
[Entered at the Post Offlce of New York, N. Y., as Second Class Matter.]
a WEEKLY JOURNAL 0F PRACTICAL INFORMIATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. LI.-NO. 16.

THE EDISON EXHIBIT AT THE PHILADELPHIA ELECTRICAL EXHIBITION.
The accompanying engraving, made from a sketch taken by our artist at the International Electrical Exhibition at Philadelphia, is a faithful representation of the Edison exhibit, than which nothing in the great hall bas attracted more attention. The Edison Company sought to represent a miniature counterpart of every detail of their system with a mechanical and artistic finish that should render it worthy the name it bears. How well they have succeeded every one who visited the Exposition is aware. To those who have not, this brief sketch may, perhaps, give a general idea of its most salient features, and the thoroughness which distinguished it.
Facing the main entrance, a circular structure of artistic workmanship marks the general headquarters. Within the dazzling glow of incandescence bursts from a circle of calla lilies jutting outward from a mass of roses, and japonica, and chrysanthemum, and gladioli hanging from the ceiling, and-
"From the arched roof,
Pendent by subtle magic, many a row
Of starry lamps and blazing cressets fed,",
not with naphtba and asphaltum, as were the lamps in Milton's pandemonium, but with an invisible current, which, generated by dynamos at the other end of the great hall, is led by devious routes through subterranean passages. Near by a towering cylinder, glazed with mica, blazes with incandescence lamps, while colored lamps, fed by the same current, haug in festrons around it.
The various and ingeniously contrived parts which go to make up the Edison sy stem are here displayed, not as models the practical workings of which must be explained, but at work in their several caparities.
Here is the plant fed from a central station, intended for cities or sections thereof, such as that ove in successful operation in New York city ; and there the isolated plant intended for great manufactories and the like. The dynamos occupy a section of their own at the norlhern end of the building, and not withstanding the great currents they are generating, which feed several thousand lamps scattered throughout the building, their movements are so uoiseless that the average visitor, though he be in their vicinity, would scarce suspect they were in active operation; a low rumble being all that

the edison electrical darky.
the common thoroughfare, is placed a section of the much talked about and little understood underground apparat us of the Edison system. It is intended for and has served to
make incandescent lighting, not a possibility, but a practicability
By it the current mas be efficiently distributed for light ing and for power. For the most part it is constructed of wrought iron piping, in which are laid the copper electric mains through which the current is transmitted. These conducters are insulated with species of tape devised purposely for them, and to still further guard against contact they have here and there a serving of rope. Around the mains and inside the pipes is poured an insulating material which possesses the double advantage of hardening withou cracking. The three wire system devised by Edison for his underground apparatus is a fair exponent of his genius in simplifying complicated and expensive mechanisms. Insterd of the four wires which heretofore were thought necessary to carry the current from two dynamos of equal power, he uses only three. The central wire of the three is run from the connection which is made between the positive pole of one dynamo and the negative pole of the other dynamo; the two outside wires representing the remaining positive and negative poles.
There is no current through the central main while the dynamos are working evenly, the opposing currents having a neutralizing effect, the one upon the other. Instead of the 100 volt current which the outside mains should carry, they would, if joined together, carry nearly 200 volts. This is presented in the three wire system by means of the connection that is made with the central main from the mains on either side of it. In the three main system, the wires need not be of as large diameter as where four mains are used, and heuce, as may readily be seen, still another saring of copper is effected.
The apparatus by which the Edison lamps are freed of air before being sealed is fashioned after the style of the Sprengel air pump-a column of mercury while falling driving the air before it. The life of the Edison lamp ofton extends beyond one thousand hours, which, if used on an average of five hours per diem, would insure its successful operation for more than balf a year. This dnes much to sustain Mr. Edison's assertion that by means of his apparatus he can rednce the vacuum in his lamps to one one-hun-dred-thousandth of an atmosphere. After his pumps have done their work, a current of electricity is sent through the filament of the lamp to eliminate what air, if there be any, may have become mechanically entangled
(Continued on page 246.)

Šrinutific Gmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

 published weekly atNo. 361 BROADWAY, NEW YORK.

```
o. D. MUNN.
A. e. beach.
```


TELMS FOR THE SCIENTIPIC AMERICAN.

One cony, one year posrage included...
One copy, six months postage included

One copy, six months postage included 160 gratis for every ciut of tive subscribers at \$3.20 each; additional coppes at same proportionate raie. Postage prepaid.
Remit dy postal order. Address

MUNN \& CO . 361 Broadway, corner of Franklin street, New York

The Scientific American Supplement

 Is a distinct paper from the SCibvitific Amprican. IHE SUPPJ.EMEN' is issued weekly. Every number contains 16 octavo pages, uniform in sizewith Scientric American. 'Terms of subscription for Supprement with Scientipic american. 'Terms of subscription for Supplement,
8500 a year, postage paid, to subscribers Single copies, 10 cents. Sold by 8500 a year, postage raid, to subscribers
Combined lintes. - The Scientific american and Supplement will be sent for one year postage tree. on receipt ot seven dollars. Both desired

ddress MUNN st remit is by draft, postal order, or registered letter.

Scientife American Export Edition

 The SCINNTIFIC AMERICAN Export Edition is a large and splendid peri-odical, issued once a month. Eith number contains about cine hundre
large quarto nages, profusely illustrated, embracing: large quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the Scuw plates and pages of the four preceding weekly issues of the SClestipl
Amencas, with its splendid engravings and valuable information: (2) Ameiricas, with its splendid engravings and valuable information: (2,
Commercial, trade. and manufacturing announcements of leading house 'Terms for texport Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world Single copies 50 cents. Manueacturers and others who desire world. Single copies 50 cents. . Marutacturers and others who desire
to secure foreign tride may have large, and handsomely displayed an. nouncements published in this edition at a very moderate cost. The SCIENTIFIC AMLIMICAN EXPort Edit ion has a large guarainteed circu-
Iation in all commercial places throughout the world. Adress NIUNN \& lation in all commercial places throughout the world.
CO., 361 Broadway, corner of Franklin street, New York

NEW YORK, SATCRDAY, OCTOBER 18, 1884.

TABLE OF CONTEN'S'S OF
the scientific american supplement NO. 459,

For the Week ending october 18, 1884 .
Price 10 cents For sale by all newsdealers
I. CIIEMISTRY. ETC.-Purification of Water....

II. ENGINEERING AND MECHANICS.-Automatic Freight Car
Couplers.-Couplers selected by the Master Car Builders' A ssociation. - With full page of illustrations... Car Couplers on Massachusetts Railways The Severn Tu nnel Railway.-By J.CLA RKE HA WE..... read before the British Association at Montreal. - With map and ectional elevation of tunnel. Light Traction Engine.- With engraving.
III. ELE TRICITY, ETC.-The National Electrical Conference Work of the U. S. Signal Service in relation to earth currents and atmospheric electricity.- International electric standards. - Form-
ation of a unit of power.-Theory of the dynamo-electric machine.ation of a unit of power.-Theory of the dy namo-electric machine.Apparatus for Testing the Resistance of Lightning Rods.-2 flgures

IV. ARCHEOLOGY.- Astonishing Discovery.-Deifled mayas that lived in America thousands of years ago found among the gods ,
V. NATURAL HISTORY.-Electric Fishes, Physiological, Chemical,
Nagnetic. and Inductive Effects.-Action upon the Nagnetic. and Inductive Effects.-Action upon the magnetic
needle.-Relative immunity of electric fishes with respect to their own discharge... 7
VI. MISCELLANEOUS.-The Industrial Exhibition at Turin -With engraving
Grand Bicycle Tournament at Leipzig.- With engraving.
The Nile Expedition.-With engraving of the Cataract of Am-

DII. biography.-Prof. Robent E. Rogeng.-Chemist.

RECENT DECISIONS OF THE COMMISSIONER OF PATENT CONCERNING TRADE MARKS AND LABELS.
The Official Gazette of the United States Patent Office, September 30, 1884, contains a decision rendered September 22,1884 , on the vexed label and trade mark question by the Commissioner of Patents. In rendering his decision the Commissioner gives very lengthy reasons, the text filling nearly two full pages of the Gazette. The question is the old one whether the Commissioner canse fuse to register as a label what in his judgment constitutes a trade mark, and whether, if not a trade mark in all characteristics, it then can be registered as a label. Whoever as an applicant bas had labels subjected to Patent, Office rulings on the above question, will know what the decision was. The Commis sioner held that the words " not a trade mark" occurring in the statute gave him full power to refuse label registration o a label containing subject matter for a trade mark.
We take decided issue with this decision. In former arti cles we have stated pretty fully what our views are, and have fortified them by appropriate quotations from authori ties. The great court decision in these matters was ren dered September 30, 1881; it is in the case entitled the Will cox and Gibbs Sewing Machine Company against E. M Marble, Commissioner. This was a case before the Supreme Court of the District of Columbia, and in it a peremptory mandamus was issued, enforcing just such a registration a is now refused.
In his decision Mr. Butterworth disposes rather briefly of the opinion in the sewing machine case. He does no agree with it, and so concludes that it was not fully argued and asserts that it was practically an ex parte case. Now the truth is that the case in question did not go by defaul in any sense. In Mackey's Reports, vol. i., page 285 et seq. Mr. Marble's answer in the case will be found. If the de cision, published also in the Official Gazette of October 17, 1882, be examined, it will be found unusually long and full The court strikes at the root of the matter by going back to the original registration of labels with the Librarian of Congress under the copyright laws, and by deducing there from the powers of the Commissioner of Patents. But this opinion of so high a court is disposed of as giveu in "prac tically an ex parte proceeding,".
and as one ren dered in a case that "did not have careful consideration" from the court. Now, no one can impartially examine the decision so shortly disposed of, without forming exactly the opposite opinion. It is certainly a bold criticism on the methods of so high a court to say that it decided a case and issued a peremptory mandamus without "careful considera tion."
The Supreme Court of the District of Columbia is the successor of the old Circuit Court of the District. By the act of February 27, 1801, the original tribunal was estab lished, one of whose functions was to issue writs of man damus t_{1}) compel public officers to do acts required of them by law in performance of their duties. The Suprem Court of the District was established by the act of March 3,1863 , whereby the oid Circuit Court was abolished, and the new court made its successor. Cases from the Supreme
Court of the District may be appealed to the Supreme Court of the District may be appealed to the Supreme
Court of the United States. Thus the court we are consid ering possesses very high powers, exceeding in some respect those of the circuit courts. It is, to all intents and pur poses, in the mandamus proccedings a United States Court. Several judges, one chief and five associates, compose it. Yet a carefully rendered decision of such a court, given afterf ull deliberation, is disposed of by the Commissioner of Patents in a single sentence.
Three divisions of label and trade mark matter are created by the Commissioner's decision. There is, first, the label, which must be descriptive; secondly, the trade mark, which must be arbitrary or non-descriptive, and in use in commerce with some foreign nation or Iudian tribe; and thirdly, the subject matter for a trade mark, but not in the prescribed commercial use. Of these three the first two are registrable, the last the Commissioner decides is non-registrable. All this distiuction is purely a Patent Office creation. The old registration under theCopyright Laws with the Librarian of Congress 4 was subject to no such rulings. The inherited power of 6 registration belonging to the Commissioner of Patents should not be either. The point overlooked by this official is that he registers labels under one clause of the Constitution and 9 trade marks under another. To define trade marks in ad dition to the special act of March 3, 1881, he has a multitude of court decisions. To define labels be is obliged to have recourse to Worcester's dictionary. His predecessor used Webster. He does not take the point that the greater in cludesthe less, and that the term label includes trade marks. Labels are registered under the copyright law. Can any one conceive of an eugraving being refused registration by the Librarian of Congress because it is arbitrary? Yet this is precisely what the Commissioner upholds as proper practice in the Patent Office.

The misfortune of the whole business is, that these cases are usually not of sufficient importance to be brought before the court. The applicant, on finding registration refused him, usually prefers to submit to the loss so unjustly incur red rather than go to the expense of an application for a mandamus. The predecessor of the present Commissioner of Patents incurred such a proceeding, however, in the case we
bave cited. It served to change bave cited. It served to change the practice of the office during his term. Under such amended ruling the business of label and trade mark registration went on with perfect
change has beeu inaugurated. The status of affairs now is that the Supreme Court decision is set aside, and that rulings are made that would unquestionably incur a mandamu from that tribuna! were one applied for. But owing to the omewhat minor importance of this class of privileges, such proceedings will not, often be inaugurated
The Commissioner's arguments in the case in question a affecting labels are derived from these words of the statute not a trade-mark," and from Worcester's dictionary. This is but a small basis for a decision. The true way to trea such a case is to go to the root of the matter, and examine the origin of the powers whose limitations are under discus sion. Had the latter method been adopted, and not the more superficial plan, a different result would probably have been reached. But taking the issue as presented, we find that th Comınissioner quotes Upton's definition of a trade mark, and Worcester's of a label. The trade mark according to Upton is "the name-symbol," etc. . . . adopted by a manufacture or merchant " to designate the goods that he manufacture or sells." . . . Worcester says a label is "a small piec of paper or other material containing a name, title, or de cription, and affixed to any thing to indicate its nature or contents." Certainly these two definitions quoted by the Com missioner in his decision come very close to each other, con idering that they describe things that he considers so radi cally different. Even in Worcester's definition of a label absolute descriptiveness is not insisted on, as nature and contents may be indicated arbitrarily as well as descrip tively. It is in such arbitrary indication that the commercia value of a trade mark consists.
We can only hope for the satisfaction as well of the Commissioner as of the public that some of these cases will again be brought before the Supreme Court of the District of Co umbia. Mr. Butterworth, we are convinced, desires such a issue no less than the prospective registrants of labels and trade marks. When such a case does arise, the Commission er, to borrow his own expressions, will have a good chance to fully argue the case and see that, it receives careful consider ation from the judges of the court.

SHOP SAVINGS

A very suggestive sight was wilnessed a short time ago in a visit to a large manufactory of machinery and tools. The outlet to the sink had been been closed, and the large drain pipes had to be removed and cleansed. The result of that cleaning was a surprise to the proprietors, although it was not so to at least some of the workmen. If a list of the articles found in the drain pipes and at their outlet into the tail race was made it would be almost like an inventory of the small parts used in the manufactures of the establish ment. There were hundreds of pieces of broken files, taps, reamers, drills, parts of machines and tools spoiled in the working, and a wagon load of cotton waste. The water closets had been used as convenient "catchalls," "scrap heaps," and "glory holes." How much the estal)lishment had lost in this way could not readily be estimated, as much had lost in this way could not readily be estimated, as much
of it must have been swept away by the stream and much of it must have been swe
of it buried out of sight.
It is surprising how much may be saved in the shop by judicious attention to little things and by handy appliance for saving. An establishment that works up brass and iron in about equal proportions for more than a year, mixed the drillings, turnings, and tilings of both metals indiscrimi nately, and dumped them out of doors as useless rubbish to be got rid of. A separating machine was suggested, and now one of the proprietors declares that it paid for its cost within three weeks. It is self-operating, requiring only the occasional supply of the chips and the removal of those al ready separated. The mixed chips pass through a trough in a thin stream before a revolving cylinder composed of horse shoe magnets; the brass chips drop in front into a box, and the iron and steel chips are carried ou the magnets to the under side, and are brushed off by fixed brushes into another box. Before being separated, these mixed chips were worthless; after being separated the iron chips had a marketable value, and the brass chips a value ten times as great. In a large manufactory of machine screws, where two bar els of oil a day is not an uncommon amount to use, if al the machines were supplied afresh, three-fifths of this amount-sometimes more-is saved for further use. This is dove by a small centrifugal machine. The chips, soaking in oil, are dipped into the little cup sbaped receiver, the cover closed, the belt started, and the oil comes in an almost invisible borizontal sheet against the sides of the en veloping pan and runs into a tank ready for use. The chips are cleaned so nearly that they barely soil the hands.
In a certain machine shop worn out and broken files are placed in a transverse holder on the grindstone frame, held against the face of the stone by springs, given a traverse by a belt and a spiral cam, and the result is bits of smooth stee just adapted for forging to b:ring bar cutters and keys, with a further result of keeping the stone trued
In brass manufactories there is unavoidable waste of the metals in the scoriæ of the melting furnaces, in the rolling mill department, and the wire drawing. Whatever of this waste, with the sweepings, can be gathered is put into large mortars and subjected to the impact of pivoted pestles until the whole is pounded to a dust Then it is floated in a running stream of water through a chute over riffles, which catch the heavy metallic particles and allow the lighte trash to pass off. The metalinc residuum, packed in cruci bles with luted covers, gives back a profitable percentage of solid brass to be reused.

