recent enactment of the Pennsylvania Legislature, boys under four teen years of age, and all women and girls, are prohibited from being emloyed in the coal mines of that State, and most of the large coal
The barrel is steel, 3 feet in length with $13 / 4$ inch cali- mining companies have been discharging such help ber, rifled, and is capable of sending a projectile five miles with the proper elevation.
It is exploded by percussion cap with back action ock and hammer, like an ordinary fowling piece. The breech pin can be detached at each charge, and cooled in water, which in a certain degree would pre vent premature explosion.
H.

## IMPROVED BLOOMING MILL

The blooming mill which we illustrate was constructed by the Tees Side Iron and Engine Works Company of Middlesbrough, for the Sociedad de Altos Hornos y Fabricas de Hierro y Aciero de Bilbao. The rolls, which are not shown in the engraving, are 39 in. in diameter, and each of them weighs 14 to 15 tons; the standards weigh 20 tons each. The mill is driven by a pair of reversing engines connected in the ordinary way by means of wabblers and boxes to cast-steel pinions 39 in . in diameter, with helical teeth 2 ft .5 in . wide. The roll-adjusting gear is placed on a strong cast-iron girder spanning the roll stand ards, and consists of a hydraulic cylinder with the piston rod projecting through each end, and attached by means of links to cast-steel spur quadrants, working into steel pinions keyed on to steel screws 10 in . in

during the past three montins. It is estimated that the law covers nearly one-half of the whole number of slate pickers in the mines, at which boys are sometimes employed when only six years of age, while it also includes a good proportion of the mule drivers and door tenders. The slate pickers sit in rows astride the chutes leading from the breakers, theireyes fixed on the broken coal steadily brushing by them down an incline, and acquire great expertness in picking out the dull slate from the glistening anthracite. The work is hard, in the stooping position and dust, and really seems but ittle removed from a hard form of slavery, yet these little workers form so important a factor in the means of support of many families, that it has required many years' agitation to get the law for their amelioration passed through the Legislature, and its enforcement now is causing no little excitement in the mining regions. Yet society undoubtedly owes it to itself to see that these little ones are at school, instead of being thus early predestined to a life of ignorance.

## New Method of Filtering.

The filtration of turbid liquids sometimes presents great difficulties and no little annoyance. These liquids, which are difficult of clear filtration, may, according to Mr. Pape, be treated by a novel method, which will be found to have the desired effect. No play is intended on the author's name, but he tells us it should be called the "Pape method." In fact, turbid liquids may, in most cases, be readily and cheap? y filtered by beating into pap about half the quantity of the paper which would usually be required for filtering the same quantity of liquid, and running


## BLOOMING MILL FOR BILBAO.

liquid, boil five minutes, and strain. While hot add the salicylic acid, and stir until dissolved. Sweeten to taste with white sugar, and make up the bulk to one gallon with water.
Salicylic lemonade may be taken freely, either of the strength here given, or diluted with half its bulk of water. It should be freshly made every two or three days, unless it be permissible to "qualify" it by the addition of a little pure French brandy. If re-
diameter; these, again, work into heavy cast-iron $\mid$ nuts fixed into the top of the standards.
The top roll is furnished with balance gear to keep the roll at all times in contact with the upper bearance. This balancing gear is placed underneath the mill, and consists of two heavy rods passing through each standard, which connect to the bottom bearance of the top roll, and are actuated by means of levers and top roll, and ar
balance weights.
this pap into the filtering funnels, the stems of which have been previously fitted with small plugs of cottonwool, care being taken that the latter is quite free from fatty matters; such is the medicated cottonwool supplied for surgical purposes. The funnel is therefore closed at its lower end with this pure cottonwool, over this is placed the more or less fluid or pasty paper pulp, and over this again the ordinary conical filter paper

## SALT IN ORNAMENTATION.

Some months ago a party connected with one of the expeditions sent out by the government came to camp among the curious springs that form the chief attraction of the famous National Park in the West, and several days were spent here in making a, thorough examination of the place, laying out maps, etc.
Several days after their arrival, one of the soldiers who formed a part of the guard reported to the leader, a well-known scientific man, that a very remarkable object had been taken from one of the springs and was awaiting his inspection. Eager for anything new, the scientist followed the man to the edge of one of the cones, and found, surrounded by the members of the party, an object about four feet long, of irregular shape and of the greatest beauty, resembling perhaps a piece of lace or sonne other extremely delicate fabric. It seemed impossible that so beautiful an object should It seemed impossible thatso beautiful an object should
have been taken from a hot spring of pure water, and have been taken from a hot spring of pure water, and
various opinions were expressed as to its nature, and various opinions were expressed as to its nature, and
the scientists of the party were divided as to its nature. When lifted, it bent easily without falling apart, and retained its regularity of structure. After several days of investigation it was found that one of the soldiers had thrown a shirt into the water and lost it for the time, thinking that some comrade had stolen it in jest; but finally it occurred to some one to break the white, lace-like object, and in the interior was found the soldier's shirt. In short, by some peculiar action of the salts in the hot spring the white shirt had become coated with a rich white deposit, giving it the beautiful appearance referred to.

Every portion of the cloth was covered with the rich white forms, a growth without life as it were. The experiment of the shirt, though an accident, was not lost upon the observers; and at a recent meeting of the New York Academy of Sciences, one of the practical results of Sciences, one of the practical results of
the discovery was exhibited, the writer the discovery was exhibited, the writer
being fortunate in seeing it. It was a simple iron clasp, that had been placed in the spring for several hours, and when exhibited it was covered with a rich white coating resembling frost; so that the most commonplace articles can be placed in this natural bath, and in a few hours taken out resplendent in the frost-like coating.
The idea was so valuable that it is said that steps are being taken to secure the right from the government of placing rude statues formed of lead in this bath, where a few hours later they would resemble marble. In this way quasi marble statues can be produced at an extremely small cost. An iron or tin figure of a man placed in one of these springs becomes covered in three hours; a longer time would perhaps hurt the outlines of the figure, but experiment shows that it is a quite valuable discov ery. We need not go to the Western country, however, to find these curious effects. The accompanying cut shows an interesting home-made method of natural decoration.

It consists simply in taking a glass or goblet, and placing in the interior a little common salt and water. In a day or so a slight mist will be seen upon the glasshourly this will grow, until in a very short time the glass will present the appearance shown in the accompanying illustration, the glass being enlarged to twice its thickness and covered with beautiful salt crystals, packed upon one another exactly like some peculiar fungus or animal growth. It is necessary to place a dish beneath the glass, as the crystals will run over, if the term can be used.
The glass can be made additionally beautiful by placing in the salt and water some common red ink; this will be absorbed, as it were, and the white surface covered with a rich red coat, which in turn can be covered by blue or any color by the introduction of inks or tints. No more simple method of producing inexpensive and beautiful ornaments can be imagined, and by using different shapes of vases and shapes, an endless variety of beautiful forms can be produced, pleasing alike to young and old.

## Stopping Hiccough.

A Brazilian physician, Dr. Ramos (Bull. Gen. de Therap.), states that refrigeration of the lobe of the ear will stop hiccough, whatever its cause may be. Very slight refrigeration will answer, the application of cold water or even saliva being sufficient. $-N$. Y. Medical Journal.


SALT IN ORNAMENTATION.
chopped onion, and stir it about until nicely browned. Be careful not to burn it. Having previously cut up the blood into squares about the size of dice, and rolled it in dry flour, throw it into the pan with the onion and butter, and stir altogether until done. It will not be long before it is ready. Serve up hot; salt to taste

## Fat or Wax obtained from Cinchona Barks.

From the cuprea barks the author obtains cupreol, a compound which in all points resembles a quebrachol. It crystallizes from alcohol in colorless satiny leaflets, which quickly become dull in dry air. It is readily soluble in chloroform, ether, and hot alcohol; less readily in petroleum ether and cold alcohol; and in water, ammonia, and potash lye not at all. It melts at $140^{\circ}$, and at higher temperatures it volatilizes unchanged in a current of hydrogen or carbonic acid. The solution in chloroform, when shaken with sulphuric acid of 1.76 sp . gr., turns a blood red, as do the chloroform solutions of quebrachol, cholesterin, or phytosterin. Cinchol occurs in all true cinchona barks, but not in cuprea bark. From hot alcohol it crystallizes partly in long, almost acicular, leaflets, partly in broad leaves, and always with 1 mol . of water. It loses a part of its water at $20^{\circ}$ to $25^{\circ}$, and the rest at $100^{\circ}$ or in the exsiccator. Anhydrous cinchol melts at $139^{\circ}$, and in other respects possesses the same properties as cuprol.-O. Hesse.

## Hope as a Remedial Measure

A correspondent of the London Live Stock Journal says: There is an item in poultry keeping that seems entirely lost in this country, and that is the blood from poultry of all kinds. I have often asked the question
of poultry keepers that I have come in contact with, "What do you do with the blood?" and the answer always is, "Let it run down the sink."
Now on the Continent it is considered a great delicacy (and so it is if properly cooked), as it makes an excellent dish for the table. It somewhat resembles stewed kidney, only far more delicate in taste. Several people that I have mentioned it to seemed horrified at the idea, but I hope those of my brother poultry keepers who have not heard of it before, and wasted such a profitable item, will try and give their experience through the medium of your valuable journal to en of poultry blood in a healthy state.
Mode of cooking: Put a piece of butter about the size of a walnut (for the blood from one fowl) into a

It is very hard to restrain an irrepressible old fogy but somehow we trust our young friends in the profession may be able to tolerate us. We do not trust ourselves on the new and refined pharmaceuticals, but our last dissertations in the Clinic, on remedies, have been confined to castor oil and spirits of turpentine respectively, and in this issue we have selected even a less dangerous article than the two last mentioned. It is perfectly useless for us to attempt to portray the influence that "hope" exerts upon mankind. It is a proverbial fact that a man without hope in the fight for life is already half whipped. The sick man without hope is desperately ill indeed, however slight his physical ailment may be. It is equally as true that there is a very slight chance for the undertaker to be benefited in the case of a patient who has no disposition or idea of dying. The whole system, digest ve, circulatory, and nervous, is directly under the influence of the mind; and if we will ever bear this
in mind in treating our cases, we will often have a more potent remedy, easy of administration and more pleasant to give and take, than anything found in the country doctor's saddle bags or upon the shelves of our metropolitan pharmacists. Bad news, grief, or sudden disappointment has been known to reduce the circulation to a minimum, to cause a strong man to become as helpless as a child, and to arrest the process of digestion and assimilation as suddenly as if the patient's throat had been cut. Just the reverse of this may be observed under the influence of pleasant emotions and the life-giving power of bright, heaven-born hope.
Old fogy will not tell his little story without concluding it with a moral. My young friends, never enter a sick room unless your countenance, manner, and words are such as to cheer and comfort your patients. However slight their hope may be, make use of that little, encourage and stimulate them to exercise that fortitude coupled with reasonable hope which has tided and will tide many a patient over dangerous shoals where medicine would have been utterly ineffective. Again, young friends, remember that with castor oil, turpentine, and cheerful hearts you can do a power of good and very little harm.-Southern Clinic.

