a weekly journal of practical information, art, science, mechanics, cilimistry, and manufactures.

CASTING A STATUE OF HEROIC SIZE.

It would be a most difficult task to mention and separately describe each and every step which must be carefully noted by the operator in casting bronze in order that the resulting copy may be a facsimile of the original. Extended practice enables the founder to note all these features without necessarily appearing to devote more attention to one than to another; in a certain sense the work, from the melting of the metal to the final flowing, pursues a beaten path, along which are distributed certain guide marks, the absence or even the unusual appearance of any one of which quickly gives notice that all is not as it should be. It is here that we find a most aptillustration of the value of little things, since the most trivial neglect of a seemingly insignificant portion of the work may not only injure but destroy the casting.
Casting in bronze does not consist solely in simply taking a pattern, making a mould, and running in the metal; it is an art only to be acquired by long and patient toil, close study, and that most essential and spurring incentive, a fascination for the work. That success can only be achieved by this means will be understood by any one who will spend an hour in a bronze foundry, and note the time and care spent in making sure that one step is perfected before the next is even approached. There is no sign of the presence of that most pernicious habit, too frequently permitted in other callings, in which a distasteful part may be slurred or left half finished, and a rush made for something more agreeable. The bitter and sweet must receive the same attention, as both are equally dangerous when slighted.
One requisite qualification in the make-up of the bronze founder is an ability to obey orders. He receives from the sculptor a model in plaster which he is expected to reproduce in bronze; if he produces an exact counterpart, he has performed his whole duty, and has

strictly abided by his orders, which may be concisely expressed as "follow copy." It does not come within his province to attempt to improve upon the pattern set before him, but to reproduce it, whether full of blemishes or perfect. The artist does not expect him to improve his work.

Bronze statues were made two and perhaps three thousand years ago, the earliest consisting of small plates hammered into the desired shape and fastened together by nails or rivets. After this they were cast solid and also with a core. At the present time it is the general custom to divide the statue, when of heroic size, into several sections, make a separate casting of each section, and then unite the parts by riveting; the joint so formed, owing to the increased thickness of the metal, being of greater strength than the adjoining parts. But a great step in advance was recently made by The Henry-Bonnard Bronze Company, of this city, when they succeeded in casting, practically in one piece, Mr. J. Q. A. Ward's statue of the New England Pilgrim. The accompanying engravings (we wish here to acknowledge the kind courtesy of the general superintendent of the works, Mr. E. F. Aucaigne, for facilities extended to us) represent the "Pilgrim" as completed, the mould made ready for the metal, and a view of the foundry showing the position of the flask at the casting of the statue of the late Col. Wadley, of Georgia. This work is of interest because of the great difficulty attending each step, because it is the first time so large a single piece was ever cast, and because of the complete success reached. The Pilgrim was cast entire, with the exception of the head and right arm.
It is apparent that a statue used as a pattern will not draw; and in order to form a mould from it, it must be treated in a way very different from that in vogue in iron and brass (Continued on page 260.)

CASTING A STATUE OF HEROIC SIZE.

sixientific gmmirau.

HETABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.
o. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year. postage included....8320
. .160
Clubs.-One extra copy of The Scientific Amprican will be supplied gratis for every club of flve subscribers at
same proportionate rate. Postage prepaid. Remit by postal order. Address
MUNN \& Co., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the Scientific American. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size
with ScIENTIFIC AMERICAN. Terms of subscription for SUPLEMENT, with SCIENTIFIC American. Terms of subscription for SUPPLEMENT,
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by $\$ 5.00$ a year, postage paid, to subscribers.
all newsdealers throughout the country.
Combined Rates.-The Scientific American and SUPpilement will be sent for one year, postage free, on receipt of seven dollars. Both
papers to one address or different addresses as desired. papers to one address or different addresses as desired. The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 361 Broadway, corner of Franklin Street,New Y

Scientific American Export Edition.

The SCIENTIFIC AmERICAN Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about one hundred odical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates arge quarto pages, profusely illustrated, embracing: (1.) Most of the plates
and pages of the four preceding weekly issues of the SCIENTIFIC AMERICAN. with its splendid engravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies, 50 cents. Manufacturers and others who desir to secure foreign trade may have large and handsomely a
The Scientific American Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN \& C0., 361 Broadway, corner of Franklin Street, New York.:

NEW YORK, SATURDAY, APRIL 25, 1885.
Contents.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT,

INO. 486,

For the Week Ending April 25, 1885.
Price 10 cents. For sale by all newsdealers.
I. CHEMMISTRY.-A Great Magnesia Mine.-Treating of the production of magnesia from sea water at Aigues-Mortes..
Cyanide of Potassium................ Cyanide of Potassium...
The Production of Ammonia from the Nitrogen of Minerals.- - A figures... Chemical Changes in their Relation to Micr
stracts of a lecture by Professor Frankinan.
stracts of a lecture by Professor Frankland.
The Time Element in Gluten Determination.
II. ENGineering and mechanics.-Accident to the Gas Holders of the St. Louis Gas Company. Sight Feed Iubricator.-Wit
Lead Case Press.Emulsion Plates for Transpar Potash Developer for Collodion Emulsion Plates for Transparencies, etc...............................
How to Make Gelatino-Chloride Paper for Printing without Developing.
 The Perfumer's Manual.-By an experienced manufacturer
Treating of the manipulation of pomades, etc., and giving nume Treating of the manipula
IV. ARCHITECTURE AND ART.-The New Votive Church at St. The Influence of Wood upon
The Influence of Wood upon Architecture............................
The Shoring of Buildings.-By THos. BLASHILL.-Use of shor-ing.-Causes of mischief to buildings.-Foundations.-Different kinds of shoring.- 2 figures...
Ntw Offices and Business Premises, Sheffield.-An engraving.... The Dying Achilles.-A marble statue by Ernst Herter.-An en-
graving... 7751
V. PHYSICS, ELECTRICITY, ETC.-Guichard's Thermometer.-2
flgures.......................... figures..
New S Synchronism.-By Synchronism.-By Prof. E. J. HousstoN.-A paper re
the Institute of Electrical Engineers.-With illustrations.
VI. BOTANY, ETC.-The Forms of Leaves.-Abstract of a lecture by Sir Join Lubrock
ViI. HyGiene, etc.-The Mental States Induced by Fright. Galvanized Iron Water Pipes.-Is water conducted through the same injurious?-By F. P. VENABLe..
viII. MiSCELLANEOUS.-A Stranded Whale.-With engraving
Earthquakes.-Study of the same in Japan and in Spain...

BIOGRAPHY.-Benjamin Ward Richardson, M.A., LL.D., F.

changes in the patent office.

Mr. R. G. Dyrenforth, of New York, Assistant Commissioner of Patents, has resigned the office, and Mr R. B. Vance, of North Carolina, has been appointed to the same position.
During the recent brief interval between the resigna tion of Mr. Commissioner Butterworth and the ap pointment of Mr. Montgomery, the present Commissioner of Patents, the duties of that office devolved upon Mr. Dyrenforth, and he at once set to work to try to bring about a reform in the bureau, with a view to putting an end to the long delays in the transaction of business-abuses which Mr. Butterworth was unable to cope with. Under Mr. Dyrenforth's rule, brief as it office.
Mr. Vance, the new Assistant Commissioner, was lately a member of Congress and chairman of the Com mittee on Patents. During his Congressional service he made himself very familiar with the affairs of the Patent Office, and took an active part in the House of Representatives in upholding the interests of inventors, at a time when hostile legislation was advocated by others. Mr. Vance is a man of much ability, and hi acceptance of the office of Assistant Commissioner will, we think, be highly advantageous to the bureau.

herat.

Whether the Russian advance upon the northwest ern frontier of Afghanistan shall be stayed at the mountains or pass on to Herat the coming summer, re mains to be seen. In either case that ancient city will continue to be the center of the most commanding political and military interest. Sooner or later it must be determined, by skillful diplomacy or much fighting, whether Russia or England shall hold that time-honored key to Central Asia. Meantime all readers of tele graphic news from that quarter are asking for informa tion touching the present condition of the city and its surroundings, and the reasons for its apparent importa
The geographical situation of Herat, $34^{\circ} 22^{\prime}$ N. lat. $62^{\circ} 9^{\prime}$ E. long., with its elevation of about 2,500 feet above the sea, gives it a charming climate. The valley in which it lies is the granary of Afghanistan, and its surrounding gardens yield fruits corresponding with those of Southern Europe. Central New Mexico has about the same latitude and a similar climate, though less temperate and somewhat drier. The plain of Herat is well watered by canals from the Heri River, and is said to contain fully 400 square miles of arable land. The upper valley of the Heri is described as a beautiful rolling country furnishing the finest of pasture lands. Three or four miles south of Herat th river is crossed by a magnificent bridge of 23 arches. The territory tributary to Herat extends east and west from near the sources of the Heri to the Persian frontier, about 300 miles; formerly it extended north and south 200 miles from the Merv boundary to the northern limit of Seistan. The Russian conquest of Merv has cost Herat all its territory on the plain north of the Parapomisus Mountains, and has pushed the disputed boundary to within 40 miles of the city to the north, as the Russians claim, or about twice that dis tance according to the English and Afghan authori ties.

The city is in the form of a quadrangle, nearly a mile on each side. On the western, southern, and eastern faces the lines of defense are almost straight and are broken only by the great gates and their defenses. The northern line is broken by two gigantic earthworks, the old citadel and the new citadel, built of sun-dried bricks. The city wall rests on the summit base and fifty feet high. The wall proper which crown this vast earthwork is 25 feet high and 14 feet thick at this vast earthwork is 25 feet high and 14 feet thick at
the base. It is surrounded by a ditch 46 feet wide and 16 feet deep, and is supported by 150 semicircular towers.
The colossal character of these earthworks leads Sir Henry Rawlinson to infer that the city, as a strong hold, must date from prehistoric times-from that period of Central Asian history which preceded the rise of the Achæmenian power, and which in Greek romance is illustrated by the names of Bacchus, Her cules, and Semiramis. Its dominant position with reference to Central Asian and Indian affairs is proved by a military history unequaled by any other city-a record of more than fifty sieges, undertaken, as Vambery has pointed out, not so much for the sake of the rich soil which surrounds Herat, as on account of the desire for conquest with which it has inspired some times India, sometimes Central Asia.
The population of the city under these great vicissitudes of fortune has naturally varied greatly. In times of great prosperity and peace it has numbered a million or more; at other times it has dwindled to a few thousand; now, it is variously estimated from 25,000 to 50,000 or more. It is believed that the present city comprises only the citadel of the city that once covered the surrounding plain for many miles.

DO WE WORE TOO MUCH?

We have before us an interesting paper on "The Hygiene of the Nervous System," contributed to and reprinted from the Alienist and Neurologist by C. H. Hughes, M.D., of St. Louis. The belief expressed therein of a cholera visitation during the coming summer or autumn is supported by good authority, viz., the experience with former European epidemics, and the precautions suggested by the author are well advised and timely. He enumerates and describes the various physical and mental conditions which invite the infection in man and increase its virulence, among which he reckons engrossing and continuous application to business affairs. Dr. Hughes denounces a tendency he has discovered among Americans to "overwork."
He says: "The cause of much of the premature decrepitude and nerve degeneracy and breakdown of our day is in the many inventions man has devised whereby he robs himself of timely rest. The morning newspaper, often read through before breakfast; the telephone in his house to call him at any and all times aside from his repose; the electric light to keep his brain unduly stimulated through the retinæ; the railroad and the sleeping coach, which may keep him constantly on the rail (if he choses to so travel) for continuous weeks without rest from the noisy and exhaustive cerebrospinal concussions of this mode of travel; hasty meals and telegrams, and business, and nightmare sleep, all commingled, wither and wreck lives innumerable, which, under wiser management, might end differently; and the needless noises of the city, the bells and steam whistles, howling hucksters, noisy street cars, yelling. hoodlums, that make night hideous with soul-jarring sounds, hasten the premature endings of useful lives. And when, superadded to all this unphysiological strain, we have the assault of a pestilence that poisons, like cholera, how much exemption can such overwrought organisms expect? How much of resisting immunity can such overstrained and exhausted nerve force oppose to the invading foe ?"
The question, How much resistance can an overstrained organism offer to the assult of the gruesome scourge? it is not for the lay mind, but for the medical faculty to consider. There is, however, good reason to believe that Doctor Hughes would find it impossible to prove that this "overwrought" condition is due to overwork. There are, of course, exceptional cases, but it is not with these we have to do, but with the broad assertion that we are an overworked people, and that "the cause of much of the premature decrepitude and nerve degeneracy and breakdown of our day" is. begotten of overwork. Were we so bold as to express an opinion on the cause, we should say that it proceeded in great measure, if not in nearly every instance, from bad habits, from the immoderate use of liquor or other stimulants or irregular habits, or both, and in this assertion we could hope to be sustained by business and professional men of long experience, who have had the opportunity and inclination to study their business associates and employes.
Singularly enough, the Doctor, after informing us that undue excitement, anxiety, and overwork leave the system peculiarly exposed to and at the mercy of the infection, proceeds then to furnish us with evidence to disprove his own proposition. He says:
"During the week of the great St. Louis fire in 1849, the ravages of cholera, which up to that event had reached a mortality of over two hundred a day out of a population of fifty thousand, almost entirely ceased, so stimulating and invigorating was the excitement of that week to the brains and nervous systems of the people, the psychical exaltation inseparable from the sudden necessity thrown upon so many business men for repairing the sudden damage and re-establishing their abruptly interrupted business."
If the Doctor is sure about this, it would seem as though active employment, both mental and physical, furnished the best protection against cholera, and that the condition of nervous excitement and overwork which he most deplores as inviting the dire malady in reality presents the most effective barrier against it.
Among the many beliefs or rather superstitions which the light of recent investigation and experience has served to dissipate, is that which attributed a continuance of good health to a saving of the vital forces by inaction. A man was supposed to have a certain amount of vitality with which, as with his bank account, he could be saving or prodigal. Goldsmith, who besides being a poet was a doctor of medicine, and attended lectures in England, France, and Germany, only reflected the general belief in the doctrine when he tells us that he had hopes by a life of ease,
"To husband out life's taper to the close,
And keep the flame from wasting by repose."
His contemporary, Dr. Johnson, too, believed that the seven years of unceasing labor that he gave to his dictionary would shorten his life. There is reason to beieve, however, that a life of ease would have hastened rather than postponed the demise of the former, and that Johnson's physical ailments would long before have proved unsupportable without the unremitting toil of which he so bitterly complains.

The medical practitioner to-day advises exercise and fresh air where formerly he prescribed jalap, bleeding, and attenuations of aconite and belladonna, and the remedies of nature have been discovered to be more potent in the preservation of the health than any of the agents to be found in the pharmacopoiia.
Nature, we have learned, is a careful economist who permits only those faculties or muscles to develop which are used; and as every faculty and muscle has a use, it follows that that condition is nearest perfect where all are employed, and, per contra, that inactivity leads to decay.
We hear much of the evils of "overwork," but see little of them in fact. Who has not seen those supposed to be overworked, who, in fact, never seem to be rid of their labors, grow stronger rather than weaker, the pal lor begotten of inactivity succeeded by the glow o health, and the eye sparkle with fresh life?
Hard work hurts no one; it would not, perhaps, be saying too much to assert that those who have lived what are called "busy" lives have kept the vital spark longest aglow. In a little house in Beach Street, this city, we find John Ericsson, in his eighty-third year, studying from sunrise to sunset. Humboldt, who slept but little and worked incessantly, lived to 90 , Newton to 85 , Faraday and Agassiz to about 70. In France, M. Chevreul, the celebrated scientist, now in his ninetyninth year, is still vigorous; and in England that eminent and honored philanthropist, Sir Moses Montefiore an ever-busy workman, is still engaged in charitable schemes, though a century has passectover his head.
In Sailors' Snug Harbor, on Staten Island, there are more than 800 men, most of them aged, to whose careers of toil have been added the experiences and dan gers incident to a seafaring life.
It is curious, indeed, to note how much those who have led active lives are capable of at that period when we are inclined to regard them as aged.
Though surrounded by a myriad of warriors, the great Agamemnon calls out regretfully to the aged Nestor on the field: "Ah, how I wish that thy stout heart were but supported by as firm a knee!" and the valiant Nestor responds:
"Yet, ancient as I am, I will be seen, Still mingling with the charioteers,
Still prompt to give them counsel."

Various Forms or Tracing Paper

A recent invention has for its object the rendering more or less transparent of paper used for writing or drawing, either with ink, pencil, or crayon, and also to give the paper such a surface that such writing o drawing may be completely removed by washing, without in any way injuring the paper. The object of making the paper transparent is that when used in schools the scholars can trace the copy, and thus become proficientin the formation of letters without the explanations usually necessary; and it may also be used in any place where tracings may be required, as by laying the paper over the object to be copied it can plainly be seen. Writing paper is used by preference, its preparation consisting in first saturating it with benzine and then immediately coating the paper with a suitable rapidly drying varnish before the benzine can evaporate. Th application of varnish is by preference made by plung ing the papers into a bath of it, but it may be applied
with a brush or sponge. The varnish is prepared of with a brush or sponge. The varnish is prepared of
the following ingredients: Boiled bleached linseed oil, 20 lb .; lead shavings, 1 lb. ; oxide of zinc, $5 \mathrm{lb} . ;$ Venetian turpentine, $1 / 2 \mathrm{lb}$.; mix, and boil 5 hours. After cooling strain, and add 5 lb . white copal, $61 / 2 \mathrm{lb}$. sandarac.
The following is a capital method of preparing trac ing paper for architectural or engineering tracings Take common tissue or cap paper any size of sheet; lay each sheet on a flat surface and sponge over (one side) with the following, taking care not to miss any part of the surface: Canadian balsam 2 pints, spirits of turpentine 3 pints, to which add a few drops of old nut oil; sponge is the best instrument for applying the mixture, which should be used warm. As each sheet is prepared it should be hung up to dry over two cords stretched tightly and parallel, about 8 in . apart to prevent the lower edges of the paper from coming in contact. A
soon as dry, the sheets should be carefully rolled on straight and smooth rollers covered with paper, about 2 in . in diameter. The sheets will be dry when no stickiness can be felt. A little practice will enable any one to make good tracing paper in this way at a mode raterate. The composition gives substance to the tissue paper.
You may make paper sufficiently transparent for tracing by saturating it with spirits of turpentine or benzoline. As long as the paper continues to be moistened with either of these, you can carry on your trac ing; when the spirit has evaporated, the paper will be opaque. Ink or water colors may be used on the surface without running.
A convenient method for rendering ordinary drawing paper transparent for the purpose of making tracings and of removing its transparency, so as to restore its former appearance when the drawing is completed, has been invented by M. Puschers. It consists in dissolving a given quantity of castor oil in one, two, or three
volumes of absolute alcohol, according to the thickness of the paper, and applying it by means of a sponge. The alcohol evaporates in a few minutes, and the trac ing paper is dry and ready for immediate use. The drawing or tracing can be made either with lead pencil or India ink, and the oil removed from the paper by
immersing it in absolute alcohol, thus restoring its original opacity. The alcohol employed in removing the first oil is of course preserved for diluting the oil ased in preparing the next sheet.
Put $1 \frac{1}{4}$ oz. gum mastic into a bottle holding 6 oz . best spirits of turpentine, shaking it up day by day; when thoroughly dissolved, it is ready for use. It can be made thinner at any time by adding more turps. Then take some sheets of the best quality tissue paper, open them, and apply the mixture with a broad brush. Hang up to dry.
Carbon tracing paper is prepared by rubbing into a tissue a mixture of 6 parts lard, 1 of beeswax, and sufficient fine lamp black to give it a good color. The mixture should be warm, and not be applied in excess.
Saturate ordinary writing paper with petroleum and wipe the surface dry.
Lay a sheet of fine white wove tissue paper on a clean board, brush it softly on both sides with a solution of beeswax in spirits of turpentine (say about $1 / 2$ oz. in half pint), and hang up to dry for a few days out of the dust.

Dissolving Rubber

The solution of India rubber or gutta-percha in chloroform or benzole, frequently called for in photographic work, is usually attended with so many diffi culties and drawbacks that, in nine cases out of ten, says the British Journal of Photography, where the solution is required the experimentalist usually purchases it ready made. Yet there need be no difficulty about the matter. First, pure rubber should be ob tained-when vulcanized, it is perfectly insoluble. Sec ondly, pure solvents are necessary; chloroform containing a large excess of alcohol and water will fail to act even upon the purest rubber. Again, under the most satisfactory conditions, the action is very slow, and the amount of rubber capable of being taken up is proportionately very small. The plan usually adopted is to place a large amount of shredded rubber in a bottle, which is then filled up with the solvent, and shaken at intervals a few times; and when the shreds do not dissolve like pieces of sugar the whole is thrown aside, and we are written to for an explanation of the failure. If a small quantity of rubber had been placed in the bottle, and the liquid added, it would have been ob served gradually to swell out very considerably after the lapse of some time, and a mixture of the whole would be facilitated by stirring with a glass rod or a splinter of wood. The rapidity with which the rubber absorbs the solvent will depend upon its condition; but the action is never very quick, nor is it in any way analogous to the dissolution of a crystal.
One cause of the failure of chloroform to act upon the caoutchouc may arise from the presence of alcohol in too great a proportion. Chloroform as sold almost always contains alcohol in small quantity, owing to the fact that when none is present it cannot be pre vented from decomposing spontaneously, more especially in the light. It is, however, stated that when entirely protected from light absolute chloroform will not undergo any change.
A solution of gutta-percha in chloroform has a use which is not generally known. It forms when carefully made, and filtered quite bright, the best possible material for obscuring glass for focusing screens. For fine microscopic work it is said by those whose opinions are of weight to be unequaled.

A King's Workshop.