A PROJECT FOR THE REORGANIZATION OF THE ARMY

The intelligent observer from the other side of the ocean bas often, upon his return home, recorded his surprise that a nation of fifty millinns of people should suffer its seacoas defenses to fall into decay, its army to sink into insignificance, and iss fleet to lapse into the proportions of that of a power of the fourth class. To the European mind, wedded as it is to the theory that peace is only secure when sustained by the power to make war, the idea that there is safety in disarmament is incomprehensible.
The superficial observer, as we know, ascribes the la mentable condition of both our military arms to the tem perament of the people themselves, who, to his mind, are too much absorbed in the race for wealth to guard agains disaster when it shall have been acquired.
This is, there is reason to believe, only in part true. Recent events have shown that, when the matter is set before the people in its true colors, when the necessity for certain military precautions is shown and the reason for armament explained, they are quick to realize it. Hence it was that the scheme to improve the naval service and, above all, to manufacture beavy rifled steel guns for coast defense, was recently set afloat. Little, however, has been said about the army, notwithstanding the words of warning uttered by its late retiring chicf. With a view of obtaining plans for the thorough renrganization of the military arm, the Mili tary Service Institute recently offered a prize. The successful essay was contributed by Lieut. Arthur L. Wagner, Sixth U. S. Infantry. It is a concise statement of the militaty necessities of the United States, and, since it has been sanctioned by the best military authorities, may be looked upon as a correct estimate of our requirements.
The general plan outlined by Lieut. Wagner is the organization of what might be called the nucleus of an effective army, which, in time of war, could be readily expanded into a much larger body of trained fighting men, supported by a militia organization practically trained in the most minute details of the school of the soldier. He would have the peace establishment at 27,501 officers and enlisted men, which on a war footing should be raised to 56,356 . First and primarily he would have each arm of the service-artillery, cavalry, and infantry-armed and equipped with the most efficient weapons and accouterments. The fleld artillery should be provided with Gatling and rifled guns, and so drilled that they could work quickly enough to operate at a moment's notice, even on an advance skirmish line; the gunners being protected by shields from the attacks of sharpshooters. He is sustained by the best modern author-
ities when he claims that cavalry, to be most effective, ities when he claims that cavalry, to be most effective,
should fight afoot save upon those rare occasions when a sudden dast on an exposed flank or the like should be re quired of them. The saber, he thinks, ought not be discarded, but the principal weapon of the trooper should be an impruved magazine rifle.
One of the most interesting features of Licut. Wagner's paper will be found to be the description of a model national reserve, composed of a battalion from each congressional district in the country. This rescrve, composed of the same material as the present militia, should be partly equipped by
the Governmen t, and be instructed under the personal superthe Government, andbe instructed under the personal super-
vision of army officers detailed for the purpose. It would consist entirely of infantry and heavy artillery, the latter being limited to companies and battalions in the seacoast cilies, drilling usually as infantry, but at times serving the great guns mounted in the neighboring fortifications.
As a whole, this paper of Lieut. Wagner's will commend itself not only to the soldier, but to the people themselves; for, while providing for a powerful military organization, by far the greater portion of the power is arranged to
wielded by the penple themselves, who are sovereign.

SHAFTS AND BELTS.

In many cases the shafting is too light for the weight put upon it and the strain to which it is subjected. In many cases the bearings are too far apart to properly sustain the
load when in motion. In many cases the directions of the load when in motion. In many cases the directions of the
belts are either absolutely improper or relatively wrong. Recently much trouble was caused by the heating and Recently much trouble was caused by the heating and
rapid wearing out of the boxes on the receiving length of a mai! countershaft in an establishment which occupied a four story building. The length of shaft, which was only two inches diameter, was replaced by one of two inches and three-eightbs, but the trouble still continued. Between two hangers, a little over eight feet apart, were bung pulleys, the aggregate weight of which could not have been lessthan six bundred pounds. The main driving belt, twelve inches wide on a six foot pulley, ran directly up and down-verti cally-and every other belt pulled in one direction. The main belt that ran vertically weighed about two hundred
pounds. With these data the intelligent mill wright or other pounds. With these data the intelligent millwright or other
mechanic can readily see that economical running was impossible.
Objection is made to shafting, stiff enough to bear the load and strain, on account of its weight. This might be remedied in a great measure by substituting hollow for solid shatiing. This subject was treated definitely in the Scientific AmeriCan of May 12, 1883, under the heading "The Load of Sbafting," showing that the change was entirely feasible.

Part of this objection might be removed, also, by sufficiently supporting the shaft, as it is evident that a shaft will run with less friction when running perfectly straight and
level than when running on the "double wabble" principle: at least no deflection out of a direct line should be per
mitted on a shaft at any place in its entire length. Even if this deflection is not apparent to the eye, it can
The direction of belts is a subject that is not usually sufficiently considered. If a belt is hung to run vertically its entire weight is upon the upper shaft, and it must be kept o tight as to take up the sag of its weight, which causes i to fall off from the buttom of the lower pulley. If a belt must run vertically, let the lower pulley be as much larger than the upper one as possible, so that the belt can have a
bearing on its sides. Under no circumstances allow the ower pulley to be smaller than the upper oue; it is best al ways in leading from a lower to an upper shaft, or vice versa, o give the belt an angle; the best running belts are those which run horizontally
Never have the pull of the belts all on one side of the shaft; it is unnecessary to point out the reasons why. The pull of belts should be as equally distributed relatively as possible.
It is an easy matter to ascertain the proper position of the bearings of a shaft relative to its weight before the hanger are placed and the shaft hung. Place the bare shaft on boxes on movable horses, the bearings being at the desired istance apart. Then load the length of shaft with the weighed or estimated load of pulleys, and notice any deflecion. The load test need not be the actual weight, but only a relative portion. Rig a lever over the shaft midway be ween the bearings on the horses, one end of the lever to be
held by a rod bolted to the floor and the other end loaded. By estimating the difference (relative) between the fulcrum and the shaft and the shaft and the weight at the end of the lever, a comparatively easily handled weight can represent the total weight of the shaft, on the principle of the ordibary steam boiler safety valve lever. After testing the shalt by the actual weight of the pulleys and belts it has to carry, dd fifty per cent more for the salgging, swaying, and vibra ion of the belts in motion, and when tiiis total weight can he sustained without deflection, the position of your bearing is determined.

POISONING FROM GALVANIZED IRON,

No questions can by possibility be of more intense interest than those which relate to the means of supplying pure water for use in our cities and towns. All the drift of modern reearch has been to show that diseases of various types are pread through the agency of drinking water more energeti ally than in any other mode. But of what use is it to process of transmission to the consumer the water is to abprocess of transmission to the consumer the water is to ab-
sorb that which shall carry with it death, or at least the seeds of ill health? The mode of distribution become therefore of equal importance with the source of supply.
With the primary conduits, channels of brick or stone and street mains of iron, there seems to be no occasion to find fault. Pure watering entering them will be delivered pure. The practical danger must come, if it comes at all in the smaller distributing pipes, the house service. For bis purpose three metals are in use in all our cities-lead, ron, and galvanized iron, the latter being really zinc. With the t wo former we do not propose at present to deal; but inasmuch as recently attention has been publicly drawn.to cases
of supposed poisoning from drinking water which bas passed through pipes of galvanized ir on, it is worth while to look to the matter closely. We bave been accustomed to believe that galvanized iron was a perfectly safe materia?; if it is not so, the public ought certainly to be advised of the fact.

The first question for us is, What are the chemical possibilities involved? We are to take the case only of water which is supposed to be sufficiently pure for drinking, thus necessarily excluding that which is to any perceptible de gree brackish. We have not, therefore, to suspect the presence of chlorine or of alkalies in sufficient proportion to
have any appreciable effect. Neither can we have to deal have any appreciable effect. Neither can we have to deal it free air, whose oxygen is a powerful agent, and we have thus the means of forming zinc oxide constantly present. But the oxide of zinc is as insoluble in water as the metal itself, and as an oxide we may discard it from the question. And it would seem then that a galvanized iron pipe of any ength ought to deliver the water as pure as it receives it And chemically speaking this is no doubt true. But another factor is involved, which can by no means be neglected; this is mecbanical attrition.
That the galvanized pipes are constantly wasted by the water is certain; the zinc surface is destroyed, and accumulations in the pipes occur sometimes, almost choking them, but this is done apparently ouly by the force of the current cutting off and carrying with it either metallic zinc or the coating of oxide, two inert and innocuous sub stances.
Now if we could stop bere our chemistry would surely carry us safe; but the very object for which we are bringing the water is that it may go into the stomachs of consumers and here we encounter a new series of conditions.
The gastric follicles, called into special activity at every act of digestion, develop an acid secretion. The precise naure of this is still a matter of dispute among physiologists, though all agree that it is either lactic acid or hydrochloric. Either one of these would at once dissolve zinc oxide or metallic zinc. Of the physiological action produced by zinc lactate we have no knowledge; but inasmuch as the two acids are so closely allied as to be distinguished with
difficulty, it is reasonable $t_{\text {I }}$ infer that their salts would have
a corresponding resemblance, and the chloride we know
abundantly as a violent poison; we may doubtless fear the lactate.
Here then seems a real source of danger from water flowing through galvanized iron pipes, and if really any injury has ever been produced by such water, it is doubtless in this manner that it bas been done. But the remedy is plain and sure. The metal and the oxide are both insoluble, and ca surely be filtered out. If, theref ore, the water could alway be filtered no danger would ever occur, but unfortunately this is done in so few instances that the practical bearing of it is small. And we come then to the question, Is this evil, thus shown to be chemically possible, anything more than a mere matter of theory? Have we any proof that poisoning has ever been produced by the use of the so-called alvanized, that is, zinc coated pipes?
We bave examined with very great care all the account available, and so far we can find nothing to con vince us tha injury has ever occurred. Various reports have appeared of injurious effects, but none of them have been substantiat ed by satisfactory proofs. So many other causes of il bealth, even of sudden attacks simulating the effects of poison, are liable to be intervolved in almost every case, that newspaper statements are to be received with extreme caution. And considering the small numbers of even these which have appeared in comparison with the countless my iads of those who are constantly using the water from zin pipes, we are fairly entitled to believe that practically no danger can be attributed to them, and that the public may rest satisfied to hold them safe and harmless, the amount of naterial presented for the chemical action in the stomach on which we have referred being in fact too insiguificantly small to produce any result.

The McCormick observatory.

At the recent meeting of the American Association, Proessior Ormond Stune, director of the Leander McCormick observatory of the University of Virginia, gave an elaborate description of that observatory, now approaching completion, and to be devoted entirely to original research. The telescope, which will soon be mounted, is the twin in size of the Washington twenty-six inch, and like it in most of its details, except the driving clock, which is like that of the Princeton twenty-three inch, with an auxiliary control by an outside clock, and that it has Burnbam's micrometer ilumination. The observatory has a permanent fund of eventy-six thousand dollars as a beginning; and eighteen thousand dollars have been expended in observatory build ings, and eight thousand dollars for the house of the direct or. Situated eight hundred and fifty feet above the sea, and on a bill three hundred fect above surroundings, the main building, circular in shape, is surmounted by a hemisphe rical dome forty-five feet in diameter. The brick walls bave a bollow air space, with inward ventilation at botom and outward at top.
Mr. Warner, the builder of the dome, gave an interesting description of the ingenious method of adjusting the conical surfaces of the bearing wheels, so that they would, without guidance, follow the exact circumference of the tracks; aud then of the adjustment of the guide wheels, so that the axis of this cone sbould be exactly normal to the circular track. The framework of the dome consists of thirty-six light steel irders, the two central parallel ones allowing an opening six feet wide. The covering is of galvanized iron, each piece fitted in situ, and the strength of the frame is designed to stand a wind pressure of a hundred pounds per square foot. There are three equal openings with independent shutters, the first extending to the horizon, the second beyond the zenith, and the third so far that its center is op posite the division between the first and second. The shut ters are in double halves, opening on horizontal tracks, and connected by endless chain with compulsory parallel mo tion of the ends. The dome weighs twelve tons and a half, and the live ring one ton and a half; and a tangential pressure of about forty pounds, or eight pounds on the endless rope, suffices to start it. If this ease of motion contioues as the dome grows old, it is certainly a remarkable piece of engineering work.

Wells and Cholera.

The New York Board of Health condemns the use of water obtained from the artesian wells of the city, maintain ing that it is unfit for human use, and recommending that all the wells be immediately closed. Dr. Cyrus Edson. of the Board, says he does not believe there is one well in New York city that is safe, for the reason that the substrata beneath the city are contaminated in some degree by leakages from the sewers and other drainage. Paris can have good wells, because the watershed i; 182 miles away, and London has a like advantage. But the watershed of New York is the city itself situated right over the wells. The chief rea son urged for the closing of the wells is of course protection against disease, and especially against cholera. Dr. Edson is certain that in ninety-nine cases out of a hundred cholera get into the human system through the germs in water used. The judgment of the intelligent gentlemen composing the Board of Health that the wells are really dangerous will justly carry great weight, especially in view of the possible advent of cholera bere. Those who bave expended large sums in sinking wells for the supply of their buildings, the Insurance Critic thinks, will naturally be reluctant to yield to these conclusions. But all will admit that pul, lic bealth and safety sinould be the governing consideration.

SETTING DIAMONDS IN TOOLS.

The engraving shows an improved method of inserting diamonds into the teeth of boring, drilling, sawing, grind ing, and other tools, by which the diamonds are rigidly and permanently secured in position without bracing or soldering and without any possibility of their getting detached. The large cut shows the tool mounted for drilling; Fig. 2 is a vertical transverse section of a boring tool; Fig. 3 is a top view of the same; Fig. 4 is a top view of a tool of larger size; Fig. 5, top view of a hollow drill; and Fig. 6 is a side view of a tooth for stone cut ting saws. The stock of the tool is provided with one or more transverse recesses of dovetailed shape, the sides of which con verge slightly toward the longitudinal axis of the recess.
Inserted in the recesses are the diamonds, which are shaped at two opposite sides so as to correspond exactly to the shape and size of the recess. To obtain diamonds of the proper size required for the different tools, the raw diamonds are broken up, which is accomplished by making a slight incision with a diamond cutting tool at the point where the diamond should be separated, and then cleaving the stone in the line of the incision ly a suitable tonl. The diamonds are then cut into shape, and inserted with the narrower end foremost into the bit hy aid of a few light blows. The double wedge action of the recess holds the tapering base of the diamond rigidly in place. The diamond projects at both sides of the bit, and is also pointed at its center when required for bor ing purposes. For larger sizes of boring tools, several diamonds of smaller size, slaped as described, are driven close to eacl other into the recess, as indicated in Fig. 4. Wheu used for slone cutting saws, or for rock drills, the stones are so iuserted that the Jongitudinal inclination of one transverse recess is in the opposite direction to that of the next adjoining recess, thereby exposing the st ock to the same strain on both sides. By this method the diamonds can be inserted at the place of use by an average mechanic, so that the necessity of returning the bits for setting is obviated; and when they become worn off they can be exchanged, and used with bits of smaller size until they are entirely used up.
This invention has been patented by Mr. Anthony Hessels, who may be addressed care Messrs. Geopels \& Raege ner, Tryon Row, New York city.

IMPROVED PRESS.

Our engraving shows a press designed for the use of book binders, printers, metal workers, and for purposes where a compact and powerful apparatus is desirable. The follower is mortised to allow the passage of two standards that rise from the euds of the bed. The sides of the standards are fitted with ratchets, and in grooves on the platen are sliding dogs that are forced into contact with the ratchets by springs so as to prevent the rise of the follower. The dogs are drawn out to allow adjustment of the follower to or from the bed, according to the height of the material to be pressed, and suitable levers may be provided for moving all the dogs at once. At the middle of the follower is a stand supporting a screw operated by a hand wheel on its upper end. Levers, hung on fulcrum posts on the follower

de NOBILI'S IMPROVED PRESS.

and having their outer ends forked to stride the standards, are jointed to a nut on the screw. Hook ended pawls hung on the outer ends of the levers engage ratchets on the standards in such a way as to permit the levers to descend but not to rise. In operating the press the material is placed on the bed and the follower adjusted on the standards. Then by turning the screw the platen is forced down by direct pressure of the screw and also by the downward movement of the nut acting through the levers. This con-
stitutes a simple and compact device, which exerts great pressure.

This invention has been patented by Mr. A. De Nobili, and additional information may be obtained from Mr. Emi Zucca, of 250 Washington Street, New York city

Curious Rock Formation in Orange Mountains, \mathbf{N}. J.
The work on the quarry near Mt. Pleasant Ave., near the

HESSELS' METHOD OF SETTING DIAMONDS IN TOOLS

The value of Trade Mark

About a year ago what is styled the New York Cab Com pany began to run cheaper cabs in the city than the back meu had theretofore afforded. Their vehicles were so distinctive as to be at once readily recognized, the lower panels being painted yellow and the upper ones having the device of a crown with three feathers issuing from it, encircled with garter of gold. Tbese cabs at once became favorites, and prominent hack owner immediately painted o ver a numbe of his vehicles in pretty close imitation of the same style, so that the public generally would easily be deceived thereby. The origina company then began suit for infringement of trade mark, which Justice Lawrence has just decided in the Supreme Court.
In his opinion Justice Lawrence says that the cabs of the company were painted in a novel and peculiar manner, and that the infringer's cabs were painted and lettered to create the impression that they belonged to the same company. The Justice says: "The true doctrine in cases of this character is, I think, that no one should be permitted to so dress his goods or wares as to enable him to induce purchasers to believe that they are the goods of another." He cites a large number of cases, and goes on to declare that an exact imitation of a trade mark is not necessary in order to convey a false impression. A partial one may be equally effective in misleading one. He does not mean to say that the cab company has an exclusive property in color or words, but that "it has established a trade mark in the color, words, and device as com bined, which entitle it to call on a court of equity for protection against an imitation de signed to mislead the public and deprive the plaintiff of its profits."

LIFE RAFT.

Since the life boats, life rafts, etc., used at present on steamers and sailing vessels do not present sufficient facilities for saving
years, has recently revealed a very curious formation of rock and has attracted much attention. So much interest has become centered in this discovery that Prof. Geo. H. Cook, of Geological Bureau,New Jersey, made a recent visit to Orange with the special object of making an examination of this geological formation; and his report reveals the curious fact that the formation there, and at the famous Giant's Causeway, Ireland, are almost identical. The rock is basaltic trap, and is deposited in columns from 15 ft . to 40 ft . high, as perfectly cut as if moulded in forms, and owing to their hexagonal or pentagonal shape offer the suggestion that their formation was crystalline. At the two extremities of the quarry the columns are vertical, while in the middle they diverge in every direction, from a point at top of clearing perbaps a bundred feet above the base of the quarry. The columns at the northern end are the largest, some of them being 4 ft . across a single side, while the smaller columns present faces not over one foot across.
Prof. Cook states in a letter to the Orange Journal that " it belongs to the same class of rocks, both in material and structure, with the Giant's Causeway in Ireland, but it is on a much larger scale, as will be seen by comparing the dimensions(which are given above), with the following taken from description of the noted curiosity of Ireland, which says 'In diameter the pillars vary from 15 to 20 inches, and in height some are as much as 20 feet.
These basaltic columns are undoubtedly of igneous origin, and the curious feature of them is that they seem to rest upon a platform of red sandstone, of which the moun tain is principally composed, and which is a rock of earlier formation than the trap itself. The explanation is that the trap, while in a molten condition, was forced through openings or fissures in the sandstone during some period of volcanic upheaval. It is believed further that there must have been more than one eruption of matter, as the peculia inclination of the layers would so indicate. The matter of working the rock is very simple, from the fact that the col umns are so distinctly cut that without very much effort on the part of the workmen they can be dislodged from beds and rolled to the base of the quarry, almost in their complete integrity. Although there are numerous quarries and formations of trap in the mountain, this is the only one, so far as discovered, which presents the peculiarities ob served above.