## $n$ Ironclad After Ten Year

The Chilian ironclad Blanco Encalada, which took part with the sister ship, Almirante Cochrane, in the capture of the Huascar, completing her surrender by a terrible raking broadside, was docked on Wednesday at Hebburn-on-Tyne, in the graving dock of Mr. Leslie, shipbuilder. Much interest was attached to the circumstance on account of the ship not having been docked since she left England more than ten years ago. The iron bottom of the hull had been hen covered with teak plank, fastened with iron fastenings, and sheathed with zinc. sheets, in the hope that this arrangement would keep the underwater part of the ship fairly clean and free from decay. Early on Thursday morning the Blanco Encalada was visited at Hebburn by Sir Edward Reed,member of Parliament, under whose care she was originally built and is now being refitted and rearmed, and with him was Admiral Latorre, who fought theaction with the Huascar; Captain Montt, who now commands the ship; Mr. W. H. White, of the firm of Sir William Armstrong \& Co.; Mr. Leslie, representative of Messrs. Penn, the engineers; and numerous other persons. It is worthy of record that the bottoin was found remarkably clean, notwithstanding its ten years' immersion, and that the waste of the zinc sheathing was scarcely as much as had been anticipated. No evidences of any injury to the iron platng of the ship's bottom, which was examined in places, could be detected. The experiment of the zinc sheathing upon a single layer of wood was thus found to have been more successful than could have been hoped.-London Times.

The attempts to introduce the American brook trout Salmo fontinalis) into English waters have not been attended with success. During the last ten or twelve years. thousands of fry have at various times been turned into different waters, but in no instance has the fish really been established. Occasionally a specimen is taken here and there, but as years go by there is no perceptible increase, while in some waters, which were liberally stocked, they have disappeared altogether.

Recent Legal Decisions.
Insolvent Partnership-Liability of Retiring Mem-ber.-Unless upon proof of fraud, the retiring member ber. - Unless upon proof of fraud, the retiring member
of a partnership that subsequently became insolvent of a partnership that subsequently became insolvent
cannot be held liable for any firm debts contracted aftor his retirement, according to the decision of the Supreme Court of the United States in the case of Penn National Bank vs. Furness.
Negligence-Survival of Action.-A cause of action given by statute to the personal representatives of a deceased person to recover damages for the negligent deceased person to recover damage death of the wrong-
killing of such person after the der doer, cannot be continued against his representatives, according to the decision of the New York Court of Appeals in the case of Hegerich vs. Keddie.
Expert Evidence-Use of Medical Books.-In an action to recover damages for personal injuries a medical book, although shown to be a standard authority, is inadmissible in evidence to prove the nature of the injuries sustained by the plaintiff and their probable effect, though books referred to by a medical expert, to sustain the opinions which he has expressed, may be admitted in evidence to contradict or discredit him. So held by the Supreme Court of California in the case of Gallagher vs. Market Street Railroad Company.
Fraud on Bank-Liability of United States.-Where by the connivance of a clerk in the office of an Assistant Treasurer of the United States a person unlawfully obtains from that office money belonging to the United States, and to replace it pays to the clerk money which he obtains by fraud from a bank, the clerk having no knowledge of the means by which the latter's money was obtained, the United States is not liable to refund the money to the bank, according to the decision of the United States Supreme Court in the case of the State National Bank of Boston vs. The United States.
Insurance Policy-Change of Beneficiary by Will.In the case of Wilmaster vs. The Continental Life Insurance Company, decided by the Supreme Court of Iowa, it appeared that the insurance company issued to Wilmaster a policy on his life, by which it agreed in consideration of the payment by him of certain premiums during his lifetime to pay to his daughter the sum of $\$ 1,300$. Wilmaster paid the premiums as agreed, but at his death left a will by which he bequeathed to his daughter the sum of $\$ 500$, on condition that she would assign to his estate her interest in the policy, and directed his executor, if she refused, to claim the amount of the policy. His daughter refused to assign her interest, and the executor sued the company. The court held that the company was bound to pay the money to Wilmaster's daughter under the policy; that Wilmaster could not alter the contract, and that the executor was not entitled to recover.
Mining Partnerships-Assignment of One Partner's Share.-There is no relation of trust or confidence between mining partners which is violated by the sale and assignment by one partner to a stranger or to one of the associates of his share in the property and business of the association, according to the decision of the Supreme Court of the United States in the case of Bissell $v s$. Foss. The court adopted the language of Mr. Justice Field in an earlier case before the same court, in which he said: "Associations for working mines are generally composed of a greater number of persons than ordinary trading partnerships; and it was early seen that the continuous working of a mine, which is essential to its successful development, would be impossible, or at least attended with great difficulties, if an association was to be dissolved by the death or bankruptcy of one of its members or the assignment of his interest. A different rule from that which governs the relations of nembers of a trading partnership to each other was therefore recognized as applicable to the relations to each other of members of a mining association. The delectus personce, which is essential to constitute an or dinary partnership, has no place in these mining associations."
Railroad Conductor's'Liability—Stolen Goods.-A railroad conductor who permits a passenger to travel on his train, taking with him goods known by the conductor to be stolen, is not liable to an action therefor by the owner of the goods, according to the decision of the Supreme Court of Maine in the case of Randlette $v s$. Judkins. The court, in giving judgment, said: "The railroad is a public highway, over which all members of the public who are in a proper condition to travel in a public car, who pay the established fare, and conduct themselves properly, have a legal right to travel with permit all such persons to enter the cars and travel over the road. For sufficient cause he may stop the over the road. For sufficient cause he may stop the
train and eject a traveler from the train. He owes no legal duty to the public to stop his train and eject a traveler who is guilty of a felony, or to arrest such traveler and hold him as a prisoner and seize the property he may have in his possession. As a citizen he may have the right, if he sees fit, to arrest a traveler guilty of a felony and hold him till he can be properly prosecuted; but not being an officer charged with the duty, and having no legal warrant therefor, heis under no legal duty to do so, and thereby take upon himself the burden and hazard of justifying his act. Nor does
he owe any duty to any member of the public to arrest a thief, and seize and hold the stolen property he may have in his possession; or to seize and hold for the owner, whoever he may be, goods which a traveler on the road may have takenand is carrying away as a trespasser." The court added: "We have discussed the question involved upon principle, there being no authorities directly in point cited by the learned counsel on either side, and it is said there are none."-Bradstreet's.

## A Universal Commercial Language.

The idea of creating a universal language for international relations has gained much ground during the last thirty years, in France as well as in Germany and Austria. Notwithstanding that linguists call in question the possibility of composing an artificial language that shall have a real value, and that litterateurs deny the opportuneness thereof, practical minds justly say that we are living in the age of steam and electricity, in which new needs are rising every day, and in which the impossibility of to-day becomes the wonderful reality of to-morrow.
No one, however, thinks longer of adopting or creating a language that is to become one day, like the Greek of antiquity or the Latin of the middle ages, the universal organ of science and letters; that is a dream that has long been abandoned. But, since diplomats have a universal or common language for their international reports, why cannot our travelers and business men have an advantageous means of communication that shall be both simple and practical, and that shall permit them to enter into direct relations with all commercial houses, in Europe as well as in all other parts of the world?
Let but a universal language exist, and the traveler will be able to make himself understood in the most diverse countries, and the same commercial journal can be read and understood in all the producing or consuming centers of the world.
As for adopting a European language as a universal idiom, there are two strong objections to it, viz., national rivalry, and the difficulties of every nature that the very study of these languages presents. As was recently remarked by Gen. Faidherbe, in a study upon the programme of the French Alliance, the complications of the verb alone often prevent colonial populations from learning a European language.
The first attempts in the way of the creation of an artificial, universal tongue date back to Descartes and Leibnitz. Much science and patience has been exhausted in the study of this question, and yet it would be difficult, among the fifty or sixty systems that have been devised in the course of the last two centuries, to find a single one that has any practical value.
A polyglot foreigner, Mr. Schleyer, of the island of Mainau in Lake Constance, has, however, finally succeeded, after twenty years' study, in finding a solution of this difficult problem in the creation of a system which he calls Volapitk or "Universal Language."
By borrowing from the different idioms of Europe certain characteristic traits, Mr. Schleyer has combined a well-arranged, very harmonious, and extremely simple language. For the roots of his words he has had recourse to all the languages of Europe, but principally to the Romance and Teutonic ones, and among the latter to the English especially.
Although Mr. Schleyer's publications date back scarcely to 1881, the adepts in Volapük are to-day counted by thousands in the different states of Europe. Fifty-three societies have been organized for the purpose of favoring its propagation, and this, too, not only in Germany, but also in Austria, Holland, Sweden, England, the United States, and even in Syria.
Any one who understands a Romance or Teutonic language can easily learn Volapük in a couple of months. The grammar is very simple. All nouns are masculine, save those that denote the names of females. Very simple rules allow the verb and adjective to be derived from the same noun. Every adjective terminates in ik: nul, 'novelty,' nulik, 'new.'
There is but one declension, and the conjugation of he verbs is of the simplest character.
In order to give some idea of what the language looks like, we present the Lord's Prayer in Volapük, with an interlinear translation:
Fat obsik,
Fael binol
Father our,
who art in in heaven, mem olik, name thy $\begin{array}{cccc}\text { pasanukomös; } & \text { kinïn } & \text { olik } & \text { nakokomös; } \\ \text { be (it) sanctified; } & \text { vil } \\ \text { kingdom } \\ \text { thy } & \text { let (it) come; } & \text { will }\end{array}$ olik jenomös su tal islik in sult; givolös obes
thy be (it) done upon earth as in heaven; give us tudel bodi obsik delik, e fogivolös obes nofis to-day bread our daily, and forgive us sins $\begin{gathered}\text { nobis aslik } \\ \text { our as }\end{gathered} \begin{gathered}\text { fogivobs } \\ \text { forgive we thes }\end{gathered}$ lels enofoms obis; $e$
no
no
notolös
not
obis pabevikodön
us to be conquered by temptation, sod delivolas obis de bad. Jenosöd.
The Article is wanting in Voiapük.