In a letter recently received from Burmah a characteristic sketch is given in illustration of the state of the country under its present ruler, in which it is stated that at Sagine there is what is called the king's workshop, which was erected at the instance of the last ruler at an enormous expense, his idea being to build steamers for his own and the country's use. The shipbuilding yard is at Mandalay, and the place at Sagine was designed as a foundry, in which cast and wrought ron was to be treated. Two large furnaces, fifteen boilers, three furnaces for cast iron, seven large engines, five rolling mills for bar iron, and a quantity of other machinery (including a large steam hammer, lathes, punching and shearing machines, and stone and ore crushers) have been put down. All that is required is to start the fires and raise steam; yet this valuable property is meantime overgrown with the products of the soil. The large steam hammer is twined round with beautiful crimson creepers; from out of one of the furnaces grows a large prickly cactus; the rolling mills are shaded with large tree ferns. The machinery, however, is not rusted, though nearly ten years hav elapsed since the last king died. The works were suspended at his death, and the present king will neither spend more money on the undertaking nor sell it to others.-Iron.

Resuscitating Fish.

Mr. W. O. Chambers, secretary of the National Fish Culture Association, of London, conducted lately an interesting experiment in resuscitating fish by the use of brandy, before. a number of gentlemen at South Kensington:
'Taking two Prussian carp from the tanks of the aquarium, he deposited them in separate dry cans; adorning one with blue ribbon to denote its enforced temperance principles and to distinguish it from the other, which was selected for the administration of spirituous liquors. After a lapse of four hours the fish were placed in water, evident signs of expiration being apparent in both cases. A small quantity of brandy and water was then given to the carp selected for the imbibition of intoxicating liquors, through the medium of a feather, and no sooner was the fish replaced in water than it assumed its normal condition, and seemed to be restored to vigor and strength. The carp enlisted under the banner of the 'blue ribbon league' to all appearances died half an hour after its more fortunate associate, and was taken out of the water and thrown on the ground. About four hours later, however, the fish was picked up by Mr. Chambers, who observed it by appearance to be in rigor mortis. He then at once operated on the seemingly inanimate fish by opening its mouth and pouring a dose of brandy and water down its throat, and again inserting it in the water, when, to his utter astonishment, he noticed slight signs of animation. For five minutes the unfortunate object of the experiment floated helplessly on its side, when presently, to the still greater astonishment of the secretary and those who watched the experiment, it gradually asserted itself in the water, and with considerable effort made use of its fins-feebly at first, but afterward energetically. Both the resucitated.fishes, which show no signs of their late prostration, now swim about with their confreres in the tanks as asual.

The instantaneous reanimation produced in the carp in the first instance was indeed remarkable; but what can be said of the latter, which recovered after remaining out of the water for eight hours? Surely this discovery will prove of the greatest utility and value in restoring fish that would otherwise perish, and be the means of securing greater longevity among them.

Experiments in relation to brandy as a means of restoring suspended animation with quick dying fish resulted equally as satisfactory. It was highly interesting to see the plucky manner in which a trout (S. ferox) battled with his fainting condition and came out the conqueror. Strange to say, the salmon (\mathcal{S}. salar) did not once attempt to rouse himself after being dosed, the consequences being fatal to him; this was the only fish that succumbed under the treatment. The dace (Leuciscus vulgaris) was out of water three times of five minutes each. He was exceedingly faint and almost dead; but immediately after the brandy was given, he pulled himself together, and in the course of a few minutes not only recovered, but darted round the can with a rapidity positively amazing."

Compounds Formed by Chlorophyl.

Chlorophyl when isolated is very soluble in alcohol as well as in benzol or in petroleum ether. Leaves, either fresh or dried, however, do not give off their chlorophyl to petroleum ether, but merely a mixture of yellow or colorless matters. Hence it seems that the chlorophyl is contained in envelopes insoluble in petroleum ether, but soluble in alcohol. The deep green alcohol extract of dried and powdered leaves, if refrigerated, yields an abundant deposit of yellowish or colorless matter insoluble in petroleum ether. Chlorophyl is very unstable in presence of dilute acids, or even of pure water. It is very stable in presence of bases, behaving like a true acid. Hence M. Fremy gave the name of phyllocyanic acid to the green matter of leaves when freed from the accompanying yellow matters. With bases it forms definite salts; those of potassium and sodium being very soluble in water, but insoluble in absolute alcohol and in petroleum ether. The lead salt is insoluble. Chlorophyl may be found unchanged in the excretions of herbivorous animals, and even in peat.

The Telephone in Paris.

There has just been introduced in Paris a new system of telephone communication. The company issue tickets at five cents each. These tickets may be presented at any of the Paris post offices, and entitle the owner to hold five minutes' conversation with persons in any other post office or at any of the Telephone Company's stations. The Telephone Company offers, at the same rate, conversations at any of their eleven stations with persons at any other station or at the residence of any of their subscribers. For securing prompt medical assistance in cases of accident in the public streets, telephonic communication between the druggists and the hospitals in various quarters of the city jo about to be established. By this means the nature of
the accident and of the remedies or assistance required for its relief can at once be indicated.

ADJUSTABLE WINDOW BEAD FASTENER.

On the window frame or casing behind the bead three or more metal plates or disks are secured, flush with the surface, and covering each a shallow recess. In each disk is a horizontal slot of suitable length, which receives the coarsely threaded point. of a screw passing freely through the head, the slot being as wide as the thickness of the screw at the bottom of the threads. The edges of the slot are adapted to engage with the threads of the screw on opposite sides, thus forming a two-sided nut with straight threads, in which the screw may slide when loosened. The bead fastened to

JOHNSON'S ADJUSTABLE WINDOW BEAD FASTENER.
these disks can be quickly adjusted toward or from the sash, to prevent rattling or binding, by a very slight movement of the screws without turning them out from the slots. The disks are cheap, and easily applied to any window; and the screws may be of the common kind, or have heads not needing a driver.
This invention has been patented by Mr. Edwin A. Johnson, of 104 Fayette Street, Allegheny City, Pa.

DOUBLE BOLT SASH LOCK.

The engraving shows a cheap and strong sash lock, recently patented by Mr. Edwin A. Johnson, of 104 Fayette Street, Allegheny City, Pa. The bolts are confined by a removable bottom in a casing secured on the top of the lower sash directly above the side rail. The swinging bolt is held at the inner end by a pivot, and at the free end has a beveled hook which engages with the edge of a notched plate on the upper sash, thus drawing the two sashes together. The sliding bolt enters an apertured plate in the window frame, and is moved by a pin projecting through a guide slot in the top of the casing. The two bolts are connected with each other by a sliding joint, consisting of a pin in a slot, and thus are operated together by the projecting pin and by a spring bearing on the inner end of the sliding bolt. At each end of the slot in the casing is a notch, which receives the projecting pin and thereby holds the bolts in place when drawn and when locked.

JOHNSON'S DOUBLE BOLT SASH LOCK.
Apertures at short intervals in both plates permit the sashes to be securely fastened when partly open for ventilation.

A NEW method of making chlorine has been described by Le Genie Civil as the invention of MM. Pechiney. It consists in the addition of magnesia to a concentrated solution of magnesium chloride, so as to produce a solid mixture, which is then treated with air and heat. Nearly the whole of the chlorine is liberated, a part as free chlorine and a part as hydrochloric acid. The residue consists of magnesia, which is used over again with a fresh charge of magnesium chloride.

Perhaps the richest train that has passed over any road in this part of the country, says a Western news paper, was that which went over the Hannibal \& St. Joe one day recently. The train was composed of two cars of gold bullion, three cars of silver, eight cars of silk, and four cars of tea. The gold and silver were from Colorado, destined to the Philadelphia Mint. The silk and tea were from California, going to New York. A Pennsylvania paper, not to be outdone by the West erner, claims that the longest train ever seen on the Lehigh Valley road was one that passed over that thoroughfare about the same time the richest train was coming East over the Hannibal \& St. Joe road. It consisted of 123 eight-wheel coal cars, all loaded, and was drawn by a single engine.

Huge Locomotives.	
Railroad............................... Brazil.	Sonthern Pa
Type of engine. Decapod.	El Gobernado
Weight in working order, $\mathrm{lb}144,000$	152,000
Weight on driving wheels, lb. 128,000	121,600
Weight of tender empty, lb.............. 34,000	50,650
Water, coal, and tools, $1 \mathrm{lb} . . . \ldots \ldots$. . 46,000	35,000
Total weight tender, lb................... 80,000	85,650
Total weight engine and tender, ib..... . 224,000	237,650
Tank capacity, gals....... 3,500	3,000
Coal capacity, lb 16,000	10,000
Cylinders, diameter and stroke...... 22×26	21×36
Driving wheels, diameter, in. 45	57
" " number.................. 10	10
Tractive force per lb. av. press. in cylinders, lb.	$278 \cdot 6$
Driving wheel base.... $16 \mathrm{ft} .111 / 2 \mathrm{in}$.	19 ft .7 in .
Engine wheel base............... 24 ft . $61 / 2 \mathrm{in}$.	28 ft .11 in .

It will be seen from this that the Decapod ha slightly more tractive force, and is slightly lighter than El Gobernador. There is a singular difference in the tenders. El Gobernador's tender is 50 per cent heavier than that of the Decapod, but carries less water and coal. This is probably due to the fact that El Gobernador's tender has six-wheeled trucks.
One great difference, says the Railroad Gazette, be tween the two engines is in the size of the wheels. The Decapod's wheels are made as small as possible in pro portion to the stroke of the pistons, and consequently the saving of weight effected by the smaller wheels and shorter cylinders enables the boiler to be increased to the unprecedented size of 64 inches diameter. The smaller wheels also enable a shorter driving wheel base to be adopted, the large wheels on El Gobernador nearly touching one another, though the wheel base is very long. In the Decapod there is room for two Westinghouse driver brakes on each side of the engine, and the wheel base is shorter, though still of considerable length for working round sharp curves. The Decapod is a new engine, and the first with ten coupled wheels constructed by the Baldwin Locomotive Works for the wide or standard gauge, though two decapods, each weighing 90,000 pounds, have been built for the 3 foot gauge.
The piston rod is 4 inches diameter, and the main crank pins are 6 inches diameter. All the coupling rods have bushed ends. The Laird cross head is of cast steel, and the slide bars are cast iron. The boiler is fed by two long-stroke pumps and an injector. The reverse gear is a combination of screw and lever, so that either may be used.
The middle wheel of the coupled wheels takes the main rod. The two hind pairs and the front pair of drivers have flanged tires, but the main drivers and the pair immediately in front of the main drivers have plain tires.
The tender is fitted with a roof over the coal space and is carried on two four-wheel trucks.

IMPROVED SLED.

The improvement in sleighs patented by Mr. Samuel Baum, Lock Box 66, Little Falls, N. Y., is particularly adapted for those known as "bob sleighs." The under side of the runner is formed with a longitudinal groove in which fits the rib of a steel shoe held to the runner by rivets or bolts. The forward ends of the runners gradually curve upward, and, at a point about on line with the raves, bend backward. These rearwardly bent ends are wider than the body portions, and are formed with flanges (as shown in the sectional view, Fig. 2), which bear against and protect the side edges of the raves; if desired, these might be extended so as to inclose the raves their whole length.
Just back of the flanged portions of the runners, the raves are joined by a sand board, and the rear ends of the runners are turned forwardly and upwardly and then inwardly, and secured to the under side of the sand board. Curved braces connect the runners and the under sides of the raves at their ends. A brace secured to the sand board extends to near the forward end of each rave. From about the center of each runner projects a brace having three branches, two of which are secured to the raves and the third to the sand board. The forward curved portion of the runner is supported at two points by branches of a brace secured to the rave and also to the sand board, as shown. This construction provides a sleigh which is thoroughly strong, which will last a long time, and not be likely to need repairs.

MPROVED MINE RAILWAY

The object of the invention herewith illustrated is to lessen the cost of transportation of ore, coal, etc., by utilizing part of the power of the hoisting car for operating a surface car. On a shaft journaled in the shaft house is mounted a grooved pulley, C, over which the hoisting cable, D, passes from the engine house down the inclined shaft to the skip, F, which runs on a track in the shaft and on a track extending upward from the shaft, and provided with a dump, H, near its upper end, where the skip is dumped automatically. Leading rom the shaft house to where the ore is to be deposited

imphoved mine railway.

is an inclined track on which the dumping car, K , runs; this car is secured to a cable, L , which passes over the pulley, I, and winds about the drum, M. On the shaft carrying the drum is a grooved friction pinion adapted to be engaged with a friction wheel on the shaft, A. The drum shaft is journaled on a frame, T, one end of which is pivoted and the other end connected with a lever provided with the pulling rod, P . As the skip is pulled up the incline the pulley, C, is revolved by the cable, D. Upon the rod, P, being pulled down, the frame, T, is raised and the friction wheels brought into contact with each other, thereby revolving the drum and drawing up the dumping car; by the time the dumping car is under the dump, H, the skip arrives at the dump and empties its load into the car, K. Upon the rod, P, being released, the frame moves downward enough to disengage the friction wheels, thus permitting the car, K, to run down. In the mean time the skip is lowered. In operation this arrangement would require only one man in any shaft house to run it, and would do away with all men and horses for tramming about a mine; neither would it require an engine and attendants.
This invention has been patented by Messrs. J. C. Fowle, J. P. Christopher, and W. P. Smith, and par ticulars can be obtained by addressing Mr. John C. Fowle, Michigamme, Mich.

Census of Occupations.

The census of 1880 gives the number of persons engaged in gainful occupations as $17,392,000$, or 47.31 per cent of total persons over 10 years old. These were encent of total persons over 10 years old. These were en
gaged in the four chief lines of occupation as follows Agriculture, 7,670,000; professional and personal serv-

BAUM'S IMPROVED SLED.
ices, 4, 074,000 ; trade and transportation, $1,810,000$; manufacturing, mechanical, and mining industries, $3,837,000$. In 1870 the number engaged in occupations was $12,505,000$. Of those in $1880,2,647,000$ were women. The number of persons over 10 years of age is $36,761,000$, leaving $19,369,000$ unaccounted for. The latter number is about equal to the number attending school or physically incapable of labor. The census shows an increase over 1870 of about 30 per cent in population, but an increase of 39 per cent in the number engaged in occupations. This increase in number in occupations over the gain in population is accounted for by the growth of the factory system.

DOUBLE-ACTING WATER WHEEL

The upper end of the cylindrical case, A, is flared to receive the water, and is attached to a suitable supporting frame, B, its lower end being secured to a spider or frame, C , in which is formed a central bearing to receive the lower end of the vertical shaft, whose upper end revolves in a bearing in the frame, F. To the shaft within the case are secured hubs, to which are attached the blades, H , the inner ends of which are formed with flanges, h, which are slotted to receive fastening screws, so that the inclination of the blade can be adjusted as desired. Upon the upper part of the shaft, E, is placed a tubular shaft, I, attached to the lower end, G, of which are the inner ends of the blades, J, whose outer ends are secured to the upright

rad's double-acting water wheel.
bars, K. To these bars, below each hub, are attached the outer ends of blades, J, which are inclined in the opposite direction from the blades, H, and whose inner ends project nearly to the shaft. The lower part of the tubular shaft is centered upon the shaft, E, by a bearing formed upon the ends of the bars, M. At the upper end of each shaft is a pulley, $\mathrm{R} \mathbf{N}$, about which pass belts, O, leading to the long pulley, P, mounted upon the counter shaft, Q ; one of the belts is crossed, as shown in the engraving.
When water is admitted into the case, it acts upon the blades, H J, and revolves the shaft, E I, and pulleys, $\mathrm{R} \mathbf{N}$, in opposite directions, and these opposite motions, by means of the straight and crossed belts, O , act together to drive the pulley, P.
This invention has been patented by Mr. Charles W. Rau, of Allentown, Pa.

ROWING APPARATUS

The main object of the invention herewith illustrated is to provide a rowing apparatus, whereby a boat may be propelled by fore and aft oars acting at opposite sides of the boat, and while the rowers look forward. Fixed to the shafts of the oars are pins which enter sockets of plates secured to the gunwale of the boat, so that the oars may swing fore and aft on the pins as centers. The blade of the oar (Figs. 2 and 3) is made in two wing sections, which have elongated eyes of about half the length of each blade. These blades are held on the oar shaft by a collar at the lower end, and are prevented from moving upward by a pin. On the oar shaft is a stud, against the sides of which strike shoulders on the wings when the latter are opened or lie in the same plane; and each wing is made with a side extension which bears against the outer face of the other. The stud prevents the folding of the outer edges of the wings closely together, so that at the beginning of the stroke they will open certainly and promptly, and the extensions form together an overlapping brace the full length of the blade, which may thus be made very light and cheap, and still have sufficient resistance on the pulling stroke of the oar. The oar handles (Fig. 4) are made with a long ferrule, having a feather entering a slot in the end of the oar shaft, and to which is fixed a rod carrying a hand roller. The handles extend thwartships, so that they may be
conveniently grasped to work opposite oars. The oars may be worked separately or in pairs by persons facing the stern of the boat in the ordinary position; but the boat may be rowed forward by one or more persons facing the bow and by a pulling stroke. The two oars at the same side of the boat are connected, above and below their respective pivots, by a rod. The engraving represents the rods connecting with the bow oars at each side of the boat at points above their piv ots, and with the stern oars at points below their pivots; so that, when the stern oar handles are pulled backward, their blade wings will be moved forward and will close, and the bow oars will be swung to carry their blade wings backward and open them for propelling the boat; when the bow oars are pulled, the actions are reversed. In other words, a pull on the bow oars gives the propelling stroke to the stern oars, and a pull on the stern oars gives the propelling stroke to the bow oars. The rings shown upon each of the oar shafts are used to prevent the opening of the wings when it is desired to use but one pair of oars; they are placed upon the upper parts of the closed wings beneath the lips, plainly shown in Figs. 2 and 3. When the boat is not in use, the oars may be held up at the sides by swinging the handle ends down toward each other and then pass ing the bent ends of a short rod into the holes of the oars nearest their handles. This apparatus allows the rowers to keep a sharp lookout ahead, and requires but little or no practice to use; the oars make no noisy splashing of the water, and the boat can be rapidly propelled and quickly turned.
This invention has been patented by Mr. B. Doscher of 136 Meeting Street, Charleston, S. C.

Mother-of-Pearl Designs on Tissues

A German has patented a design in Germany for producing mother-of-pearl designs on cloth by the following method: A thin layer of caoutchouc is spread over a thin copper plate, on which the design is cut. The cloth is spread over the plate, and a hot roller passed over it. By the heat the caoutchouc layer becomes liquid, and by the pressure it adheres to the cloth, on which the required design is thus obtained. The cloth is now covered with powdered mother-of pearl, which is spread evenly by means of a hot roller and the excess of mother-of-pearl which does not stick to the cloth is taken away by means of a soft brush. The cloth is now covered with very fine crepe which has been wetted in gum water, and, after drying, the crepe can be made fast on the cloth, so as to protect the mother-of-pearl powder from falling off, while owing to its fineness and transparency, it does not spoil the brilliance of the powder.

Oil from Soapsuds.

The saving arising from extracting oil from soapsuds is so great that no wool washer ought to allow his suds to run into the sewer in the form they leave the bowls Tanks are prepared to receive the suds, and when a tank is full, a certain quantity of vitriol is poured into it. This causes the suds to curd or crack, and the grease and all solid matters fall to the bottom, leaving the water comparatively clean. This water is then run off down the drain, and the thicker portion at the bottom is afterward run into a filter bed of sand and gravel, through which the rest of the water gradually

DOSCHER'S ROWING APPARATUS.

The punch shown in the accompanying engraving is designed for the use of boiler makers, tank builders, and workers in tin, sheet iron, and brass generally. While promising the greatest amount of strength, the material is so distributed that none of it is useless.
The block or frame is provided with two recesses, beween which a horizontal prong is formed, in which

THE ACME COLD IRON PUNCH.
the male die slides vertically. On the lower end of the die are projections resting on the prongs of a fork formed on the lower end of a bar sliding in grooves in the end of the block, the forked end of the bar being bent into the bottom recess. This bar is held in its grooves by a clip on the end of the horizontal prong and by a band surrounding the top of the block, and provided with a binding screw for clamping it on the block. The upper end of the spindle, held to turn in the end of the top prong, is formed with a square head, and on the lower end is a nut formed with a spiral groove into which a stud projects from the sliding bar. The bottom of the nut forms a spiral plane acting on the rounded top of the male die. The female die is dovetailed, and slides into a groove in the bottom recess. Held on the sides of the middle prong, as shown in the engraving, is a U-shaped frame having slotted prongs. This frame may be held at any desired distance from the female die. On one side of the lower prong of the block a gauge plate is held, and on the opposite is a slotted bar carrying movabl gauge, which can be locked by means of a winged screw. At the rear of the block is a handle for holding it. In the bottom edge of the front of a block forming half of the box for the spindle, and held on the outer end of the upper prong of the frame by the band, is held an anti-friction roller, on which the top edge of the spindle head runs.
The piece of metal to be punched, being placed on the female die, the spindle is turned, when the spiral plane on the bottom of the head acts on the rounded top of the male die, and forces it through the plate. The spindle then being moved in the reverse direction, the spiral groove in the head acts on the stud and pulls the sliding bar upward, this in turn pulling up the male die. The U-
filters, leaving the solid and greasy matter behind This is laid in cloths and called "puddings," which are pressed in hydraulic or steam presses till all the oil is squeezed out. From what is left, potash and other ingredients can be extracted, and the refuse is used as manure. The oil must be purified, and can then be used with great advantage for soap making or lubricating. As it is not worth while for each wool washer to do this for himself, it is advisable to sell the suds. The price, of course, is clear gain, especially when much
greasy colonial wool is used
shaped frame prevents the plate from rising with the die. One revolution of the spindle accomplishes the work. The convenient form of this punch, which has been thoroughly tested with the most satisfactory results, will commend it to boiler makers, as it can be used in places where it has been almost impossible heretofore to punch with a machine, and less power is required to operate it, as none is consumed in overcoming friction. Further particulars may be obtained from the inventor and manufacturer, Mr. S. Coons, of Orbisonia, Penn.