Lectures by Sir William Thomson on Molecula

 Dynamics.By invitation of the authorities of the Johns Hopkins Uni versity, Sir William Thomson, D.C.L., F.R.S.L. and E., etc., Professor of Plyysics in the University of Glasgow, will deliver in October next a course of eighteen lectures on "Molecular Dynamics," before the Physical Section of the Johns Hopkins University, Baltimore, Md
The opening lecture will be given on Wednesday, October , at 5 P.M. The other lectures will follow on consecutive days at the same hour. Professors and students of physics are invited to attend, and arrangements will be made by which they may easily obtain temporary lodgings, provided an early intimation is received of their intention to come.
the lives of persons on the vessel in case of accident, Mr. John IR. Adams, of Houston, Texas, has invented a life raft so constructed that it can be used as a stateroom ordinarily and as a raft in case of danger. This life raft is provided with two oval end pieces, on the edges of which are placed staves beld in position by heavy bands drawn together by nuts and bolts. On top is a platform surrounded by a railing. A ladder leads from the hollow shaft on the platiform down to the floor of the raft. Between the floor and the shell are formed compartments in which water, food, and other necessaries are placed. The raft is divided by a longitudinal central ballway, extending from end to end, and by transverse partitions forming a series of staterooms. Doors lead from the hallway into the staterooms and into a toilet room formed at one end. Ac cess to the compartments beneath the floor is had by trap doors. In each stateroom are bunks, which are hinged to the side walls and provided with suitable means for holding them in place. At the end of the raft opposite the toile room is a door opening to the hallway. The raft is held on deck by chains, and the staterooms are used, access being had through the end door, which in case of danger is closed
 ADAMS' LIFE RAFT.
and securely bolted, the entrance then being made through the shaft. In case the vessel sinks, the raft, being disconnected from the deck, is washed off and floats like a huge cask or barrel, and as it is closed on the sides and ends it can be thrown about by the waves without injury to the occupants. As all the staterooms on deck can be construct ed in this manner, it is evident that a steamer can carry sufficient rafts for a large number of persons without wasting any room.

THE INDUSTRIAL PRODUCTION OF OXYGEN AND NITROGEN.
Since the times of Priestley and Lavoisier, chemists have ever been trying to find some industrial and cheap method of producing oxygen; and many persons, whose names we shall not mention, have vainly endeavored to extract this gas from the air, since this is the most abundant source of it that is naturally at the disposal of experimenters. We have passed in review the works of the best authorities, and have found therein no practical method of obtaining this gas regularly and in an industrial way Mr. Bousin industrial way. Mr. Boussingault, in his researches on the absorbing power of caustic barytes, declares, in a report made to the Academy of Sciences in 1850, that this substance loses all its properties, in its functions of absorption and production, at the end of eight or t.en operations.
We likewise find in Mr. Wurtz's works a passage touching the operations and experiments of Mr. Gondolot. But neither Mr. Boussingault nor Mr. Gondolot appears to have been encouraged by the results that he obtained. We bave seriously sought the causes of the want of success that has existed to our day, and have especially studied both the chemical and physical conditions of caustic barytes with respect to its use in the extraction of oxygen from the atmosphere.
Our researches, and the multiple experiments that they necessitated, put us upon the reai track of a product which we now possess, and which not only does not diminish in its powers of absorption and production, but has always given us proof to the contrary in the indefinite duration of its operation. For example: 1 kilogramme of caustic barytes made by nur process will render at the first operation 25 liters of oxygen, and the production will increase from day to day, aud, after eight days of continuous work, the yield of this same kilogramme will be 68 liters.
We assert, then, that a regular rate of production will permit of counting upon a yicld of 50 liters of pure oxygen per kilogramme of caustic barytes, and per operation. We say 50 liters because it is not necessary to carry the deoxidation further.
We now come to the description of our process for separating the oxygen from the nitrogen in the atmospheric air. The caustic barytes which we produce is placed in iron retorts arranged in horizontal series. These retorts have metallic friction joints at each extremity. For the perfect demonstration of our system we have constructed two coupled furnaces, each having 15 pled furnaces, each having 15 retoris 2.8 meters in length and 16 centimeters in internal diameter (Fig. 1). Two force and suction pumps are in communication with these series of retorts (Fig. 2). One of the pumps forces air into the retorts, where, in contact with the barytes, its gives up its oxygen. This is what we call peroxidation. The other peroxidation. The other pump effects a vacuum in the
retorts and sucks up the oxygen that has combined with the barytes. This is what we call deoxidation.
But the air, before entering the retorts, is freed from its carbonic acid by passing it through the chambers of an through the chambers of an apparatus containing lime and caustic soda.
The coupling of these two furnaces bas permitted us to transfer the peroxidation or denxidation to either one of them at will through piping and cocks.
The peroxidation of the
barytes is effected at a temperature of between 500 and $600 \mid$ lutely unfitted for medical applications. Ours, on the condegrees, but the deoxidation takes place well at about 800 degrees. As it was necessary to regulate these differences in temperature absolutely and automatically, we devised pyrometric bars, which, through their expansion or contraction, allow us to obtain exactly the temperatures necessary for the peroxidation or deoxidation.
These bars are shown to the right of Fig. 1. The pyrometric bar receives at its extremity a lever which holds in

Fig. 2.-FORCE AND SUCTION PUMPS OF BRIN'S OXYGEN APPARATUS.
balance a disk that is desigued to accurately proportion the mixture of air and carbonic oxide that serves for beating Now this bar, in expanding, causes the disk or air valve to rest upon the corresponding disk, and from this there at once results a lowering of the temperature to 500 degrees; then the bar that is regulated to permit of an elevation to 800 degrees contracts, and brings about an entrance of the
air again, and consequently another rise in the temperature.

Fig. 1.-BRIN'S PLANT FOR THE PRODUCTION OF OXYGEN. valve is opened for the deoxidation, and then the pyrometric bar is left free to play.
Our experimental plant is capable of producing 100 cubic meters of pure oxygen per day; and it is therefore not a boratory matter that we are describing to our readers.
The oxygen that has been produced by all the processes known up to the present time bas always cost so mucb that it has been impossible to deliver it for consumption, seeing that a sufficient production and reasonable price could not be guaranteed. Besides, the gas which is usually extracted from cblorate of potash remains, in spite of all modes of washing, clarged with chlorine vapors that render it abso-
trary, is absolutely pure, and consequently inodorous and tasteless.
We shall now speak of the applications of oxygen,
It occurred to us that by forcing pure oxygen under a high pressure into water we would obtain a solution of a certain quantity of the gas, that the volume in excess that could not dissolve would remain divided and confined in the water, and that we would then have a very light, tonic, and digest-
ible gaseous beverage. The experiments that have just been made with this by several physicians are very conclusive. Car bonic acid, which for a long time has been daily consumed under the form of Seltzer water, is nevertheless placed amoug violent poisous, while our oxygen is an aliment which is indispensable to all organized beings.
Inhalations of oxygen are, by physicians, deemed neces sary in certain diseases. One can therefore now count upon an absolutely pure gas for ar resting all kinds of decompo sitions, since it is the antiseptic par excellence.
Acting as a combustive, it gives rise to a new metallur gy through the facility with which the highest tempera tures may be obtained by it aid. There is no need of dwelling upon the economy that results from its use in the manufacture of all metallic oxides. The advantages of our system will be apparent too, as regards the produc tion of the Drummond light.
Finally, we must say a few words regarding the electrifi cation of oxygen. Severa chemists have given their attention to this subject, but have met with difficulties that proved insurmountable. In fact, before manufacturing ozone industrially and apply ing it economically, it was necessary to obtain oxygen in profusion. Ozone, more over, is only the reduction of three volumes of oxygen to one-a reduction operated by electricity.
We shall submit a very
In this way we have obtained a regularity in the heating simple and practical means of producing it. The oxygen that guarantees a long duration of our material, and that is electrified in its passage against the sides of two test also secures a perfect working without the needs of relying glasses, one within the other, and so arranged that the elecupon a personal surveillance. The running of our appara- tric effluvia shall easily pass from one glass to the other. tus is therefore automatic and precise, since but one valve The interior glass bolds a conducting liquid into which an is to be closed in order to produce the peroxidation. This electrode dips. The external vessel is surrounded with the andion of peroxide of barium, followed by successive reoxidations and deoxidations, ad in.finitum, can be just as well considered a production of nitrogen as of oxygen. In fact, the process is based upon the property possessed by barium of fixing the oxygen of the atmospbere and of setting nitrogen free, when a current of air is passed over barytes heated to a dull red. Now just as ihe transformations of the material alternate, so do the production of the gases likewise, that is to say, during deoxidation the retorts disengage oxygen, and, dur ing peroxidation, nitrogen. A simple change of cock permits each of these gases being sent into its respective gasometer.
Nitrogen, then, is isolated just as well as oxygen during the operation of the plant. It may even be said that the production of the first-named gas is much greater than that of the second, since the at mospheric air contains about four volumes of nitrogen to one of oxygen, and conse
quently that for each cubic meter of the latter produced we invariably obtain four cubic meters of the former.
Up to the present we bave confined ourselves to collecting only the oxygen, as being the more fertile in industrial applications and capable of more numerous and diverse combinations. Yet nitrogen, which is usually considered as merely the medium of oxygen, is'likewise adapted to numerous special applications. For example, artificial fertilizers, most of them ammoniacal, are valued according to the pro-
portion of nitrogen that they contain. The possibility of manufacturing ammonia by the immense source of nitrogen resulting from the production of oxygen is therefore one of the most valuable features of our plant. We need not be surprised that no one has as yet tried to perform such a synthesis of ammonia, that is to say, to bring about a direct combination of its elements, nitrogen and hydrogen, for the reason is very simple, and it is because it is first necessary to obtain these two elements. This obstacle disappears when we have at our disposal an abs
Wource of nitrogen, as is the case with us
Without entering into a series of chemical considerations upon the reciprocal affinities of nitrogen and hydrogen, it will be seen that it is possible to create conditions that are sufficiently favorable to bring about a combination of these two elements.
The intermedium that we have chosen is an intimate mixture of carbon and caustic barytes. We place this mixture in retorts that are arranged either in a vertical or horizontal direction. A pipe leads the nitrogen into a quantity of water, which divides it, and it thus carries along a certain quantity of aqueous vapor. 'The gas thus charged with humidity is led into a retort heated to about 150°. Then the aqueous vapor decomposes on contact with the barytes and carbon, and the oxygen fixes itself upon these latter, while the bydrogen and nitrogen, alone remaining in presence, combine and form ammonia. The production of ammonia salts proceeds, then, from the easy combination of the ammonia gas and the acids into whose presence it is brought.-Brin Brothers, in La Nature.

The Maxim Machine Gun.
However opinions may differ as to the desirability of arming our troops individually with a quick fire or repeating rifle, so as to give each man a reserve of power to be used in the hour of need and when hotly pressed, there does not appear to have been from the first any question as to the practical value of that class of weapons known as machine guns. Hence they quickly found favor with the authorities, and have been introduced into both branches of the service. The essence of these guns is rapidity of fire, and a smart shower of bullets can be projected from them by the simple turning of a handle. The fire from these guns is exceedingly rapid, reaching some 150 to 200 rounds per minute, the operator turning a bandle with one hand, and, for a traversing fire, imparting to his gun a horizontal reciprocating motion with the other. Remarkable as these results are, they are eclipsed by a machine gun which we bave recently inspected in operation, and which by simply pulling a trigger once will feed itself and fire away continuously at the rate of 600 rounds per minute, if desired, the operator ouly baving to impart the traversing motion to the gun as required. This remarkable gun is the invention of an American gentleman, Mr. Hiram S. Maxim, who is likewise the inventor of the system of electric lighting bearing lis name, which was introduced into Eugland about three years since. The gun has a single barrel, and is arranged in such a way that the force of the recoil from one round at the moment of firing is utilized and forms the motive power for loading and firing the next round, and so ou round after round in succession. In fact, one recoil performs all the functions of bringing the next cartridge into position, forcing it into the barrel, cocking the bammer, pulling the trigger, extracting the empty shell, and ejecting it from the gun. To effect this the barrel is so mounted in its case that at the moment of firing, the recoil drives it backward about three-quarters of an inch, and it is this movement of the barrel alone that actuates the mechanism of the gun and enables it to keep up a continuous fire.
The gun we saw fired at Mr. Maxim's works, 57d, Hat-ton-garden, London, has a barrel of the ordinary service regulation caliber of 0.450 in . and weighs with its tripod stand 126 lb . It stands about 3 ft . high, and is about 4 ft . 9 in. long from muzzle to rear of firing mecbanisn. The training arrangements enable the gun to be elevated or depressed and set at any angle by adjusting screws, and traversed radially over any desired borizontal range. Or it may be instantaneously detached from the screws so as to be noved freely in every direction by hand. As the gun is self-firing, the operator can train it just as required while it is being discharged.
The cartridges are placed in a canvas belt in a manner somewhat similar to that in which they are carried in a sportsman's belt. The Maxim belt, however, is some seven yards long and bolds 333 cartridges, and length can be attached to length as each becomes emptied, so that the fire can be maintained continuously. This belt is placed in a box immediately below the gun, and the leading end of it is inserted in the gun to start with. As the gun is fired the belt is drawn into it on one side, and one after another the cartridges are drawn out of the belt, forced into the barrel, fired, and the empty belt and cartridge cases ejected from the opposite side of the gun. By this arrangement the cartridges and the gunner are both below the level of the gun, and are only exposed to fire in a minimum degree. The external firing arrangement consists of a trigger or lever, which is placed against a graduated quadrant at the side of the gun, and the rapidity of firing is regulated by the distance to which this lever is pulled over. If this trigger be pulled over toward the gunner about an inch, and until the pointer indicates the figure 1 ou the quadrant scale, the gun will then fire at the rate of one round per minute. By pulling the trigger over a little further the rate of fire is increased
to about five rounds per minute, and the rate is gradually in creased as the trigger is pulled further over until it reaches the rear end of the scale, when the fire is maintained at the unprecedented rate of 600 rounds per minute.
It is thus possible to fire either single shots, volleys of 10 , 20 , or 100 , and to maintain a continuous fire either fast or slow. When the gun is once adjusted for a certain speed, it maintains the nire at that speed independently of human agency until all the cartridges have been discharged. Should the man working the gun be killed, the guu will still continue firing so long as any cartridges remain to be fired, provided no hitch occurs from a faulty cartridge. The great rapidity of fire in this gun is attributed to the following cause: In the ordinary machine gun it is stated that a very great speed is not possible with a single barrel, because a certain percentage of the cartridges hang fire-that is, they do not explode at the moment of being struck by the hammer, and therefore, if one of these guns be worked with too great rapidity, some of the cartridges will be drawn from the barrel before they explode. Hence, it is said that in all machine guns worked by band it is necessary to have the movement sufficiently slow to give these comparatively slow cartridge time to explode before they are removed from the barrel. In fact, the action must be sufficiently slow to meet the requirements of the slowest cartridge of the series. With the Maxim automatic gun, however, a cartridge cannot be withdrawn from the barrel until after it has been exploded. It fires the quick-exploding cartridges rapidly, and if a slow one presents itself, it fires that particular one slowly. Should a car tridge hang fire for five minutes. it would not be withdrawn from the barrel until it had exploded; the gun, in fact, must and would wait for it. Hence great rapidity is possible with a single barrel.
Such is the gun we recently saw tried, and, although we did not see 600 rounds fired in a minute, we saw several series of rounds fired at that rate-that is, 10 per second. In practice and with continuous rapid firing the barrel would become heated, to counteract which it is surrounded by a water jacket. But besides the system of feeding the gun we have described, Mr. Maxim has another, in which the cartridges, to the number of 96 , are placed in a flat brass drum on the top of the gun, and the movement of the barrel rotates the drum, draws the cartridges from it, and forces them into the barrel to be fired. When empty, the drum is removed and another one substituted for it without stopping the operation of the gun. A small reservoir attached to the gun furnishes the necessary supply of cartridges to keep the weapon in action during the brief interval of time required The belt system of ause andic fring by Mr. Maxim, not only to machine guns such as we have described, but also to rifles to be fired from the shoulder. In one instance be altered a Winchester rifle in such a way that the recoil performed all the necessary functions except pulling the trigger. An ordinary Martini-Henry riffe has been arranged by Mr. Maxim so that the recoil extracted
the empty cartridge case and cocked the hammer, while the the empty cartridge case and cocked the hammer, while the
act of placing a new cartridge closed the breech action. Mr. Maxim has also made a third gun, in which all the functions are performed by means of a slight elongation of the cartridge case at the moment of firing, the case being corrugated to afford the required extension. The system first described by us, however, appears, so far, to be the most practicable, and this gun is well wortby the attention of our naval and military authorities. Delivering, as it does, such a perfect hail of bullets and being self-acting, it would appear to commend itself for use wherever machine guus are applicable in war.-London Times.

On the Influence of Punching on Soft Steel.*

 by w. beck-gerbard.During the course of experiments made at the Poutiloff works at St. Petersburg, on the influence of punching on the strength of soft steel fish plates, the results, already well known, were arrived at, namely, that punching in the cold weakens perceptibly, and reduces the elongation of the steel; that steel annealed after cold punching, and when punched hot, is not injured; that annealing, when well done, even increases the tenacity of the punched specimen,
and that the evil effects of cold punching are in a great and that the evil effects of cold punching are in a great
measure removed by subsequent reamering out of the hole. measure removed by subsequent reamering out of the hole.
On bendiug samples of soft steel which had been punched On bending samples of soft steel which had been punched the spold through the holes, it was invariably the punch side of the hole was on the convex side of the bend; but if the bar were bent in the opposite direction, that is to say, with the die side convex, the specimen broke. This was the case with all cast metal; while puddled or scrap iron could be bent without injary. This phenomenon led the author to institute an investigation as to whether there was any foundation for the very gencrally received opinion that the edges of a punched hole on the die side are injured by a ring of minute incipient radiating cracks. For this purpose a large number of specimens, 5 in . by 3 in . by $1 / 2 \mathrm{in}$., of all kinds of steel were prepared. The edges were planed, the surfaces polished, holes were pierced in various ways, and the metal surrounding them was carefully examined with a microscope, but no trace whatever of cracks could be found though the nature of the steel ranged from 0.1 to 0.6 per cent of carbon.
*Translated from Gorni Journal. St. Petersburg, March, 1884, and
published in London Iron Trade Exchange.