The Noun is declined. For example, take the word dom, 'house ':
Nom. dom, the house.
Gen. doma, of the house.
Dat. dome, to the house
Accus. domi, house.
The plural is formed by the addition of $s$ to the above cases.
The Adjective.-As before remarked, adjectives are formed by adding $i k$ to the root. For example, dom, house,' domik, ' domestic.'
The Adverb is formed from the adjective by adding For example, domik, ‘domestic,' domiko, ‘domestially.'
The Pronouns are ob, 'I,' ol, 'thou,' om, 'he,' of, 'she.' Adding $s$ for the plural, we have obs, 'we,' ols,
'you,' oms, 'they' (masc.), ofs, 'they' (fem.). The posyou, oms, 'hey' (masc.), ofs, 'they (fem.). The' posthine,' obsik, ' our' (sing.), obiks, ' our' (pl.).
The Verb.-The verbs are derived from the substantive. Knowing the word pük, 'tongue,' we derive from it the verb pükon, 'to speak.' For the different persons we add the various pronouns to the radical pïl. For example, pilkob, 'I speak,' pilkol, 'thou speakest,' pükom, 'he speaks,' pükobs, 'we speak,' pilkols, 'you speak,' pilkoms, 'they speak.''
Tenses are formed by the augmentatives or prefixes $a, e, i, o, u$. For example, pilkob, 'I speak,' apükob, I was speaking,' epulkob, 'I have spoken,' ipulkob, 'I had spoken,' opilkob, 'I shall speak,' upilkob, 'I shall have spoken.'
From this it will be seen that the grammar is, as beore remarked, exceedingly simple.
Numerous works have been composed for the study of this universal language. Along with his grammar, Mr. Schleyer has published a Volapük-German dictionary containing nearly 13,000 words, and both works are now in their fourth edition. Abridged editions of the grammar have been published in Latin and all the languages of Europe, and also in Chinese and in Nama, the dialect of the Hottentots. Dictionaries for the use of the French, English, Italians, Dutch, and Hungarians are being prepared, and will soon appear. Two reviews are likewise published in Volapuk-one, the Volapulkbled, with a translation opposite, and the other, the Volapulkaklubs, entirely in Volapük.
On the occasion of the Universal Exposition in 1889, an international congress of Volapukists will be held at Paris.

## Merulius Lacrimans-the Dry Rot.

A short time before his death, Prof. H. R. Goppert, of Breslau, in connection with the chemist Professor Poleck, made a study of the hausschwamm-a fungus cornmonly known with us as dry rot, which had caused great injury to buildings in northern Germany. The results of their combined $\cdot$ studies now appear in a pamphlet by Professor Poleck ("Der Haussch wamm," Breslau, 1885). The dry rot, Merulius lacrimans, seems to be unknown in a wild state in Germany, but is confined to woodwork of different kinds, and attacksby preference coniferous timber. Strange to say, the fungus does not usually infest old structures, but generally makes its appearance in comparatively new buildings; and a startling series of figures shows the amount of damage done in the region of Breslau. Chemical analyses by Poleck show that the merulius is particularly rich in nitrogenous compounds and fat, which is rather remarkable, when one considers the chemical constituents of the timber on which it grows. Injury to health, or even death, is said to result from exposure to air containing large quantities of the spores of the merulius; and several authenticated cases are reported In a supplementary note, Poleck considers the relationship of merulius to actinomyces, a fungus which causes a characteristic disease in man and cattle; and he apparently comes to the conclusion that what is called actinomyces is probably only the merulius altered by the peculiar matrix on which it is growing. His state. ments on this point can hardly be called conclusive, or, in fact, other than vague.

## A New Application of Electricity.

We recently printed an article on this subject concerning Mr. Walker's application of the discoveries of Professor Lodge and Professor Clark to the condensation of lead fume and other volatilizations met with in metallurgical works. A German contemporary, the Berg-und Huttenmannische Zeitung, also published an article on the subject, which has called forth a letter in the issue of the paper of July 10 from B. Rosing, of Tarnowitz, stating that the original discovery of this action of electricity on dust is not by any means recent. It was known in 1850, when Guitard published his observations as to rapid condensation of tobacco smoke in a glass, by introducing into the glass one of the wires from an electrical machine. The writer of the letter also mentions Wiedemann's work on electricity, Lehre von der Electricitat, as referring to this in vol. i., page 33. Although the discovery thus appears to be old enough, there does not seem, says Engineerto be old enough, there does not seem, says Engineer-
ing, to have been any practical application of it till Mr. Walker took it up.

## Medals at the Inventions Exhibition, London.

The crop of medals harvested by Americans at the Inventions Exhibition in London was not a very abundant one. There was some complaint that the exhibits made by our countrymen were much smaller than had been expected, and this may account for the limited awards which they have received. In proportion, however, to the number competing, the results are not unfavorable. The four gold medals awarded to American exhibitors were as follows :
Adamson, Daniel \& Co., "Wheelock" automatic cutoff engine.
Edison and Swan United Electric Light Company (Limited), Edison-Swan systems of electric lighting.
Thomson and Houston systems of electric lighting (exhibited by Laing, Wharton \& Down).
Westinghouse Brake Company (Limited), automatic air brake and passenger communication for railway trains.
Two silver medals were awarded:
Delany Synchronous Multiplex Telegraph System, multiplex telegraphy.
Maxim-Weston Electric Light Co., electrical exhibit.
Bronze medals were also received by two exhibitors:
Anglo-American Brush Electric Light Corporation (Limited), electric lighting apparatus.
Van der Weyde, electrical illumination of the sitter in photographic portraiture.
It will be noticed that of the eight awards, six are for electrical apparatus, well illustrating the prominence given in America to electrical study.

## Hints for the Workshop.

The following suggestions, to which hundreds of others might be added, are taken from the Manufacturers' Gazette:
Clean and oil leather belts without taking them off of their pulleys. If taken off, they will shrink. Then a piece must be put into them and removed again after the belt has run a few days.
The decay of stone, either in buildings or monuments, may be arrested by heating and treating with paraffine mixed with a little creosote. A common "paint burner" may be used to heat the stone.
Set an engine upon three or four movable points, as upon three cannon balls. Connect with steam, and exhaust by means of rubber hose. If the engine will run up to speed without moving itself back and forth, then that engine will run a long time with little repair. If it shakes itself around the room, then buy another engine.
Safely moving a tall mill chimney has been accomcaused to lean slightly through settling of the foundation may be straightened up again by sawing out the mortar between courses of brick at the base. A chimney 100 feet high and 12 feet square at the base will be varied over 8 inches at the top by the removal of 1 inch at the base.
When you begin to fix up the mill for cold weather, don't forget to put a steam trap in each and every steam pipe which can be opened into the atmosphere for heating purposes.
For leading steam joints, mix the red lead or litharge with common commercial glycerine instead of linseed oil.

Put a little carbolic acid in your glue or paste pot. It will keep the contents sweet for a long time.
Look well to the bearings of your shafting, engine, and machines. Sometimes twenty-five, thirty, forty, and even fifty per cent of your power is consumed through lack of good oil.
When you buy a water wheel, be sure to buy one small enough to run at full gate while the stream is low during the summer months. If you want more power than the small wheel will give, then put in two or more wheels of various sizes.
When it becomes necessary to trim a piece of rubber, it will be found that the knife will cut much more readily if dipped in water.
When forging a chisel or other cutting tool, never upset the end of the tool. If necessary cut it off, but don't try to force it back into a good cutting edge.

In tubular boilers the handholes should be often opened, and all collections removed from over the fire. When boilers are fed in front, and are blown off through the same pipe, the collection of mud or sediment in the rear end should be often removed.

Nearly all smoke may be consumed without special apparatus, by attending with a little common sense to a few simple rules. Suppose we have a battery of boilers, and "soft coal" is the fuel. Go to the first boiler, shut the damper nearly up, and fire up onehalf of the furnace, close the door, open damper, and go to the next boiler and repeat the firing. By this method, nearly if not quite all the smoke will be consumed.
A coiled spring inserted between engine and machinery is highly beneficial where extreme regularity of power is required. It is well known that a steam engine, in order to govern itself, must run too fast and too slow in order to close or open its valves, hence an irregularity of power is unavoidable.

## the microscope in the mechanic arts.

## bY GEO. m. hopkins.

It is said that a workman may be known by his chips, and the same test of workmanship may be applied to an emery wheel; there is no truer index of the character and efficiency of an emery wheel than the microscopic dust which is projected from its periphery while it is in use.
An examination of this dust by the aid of a microscope shows whether the wheel is doing its work without undue waste of its substance; also whether the constituents of the wheel are disproportioned, to the extent of using too great a proportion of cement to bind the particles of emery together, or whether the cement employed for this purpose is weak and inefficient. An emery wheel is nothing more or less than a rotary cutter, whose cutting edges are composed of emery or corundum, and of course the efficiency and the durability of the wheel depend upon the manner in which these cutters are held. Each cutter must have a setting sufficient to hold it while it is doing its work. If this setting is too weak, or in othe
words, if the cement employed in making the whee words, if the cement employed in making the wheel
lacks strength and tenacity, the cutters will be readily loosened and lost; but while the wheel will be rapidly disintegrated, it will cut freely, and in this respect has the advantage over a wheel formed with an excess of cement, which completely envelops the cutter, or the particle or crystal of corundum or emery, and thereby


## MAGNIFIED EMERY WHEEL DUST.

prevents the material being ground from being brought into contact with the cutting edges without undue pressure. The characteristics of a wheel of this kind are the rapid glazing of the surface and the slowness of its cutting.
The microscope reveals exactly what the character of the emery wheel is; whether it is composed of too great a proportion of cement, whether it is made up of mate rials other than emery and cement, whether it is friable and liable to rapid disintegration. An examination of the dust projected from the periphery of the emery wheel will show whether there is too great a proportion of cement employed in its manufacture; it will show whether the wheel is cutting freely; it will also indicate whether too great a pressure is required to cause the wheel to cut as rapidly as it should.
If an examination of the emery wheel dust reveals mainly fibers of iron or steel cleanly cut, with very few grains or crystals of corundum or emery, and if few fused globules of steel or iron are present, it may be concluded that the emery wheel is of a good quality, and is doing its work properly; but if such an examina tion shows a large proportion of the grains of emery,
it indicates, of course, that the wheel is becoming rap it indicates, of course, that the wheel is becoming rap
idly disintegrated. If, on the other hand, steel and no emery is found in the wheel dust, if the iron or steel fibers are partly fused, and if the number of globules of melted steel or iron is great, we may conclude that the wheel is one that is liable to glaze, and requires too great a pressure to work upon it.
Fig. 1 shows the dust of a first-class wheel magnified about sixteen diameters. It will be noticed that there are comparatively few angular grains or particles of emery, while the iron or steel chips cut from the work by the wheel are long and clean, and carry the evidences of having been done with a good cutter.
Fig. 2 shows the dust from an emery wheel which contains a large proportion of emery, and either a small amount of cementing material, or cement of poor quality; and while the iron or steel chips appear equally as well as in the other case, the wheel in this case is being rapidly destroyed.
Fig. 3 shows the dust from a wheel having too great a proportion of cement, and exhibiting a tendency to glaze; the great pressure required to make the wheel cut also generates a heat which is sufficient to fuse the particles of iron or steel as they are separated from the
main body of the object being ground.