CASTING A STATUE OF HEROIC SIZE

(Continued from first page)

ounding. Yet this presents no obstacle to the bronze founder beyond now and then taxing his ingenuity. A piece mould is made of the plaster statue, the one we are about to describe consisting of more than 1,100 pieces. This piece mould is made of French sand, and is built up about three or four inches thick. When the statue has been completely covered, these pieces are separated and dried, and then reassembled, the space occupied by the statue being filled with sand to form the core. The pieces are again removed, and the core is pared down, the quantity of sand removed rom the surface-determining the thickness of the metal The pieces are again assembled around this core, and then placed in the flask (shown in the large view), the pace between the piece mould and sides of the flask being filled with sand packed tightly, when the metal is run in. Why there should be so many pieces in the mould will be readily perceived.

As an illustration, we may take the cavity in the ear, supposing it to be a conical opening with the base toward the interior. If we represent this opening by \wedge_{12}^{3} to fill with sand so disposed that it may be removed and yet be an exact imprint of the interior. The space marked 1 is first filled with a small trianglar piece of sand, and then the space marked 2. The adjoining faces of these pieces are so trimmed as to form a wedge-shaped opening, the base of which is toward the exterior. Since each piece within the cavity must pass freely through the opening marked 3 , it may be necessary to fill the interior with many small pieces The sand forming each piece is thoroughiy tamped as it is put in, to compact it, and make it retain its shape, and each completed piece is dusted, in order that its neighbor will not stick to it. Channels and indentations are formed in each piece, in order to insure their assuming the same relative positions whenever reunited. In this way all depressions in the mould are filled with small pieces varying in size from that of a pea up. When the statue has been completely covered, these pieces are removed and carefully dried. They are then reassembled, and the interior filled with sand packed tightly. They are again taken apart, to allow the core to be trimmed down. To distribute 1,100 small and large pieces of sand, and remember where each piece be-longs-for in putting them together there must be no squeezing to force a fit-is a task of no small magnitude.
The exterior of the core is removed, the thickness of the layer taken away representing the thickness of the metal in the statue. The mould is then built up around the core, which, in the case of the Pilgrim, was supported at the feet, the neck, and at the right shoulder. This formed a narrow space between the core and mould to receive the metal. The space separating the core and mould is as thin as it can possibly be made and yet insure a complete distribution of the metal. The main object to be accomplished by this is to effect a rapid cooling, in order to hasten the setting of the metal, to prevent a separation of the tin and copper, this being likely to occur, owing to the wide difference in the fusi bility of the two metals.

By means of gates, resembling somewhat a tree and its branches, as will be seen from the engraving upon this page, the metal is conveyed to every part of the mould. Three large or main gates lead down the back and sides of the figure and from these extend the short branches, this insuring a rapid flow of the metal to every part of the mould. Passages are provided for the escape of gas, and within the core are placed "lan terns" formed of tin tubes designed to receive the gas formed in the interior.

The Pilgrim was cast in an upright position. On top of the flask was formed a reservoir capable of holding about 1,000 pounds of metal. In the bottom of the reservoir was an opening leading to the gates and closed by an iron plug. At each side of the reservoir was an opening into the mould, designed as an overflow, to show when the mould had been filled completely. The copper is melted in large crucibles, the tin being added afterward, the proportion here used being 92 copper to 8 tin. The reservoir being filled, a large crucible holding about twice as much more is brought by the crane until its contents can be poured into the reser voir. This great quantity of metal is required, since the bronze statue- 9 feet in height-weighs nearly 2,000 pounds.

It is at this stage that one of the most delicate and important features in the whole work makesits ap pearance, and one upon which success directly depends All hands wait until, in the judgment of the foreman, the bronze is at the exact temperature to insure a per fect flow. Too high or too low a temperature would ruin the casting. The men, who have that pride in their work which makes them as interested in the re sult as the proprietors, wait, ready to obey quickly and implicitly the orders given them. At the proper moment the plug is withdrawn from the reservoir and the crucible tipped. Pouring is continued until the meta
the casting has been successfully performed. When cool, the statue is removed, the gates cut away, and the seams trimmed. The head, arm, and pedestal being joined to the body, the work is finished.
In casting the statue of Col. Wadley, the second one ever attempted in this way, the flask was placed at an angle, so shown in the frontispiece, the reservoir being at the upper corner.

The success attending these efforts is due to the ex perience and skill of the men, all of whom have been years in the business. 'The extreme care and attention they devote to every detail shows the great interes they feel in their work. The foundry is in charge of

casting a statde of heroic size.
Mr. John Pischof, while the finishing shops are under the control of Mr. Th. Lorme, both of whom have been for many years connected with bronze casting.

Sorghum.

At a recent meeting of the New York Chamber of Commerce, Dr. Peter Collier, who has made a specia study of the cultivation and uses of sorghum, made an address, from which we extract as follows:
The history of sorghum with us only dates back to 1853, when William R. Prince imported from France a little sorghum seed, which Mr. De Montigny, the French Consul at Shanghai, China, had sent to the Geographical Society of Paris in 1850. In 1857 Leonard Wray, an English merchant, brought from Natal, South Africa, sixteen varieties of sorghum seed. To these last the name imphee was given, while the former was known as the Chinese sugar cane. And yet this plant, whose merit as a sugar producing plant appears to have been recognized thirty years ago, had come to be regarded as mainly valuable for forage or as a source of an inferior quality of syrup. It was a great error obtaining in Great Britain and on the Continent, as also in our own country, that the East Indians were rice-eating people. Fully nine-tenths of them subsist mainly upon sorghum seed. In Turkestan sorghum is the main cereal, as, owing to the excessive droughts, no others could be successfully grown. In the north ern part of China, sorghum was grown as maize is with us, and for the same purposes, and it so entirely satis fied the wants of the people that it had practically excluded maize. I have personally obtained within a few months from Calcutta eleven varieties of sorghum seed, twenty-one varieties from the Dharwar district in Western India, three from Hong Kong, three from Foo Chow, two from Senegambia-in addition to eight varieties from Northern China, three from Cawnpore India, and twenty-two from Natal, South Africa; in all, seventy-three distinct varieties of sorghum-not one of these appearing to be identical with any of the numer ous varieties cultivated in the United States; and it is to be remembered that none of these varieties has ever been cultivated in either of these countries for any pur pose other than the seed and such forage as might be secured from the stalks and blades. Indeed, it is probably true that for the past thousand years the seed of sorghum has furnished food in greater abundance for both man and beast than have wheat and maize com bined.
It is admitted that the demands upon climate and soil of the sorghum, as also the details of cultivation, are practically identical with those of maize, although it is a matter of moment that the sorghum, provided only it secures a good start in the early portion of the season, is capable of withstanding not only, but even flourishing during a drought which would prove fatal to maize. The chemical compositioii of sorghum seed shows it to be practically identical with maize; and for the pur
oses of food, or fattening, for the production of alco hol, glucose, or starch, the one may be substituted for the other, and there is no reason for any difference in their commercial value. Grown as Indian corn is grown, for the seed alone, sorghum is a crop of equal value with corn, and we are prepared to believe that upon a plantation properly located with regard to the mill and with economy in management, the seed will pay the entire expense of cultivation of crop and the delivery of the cane at the mill, as one of our largest orghum planters has assured me.
It will be seen from tables which I present that the average amount of available sugar present in the juice actually expressed, from a crop actually grown, equaled 1,960 pounds per acre, while the amount of availa ble sugar actually present in the crop, on the supposi tion of 90 per cent of juice, was an average of 2,853 pounds per acre. These certainly are astonishing re sults, and since they have been published, there have been, in certain quarters, persistent and continuous efforts to cast discredit upon them, despite the fact that a committee of the National Academy of Sciences (our highest scientific authority) had unanimously indorsed the methods by which these results had been obtained as being " among the best known to science."
The bagasse from sorghum contains not only a large amount of sugar, but other valuable food constituents, and it is, as it comes from the mill, in a mechanica condition admirably adapted for the silo and for eat ing. It appears from averages of a large number of analyses, that the actual money value of bagasse for food is almost exactly double that of ordinary ensilage and since many of our farmers are engaged in prepar ing and feeding ensilage, it is worth while for them to consider the value for this purpose of the bagasse of the sorghum mills, at present used as fuel or for the manure heap. The bagasse, from which the sugar had been thus removed, was afterward submitted to the ordinary process for the preparation of paper pulp, and a sample was made, which, upon being submitted to one of our largest paper manufacturers, was pronounced to be of excellent quality, and worth four and a half cents per pound. A ton of cane would yield at least ninety pounds of such pulp, so that, with an average of ten tons to the acre, there might be made an amount of pulp worth $\$ 40.50$. It is to be considered that each step in the process to which the cane is subjected increases its value for the production of pulp, and as there is nothing in the treatment which forbids its economical employment upon hundreds of tons of exhausted bagasse, there is reason to believe that ultimately this industry may be added to the production of sugar from sorghum cane, thus utilizing a waste product and increasing the profits on the crop. I think, therefore, that it may fairly be claimed for sorghum, from the facts which have been presented, that we have in it a crop fully the equal of Indian corn for its seed, and, in its stalks, fully as rich in sugar as is the sugar cane of Louisiana, and, besides, furnishing, in its bagasse, a material for the silo twice as valuable as common ensilage for food, or which bagasse may, by diffusion, yield at least an average increase in sugar and sirup of fifty per cent over that obtained by the mill, and then furnish to the manufacturer of paper excellent material for pulp.

Alleged Successful Treatment of Hydrophobia.

A native surgeon, M. Nursimula, has written a letter to the editor of the Times of India, from which it would appear that he has treated successfully a case having all the symptoms of hydrophobia. The treatment adopted was the subcutaneous injection of a sixteenth of a grain of atropia. The breathing became infrequent (12 per minute), and the pulse slowed to the rate of 50 per minute. A quarter of a grain of morphia was injected hypodermically as an antidote to the atropia, and this was repeated several times. The symptoms disappeared the third day after the onset of the malady. The patient was a soldier, aged twenty-four, who had been bitten by a dog the week before the symptoms resembling hydrophobia appeared. If the case were one of hydrophobia, it must be allowed that the period of incubation was very short; the dog is not stated to have been $\cdot \mathrm{mad}$, and it must not be forgotten that the presence of symptoms closely resembling, if not identical with, hydrophobia does not prove that the case was one of genuine rabies.-Lancet.

Lead in Enamels.

A very rapid and handy mode of testing the enamel or tinning of cooking vessels, etc., for lead is recommended by M. Fordoz. The vessel is carefully cleaned to remove all grease, etc. A drop of strong nitric acid is then placed on the enamel or tinning, and evaporated to dryness by gentle heat. The spot where the action of the acid has taken place is now wetted by a drop of solution of potassium iodide (5 parts iodide to 100 of water), when the presence of lead is at once shown by the formation of yellow lead iodide. Tin present in the enamel, etc., does not give a yellow spot when the potassium iodide is added, the stannic oxide formed by the nitric acid not being acted upon.

A One wheel watch.

A curiosity in the way of watches was shown by $\mathbf{M r}$ E. Sordet, director of the Watchmakers' School a Geneva, before the horological section of the Society of Arts. This wonder is nothing less than a watch with one wheel, manufactured at Paris, in the last century, by a Mr. Gautrin. The watch was presented to the National Institute in 1790 , being then in a deplorable state; but the teacher of the repairing section at the school, Mr. Emile James, has, after many hours of labor succeeded in re-establishing harmony between the vari ous organs, so that it is now in going order. The great wheel which gives the watch its name occupies the bottom of the case and the center of the plate; it has 60 teeth, and is 33 mm . in diameter. Its axis carries two pinions, one of which receives the motive force from a barrel, and the other carries the minute work. The function of this great wheel is quadruple. First it acts on a lift, then on a lever operating on another destined to lower the axis of the watch, and lastly on a third lever, the latter serving to return power to the great wheel at the moment when the action relents by the rise of the axis.

Value of Patent Property.

An illustration of the worth of a first class patent for a device that everybody wants to use, is seen in the Bell telephone patent. The committee of three appointed by the Ohio Legislature to investigate the telephone companies in Ohio have prepared a report in which they say that there are about 12,000 complete sets of instru ments in use in the State, all owned and controlled by the American Bell Telephone Company, of Boston These instruments are leased to the local companies at an annual rental of $\$ 20$ for each set, making the annua tribute paid by these local companies over $\$ 200,000$. The cost of each set of instruments did not exceed $\$ 3.35$ On instruments which did not cost the Bell company over $\$ 40,000$, it receives over $\$ 200,000$ annually. The Bell company, before granting a franchise to a local company, exacts from 30 to 35 per cent of the stock of the local company and from 20 to 25 per cent of the gross earnings of all toll lines. The committee declares that in its judgment the Bell company is an imperious and unconscionable monopoly, and should be restricted by legislation, or at least be taxed upon the commercial value of its instruments, and that it should be required to pay, in addition to the taxes upon its instruments, a tax upon gross receipts.
A new industry was created when the Bell telephone was invented, and great ability has been shown in the administration of the company's affairs from the com mencement. To these facts the large profits are greatly due. Had the company's affairs been less wisely manuged, probably it would not now figure before the Ohio Legislature as an " unconscionable monopoly," fit only to be plundered by the tax gatherers.

The San Francisco Bridge Company recently made a large blåst with a view of obtaining 90,000 tons of rocks for constructing a sea wall at San Francisco. The quarry is a bluff, 60 feet high, at the water's edge at the mouth of Visitation Valley. Eleven tunnels in all have been run and four have been exploded, 11,000 pounds of Judson powder being used. Each tunnel was 50 feet long, and extended to an L, in which was the powder. From the L to the mouth of each tunnel rock and dirt had been " tamped" in as hard as possible. The four explosions were to occur successively, the first to loosen the cliff and make it easier for the second to become effective, and so on. The first explosion was awaited with some little apprehension by the harbor commissioners and other occupants of the towboat. But when it occurred, with a dull, heavy sound, and it became apparent that fragments of stone were not to fly through the air, there was a unanimous desire that the boat should move nearer the shore. The other explosions occurred soon after. No. 3 was a grand affair. A great section of the cliff was toppled over, and huge bowlders and tons of dirt rushed down to the water's edge. The blasts were pronounced successful, and the quality of stone, on subsequent inspection, seemed satisfactory to the harbor commissioners. It was estimated by the engineers that the 11,000 pounds of explosives had displaced in about 10 minutes 35,000 tons of rock and earth.

Spontaneous Combustion of Lampblack.

Fires occurring from spontaneous ignition of vegetable black are very common. Oily rags are more liable to self-ignition during the summer after a continuance of dry, warm weather. A sudden storm or a shower of rain appears to give life, as it were, to the parched-up matter, and a fire is the result. It has been also noticed that the reverse occurs after a continuance of wet weather. A few days sometimes are sufficient to set up active and rapid combustion, especially among sweepings in paint and oil stores, consisting generally of wood dust, dried vegetable and animal powder, colors more or less saturated with
varnish, turpentine, oils, etc. Lampblack, if packed in a leaky cask when freshly prepared, condenses the atmospheric gases on its surface, which, owing to the porous nature of the substance, is very large in proportion to its weight. In condensation the gases give out a certain amount of heat, which under favorable circumstances is sufficient to cause the ignition of some inflammable substance accidentally present, which, by combining with the condensed oxygen, liberates heat enough to cause the ignition of vegetable black, which, when once started, soon spreads until the contents of the cask become red hot.
This spontaneous ignition is not infrequent in many large carriage factories, and builders' shops have been destroyed solely from this cause, To put it in printed paper would insure ignition from the absorption of the oil in the printing ink by the lampblack, generating gas which would soon ignite the soot or lampblack. One among many instances of well attested cases of spontaneous ignition is described in the Paint, Oil, and Drug Review. It occurred at a large carriage works at Grantham, England, in a shop far away rom fire or the chances of a spark. The paint shop was gradually illuminated on a mild summer's evening during daylight. It was noticed through the workshop windows, and seen to be a tub of loose lampblack slowly consuming the cask. It was easily carried out on to the grass to finish its work. It was thought that, being near the grinding-paint stone, some oil had been splashed into it, or an oily rag dropped into the lampblack. The secret was soon found out by the palette knife being found among the ashes of the cask, having been carelessly dropped in with some wet paint on it; or even without any wet paint, the dry, oily paint which accumulates on the blade near the handle would be sufficient to cause ignition. It is not the large quantity of oil, but the small quantity, which is the cause of it. This is so well known, that ome coach makers, when they receive lampblack, put it into a sound cask and pour enough linseed oil into it to saturate the whole.

AN ELECTRICAL STANDARD FOR MEASURING LIGHT Our large engraving represents a new form of arrang ing an incandescent electric lamp with reference to its ase as a standard light for photographic purposes, and is the outcome of a long series of experiments by Mr Thomas A. Edison and his assistant, Mr. John Ott, in charge of Mr. Edison's laboratory.
The problem of obtaining a steady light and a uniform current from a variable battery, with lamps of varying resistances, has been a puzzling one, but has recently been very ingeniously overcome; and it is our purpose to relate some of the incentives which led Mr. Edison to reach the result obtained.
During the past winter months the officers of the Society of Amateur Photographers, of this city, undertook to invent or provide some form of standard light which could be depended upon, to be used in testing the sensitiveness of different brands of gelatino-bromide dry plates. It occurred to them that possibly Mr. Edison might devise a uniform electric light, the actinic qualities of which, it was well known, would be invaluable for the kind of work to be undertaken
The strength of the light required was to be equal to one candle power. When the matter was first introduced to Mr. Edison, he was of the opinion there would be no difficulty in obtaining a means of accurately measuring and controlling the resistance of such a smal lamp, if a battery was employed.
The original plan was to interpose a known resistance in the main circuit with the lamp, which could be varied, and also an amperemeter or a voltmeter for measuring the variations of the current; but, after a large number of experiments, it was found impossible to make an instrument delicate enough to accurately measure the very low resistance in the lamp, which is said to be equal to about three-fourths of an ampere.
Mr. Edison then turned his attention to the utiliza tion of the electrical compensation balance invented a few years ago by Prof. Poggendorf, which is generally recognized as being the most delicate method of measuring electro-motive force of batteries, and at the same time has the advantage of being entirely free from any detrimental polarization.
In this method of measurement thecurrents from two batteries are so balanced by the insertion of a variable resistance that, if a galvanometer is inserted in the cir cuit, no traces of a current can be perceived.
The arrangement as shown consists of a standard constant battery, a galvanometer, a key, a rheostat or resistance wire made in two sections, two parallel brass rods arranged directly above each section of the wire, provided with adjustable collars, which connect the bars to the sections of wire, and a switch, all fixed upon a base which rests upon a photometric testing box. Within the latter, supported upon a sliding board, is the standard electric lamp.
Hinged to this board is a long wood rod, which when the side of the box is closed, as it is intended to be for actual work, permits the operator to move the lamp at the open end to different distances from the sensitive
plate, held in a plate holder slide, shown at the opposite
end. The lamp is connected by flexible cords to the binding posts leading to the main battery and one of the sections of the rheostat wire.
The apparatus is intended to be used in the photographic dark room. The cell of the standard battery, S , is the standard by which the electro-motive force of the Fuller, or main lamp, battery, M, is measured.
The battery, S, which is comparatively new, was de vised by Mr. Geo. Wirt, who is connected with the Western Electric Mfg. Co., of New York, and is a modification of the well-known Daniell battery. It is so constructed that the fluids cannot become disturbed or mixed through any slight jarring. It consists of three square bottles, $1 / 4$ inches square by $41 / 2$ inches high, with a neck $7 / 8$ of an inch in diameter by 1 inch long, securely clamped together with metal screw rods at the top and bottom, and held in an upright position by a light wood framework, as shown in the engraving. In the upper part of the adjoining sides of bottles I. and II. is drilled a small hole $3 / 8$ of an inch in diameter, and in the lower part of the adjoining sides of bottles II. and III. are similar holes, all arranged to correspond with each other.
A soft rubber washer separates the bottles at the holes, making a water tight joint, and also acting as a support to hold in place a thin film of gold-beater's skin, through which the liquids must pass by the process of endosmose and exosmose, from one bottle to the other. All of the bottles are filled with a dilute solution of ulphate of zinc; within bottle I. is placed a piece of sulphate of copper about the size of a pea, which changes the solution to a blue color; the copper electrode at the bottom is connected by an insulated wire, which passes through the cork to the back of the key, K. At the bottom of bottle II. is a small chunk of zinc, whieh collects any deposit of copper, should any pass through from bottle I.
In the top of bottle III. is suspended the zinc elecrode, which measures about $11 / 8$ inches long by $3 / 4$ wide and $1 / 8$ thick; its conducting wire as shown passes directly to the galvanometer, G.
It will be noticed this arrangement gives a very constant battery which cannot polarize, as each electrode is completely isolated, and the separation of the bottles with the gold-beater's skin also prevents an easy mixture of the solutions. Each electrode is never endangered, but is kept immersed in a solution favorable to retain it in perfect condition.
The main or Fuller battery, M, has been somewhat modified, but consists of a zinc electrode inserted in the porous cup, in which has been placed a teaspoonful of mercury and a dilute solution of sulphuric acid and water.
In the glass jar are four carbon rods about one inch square, arranged to fit in each corner of the jar, connected by a ring of wire at the top to one conducting wire, which passes out through the top of the cell. The jar is filled with the usual bichromate of potash solution, known as electropoin. A metal screw cap secures a rubber cover to the top of the jar, and thereby prevents the evaporation of the solution. Six cells are employed, and are plainly seen, located on a shelf at the right, in Fig. 1.
The amount of resistance inserted in the series is a trifle more than the resistance of the lamp while hot, and consists, of a length of $51 / 2$ feet of German silver wire ${ }_{10}^{10} \frac{6}{00}$ of an inch in diameter, divided into equal sections connected together at one end, as seen in the diagram of Fig. 2, near the key, K, by a metal link. One section lies upon the millimeter scale parallel with and directly under brass rod No. 2; the other also lies on the board under brass rod No. 1. The section of resistance wire under rod No. 2 is electrically connected thereto by a hinged metal pointed foot and adjustable collar, which may be adjusted to any point on the rod over the millimeter scale, and is secured by a set screw. The position of this collar is never changed except when a new lamp is to be inserted in the circuit. The section of resistance wire under rod No. 1 is electrically connected to the latter by a sliding collar provided with a spring, at the end of which is a grooved brass wheel about $3 / 8$ of an inch in diameter, which bears directly upon the wire.
In the diagram, Fig. 2, the arrangement of the apparatus will be seen more clearly. S represents the "standard battery," G the galvanometer, No. 2 brass rod with fixed collar, No. 1 brass rod with movable collar, \mathbf{R} resistance wire, which also connects with wire under rod No. 2, K key in the circuit of standard battery, L the electric lamp.
In order to intelligently understand the operation we will detail the two different circuits of the bat teries.
The circuit of the Fuller battery, M, is from the posiive or carbon pole of the battery to brass bar No. 1 see Fig. 2), through the collar, spring, and wheel to the German silver wire, R, to the lamp, L, and then back to the negative or zinc pole of the battery. It will be seen that by sliding the collar on rod No. 1, the amount of resistance in this circuit is easily increased or diminished.
The circuit of battery S is from the positive or cop
thence through the pointed foot and fixed collar to brass bar No. 2, through the galvanometer, G. and back to the negative or zinc pole of the battery.