Although the search for incipient cracks proved fruitless, Mr. Beck-Gerhard observed and has described, be believes for the first time, certain markings on the polished surfaces of the plates around the cold punched holes, which seem to possess very great interest. Visible to the naked eye, and surrounding the boles, were sheaves or bunches of lines starting tangentially to the holes, and curving slightly toward them. These lines branch out in opposite directions, and intersect with some degree of regularity. They do not appear in the vicinity of drilled boles, but are distinct in cold punched holes reamered out. In forged iron they did not appear, although they were most distinct in the softest steel, and vanished when the metal reached the hardness due to 0.6 per cent of carbon. An increase of thickness in the plate caused a corresponding increase in the number and clearness of the lines, upon which the shape of the hole was also found to have an effect. In all the 5 in . by 3 in . specimens thelines were distinctly sunk, while in two of the 10 in . by 10 in . specimens the lines were prominent, sinking gradually to the level of the plate toward their ends. At the points of intersection near the holes the continuity of the lines was interrupted; dots or nodes represented their course.

In the 3 in . specimens with planed edges the lines terminated abruptly at the edges, but in natural bars, such as fish plates, the more pronounced rays turned round the edges, and actually appeared on the opposite side. In all the samples the lines were less developed in the upper or punch side of the plate, and even at times degenerated into a mere frosted appearance. Heating the plates to redness did not obliterate the rays, though it rendered them less pronounced.
In order to determine how far the rays extended around a cold punched hole, a 10 in . square sample was cut out of a $5 / 8 \mathrm{in}$. steel plate, the surfaces were polished, and a 1 in . hole was punched in the center. The curved rays appeared very strongly marked on the die side, and less pronounced, but still very distinct, on the punch side. The surfaces of the plate were then washed with aqua regia, when the ray disappeared, but the surfaces became streaked with elongated bubbles and hair lines arranged in the direction in which the plate had last passed through the rolls. The sample was then cut into eight test pieces, four on each side of the central hole, and subjected to rupture by tension. The result was an average ultimate strength of about 27 tons pe square inch, with an elongation of 20 per cent. All the fractures took place at one of the elongated bubbles, and the polished surfaces of the specimens developed ridges and indentations, which could not only be seen, but felt. On placing the specimens together in their original relative positions as a 10 in . square plate, it was at once seen that the markings on the strips formed together a system of curved rays around the central hole, precisely analogous to those which the solid plate had exbibited, only the rays extended much further over the surface. Test bars cut from a similar $5 / 8 \mathrm{in}$. plate 10 in . square, which had not been punched, exhibited none of the marks above described, hence it mus be concluded that the effect or influence of the 1 in . cold punched bole bad extended all over the 10 in . plate. The observations made so far, the author considers, are insuff cient for the foundation of a theory, and regrets that his occupations do not admit of further investigation.

Infringement of Combination Claims.

In the case of Schneider vs. Pountney, for infringement of a patent shade holder for lamps, Judge Nixon, of the U. S. Circuit Court, district of New Jersey, ruled as follows: Where oue party manufactures one portion of the device covered by a combination claim, and another party manu. factures the other part of the combination, and it does not appear that the two parts are capable of separate use, held that the parties are joint infringers.
And the defendants cannot protect themselves by invoking the well-settled rule that where a patent is for a combination merely it is not infringed by one who uses one or more of the parts, but not all, to produce the same results, either by themselves or by the aid of other devices.
Even if there is no proof that the defendant had made au actual prearrangement with any particular person to supply the other portion of the combination, it will be inferred from the circumstances of the case that it is the intent of the defendants that such other portion shall be added to their arti. cle of manufacture.

The New Comet

The new comet discovered by Dr. Wolf on the 17th inst has been observed by me. Its position at discovery was right ascension 21 bours 16 minutes; declination north, 22 degrees 23 minutes, which brings it near the western limit of the constellation Pegasus. As observed by me with the 9 -inch reflecting telescope, it is an easy telescopic object in moderate moonlight. The coma is somewhat elongated in outline, and the nucleus is small but bright and star-like. The comet is moving southward at the rate of about half a degree daily along the western edge of the coustellation Pe gasus toward the star Epsilon. About the middle of October it will be in the head of Pegasus.
The comet may le readily picked up by telescopes of moderate aperture, as it is slowly growing brighter.

William R. Broors.
N. Y., Sept. 27,1884 .

Currefpandetre.

Copper for Roofing.

To the Editor of the Scientific American.
At page 193 of your last issue I see a few words relating to copper for roofing.
In the jear 1833, fifty-one years ago, I built a house near here for my mother, and I covered the roof with 18 -oz. copper It is still there, and good for another fifty years, more or less. Several years ago the roof was raised 4 or 5 feet, when some repairs were made. The only disadvantage of copper after the first cost is found in the water caught from that roof be ing slightly impregnated with the copper, so that it becomes in a slight degree green, and possibly might be injurious to health if used for drinking.
The conductors for the rain are of copper, so that I have never felt at all anxious in storms of thunder and lightning, as the copper roof is an excellent conductor.
R. B. Forbes.

Milton, Mass., Sept. 26, 1884.

An Effective and Easily Made Oll Filter

To the Editor of the Scientific American:
In your issue of Sept. 20, Mr. Geo. Boxley gives a method of filtering oil such as is used for lubricating purposes, etc.; bis method may answer the purpose very well, but I bave a device, which I have used for a number of years, that I think very much superior to his. I use a shallow pan about three inclies deep, and square in form and flaring, or wider at the top than at the bottom; this I locate in any convenient place where it may not be disturbed, so placed as to have one side a little the lowest, say about $1 / 4$ of inch; over this ellge of the pan I place a piece of beavy woolen cloth of sufficient length to reach to the bottom of the pan, and to bang over the outside and extend a little below the bottom of the inner end; this wick forms a capillary siphon, and filters the oil in the most perfect manner. A piece of sheet zinc or tin with the corners turned up on one side as far as nearly to the center serves as a guide to the dropping oil into a vessel to receive it. The pan can casily be cleaned, and is on the whole better and cheaper than any method I have seen or heard of.
Lowell, Mass., Oct. 6, 1884.
Alvin Lawrence.

Disinfectants.*

It bas been proved by experience that the best means of checking the progress of cholera and other such diseases is by the proper use of disinfectants, and on that account a few words about them will not be inopportune.

The use of disinfectants has of late years greatly extended few private houses are without them; in fact, none should be. Their value as a means of preventing the extension of infectious diseases is attested by the fact that the municipal authorities of many large towns made arrangements, when cholera was last threatening us, for distributing to every housebolder in the district a free supply of disinfectants if the disease should appear therein.
This plan was adopted in Bristol during the last outbreak of cholerit, and was attended with most satisfactory results -results which were certainly no less due to the energy and promptitude of those whose duty it was to prevent the dis ease spreading than to the efficacy of the disinfectants. Indeed, by the free and proper use of disinfectants cholera has been reduced from the very terrible position it had attained in the eyes of our forefathers, to a much lower-to a reach-able-level.
There are many kinds of disinfectants known, and sold to the public at varying prices, some valuable, others entirely worthless, as disinfectants. Every one is familiar with bleaching powder, which was formerly (and is still to a considerable extent) so much used. It is very effectual, owing to the chlorine gas which it freely gives off when exposed to the atmosphere, or moistened with dilute acids, such as vinegar. Charcoal, too, is well known as a disinfectant, and as a powerful deodorant. We may here reunark that a deodorant simply disguises the bad smell without destroying the poison which it may contain, and in this respect differs from a true disinfectant. Of all known disinfectants. carbolic acid is now generally admitted to be the most efficacious, and it is the basis of most of the disinfecting agents now sold. The acid is too powerful to be used alone, and is therefore generally mixed with eighty or ninety per cent of some other substance not possessed of disinfecting proper-
ties. Sometimes the bisulphites of lime and magnesia are ties. Sometimes the bisulphites of lime and magnegia are
added, and these substances are themselves possessed of disInfecting properties; but more generally chalk or sand is used; or the acid is simply diluted with water. A small portion of the mixture sprinkled in water closets and other places where decomposing matter is allowed to remain will diminish, if not entirely remove, the chauces of contagion and sweeten and purify the atmosphere.

Although carbolic acid is so efficacious, there are some who object to its use. It smells rather strongly, and many persons are thereby prevented from using it. It is a pity on this account to be robbed of its advantages; and such persons would do well to try and educate themselves to the smell. Moreover, it is better to breathe au unpleasant and pure atmosphere than a pleasant but unhealthy and dangerous one. The smell of pure carbolic is much more easily borne than that of crude carbolic; and we would recommend
*By an analytical chemist in Casselfs Family Nagazine.
the use of the purest carbolic procurable, diluted with eighty or ninety per cent of water, or mixed with the same percentage of precipitated chalk. It is difficult for the chemist, trained aud accustomed to the offensive and unwholesome smells in the laboratory, to understand how any person cau retain a strong dislike to the comparatively sweet smell of carbolic acid.
There are some reasonable objectious to the use of car bolic acid as a disinfectant in a concentrated form. In the first place, it is a powerful poison, and if taken internally, is almost certainly fatal. The liquid carbolic acid varies in color, as the crudeness of the product increases, from pale straw to dark brown, approaching almost to black in the very impure kinds. This darkening is due to the presence of tarry substances, which add considerably to the offensiveness of the smell. This changing color renders it liable to be mistaken for other liquids, but in the form of powders the chances of such mistakes occurring are few, if any; and
if kept in the diluted form the danger is very greatly diminished.
The smell of carbolic acid is very characteristic, and can be readily distinguished.
When it has been accidentally taken internally, castor oil and sweet oil sbould be freely administered, and a doctor obtained without delay.
It is very painful when externally applied, as it rapidly cauterizes the fleshy tissues. In the concentrated form it should be very cautiously handled. Oil or carbonate of soda rubbed on the parts are the best remedies for external injury and pain. Water may be applied externally, but should not be taken internally.
Another objection to the use of carbolic acid in the concentrated form is that it is apt to be wasted, for many persons are ignorant of or incredulous as to its powerfully destructive effects on animal life, and are sometimes so forgetful of principles of economy in this matter as to use carbolic acid in en undiluted form, and in quantities far in excess of what is required.
To prevent waste, the acid is used to form the basis of what are known as " carbolic disinfecting powders," which a finely divided state, to which from ten to twenty per cent of carbolic acid has been added, and sometimes from five to twenty per cent of the bisulphites of lime and magnesia, totwenty per cent of coloring matter, to give a pleasing effect
gether with some coll gether wit
to the eye.
Powders are an expensive form of disinfecting by carbolic acid; and a considerable saving might be effected by persons who use it largely if the mixing were doue by themselves iastead of by the manufaclurers, and the same tins used over again, while the article so made would have many advantuges. It could, in the first place, be made as strong as the necessities of any particular occasion might require, and in the next place, the pure acid may be used for house disinfection, and so lessen the disagreeableness of the smell, while the commnner kinds may be employed for yards, stables, fowl houses, etc. The method of making powders is very simple. About four ounces of the acid, by weight or measure, should be added to one pound of precipitated chalk, or fine sand, or mould, or any other harmless substance in a
finely subdivided state, and thoroughly mized in a large bowl. This powder will be suitable for all ordinary purposes, and will be far superior to many of the disinfecting powders sold at twice the cost.
Why, it may be asked, cannot our chemists discover some pleasant and non-poisonous disinfectant? Why are we under the necessity of substituting an intolerable smell for a bad one? The answer is that nothing but poisonous substances can be good general disinfectants, as the dangerous matter
which it is the aim of disinfectants to destroy is chiefly organic, of which too, though of course in a far bigher degree, the vital purts of the human being consist. Of disiufectants, cbarcoal is perhaps the least objectionable; it is neither dangerous nor mal-ordorous; but though extremely valuable as a deodorant, its usefulness as a disinfectant is very limited. A disinfectant must be capable of destroying the lower forms of organic life, some of which constitute disease; and the province of the chemist is to find out that substance which is most destructive to these lower organisms, and least dangerous and objectionable to man. Carbolic acid best answers these requirements, and on this account has recently come into extensive use.

Progress in Dyeing.

A new pigment, to which the discoverer, O. Miller, has given the name canarine, is destined to replace many of the colors employed at present in dyeing and printing, being the only dye which like aniline black in dyeing silk can be applied without the intervention of a mordant to vegetable fiber. An alkaline solution of this color is used as dye bath. The tissues dyed with this color are neither affectel by light nor by washing with soap. In view of the cheapness and simplicity of dyeing textile fiber, the importance of canarine in calico printing is equaled only by that of aniline black. The recipe used for the manufacture of thischromogene is the following:
One part of potassium sulphocyanate is dissolved in an equal weight of water, and $0 \cdot 1$ part of potassium chlorate
and 1 part muriatic acid added; the mixture soon becomes and 1 part muriatic acid added; the mixture soon becomes
bot, evolves gases, and deposits a colored substance. When the reaction has slackeued, the vessel is placed in cold water, and another portion of 0.4 part potassium chlorate and 1 part
muriatic acid is introduced; the orange colored subsidence is filtered, and exhausted with water. During the operation the temperature of the mixture should not fall below $80^{\circ} \mathrm{C}$., as a lower temperature gives rise to the formation of by products, which are inferior in purity and intensity of color. Pure canarine is obtained from the above precipitate on dissolving in a hot aqueous solution of potassium caustic, cooling down of the liquid to $40^{\circ} \mathrm{C}$., and precipitating, on ad dition of 20 parts of alcohol, the potassium compound. It is strained after standing for 12 hours, thoroughly washed out, and dried at $100^{\circ} \mathrm{C}$. The pigment represents a redbrown powder of high luster, and is dissolved by sulphuric acid into persulphocyanogen and sulphurous acid; it is solu ble in ether, alcohol, and alkaline solutions.
A dye solution of this color is prepared in the following manner: 1 part canariue is mixed with 20 parts of water, the mixture is beated to ebullition and kept boiling for some time, and 1 part potassium caustic added; after the color is dissolved and the liquid appears brown, a quantity of 7 to 10 per cent of soap is introduced, and the liquid aliowed to cool. Potassium caustic cannot, be replaced by caustic soda, as the sodium derivatives of the pigment are insoluble in cold water; lime and magnesia salts also precipitate the color from its solution. The color suffers by boiling with caustic potash decomposition; its solution therefore is to be effected within the shortest time.
The dye-beck employed for working consists of 60 liters canarine solution and 80 liters of water; it is worked cold, and dyes 800 yards of woven tissue; when partly exbausted, it serves for dyeing of light shades. This process has been modified by Koechling, who dissolves 100 grammes of canarine and 100 grammes borax in 1 liter water, heats the mixture to ebullition, and then employs the hot solution for dyeing; the temperature of the dye bath is maintained by the application of the method employed in dyeing with alithe application of the method employed in dyeing with ali-
zarine. Schmid has shown that canarine can be used as zarine. Schmid has shown that canarine can be used as
mordant for auiline colors, the shades which it produces with methyl blue, malachite green, and Poirtier's violet re sist the action of a hot soap solution. The alkaline solution of canarine, being of a yellowish or orange-brown color, according to concentration, dyes calico without the application of a mordant. Canarine has been produced upon the fiber by printing on to the tissue a mixture of aluminum sulphocyanate and alumınum cblorate, with traces of vanadium; the fabric being stretched on a frame, was submitted for one day at a temperature of 28° to $30^{\circ} \mathrm{C}$. to oxidation. When potassium sulphocyanate is used for the respective aluminum salt in printing, the mixture absorbs with avidity aniline vapors and assumes an emerald color, which is gradually changed to black. In dyeing yarn a bath is prepared by dissolving potassium sulphocyanate, potassium chlorate, and muriatic acid in an adequate measure of water; the fiber is passed through this solution, and then further treated according to known methods.-Erfindungen.

Prevention of Hydrophobia.

French science may indeed claim a new title to the gratitude of humanity. While granting this, we do not wish to rush to the hasty conclusion that hydrophobia is to be banished from our midst; only, if we can believe our eyes and ears, it seems that we are within measurable distance of this glad state. What has Pasteur done? He has-if our information be accurate, and we have no reason to doubt it -done sometbing to twenty-three dogs, thereby rendering them, at any rate for a time, iucapable of suffering from rabies. Side by side with the free animals he has placed others which may be regarded as servile to the yoke of hydrophobia. Of the latter series, six were bitten by mad dogs, three of them becoming mad; eight were subjected to intravenous inoculation, all becoming mad; and five to inoculation by trepanning, all likewise becoming mad. On this siowing, sixteen out of nineteen dogs died when a dose of the virus of rabies was sown in them; whereas, of twentythree protected dogs, none succumbed, although the virus was brought in the most effectual manner into the tissues of each animal. It is a well known fact that many more persons are bitten by rabid animals than suffer from hydropho. bia. What the exact proportion may be is nut satisfactorily known, but in dogs it would appear that about half the number bitten become rabid. There are two explanations of the escape. The first is expressed by saying that no virus gets into the tissues of the body. The second suggestion, though possible, is less plain. It is to the effect that some organisms are unsuitable for the development of the rabid poison. There is analogy for this contention. Some individuals are believed to be insusceptible to the poison of scarlet fever, and this statement also applies to other acute specific diseases. The questioner of nature may ask how these facts are to be explained? And although we are on very unsafe ground, still science does afford some clew to a possible explanation. If we remember rightly, Sir James Paget has asserted his belief that a severe attack of typhoid fever may do away with the protection afforded by a previous attack of smallpox. Typhoid fever so modifies the constitution that the protuplasmic organism once again becomes favorable to the growth and development of the germs of smallpox. Inoculation with the attenuated virus of hydrophobia gives a dog immunity from the disease, just as similar treatment preserves a sheep from charhon; in other words, the physical basis of the canine organism is so aitered that it no longer affords nourishment for the evolution of the poison of rabies.-Lancet.