Photo Emulsions Spoiled by Thunder.
The most noticeable effect of thunder upon gelatinous solutions or on emulsion is, says the Photo. News, to bring about a certain decomposition, which interferes, more or less, with the setting properties of the gelatine; and if the solution be kept, it quickly becomes putrid. In some extreme cases the emulsion refuses to set altogether; in others, where the injurious effect is less marked, it does set, but tardily, and then, although the plates may turn out otherwise good, they generally frill or blister to such an extent, during the fixing and washing, as to render them next to worthless. What is the actual effect, chemically, of thunder upon gelainous solutions, at present is very doubtful. Whatever the effect may be, the cause by some is attributed to the presence of ozone, which usually accompanies violent electric disturbances in the atmosphere. But ozone will scarcely account for all the injurious changes wrought by thunder upon substances which are similarly affected to gelatine. For example, it is no unusual circumstance for ale which is stored in air-tight casks in underground cellars to be rendered both turbid and sour by a thunderstorm; and we have known an emulsion while in a closed vessel being spoilt from a similar cause. It is difficult to conceive, under these circumstances, how ozone can possibly be the cause.
Curiously enough antiseptics, which, under ordinary condition, prevent decomposition in gelatine, appear to have little or no influence in the case of thunder. It is worthy of note that thunder appears to exert little or no influence upon cold or jellied emulsions, neither has it upon concentrated solutions of gelatine, even when they are in a fluid condition. Therefore, as a piece of practical advice, we suggest that when electrical disturbances of the atmosphere are apprehended, precaution be taken that all emulsions be got into the jellied condition as quickly as possible. Also to bear in mind that it is during the emulsification, with the small proportion of gelatine, that the injury is most small proportion to arise.
It is a curious fact, but not the less true, that a severe storm may sometimes occur without causing the slightest inconvenience, while, on another occasion, the conditions being apparently identical, a very slight one, even a single clap of thunder, will cause an immense amount of trouble. In all cases it is wise, when possible, to defer preparing emulsions, particularly on a large scale, when violent electrical disturbances of the atmosphere are anticipated.

## A Tornado in Ohio.

About 8 o'clock, on the evening of September 8, the town of Washington Court House, the county seat of Fayette County, Ohio, about fifty miles northwest of Cincinnati, was struck by a tornado, which destroyed a great part of the place. More than fifty of the principal stores and business buildings were ruined, besides the damage of many others, the loss upon buildings alone being computed at from half a million to a million dollars. The duration of the tornado is said to have been about two minutes, but this is probably largely conjectural, although it lasted long enough to destroy some brick and many wooden buildings, killing several and wounding a large number, and giving the place in the track of the storm the appearance of a total wreck, all in so short a time that the terrified people could hardly realize what was happening. One family of five, living six miles west of Washington, when the storm first struck took refuge in the cellar, just in time to see their house lifted above them and hurled through the air a distance of 250 feet. There were meetings being held in Music and in Odd Fellows' Hall, and they were both so ruined that it was wonderful how so many escaped. The northeastern and southwestern portions of the town were not much damaged. The tornado is described as having had the appearance of an immense rolling ball of cloud, illuminated with electricity.

## Success of Aluminum Smelting by Electricity.

Among the valuable metals peculiarly adapted for use in the mechanical and fine arts may be mentioned aluminum, hitherto utilized only to a limited extent because of its refractory qualities and the expense encountered in its reduction.
For articles requiring great tensile strength and resistance, aluminum bronze may be considered the foremost, reaching 100,000 pounds per square inch; is susceptible of being tempered, and of receiving a high degree of finish.
By the process of "smelting ores by the electric current," recently patented by the Messrs. Cowles, of Cleveland, Ohio, the expense is so materially reduced that aluminum and its alloys will enter largely into the various branches of mechanical industry, to the exclusion of inferior metals; and the beautiful gold, silver, and bronze colors render it exceedingly valuable and desirable for small ornaments, statues, and all art metal work, and the remarkably low price at which this aluminum bronze is now produced insures for it a widespread employment in the arts.

## agricultural inventions.

A combined harrow, cultivator, and plow has been patented by Mr. Solomon Franklin, of
Pine Bluff, Ark. It is made with inclined tubular side bars having cultivator teeth and connected by arched cross bars with standards carrying adjustable plows,
with other novel features, for pulverizing the soil and throwing it to or from the plants, and to regulate the throwing it to or from the plants, and tor
depths to which the teeth and plows enter.

## MISCELLANEOUS INVENTIONS.

A gate has been patented by Mr. John G. Wiison, of Cameron, Texas. This invention covers
a novel construction and arrangement of parts for a a novel construction ano arrangement of parts or a
farm gate which can be opened from either side by a

A type writing machine has been patented by Mr. Edward R. Roe, of Dixon, Ill. A type
disk and index circle and indicator are used, but the object of the invention is to simplify the construction and arrange the parts to operate more rapidl
A hoisting and lowering apparatus has been patented by Mr. Isaac I. Lancaster, of Tacoma,
Waslington Ter. This invention relates to apparatus Waslington Ter. This invention relates to apparatus
for hoisting and lowering objects with a windlass and jack, consisting in a novel arrangement of springs A watch case has been patented by Mr. Victor Nivois, of New York city. This invention consists in setting jewels in the cap plate of the watch case
and protecting them with the back plate of the case, and protecting them with the back plate of the case,
the back plate having openings formed in it to reveal the jewels.
The sirking of hydraulic piles forms the subject of a patent issued to Mr. Lowell E. Blake, of El Paso, Texas. This invention covers the use of a jet of water supplied at the entering point of the pile, in
connection with a weight at its upper end, for the sinking of wooden or other piles in quicksand, etc.
A step ladder has been patented by Mr. Wright Pearson, of Jamestown, N. Y. It is of
novelconstruction in several important features, and novel construction in severa can steady himself, and so
has a hand rail whereb on
a paint vessel or tool box can be conventently held to a paint vessel or tool box can be conventently held to
facilitate any kind of overhead work.
A feed rack has been patented by Mr. Benjamin F. Waggoner. of Litchfield, Ill. It is for
feeding hay and other fodder to stock, and is so made feeding hay and other fodder to stock, and is so made
as to prevent the fodderfrom being wasted and prevent hogs from having access thereto, while it can be readily moved from place to place
A music stool has been patented by Mr. George A. Ramseyer, of Dobbs Ferry, N. Y. It is
so made as to be used with or without a back, and so so made as on used with or without a back, and so
that when the back is folded down it does not intermay then be packed in small space for shipment.
A fishpond trunk has been patented by Mr. William S. Mallard, of Darien, Ga. It is so devised hat the overinow water of a pond may be used to
operate a waterwheel, or to pass off without working operate a watervhee, or to pass of without working
the wheel, but in either case the escape of the fish from the pond will be prevented.
A clothes line support hás been patented by Mr. William C. Young, of Paterson, N. J. The
device is to be hung by its roller end on the upper part device is to be hung by its roller end on the upper part
of the clothes line, keeping the two parts of the line at a uniform distance apaprt, supporting the lower line from the upper, while the supporters will not run together the upper, while the su.
An adjustable mirror bracket has been patented by Mr. John J. Langdon, of South Pueblo,
Col. This invention covers a special combination of partsand details whereby a mirror can be easily adjust-
ed higher or lower according to the size of the person, ed higher or lower according to the size of the person,
and can be inclined laterally and to the horizontal and can be inclined laterally and to the horizontal
plane.
A kitchen safe and flour chest has been patented by Mr. William Knowles, of Rockville, Ind.
It has two flour chests wtih inclined It has two flour chests wtih inclined bottoms and
screen, a conveniently arranged dough board, receptascreen, a conveniently arranged dough board, recepta-
clesfor soasoning materials, a boxf or holding bread,
oll speciall kitchen or household use
A spring armored hose pipe has been patented by Mr. Joseph A. Coultaus, of Brooklyn, N.
Y . This invention consists in spiral armor formed of spring steel wire, the internal diameter of the spiral bespring smaler what the external diameter of the pipe, so
ing coils forma spiral spring that binds closely at every the coils form a spiral
portion of its length.
A saw swaging device has been patent ed by Mr. Henry williamson, of Bay City, Mich. Com bined with a box is a device for gripping the saw teeth,
and a shaft on which a die is formed for swaging the and a shaft on which a die is formed for swaging the
teeth, the device being simple in construction, strong, and durable, and one which can be used on gang or circular saws.
A hacker for chipping pine trees has been patented by Mr. Randolph M. Barron, of Castle-
beriy, Ala. The cutting head is of the usual loop form, but instead of being made all in one piece is of sectional construction, having a separate bit piece to enter
within the body part and held ad justably in place, so the tool can be used a long time by just changing the bits.
A shovel fastener for cultivators has Theen patented by Mr. George W. Lilly, of Center, Mo. elongated cog, in combination with a novel construction of fastener with groves to fit said rib or cog, so the
shovel may be adjusted to occupy different positions laterally and also different depths.
A drilling apparatus has been patented by Mr. John Hunter, of Kingston, Ont., Canada. Its
construction is such that the tension or friction can be construction is such that the tension or friction can be
made light enough to run small drills, such as are usually operated by bows, or it can be adapted for heavy
Work, being calculated for anl the ardinary work of
watchmakers and jewelers.