In the lamp circuit a switch is inserted for turning the current on and off when testing.
It will be noticed that there is a section of the resistance wire, R (the amount between the end connecting with key, K, and the pointed foot under rod 2), through which the current from each battery flows; and although the current from the main battery, M, has a circuit in.

Fig. 3.-SENSITOMETER SCREEN.

dependent of the galvanometer, it is in this section of wire that both currents are brought into juxtaposition and the electro-motive force of the main battery compared with that of the constant battery, S. The variation is at once noticed on the galvanometer, and is easily regulated, as will be hereafter described.
In operating the lamp, the switch in the lamp circuit is first turned on, then the key, K, is pressed, which brings the current of the standard battery, S, into opposition to the current from the main battery, through the galvanometer, G. If the electro-motive force of the main battery is too weak, the needle of the galvanometer will be sent to the right of zero a few degrees by battery S; but such movement is at once overcome by diminishing the resistance in the main circuit through the sliding of the collar on rod No. 1 toward the left, in the direction of key, K. As quickly as the resistance is eut out by this movement, so is the needle of the galvanometer forced back to the left until it reaches the zero point; then the batteries are exactly balanced, and the light obtained is equal to that of a standard
necessary to locate the hinged pointed metal foot under the brass rod No. 2 at a different point on the mil limeter scale, to correspond with the number marked on the label attached to each lamp.
The mode of testing the candle power of each lamp is to first set the hinged pointed foot arbitrarily at some number on the millimeter scale, then to turn on the switch of battery M, and gradually slide the wheeled collar from the extreme right hand end of rod No. 1 to the left until enough resistance is cut out to make the intensity of the light from the lamp equal the light of a standard candle, and at the same time to see that the reading of the galvanometer is zero.
The average of a large number of photometric read ings is taken to determine the uniformity or the intensity of light emitted from the standard candle.
In view of the differences in the lamps, each one is marked with a special number, which is the separate test, as was shown on the millimeter scale, when it was originally tried, and is to be used when the lamp is put into the main circuit of battery, M, in the manner previously described.
The electrical standard of light thus obtained is far more constant and reliable than that obtained from the standard candle in that all variation of the flame or the uncertainties of the wick are avoided. The galvano meter employed is of the ordinary pattern, having an estimated resistance of about 500 ohms.
As soon as any blackening occurs on the interior of the globe, or even before it, which is due to the gradual destruction of the carbon film from long use, the lamp is removed and a new lamp substituted.
The lamp when employed in making the photographic tests is used but a few seconds at a time, and it is estimated one lamp will, on this account, be good for several thousand tests before the variation of the light will amount to more than one per cent.
Much credit is due to Mr. Edison and his assistant in working out the practical details of the apparatus, and the simplicity and delicacy by which the resistance is employed to control the current of the variable battery is especially commendable.
So delicate is the balance that the resistance of a quarter of an inch of the resistance wire can be read on the galvanometer.
The application of the light in testing the sensitiveness of photographic dry plates may be described as follows: A sensitive dry plate is placed in contact with a Woodbury carbon screen (see Fig. 3), such as is used in a Warnerke sensitometer, in a plate holder, and the latter is set into a groove at one end of the testing box, the slide protecting the plate from all light, then being withdrawn, as shown in Fig. 1. The electric lamp is then placed so as to be opposite the center of the screen and twenty-four inches therefrom. The switch putting the battery M in circuit is now turned on, and the light emanating from the lamp is allowed to act
by the light is dissolved out. It is again washed, and when dry is laid film side down upon a piece of white paper. The highest number on the finished negative which can be seen represents the sensitiveness of the plate, and by means of comparative tests the relative sensitiveness of different plates is thus easily determined.
It should be mentioned that the Woodbury screen Fig. 3) is a plate of glass coated with a film of carbon tissue divided into squares, and is made by exposing the sensitized tissue behind another negative screen having similar squares, for a certain number of minutes to the light of the sun, and afterward developed, by dissolving out, with hot water, the parts of the film unacted upon by light. Each square is shaded to be a

Fig. 2.-Diagram of circuits.
trifle more dense than its neighbor, and they are disinguished by numbers.
No. 1, it will be noticed, is quite transparent, while No. 25 is nearly opaque. The row of figures at the bottom is intended to show in a more compact way the difference in the shading.
A sensitive plate showing a reading of 25 will be regarded as having an extreme degree of sensitiveness; and other things being equal, such as freedom from fog in thefilm, will be excellently adapted for taking instantaneous pictures. One showing 14 would be considered very slow, but excellent for copying or for ordinary landscape work. Nearly two hundred tests have been very successfully made with the lamp, and it forms a valuable addition to the photographic laboratory. In addition to its application to photography, the light may be used for many other purposes, such as comparative photometric tests with other kinds of illuminants. It forms a ready and convenient standard for use in the laboratory, or even for use in gas works, and is an improvement which has long been sought for.

Fig. 1.-mlectrical apparatus for making photo-sensitometric tests.
candle; at this zero reading we have also a constant number of volts of electro-motive force.
A bunch of twenty lamps accompany the apparatus, and may be seen resting upon the base board near the galvanometer. Although all of the lamps may possess the same electrical resistance, they will not emit an equal amount of light, hence in inserting a new lamp it is
upon the screen for twenty seconds; it is instantly stopped by turning off the switch.
The sensitive plate is next removed from the plate holder and placed in a developing solution of a given strength for five minutes, and it is then taken out, washed, and immersed in a fixing bath of hyposulphite of soda until the bromide of silver film unacted upon

Mr. Edison and the Society of Amateur Photogra phers are to be congratulated on their success in at last having found a practical method for the more exact measurement of light. It is a matter of sci entific interest to the community at large, and is well worthy of the attention of all who are in search of a standard light.

MONUMENTAL NESTS.

BYC. F. Holder

Among the many fictions of zoology, that relating to the method of nesting of the flamingo seems to have been one of the most fortunate in surviving, as it is only within a year that the question has been fairly settled. In almost every popular book of the day, where the nest and bird are figured, the latter is shown sitting astride of the nest. In one of the late taxidermists' exhibitions, a group of these birds was displayed, superbly mounted, and correct in every detail except this-that the legs were astride the nest.
Sir John Richardson writes in his Museum of Natural History: "The nest of this bird is very curious, being a small hill of mud with a cavity in its summit. In this the female lays two or three eggs, which she hatches by sitting astride upon the hillock." Nuttall evidently took the same view of it, for he says "They breed in societies in inundated marshes; during the progress of incubation raising the nest to the height of the body by collecting mud into a hillock with their feet, where they brood and hatch, often standing in the water."
It finally occurred to some one to examine a flamingo, and measure the top of the nest, when it became evident that the diameter of the nest was greater than the distance between the legs of the bird, and that such a position was impossible.
Mr. Maynard has settled the matter by visiting a rookery in the Bahamas, where he observed hundreds of these birds upon the nest; and in every case the legs were drawn up, the flamingoes nesting like other birds, as the stork, for example.
The nests in this rookery were from one to four feet in height, formed of mud, and standing partly in the water. It is interesting to note in this connection that, although the flamingo does not dangle its legs on either side of the nest, there is an American bird that does, and I am indebted to Mr. Richard Holder, of Freeport, Ill., for a sketch of the nest of a sandhill crane (Grus canadensis) that formed one of a number observed on his estate near Bloomington, Ill. For several years they were not disturbed, and he had many opportunities for studying their curious ways. The nests were formed in a marsh, some of them being built in the water, of mud and rushes in a pillar shape to a height of about two feet, and in some cases more, having a regular and somewhat ornamental appearance. They were surrounded by rushes, and so protected from view.
In nesting, Mr. Holder informed me that they sat upon the nest exactly as the flamingo was supposed to do, with a leg hanging down on either side, resting on the ground or in the water, so that they could easily rise and step away. For a number of successive years they were observed in the same locality always resting in this way. At this time they were extremely pugnacious, attacking all comers with great fury, striking with their powerful wings and beaks.
The courtship of the brown crane, as it is also called, is an amusing performance, and from a snelter near this rookery the actions of the birds were often watched. The lovemaking appeared to consist of feats of physical prowess enacted by the males for the benefit and amusement of the gentler sex. The performance includes the most absurd and grotesque movements. A bird would suddenly raise its wings and run about, capering this way and that, as if taking steps to the measure of some accompanying music. Now it would leap in the air, hopping entirely over the back of a comrade, as shown in the accompanying illustration, then strutting off with an inimitable dandified air.
Nearly all the cranes are noted for their curious and erratic actions at this period, but none equal those of this great bird. In appearance they are exceedingly majestic, standing nearly or quite four feet high, and presenting a curious spectacle when on the wing.
These birds range now from Florida to the Pacific, wintering as far south as Florida. They appear in the Washington Territory in April, arriving in large flocks, and building on the most exposed parts of the open plain-a plan that enables them to discern their enemies a long distance off. In the Colorado River valley they are very common in the summer time; flocks composed of many thousands often appearing in quick succession, the roar of their wings and the loud cry of the leaders being audible a great distance. The nests of the flamingo and sandhill crane are not unique, as quite a number of birds build in a similar way, the nest being elevated for various purposes. That of the whooping crane is at least two feet high, and, according to some authorities, the elevation is to allow the legs of the bird to rest on either side, as in the case of its ally, the sandhill crane. While the latter bird is confined more to the interior portions of the continent, the whooping crane is found in various localities on the coast, but in yearly decreasing
numbers. In former years they were seen in vast quantities. Of their noise, Captain Amidas said that when he landed on Wokokon Island, on the North Carolina coast, it sounded as if an army of men had shouted in concert.
Concerning their migrations in the early times, Nuttall writes: "In the month of December, 1811, while leisurely descending on the bosom of the Missis

OCHOROWICZ'S LOUD-SPEAKING TELEPHONE RECEIVER
sippi, in one of the trading boats of that period, I had an opportunity of witnessing one of these vast migra tions of the whooping cranes, assembled by many thousands from all the marshes and unpassable swamps of the North and West. The whole continent seemed as if giving up its quota of the species to swell the mighty host. Their flight took place in the night, down the great aerial valley of the river, whose southern course conducted them every instant toward warmer and more hospitable climes. Theclangor of these numerous legions, passing along high in the air, seemed almost deafening; the confused cry of the vast army continued with the lengthening procession; and as the vocal cry continued nearly throughout the whole night, without intermission, some idea may be formed of the immensity of the numbers now assembled on their annual journey to the regions of the South."
One of the albatrosses erects a nest two feet in height rounding it off so that the top is much the largest, allowing a full rim to hang down on all sides, so that from a distance they look like inverted hats. Professor Mosely found a practical use for them on the Challenger voyage, utilizing them as seats when he became fatigued tramping over the desert spots in which thev were found.

Drowning not Painful.-A
good deal has been written as to

DR. OCHOROWICZ'S LOUD-SPEAKING TELEPHONE.
An endeavor has, for a long time, been made to devise a telephone system that should transmit speech to a distance with sufficient intensity to be heard within a certain radius around the apparatus, and without the necessity of applying the receiver to the Th
The problem has already been partially solved by Mr. Gower, and by Mr. Edison in his electro-moto graph. Dr. J. Ochorowicz has recently presented a still completer and more perfect solution to the Inter national Society of Electricians and the French Society of Physics.

In the construction of his apparatus the inventorhad especially in view the application of it to the auditorium of theaters, for which, in fact, it appears to be well adapted. The system, as a whole, includes a transmitter of variable resistance, the special arrange ment of which Dr. Ochorowicz keeps secret; and of a magnetic telephone receiver, whose principal features are shown in the annexed cut. This receiver, which is identical with Bell's, since it contains the three es sential parts of that instrument (magnet, bobbin, and vibrating disk), differs from it, however, by import ant modifications of form, to which it owes its re markable power.
The magnet consists of a hollow steel cylinder, con taining a logitudinal slit about a fifth of an inch in width. To the center of this are fixed two small soft iron cores, upon which are placed two bobbin that are traversed by the undulatory current modu lated by the transmitter. These two bobbins are in closed in a sort of elastic metallic box, formed of two thin sheet iron disks held parallel by their external edges upon a cylinder. The lower plate, which is firmly affixed to the magnet, contains two apertures which allow the iron covers to pass freely.

The magnetization of these cores keeps the box thus formed in a state of tension, and the two ends o sheet iron slightly depressed and attracted toward each other. The effect of the variations in the undulatory current which is traversing the bobbins is to increas or diminish the magnetization of the cores, or, we might say, to cause the flow of force to vary. The box becomes compressed or dilated under the action of such variations, and vibrates in its entirety.
Thus is explained the power of a receiver which, connected with Dr. Ochorowicz's special transmitter has permitted speech, song, and music to be heard throughout the entire hall of the Geographical Society -a room capable of holding as many as five hundred persons. The telephone receiver is capable of operat ing as a transmitter. Speech is, in this case, transmitted with less power, but it has still enough intensity to be easily and very distinctly heard at a yard or two from the receiving apparatus.
In the microphone transmitter employed by Dr. Ochorowicz, heat appears to play a certain role, if we are to judge by the fact that all the experiments re peated before the Society of Electricians, February 4 succeeded except the last. Dr. Ochorowicz attributes this result to the fact that it is necessary for the microphone to be warm in order to be regulated. As soon as it ceases to be so, the regulation is destroyed, and is not effected again until a new heating occurs. Since, in the experiments mentioned, Leclanche piles were used, these became polarized after a certain time, and allowed the receiver to get cool. Such an inconven ience is remedied by the use of Daniell and Lalande and Chaperon piles, or of accumulators. It must be alṣo noted that, in Dr. Ochorowicz's system, transmitting is done directly, without the intermedium of an induction coil acting as a transformer.-La Nature.

The Mittheilungen says: Herr Himly (of the firm of Siemens and Halske) was lately commissioned to photograph a document with an aniline blueink. Of course, the usual process was unsuitable, as the writing would have come out white. Herr Himly then tried a plate stained with aza line, and the reproduction succeeded to perfection. The editors were also successful in photographing, in the same way, dra wings upon yellow paper. ed to be who are drowned. The Nautical Magazine for March relates how a little girl who was thrown into the Thames, at Kew, by its nurse, explained the matter to a jury in her own simple way: "I sank till I felt my feet touch the bottom, and then I fell asleeptill I found myself wrapped up in a blanket in the boat house." She added: "There was no pain beyond the first shock of the water." It may thus be gathered that death from drowning is by no means a painful one.

Herr Himly also communicates to the same paper a slight novelty in the treatment of lichtpaus pictures upon ferro-prussiate paper. It of tens happens, par ticularly in summer, that pictures on ferro-prussiate paper are overprinted, and their blue color assumes a dirty, dark, greenish tint. Such prints may easily be saved. Herr Himly prepared a very weak solution of caustic potash, and places the overprinted picture in it until the lines become clear and the whole thing ap pears gray, the greater part of the coloring matter having been converted into iron oxide. He then pre pares a weak solution of hydrochloric acid, and im merses the print, when it once more comes out a fresh blue color. The picture is then washed and 'dried in the usual way.

PRUNING ORNAMENTAL TREES.*

Many will remember when it was common, in planting street trees, to trim them to a bare pole and cut off the top, like the left hand tree in Fig. 1. This treatment, however, nearly always resulted in success in seeuring the growth of the tree, for if the top had been allowed to remain, it would have been too heavy for the mutilated roots. The wind would have blown it about, and the supply of moisture from the soil

Fig. 1.
would have been insufficient for the large mass of leaves above. This result will be obvious on examining the central figure, which represents the tree before removal, with all its top, showing partly the length of the roots in the soil, which, however, are twice as long as represented, as tree roots in general are found to be quite equal to the entire height of the tree, and often much more. The circular line at the base shows the usual length of the roots when cut in taking it up, and it is obvious at once from the picture that these short roots could not hold and feed the entire mass of branches and leaves.
The bare pole, however, is long in recovering from this severe lopping and in forming a new head; but if the pruning is performed so as to leave three-fourths of their length, and with most of the small shoots cut away, the roots will then be able to sustain them, and a new head will be readily formed from these shorten-

Fig. 2. tump will branch will be reduced nearly one-half; and if at the innerline, two-thirds or three-fourths will be cut away, and an even, smooth head thus obtained.
If a proper framework is provided for the head when the tree is young, but little heavy pruning will be required afterward; but neglected trees often require some lopping of large branches in after years. Some-

Fig. 3. less time.
It is important that the shortening should be properly done, so that the new head may have a good, symmetrical form, and no dead stubs remain. Fig. 2 represents a single side branch, and by the small dotted lines the place is indicated where it may be cut off. By selecting the place of a fork, and no
e

,

ed branches in ones allowed to grow erect. With much represented beauty is the gateway shown in Fig. 11, where the trees have their natural growth, and are cut away only enough for a passage next to the gate. A passage through a hedge or screen is easily made in this way, and if the hedge is partly obscured by irregular planting near its sides, the whole view may be entirely in keeping with natural planting of the grounds.
The remark is sometimes made with much confidence, in referring

Fig. 8. labor required to keep such trees con stantly in these unmeaning shapes would be sufficient to take care of ten times as many trained in their own char acteristic forms.
Less objectionable but still giving a somewhat stiff and unnatural outline, arc the gateways seen on highly finished grounds, Fig. 10. Four trees are

Fig. 7. planted, or two on
each side of the pass

times the saw is set in at the top of the branch and near the body of the tree, and when cut nearly through, the weight of the limb bends it down and it splits off, leaving a bad wound, as shown in the figure (Fig. 3). To avoid this disaster, set the saw on the lower side and cut in a short distance (as in Fig. 4), and then cut
*To that excellent agricultural newspaper, The Oultivator and Country Gentlemana, we are indebted for the illustrations and article on
"Pruning Ornamerital Trees."-ED. "Pruning Ornamertal Trees."-ED.
above a little farther out than the lower cut, and the limb is severed without injury. The whole may then be made smooth by sawing off the stump nearer to the body of the tree, or this second sawing may be avoided by bringing the two first cuts nearly in the same line, the upper one being slightly outside the lower one.
A very common and bungling mode of pruning off side limbs is to leave stumps two or three inches long. The new wood attempts to heal the wounds in the process of growth, but many years are required to cover them. The mound which the growing wood forms at their base, shown in Fig. 5, renders a larger wound necessary if the whole is pruned away to form a smooth tree.
In planting and raising trees on ornamental grounds, they should not be pruned away from their natural shape; but while deformity is always to be avoided the characteristic beauty of every kind should be re tained. The attempt should never be made, for example, to train the American elm into the form of a Lombardy poplar, nor the oak into a weeping willow. The oak has its own peculiar characteristics, as shown in Fig. 6; the rounded head and drooping branches of the elm give it a grace and beauty which should be strongly retained. When these and other ornamental trees are young, their forms may be directed in pruning by adopting the principle represented in Fig. 2, at the same time avoiding stiffness and formality.
 The Norway spruce, and some other evergreens, exhibit the finest shape when the branches are allowed a natural sweep by resting on the ground, as shown in Fig. 7. By selecting those specimens in the nursery row which show this luxuriant and drooping habit, very fine forms may be secured. Persons who have no appreciation of natural beauty are occasionally met with who trim up the stems several feet from the ground, Fig. 8, reminding the spectator of boys on stilts.

The most unnatural and deformed mode of training ornamental trees, and mostly confined to evergreens, is seen in what is termed topiary work. In Fig. 9, the central object represents an evergreen trained into something most nearly resembling a haystack, a form often met with in dooryards and small places. The two other trees are given forms as remote from their natural grace as can well be imagined. The
the shape of apple dumplings is preferable to the natural form. For similar reasons, the natural grace of ornamental trees will be preferred by a cultivated taste to stiff and grotesque shapes which entirely obscure the natural beauty. The frequency with which minor deviations are seen from true taste renders the exhibition of just principles a matter which should not be overlooked, but which should be presented frequently to the public.

The Arrican Inland Sea.