The Edison electric meter, by which the amount of electric light used in any dwelling or office may be determined, is shown and explained at the Exposition. Before entering a building, the current is trausmitted through a resistanc already knowi. A shunt circuit leads into the jar of a battery, the plates of which are zinc and the charging fluid the sulphate of the same. The same amount of current which enters the building is transmitted via the shunt circuit to the depositing jar, the amount of zinc deposited on one pole and taken from the other being a measure of the current which has entered. The weighing of the plates completes the operation, and enables the Edison Company to ascertain the amount of electricity they have furnished the consumer.

Upon a series of tables ranged along one side of the Edison exhibit are shown the various discoveries made by the wizard affecting telegraphy. 'These are so varied and so well known throughout the civilized world as to make any attempt at further description unnecessary

One of the electrical comicalities of the Exhibition was the illuminated colored gentlemen who politely distributed cards to astonished visitors. The Edison Company couceived the idea of so locating one of their lamps that it could be seen by all, and to do this most effectually they placed it upon a belmet surmounting the head of the colored party. Two wires led from the lamp under his jacket, down each leg, and terminated in copper disks fastened to his boot heels. Squares of copper of a suitable size for him to stand naturally upon were placed at intervals
be that sell arc lights without pretending to sell incande scent. The United States Compauy, however, as shown by their exhibit, are prepared to supply everything in the way of electric lighting, arc and incandescent.
Around their headquarters were to be seen hundreds of small and large incandescent lights, whose soft, mellow light bid defiance to the night, while a multitude of the United States arc lights, fastened to the overbanging arches of the roof, cast down their powerful rays upon the sur rounding exhibits.
At the headquarters of the United States Company, near the main entrance, five dynamos belonging to their system were placed. These were inactive, so as to permit of in spection.
Over at the north end of the building ten of these dynamo machines were kept constantly at work, in order to supply current to the almost innumerable lamps of all descriptions this company kept aglow on the floors and arches of the Exposi tion buildings. The character of the current generated by these machines is one of the peculiarities and advantages of he system. The current is continuous and free from pulsa tions which, when the mains are properly insulated, renders it comparatively barmless. In both the arc and incandescent systems, as exbibited, the regulation of the machine is wholly automatic. The lights may be turned off when no longer required, and a corresponding change is immediately apparent in the current generated, and in the amount of power required for driving the dynamo
The large incandescent lights shown in thecompany's exhib
his switchboard, they can be coupled together. By means of this switchboard any of the outside circuits can be coupled to any of the dynamos, and readily changed from one battery of dynamos to another without, to an imporiant degree, interfering with the others. Again, at the will of the operator, the dynamos can be put on any particular engine and should certain shafting meet with an accident, othe shafting can be connected by the aid of a series of clutches. By means of this switchboard, whatever combinations of circuits with combinations of machines are required can readily be made. A series of cables connect the circuits with the machines. At the extremities of the cables plugs are affixed, one extremity connecting with the circuits, the other with the machines. The dynamos are carefully guarded against the assault of lightning by being furnished with lightning arresters. The lamps are adjusted to each circuit by means of an extension of the circuits from the switchboard in regular order, and the lamps can be removed or returned without injury to the outside circuit.
The testing of lamps upon the circuit where they are to be employed also proved an interesting feature of the exhibit. As a whole, the United States system is very complete, and their friends may well feel proud of the interesting display which they bave made, and the prominent position they have held in the exbibition.

Salmon Canning in British Columbia.
The Delta Cannery is the largest in British Columbia.

THE PHILADELPHIA ELECTRICAL EXHIBITION.-UNITED STATES ELECTRIC LIGHT CO.'S EXHIBIT.
in the flonr, and were electrically connected with the dynamo. So with each heel in contact with a plate he was enabled to make and break the circuit leading to his lamp, the movement required being so slight as not to attract attention, and bis hands being free to bandle the cards. Many nervous persons were startled by the sudden flashing of the light, and so great were the crowds that continually surrounded this individual that he was frequently obliged to change his quarters in order to keep the passages open. As a further improvement it was the intention to place copper strips under a carpet and provide the heels with sharp points, so that each step would be illuminated. This simple exhibition led many folks from the rural districts to inquire as to the cost of such an appliance, as it was just the thing they wanted "to carry around the house."

THE UNITED STATES ELECTRIC LIGHT CO.'S EXHIBIT AT

THE PHILADELPHIA ELECTRICAL EXHIBITION

Those who have visited the Exposition and not seen the exhibit of the United States Company missed at the same time one of the most important as well as most interesting apparatus to be found in either of the halls or any of the corridors or galleries therein. It was, however, not difficult t. 1 find, for, as a matter of fact, parts of it pervaded almost every nook and cranny of the great hall. No expense was spared by the projectors to make an effective showing, and not content with exbibiting the more salient points of their system, they caused to be established a complete plant, wherein even the details of filament manufacture and the mercury process of exhausting the air from their lamps were practically demnnstrated.
There are some companies that sell plant and not light, others that sell light and not plant, while still others there
it attracted much attention by reason of their novelty. They were from sixty to one hundred candle power, and, unlike arc lights, cast no shadows. Being vacuum lamps, like the smaller incandescent lamps, they require no attention. There is no pulling up and down every day and renewing of carbons, as in the arc light systems; it being only necessary to switch on the current to light them, and switch it off extinguish them.
The Weston arc light system is used by the United States Company, and the Maxim incandescent system as improved by Weston. Each of the three forms of electric lighting requires a greater or lesser modification of the dynamo, though all are constructed on the same general principle.
The arc lights of the exhibit were generated by five dynamos each baving a capacity of from five to fifty lights. The current from these machines showed an electro-motive force of 1,500 volts, while that from the dynamos furnishing the large incandescent lights showed an E.M.F. of 160 volts.
One of the most interesting features of the exhibit was the making of the incandescent lamps, or rather the vacuum making and the sealing.
The delicate carbon lonps are attached on either side to platinum and placed within a vacuum, where a mercury pump is made to withdraw the air, and in its place is forced the vapor of gasoline, which leaves a slight deposit of carbon upon those parts of the loop which offer the greatest resistance, and thus the resistance is made equal all around. Afterthisit is placed in its lamp, which is sealed after the air has been exhausted.
All this was publicly demonstrated at the United States Company's exhibit.
The Weston switchboard, as exhibited, is a model of simplicity. The circuits from the dyuamos being brought to

Commencing operations only five years ago, its business bas assumed such proportions that it now employs a force of over 400 men- 280 Chinese and 160 Indians-and a fishing outfit consisting in part of 38 boats and nets, 2 seines, 1 steam tug, and 4 scows. The cannery covers a space of 160 by 120 feet, is two stories high, and in some respects is the best furnished on the Pacific Coast. It is provided with a boiler 16 feet long and 4 feet in diameter, 12 tanks, 2 retorts of 3,360 cans capacity each, filling and soldering machines, 4 lacquer baths, and every convenience for the rapid and thorough performance of the various operations necessary to secure the highest degree of perfection in the preparation of this most excellent article of food. Chinamen, under the supervision of experienced white foremen, are employed for the canning process and Indians for catching the fish, re, ceiving from $\$ 1.25$ to $\$ 2$ per day, the net tenders the latter amount.
The daily catch per boat ranges from fifty to three bundred salmon, the fleet sometimes bringing in twelve or fif, teen thousand. This season (1882?) the run bas been so extraordinary that the Delta Cannery put up 1,280 cases in a single day, and 6,600 cases in six days. Messrs. Page and Ladner, the managing partners of the firm, showed me their product for the last month, amounting to the enormous quantity of 25,000 cases, or $1,152,000$ cans, covering every available space of the immense lower floor to the beight of over five feet, the largest number ever packed by any one establishment during the same period of time. Two bundred and fifty barrels of salmon, or about 13,000 , were also salted within the month. The company ship their goons direct to London and Liverpool through the firm of Welch, Rithet \& Co., of Victoria.-Newton H. Chittenden, in Guide to British Columbia.

BOTANIZING UPON A COIN

Who has not remarked those small blackish masses which as a consequence of too long a circulation, form incrusta tions (Fig. 1) upon the surface of coins, in the depressions between the images and letters? These have been studied by Mr. Reinsch, of Erlangen, whose investigations have embraced the coins-copper, silver, and gold-of all the states of Europe, and who has every where found micro-or-ganisms-algæ and bacteria.
Upon scraping off with a needle the incrustation tha bad formed in the depressions of coins, and then plac ing it in distilled water and examining it under a mag nification of from 200 to 300 diameters, Mr. Reinsch bas detected the presence of the following bodies: frag ments of textile fibers (Fig. 2, c), numerous granules of starch (Fig. 2, d), especially that of wheat, globules of fat, and a few unicellular algæ, etc. But, upon in creasing the magnification, there are seen, amid all such detritus, bacteria in antive motion (Fig. 2, b). Some times it is the rod-shaped sorts (oscillaroid bacteria), baving an oscillatory motion (Vibrio, Fig. 3, d), or a spiral one (Spirillım), and sometimes the globular forms (micrococcuid bacteria). Sometimes all these forms are collected upon one and the same piece of money; but in most cases one form or another is met with isolat edly.
The globular bacteria are most frequent; the Spirilla (Fig. 3, c^{\prime}) are much more rarely met with. As for Bacilli, these are almost always found upon copper gold, and silver coins, under the form of from 4 to 12 jointed rods about 0.0055 or 00077 mm . in diameter The terminal joints of these rods are swollen into a globular form. All these bacteria cease motion as soon as a drop of iodine or glycerine is introduced into the preparation. As for algæ (Fig. 2, a), the two species oftenest met with on coins are a very small Chroococcus (o the family Phytochromaceæ) and a unicellular species (Fig. 8, b^{\prime}) that approaches the Palmelleæ. The Chroococci are bardly 0.00095 mm . in diameter, and are found collected, in $4 \mathrm{~s}, 8 \mathrm{~s}$, and 12 s , in spherical colonies that form small masses 0.02 mm . in diameter (Fig. 3, a^{\prime}). 'lhe second form of alga (the one that approaches the Palmelleæ) is much larger, and consists of thick-walled cells having dark colored contents. In form they are related to the Pleurococci. Their diameter is from 0.009 to 0.01 mm ., and the thickness of their walls is about a tenth of these figures. Several of these cells are found in segmentation, but not, however, so regularly as the typical Pleurococcus. The algæ are met with only upon old coins; the new pieces contain bacteria merely. Aside from algæ and bacteria, the incrustations upon coins contain undeveloped hypbæ, and spores of fungi analogous to those found in mould.
The fact ascertained by Mr. Reinsch is of great importance as regards public bygiene. We all know to what a degree the bacteria are propagators of contagious diseases, and certainly they could not choose a better vehicle for their dissemination than casb-that "object of circulation" par excellence. It would perhaps be prudent in times of epidemic to wash in a boiling alkaline solution such coins as have become coated by too long a circulation.Science et Nature.
In connection with this subject, we present the following article, contributed by the editor of the Hungarian Journal of Botany to the September number of the Bulletin of the Torrey Botanical Club, of this city :
the microvegetatio
The recent researches of Paul Reinsch in Erlangen have revealed the occurrence, on the surfaces of the coins of many nations, of different bacteria and two minute algæ(Chroococcus monetarum and Pleurococcus monetarum, P. Reinsch), living in a thin incrustation of organic detritus composed especially of starch grains, fibers, etc., deposited upon their surfaces during the course of long circulation. This thin incrustation renders the coins very suitable for this microvegetation, but the same phenomenon is exhibited by paper money, and, indeed, by notes of clean and, to the naked eye, unaltered surface.
I bave scraped off some of these minute incrustations with hollowed out scalpels and needles, and divided them into fragments in distilled water that had been boiled shortly before, and, upon examining them with lenses of high power (R. T. Beck's onetenth incb), have seen the various tinctly.

I can now p have obtained from the investigation of the paper money. I bave investigated the Hungarian bank and state notes, re-
cent and old (from the years 1848-49), also Russian ruble notes, and bave found bacteria upon all of them, even upon the cleanest.
On the surface of all the paper money is always to be found the special bacterium of putrefaction, viz., Bacterium termo, Dujardin.
In the thin incrustations on the paper money I ascertained

Fig. 1.- Coin with incrustations at $a b c$. Fig. 2.-A portion of the mass magnified $\times 200-250: a$, algæ; b, bacteria; c, fibers of cotton; a, starch grains. lular algæ; c^{\prime}. Bacillus; a^{\prime}, Vibrio; e^{\prime}, spirillum.
the occurrence of starch grains (especially those of wheat), linen and cotton fibers, and animal hairs, and, in this deposit upon the forint state notes, the blastomycete Saccharomyces erevisice in full vegetation.
Various Micrococci, Leptotriches (many with club shaped swollen ends), and Bacilli are also the most frequent plants in the deposit of the paper money.
The two new species of algæ described by Paul Reinsch re very rare on paper money. The green Pleurococcus cells have been observed in some cases on 1 and 5 forint state notes, and the bluish-green minute Chroococcus on the bor der of the 5 forint state notes.
The vegetation of the paper money is, according to my esearches, composed of the following minute plants:

1. Micrococcus (various forms); 2. Bacterium termo

YOUNG CHIMPANZEES.

Valerian for Superficial Wounds.

At a recent meeting of the Societe de Biologie, M. Arra gon brought forward a new method of dressing wounds, by which, be declared, their healing was hastened and the pain was made to disappear at once. The method consisted in the application of compresses wet with a decoction of thirty fifty patients treated in this way, with only two had benefit failed to result, whether the wounds were lacerated or contused, but it is expressly stated that the treatment is of no avail in deep wounds. In one in stance, warm injections of the decoction were used for otitis media. The anodyne effect is attributed to the action of the valerianic acid on the terminal nerves, and an antiseptic influence also is credited to the remedy.

Gas Tight India Rubber Tubing.

An elastic rubber tubing perfectly gas tight and free from smell has been urgently needed for many years: in fact, the impossibility of making satisfactory gas connection for gas apparatus which requires to be movable has rendered the use of gas as a fuel in many cases a most objectionable nuisance. A tubing by Mr. Fletcher, of Warrington, Eng., is made of two layers of rubber, with pure soft tin foil vulcanized between. It is said to be perfectly and permanently gas tight under any pressure, and free from smell after long con tinued use, while it retains the flexibility and elasticity of an ordinary rubber tube.

YOUNG CHIMPANZEES

The chimpanzee is generally admitted to be the highest species of the apes, because its anatomy compares more favorably with that of man than any other of the monkey family. The adult measures nearly five feet in beight. Its body is covered with long blackish brown bair, which is thick upon the back, but scant upo the fore part of the body; at the sides of the head the hai is very long, and bangs down in the form of whiskers; the eyes are rather small; the lips are thick, and admit of grea protrusion. The hands and feet are nearly naked, and the hairs of the forearm are directed toward the eibow
The chimpanzee is a native of the Guinea region of West Africa. It has only been within the last few years that living specimens have been exhibited in this country. Our Zoological Gardens, Philadelphia, have now two interesting individuals of this species. Although they are comparatively young, perbaps not older than six years, yet they have an extremely antiquated appearance. I heard a country man say to a bystander that he " guessed they were 70 years old, easy." One of them has such great fondness for an old blanket, tha be earries or drags it with bim wherever be goes. Even if he desires to climb to the extreme top of bis cage the blanket must go along, although it greatly retards his progress. He knows its use, but does not always use it ju diciously. Thus, on an oppressively hot day in July, I have seen him re clining for twenty minutes or more entirely envelopod in the blanket, with the exception of his face, looking at the spectators with a comical and pout ing expression. I saw one, when teased and disappointed by its keeper, throw itself upon the floor, and roll and scream vebemently, very like a naughty child in a tantrum. A buard shelf was placed across their cage for them to climb upon. This they soon found could be used as a spring board and nothing seems to give them mor pleasure than, when there is a good audience, to steal gently to the center of the board, grasp it tightly with all fours, and spring violently up and down, causing the board with them selves to vibrate rapidly, and produc ing at the same time a loud, jarring noise. They then seem to greatly en joy the startled and amused looks of the spectators. Perhaps one of their most buman actions is languidly to re cline, and bolding a straw in one band listlessly to chew at its tip, while the eyes are rolled vacautly around. It may be that they are then building "castles in Spain." A lady observ ing a chimpanzee thus engaged, said be was thinking of liberty and hi sunny home. But I do not for a mo ment suppose be was dreaming of and longing for his native home-the luxu riant and balmy forests beside the calmgliding Gambia-but rather saying to himself, "Isn't it most time for that bossy and consequential cousin of mine
Bacillus (various forms); 4. Leptothrix (species?); 5. Saccharo-|to bring memy boiled rice and milk?" \qquad

The Length of the Meter.

The result of the latestinvestigations by Prof. William A Rogers, gives the length of the meter as $39 \cdot 37027$ inches.

Concrete vs. Brick Floors.