A process of uniting gold and vulcanite has been patented by Mr. Jehu H. Wood, of Lebanon, ion of chloride of silver to the plastic gutta percha o rubber prior to the application of the gold and to the vulcanization of the mass,
tween gold and vulcanite.
A chain saw has been patented by Mr. Walter S. Shipe, of Minerva, O. It is composed of single and double links jointed together by shouldered rivets,
he links fitted with cutters dovetailed to pass betwee lugs on the side of the links, the cutters forming cut ting and clearing teeth, and the machine being adapte for felling trees and cutting logs.
A support for rock drills has been pat ented by Mr. George W. Nixon, of Rockwood, Tenn. propelled by a ratchet lever or similar device may push to force itself into the rock, and means whereby the
ratchet drill may be quickly readjusted after it has exratchet drill may be
tended to its limit.
A mosquito net frame has been patent ed by Mr. Thomas A. Watson, of Houston, Texas. Comined with wo side posts having pivots are hor izontal arms working thereon, a bar connecting the tops of the
posts and an extensible bar connecting the arm ends. so the net may be easily swung over a bed or folded back out of the way
A door opener has been patented by Mr. Charles E. Whitney, of Brooklyn, N. Y. It is wheel, which is operated by a rack bar and spring whereby the striker will be locked in place by the pin, and the striker cannot be forced back from the outside wlilie the door opener is easily operated.
An emery and sandpaper machine for Ieyers, of Philadelphia, Pa. Combined writh an abrad ing wheel is a pivoted lever and devices for moving $i$ toward the wheel, with a cushioned support on the lever so the leather will give more or less, and not be heated A trace holder for back bands has been patented by Mr. Alonzo Collins, of Chetopa, Kan. A recessed metal plate is riveted to the lower end of
the back band, the plate having apertures, while there is a detachable hook for holding the trace chain, with a shield, a shank, and a aatch, the
ad justable to fit horses of different sizes.
A car axle box has been patented by Mr. Jesse S. Williams, of Beaver Dam, Ky. In combination with the axle is a journal box with a chamber for holding a lubricant, and an interior cap block so
fitted as to close the outlet of the chamber and bear on he rotating avte being open by the jar of travel to permit the flow of the lubricant to the axle
A combination lock has been patented y Messrs. Thomas H. Cole, of East Albany, an Charles McCarrick, of Tivoli, N. Y. It has sliding
numbiers, any suitable number of which may be used for complicating the lock, which may be of a hasp or other form, and combinations may be made very easily by moving, a pin to different positions, enabling a great
many changes of combinations to be made. many changes of combinations to be made.
A thill coupling has been patented by Mr. Alverow McDowell, of Hudson, Ind. Combined
with a clip having jaws is a bolt in the jaws, with cap on the ends of the bolt and having angular arms which overlap between the jaws, and are held by a screw
passed through them and resting against the thill eye. making a device which is simple and strong and does ot rattle
A self-closing faucet has been patented y Mr. Andrew J. Homan, of New York city. The or other fluid will pass freely, but the fluid pressure will always act on the inside of the closed forward end
or head of the valve to close it to its seat when the or head of the valve to close it to its seat when the
pressure on the batton is relaxed, unless the valve is held open by a pin and cam device,
An automatic tap has been patented by Mr. Adam J. Geyer, Jr., of Rahway, N. J. It has an
externally screw-threaded outtershell and a sliding inner shell, with a protecting cap or cover hinged to its head in such position that the cap is adapted to be closed over the tap when the coupling nut and pipe are removed, and a stamp may be so pasted over that the
annot be opened without mutiating the stamp.
A safety attachment for horned cattle has been patented by Mr. William P. Simonds, of Competine, Iowa. It consists of levers to be applied to the centrally fulcrumed upon the ronng in tevers being any attempt of the animal to use its horns will caus pain, and break the animal of any habit or desire to use
A cattle guard has been patented by Mr. Leslie T. Hardy, of Houston Mines, Va. This invention relates to a form of guard where roilers are are
ranged in bearings in the track bed of a railroad, to re anged in bearings in the track bed of a railroad, to re-
volve from contact with the hoof of an animal, and so deter the latter from passing over, these rollers being frighten the animal.
A fence has been patented by Mr. John W. Read, of West Salem, Ohio. This invention covers same inventor, hangers for the lower rails being comined with the supports or posts and top rails of a fence, firmly in heavy winds, and can be made, set up, and re moved quickly.
An ore separator has been patented by Mr. David F. McKim, of Cable City, Montana Ter. This invention covers a novel construction and combihent and steadier working of the ore receiving belt, and to provide better regulation of the water supply to the-belt, so as to insure the better separation and closer
grrading of the ores.

A fire escape has been patented by Mr. Samuel Snyder, of White Sulphur Springs, Montana
Ter. Combined with a windlass drum journaled in a Ter. Combined with a windass drum journaled in a
frame is a rope secured thereon, a brake pulley formed on the drum, a brake band around the pulley, and a rope secured to the brake band, so the descent can be regulated by the des
room or in the street.
A boiler tube cutter has been patented y Mr. George M. Odgers, of Elizabeth, N. I. The cutceive the cutter, with a longitudinal aperture and ad
 ting out the tubes of steam boilers and promote simplicity in the construction and convenience in the use of boiler tube cutters.
A check rein holder has been patented by Mr. William D. Taber, of Rockville, R. I. It consists in a frame, a clanning device arranged to clamp
the check strap in a space between itself and the frame, and the frame having a side space or slot communicat ing with the space in which the check strap is clamped, a horse may be checked higher or lower, or uncheck-

## NEW BOOKS AND PUBLICATIONS.

A System of Iron Railroad Bridges
FOR Japan. By J. A. L. Waddell.
Published by the Tokio University,
Tokio, Japan.
Professor Waddell went to Japan some three years
ago as an instructor in the University, and to attend to ago as an instructor in the University, and to attend to practical engineering work, but found there was no
work in that country for foreign engineers, and he work in that country for foreign engineers, and he
had but seven students in the engineering department. This'work on bridge engineering, therefore, which has been printed by the Japanese University, is left as a sort of memorialand professional record of the author's stay in Japan. It is a most elaborate treatise, in two volumes, one being occupied by tables and plates alone, and for a large variety of bridges every detail of con-
struction is set, forth with such completeness that the struction is set forth with such completeness that the
bridge engineer can here find all his plans ready made. bridge engineer can here find all his plans ready made. Modern Moulding and Pattern Mak-
ING. By Joseph P. Mullin. D. Van Nostrand, New York.
To the moulder who wishes to become a pattern maker, or to understand the more difficult work of his own department, so as to make up new and out of the
way jobs intelligently, this book cannot fail to be a way jobs intelligently, this book cannot fail to be a
valuable aid. Too many moulders are only able to do simple classes of work, the same kinds of pieces with ing that in learning to do this they have only acquired the rudiments of their trade. This, we are glad to say, is not the general disposition of American mechanics, but there are some who would like to push
themselves forward in the more difficult parts of themselves forward in the more difficult parts of their
business who find it no easy task to do so, from the business who find it no easy task to do so, from the
jealousy or indifference of those who might be their teachers. This book treats of foundry work of many difficult kinds, giving practical examples, with the expect from a workman who has had experience in all the details of the work concerning which he writes.

R. S. Smith, U. S. A., and Charles
McMillan, C. E.
New Yohn Wiley \& Sons,

This is a delightfully simple and practical book, and one which had long use, as originally written by Professor Smith, at the West Point Academy; it is now revised by Professor McMillan, of Princeton, and forms attainment of a high grade of excellence in field sketch ing, platting, plain and colored drawing, and the reduc ing, enlarging, and copying of maps or plans. Much of States Coast Survey and the that done by the United and tints, with the methods given of laying on the lat ter, as also the numerous illustrations showing th professional usage in representing a wide variety of subjects, make the book one likely to be of lasting value to those d
as the student
Topographical Surveying by Means
of the Transit and Stadia. By
J. B. Johnson. John Wiley \& Sons, New York.
This book describes a system of surveying which has grown up in this country within the last twenty years,
and which is conceded to be especially well adapted to and which is conceded to be especially well adapted to
preliminary work in railroad and canal surveys, drainpreliminary work in railroad and canal surveys, drainage basins, reservoir, dam, and bridge work, and for
obtaining contours of the ground over extended areas. It is written by a Professor of Civil Engineering in Washington University, but while sula the engineer in the field,

## Received

Exterior BaLlistics. By Captain James M. Ingalls,
Instructor, U. S. Artillery School, Fort Monroe.
Published as the authorized text book of the class. The Elements of Rallroading. By Charles Paine.
The Railroad Gazette, New York. hemical Problems. By Karl Stammer and W. K.
Hoskinson. P. Blakiston, Son \& Co., Philadel-

Wood working machinery forms the subject of a handsome quarto catalogue, profusely illus-
trated, which has been recently issued by Messrs. Rowley and Hermance, of Williamsport, Pa., describing
The Ferracute Machine Company, of
Bridgeton, N. J., also send us an illustrated catalogue Bridgeton, N. J., also send us an illustrated catalogue
and price list of their manufacture in presses, dies, can

The steam engines and boilers made by Messrs. Wood, Taber \& Morse, at Eaton, Madison
County, N. Y., are illustrated and described in a cataCounty, N. Y., are illustrated and described in a cat
logue recently issued by that firm.

Business and Personal.
The charge for Insertion under this head is One Dollar a line for each insertion, about eight words to a line. Advertisements must be received at publication office
as early as Thursday morning to appear in next issue.

Iron and Steel Wire, Wire Rope, Wire Rope TramKeystone Steam Driller for , Rinds N. Jtesian wells. Keystone Driller Co., Limited, Box 32, Fallston, Pa Machinists' Pattern Figures, Pattern Plates, and Let-Wanted.-A thoroughly practical man who is well acquainted with the manufacture of Steel Wire Nails,
and who is competent to build a plant, and superintend the running of the same when built. Address promptly
Rubber Stamps of every description. Send copy for
estimates. Agents wanted. Spencer \& Fuller, Wausau, estimat
Wis.
All Books and App. cheap. School Electricity, N. Y Air Compressors, Rock Drills. J. Clayton, 43 Dey st.,N.Y Situation wanted at Chemistry or Mining Engineering,
by a graduate of the University of Penna. Address S. by a graduate of the University of Penna.
S., care Chas. Burnham \& Co., Philadelphia.
Haswell's Engineer's Pocket-Book. By Charles H
Haswell, Civil, Marine Haswell, Civil, Marine, and Mechanical Engineer. Giv-
ing Tables, Rules, and Formulas pertaining to Mechanics, Mathematiss, and Physics, Architecture, Masonry,
Steam Vessels, Mills. Limes, Mortars, Cements, etc. 90 Steam Vessels, Mills. Limes, Mortars, Cements, etc. $\$ 00$
pages, leather, pocket-book form, $\$ 4.00$. For sale by pages, leather, pocket-book form, ${ }^{84}$
Munn $\&$ Co., 3 3i Broadway, New York.
Peerless Leather Belting. Best in the world for swift "How to Keep Boite Cle" "a sor
"How to Keep Boilers Clean." Send your address Send for catalogue of Scientific Books for sale by Shafting Couplinge Hang Pulleys. Dlison Sbafting Mfg. Co 86 Goerck St, V Y. Send for catalowucand prices Iron Planer, Lathe, Drill, and other machine tools of Iron Planer, Lathe, Drill, and other machine tools of
modern design. New Haven Mfg. Co., New Haven, Conn Wanted.-Patented articles or machinery to manufacPresses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. For Power \& Economy, Alcott's Turbine, Mt. Holly, N.J.
Send for Monthly Machinery List

Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York
If an invention has not been patented in the United States for more than one year, it may still be patented in Canada. Cost for Canadian patent. ${ }^{* 40 . \text { Various other }}$
foreign patents may also be obtained. For instructions address Munn \& Co., Scientific Amiekican patent gency, 361 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn, V. Y. Steam Pumpi

Machinery for Light Manufacturing, on hand and
built to order, E. E. Garvin \& Co., 139 Center St., N. Y. Nickel Plating. . Garvin \& Co., 139 Center St., N. Y. odes, pure nickel salts, polishingacturers cast nickel anplete out fit for plating, etc. Hanson, Van Winkle \& Co. and 94 Liberty, St., New York.
For Steam and Power Pumping Machinery of Single and Duplex Pattern, embracing boiler feed, fire and low
pressure pumps, independent condensing outfits, vacpressure pumps, independent condensing outhts, vac pressers, addreess Geoo. F. Blake M It. Co.., 44 Washington,
St., Boston; 97 Liberty St., N. Y. Send for catalogue.
Supplement Catalogue,-Persons in pursuit of information of any special engineering, mechanical, or scien-
ti fic subject, can have catalosue of contents of the ScItific subject, can have catalogue of contents of the Scientific American supplement sent to them free.
The suppimaent contains lengthy articles embracing the whole range of engineering, mechanics, and physical Cutting-of saw and Gaining Machine, and Wood Working Machinery. C. B. Rogers \& Co., Norwich, Conn Curtis Pressure Regulator and Steam Trap. See p. 12. Wood WorkingMachinery. Full line. Williamsport Iron and Steel Drop Forgings of every description. Co., Hartford, Conn.
We are sole manufacturers of the Fibrous Asbestos Removable Pipe and Boiler Coverings. We make pure
asbestos goods of all kinds. The Chalmers-Spence Co., 419 East 8th Street, New York.
New Portable and stationary Centering Chucks for apià centering.
Hartford, Conn.
Crescent Solidified oil and Lubricators. Something Steam Hammers, Co.,
Steam Hammers, Improved Hydranlic Jacks, and Tube Emerson's Book of Saws free. Reduced prices for 1885. 50,000 Sawyers and Lumbermen. Address
Emerson, Smith \& Co., Limited, Beaver Falls, Pa. Safety Elevators, steam and belt power ; quick and Safety Elevators, steam and
mooth. D. Frisbie \& Co., Philadelphia, Pa. Barrel, Keg, Hogshead, Stave Mach'y. See adv. p. \%. Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423, Pottsville, Pa. See p. 46 . The "Improved Green Engine," Automatic Cut-off. The "Improved Green Engine," Automatic C
Providence Steam Engine Co., R. I., Sole Builders. Domestic Electricity. Describing all the recent inventions. I
New York.
Patent Elevators with Automatic Hatch Covers. CirNervous, Debilitated Men.
You are allowed a free trial of thirty days of the use of
Dr. Dye's Celebrated Voltaic Belt with Eiectric Suspen ory Appliances, for the speedy relief and permanent ure of Nervous Debility, loss of Vitality and Manhood, and all kindred troubles. Also for many other
diseases. Complete restoration to health, vigor, and man hood guaranteed. No risk is incurred. Illustrated ree by adith full information, terms, etc, mailed pamphlet, with full
free by addressing

Brass and Iron Working Machinery, Die Sinkers,
and Screw Machines. Warner \& Swasey, Cleveland, o. For Sale.-Patent on Exercising Bars described in For Sale.-Patent on Exercising Bars described in
Scientific American of June 2, 1883. Address Geo SCIENTIFIC AMERICAN of June 2, 1883. Ad
Worthington, 57 Second St., Baltimore, Md.
Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting Works. Drinker St.. Philadelphia, Pa.
(9) R. K. asks: 1. Is there a press for obnes, and how are they prepared for manufacture?
A. They are sottened by soaking in water in acids , then spit and pressed between heated plates, much of the ollow being then stamped out by cutters. 2. How must . The tallepared for manufacturing white candles? mutton suet. For use in warm climates this must be hardened. Among the various methods used for this purpose, the following seems to be the simplest: Use
1 pound of alum for each 5 pounds tallow. Dissolve the alum in water, then put in the tallow and stir until
(10) Sam asks: What can be used (and bow prepared) as an inflator to the toy or silk paper
balloons, besides alcohol or kerosene? A. Hydrogen balloons, besides alcohol or kerosene? A. Hydrogen,
the lightest of all gases, is readily generated by treating the lightest of all gases, is readily generated by treating
zinc with sulphuric acid. Take a bottle, put the zinc into it, add the acid. with water, and the gas will come out through the mouth. Cover the mouth with a cork, and pass a quil
(11) W. H. R. writes: About 30 feet in front of my residence, which is a queen Anne cottage, runs a telegraph line. From the poles of this line are
stretched six wires at a height about level with my roof stretched six wires at a height about level with my roof The chimney upon my roof extends probably six
feet above level of highest wires. Now, do these wires afford any protection to the property from the dangers of lightning? Some say the wires protect it, and some it is said I confess I see no reason why they should, but struck by lightning near a telegraph or railroad line. What is good, full, and exhaustive treatise on lightning protection? A. We think the telegraph wires would tend to protect your house against lightning; but your
house should have a system of lightning rods well house should have a system of lightning rods well
grounded to furnish the best protection. You will find grounded to furnish the best protection. You will find
three books on lightning protection in the Scientific three books on ligh
American Book List.
(12) A. W. C. asks: 1. If white is the union of the primary colors, why won't a pant mix-
ture of those colors produce white? A. Because the
colors cannot be exactly arranged in the same propor colors cannot be exactly arranged in the same propor
tions as those in which they exist in the spectrum, tions as those in which they exist in the spectrum,
and pigment colors are not pure. 2 . Would $1 / 2$ pound and pigment colors are not pure. 2. Would 1/2 pound
of copperas in a sink be a good disinfectant, and not of copperas in a sink be a good disinfectant, and not
injure the pipe? A. $11 / 2$ pounds copperas to the gallon of water are the proportions recommended by the Na tional Board of Health. It will not injure the pipes. A simpler disinfectant, and one much more convenient,
ion
and armula for medicinal pancreatine? A. Saccharated pancreatine is prepared as follows: The pancreas is dissected and macerated in water acidulated with hydrochloric acid for about 48 hours, then separated, and the acidulated solution of pancreas passed through a pulp
filter until it is perfectly clear. To this clear solution is then added a saturated solution of sodium chloride and allowed to stand until the pancreatine is separated. This is carefully skimmed off and placed upon a muslin filter and allowed to drain, after which it should be washed with a less concentrated solution of sodium chloride and then put under the press. When all the salt solu-
tion has been removed, and the mass is nearly dry it tion has been removed, and the mass is nearly dry, it
is rubbed with a quantity of sugar of milk, and dried is rubbed with a quantity of sugar of milk, and dried
thoroughly without heat, after which it is diluted until en grains em
(13) B. asks how to wash flannels to prevent shrinking. A. It is almost impossible to prevent a
little shrinkage of flannels in washing, unless the articles are dried on forms. Prepare hot suds beforehand and agitate the articles in it without rubbing, then squeeze, not wring out, and dry quickly. The patent
clothes wringers are an improvement upon hand labor, as without injury to the fabric they squeeze out the water so thoroughly that the article dries in considerably less time than it would do. even after the most thorough hand wringing.
(14) R. M. F.-We would not be govrned by a phrenological chart in forming our opinion of a young man, neither would we allow the chart/to
exert any influence in selecting a trade. If the yofing man does not know his ability and natural inclinatons well enough to select a business for himself, we think he should embrace the first promising business oppor-
tunity, and do all in his power to succeed, and stic to it tunity, and do all in his power to succeed, and sticl until he has sufficiently matured to select to deten to what
cation.
(15) R. L. D. asks: 1. Is Swedes iron as good for electrical purposes as Norway iron? A. Yes.
2. Is No. 12 Bessemer steel fencing wire as good for a three mile line as No. 12 telegraph wire? If not, ho does it compare? A. We would prefer the Bessem made of Swedes iron than if made of ordinary castiron A. It depends on the kind of dynamo. If you refer to the small one described in the Supplement, cast iron is as good as anything, provided it is very soft. 4. How different would the electro-magnetic machine described in No. 161 Supplement be, if it was used to ring a
polarized bell on a three mile line? A. The only differpolarized bell on a three mile line? A. The only differ-
ence would be that the thimble now forming the comence would be that the thimble now forming the com-
mutator should be entire, and connected with one termutator should be entire, and connected wits one one
minal of the armature, and should be pressed by one spring only. The other terminal of the armature should be connected with the shaft, and a spring shour bear be taken from the springs.
(16) W. S. C. asks how to fill the tube of a mercurial barometer. A. Place the tube in a very
slightly inclined position with the closed end lowest slightly inclined position with the closed end lowest, siip a piece of rubber tube over the open end, and pour
in the mercury. When the tube is filled, lower the closed end and tap it very gently, to start the bubbles of air upward; finally place the tube vertically with the closed end down and let it remain for a day or so, then put your finger tightly over the open end, invert the tube, and place the open end in the cistern. In the best baromeers the mercury is boiled in the bulb to drive out the air and moisture, but the
and answers very well.
(17) A. W. P. asks: What is used to Asphaltum varnish is rubbed into the lines, and when perfectly dry is sandpapered off from the surface of the wood, leaving the black in the lines. This is not
affected by the shellac varnish which is applied subse affected
(18) C. H. C. asks the proper way to set a tool to cut threads on a regular taper tap. A. If cut practice is to set the chaser so that all the teeth will cut If with a single point, the best practice is to set the point o that both sides of the thread shall have the same
(19) E. S.-Plaster of Paris is not suita he for mould sfor brass. Any fine sand, such as quick sand wet with water containing a little clay, can b as will just make the sand hold together when squeezed as will just
in the hand.
(20) W. A. B. asks: 1. What is the best means of keeping a rest pin in piano from jumping, or not holding the string in tune? A. Try wetting it with
turpentine. If this does not work, use larger pins, 2 turpentine. If this does not work, use larger pins. the action? A. There is nothing better than first cla white glue. 3. A preparation for polishing the case A. You do not state whether your piano case has been arnished and polished. If it has been once finished, ou can give it a very good surface by rubbing it with poinsh formed of equal parts of rather thick alcoholic hellac varnish and linssed oil, keeping up the rubbing until the desired polish is secured. In view of the skil necessary to use this polish successfully, we advise a
trial on something else before applying it to the piano. trial on somethingelse before applying it to the piano
4. The reason a piano will not keep in tune, and re nedy therefor? A. Either bad construction, unfavora ble climate, or bad usage, or all combined. We could not suggest a remedy without knowing the cause. 5 ,
The most scientific method of tuning a piano? A Consult works on pianos or experts in thesematters.
(21) W. C. F. writes: I have an immense pair of elk horns shipped to me from Colorado hey have been exposed to the weather for quite while, and consequently are bleached quite white Would like to know if their appearance would be im proved by the application of some kind of a brown var nish; if so, what kind? A. Soak the horns for twelve hours in a solution of manganese sulphate, then wash
with sodium carbonate, and on allowing to dry the colo will change into the brown shade desired.
(22) A. L. P. asks: What is the best way o clean a bottle having contained a fatty substance ter still, and ether or chloroform will dissolve most fats. Coal tar benzol or naphtha can also be used. (23) J. T. asks how to compound a good indelible ink for marking towels, by means of
brush and stencils. A. Printing ink sinks into wove fabrics to a considerable depth, and will last a long time It is probably the cheapest marking ink that can be used with a stencil. Recipes for indelible stamping inks are given in Scientific American for December 13, 1884, and also in answer to query 3, in the Scien
(24) P. J. S. asks how the black lacquer is put on opera and field glasses, and what kind of lacquer is it? A. Make a strong solution of nitrate of silver in one dish, and of nitrate of copper in another
Mix the two together, and plunge the brass into it Mix the two together, and plunge the brass into it,
Now heat the brass evenly till the required degree of ead biackness is obtuined.
(25) H. M. Q.-Water always runs down hill, and the Mississippi also. runs down hill. The leve in all parts of the earth is determined by gravity, and so acceptedin all engineering work. The physical cente of the earth only coincides with the plumb line on a
belt around the earth at the equator, a zonal line in belt around the earth at the equator, a zonal line
mid-latitude on each hemisphere, and at the poles.
(26) W. H. G. S. desires a good recip or making pickle to keep beef, tongues, and pork . To each gallon of water add $11 / 2$ pounds salt, $1 / 2$ pound sugar, $1 / 2$ ounce saltpeter, and $1 / 2$ ounce potash. Let these be boiled together until all the dirt from the
sugar rises to the top and is skimmed off sugar rises to the top and is skimmed off. Then
throw it into a tub to cool, and when cold pour it over the beef or meat to remain the usual time, say 4 or weeks. The meat must be well covered with pickle, and should not be put down for at least 2 days after killing, during which time it should be slightly sprinkled with saltpeter, which removes all the surface blood, etc.,
leaving the meat fresh and clean. Some omit boiling the pickle and find it to answer well, though the opera tion of boiling purifies the pickle by throwing off the
dirt always found in salt and sugar.