A party of French engineers and hydrographers has left for Tunis, charged with making the necessary studies on the spot for the construction of the harbor in the Bay of Gabes, at the mouth of the Oued Mellah,

Fig. 9.
in connection with the canal which is to establish navigable communication between the Mediterranean and the Chotts. It will be remembered that, in the early spring of 1883, M. De Lesseps made a trip to those great marsh lakes in Southern Tunis which it is the intention to convert into a vast inland sea, with a view of testing the results of the late Colonel Roudaire's survey, and that he came back convinced that the scheme was practicable. The expedition which has now started will also make investigations as to the feasibility of sinking artesian wells along the route, and the survey for a railway which it might hereafter be thought necessary to construct.
The head of the expedition is Commandant Landas, Professor of Topography at the School of Saint Cyr. He is accompanied by M. Baronnet, who assisted Colonel Roudaire in making the preliminary surveys, and several other engineers. It may be advisable to recall to mind the chief features of the report on the undertaking which M. De Lesseps published after his return from Tunis in 1883. It states that the estuary of the Oued Mel Oued Melah, which is to be the beginning of the canal leading to the Chotts to be inundated, offers a part, covered at high water, of sufficient breadth, which might easily be excavated, and

Fig. 10. would form a part sheltered by nature from all the winds from northeast to south passing by the west. The winds from northeast to south passing by the east would not be dangerous to the breakwaters. The roads in front of the entrance are, moreover, in exactly the same situation as those of Gabes. The navigation in the canal, according to the report, would offer no difficulty, as the canal would form almost a straight line. The calcareous rocks found by Colonel Roudaire's soundings in 1879 at the base of the Gabes bar, but of comparatively unimportant extent, are an advantage rather than an inconveni. ence at the mouth of the canal. They will furnish the requisite material for the construction of the pier and port buildings. M. De Lesseps thinks that, considering the nature of the soil

Fig. 11. traversed, it will be sufficient to cut, in the alluvial part, a canal, on the average 80 to 100 feet wide, which will be further widened by the action of the current. This cutting could be executed in the maximum period of five years, at an estimated cost of $£ 6,000,000$. The proposed inland sea would be fifteen times as large as the Lake of Geneva. It has an elevation much lower than the level of the Mediterranean, the depression being in some places as low as 165 feet below that level.-Iron.

ENGINEERING INVENTIONS.

A device for feeding air to furnaces has been patented by Mr . William Thomas, of Pittston, Pa his invention covers a special construction and ar especially for use in furnaces in which culm is burned
in burning which the ashpit is usually closed and air in burning which the
A boiler ash pan has been patented by Messrs. James C. Anderson and Frank H. Latimer, of
Winnipeg, Manitoba, Canada. This invention relate Winnipe, Manitoba, Canada. This invention relates its object the insuring of an even draught of air and its distribution where most effective, air chambers bein employed, and with them slots
form a tight bottom to the pans.

agricultural inventions.

A combined cotton sweep, chopper, etc., has been patented by Mr. Thomas J. Fowler, of Bir mingham, Ala. This invention covers a special con-
struction, intended to be simple and inexpensive, and readily adjusted and controlled, for a machine to sweep readily adjusted and controned, for a machine to sweep
or bar off the plants, chop them to a stand, and dirt or hill them at one passage along the row
A hay stacker has been patented by Mr Philo F. Terry, of Green City, Mo. This invention drawn up the inclined track and the load is automatically discharged on the stack, the apparatus adjusting itself for the descent of the carrier for the next load. Ferdinand Clemens, of What Cheer, Iowa. The seed dropping slides of the sed boxes are attached to a frame
hinged to the axle, connected with the axle by a rock linged to the axle, connected with the axle ey a rock
shaft with arms, a sliding bar and its holding spring nd a cam wheel, so the seed dropping slides are
rated by the revolution of the axle and its wheels

miscellaneous inventions.

A harness pad has been patented by Mr Herman A. Fonteine, of Auburn, N. Y. It is formed
with transverse slots for admitting a free circulation with transverse slots for admitting a free circulation o
air to the skin of the horse covered by the pad, to pre

A stocking or garment supporter ha been patented by Mr. Sherwood B. Ferris, of Lakewood,
N.J. This invention provides a supporter consisting of afcord with an adjustable loop at its upper end, a slide a its lower end, and a button attached to the slide by
flexible connection.
A collar button has been patented by Mr. Henry J. Geer, of Attleborough, Mass. This inven of a spring catch, a hinged plate, and a headed stud, de signed to work so the button cannot
A power jack has been patented by Mr John W. Massey, of Shuqualak, Miss. This inventio relates to power jacks for leveling buinding, laying
flooring, rolling logz, etc., and is an improvement on particular line.
A wedge has been patented by Mr This invention cousists in details of the fring device by which the charge in the wedge is soe exploded that
the force is expended in splitting the log without damthe force is expended in splititing the log without dam
ging the wedge, which may be used repeatedly.
A bicycle has been patented by Mr. Har ry H. Jones, of Lancaster, N. H. This invention com-
bines with a foot lever and clutch a band connected with the foot lever, with other novel features to form a bicycle in which the driving wheel is not operated di rectly from the foot
and straps or bands.
A sash fastener has been patented by Mr. Benjamin S. Cury, of Mariee, an. Cond with the casing is a pivoted lever, a pin projecting
therefrom, and a spring strip with an aperture, and having its upper end bent outward and through a slot having its upper end bent outward and through a slo
in the casing, making an improved device for holding a sash at any desired elevation
A saw handle has been patented by Mr. Frank A. Buell, of Brooklyn, N. Y. It is a wooden saw
handle with a metal bottom bridge, having in its upper harface a dovetailed groove for receiving a dovetailed ridge on the bottom of the wooden part of the handle,
making a saw handle which is simple in construction, making a saw hande
A blasting powder has been patented by Mr. Adrien Gacon, of Paris, France. This invention provides a new explosive compound, intended to have
the force of dynamite, but with none of its defects or dangerous properties, the compound consisting of a mixture of nitrate of potas
A saw arbor has be
yman D. Wolcott, of Wright' Patented by Mr. collar and screw-threaded spindle extending therefrom clamp it in a manner to prevent springing or dishing o the plate, the arbor being adapted for use in jointing
An ice pick has been patented by Mr. Ethan Rogers, of Cohoes, N. Y. The blade has serrat at the oppostte end, and an angularly arranged inter mediate shank for the handle, ,o that quick and effect
ieve work can be done by a light pick, and the cut ic ive work can be done by a light pick, a
afterward be readily broken by the tool.
A wood moulding machine has been patented by Messrs. Henry Baxter and August F. Anton,
of Memphis, Tenn. This invention consists of contriv ances of edge trimmers, moulding bits, and guides in a
wood-moulding machine, so two mouldings can be wood-moulding machine, so two mouldings can ba
dressed out of one strip at once, and so two strips caa be dressed and four mouldings made at the same time. A fan attachment has been patented by Mr. Albert Nawadny, of New Orlenis, La. It is so
made as to be readily applied to and detached from sew
ing machines, a bent rod carrying a fan holder, a spiral
spring having hooked ends, and there being a connect spring having hooked ends, and there being a connect-
ing wire by which the fan can be operated from the
eadle.
A ticket clip has been patented by Mr Wiliam Souter, of Leeds, Mass. It is an approximate y U-shaped piece of spring metal having curved arms,
with their convexities presented toward each other to form clamping jaws, one of the arms having a spring ing tickets on garments.
An automatic button fastening machine as been patented by Mr. Albert Hall, of Cypress Hills, . Y. This invention covers an improvement on
ormer patented invention of the same inventor, an consists mainly in combining with the fastening device means for automatically feed
A water carrier has been patented by Mr. James F. Fine, of Lake, Washington Ter. This in ention covers a special construction and combinatio un upon a wire or other tram, whereby people living pon mountains may

An oiler has b

 John J. Leavitt and John Q. Leavitt, of Sint Lake City,
Utah Ter. It has a valve seated in its spout or nozzle tah Ter. It has a valve seated in its spout or nozzze
of special construction and operated in a novel way, so that the nozzle may be held downward without wast will be allowed to flow out at the desired spot.
A photographic camera has been pa ented by Mr. Walter Clark, of New York city. This invention covers a rotating lens holder combined with camera box of special construction, with separate apertures for exposure and focusing, and fixed object glasses separate from the plate holders, whereby the re
moval and replacing of the plate holder is not necessary order to obtain a focus.
An oil cup has been patented by Mr. Ezra Best, of Quincy, Ill. This invention relates to oil
cups used for supplying oil to bearings of machinery within steam chambers, and provides means for utiliz ng condensed steam to cause the oil to flow into th alivery pipe, and to control the amount of steam supply
and oil, while enabling the operator to see exactly a and oil, while enabling the operator to see exactly at
what rate the drops of oil are falling into the cylinder. An agraffe for pianos has been patented by Mr. Augustus Baus, of New York city. It has tw prongs, each with inclined aperture, the central axes of circumstances can the strings slip, and the tuning pin re relieved of a part of the strain they are subjected to in pianos of ordinary construction, and the instrumen will not need such frequent tuning
A paper hanging implement has been patented by Mr. Oscar L. Case, of Windham, N. Y end of a strip of paper, next adjusts the strip to its place opposite to but not against the wall, then holds it at the end to its place on the wall, and finally com-
pletes the laying and securing of the strip throughout pletes the laying and securin
its entire length on the wall.
A hay rack has been patented by Mr. erome Stormer, of Moline, Ohio. This invention rewagons to better adapt them for carrying hay, and covers a special construction by which the rack is pre
vented from moving backand forth on top of the wagon and the hay is keving back and forth on top of the wagon, and the hay is kept from clogging the
being readily taken apart for shipment.

A bone black oven has been patented y Mr. George Murdoch, of Brooklyn, N. Y. Combined with the furnace and ovens proper is a narrow vertical fue extending between the ovens, and small latera
passages leading upward from ovens to flues, the ovens being made with a contracted grate bottom covered with a slide, with other
A time lock has been patented by Mr. Moses C. Hawkins, of Edinborough, Pa. This invention covers an auxiliary train and bolt releasing device ope rated by the lock spindle, and arranged to open the lock case of acciaent to the arding lime lock, the devic ing more particularly designed for use in connectio

A propelling device for boats has been patented by Mr. Charles F. Smith, of New York city. are wings or blades hinged on the sleeve, with various ther novel features, constituting a propelling devic hich can be held in rowlocks or other guides on the bo or machinery.
A bottle stopper has been patented by plate is made with two downwardly projecting arms, the lower ends of which are pivoted eccentrically to nks that are in turn pivoted to a spring collar or band clamped on the neck of a bottle, with other novel fea
ares, constituting a bottle stopper that is simple and effective.
A unicycle skate has been patented by Mr. James B. Elliott, of London, England. A whee ith ball bearings is loosely mounted on a short shaft, haft passing through a vertical slot in the bar; the ront part of the skate is held by clamps, while the heel
of the boot is pressed into a heel socket and a bolt snaps in the back of the he
A skillet cap or cover has been patent d by Mr. Frank R. Wells, of Lagonda, Ohio. It conraised flangearound the lower end of the body portion, he handle being pivoted at one end and so bent thatit other end bearsagainst the side of the skillet cap, mak
ing a pan cover which is very efficient and easily ing a pan
cleaned.
A door check has been patented by Mr Charles E. Hewitt, of Brandon, Vt. It is a door stop
with a base and means of attaching it to the floor, a ead piece pivoted to the base and adapted to hold the and tongue stop, with other special features, forming an mexpensive device for holding doors open to any desir mexpensiv.
A feathering paddle wheel has been patented by Mr. William Emmett, of Logansport, Ind Longitudinally slotted shafts are journaled in en
wheels or circular frames, and in each of the shafts paddle or blade is held to slide transversely to the length of the shaft, the blades having stops and shoulders fo automatically adjusting them

An adjustment for solar cameras has been patented by Mr. William C. Strong, of Kent's Hill Me. This invention covers a special mechanism to af ford facilities for the ready adjustment of the mirror to cut off communication with the outside air, fo
adjusting the projecting lens by a pivoted lens bar adjusting the projecting lens by a pivoted lens
to render the slide holder readily removable, with \mathbf{v}
ous other novel features.
A valve cock has been patented by Mr Henry J. H. Brooks, of Bloomfield, N. J. It is so mad hat if the thread in the neck wears out it can be easily the edges of the valve and seat are slightly curved o cause them to fit and form a close joint, the globe ct., not being interrupted by projections
A feed regulator for roller mills has been atented by Mr. Forrester M. Tatlow, of Hannibal, Mo his invention covers certain combinations and detail construction makinga,feeding device adapted for us eady, even stream of feed is required, and is intended to operate upon the coarsest bran or the finest mid A tenoning machine has been pat ented by Mr. James R. Brumby, of Marietta, Ga. This invention covers a machine which is automatic in its action, and in which both ends of the sticks
re tenoned at the same time, the tenons, owing to the re tenoned at the same time, the tenons, owing to th ne with each other so that no further operation is essary to fit the sticks for use.
A transportation barrel has been patent ed by Mr. Reuben H. Kachline, of Martin's Creek, Pa
It is made with staves connected at their side edges by ongues and grooves, and so held together by adjustabl ontracted as roquired, so that can be expanded an contracted as required, so that fruit or other sub-
stances can be pressed in the barrel, or the barrel can
and ventiated should that be desired. Mr. Gregory Roths, of Cincinnati, O. This invention ombines wick spools and tightening rollers with a can le machine, so the wick can be drawn tight previous to to save cutting off, thus effecting a saving of wick and keeping the stearine or other material free from the im purities caused by the remelting of
candle usually cut off with the wick.
A bag, pocket book, or purse frame has . Combined with the front bar of the frame, carryin catches, is a knob attached to the locking bar connected with the rear bar of the frame, an inclined finger con nected with the front bar resting against the knob, so the bars of the frame will be forced apart by the move ment of the locking bar, thus pro
A. wheel for vehicles has been patented by James E. Deweese, of Nevada, Mo. The hub has ovetailed sockets and a removably bolted plate; the nlarged and their outer portions curved and sprung to e-enforce the rim, the free ends of such curved portion lapping the heels of the adjacent curved and sprung
portion, making a wheel which is very strong, light, portion, making a wheel which is very strong, light
A bale ejector for baling presses has been patented by Mr. John L. Duval, of Houston, Tex In combination with a baling press follower, trucks
re provided with ropes or chains, pulleys, pulley seg re provided with ropes or chains, pulleys, pulley seg-
ments having arms, and stationary arms for drawing e trucks forward, and ropes or chains, pulleys, an eights for drawh, the press by the movement of the follower.
A fire escape has been patented by $\mathbf{M r}$ Ephraim Watts, of Middletown, Pa. This invention re ates to fire escapes in which a car or receptacle is fitted placed on or against the outside of a building, and placed on or against the outside of a builing, and
covers a peculiar arrangementand combination of parts herefor, so a person may raise or lower himself to any A pulp grinder has been patented by Mr. William H. Howell, of Thorold, Ontario, Canada his invention covers a special construction and ar the running stone is of conical form, and is sur ounded by a fixed stone of corresponding shape, the
onner being made with curved furrows and the sta onary stone having similar furrows running in oppo ited
A folding bath tub has been patented Mr. John A. Throckmorton, of Sianey, Ohio. It hem at its upper edge and a rectangular frame with olding legs, adapted to be disposed parallel to the end ach composed of five jointed pieces, making a bath tub which may be easily reduced to the limits of a trunk fo A
An oil press mat has been patented by Messrs. Alfred Jones and Thomas Blake, of St. Louis,
Mo. This invention relates to wire mats used in comMo. This invention relates to wire mats used in com-
pressors, which are hereby so constructed that theooil is pressors, which are hereby so constructed that theoil is
prevented from lodging in the edges of the mat, thus
giving a "dry edge" to the substance being pressed, the oil is prevented from accumulating in the meshes of the mata and the substance is restrained
beyond the surface exposure of the mat.
An adjustable mirror has been patent ed by Mr. Stearns K. Abbott, of Charlestown, Mass., P Box 10 . 1 . contrived frame for holang the mirror, and in which ired position for use for either tall or short people, o for children sitting on the floor, so that mirrors of medi size may be made more useful than large mirrors a ordinarily hung.
A photographic plate or sheet holder as been patented by Mr. Erastus B. Barker, of New with the septum of the holder, of an a winging frame made to clamp the marginal portions of the sensitive sheet on against the septum, with othe ovel features, making a device for which the ordinary plate hol
adapted.

A photographic paper and sensitive mulsion therefor has been patented by Mr. Thomas C. facing of gelatine and bromide of silver, and the inven on also covers a compound for facing photographic aper consisting of gelatine, bromide of silver, and a hop ver, of a toothing substance, such as the sulphate
ar
A churn dasher has been patented by Mr. Redford W. Fisk. of Council Grove, Kansas. Thi nvention covers a novel construction, whereby wing churn that it can be advantageously operated with a mall or large quantity of cream, the rapid motion the dasher throwing the cream against the sides of the box, and keeping it from one to four inches highe han at the center, while the butter globules float on he top of the cream and collect at the middle.
A combined metallic cap and fastene or bottles forms the subject of two patents issued to r. Alfred L. Bernardin, of Evansvile, M. The cap ottle nozzle, or otherwise a collar is adapted to fit nder the neck of the bottle, and made integral with ertical strips, the lower part of the fastener being de achably secured to the cap flange by means of clips and the invention being especially dosigned to be used
A pump has been patented by Mr. Hans Mortensen, of Leadville, Col. It is so con-
structed as to almost balance itself, requiring only suf cient power to lift the amount of water discharger a ach stroke; with two upper cylinders open at the bot passing through the cylins open at the top, piston rod bottom cylinders of an stand pipe, and the invention covering various othe stand pipe, and
novel features.
A pump guard has been patented by James B. Brown, of Hannibal, Mo. This invention oot roller which guides the chain of a chain pump int the lower end of the tube and guards the tube from vear, substituting therefor a device less likely to ge wear, substituting therefor a device less likely to ge
out of order by wear and rough usage. A device fo replacing pump chains has also been patented by the same inventor, the object of the invention being to re gain chains which have been lost, and to restore the ame to their proper position in the pump.
A brick machine has been patented by Mr. Andrew J. Miller, of Meadville, Pa. Among the ovel features covered by this invention are a sectiona est while the filled moulds are pushed from beneath it special arrangement of relief gate at the front of th press box to allow obstructions to be removed, an means for operating the gate; also in regard to the di in the press box, and in the mechanism for reciprocat
ing the mould discharger, for regulating its stroke, and ng the mould discharger, for regulating its sta
An improved system of building jetties orms the subject of two patents issued to Mr. Frank A
Hyatt, of Sabine Pass, Tex. According to this inven ion the entire jetty, except the sills and mats, is mad re completely embedded in mud, so no pat the are completely embedded in mud, so no part of the
tructure can be injured by the teredo, and the metal plates are to be coated with suitable material or pain o prevent their oxidation, the whole making a form of jetty adapted for use in deep water, or where the cur ent is very strong, and great strength in the jetty is re quired
A dynamite shell has been patented by Mr. James F. Marvin, of Fort Apache, Arizona Ter. I inte from to overcome the danger from firing dyna head with guns, the projectile consisting of two parts, kirt forming casing that fits easily on the barrel, so he head covers the muzzle; the design is that whe he gun is fired, the air space between the powder in the core and the base of the projectile will become so
charged with expansive gases that the pressure will force the p
vibration.

A child's carriage has been patented by Messrs. Eugene A. Gerbracht, of New York, and Ernest
W. (̧erbracht, of Brooklyn, N. Y. The vehicle is contructed with side bars connected by pivoted diagonal bars and a spring; to the side bars are attached the hort axles of the whecls and the side parts of the body the vehicle being held in place, when folded, by a fas ening, the vehicle being especially adapted for folding gether to take through doorways and narrow places. The same inventors have obtained an additional patent on a seat which folds with the carriage, and which,
when the carriage is open for use, becomes rigid, and rve he carriage is open for use, becomes rigid, an serves also as a lock
the carriage in place.

Business and æersonal.
The charge for Insertion under this head is one Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office
as early as Thursday morning to appear in next issue.

Pattern Letters (metallic) to put or patterns of cast Pattern Letters (metallic) to put on
ings. H. W. Knight, Seneca Falls, N. Y.
Wanted.-A Hardware and Malleable Iron Salesman,
familiar with the Western trade. State experiences, references,
Louis, Mo.
Wanted.-To correspond with New York and Eastern parties who make a specialty of manufacturing small tin articles, in regard to the manufacturing of a small, pa work. Experimental stage passed. Address Dew \&
Robertson, Charleston, Ill. Hull Vapor Cook Stoves.-Best in the world; sell
everywhere. Agents wanted. Send for catalogue and erms. Hull Vapor Stove Co., Cleveland, Ohio.
A Handbook on the Teeth of Gears, \$1. Circular logue S. Geo. B. Grant, 66 Beverly Street, Boston, Mass All Scientific Books and App. cheap. School Electri
ity, N. Y. Revolving Head Screw Machines. Three sizes on
hand. Prices, F. o. B., $\$ 300$, $\$ 350$, and $\$ 450$. Brown $\&$ hand. Prices, F. O. B., $\$ 300, \$ 350$, and $\$ 450$. Brown
Sharpe Mfy. Co., Box 469, Providence, R. I. Patent Combination Gauge. Handy tool. Send for catalogue. J. Stevens \& Co., Box 28, Chicopee Falls,
Mass.
Double Cutting-off and Centering Machine to eigh inches
Wristers.-All varieties and sizes on one mac Iron and Steel Drop Forgings of every description d, Conn
Several large Paper Mills have adopted Volney W chines. Providence, R. I.
Useful articles for both sexes are offcred among the bargains advertised in this issue by J. A. Ross \& Co.,
Boston, Mass. This flrm warrants all goods, and makes Boston, Mass.
bona fide offers.
The most complete catalogue of Scientific and Me chanical Books ever published will be sent
plication to Munn \& Co., 361 Broadway, N. Y
Wanted.-A good second-hand 50 horse power engine Address, with
Marietta Ga.
Write to Munn \& Co., 361 Broadway, N. Y., for cataPatent Cases reported in short-hand or on typewriter. Stenographers, with machines, supplied. Copy-
ng. 22 type writers in constant use. M. F. Seymour 239 Broadway, N.
Bevel Gears cut theoretically correct.-Full particu delphia, Pa.
Send for catalogue of Scientific Books for sale by Munn \& Co., 361 Broadway, N. Y. Free on application. Wood Working Machinery. Full line. Williamspor
Machine Co., 110 W. 3d St., Williamsport, Pa., U. S. A. Oars to face your course with speed and ease. At
Shafting, Couplings, Hangers, Pulleys. Edison Shafting Mfg. Co., 86 Goerck St., N.Y. Catalogue and prices free
The Best Upright Hammers run by belt are made by
W. P. Duncan \& Co., Bellefonte, Penna.