The designer of a certain warehouse in. Germany, unable to find definite data of the resistance of such floors, resolved to make trials for his own information, and incidentally for that or his professional brethren. The warehouse was of immense size, covering nearly an acre of ground, and was intended for the storage, among other things, of heavy pieces of metal, the handling of which often involved considerable shocks to the floors. The whole building was fire proof, part of the flooring being of brick arches in cement, between iron beams, and part of concrete slabs supported in the same way. Five trial floor arches were built, each 44 inches in span, of which the first consisted of a the second was of hard bricks in Portland cement mixed with three parts of sand, and was covered with a coat of asphalt three-quarters of an inch thick; the third was of solter brick, in mortar containing one-half as much lime as cement, and four parts sand; the fourth was of the same brick, in equal parts of lime and cement, and five parts sand; and the fifth was of the same brick, in cement alone, mixed with four parts sand. These last floors were finished with a coat of cement, three-quarters of an inch thick or more.
Fifty-four days after their completion, each floor wa loaded with pig iron to the amount of 200 pounds to the square foot. This weight had no effect, and two days later the concrete arch was tested by letting fall upon it an iron ball of 60 pounds weight. This, dropped from a height of five feet, did no harm, and another ball, of 135 pound weight, was let fall from the same height. The first blow produced no effect, but by ciropping the ball repeatedly on the same spot a crack was started at the fourth blow, and the eighth broke a hole entirely through the floor, the opening being 4 inches in diameter at the top and 24 inches at the under side.

Thirty days later the same test was applied to another par of the floor, and a hole of the same size and shape was broken through at the ninth blow of the ball. The thickness of the concrete in the middle of the span was 4 inches Trials were made of the brick floors in the same way. The first, of hard brick in strong cement mortar, stood fortyeight blows of the heavy ball before it was pierced; the sec ond, of softer brick, with lime added to the mortar, gave way at the tenth blow; the third, at the seventh blow; and the last, of soft brick in sandy cement mortar, without lime, at the tenth. In all these cases the hole broken through wa much larger at the intrados than at the extrados. A new floor was then built of soft brick, in mortar made with two parts lime to three of cement and ten of sand, and covered with a layer of concrete, of equal parts of cement and sand, 2 inches thick. After this had set, the floor required seventyone blows of the 135 pound weight to break it through. This protective effect of the thick layer of concrete ove bricks is very curious, but aside from this, the result of the tests was decidedly in favor of the brick arching.-American Architect.

Exemption of a Physician's Property from Debt.
A New Hampshire physician was unfortunate euough to fall into debt and have judgments entered against him. The creditors naturally tried to obtain payment by issuing execu tion, and among the articles levied on by the sheriff were the physician's wagon and harness. The New Hampshire law says that such articles as are "tools of a person's occupation" cannot be seized and sold under an execution. The physician maintained that bis wagon and harness came un der this designation, and tried to recover them from the sheriff. The court, in deciding the question, which is an important one, does not settle the particular case, but refer it to a jury. The legal principles involved are of interest and we quote from the decision as follows:

The court cannot say, as a matter of law, that a wagon or a harness is a ton of a physiciun's calling, and so exemp to all physicians; nor can they say that it is not such a tool The most that can be said, as a matter of law, is that it may be a tool of his profession if, in the particular case, it is rea sonably necessary for him to use it as a tool. If it should appear that his practice was confined to his office, or that he was a physician or surgeon in a hospital, attending to no cases outside of the institution, or that he was a surgeon on shipboard, or that he went on foot or horseback, or on the cars, to visit his patients, a wagon and harness would not be exempt under our statute, because they would be of no use to him as tools in his practice. They might be of use to him in other respects, as in going to church, or in carry ing his children to school, or in visiting friends, or as means of recreation and pleasure; but these uses are mani festly not within the legitimate scope of the technical duty of a physician. Not coming within the strict definition of the term tools, and not being reasonably necessary as tool for him in his practice of his profession, they would not be tools within the meaning of the statute, and so would not be exempt as such. But if it should be found that the physician claiming the exemption could not practice his profession with reasonable success without a team with which to visit his patients; that he was located in a country town, for example, where it was necessary for him to ride a large part of the time in order to accomplish anything professionally, a wagon and harness might properly be found to be reasonably necessary for him as tools of his occupation. But the find ing would be one of fact, so far as the reasonableness of the
use is concerned; and it could not be said that these articles are exempt to every physician, or to physicians generally
but only to the debtor in the particular case. If there is any doubt whether an article claimed to be exempt from attachment is a tool under the statute, the question should be submitted to the jury whether its use as a tool by the debtor in his business is reasonably necessary. If it is, it is exempt therwise, it is not exempt."

IMPROVED VISE.

The object of an invention recently natented by Mr. William M. Whiting, of Elizabeth, N. J., is to construct a vise for grasping and securely holding articles of various sizes in such a manner that the pressure exerted by the pivoted jaws may be increased at will by a device acting independ ently of the screw and nut usually employed for forcing them together. The jaws of the vise are of the usual form. A screw threaded bolt extends through holes in the jaws, an at one end is pivoted to a cam lever, which also serves as a head for the bolt and prevents it from passing through tio hole. A nut turns upon the thread of the bolt projecting

from the opposite side of the vise. By means of this nut the jaws may be forced together, but where a greater pressure is desired than can be oblained in this way, the cam ever is raised so that the narrowest portion of its ecc
After the jaws have been brought sufficiently together After the jaws have been brought sufficiently together by
the nut, the final pressure for grasping the object is obtained by forcing the lever downward, when it may be conveniently held by grasping it in the hand, together with the lowe portion of the vise. This vise is designed with especial re ference to the requirements of telegraph line men, and is of great value in working upon several articles of the same size, for in such case it can be set, by means of the screw, as to allow the object to be readily placed between the ured by a single movement of the cam lever

COMBINED PAPER WEIGHT AND PENCIL SHARPENER. A small article which artists and dranghtsmen will find particularly useful has been recently brought out by Messrs. Keuffel \& Esser, of 127 Fulton Street, New York city. In a cast metal coverless box are journaled, longitudinally, two rollers, the axles of which are extended through the case at one end and provided with buttons by means of which they may be turned. Each roller is formed with a longitudinal slot just wide enough to admit the edge of piece of fine sund or emery paper, which is of such a lengtl

COMBINED PAPER WEIGH'T AND PENCIL SHARPENER.
s to admit of its being wound several times around the ollers. The paper passes over a bar placed across the top of the box parallel to and between the rollers, and thus pre sents a wide surface upon which the pencil may be conveniently sharpened. When the exposed part of the paper becomes worn, a clean portion may be brought up by sim ply turning one of the rollers. All the dirt is collected at
the bottom of the box. The device also forms a very landy paper weight.

decisions relating to patents.

United States Circuit Court.-Northern District of minois.

Blodgett, J.
The first claim of letters patent No. 190,816, granted to William P. Brown, May 15, 1877, for an improvement in couplings for cultivators, examined, sustained, and the de endant held to infringe.
The phrase in the claim "against or with the weight of the rear cultivators or plows" should not be read, as de endant contends, "against and with the weight," etc There is no uncertainty or ambiguity in this claim. The claim is comprehensive enough to cover both the arm, M by which a spring power is applied), and the arm, \mathbf{M}^{\prime} (by which the draught power can be applied), for the purposes o which the inventor proposed to apply them.
The objection that the sperification describes and the claim covers a useless form or construction, as well as a usefu one, is of no avail where the infringer uses the latter. The well known maxim applies, "Utile per inutile non vitia tur' '-that which is serviceable is not to be rendered in valid by that which is useless.
Transferring the point of applying the lifting force of a spring from a point behind the forward end of the bean to an arm on the coupling, to which the beam is pivoted, held to involve patentable invention.
The fact that not only the defendants in this case, but other large manufacturers of cultivators, have at once adopted substantially the same auxiliary lifting devices shown in complainant's patent is evidence of the popular acceptance of this as a practical solution of many of the difficulties which bad been encountered in the attempt to use the older devices, and is such a change and improvement as required more than mere mechanical skill, and brings this device fairly within the domain of the patent laws.

The fact that these older devices-Stover of 1870 and Brown of 1872-which it is now claimed were susceptible of being modified by mere mechanical skill into a machine in its operation and effect like that sbown by the complainant's patent, rested without any such modification until the present patent was promulgated, held to be quite conclusive proof that it required somethin ${ }_{y}$ more than mechanical skill to produce what is shown in this patent.

United States Circuit Court.-Southern District of New York.
HOLMES ELECTRIC PROTECTIVE COMPANY os. METROPOLI tan burglar alarm company.

Wheeler, J.

Patent No. 120,874, granted to Edwin Holmes and Henry C. Roome, November 14, 1871, construed to be for an elec trical covering fitting the outside of siffes, as distinguished from an electrical protection applied to houves and other buildings and to rooms. The patent sustained, and a preliminary injunction granted.
The provision of the statutes that a United States patent for an invention previously patented abroad shall be so limited as to expire at the same time with the foreign patent eems to mean that the term of the patent here shall be a long as the remainder of the term for which the patent wa granted there, without refereuce to incidents occurring after the grant. It refers to fixing the term, not to keeping the foreign patent in force.

Rifle Caliber Machine Guns.

Lieut. Sleeman, in an article in the $N . A$. Reviero for Octo ber upon the development of machine guns, says:
The use of rifle caliber machine guns offers to a general he simplest and most effective means whereby to intensify ifle fire at any point of his position, without causing the offensive or defensive power of any other part to be weak ned for this purpose.
Rapid firing single barreled shell guns possess some ex ceedingly important features for the military service, whether used in the field, as mountain guns, or for the armament of fortifications and earthworks. The properties that most strongly recommend these guns for serv ice in the field are rapid fire, little or no reccil of gun carriage, mobility, simplicity of mechanism and manipula tion, and, lastly, the use of made-up or self-contained ca tridges. It is difficult to conceive of more suitable guns fo light horse artillery. Take, for inslance, a battery of six rapid firing threc-pounder shell guns, each capable of dis charging eight projectiles in half a minute, with deliberate aim between each shot. A battery of this nature could in this short period of time deliver forty-eight projectiles, equivalent to 144 prounds of metal, and if common shells werc ised, with 1,440 splinters, or for sbrapnel shells, with 2,01 lead bullets. Such a rain of bursting shells would creat terrible confusion, and bave a most demoralizing and de structive effect, if thrown among a body oi troops, while i directed against earthworks or houses, the continuous fire of shell after shell would soon produce considerable damage. The comparative lightness of these weapons would permi of their being provided with an effective shield protection without reducing to any serious extent their property of mobility; besides, the additional weight of this shield would permit of a larger powder charge being used, with a corre sponding increase in initial velocity, accuracy, and power. Three-pounder guns have been referred to, but six-pounders are also adapted for field service, by allowing them to recoi and automatically return to their original positions withou causing their carriages to run back.

Vermilion.-Its Manufacture in China

The Chinaman has no knowledge whatever of chemistry and of the principles of natural philosophy and statics gene rally bis notions are of the most rudimentary and primitive description. How then, in the face of these obvious disad vantages, have the Chinese contrived to place themselves in the front rank among nations in the matter of certain chem ical manufactures, one of the most important of which is the subject of this article-vermilion? In our last article we have seen with what ingenuity and pertinacity in carry ing out his ends the Chinaman has succeeded in making perhaps the most delicate and perfect iron castings in the world.
He bas succeeded in that instance not by any deep re searches into the hidden mysteries of nature, by no process of thougbt involving an inquiry into the "reason why:" to this the Chinaman is averse, the whole tendency of his edu cation, such as it is, tends to made bim satisfied with ob serving effects; it is sufficient to him to know that things are so, without going into troublesome or elaborate in vesti gations into those changeless laws of nature into which his philosophy teaches him that, as he cannot alter or control research, is fruitless; but that he bas in his own small, in genious, patient way observed effects to very good purpose the unrivaled excellence of some of his manufactures testifies. We will now enter a vermilion manufactory, and watch the process from the first stage of mixing its two in gredients-mercury and sulphur-to the final process of weighing and packing this costly and beautiful pigment for the market.
The first objects to attract the visitor's attention on entering the yard attached to the works will probably be large piles or stacks of charcoal, crates or baskets of broken crockery ware, and numerous rusty old iron pans of some what similar shape to the rice pans previously described, bu considerably thicker and heavier. Therewillalso probably be a lew broken and disused cast iron mortars. All these articles are the cast off or worn out implements of the manu facture, and will be described in their proper order. On entering the factory proper, scores of little stone mills, each being turned by one man, and other long rows of workmen weighing out and more in number and may be ten or twelve in each furnace room, five or six on each side. After passing these the stores of quicksilver, sulphur, alum, glue, new spare iron pans, serviceahle crockery ware, and sieves, and other uten sils used in the factory are arrived at, and this completes the view of the works. The iron pans in which the vermilion is sublimed are those referred to above; they are circular and semi-spherical in shape; all are of the same size and weight; theyare cast upside down, and in the casting, a runner or lump of iron, two and three-eighths inch in diameter by from six-eighths to one inch in depth, is purposely left on every pan, in order to enable the workman the more readily to bandle the pan when stirring up its coutents. The size of the pans proved by actual measurement to be twenty-nine
and a quarter inches in diameter, by eight and seven-eighths inches deep, and the weight forty catties, or say about fiftythree pounds. These pans are set in rows of five or six on each side of a small rectangular ronm, in size some twelve feet by ifteen feet; the door of this room is of wood, and contains an aperture a few inches square in order to enable the workman to watch the progress of his operation, from time to time, without the necessity of lowering the temperature of the apartment by opening the door. The pans are set in brickwork, each pan baving beneath it a grate to hold the charcoal used as fuel. There is no communication between the grates or furnaces under each pan, and no chimney, the fiames and products of combustion finding exit from the front of the grate, which is left wholly open at all stages of the operation.
The process of manufacture is as follows: Taking an iron pan, which is of four inches smaller diameter than those described, and also in all other respects proportionately less, except the runner, which is the same size, a skilled workman proceeds to weigh out seventeen and one-third pounds of sulphur. This he places in the pan, and adds about balf the contents of a bottle of quicksilver. The pan with its contents is then put upon a small earthen brazier or portable furnace, the fuel used in which is charcoal. When the sulphur is sufficiently melted, the workman, taking an iron spatula or stirrer, rapidly stirs up the quicksilver with the sulphur, and gradually adds the remaining contents of the bottle of quicksilver, stirring the two ingredients together meanwhile until the mercury has wholly disappeared, or "been killed," as the Cbinese put it. When this takes place the pan is removed from the fire, a small quantity of water is added, and rapidly stirred up with the contents of the pan, which bave now assumed a dark tlood-red appearance and semi-crystalline structure.

This mass is then turned out of the pan into an iron mor tar, and then broken up into a coarse powder. This forms a charge for one of the large pans previously described, and when sufficient material has been prepared to charge all the pans in one furnace chamber the sublimation is proceeded with as follows: All the pans baving received their quantum of crude vermilion, this is covered with a number of crockery or porcelain ware plates of tough, strong manufacture, each about eight inches in diameter; some of these plates, however, are broken up, and are in a more or less fragmentary
condition. When these plates bave been piled up into a dome-shaped heap of the same shape as the bottom of the
upper pan, to which they should extend, the whole is cov ered with one of the smaller pans previously described. Now it will be remembered than the smaller pan was of fou inches less diameter than the larger one; there will conse quently be a circular space of two inches all round between the circumference of each pan
Consequently the rim of the upper or covering pan will be about two inches lower than the rim of the lower pan there will also be some four inches space horizontally beween the rim of the larger iower pan and that portion of the smaller pan which is at the same height as the rim of the larger one. This space is carefully filled with a clay luting into which some holes, generally about four in number, ar pierced, extending down to the rim of the smaller pan or cover; this is done in order to allow the heated air and other matters to escape. All the pans in one furnace chamber be ng thus charged and covered, the fires are lighted. The flames from the charcoal should occasionally play severa feet above the mouths of the furnaces. The door of the
chamber is kept closed, except wheu it is opened for a moment in order to enable the workman to replenish the fires, which must be kept up at a fierce heat for eighteen hours. During the process a blue lambent fiame is seen to play above each of the four holes which are pierced through the clay luting of the pans, so it is evident that a considerable quan tity of either one or probably bolh the ingredients is wasted. After eighteen hours the fires are allowed to go out, and the contents of the pan cool down. When this is accom plished, the greater portion of the vermilion will be found adhering to the lower surface of the broken up porcelain plates with which the crude product is covered. The vermilion is then carefully removed from the porcelain by means of chisels, and is now ready for the elutriating mills. Anothe portion of vermilion of not so good quality is found adhering to the upper iron pan and that obtained by washing the clay luting in a cradle, as diggers wash dirt for gold. This ogether with the wipings and scrapings generally is mixed p with alum and glue water into cakes, and, after drying on a brick surface heated beneath by means of wood or charcoal, is powdered up on a mortar, and resublimed when a sufficient quantity bas accumulated.
The vermilion which was removed from the porcelain plates is of a blood red color and crystalline structure. This is then powdered up in a mortar and removed to the levigat ing mills; these are the ordinary little horizontal stone mills used by Chinese and other natives of the East to grind rice and other grain into fiour or pulp, as the case may be. Each tone is about two and a balf feet in diameter; the lowe tone is stationary, the upper is turned by a direct-acting piece of wood having a hole in it, which works a wooden peg affixed to the upper stone, which is made to revolve by a backward and forward movement of the piece of wood, or handle, some three or feet long, previously mentioned. One man turns each mill. 'The upper stone has a small hole in it near its center, down which the workman from time to time pours a little spoouful of the powdered vermilion, which he washes down into the mill with water; as be turns the mill the workman keeps continually ladling little spoonfuls of water down the aperture or hole in the upper stone; the ground and thus elutriated vermilion, as it escapes from between the stones, is washed down by the water into a vessel placed beneath to receive it
When work is suspended for the evening, the ground vermilion is carefully stirred up with a solution of glue and alumin water, in the proportion of about an ounce of each to the gallon. The glue bas been made to mix with the water by previously heating it with a small quantity of water; the earthen pots in which this process is effected each hold about six gallons. The mixture is then left to settle. In the following morning the mixture of glue and alum is poured off the vermilion, and the upper portion of the cake of vermilion at the bottom of the vessel-that is, the portion which remained longest suspended in the liquid-will be found to be in a much finer state of subdivision than the lower portion, which requires to be again elutriated as on the previous day; this separation of the more finely divided vermilion from that which was coarser by suspension in dense medium, is a really most ingenious process, for which we should give the Chinamen every credit.
The process of grinding, elutriation, and separation of the coarsely ground from the fine vermilion sometimes requires to be several times repeated, in order to fully bring out the color. As a final process the damp cake of finely ground vermilion is stirred up with clean water, and allowed to setthe down until the next morning, when the water is carefully poured off iuto large wooden vats to still further deposit a small quantity of vermilion still remaining in suspension, and the vermilion dried in the open air on the roof of the premises. When quite dried the cakes of now full col olored pigment are carefully powdered and sifted by means of square muslin bottomed sieves, contained in a covered box some two feet high by two and a half wide, in which the sieves, which slide on a framework inside the box, are jerkek back ward and forward by means of a bandle on the outside of the box or case containing them.
The now fully prepared vermilion is removed to the packing house, where may be seen rows of workmen, men and boys, seated before a series of tables. Between every two workmen is third, with a small pair of scales, which he holds in his left hand; and as the workmen on either side place before him the little pieces of paper in which the ver milion is to be wrapped up, he weighs into each paper one
tael (about an ounce and a third avoirdupois) weight of ver-
milion; the papers are two in number, the iuner a black or prepared paper and the outer a piece of ordinary white paper. After being wrapped up the packets are placed in rows before another workman, who stamps them with seal containing in Chinese characters the name and address of the manufactory in which the article bas been made, and the quantity and quality of vermilion contained in the packet.
The rapidity and deftness of the Chinese workmen at this employment is really surprising; the stamping, for instance is effected at the average rate of sixty impressions per mi nute, and the wrapping up is carried on with proportionate rapidity. The misture of alum, which is the ordinary aluminum potassium sulphate, with the vermilion, in one of its stages of manufacture as described above, is not add ed, as at first sight we thought it might be, merely to assist in clarifying or purifying the water by causing it to deposit its sediment, but seems to have some peculiar effect upon the color. Although what may be the rationale of the pro cess, or how it acts, we cannot quite clearly see; the glue i added as described above merely to favor separation of the finely elutriated vermilion by holding it longer in suspension than the coarser particles, which sink first, and may therefore be separated in their order of stratification.
The act ual composition of vermilion is one hundred parts of mercury to sixteen of sulphur, when both these ingredients are in a perfectly pure state; the excess of five and onethird pounds of sulphur added by the Chinese is probably volatilized and lost in the process of sublimation, or as the sulpnur used is generally not quite pure, a part may go for foreign matter contained in the sulphur; the balance being probably the raison d'etre of the blue lambent flame seen playing over the apertures in the luting during the sublima tion process. For a people, having like the Chinese no acquaintance with even the first rudiments of chemistry, the proportion of ingredients taken-fifty-six and one-quar ter catties to 13 catties, or say 75 pounds to 17 and one-third pounds-shows wonderfully accurate powers of observation and a knowledge of combining proportions only to be gained by much experience and a long extended series of carefu observations highly creditable to the manufacturers. The entire process is one of the most ingenious and interesting to be seen in any part of the world
Hong Kong, March 29, 1884.
-T. I. B., Ohem. Newos.