INDEX OF INVENTIONS

## For which Letters Patent of the

United States were Granted,
September 1, 1885,
AND EACH BEARING THAT DATE.
[Seenote at end of list about copies of these patents.]


ner...............
Bit. See Bridle bit. 325,268
325,588

Bit. See Bridle bit.
Blacking boe Board. See Bosom board. Boat. See Collapsible or folding boat. Boiler. See Steam boiler.
Boiler tube cutter, G. W. Boiler tube cutter, G. W. Odgers....................
Boot or shoe soles and uppers, machine for unit
ing, S. W. Robinson............................... 325,274
Boot or shoe upper, T. Nally............... 355,561
Boot or shoe uppers, machine for stretching, A. 325,438
F. Preston..................................... Boots or shoes, lasting, W. C. Cr................
Boots or shoes, manufacture of, G. W. Day Bosom boara, S. J. Lackey.. 10,642
$.325,240$
Box. See Axle box. Cigar box. Fare box. Stop
box.
Bracket. See Mirror bracket. Wall bracket.

Buush, tooth, R. S. Lakin..
Burner. See Hydrocarbon burner. Oil............ Button, H. C. Griggs.
Button, A. G. Mead
Button fastening machine, C. Erlange
alipers, micromet
Can. See Oil can.
Car brakes, apparatus for cperating, J. S. Badia Car coupling, T. R. Daniel.
Car coupling, Esleeck \& Eame
Car coupling, J. W. Neal...
Car coupling, sparling \& Fitc
Car coupling, J. B. Winters..
Cars. device for loading andjunloading, Barnhart
Cars, loading and unloading, Barnhart \& Huber.................................... arding machines, stripping mechanism for, J. Carpet stretcher, L. Krieg.
Carpets, manu
Eisenhart..
arriage door, P. Weima......................... 325,
Cartridge packer and carrier, G. S. Wilson.
artridge packer and carrier, G. S. Wilson.........
case. See Dental bracket case. Pencil case.
Watch case.
Cash and parcel carrier, R. A. McCarty.....325,425, Cattle guard, L. T. Hardy.
Centrifugal separator, , A. ............................. 325,600
Chain, drive, G. S. Briggs.............. ............ 325858
325494
Chain. drive, G. S. Briggs.........................
clining charcising chair. Opera chair. R
clining chair.
Chart for cutting garments, tailor's, J. S. Olson... 325,358
Check hook, E. Kohler.....................................6.7.
Churn, D. Conover........................ 325,238


Chute, gate, coal bin, etc.
Kepner...................
Cider press, N. Lee
Cider press, N. Lee........ 325,343
325,252
325


Clock cases, japanning wooden, E. Ingraham......
Closet. Se Water closet.
Cioth inspecting and trimming machine, J. H.
Wilson........................
Clutch, friction, M. P. Boss........
Coal scuttle, J. Duncan.................
Cock, cylinder. G. W. Loomis..............
collapsible or folding boat, J. P. Wright.
Colter, plow, T. C. Sargeant.............
Cooking apparatus. steam, Haden \& Gobble...
Cooler. See liquid cooler.
Copying process, W. G. Morse
vice for spools in, B. S. \& J. B. Hale................................325,336
32600
Cotton compressor, M. T. Brown...........................
Coupling. See Car coupling. Thill coupling.
Crank for engines, J. L. Bogertt.............
Cream transportation tank, C. D. Elder (r).
Cream transportation tank, C. D. Elder (r)
Creamer, vacuum, N. B. Blackmer
Creamer, vacuum, N. B.
Cultivator, T. C. Baker..
Cultivator S.
Cultivator, S. A. Moulton..
cultivator, grain, A. Lowr
cultivators, shovel fastener for, G. W. Lilly
urtain fastener, G. P. Bower..................
Cutter. See Boiler tube cutter. Stalk cutter.
Dental bracket case, J. H. Morrison................. 325,5
Diamond setting, C. Blancard. ................. 325,4 Diamond setting, C. Blancard
Digger. See Potato digger.


Drier. See Fruit drier.
Drill. See Grain d
Drilling apparatus,
E. J. Worcester................................. 325,373

Dust pan, J. F. Wynkoop. ........................
Easy chair and couch, combined, J. V. H. Dit
mars..............................................
Electric alarm, J. J. Wood.................
Flectric light circuits, socket and connection for
325,326
325,639

H. P. Brown-.......................................


 Elevator bucket, Banker \& Roberts.................. 325,478
Embalming table, C. M. Lukens.................. 325,550
anc, Embalming tables, head rest for. C. M. Lukens....
Engine. See Gas engine. Hot air engine. Steam engine
nvelope



## BAIRD'S BOOKS PRACTIICAL MEN





HENRY CAREY BAIRD \& CO. 810 Walnut Street, Philadelphia, Pa.
$8, ~$

## A Valuable Work.

 Nystron's Mechanics A Pocket-Book of Mechanics and Engineering. Containing a Memorandum of Facts and Connection of
Practice and Theory. By John W. Nystrom, C.E Practice and Theory. By John W. Nystrom, C.E.
Eighteenth Revised Eaition. Englarged to the exten P 200 New Page
"It is a little libry. . . . . $\$ 3.0$ nized instructor and authority, and saves other engineer letin.
For Sale by all Booksellers, or will be sent postpaid,

 HOUSE SEWAGE; HOW TO DIS



"ACME" DRA WING PAPERS QUEEN \& CO'S PROFILE AND CROSS SECTION PAPERS


Extra Fine Swiss

 for or 1 LATHES ${ }^{\text {Dow woon }}$ rove LATHES oumm 165 West $2 d$ Street, cincinnati, $\boldsymbol{O}_{0}^{\infty}$.



##  <br> INJECTORS <br>  

NEWSPAPER FILE

 MUNN \& CO

NEW YORK BELTING AND PACKING COMP'Y.








Or 36 Dey St., New York,


 para rubeer, ㄹ..


## A <br> BIC OFFER. <br> 



VOLNEY W. MASON \& CO. FRICTION PULLEES CLUTCHES and ELEVATORS.



ROCK BREAKERSAND ORE CRUSHERS.




HARRISON CONVEYOR !
Handing Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&C. Sinnd for |BORDEN, SELLECK \& CO., \{ Manulfers, $\}$ Chicago, III.


ECONOMIC MOTOR CO's
GASSM.



ECONOMIC MOTOR CO.,

Scientific American B00K LIST

To Readers of the Scientific American: By arrangements with the principal publishers, we are now enabled to supply standard books of every description at egular prices.
The subjoined List pertains chiefly to Scientific Works; but we can furnish books on any desired subject, on receipt of author's name and title.
All remittances and all books sent will be at the purchaser's risk.
O ordered will be sent by mail, unless other directions are given. Those who desire
to have their packages registered should send the registration fee.
C공 The safest way to remit money is by postal order or bank check to order of Munn \& Co.
a要 ${ }^{\circ}$ A catalogue furnished on applica-
Address MUNN \& CO.
361 Broadway, New York,
Publishers of the
Nicolls.-THE RALLWAY BULLDER. A Hand-
book for
Estimating the Probable cost of Ameri-
 North-ASSAYER: THE PRACTICAL. My
 Nugent.Light and Sight, as related to the Fine
Arts and Industrial Pursitits By E. Nutent.
12mo, cloth. 103 illustrations. ... Overman.-METALLURGY. By Frederick lurrical. Work, and describing Charcoal, Coke,
and Anthracte Furnacs, Balst Machines Forge
Hammers, Roling Mills, etc. Overman.-MOULDER'S AND FOUNDER'S

 Palmieri. THE ERUPTION OF VESUVIUS traked. By Robert Mallet. 8vo, cloth. $\$$ IllusPallisers MODEL HOMES. Showing a variety,
of Designs for Model
Dwellings
also of Designs for Model Dwelinings, also Farm,
Barn, ind Henery stable and Carriae House,
School House, Masonic Association Building, Bank and Lithasy, Town Hall, and Three
Churches. Tonether with a large amount of miscellasenous matter, making in ill a very valu-
able book for every one who contemplatesulidd
ing. 8vo, cloth. Parton.- CATTAINS OF INDUSTRY: or, Men
Who did Something beside Maling Mory
Book for Young Americans. By James Parton,
Parnell.-LIGHTNING: Its Action, and the
Means of defending Life and Property
from its Means oi defening Lite and Property irom its
Effects. By A. Parnel. 12 mo , cloth.... $\$ 3.00$
Pastenr.-STUDIES ON FERMENTATION Pasteur.-STUDIES ON FERMENTATION.