Iron Planer, Lathe, Drill, and other machine tools of
modern design. NewHavenMfg. Co., New Haven, Conn. The leading Non-conducting Covering for Boilers, Pipes, etc., is Wm. Berkefeld's Fossil Meal Composition $X_{\text {inch thickness radiates less heat than any other cov- }}$ ering does with two inches. Sold in dry
pound. Fossil Meal Co., 48 Cedar St., N. Y.
Try our Corundum and Emery Wheels for rapid cutThe Providence Steam Engine Co, of Providence B The Providence Steam Engine Co., of Providence, R. I., are,"

Every variety of Rubber Belting, Hose, Packing, Gas-
kets, Springs, Tubing, Rubber Covered Rollers, Deckle Straps, Printers' Blankets, manufactured by Boston Belting Co., 226 Devonshire St., Boston, and 70 Reade St.
Experimental Machinery Perfected, Machinery Patterns, Light Forgings, etc. Tolhurst Machine Works,
Troy, N. Y. Brush Electric Arc Lights and Storage Batteries. Twenty thousand Arc Lightsalready sold. Our largest
machine gives 65 Arc Lights with 45 horse power. Our Storage Battery is the only practical one in the market. rush ectric Co., Cleveland,
The Cyclone Steam Flue Cleaner on 30 days' trial to
Wanted.-Patented articles or machinery to manufacture and introduce. Lexington Mfg. Co., Lexington, Ky.
"How to Keep Boilers Clean." Book sent free by mes F . Hotchise 86 John St
Mills, Engines, and Boilers for all purposes and of every description. Send for circ
Mill Co., 10 Barclay Street, N. Y.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J, For Power \& Economy, Alcott's Turbine, Mt. Holly, N.J. Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York
121 Chambers and 103 Reade Streets, New York.
If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent. \$40. Various other foreign patents may also be obtained. For instructions foreign patents may also be obtained. For instructions
uddress Munn $\&$ Co., Scientific American patent agency, 361 Broadway, New York.
Supplement Catalogue.-Persons in pursuit of infor-
mation of any special engineering, mechanical, or scientific subject, can have catalogue of contents of the Screntific Amfric an SUPplement sent to them free
The Suppiem ent contains lengthy articles embracing the whole range of engineerlng, mechanics, and physical
science. Address Munn \& Co., Publishers, New York.

Guild \& Garrison's Steam Pump Works, Brooklyn,
. Y. Steam Pumping Machinery of every description. send for catalogue.
Machinery for Light Manufacturing, on hand and
built to order. E. E. Gervin \& Co., 139 Center St., N. Y. Nickel Plating.-Sole manufacturers cast nickel an des, pure nickel salts, polishingcompositions, etc. Com lete outfit for plating, etc. Hanson, Van Winkle \& Co
Newark, N. J., and 92 and 94 Liberty, St., New York. Curtis Pressure Regulator and Steam Trap. See p. 222 For Steam and Power Pumping Machinery of Single nd Duplex Pattern, embracing boiler feed, fire and lo uum, hydraulic, artesian, and deep well pumps, air com pressers, address Geo. F. Blake Mfg. Co., 44 Washington
t., Boston; 97 Liberty St., N. Y. Send for catalogue. St., Boston; 97 Liberty St., N. Y. Send for catalogue.
Woodwork'g Mach'y, Rollstone Mach. Co. Adv., p. 222 Anti-Friction tc. Price list free. John G. Avery, Spencer, Mass. A lot of new Chucks of all sizes, slightly damaged, a if price. A. K. Cushman, Hartiord,
The Improved Hydraulic Jacks, Punches, and Tub
xpanders. 'R. Dudgeon, 24 Columbia St., New York Friction Clutch Pulleys. D. Frisbie \& Co., Phila Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co., Rochester, N.Y. See illus. adv., p. 254 . Experimental Tools and Machinery Perfected; all
inds. Interchangeable Tool Co., 313 North 2d St., inds. Interchangeable Tool Co., 313 North 2d St.

Mineral Lands Prospected, Artesian Wells Bored, by $\$$ Diamond Drill Co. Box 423, Pottsville, Pa. See p. 254 $\$ 2.50$ buys a Keyless Drawer Lock that has not
icked. Miller Lock Works, Philadelphia, Pa. Shipman Steam Engine.-Small power practical en Sines burning kerosene. Shipman Engine Co., Boston. ee page 25
Catalogue of Books, 128 pages, for Engineers and The best Steam Pumps for Boiler Feeding. Valley

HINTS TO CORRESPONDENTS.
ames and Address must accompany all letters,
or no attention will be paid thereto. This is for our
information, and not for publication. References, to former articles or an answers should
give date of paper and page or number of question.
In uiris not answerd In reasonable time should
be repeated; correspondents will bear in mind that
some answers require not a little research, that,
though we endeavor to reply to all, either by letter
the
 personal rather than general interest, and requests
for Prompt Answers by Letter, should be
accompanied with remittance of $\$ 1$ to $\$$, according
to the subject, as we cannot be expected to perform such service without remuneration.
Scientific American Supplements referred
to may be had at the office. Price 10 cents each.
Minerals sent for examination should be distinctly
marked or labeled.
(1) E. P.-There is no easy way of tinning cast iron. All the processes for tinning on othe (2) C H. pressure can be carried in a chamber made of cast iro 6 feet diameter by 7 feet high, thickness of iron 1 inch, and if such a chamber can be strengthened, by having
braces of cast iron put in, to safely carry 30 pounds braces of cast iron put in, to safely carry 30 pound
pressure? A. As the form of the chamber is indefinite pressure? A. As the form of the chamber is indefinite,
we cannot answer. If it is a cylinder, with the heads thoroughly stayed by bolts from head to head inside, o and head well bolted, it will stand the pressure. You and head well bolted, it will stand the pressure.
must provide for 60 tons pressure on each head.
(3) F. E. D. asks if a boiler made out of 10 tubes wrought iron, $11 / 2$ feet high, 2 inches in $3 / 2$ inch stroke, $13 / 4$ bore. A. The 10 tubes alone would not be more than half enough as a boiler to run your not be more than half enough as a boiler to run your
engine. The engine with sufficient steam will run the lathe. You will need 15 feet of fire sur
(4) R. H. writes: I have an engine 2×3; what size boat would it run? A. A small Whitehal boat; 4 miles an hour will be good speed.
(5) S. F. McG.-Dry paper is a very good
insulator of electricity. If wet, it of course becomes insulator of electricity. If wet, it of course becomes
nearly as good a conductor as the fluid with which it is (6) T. O. L. asks: How do the American watches compare with the Swiss watches? A. The
American in all the medium and low priced grades take the lead; in the very high-priced hand made watches. the Swiss watches are usually counted the best, though
(7) L. H. C.-It is impossible to charge a Leyden jar directly from a magneto-electric machine You might do it by employing an induction coil, and
charging the Leyden jar from the secondary discharge charging the
of the coil.
(8) A Subscriber asks: Is there any iquid or preparation that will take the yellow color out of piano keys? A. Hydrogen peroxide might do it;
that is probably the best bleaching agent that we have for any such use, but sunlight is the agent principally
(9) B. B. McC. psks: Is the electricity which produces the electric light a manufactured artistored, and not manufactured? A. Electricity may be said to be manufactured. It is certainly produced by the expenditure of power in a machine, and the pto-
duct, whatever it is, is sold like other manufactured things. We do not know that it is a natural element. It
(10) T. H. asks if the electric light will fade goods. A. We think not to any appreciable ex tent.
(11) B. C.-Stourbridgeloam is a variety of fire clay mined at Stourbridge, in England. It is
doubtful if it can be obtained in this country. Fo general uses it can readily be substituted by the ordinary flre clay.
(12) Ind.-We think that the direction is applied to a person, has very little to do with it effect.
(13) G. T. asks how to fasten the tin oil sections on an electrical machine to the glass disk. when the varnish is nearly dry press the two together

shellac varnish.

(14) A. F. S.-The special manipulation to obtain flat surfaces on lenses and small mirrors for elescopes has been published in books and but partially
described in journals. In Scientifie American Sup plement, Nos. 139, 318, you will find the subject illustrated.
(15) W. H. T. asks the best way to re pair a split in garden hose. A. Wind the hose with can
(1) L. - The rain liberates the odors plants moistening their surface and opening thei pores, the evaporation of the moisture carrying the
odors with it. We know of no way to collect odors exodors with it. We know of no way to collect
cept by distilation from their natural sources.
(17) A. D. E. asks: What is the number of revolutions the dynamo machine described in No. 16 will make, and the number of revolutions the armatur (18) J. L. P., asks: Is ten pounds suffi ientpower to register ten pounds on a spring balance, when held in each hand? A. A pull of ten pounds on ach end of the spring balance between your hands is
ten pounds on the balance and ten pounds for each hand.
(19) J. C. asks: How many horse power ought a boiler, properly set, of the following dimen-
sions to develop: 16 feet long, 38 inches diameter, two 10 inch flues, good engine and about 80 pounds pressure may obtain from 20 to 25 horse power, indicated, at 80 and with a good engine
(20) J. C. F. asks: What size and pitch of propeller is best suited for a yawl boat 18 feet long 6 feet wide, and 26 inches deep, driven by a 2 horse power engine running 550 revolutions per minute?
Weight of machinery, 700 pounds. How fast could such boat go? A. A 20 inch wheel with $31 / 2$ foot pitch may ve you a speed of 8 miles per hour.
(21) J. H. writes: I wish to construct an elhought I would build it of cypress; is there any preparation that I can use that is harmless, to prevent the water penetrating the wood, and that is tasteless? A.
Do not know of anything that will be an improvement pon the clean cypress. You may oil the wood with paint (oxide of iron) and boiled linseed oil. Let it thor oughly dry before using.
(22) W. W. asks how to make and clarify vinegar from cider in the shortest time. A. The manufacture of vinegar is essentially comprised in
the exposure to the air, causing the oxidation of the the exposure to the air, causing the loxidation of the
cider at a temperature of from 75° to 85° Fah. The pro cess of clarifying is given in Scientifio American Sup plement, No. 392.
(23) J. D.-Wire like the sample is unfor a fleld magnet, as its very thick covering sepathe current is lost. It is probable that the trouble with your dynamo is in the adjustment of the com-
mutator. Have you connected the wires of your field mutator. Have you connected the wires of your fied
(24) B. B. H. writes: 1. I wish to p pare some electropoion fluid for use in carbon batteries Can I use tin vessels to mix my acids in without inuse? A. The acid will destroy a metal vessel; use porce lain or earthenware. 2. What does electropoion fluid weigh per gallon? A. It depends upon the amount of bichromate of potash and sulphuric acid contained in
the solution. 3. How long can this fluid be kept with the solution. 3. How long can
out spoiling? A. Indefinitely.
(25) H. U. writes: I have made a dynamo similar to that in Supplement, No. 161, field wound with No. 16 wire, armature with No. 24: by ex-
citing the fields with a pint bichromate battery, I can bring an eight candle Edison lamp to incandescence Now what I would like to know is, could I do any
better by winding the armature with No. 18, as Surplement No. 161 directs? Also, how wide should the you could improve your dynamo by changing the ar mature, if you do not object to use a battery for charging the field magnet. The slots in the commutator should be about one-sixteenth of an inch wide.
(26) F. O. H.-Some electric bodies can be charged by stroking with a cat's skin or piece of
silk, so that in a dry atmosphere they will retain their charge for some time. It has not theen wetermined when the Eads ship railway will be commenced; probably (27) the capital to build it is assured.
(27) L. R. asks the correct meaning of the tonnage of a vessel. A. The law defines very care-
fully how the tonnage of different vessels shall be calfully how the tonnage of different vessels shall be cal-
culated. An approximate rule for finding the gross tonnage is to multiply the length of keel between per pendiculars by the breadth of vessel and depth of hold, pendiculars by the bread the product by 100 . It is gener-
all in feet, and dividing the
aily assumed that 40 cubic feet shall constitute a ton, aily assumed that 40 cubic feet shall constitute a ton, and the tonnage of a vessel is considered to be the mul-
tiple of this ton which most closely corresponds with e internal capacity of the vessel
(28) J. H. R. asks how to keep a leather band from slipping. The band is 2 inches wide, and
connects a driving wheel 21 inches in diameter with
ne of 4 inches , both of iron. A. A little good bees-
wax, rubbed on the inside while running, is sometime help for such difficulty, but a band of proper size to the work should not slip if correctly put up.
(29). S. S. W.-The dominical letter de otes the Sabbath, or dies Domini, the Lord's day. The pose, the same letter standing for Sunday during hole year, and after twenty-eight years the same let ters returning in the same order. The golden numbe a number showing the year of the lunar or Metoni ycle. It is reckoned from one to nineteen, and is so ar in rom having formerly been written in the calen of determining these letters can be found in the prayer
of the Protestant Episcopal Church
(30) R. D. D. writes: In order to decide a wager, will ask the following question: If a cat and a
half can kill a rat and a half in a minute and a half, how many cats will be required to kill 100 rats in 50 minutes? many cats will be required to kill 100 rats in 50 minutes?
A prominent sporting paper has answered "Two cats," which we do not accept. A. According to the terms o this question, it requires one cat and a half to kill rats at the rate of one a minute, or three cats will kill two rats in a minute; therefore it would take three cats to kill one hundred rats in fifty minutes.
(31) L. Y. writes: 1. While coal-tarring fishing nets, the coal tar is slightly heated, and the gas handling the nets. What solution or wash could b sed on the hands and face to prevent this burning, what would be a remedy for it? Could anything be added to coal tar in tarring fishing nets to make them less adhesive while handling? If so, what is it? The commend you to use the so-called "paraffine varnish " pecially prepared for covering nets by the New York oal Tar Company. It is entirely without the objec izable qualities found by you. 2 . What size machinery ooat 40 feet long, 8 feet beam, 5 feet in the hold, and drawing 4 feet aft? A. 16 horse power engine and boiler, 3 foot wheel. 3. How large a wheel would b aitable for an engine with a cylinder $61 / 2$ inches by (32) R. G. A. asks: Does the bulk (or isplacement) of a boat in locking make any difference vel? Or is the same quantity required without regar o displacement, and what is the difference, if any, in uantity required in locking the same boat up or down A. It takes the same volume of water to lock a boa either way. The displacement is equalized by the
water leaving the lock when the boat enters, and en water leaving the lock when the boat enters, and en
tering the lock when the boat leaves. the lock age water being the area of the lock multiplied by the displacement of each boat, when the lockage is all one way.
(33) J. G. T. \& S. write: We have steam boiler in our basement, with the engine and feed of water indicator with float to give us the depth of water in the boiler from the floor above. We have ou water in the boiler from the floor above. We have our
steam gauge on the floor above at an elevation of eleven teet above boiler. What would be the variation wit no system of water gauge indicator above the boile that has as yet proved reliable, athough there are severaa
patents for such contrivances. A steam gane may b patents for such contrivances. A steam gauge may be steam that the water of condensation can drip back to the boiler, thusj making the pressure the same at the top of the tube as it is in the boiler. Attach the gauge if the tube was the boiler. This will give the same a indication of the pressure in the boiler. If your pres ent gauge connection pipe is filled with water, the graug should be 5 pounds less than the pressure in the boiler
(34) J. F. A. writes: I have a detached house with brick foundation walls, in soil of a clayey hature. The cellar is well concreted, but Ifind that after a eavy rain there is water in the cellar. How can this be
ffectually remedied? A. Possibly your yard is low nex o the house and drains into the cellar; this you should e able to see by inspection in stormy weather. Every yard should be graded so that the storm water run from the house, toward cesspools or a sewer connection A cemented bottom will not resist the coming in of water , when there is any head, as when the
saturated for some feet above the cellar bottom.
(35) L. J. S. writes: We have built alls with air spaces, and would like to know which is he best-to have the walls closed on top, so there is no circulation whatever in the air space, or is it just as
good if the air space is open on the top of the wall? A. yood if the air space is open on the top of the wall? A
If the top of the air space opens inside the ice house here is no need of closing it. If the open top is ex posed to wind, it should be closed, as the wind blowing across it will produce a circulation.
(36) R. S. asks: If a flume 10 feet wide by 3 feet deep has.to be replaced by two iron pipes, many square feet as the wooden flume? A. The tubes would require to be 'each $43 / 2$ feet diameter to be equal by 10 fee
(37) S. L. W.-Mercury flasks hold about 2gallon, and weigh about 12 pounds; they are good more than 16 gallons of gas into a flask with any eore than 16 gallons of gas into a flask with any
economy. This will give you 240 pounds pressure. We think that copper cylinders that are amply strong would be enough lighter and of more capacity for size than the mercury flasks. Any good coppersmith can make
ese cylinders.
(38) D. H. G. asks how to change back the poles of a 25 light dynamo that changed its poles from an unknown cause. There are other dynamos
handy if they would be needed. A. You should reverse the polarity of your fleld magnets by the tempo-
2. Also how to temper steel for permanent magnets, and
the best steel to use? A. Steel for permanent magnets the best steel to use? A. Steel for permanent magnets
should be tempered about like taps and dies, that is, should be tempered about like taps and dies, that is,
the temper should be drawn to a straw color. Chrome the temper should be drawn to a straw color. Ches is said to be the best for permanent magnets.
(39) F. I. P. writes: I wish to stain or dye vulcanized paper or papier mache, such as billiard
balls or car wheels are made of. I have tried aniline balls or car wheels are made of. I have tried aniline
dissolved in water, boiling hot; but have not been able o penetrate the surface of the paper, which is ver out success. Would like to stain it different colors, but black principally. A. It will be necessary for you to color or dye the fiber before pressing it into shape. For black: Soak the material for 12 hours in an alcoholic solution of aniline hydrochloride, then remove and immerse in a dilute solution of potassium bichro mate. Do not leave it in the last solution too long, or
lse the fiber may become decomposed. For blue else the fiber may become decomposed. For blue
Use the blue aniline for cotton. For red: Use the Tur key red, and apply in the usual manner
(40) L.-A mixture of oxalic and citric acids is probably the best compound to use for the
purpose of removing ink from parchment. Chlorine or the alkalies would be likely to injure animal tissues. The removal of printer's ink from paper, is hardly possible. It is accomplished to a limited extent by means of ether or a solution of soap in
naphtha, and the like are also used.
(41) A. R. asks: Can you give me a re ceipt to remove freckles from the face without injur to the skin? A
this purpose is:
is purpose is
Sulpho-carbolate of zinc............... 2 parts.
Distilled glycerin.................... 25
Rose water
Rose water...
Scented alcohol..
To be applied twice daily for from half an hour to an will remove warts painlessly? A. Touch the wart with a little nitrate of silver, or (with nitric acid, or with aromatic vinegar. The silver salt will produce a black and the nitric acid a yellow stain, either of which will wear off in a short while. The vinegar scarcely discolors the skin. 3. Can a transmitter from a primary current without a secondary coil work with success?
A. A transmitter without an induction coil may be A. A transmitter without an induction coil may be
used successfully on a short line. 4. Has it ever been tried? A. It is one of the earliest telephonic experiments
(42) D. G. would like to know how to make a very good-smelling hair oil that will notlbe injurious to the hair. A. Castor oil $1 / 2$ pint, 95 per cent
alcohol $1 / 2$ pint, tincture cantharides $1 / 2$ ounce, oil of bergamot 2 drachms. Color a pale pink with alkanet or olive oil scented with a few drops of otto of roses, sk or neroli, etc.
(43) T. D. B. writes: I have made a pocket battery for running small incandescent lamp; it
works well using for half an hour, and after that it works well using for half an hour, and after that it
will only redden the carbon; it consists of two hard rubber boxes each containing earbon and zinc separated by a piece of hard rubber, and I use the following solu-one-fifth weight sulphuric acid and $1 / 2$ drachm bisulphate mercury to pound solution. I understand that those in the market can be used off and on throughout an evening. A. Keep your zinc well amalgamated, and add
considerably more sulphuric acid. The kind of battery you describe is not very well adapted to continued use.
(44) E. W. R. asks a rule by which the horse power of different sizes of belts on various sizes of pulleys can be ascertained. A. For the width of belt for
$4500 \times H$. . a given horse power, the formula is $\frac{d \times \mathrm{V}}{d}$