Mounting Prints on Muslin.

At a recent meeting of the Rochester Photographic So ciety, Mr. J. M. Fox gave the following account of his method of mounting prints on cloth. He said:

After trying many experiments in double mounting on muslin I have adopted the following method: I prepare seve ral yards of cloth at a time by sizing with starch, and always keep a roll of it on band ready for use. While damp the cloth is stretched not too tightly on a frame, and sized plentifully with warm starch paste made rather thin, and spread on evenly. Where large quantities of muslin are used, perhaps tenter bars might be employed to advantage for stretching. When dry cloth is cut to the size required before mounting, allowance being made for the expansion of the prints, if the starch for mounting be used while warm (which I think is preferable), it should be as stiff as can be conveniently spread on the print, for the reason that it will conveniently spread on the print, for the reason that it will
expand the cloth less and dry quicker. From the moment the first print touches the cloth dispatch is important; there fore both prints are first pasted, one being laid aside ready to be picked up quickly. The first print is rubbed down with a hand roller, which can be done more expeditiously than with the bands. When the second print is properly laid on the side there is less occasion for haste, and rubbing down by hand is preferable; because, although the roller does the work perfectly on the first print mounted, it is liable to leave air bubbles in rolling down the second one. To avoid bubbles in the hand rubbing, the strokes should be toward the middle of the print, and not in every direction from the center. When the mounting is completed, the prints are placed between papers and covered immediately with several folds of cloth of sufficient weight to keep them in place. To facilitate drying they may be aired after an hour or two cloth.'
A Mischievous Toy.
On each side of $108 \mathrm{th} \mathrm{St.}$,between Third and Lexington Avenues, this city, is a row of new flats. The row on the south side is almost completed, but a very large number of the whole glass windows bave been shattered. The hole in the glass is generally sm
"The boys do it with what is just now the most popular oy Harlem ever saw," said a policeman in Lexington Ave nue. "The toy is made like the stock of a gun. A short, hollow, wooden cylinder fits into the channel of the gun stock and is secured near the muzzle of the stock hy a stout rubber cord. When this cylinder is pulled back to the position a gun lock would occupy, it is caught on a trigger. The boys put a lead bullet into the little cylinder, aim at a window a square away, and pull the trigger. A jingle follows every time. Sparrows and cats even have been killed by the bullets. It bas been impossible so far to catch the boys in the mischief, because there is nothing to tell where the shot comes from. Unless we are lucky enough to see some of them in the act, we will probably not be able to stop the destruction."

MECHANICAL INVENTIONS
A bearing for spindles of spinning machines has been patented by Mr. Albert R. Sherma of Pawlucket, R. I. This inventiun combines wit vertical supporting pin with free lateral movement, tie in or ball stepped at its lower end in the bottom of he bolster case, and the oil cushion between the bo ster case and the bolstcr being preserved in the plan of the whirl.

AGRICOLTURAL INVENTION

A combined corn planter and fertilizer disributer has been patented by Mr. William Cassill, of Hamden Junction, Ohio. This invention covers im inventor, making the machine more convenient in us nd more reliable in operation.
A check row corn plinter has been patent d by Mr. Stephen E. Williams, of Rock port, Mo. The rame is mounted on a slationary a ale with rotatin wheels, and hinged to it is a frame with rotating axle and flxed drive wieels, so the drive wheels can be raised from the ground; there are also hinged
bars which can be readily raised and lowered.
A corn harvester has been patented by Mr John E. Smith, of Wilmington, Del. The cutters are arranged to cat wo rows of corn at one passage across
the field, the outer cutter, or the one most remote om the team, being in ad nds of the two rows of stalks together to be boun as fast as they are cut.
A barrow attachment for plows forms the subject of a patentissued to Mr. Enoch Caivin Eaton, of Pinckneyville, Ill. An obtuse angled bar earrying nother bar bent at both ends having teeth adapted work rearwardly, as to form a harrow rigidly attache o the plow beam, to pulverize and level the soil. cu ting down the hiph
ing the low places.

miscellaneous inventions.

An oil filter las been patented by Mr. Dan iel S. Neiman, of Fargo. Dakota Ter. It is a tank wit a funnel at its upper end and a series of shelves with
layers of charcoal, lime, and woolen cloth, with a steam coil surrounding the lower end of the funnel
A hair spring regulating pin for watches han been patented by Mr. George F. Johnson, of Auro
ra. Ill. In combination with the regulator and its pins a spring, so a tached aud arranged as to close by i is a spring, so altacher and arranged as to close by its
tension on or against the under or exposed ends of the regulator pins.
A paper box machine bas been patented by Mr. Maurice Marques, of New Yorls city. There are male and female catiing dies, with expanding plittes, nd means for operating them, no the paper bos ma board or other suitable material
A pump has been patented by Mr. Luis G. areaga y saenz, of Puebia, Nezico. Mt is a double pis on pump, with rigid pistorink and tra arranged ec and rod, a flangeà imperforate rubber plate, and variou other novel features.
A clock striking mechanism has been paented by Mr. Lucien Diacon, of Chaska. Minn. The and reduce the cost of clocks intended to strike the hours and theirsubdivisions, as well a.s prevent their

A horse detacher has been patented b Mrssrs. John E. Stevenson and Joseph Forsyth, of Brighton, 'Tenn. This is an improved contrivance o
trace hooks anid means for unhooking the rraces there rrace hooksalid means for unhooking the traces ther
from, to provide simple and efflcient means of esca from the horses when they
A line throwing gun has been patented by Mr. Jeremiah Willians, of Hartforl, Ky. There ar side openings in the barrel about the middle of it on which the line secured to the dart is held, the dart having a wad held on its butt end by a ecrew.
A distributing roller for mucilage, gum etc., has been patented by Mr. Joseph A. Conwell, of
Vineland, N. J. This invention consists of a role ith an annular groove at each end inclined inward from the rim toward the central axis, making pocket for the mucilage flowing down the ends of the roller.
A plumb bob has been patented by M George Morrison, of Elmira, N. Y. In its upper hol ow portion is a spring barrel gearing with a pinion on
a shaft, a reel being mounted on the shaft with its periphery notched for the engagement or a spring pawl for olding the reel at any desired poin
A nut for carriage axles bas been patented by Mr. Robert M. Pierson, of Mayesville. S. C. Th ut is hollow, with adjustable covers for taking up the endwise wear of the axie box in the hubs of carriag wheels, and it has a locking device for maintaining the
A paperbanger's table has been patented by Mr. Lewis A. Young. of Stanstead, Quebec, Cana for trimmiug the edges of the paper, for distributing the paste, and an endless conveyer belt upon whic he paper
A chain pump bas been patented by Mr eorge W.Derrick, of Centervile, Ore. This tion covers a special combination of parts to lesser the riction and wear upon rubber buckets, and also to a ow the well pipe to be readily cleared of sediment and the water to be easily discbarged from its upper part to
prevent freezing.

A circular saw lifter has been patented by Mr. William G. Baumgardner, of Filer City, Mich. It bars, with a cam lug on one side of the pivot adaptin he two handles to form gripping bars, between whic the toothed edge of the saw
be gripped and held firmly.

A band truck has been patented by Mr_{r} Joseph Annin, of Brooklyn, N. Y. The truck frame is
of cast iron, with jaws cast in one piece therewith, and having parallel extensions for receiving clamping bolts, he them tightly and so they clamping jaws for secur, tached and removed
An automatic safety brake for horse pow f has been patented by Mr. William L. Remington of a system of levers applied to the ordinary brat lever in such manner thata downward movenent of the main horizontal lever of the system will shove forwar the brake lever and apply the brake.
A safe has been patented by Messrs. Johr W. Johnston, of Richmond, Va., and J. H. Rogers, of Washington, D. C. An envelope is made to cover the ustable, ene, the envelope being wholly or partially ad etic locking device for precluding the movement of A carpet fastener has been patented by Mr ames A. Waters, of New York city. A hooked clam pate is employed, journaled in suitable blocks o tandards, and acted upon ty springs, for grasping and did withou injury and easily taken up and repay
voiding the use of tacks, hooks, etc.
A rope supporter for bay and other carers has been patented by Mr. Richard Tennant, Jr. he rope, bars, and wheels to carry the pulley, an sring catches to endage with the carrier, preventin the rope from sagking, and lessening the space travel d by the horse at each trip.
A mowing machine knife has been patent ed by Mr. John M. Hamblin, of South Union, Ky This invention provides a light, strong serviceable knife bar and knives, which may be worked a long
tme without excessive gumming and with little power, ime without excessive gumming and with little powe and which will allow of a quick, ead
sharpening of the knives when dulled
A door hanger has been patented by Mr George \mathbf{H}. Burrows, of Somerville, Mass. It is mad he wheel, and long rabbets in its lower side to receiv and travel upon the journals of the wheel, the im provement being especially app
A hool or shoe polishing machine bas been atented by Mr. Arthur A. Sparks, of Trenton, N. J. It ansists of a frame mounted loosely on a shaft and to the work by turning the frame in vertical plane, the brushes being revolved by belts leading from a fixe pulley on the shaft
A spoon bowl has been patented by Mr Henry Nickolds, Sr., of Taunton, Mass. The bow harp edge, lias its margin bent outward or extende in the manner of a flange, or made with what is styled returned edge, so to the upper lip.
A pole attachment for wagons has been pa tented by Messrs. Alfred T. Hawk and Joseph W.
Scoit, of Preston, Ohio. It is made with a socket ber Scolt, of Preston, Ohio. It is made with a socket ba by clips, and a socket bar secured to the forward pa of the bounds by a keeper, and properly strengthened by brace rods, so two yoles can be readily applied to the wagon.
A washing macline has been patented by Mr. Merritt W. Palmer, of Holland, Mich. This in here the water is forced vement the cothes by a being compressed in the vessel, a valve admitting ai out preventing its escape, the up and down movensen of the washer effecti.
through the clothes.
A belt clamp bas been patented by $\mathbf{M r}$ Eleazer Ains worth, of Wilmingtorr, Del. Clamp ba bars having grooves in the ends increasing in dept rom the outer to the inner edges, to permit inclining he clamp bars to the screw rods, the invention being an improvement on a former patented invention of the ame inventor.
A marker for weather boards, flooring, and Jambs has been patented by Mr. John Hamm, of Mem-
his, Kansas. It consists of a rule formed of two sirip of wood, connected together at one t the opposite end by a transverse screw, each stri having a short arm, and each side of the rule a stand ard with a shouldered projection, with other novel fe

A saw mill head block has been patente by Mr. Robison W. Shelbourne, of Blandville, Ky , ting shaft, a rising and falling rail adapted for contact with the wheel, an apparatus for actuating an endwis movable bar, and other novel features, to effect in a mproved way the
ing it to the saw.
A cotton gin breast has been patented by Messrs. William F. Smith and William W. Adams, breast back comprising one or more belts armed wit strips upon the exterior sides, and driving wheels en compassed by the belts, with other novel features, facilitate the passage of the cotton to the saws, preve facility for ginning wet cotlon. and afford increased

A folding skeleton gun stock has been p tented by Mr. Frederick Schwatka, of Vancouver Ba acks, Washington Ter. The skeleton extension is pir nd arranged so that when closed it fits underneath then stock; there is also a spiral articulated coustruction he skeleton stock, with fastenings for it closed an extended, securing great compaci
A numbering attachment for printing press es forms the subject of four patents issued to Mr. Al
bert R. Bakcr, of Indianapolis, Ind. The press has a dditional cylinder, with numbering heads properly mounted therein, and appropriate mechanism for ope rating them, the cylinder being in such relation to the reguiar cylinder that the numbers in tie numbering eads will come in contact with the paper thereon a the cylinders revolve, with various other novel fea
tures. A wheeibarrow has been patented by M Joseph Annin, of Brooklyn, N. Y. The body can, by neans of clamps, be secured to the handles at any deired distance from the wheel, and a stif fanged brace can be used in carrying burning coals about gas work melted refuse about iron works, etc. The same invent or has also obtained another patent covering an inpoved metal wheelbarrow tray, with two angular side and end pieces, forming a flaring body, riveted togetbe

A belt fastener forms the subject of two
 wick, Mass. It consists of a rigid plate with prong nd eyes on both edges, the longitudinal axes being so the train is distributed over the plate in all its pos ins; also, if the belt begins to rip, an additional plate ay be fastened on the belt and the toope connecte with the other, the object being to unite the ends of driving betts, so they need not be adjusted and tigb ned as often as with the usual lacing.

NEW BOOKS AND PUBLICATION

merican Newspaper Anntal. N. W. Ayer \& Son, Philadelphia.
This a handsome octavo of nearly a thourand lages ontaining a full list of all newspapers in the Unite tates and Canada; it also has classified lists of those devoted to special subjects, as religion, agriculture, nd convenient etc., making it an extremely valua ee that there are in 1884,12,713 newspapers and period als published in the United States, as compared wit 1883-a gain of 747; while Canada shows a los of The book may in part be styled a co-operative he Messa, in which the various newspapersume whic will give the greatest amount of information about their

Dynamo-Electric Machinery. By Sil vanus P. Thompson.
London and New York.
This volume is based on the cantor lectures of the athor before the Society of Arts, in 188%, but affords ood deal more than a mere reprint of those paper Amere at once republished and widely circulated a review of what has been done, down to the pre ent time, in converting the energy of mechanical mo ubject in the investigation of which the writer ha en prominent for fome years past. His papers have been read, and his judgment is highly valued, by al thorough investigators in this field.
Wonders and Curiosities of the Rail

$$
\begin{aligned}
& \text { Way. By William S. } \\
& \text { Griggs \& Co., Chicago. }
\end{aligned}
$$

This is a pleafant book for a traveler on a journey b ail, with which to whille away an hour. There ar ew matters in it with which an ordinary engineer ora
nielligent mechanic is not already conversant, but it sometimes agreeable to refresh the memory with a book this kind, which interests wilhout taxing the mind The Book Buyer.-This is the title of a very acellent monthly periodical issued by the well know publishers, Messrs. Charles Scribner's Sons, 743 Broad
way. It contains the titles and prices of all the princi pal new books issued during the month, interesting iterary information, elegant extracts from the lates and best works. It is in short a guide and summary of useful suggestions for readers, and merits the wid circulation it enjoss; 50 cents a year, 5 cents per cops,

Received

Farley's Reference Directory of the Machinists, Iron, Steel, and Meta States. A. C. Farley \& Co., Pbila delphia.
The Man Wonderful in the House Beaumiful. An Allegory. By Drs. Charles
B. and Mary A. Allen. Fowler \& Wells
Co., New York.

The Practice of Ore Dressing in Europe. \& Sons, New York.
an Important Question in Metrology By Charles A. L. Totten. John Wile The Theory of Deflections and of Lat Tudes and Departures. By Isaac W
Smith, C.E. D. Van Nostrand, New York.
Elf-Raised, or from the Depths. By
Mrs. Emma D. E. N. Southworth. B. Peterson \& Bros., Philadelphia.
business and 2 exsonal.