 Mhotographs.-RETOUCHING: The Modern
Practica of, as followed by M. Pigupe and other
experts Photographs. - SILVER-PLATING: Twelve
Elementary Lessons on.



Pileur.-HUMAN BODY: WONDERSOF THE
From the French of A. Pileur. 12 mo .42 illnstra
tions

##     Potter.-CONCRETE. By Thomas Potter. CIts UTe in Building and the Construction of or ConPowell, Chane, Haris. THE PRINCIPLE and Sheet Glass. By. Harry JJ. Powell. Henry Chance, and H. G. Harris. 18mo. Hllustrated

## 




 Price.-PICTURESS How to make. The ABC
of Dry Plate Photography. By Henry C. Price.

Hovertisements.

Engravings may head advertisements at the same rate
per line, by measurertent, as the letter press. Adver-
tis per une oy measurervent, as the letter press.
tisements must bereceived at publication office a
as Thursday morning to uppear in next issue. STAR наск SAW U U Here is something which will not disappoint you. It
will cut iron as other saws cut wood. One blade, without filing, will saw off a rod of half-inch iron one hun-
dred times. The blade costs five cents. Files to do the same work would coss ten times as much.
Men in every calling will have the Men in every calling will have them as soon as they know about it. We guarantee full satisfaction in ail
cases. Oon inckel-plated steel frame and twelve saws
sent sent by mail prepaid on receipt of $\$ 1.50$. Hardware
dealers will furnish them at the same price. Millers Falls \& Chambers St.,


ECONOMICAL COOKING.-DESCRIP-



## H.W.JOHNS' ASBESTOS

Steam Packings, Boiler Coverings, Fire Proof Paints, Cements, Etc.
Samples and Descriptive Price Lists Free. H. W. JOHNS M!F'G CO., 87 MAIDEN LANE, N. Y 175 Randolph St., Chicago; 170 N. 4th St., Philade/phia


WTM. A. ETARRERS, HARRIS Orinal and only Builder of the
CORISS ENCINE, Send for copy Englneer's and Steam User's
Manual. By J.W. HIII, M.E. Price \$ 1.25 .

STEAM CATAMARAN MAY BAR-rett--Plans and speciifationn of the catamaran May
Barrelan fanily cruisin boat built for use ou rivers
and take.s. Construction of hulls. deck beams. wain



## "VULCAN"

 Cushioned Hammer. Steel Helve, Rubber Cushions, UESQUARE, ELASTICBLOWFull Line of Sizes. P. DUNCAN \& CO., $\underset{\text { of Pennsylvania.- } \mathrm{By}}{\text { THE Chas. A. Ashburner. FIStory }}$ Histor
 had at this oflice and from all newsdealers.


WITUERBY, RUGG\& RICHARDSON. Manufacturer tion. Facilities unsurpassed. Shop formerry occupiped
by R. Baild Co., Worcester, Mass.
Send for Catalogue

## PATENTS

## MESSRS. MUNN \& CO., in connection with the publi- cation of the Scientific American, continue to ex-

 amine improvements, and to act as Solicitors of Patent for Inventors.In this line of business they have had forty years' ex
perience, and now have unequaled facilities for the prest perience, and now have unequauled facilitites for the prep-
aration of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the United
States, Canada, and Foreign Countries States, Canada, and Foreign Countries. Messrs Munn
Co. also attend to the preparation of Caveats, Copyright for Books, Labels, Reissues, Assignments, and Report
on Intringements of Patents. All business intrusted to them is done with
reasonable terms.
A pamphlet sent free of charge, on application, con taining full information about Patents and how to pro
cure them; directions concerning Labels, Copyrights Designs, Patents, Appeals, Reissues, Infringements, As
signments, Rejected Cases, Hints on the Sole of tents, etc.

## We also send, free of charge, a Synopsis of Foreign Pa-

 tent Laws, snowing the cost and method of securingpatents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents, BRANCH OFFICE.-Corner of ${ }^{36}$ Brew York. BRANCH OFFICE.-Corner of $F$ and 7th Streets,

## patent Rivete <br> 

 Best in the wromalSpecially adapted for PAPER MILLS, SAW MILLS, and THRESHING MACHINES
THE GUTTA PERCHA and RUBBER MFG. CO.,
Blake's Improved Pipe Hanger
IT IS THE CHEAPEST AND BEST HANGER IN THE MARKET.
 JモNTEINTS BROS., SOIE AGENTS,
g1 JOHN STREET, NEW YORK. 99 KILBY STREET, BOSTON.


Clarr's Steel Cased Rubher Whee
FOR ROLLER SKATES.



IRON REVOLVERS, PERFECTLY BALANCED, Has Fewer Parts than any other Blower,
P. H. \& F. M. ROOTS, Manufacturers,
 NEWV YOREK.
SEND FOR PRICED CATALOGUE.


JACKET PETRTTLES,

Aluminum Bronze, Aluminum Silver, Aluminum Brass,

## SIIICOIN BROINZE,

FURNISHED IN INGOTS, CASTINGS, RODS, OR WIRE.

## Our Malleable Castings can be made of over 100,000 pounds tensile strength, with extraordinary power to with stand corrosive influences, and unrivaled beauty of color. Send for pamphlet.

 HE COWLES ELECTRIC SMELTING AND ALUMINUM CO., CLEVELAND, 0.

THE STOCKPORT GAS ENGINE.

## equaled for simplity, Duabiry, Rehanzit, Eoonony, Lishnoss, and

 Starts with ease. Receives an impulse at every revolution. Runs silently. Uses less gato H. P. than any other engine. Send for particulars of Sizes and Prices to dICKSON MANUFACTURING CO., Scranton, Pa. 112 Liberty St., N. Y., U. S. A-

## TO INVENITORS AND MANUFACTURERS






## SHAFTING,

## PULLEYS,

## HANGERS.

## Pat. ©teel ©hafting:

Internal Clamp Cond Souplings.

CURE ${ }^{\text {Oin }} \mathrm{DEAF}$ Peck's Patent Improved Cushioned Ear Drums PERFECTLI RESTORE THE HEARING, and perform the work of the Natural Drum. Always
in position, but in inisible to others and comfortable distinctly. We refer to those using them. Send for
illustrated book with testimonials, free. Address, F.


95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent ranted to Alexander Graham Bell, March th, 1876, No. 174,465, and January 30th,
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences hereof, and liable to suit therefor.
The Scientific American. THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.
This unrivaled periodical, now in its forty-first year,
ontinues to maintain its high reputation for excellence,
and enjoys the largest circulation ever attained by any
Evient number contains sixteen large pages, beautifully
scientific publication
Every number contains sixteen large pages, beautifully
style a descriptive record of the most novel. interesting,
nd important advances in Science, Arts, and Manufac-
tures. It shows the progress of the World in respect to
ew Discoveries and Improvements, embracing Machin-
hemistry, Metallurgy, Eliectricity, Light, Heat, Archi-
ry, etc. It abaunds with freshand interesting subjects
or discussion, thought, or experiment, , urnishes hun-
reds of useful suggestions for busines. It promotes
ndustry, Progress, Thrift, and Intelligence in every
me scmentere it circulates.
very Dwelling, Shop, Office, School, or Library. Workmen, Foremen, Engineers, Superintendents, Directors, Presidents, Officials, Merchants, Farmers, Teachers,
Lawyers, Physicians, Clergymen, people in every walk reading of The ScIETIFIC AMriricat.
Terms for the United States and Canada, 83.20 a year, 81.60 six months. Specimen copies free. Remit by Postal Order or Check.

## $\underset{\mathbf{3 6 1}}{\boldsymbol{\text { Co}} \text { Co. Publishers, }}$ Broadway, New York.

Scientific American Supplement. THE SCIENTIFIC AMIRRICAN SUPPLEMENT is a sepa-
rate and distinct publication from 'THE ScIENTIFIC AM-
ERICAN, but is unitorm therewith in size every number containing sixteen large pages. The Scilistific Am-
Rican Supriement is published weekly, and includes very wide range of contents. It presents the most recent papers by eminent writers in all the principal de-
partments of Science and the Useful Arts, embracing partments of science and the Useful Arts, embracing
Biology, Geology, Mineralogy, Natural History, Geo-
graphy, A rchæology, Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine En-
gineering, Photography, Techhnology, Manufacturing gineering, Photogriphy, Techhnology, Manufacturing culture, Domestic Economy, Biography, Medicine, etc.
A vast amount of fresh and valuable information per-
taining to these taining to these and allied subjects is given, the whole
profusely illustrated with engravings.
res. profusely illustrated with engravings.
The most important Engineering Works, Mechanisms,
and Mantact and described in the Supplement.
$\qquad$ Canada, 85.00 a year, or one copy of the ScIentific Amfor one year for $\$ 7.00$. Address and remit by postal order or check, $\begin{aligned} & \text { MUN } \& \text { Co.. } 361 \text { Broadway, N. Y., }\end{aligned}$
To Foreign Subscribers.-Under the facilities of by post direct from the Scientific Ambrican is now sent by post direct from New York, with regularity, to sub-
scribers in Great Britain. India. Australia, and all other
British colonies; British colonies; to France, Austria, Belg.um, Germany,
Russia, and all other European States; Japan, Brazil, Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South America. $\$ 4$, golạ, for SCIENTIFIC AM vericari, one year; $\$ 9$, gold. forboth Scientific Ambrican and SUPplement for one year. This includes pcstage, चhich we pay. Remit
by postal order or draft to order of

PRINTING INKES: THE "Scientific American", is printed with CHAS.
ENEU JOHNSN © CO. InNK. Tenth and Lom
bard Sts. Phila., and 47 Rose St., opp. Duaze St., N. Y.