And for power transmitted by a given belt, $\frac{d \times \mathrm{W}}{1,000}=\mathrm{H}$. P. $\mathrm{V}=$ velocity of belt, $\boldsymbol{d}=$ diameter of pulley, $\mathrm{W}=$ width
of belt. 4,500 and 1,000 are coefficients. (45) G. L. writes: Is it more economical to use a 100 horse power engine running at its utmost
capacity, or a 150 horse engine, same power needed in capacity, or a 150 horse engine, same power needed in
each case? To supply steam for such engine, which is the most economical-to use two boilers which have to be filled very hard, or to put in a third boiler, of the
same size as the other two, and use all three? A. The same size as the other two, and use all three? A. The
moderate use of engines and boilers is considered ecomoderate use of engines and boilers is considered eco-
nomical. The saving of fuel where there is ample boiler power is very apparent. The heated gases going waste. We recommend the larger engine and 3 boilers, lightly fired, with moderate pressure.
(46) C. H. B. asks a process that will etch steel, such as cutters perform in transferring pic-
tures and monograms upon razors and knives. A. tures and monograms upon razors and knives. A.
Cover all the parts not required to be etched with beeswax, or cover the whole with beeswax, and then make your lin
acid.
(47) R. S. asks the process of giving a tempered blue color to the steel plate and maneable panning, or heating? A. In order to obtain an even blae, the work must have an even finish, and be made perfectly
clean. Arrange a cast iron pot in a fire so as to heat it to the temperature of melted lead, or just below a red
heat. Make a flat bottom basket of wire or wire cloth heat. Make a flat bottom basket of wire or wire cloth
to sit in the iron box, on which place the work to be blued, as many pieces as you may find you can manage, always putting in pieces of about the same thickness
and size, so that they will heat evenly. Make a bail to and size, so that they will heat evenly. Make a bail to
the basket, so that it can be easily handled. When the the basket, so that it can be easily handled. When the
desired color is obtained, dip quickly in hot water to stop the progress of the bluing, for an instant only, so
that enough heat may be retained to dry the articles. A cover to the iron box may sometimes be used to advantage to hasten the heating. Another way, much
used, is to varnish the work with ultramarine varnish, which may be obtained from the varnish makers.
(48) J. D. O. writes: 1. I would like to

| I understand that gas and air are introduced into a | $\begin{array}{l}\text { per, 87; zinc, 13-yellow bronze: copper, 67; zinc, } 31\end{array}$ |
| :--- | :--- | :--- |
| vacuum and ignited, which causes an explosion, and so | $\begin{array}{l}\text { tin, } 2 \text {-statuary bronze: copper }\end{array}$ | vacuum and ignited, which causes an explosion, and so

gives motion to the engine. A. There are two methods he ung gas in gas engines. One is to draw the gas into the cylinder with a suitable proportion of air by the orward stroke of the piston, and then explode it unde
atmospheric pressure. The other method is to introduce the mixture of gas and air into the cylinder under compression, or to compress it in the cylinder, and ex plode it while in the compressed state. 2. How is the gas introduced? A. The common method is to allow the power piston to draw the gas and air into the cyl inder by its forward motion. 3. How is the air intro
duced? A. The air is generally introduced by bein uced? A. The air is generally introduced by being
simply drawn in through an open valve along with the as. 4. Relative quantities of each? A. One volume and one of gas to ten to fourteen of air in compression engines. 5. Process of ignition? A. There are several methods of igniting the gas. The most commo compressing engines is drawn directly into the explo ive mixture contained by the cylinder. But in com pressing engines it is drawn first into a chamber conining the combustible mixture, at atmospheric pres oward the cylinder, so as to conmmunicate flame to the contents of the cylinder. 6. What size vacuum for on horse power? A. We do not understand what you mean
by vacuum. 7. Does the patent on gas engines cover by vacuum. 7. Does the patent on gas engines cove
the manner of using gas and air only, or does it cove he combination of gas and air as a motive power? which are not patented. There are other methods which are patented. The broad idea of generating nted, and is public property.
(49) E. A. A.-You will find a descrip ion of the Bell telephone in Supplement. No. 142. I pose, you can readily make one by connecting with the pose, you can readily make one by connecting with the
ends of a light wire cable line, cigar boxes, which will nswer very well as transmitters and receivers.
(50) C. P. W. asks: 1. Will you explain point of saturation in a permanent magnets? A. The when the magnet becomes incapable of permanently re aining as much magnetism as the strongest helix or lectro magnet can impart to it. 2. How powerful in proportion to their own weight can they be made? Can
hey support more than their own weight? If so, how they support more than their own weight? If so, ho
much? A. They have been made to lift 15 times thei own weight, and small magnets have been made which
would lift 25 times their own weight. 3. What is the would lift 25 times their own weight. 3. What is the
longest distance they will attract, say chrome steel? A As the attracting power of a magnet is inversely as the square of the distance, of course its power rapidly dithe immediate vicinity of its poles. 4. What kind steel will make the best and strongest magnets?
(51) \mathbf{T} is sala to be the best.
(51) T. R. G.-The office of the large wire in an induction coil is to produce intense magnetism in the core of the coil. There is no very well coil, except that the primary coil should be capable o producing a magnetic field which will extend to the exterior of the secondary coil. You will find full de-
scription of induction coil in Suppuement, No. 160.
(52) N. J. W. writes: I have made a small dynamo after Sopplement, No. 161, that magight between a carbon and platinum point, but will no run one 3 candle power incandescent lamp. Has any one succeeded in making it run a 3 candle power incandescent lamp? A. You ought to be able to operate a three candle power incandescent lamp of lower resistance with the current from your dynamo. 2. In making a new
armature having 4 cois, shall I use the same sizewire, or armature having 4 cois, shall I use the same sizewire, or
would finer wire be better? A. In making your new armature, by employing finer wire, say No. 24, you will will work through greater resistance than the current om your present machine.
(53) E. R. S.-It would be impossible to give offhand the information you desire concerning dye construction of the dynamo. The development of dynamo of a new size or form requires a great dea better consult some competent electrical engineer for the information you desire.-For a cement for fastening rubber to iron, melt together equal parts of pitch, gutta percha, and shellac.
iron while the iron is warm.
(54) J. S. C. writes: If a barrel of oil was $3 / 4$ or $1 / 2$ inch pipe running from the barrel into the light it, would it burn only at the end of the pipe (in the stove), or would the fire follow the pipe to the barrel and cause it to explode? A. If the spray were kept up back into the barrel. You can avoid danger of explosion by extending your spray pipe to the bottom
the barrel, so that it will always be covered with oil. (55) H. H.-Dynamite, as is the case with other explosives, expands with equal force in all rections
(56) G. S.-The solder you refer to as being applied so easily is probably what is called bismuth solder, and is made of two parts of tin and one
part each of lead and bismuth, by weight. It makes a part each of lead and bis
(57) E. N.-The steam from the top or outlet of your coil boiler should not pass directly to engine, but to a chamber, so that the water will be sepa-
rated from the steam, and settle to the bottom of the coil through a direct pipe connection. An old locomocoil through a direct pipe connection. An old locomo
tive boiler, tested hydrostatically to 140 pounds, should not be trusted with more than 75 pounds steam pres-
(58) Z. L. asks for the proportions of
(59) G. W. L.-The Babcock fire ex inguisher is charged with a solution of bicarbonate of when required, is turned over by a crank, spilling th acid into the charge of soda water. Carbonic acid gas is instantly generated, by which a pressure is obtained tus with furch firowing the whole contents of the appa Use of sulphuric acid 5 parts, bicarbonate of soda 6 parts, by weight. Other combinations are used, such as carbonate of ammonia, potash, etc. Iron can be used or the alkaline reservoirs. There are about 20 patents rs, mostly on the mechanical details. (60) E. C. B. asks: Will coal oil saponify nanufacture of soap? A. Yes, petroleum soap is in the New York markets.
(61) A. A.-For giving to cast zinc enuine brass color, use for your dipping bath, for each uart of water, one-fifth ounce sulphate of copper, one varying the proportions of the salts.
(62) G. W.-The following are dipping baths suitable for bird cages: nitric acid, 2 parts; sulacid, 1 part; muriatic acid, 1 part; all by measure.
(63) R. M. H. asks the power necessary level trame the resistance of a large horse street car on level track, loaded with 50 persons. Also, to move the same loaded car up an incline represented by an angle
of 10 degrees? A. For car on a level track, about 60 lb.; 10 degrees? A. For car on a level track, about 60 lb .;
on an ascent of 10 degrees, $1,300 \mathrm{lb}$. To obtain an inion an ascent of 1 dill grees, 1,300 ib. To obtaine and require far more, accordng to how near a perfect balance it is on which the track, etc.
(64) P. M. L.-Pin points are supposed o be finished with a fineemery wheel revolving in the machine that makes the pin. You may put the points ween the thumb and finger, upon a fine emery wheel running at high speed.
Minerals, etc.-Specimens have been eceived from the following c
E. M.-No, 1 is a fine grain
E. M.-No. 1 is a fine grained so-called micaceous paint in this city. The colore. is not considered good. No. 2 is simply a large grain or crystal of the specular might be valuable for the iron. An analysis would be necessary to determine this.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted April 7, 1885,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]
Air apparatus, operating compressed, A. C.
Douglass.. 31
Alarm. See Buglar alarm.
Aluminium, apparatus for obtaining, M. G.

Anemometer, E. E. A. Ed..........
Animal shears. T. Brown........
Annunciator, McDuff \& Doherty
Annunciator drops, resetting, C. W. Holtzer Armature springs, adjusting, J. F. Gilliland Automatic drill, J. Hughes
A wning or shade, window and door, G. W. Cook. Axle box, car, M. C. Harney
Axle, carriage, H. Kr. A.
Axle lubricator, car, E.L
Axle lubricator, car, F. J. Leibman. Axle lubricator, car, F. J. Lei
Axle, vehicle, P. D. Kearney.
Bag. See Hand Bag. Bag. See Hand Bag.
Bags, etc., compound

$$
\begin{aligned}
& \text { ag. See } \text { and Bag. } \\
& \text { manufacture of lond material suitable for the } \\
& \text { Rringa } \\
& \text { andee and sugar, T. }
\end{aligned}
$$

\qquad
Baling press, w....................... Barrel making machine, F. Myers........................
Bathtub basin attachment. J. \& W. J. Robinson.
Battery Battery. See Secondary buttery
Bearing. anti-friction, T. Tripp.
Bearing. anti-friction, T. Trip
Bed slat support, F. G. Ford..
Ber
Bed slat support, F. G
Bessemer process, G.
Bicycle, E. G. Latta.
Beal
Bicycle, E. G. Latta.....................................
Bits, etc., extension shank for, I. P. Shotts......
Board. See Electrical switch board. Multiple
Board. See Electrical switch board. Multip
switch board, Reed board.
Boiler. See Steam boiler. Water tube boiler. Boiler. See Steam boiler. Water
Boiler ash pan, Anderson \& Lati Boiler ash pan, Anderson \& Latimer...........
Boiler for heating fruit in jars, F. M. Austen. Bolster spring, S. C. Blaine.
Bookcase, etc., portable, W
Book, scrap, C. Patterson..
Boot or shoe tap, W. Quinlan....
Boot or shoe inner sole, G. W. Da
Lackey.....................
.
w. Gates..
x. See Axle box. File box. Guide box.

See Axle box. File box. Guide box. Ice
cream box. Paper box.
oxes, bales, etc., band for strapping, G. Nichol-
son..
Brace. See Trunk brace.
Brake. See Car brake. Locomotive brake.
Brake shoe, R. N. Allen.......................
Brake shoe, R. N. Allen.....................
Brick and tile machine, W. W. Wa
Brick machine brushing attachment, A.
Brick machine brushing attachment, A. Ittner.
Brick machine tile making attachment, J. B. F
Brick, manufacture of, N. S. S. Willet..................................
Bridge, W. O. Douglas...............................
Bucket or receptacle for malt liquors, S. W.
Wige
Wiegell..........
Buckles, snap hooks, etc., rope or strap attaching
device for
device for, W. C. Sly....

Button fastening machine, automatic. A. Hall...
Cables or ropes used to propel vehicles, covering
for
for, C. Bullock.
Cam, H. W. Fowler.
Cam, H. W. Fowler...............
logg.. ${ }^{315,296}$
Can. See Milk can.
Can fastener, F. J. Headley.
Cannon, pneumatic, W. G. B

Car brake, automatic, W. Clayto
Car brakes, operating, G. W. Darby
Car coupling, A. B. Clinton....
Car coupling, Davidson
Car coupling, w. Dunn..
Car coupling, J. Fuller
Car coupling, J. Fuller.

Car step, G. C. Hadley................................... 3
L. Sinclair.. 315,080
Cars, unnoading gravel. Huber \& Barnhart...... 35,410
Carding machine, condenser for wool, I Newell 315010

Carding machine, condenser for wool, I. Newell.. 315,054
Carpet, J. S. \& S. Smith........................... 315,353
Carpet, J. S. \& S. Smith........
Case. See Book case.
Casting copper ingots, mould for, W. R. Walton.. 315,192 Casting horseshoes, apparatus for, T. McGrane... 315,314 Casting metal. apparatus for making sand moulds
for, E. Breslauer............................. 315,116 Charm, watch chain, Pearce \& Hoagland.............. 315,369 Chuck, rock drill, A. I. Parsons.
Churn, C. Berst.......... Cigar bunching machine, c. H. Haugk...........................315,010 stein.. 315,408 Clothes line fastener, T. McCoy....................... 315,312
Cock, valve, H. J. H. Brooks............. Cock, valve, H. J. H. Brooks.......................... 315,233
Combing wool, cotton, etc., machinery for, J. H.
Whitehead............................. 315,197
Combustion of gaseous fuel, apparatus for the, J.
Henderson...15,142
Henderson.....................................
Combustion of liquid fuel, apparatus for, E. C.
Burgess.......................................315,238
Cooler. See Water cooler.
Copper by electrolysis, apparatus for refning, \mathbf{m}.

Cot, C. B. Camp.................................... 314,991
Coton sweep, choppers, etc., combined, т. J.
Fowler...................................... 315,40
Pipe coupling. Thill coupling.
Crade, A. . Post............................. 315,165
Cultivator harrow attachment, C. R. Davis....... 315,132
Cultivator, wheel, F. Hammers.................... 315,277 Cuitivator, wheel, F. Hammers.....................
Cutterhead for rifing machines, Davenport \&
Day..350,319
Dental plate, J. K. Morris...............
Dental plate, J. K. Morris............................. 315,319
Door check, C. E. Hewitt.....................315,241
Door check and holder, Barrow \& Wade.......... 315,221
Do

Draught equalizer, G. W. \& F. E. Arnold...35.235
Drawing stand, E.S. Cobb..................... 315,348
Drier G. W. Sharer
Drier, G. W. Sharer...315,348
Drying apparatus, O. B. Hardy................ 315,141
Drill. See Automatic drill. Grain drill.
Drill. See Automatic drill. Grain dril.
Drilling machine, L. L. Lamb........................15,199
Drilling machine, McFarlan \& Nottingham....... 315,499
Drilling machine, McFarlan \& Nottingham........ 315,049
Drinking fountain for poultry, J. Cook.............. 315,251
Duck shooting blind, B. F. Kenly.............. 315,297
Duck shooting blind, B.
Ear muffler, A. L. Britto
Ear muffler, A. L. Britton............................. 315,233
Electric motor and generator, F. J. Sprague,
Electric signaling apparatus and circuit, F_{F}. B.
Herzog..0,027
Electrical conductors, underground conduit for,
G. H. Benjamin... 315,225
Electrical switch board, T. J. Perrin............ 315,31

Electricity, apparatus for transmission of mes-
sages by, G. T. Woods........................... 315.368
Electro-magnetic motor, C. G. Perkins........ 315,161
Electro-magnetic motor, C. G. Perk
Electro-dynamic motor, F. J. Sprague,
$315,179,315,180,315,183$

Embalming device, C. W. Gath.................... 315,272
Engine. See Rotary engine.
Engine for twin screw vessels, E. Bauduin......... 315,381
Eyeglasses, F. W. McAllister........................ 315,154
Fnnatatachment, A. Nawadny................ 351520
Faucet for shipping
Frn attachment, A. Nawadny 315,
Faucet for shiping cans, J. Marshall........... 35,
Feeed water heater, W. Love................. 35,

Fence, W. A. Tillman.................................
Fence barbs, die for making metallic, A. P.
Thayer..............................35,086,

Fencing, making barbed metallic, A. 315,008
Ferrules, manufacturing, J. L. Parker........... 315,085
315058 Ferrules, manufacturing, J. L. Parker............... 315,058
Firearm, breechloading, J. B. Da
Firearm, revolving. D. Smith.
Fire escape, G. M. Heath.....
Fireplace, I. C. Williams
Fireplace, I. C. Williams............................... 315,367
Flour bolting machine, M. Martin..................315,308
Flushing tanks, mechanism for, G. C. Phillips.... 315,063
Fork pointing machine, P. D. Dupont............. 315.395
Fork prong rolling machine, P. D. Dupont....... 35,396
Fork prong rolling machine, P. D. Dupont........
Fountain. See Drinking fountain.
Frame. See Grindstone fram
Friction drum, W. J. Carlin
Fumigator, H. Perlich..
315,239
315,330

Furnace for night soil, A. Engle..................... 315,397
Furnaces, device for feeding air to, W. Thomas... 315,187

Furnture, envelope of packing, J. T. Mygatt....... 315,
Garment, combination, W. F. Warner........... 3515,
Gas compressor, L. Block.......................... 314,
(as explosions, preventing, S. Stutz.......... 3 . 3150 Cas explosions, preventing, S. Stutz...............
Gas lighting apparatus, electric, J. A. Norton,
315,05
Gas lighting device, electric, J. A.
Gas main, underground, A. Randol.
Jr....................................
Gas regulating valve, A. McLennan
Gate. See Railway
Gate. See Railway gate,
Gate. F. Hageman.

Glass plate for making med rated, J. E. Schreck............................
Glass plates, mould for making perforated, J. E.
Schreck. Governor, combined pressure and speed, J. Clay
ton..
 Grain drill, G. G. Blunt . Grain drill, w. C. Downey. Grinding mill, roller, F. Wegmann (Weaver Gun cotton, coating, M. Von Forster Hair washing apparatus, G. Upton.
Hammock support, J. H. Ten Eyck Hand bag, J. Lambert.
Hele. See or spme handle Harrow and cultivator, combined, J. H. \& J Harrow, disk, A. Corbin. Jr
Harvester cutting apparatus, J. A. Ritter, J Hat ironing machine, Tweedy \& Yule
chine clutch, G. Yule
Hat machine tool vibrator, G. Yule.
Hay elevator, P. F. Chambard.......................
Hay rake and loader, combined, H. L. Willhoite. Hay stacker, J. A. Ball.
Hay stacker, , P. F. Terry, W.............
Heater. See Feed water heater
Heater, H. в. Chase....
Hater, schoorm, I. D. Smead
Heel nail blank, wire, F. F. Raymond, 2d. Heel nail plate, F. F. Raymond, 2d.........
Heel trimming machine, D. A. Williamso Hoeitrimg buckets, caster wheel for, A. E. Brown.
Holder. See Nail holder. Paste holder. Rein holder.
Horseshoe machine, W. D. Young. Hot air furnace, O. Jones..
Iee cream box. F. W. Crocker. $: ~$ Indicator. See Merchandise indicator heat indicator.
Iron wheel, P. Schemb

Joint. See Gimbal joint.
Journal bearing, R. Beddal
Journal bearing, J. N. Williams
Jug stopper, J. B. Brackett..
Knitting stockings, \mathbf{H}. Lenna
Lamp extinguisher. E. S. \& J. H. Bacon.............
Lantern wick scraping attachment. F. O. Dewey Latch lock, H. P. Young.
Life-preserver, E. \& G Life-saving apparatus, C. H. McLellan Link, spring, W. R. Belding.
Liquid elevator, A. H. Phillip Lock. See Latch lock. Nut lock Lock and latch combined, J. Wurm Locks, knob aking and releasin
G. E. Thaxter..............
Locomotive brake, G. H. Poor Log turner, W. E. Hill. Log turner, G. W. Robinson.
Loom shuttle, I. L. Wilber.. Lubricator. See Axle lubricato Lubricator for steam engine cylinders, R. Magnetic separator, Hilder \& Scott Mechanical movement, J. Bacon.. Mechanical movement, J. Morwitz Mechanical movement, J. L. Willford.
Merchandise indicator, S. H. Brown.. Metal table, H. A. Matthews........ Milk setting apparatus M. O. Stoddar Moulding machine, wood, Baxter \& Ant Moulds, composition of matter for lining and Motion, mechanism for converting, D. D. Wiley Motor. See Electric motor. Electro-dynamic Motor, D. L. Miller
Mower, I. Rawson.....
ing and annealing,
 Busical instrument, stringed, J. Farris. ail holder and carrier, F. F. Raymond, Nail machine nipper bar, C. D.
Nail plate feeder, J. C. Gould ecktie fastener, J. A. Whitcomb Nef staff, G. L. Bailey.
Nut lock, J. H. Sheehan (r)
Oil cloth corner piece, W. Horning.
oil cup, differential, J. H. Wilkinson il mat. W. W. Clock.
Oiler for steam engines, self. J
Ordnance, pneumatic,

Ore filter, centrifugal, T. T. Eyre

res, etc., machine for reducing, G. \& A. Ray-
mond...

$$
\begin{array}{l|l}
13 \\
1 & \\
2 & \text { Ove } \\
2 & \text { Pa } \\
& \text { Pac } \\
6 & \text { Pad } \\
7 & \mathrm{Pad} \\
3 & \mathrm{Pad}
\end{array}
$$ Paddlewheel, feathering, W. Emmett..

Painting, F. G. Painter.............. Painting, F. G. Painter..
Pan. See Boiler Pan. See Boiler ash pa
Paper box, D.Heston..
Paper box, T. S. West..
Paper box, T. S. West..
Paring machine, fruit.
Passenger recorder, Torrey \& Casey. Paste holder, P. Weiss.
Photographic plate or sheet holder, E. B. Bark
Pianos, panel for upright, C. F. T. Steinway..... Pipe. See Tobacco pipe.
Pipe connection, J. B. Root
Pipe coupling, J. H. Hobart
Pipe coupling, J. B. Root.
Plane, bench, J. Duncan...
Planing machine, wood, Gray \& Hutchinsonon
Planter check rower, corn, A. \& M. Barnes.. Planter check rower, corn, A. \& M. Barn
Planter check rower, corn, J. E. Bering. Planter check rower, corn,
Planter, corn, F. Clemens.. Planter, cotton seed,
Plow, N. A. Powell.
Plow,

Plow sulky frame, S. Merce
Plowshares, device for weld

$$
\begin{aligned}
& \text { Portable camera, S. C. } \\
& \text { Post. Se Fence post. } \\
& \text { Pottery ware, decorat }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Post. See Fence post. } \\
& \text { Pottery ware, decoration of, C. Graham.. } \\
& \text { Power jack, J. W. Massey.............. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Power Jack, J. W. Massey. } \\
& \text { Press. See Baling press. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Press. See Baling press. Cider pre } \\
& \text { Printer, drying rack, H. F. Gray.... } \\
& \text { Priterse' }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Printer's drying rack, H. F. Gray.................... } \\
& \text { Printers' leads, machine for making, N. } \\
& \text { Lyman.................................... } \\
& \text { Propeller and machinery therefor, steamship, }
\end{aligned}
$$

Wilcox.. Propeller, ca

Propeller, canal boat, P. O'Connor..........
Propellers, mounting screw, R. Forsholm.
Puddling furnace, J. Web b
Pulley, A. C. Pessano.........
Pulley, sash, J. B. Schroder.
Wuodbury.
Pulp straining machine, self
Pulverizer, clay, G. . Pratt.

Pump, W. H. Dillon...
Pump, J. W. Powers..
Pump driver, J. W. Runyan.
Rack. See Printer's drying

Railway electric, B. B. Bidwell.
Railway gate and means fo
Railway gate and means for preventing injury Railway grip, cable, J. H. Parkinson
Railway «ripper, cable, J. L. Pearson.....
Railway signaling apparatus, J. P. Dunn. Railway track layer, D. F. Holman Rake. See Hay rake.
Ratchet mechanism for
 Recorder. See Passenger recorder. Reed board, F. Stone.
Reflector, S. C. Mowe
Refrigerator, A. B. Wood.................
Regulator. See Feed water regulator.
Rein, harness check, J. Fowler.
Rein holder, I. A. McCord.............
Rheotrope or current reversing key, J.
Riveting sheets of metal, J. P. Gould. Road or tramway for vehicles, M. A. Martindale.
Roads, machine for making, repairing, and clean ing, G. W. Taft.........
Roller mill, J. L. Willford. Rotary engine, J. Morfet.......
Rubber tube for syringes, etc.,
Sabot, ordnanee, F. H. Willia Sabot, ort work, T. M. Brintnall.
Safe bolt
Salt grainer, J. Cusson......... Salt grainer, J. Cusson......
Sash fastener, E. A. Johnso Saw, E. Andrews........
Saw guide, G. S. Black. Saw jointing device, G. S. Black
Sawmill dog. W. A. Durrin....... Sawmill dog. W. A. Durrin
Saw straightening machin
Saw swaye, H. R. Wolfe..
 Scissors, manufacture of Lloyd \& Glydon Scourer. See Wheat scourer.
Screen. See Window screen. Screen. See Window screen.
Screwdriver, Furbish \& Hamlen..
Screw rolling machine Screw rolling machi
Seal, E. J. Brooks..
See Secondary battery, E. T. Reichert.....
Seeding machine, force feed, J. L. Rit
Separator. See Magnetic separator. Separator. See Magnetic sepa
Sewing machine, A. J. Hurtu...
Sewing machine, J. W. Post. Sewing machine
Johnston... Shades and bl
Hilditch. Shaft, crank, P. A. Peer....
Shears, lever attachment for hand, P. Kearns. Shingle, W. J. Perkins. Shirt, D. N. Bristol.
Shirt cuff and wristband, J. B. See.............
Shirt neckband protector, D. N. Bristol Shirt yoke shield, D. N. Bristol... Shovel or spade handle, P. W. Groom. Shutter worker, R. G. Dudley Sieve brushing apparatus, F. A. Price ingletree. hoisting, W.
Skillet cap, F. R. Wells.
Slate shaving machine, R. A. Coffin. Solare consuming furnace, A. T. Kinney...
sameras, adjustment. for, W. C. Stron Soling. roll for making India-rubber, L. Elliott Spring. See Bolster spring. Door spring. Vehicle spring.
Stamp, hand, B. B. Hill.... Stamp, hand, Sawyer \& Gould Staple, W. Chisholm.. Steam boller, W. Clark Steam generator, W. A. Pentecost...
Steam generator, J. W. Van Dyke.
Steam generator, J. W. Van Dyke........
Stone, producing imitation, H. s. Utley..
Stone sawing machines, sand and water feed
mechanism for, W. L. Saunders............... 315, mechanism for, W.L. Saunders..
Stool, piano, F. Ohr.....................
Stopper. See Jug stopper. Stove, cooking, N. O. Bond.
Stove, gas, cookin. Zschetzschingek.....
Stove, gas, cookin. Zschetzschingek.....
Stove, gas cooking, W. N. Milisted (r)
Stove grate, De Guerre \& De Lano.
Stove, hot blast, J. O. B. R
Switch stand, , M. M. Curry.
Syringe, H. M. Howell.......................
Table, L. Bailey....................................... 315,108
Tack, machines, sorting spout for, C. P. Weaver.. 315.194
Tap, barrel, S. W. Yattaw............................. 315,370
Telegraph, autographic, S. P. Denison.....315,391, 315,392
Telegraph, harmonic printing, G. A. Cardwell, 315,1
Telegraphic and other purposes, generatio
induced currents for, J. . . Ludwig.......
Telegraphic relay, polarized, J. C. Ludwig.........
wig..............................

Seligman.
Thill coupling
Thrashing machine con
Ticket clip, W. Souter.
Tile table, W. W. Walla
Tile table, W. W. Wallace.
Tiling and grating for cove
Tiling and grating for cover
illuminating, T. Hyatt.
Timepieces, point indicator
Tin foil, J. J. Crooke..........
Tin foil, making, J. J. Crooke
Tin foil, making, J. J. Crooke...........
Tin foil, manufacture of, . J. C. Crooke.
Tinners' use, plotter for, C. D. Cowgill
Tinners' use, plotter for, C. D. Cowgill.............
Tire setter, W. Kesler......................
Tires, device for setting In
Tobacco pipe, L. Nax................
Tool, combination, W. J. Krix et al.
Toy, C. A. Bailey..
Tov, J. B. Nichols.
Treadle, E. F. Henderson.........
Trunk brace, inside, J. M. Mar
Tube. See Rubber tube.
Tug, hame, C. J. Cooper..
Type writing machine, B
Valve, combined stop and check, L. G. Gi
Valves, testing globe, G. F. Ham
Vehicle spring, R. Mulholland...
Vehicle spring, s. G. Smith.
Vehicle spring equalizer, G. S. Hosmer.
Vehicle spring equalizer, G
Velocipede, J. C. Clime..............
Velocipede wheel rim, R. Heeley
Velocipede wheel rim, R. Heel
Vulcanizer, F. H. Chidester.
Wulcanizer, F. H. Chidester..........................
Washing machine, E. W. Allen.
Washing machine, J. Ballard.
Washing machine, H. D. Kin.
Washing machine, H. D. King
Eckersley...............
Water cooler and filter, combined..................
Water pipe cushion, J. O. Waddell.
Water tube boiler, J. W. Van Dlke
Wedge, C. R. Countryman........................
Wheat breaking machine, Hudson \& Tobey
Wheat breaking machine, Hudson \& T
Wheat scourer, McCudden \& Shearlock
Wheel. See Gear wheel. Iron wheel. Padde.
wheel. Vehicle wheel.
wheel. Vehicle wheel.
Whiffietree, Walter \& Blackburn
Whip, M. J. Heaphy..
Whip socket, oil can, and wrench, combined,
L. Bard..
Wick, lamp,
Wick, lamp, I. Lynd............
Window frame, H. E. Willer.
Window screen, D. Cook......
Wire, machine for spirally scoring, H. K. J........................
Wire notching machine, Russell, Jr., \& Jones...
Wire rope or cable, T. Seale.........................
Wire springs, apparatus for tempering, M.
Wire springs, etc., tempering
Zither, Arnold \& Gerber
DESIGNS.
Bottle, J. W. Donnell
Botlle, J. W. Donnell...........
Bottle, W. Pountney......
Bottle or jug, W. Pountney
Bottle or jug, W. Pountney
Candy or confectionery, Schwarzschild \& Green
field...16,02
Carpet, A. L. Halliday.
Carpet, \mathbf{W}. McCallum...
Curtain fabric, J. Blair.
Curtain fabric, J. Blai
Necktie, C. Dudgeon.
Vecktie, C. Dudgeon.......................................
Oil cloth, C. T. \& V. E. Meyer............. 1620 t
Picture frames, ornamentation of, T. Schreppel.
Picture frames, ornamentatio
Pulley casing, E. C. Stearns.
Sole, rubber, Norman \& Bennett.....................
Soles, ornamentation of India-rubber, L. Elliott.
Soles, ornamentation of India-rubb
Spoon, medicine, E. C. Underhill..
TRADE MARKS.
Beef, fluid extract of, Liston Beef Company........
Beef, Liston's extract of, Liston Beef Company..
Buttons, I. E. Hirsh \& Co.
Candy, J. Morningstar.............................
Coffee, either green or roasted, G. W. Earhart.....
in ompo of red lead and oil adapted to rem
in a soft or pasty condition, J. A. Shephard...
Cordial, root and herb, Collins Brothers Drug Com
pany...............................
L. Huston...............................
Flour, Saint Paul Roller Mill Company.................
pany...............................
Hats, South Norwalk Hat Company.
Lemon ginger, a remedy for coughs, etc., Collim
Brothers Drug Company.
Liniment, J. Boyle
Lubricators, ejecto
tor Company...
Medical compounds, certain named, J. H. Pullen.
Medicinal plaster, Seabury \& Johnson...........

Sbdvertisements.
 Engravings may head adver tisements at the same rate
per line, by measurement. as the letter press. Adverper line, by measurement. as the letter press. Adver-
tisements must me received at publication office as early
as Thursday morning to appear in next issue.

CET THE BEST AND CHEAPEST.

PERIN BAND SAW blades,
 2

Rumanamani Memin ham

Ensos tair co ,
WATER-POWER WITH HIGH PRES-

Eneang bor vou
anivix

contained in Scinntifid Amurican supplement, sent
free of charge to any addres.
MUNN $\&$ Co., 361 Broadway, N. \mathbf{y}

$\xlongequal[\text { APRIL 2S }]{\text { Proncons }}$

 PHOTOGRAPHIC OUTFITS AND SUPPLIES, The Rescue of Greely.

 "A work that calls for unqualified praise as a calm, ju
dicious narrative."-Brooklym Union. "It is a model for authors who have occasion to nar-
rate experiencess in which they were themsenves promi-
nent. It is short, entirely to the point."-New York
Herald. **This book is for sale $\overline{\text { my }}$ all booksellers, or will be sent
postpaid, on receipt of price CHARLES SCRIBNER'S SONS, APPARATUS FOR ELECTRICAL MEAS urements.-Illustrations and description of the various
tnteresting apporatus for meansurng electricity that
vere shown atte Munich Exhibition, including Wite mann's binilar palvanometer; Wiedemann's Gal vano-
meter for strong curens; Zener's differntial photo
meter; Von Beetz's solenoid; apparatus for demon-

Or What to Do, and How to Do It. By Dantel C. Beard. Fully Illustrated by the $\begin{gathered}\text { One } \\ \text { One volume, oetavo, } 83 .\end{gathered}$

 ingenious contrivances which everyboy can either procure
or makee The author divides the book among the sports
of the four seasons; and he has made an almost exhaust-
ive collection of the cleverest modern devices-besides himself inventing an immenses number of capital and
practicul ideas-in all sports for byy.
 quired skill with his hands, and has become a mood me
chanile end nan embryo inventor without knowing it?"
Muwaukee Evening. $\begin{aligned} & * * \text { These books are for sale by all booksellers, or will be } \\ & \text { sent, postpaid, on receipt of price, by }\end{aligned}$
Chaides Scrínnef's sond,

SIMPLE MECHANICS.

 TEE CORINTH: CNALL-A DEECRRP

TRE METMOMR

ESTABLISHFD $\overline{1839-35,000 ~ R E A D E R S . ~}$

The Southern Coltivator

 DIXIE FARMER, The oldest Agricuitural and Indus. is read in Every State or theSonth and Southwemt. By recent purchase it now combines: The
 vannah, Ga, and unitar hep patrons of these
with its own LARGE LIST of gubscribers. The Mrith its own LARGE LIST of subscribers. . The
Press and people alltestify to its greatmerits as
a nedium for controling a medium for controlling Southern trade.
SUBSCrIPTION, one yearin advance, postage
paid, \$1.50. JAS. P. HARRISN \& CO., State Printers, Publishers, Engravers, and
Blank Book Manufacturers, Atlanta, Georgia.
P. O. Drawer \& Sample Oopy Free. PERFECT
NEWSPAPER FILE

 $\stackrel{\text { every one }}{\substack{\text { adaress }}}$

$8=$

IDETEINGITNTG

 HARRISBURG CAR MFG. CO., Harrisburg, Pa., U. S. A.

NEW YORK BELTING AND PACKING CO.
 Vulcanized Rubber Fabrics

RUBBER BELTING, PACKING, AND HOSE, Mats and Matting, and Stair Treads, \&c. BIOTOIEIE LYFRIE, OATR EPTRIINGE.
 The Williams EVAPORATOR

 Hollantr DowhellidenTalues SOLD BY THE POUND.
 HoLLASD \& HHOMPSON, Manufacturers OM THE ECONOMIC APPLICATIONS

HOW TO LAY A DRAIN - A PAPER N-W=2 $=2$
 HOW TO COLOR LANTERN TRANSPA-

Steam Engines.

THE MANUFACTURE OF SODA.--A

ELECTROMAGNETISM AS A PRIME

RELATIONS OF THE SOIL TO HEALTH

BOULIER'S UNIVERSAL PYROMETER.

To Lot with staal Poreat
 ZINC TO PREVENT BOILER INCRUS-

 Art - vesurumil of the AIR BRUSH, can se-

 HOW TO PREPARE LANTERN SLIDES.

 Mills, Power Corn Shellers, Grain Threshers and Separa
tors, Plain and Traction Engines. Send for circulars.

 IRON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturers, S. CONNERBVILLE, IND.
 SEND FOR PRICEDCATA. GOLD CHLORINATION IN CALIFOR

WEAK Wan

 DOUBLE BOATS.-TWENTY ONE IL

Price 10 cents.
ewscaalers.
$\mathbf{~ w e a k ~}$

 huysical exhaustion, I will send you a a vauabe treate
upon the above diseases, also directions for home cure
free of oharge. Address GEOLOGY. - INAUGURAL ADDRESS

Frequatusway

A SIMPLE PANTOGRAPH.-DESCRIP. Hon and flgure of a cheap form of pantograph, iote-
worthy onaceout of tits compact orm and tis simplici-
ty As the instrument is capable of describing a circle

OPIUM Moorphive hair

WATERPROOFING PAPER AND VEGE

FOREIGN PATENTS

 Their Cost Reduced.The expenses attending the procuring of patents in
most foreign countries having been considerably reduced the obstacle of cost is no longer inthe way of a
large proportion of our inventors patenting theiring CANADA. -The cost of a patent in Canada is even less than the cost of a United States patent, and the ormer The number of our patentes who avall themselves of the cheap and easy method now offered for obtaining
patents in Canada is very large, and is steadily increasENGLAA ND.-The new English law, which went into Gree on Jan. 1st. enables parties to secure patents in
Great Britain on very moderate terms. A British patent includes England, Scotland, Wales, Ireland and the inancial and commercial center of the worknowledged coods are sent to every cuarter of the world, and her invention is likely to realize as much for the patentee
in England as bis United States patent produces for him at hame, and the small cost now renders it possible for almost every patentee in this country to secure a pa-
tent in Great Britain, where his rights are as well protected as in the United States.
OTHER COUNTRIES.-Patents are also obtained on very reasonable terms in France. Belglum, '̇ermany,
Austria, Russia. Italy, Spain (the latter includes Cuba
and all the other Spanish Colonies), Brazl and all the other Spanish Colonies), Brazll, British India,
Australia, and the other British Colonies. Australia, and the other British Colonies.
An experience of FORTY years has e publishers of The Scientific Ameridan to establish
competent and trustworthy agencies in all competent and trustworthy agencies in all the principal
foreign countries, and it has always been their aim to have the business of their clients promptly and properIy done and their interesis faith A ully guarded.
f all countries, including the cost for each, and othe of all countries, including the cost for each, and othe
nformation useful to persons contemplating the pro curing of patents abroad, may be had on application to Mhis office. \& CO., Editors and Proprietors of THE SCIENTIFTC AMBRIOAN, cordially invite all persons desiring
any information relative to patents, or the registry of any information relative to patents, or the registry of
trade-marks, in thls country or abroad, ocal at their
offices, 361 Broadway. Examination of inventions, consultation,
answered. MUNN \& CO.,
Pablishers and Patent Solict

SDoertisements.

 as Thursday morning to uppear in next issu

AUSTRALIA. Bona fide American Manfacturers

KORTING UNIVERSAL D DUBLE TUBE INJECTOR
 NO ADJSSTMENT FOR VARYING STLEODTIINSS. PRESURE. OFFICES AND W AREROOMS:

HW.JOHHS asbestros ROOFING.

 ASBESTOS BUILDING FELT. This. Felt is composed entirely of of Asbestos, and is is
stricty Ifre-proot.
For
wise
under Asbestos Boiler Coverings.
 ASBESTOS PISTON-ROD PACKING. ASBESTOS WICK PACKING.
Asbestos Mill-Board and Sheathing. Asbestos Gaskets, Rings and Washers, A sbestos and

H. W. JOHNS M'F'C CO.,

 175 Randolph St., Chicago. 177 N. 4th St., Philadelphia
PHOTOGRAPHIC OUTFITS

MICROSCOPES TELESCOPES, FIELD-GLASSES, MAGICLANTERNS BAROMETERS, THERMOMETERS.
Wherniruments, Philosophical and Chemi

QUEEN \& CO.

PATENTS.
lication of the sifientific AmilRICAN, continue to ex
for Inventors
In this line of business they have had forty years experience, and now have unequaled facilities for
the preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the
Onited States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, and Reports on Infringements of Patents. All business intrusted to them is done with special care and prompt ness, on very reasonable terms.
A pamphlet sent free of charge, on application, concure them; directions concerning Labels, Copyright Designs, Patents, Appeals, Reissues, Infringements, As signments, Rejected Cases, Hints on the Sale of Pa tents, etc. se. free of charye. a Synopsis of Foreigg
We alas send.
Patent Laws showing the cost and method of securing ants in all the pringcipal counlries of the worid.

BURNHAM'S SELF-ADJUSTING SWING CHECK VALVE, Users of Check Valves will please note the advantages theseValves possess
over all others. The most important claim is, that as the Jenkins Disk Wears, the yoke that passes around the seat moves away from uniform wear of the Disk until said Diskis completely worn out. JINTKINE BEOE.,

PUSEY \& JONES CO. MAM

SEBASTIAN, MAY \& Co.'S. IMPROVED $\$ 60$
Screw Cuting Lathe. Designed for actual work; no
toy
Drii Prithes for wood wor metai.
Dogs, and machinists
Drits
 Cinecinnati, Ohio

SPEAKING TELEPHONES. HE ANERICAN BELC THIEPHONE COMPAN

 agents of the counany.
All telepinones obtained except from this company or or
its authorized licensees. are thringements, and the
makers. sellers. and users will be proceeded against.

WIRE ROPE

Address JOHN A. ROEBLING'S SONS, Manuifactur-
ers, Trenton, J. J.
Portable Storage Batteries

Constant Current Electric Storage Company, THE HARDEN STAR HAND GRENADE Postal Order or Check.

The Scientific American.
the most popular scientific paper IN THE WORLD.

This univeled pedica a n in
This unrivaled periodical, now in its forty-first year,
continues to matintain its high reputation for excellence, continues to maintain its high reputation for excellence,
and enjoys the largest circulation ever attained by any sientifle publication.
printed, elegantly tianssixteen large pages, beautifully printed, elegantly illustrated; it presents in popuiar
style a descriptive record of the most novel. interesting, and importantadvances in Science, Arts, and Manufactures. It shows the progress of the World in respect to New Discoveries and Improvemfents, embracing Machin-
ery, Mechanncal Works, Engineering in all branches, ery, Mechanical Works, Engineer ing in ais aring, tecture, Domestic Economy, Agriculture, Natural His-
tory, etc. It abounds with fresh and interesting subjects tory, etc. It abounds with fresh and interesting subjects
for discussion, thought, or experiment; furnishes hunfor discussion, thought, or experiment; furnishes hun-
dreds of useful suggestions for business. It promotes dreds of useful suggestions for business. It promotes
Industry, Progress, Thrift, and Intelligence in every The ScIENTIFIC AMERICAN should bave a place in every Dwelling, Shop, Office, School, or Jibrary. Work-
men, Foremen, Engineers, Superintendents, Directors, men, Foremen, Engineers. Superintendents, Directors,
Presidents, Offlicials, Merchants, Farmers, Teachers, Presients, Ofcials, Merchans, people in every walk
Lawyers, Physicians, Clergymen,
and profession in life, will derive benefit from a reaular reading of THE ScIENTIFIC AMERICAN.
Terms for the United States and Canada, 83.20 a year;
$\$ 1.60$ six months. Spectmen copies free \$1.60 six months. Specimen copies free. Remit by
Postal Order or Check.

$$
\begin{aligned}
& \text { E CO., Publishers, } \\
& \mathbf{3 6 1} \text { Broadway, New York. }
\end{aligned}
$$

TEIE

Scientific American Supplement.
The Scientifio American Supplement is a sepa-
rate and distinct publication from The Scientific AmERICAN, but is uniform therewitb in size, every number ERICAN SUPPLEMENT is published weekly, and includes very wide range of contents. It presents the most re cent papers by eminent writers in all the principal de-
partments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geo graphy, Archæology. Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine En gineering, Photography, Techhnology, Manufacturing
Industries, Sanitary Engineering, Agriculture, Horti culture, Domestic Economy, Biography, Medicine, etc A vast amount of fresh and valuable information pertaining to these and allied subjects is given, the whole profusely illustrated with engravings.
The most important Engineoring Works, Mechanisms,
and Manufactures at home and abroad are represented Price
Canada, $\$ 5.00$ a supplement for the United States and RICAN and one copy of the SUPPLEMENT, both mailed for one year for $\$ 7.00$. Address and remit by postal ceneck,
MUNN

CIENTIFIO AMERICAN.

To Foreirn Subscribers.-Under the facilities of
the Postal Union. the ScIENTIFIC AMERICAN is now sent by post direct from New York, with regularity, to subBritish colonies ; to France, Austria, Belgium, Germany Russia, and all other European States; Japan, Brazil Mexico, and all States of Central and South America. \$4, gol, for scren to foreign countries, Canada AmERICAN, one year ; \$9, gold, for both Scientipic Amprican and SUPplement for
one year. Thisincludes postage, गhich we pay. Remit one year. This includes postage, 刃hich we pay. Remit
by postal order or draft to order of