The Charge.for Insertion under this head is One Dollo

 a line for each insertion; about eight words to a lin asearly as Thurrsday norning to uppear in next issue.Cities over 10,000 population wishing cheapest, best,
highest speed street railway, address stewart \& Co. 3041 Dauphin, Phila
Darwin's "Origin of Species"; works by Tyndall, Huxley, Spencer, etc., cheap enough for all. Write fo Practical man wanted. A man thoroughly posted in me manufacture of machine and planer knives, an cuired. Michigan Saw Works, East Sasinaw, Mich
For Sale. Canada patent, dated Sept. 19, 1884. The ave funds. Will sell cheap. Henry Binley, 594 Broadway, Albany N. Y.
For Sale. A very important patent automatic tur able for horse cars. All States and Territories for sale
xcept Louistana. Patented Sept. 16, 1884. Apply to The Cyclone Stcam Flue Cleaner on 30 days' trial to

For Steam und Power Pumping Machinery of Sing and Duplex Pattern, embracing boiler feed, fire and lo pressure pumps, independent condensing outtits, va uns, bydrad on St., Boston; 97 Libertv St., N Y. Send for Catalogue Blake's Patent Belt Studs, the strongest and best fas ening for Rubber and Leather belts. Greene, Twee

Quinn's device for stopping leaks in boiler tubes.
Mills, Engines, and Boilers for all purposes and of very description. Send for circulars. Newell Unive

Wanted --Patented articles or machinery to mannfa Batterie wenty machine gives 65 Arc Lights with 45 horse power. Our torage Battery is the only pract
Brush Electric Co.. Cleveland, 0
"How to Keep Boilers Clean." Book sent free by Stationary, Marine, Portable, and Locomotive Boile specialty. Lake Erie Boiler Woriss, Buffalo, N. Y
Presses \& Dies. Eerracute Mach. Co., Bridgeton. N.
The Hyatt filters and methods guaranteed to rende an kinds of turbid water pure and sparkling, at econom
Steam Boilers, Rotary Bleachers, Wrought Iron Tur
Tables, Plate Iron Work. Tippett \& Wood, Enston, Send for Monttily Machinery List
to the Georke Place Machinery Company,
121 Chambers and 103 Reade Streets, New York.
Iron Planer. Lathe, Drill, and other machine tools of For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J
If an invention has not been patented in the Unite States for more than one year, it may still be patented in解 ddress Munn \& Co., Scientific Ambrican Paten gency, 361 Broadway, New York
Guild \& Garrison's Steam Pump Works, Brooklyn N. Y. Steam Pumping
tion. Send for catalogue.

Nickel Plating.--Sole manufaclurers cast nickel an des, pure nickel salts. polishing compositions. etc. Com ete outat for plating, etc. Hanson d Van Winkl Suppiement Catalogue.-Persons in pursuit of infor ation on any special engineering. mechanical. or scie NTIFIC AM inilicai Suplism icN sent to them fre The SUPPiIGMENT contains lengthy articles embracin the whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co . Puolishers, New York
Machinery for Light Manufacturing, on band and Machinery for Light Manufacturing, on hand an
built to order. F. E. Garvin \& Co., 139 Center St., N. Y. Munson's Improved Portable Mills, Utica, N. Y. Mineral Lands Prospected, Artesian Wells Bored, b C. B. Rers \& Workin achinery of every kind. See adv... pake 142. Curtis Pressure Regulator and Steam Trap. See p. 22\% Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 222. Drop Forgings. Billings \& Spencer Co., Hartford, Conn We are sole manufacturers of the Fibrous Asbesto emovable Pipe and Boiler Coverings. We make pure
asbestos goods of all kinds. The Cnalmers-Spence Co 19 East 8th Street, New York
Clark's Rubber Wheel. See adv. nest isal Steam Hammers.Improved Hydraulic Jacks, and Tub Expander. R. Emerson's 18840 Book of Saws. New matter. 75, 000 . Cotton, Rubber, and Leather Belting. Steam Engin aeking of all kinds. Greene, Tweed \& Co., 118 Cha Barrel, Keg, Hog Hoisting Engines. Friction Clutch Pulleys, Cut-ot U. s Standard Thread Cutting Lathe Tool. Pratt \&

For best low price Planer and Matcner. and late mproved Sash, Door, and Blini Machinery, Send fo catalogue to Rowley \& Hermance, Williamsport, Pa. The Porter-Allen High Speed Steam Engine. Soutb Split Pulleys at low prices, and of same atrength and
appearance as Whole Pulleys. Yoeom \& Son's Shafting
Works, Drinker St, l'hlladelphia. l'a.

HINTS TO CORRESPONDENTS.

(1) J. H. B. B. asks: How can I determine the velocity of water in a pipey I have an artesian well, and it is suspected that there is 1 ass of water by per-
colation through the joints of the pipe. If there is some simple device which I could let down 250 feet and ascertain the velocity there, and then get it at the top, I could of course settle the question of ioss, and ascer--
tain the amount of water. A. We know of no method tain the amount of water. A. We know of no method
of accomp ishing whar you want by getting the differ of accomp ishing whar you want by getting the differ
ence of velocities; if you could run down a self-packing plug to the bottum of the pipe, you could then discover if there are
water in the pipe.
(2) J. A. R asks: 1 . Would it do to attach the engine shaft direct to the saw shaft by a coup-
ling? A. With a slow saw and f sst feed the saw would wedge and heat. Do not think it advisababe to attach engine shaft to suw shaft under any circumslance. I bad a dispute with several persons about the length of belt used on common steam thrashing machine. I
claim after the belt has all the grip the pulleys will claim after the belt has all the grip the pulleys will
allow, then any more length of belt is lost weight and allow, then any more length of belt is lost weight and
harder on the machinery. How is it? A. There is no harder on the machinery. How is
advantage in extremely long belts.
(3) A. D. writes: Is it necessary to oil well itted bearings (iight work) as often as customary? know of a case where a shaft, through neglect of an employe, was allowed to run three months on one oil-
iug at 10,000 revolutions per hour., Not the slightest damage was done to the "Babbitt", or to the shaft, nor was there noise or heat. A. This looks rather extravagant. There is a patent for dry journal bozes. As far
asknown ous, theyhave been failures. Probably the as known tuos, they have been failures. Probably the
shaft in question did not tear upon the journal box
(4) L. D. B. asks what Bessemer steel is and if nails made of it are as good or any better than grade of steel made by blowing air through molten ron in a converter. It is tough and strong, and is the best material for nails if you can afford it
(5) J. A. L. asks: 1. What is compound spirits of ammonia? Can I compound it? A. For com-
pound epirits of ammonia, the aromatic spirits of ammonia are usually dispensed by druggists. Its prepara ion is simple to those familiar win plaruace Uite tates Pharmacoppeia,

state is:

um	40 parts.	
Water of ammonia.	100	
Oil of lemon	12	"
Oil of lavender flowers.	1	"
Alcohol		"
Distilled water sufficie		

lotions for the mange:

or, to the last add a strong decoction of white hellebore
(7) J. H. G. asks: Is the cause of the potat "scab" known, and what is the cause and remedy? A
Potato "scab" and "skin crack," though not identical diseases, ought to be considered together, for their causes are apparently the same. They proceed from an irregular suppyy of moisiure to the growing root
and plant. Where the growth has been vigorcus and and plant. Where the growth has been vigorcus and
rapid, and has been then checked by drought, the ekin of the potato becomes firm and strong; if now a sudden and rapid growth starts, this firm skin is cracked by dissubstance; this is "skin crack." In another case where the new and rapid growth is perhaps not quite so sudden in its start. the skin instead of cracking becomes rough and thickered in patches and scales; this
is "scab," and results from excessive development of is "scab," and results from excessive development of
the cork cells forming the inner surface of the skin In either case, "scab" or "skin crack," the tissues beneath become diseased and die to the depih of half an
inch more or less, of course injuring the value of the inch more or less, of course injuring the value of the
crop. In thisdecayed tissue, various miles barely visible, and others too small to be detected without the help of a microscope, make their home, and have been erroneously supposed to be the cause of the injury.
These forms of dieease were first described by Dr. Herman Schacht in his repor Agriculture, in 1858.
(8) S. D. K. writes: We want to make some cider jelly. Will you please nform me how much gela-
tive to use to a gallon of cider? A. To make cider
jelly, 2 ounces of gelatine are diesolved in a pint of cold
water, and when dissolved, 1 pint of hot water aud 1 dded, the is, 8 ounces to the gallon. (9) C. B. H. writes: I wish to decolorize red wine vinegar. I think of leaching it through ani-
mal charcoal. Will the commercial variety of that
article answer my purpose, or would the vinegar be too article answer my purpose, or would the vinegar be too
much contaminated by dissolving the phosphates, carmuch contaminated by dissolving the phosphates, car-
bonates, etc., in the coal? If so, how could the coal bonates, etc., in the coal? If so, how could the coal
be prepared so as to be fit for the purpose? Would rar 2 pints red A. bone charcoal, or bone black, in a glass vessel. Shake this mixture from time to time, and in two or three
days the color completely disappears. When the prodays the color completely disappears. When the pro black into the cask of vinegar, shaking it from time to the impurities contained in it are so slight in quantity the impurities contirely disregarded
(10) J. B. asks what kind of cement to use to fix a glass eye with. A. Dissolve fine glue in strong
acetic acid to form a thin paste, or use Canada balsam cetic acid to form a thin paste, or use Canada balsam quantity (one fiftieth) of potassiun bichromate. The larter soon loses its yellow tint,and beco
by dampness when exposed to daylight.
(11) J. F. S. asks how near a complete vacuum can be produced by an exhaust fan. Or in other words, how low can the mercury in a barometer be reduced in an air tight chamber or vessel. from which the fan is exhausting the air? A. An exhaust fan will produce a draught, but not an appreciable
vacuum, only ahout equal to one or two ounces nega ive pressure, say about one-quarter inch on the ba air tight cylinder 2×10 feet, and with either a rotar pump or fan instead of the regular air pump. Which wonld
(12) W. P. W. writes: I have a steam pump used forraising water. Pump $31 / 4$ and 5×7 inches, I run this pump contrnuouely 10 hours, and pump say
9,000 gallons during that time. The lift from the sur ace of the well to top of tank is 55 feet distanc of well from the pump is 68 feet; suction pipe
$21 / 4$ inches; delivery pipe, $11 / 2$ inches; I throtle the valve so as to run flow. The boiler pressure run an engine and for other purposes. I wish to find out some method of getting at the cost of raising this say at three mills per pound. I also would like to know the method used to obtain the result. A. The computed lift of the pump in volume of water is abou work of the pump at the pressure you name is about 0,000 pounds 1 foot high per minute. So you mus ose over 100 per cent in friction. The indication by team is $1 \frac{1}{4}$ horse power, which, considered with the uncertain cconomy of boiler, you may safely assign at 8 pounds per horse power, or say 100 pounds coal per
day, or 30 cents for coal alone. Oil, attendance, and inday, or 30 cents for coal alone. Oil, attendance, and in terest must be added to this for obtaining a prope
value of the cost of pumping. For the detail of these computations we refer you to Haswell's Engineer' computations
Pocket Book.
(13) G. W. F. asks the process for cleaning and polishing steer horns. A. Rough down the hor with a rasp or file to make the surface even. The
scrape with broken glass or a steel scraper, such as cabinet makers use for finishing hard woods. Then finis net maks a buf of felt (wheel or hand) with tripoli and
witater. Gloss with whiting and water on a soft buff
wat water. Gloss with whiting and water on a soft buft
finishing the gloss with a cloth and dry whiting.
(14) H. L. R. asks for the best glue or sub stitute for glue of a waterproof nature, to use in glu
ing the white kid leather to the pine ribs of an organ ing the white kid leather to the pine ribs of an organ
bellows, where the bellows is situated in a damp room under which circumstances ordinary glue softens, and addition of a small quantity of bichromate of potash t o your glae and the subsequent exposure of the glue material to light would probably secure the desired r
sults.
(15) E. L. desires a receipt for making good stove polish or paste. A. Black lead pulverized 1 pound; tur
ounce; mix.
(16) Z. D. asks: How many gallons of wate per minure should a $31 / 4$ inch pipe one foot long with free from other friction than the one foot nozzle.
(17) B. J. B. writes: I am digging quite a be glad to know if it will be safe to put the cement directly over the clay sidea, or whether a brick wall must e introduced. The cistern is circular. Is there an ood recent work on the construction of cisterns? qual parts Portland cement, sharp clean sand and qual patone. But to make it thoroughly substantia he concrete should bo rammed between a crib and the clay wall, so as to have a solid outside bearing suitable or the arch or cover. If you make a cover of concrete, nake the arch nearly hemispherical, or half a sphere, or safety, although experienced persons could mak it much flatter. For the arch use 50 per cent more ith scantling and boards nearly to the form required, nd cover with sand to give it a rue form the concrete around the outside first. filling in solid agains the earth bearing for supporting the arch; finish at the hole in the center last. Make the arch at least 8 inches hick at center and 12 inches at the outside bearings.
(18) A. L. P. asks: 1. How do astronomers ca.culate the ii-tance to the sun or any heavenly body?
am at a loss to see where the star ing point is, to obtain the angle. A. By making a triangle of which tance of the sun's center at simultaneous moments
being computed from measurements of observation upon the surface of the earth for the purpose of establishing its d ameter, upon which is based this method of compulalion. The tran of ine iner planets, partic larly Venus, has given a more refined method of
angulation, which is somewhat complicated. You mat obtain a clearer insight into this subject by reading any technical work upon astronomy. 2. A vessel moving at the rate of 10 or 15 knots an hour. Does it leave a
vacuum or hollow in the water at the stern of the ves el, or doe hollow in the water at the etern of the ves sel, or does the water filh the up the vessel, so as to keep
in constant coutact with the stern? A. The motion of vessels through the water produces a slight depression
under thestern from the inertia of the water, or inander thestern from the inertia of the water, or inafill the cavity.
(19) E. L. M. writes: 1. Do you know of any machine shops where they take apprentices? If so, machine shops is always dependent somewhat on the appearance of the applicant, and is largely a matter of personal judgment with the employer; the opportuni-
ties have been often better than they are just at presties have been often better than they are just at pres-
ent, but any young and intelligent man earnestly de siring such an engagement, and applying in any conkiderable manufacturing locality, would not, we pre do not now know where there are any vacancies. 2. Would two cylinders 3×5 inches develop more power lign one 6x6 inches? Which is most economical a
lightest, also horse power of first? A. The 6 inches by 6 inches would be more chan double, the power of two
3 inches by 5 inches. We cannot estimate the power . Give nerter the pressure of steam nor velocity inder, cylinder heads, etc., for high speed two cylird 3x5. A. Steam openings, five-sixteenths inch by 21 inches, exhaust openings $5 / 8$ inch by $21 / 4$ inches. Your cylinders, heads, etc., may be made about as light as they can he cast, bored, and turned. 4. Would the
boiler described in SUPPLEMENT, No. 182, furnish boiler described in SUPPLEMENT, No. 182, furnis
abundance of steam for the above engine \% A. No, not abundance of steam for the above engine y A. No, not
half large enough for the two engines; boiler should half large enough for the two engines; boiler should
have 130 feet fire surface. 5. Would above engine and boiler furnish enough power to run a boat 35x6 14 miles per hour; if not, what size boat? A. No; but little more than $71 / 2$ miles with a boat 28 to 30 feet by 6 f.et. You may get with good model $91 / 2$ to $101 / 2$ miles
per hour. 6. Could sails be applied to above steam yacht at the same time profitably? A. Sails would be etriment generally.
(20) W. D. writes: Will you let me know when propelled by six paddles? The face of each paddle is two feet six inches by two feet; three paddles dip at time and as they pass out the other three ente there is one yard of space between each paddle and each paddle revolves in its own circle; and to run a even hundred revolutions perminute, and have a dip the full length of the paddle, namely, two feet six inches; the two hulls fifty feet long by three feet of water when in sailing trim; width of boat twelve eet. paddles in middle of boat, three and three, par run from Pbiladelphia to Wilmington in one hour and it is thirty-five miles; the grip of the paddles good for one hundred revolutions more, if need be Can I do it with a boat and paddles as I have described oo you? A. There is no data upon which your question
an be answered, but we do not hesitate to say that can be answered, but we do not hesitate to say that
you cannot accomplish what you propose, and advise ou not to expend time and money upon the expecta
(21) J. D. B. writes: Referring to Scientific American, August 23, 1884, Notes and Queries,
No. 31, what size screw, number of blades, and pitch No. 31, what size screw, number of blades, and pitc
of same would work best for engine mentioned in thi number, also size of boat, and probable speed of boat have an engine aud boiler $2 x 4,3$ inches stroke, but $m y$ boiler is a little bigger, it is 14×28, including firebox, etting stoped flues, but bave much trouble with flue uel, except wood? I have used soft chunk coal; brok hem to size of walnut. A. Propeller about 17 nche 16 feet long, and 36 inches to 40 inches. Boat 15 5 to $51 / 2$ miles per hour. Your boiler is too small; it hould be about 18 inches diam ter, and 32 inches high. Furnace not less than 12 inches deep, and should
have 28 to 30 feet fire surface. Use coke or anthracite
(22) E. P. S. asks for some formula for soap powders. Λ. Use any suitable kiud of hard soap,
baked and ground.
(23) Upsilon wants to know recipe for a acid mixture that will restore files and other cutting roos, when blunt from use. A. Thoroughly clean from olution made with 1 part nitric acid, 3 parts sulphuric acid, 7 parts water by weivht, 5 seconds to 5 minutes
according to fineness of cut. Then wash in hot water, ip in milk of lime, dry, and oil.
(24) B. S. writes: I have a bunch of smal hains entrely coated with rust. I have used coal oil cecommend a better method? A. Shake the could yo fine sand or emery
(25) D. T., Jr., asks: 1. When is " 2 0 'clock" 'y the twenty-four hour system-at 12 M., or
12 midnight? A. Midnight, civil time; at meridian in at 12 M . or 12 midnight? At 12 M
(26) C. B. B. writes: With engine 2×4 ches for a very small, light launch or canoe, say 15 reet by $21 / 2$ feet sharpie, why would not a plain cylin moderate rate of speed? What sbould be height and
diameter of smallest boiler that would answer? diameter of smallest boiler that would answer? If tubular, what should be height and diameter of fhell.
length, size, and number of tubes, and distance of
boiler above grate? Object being to have boiler as
smalland light as possible. A. A plain vertical hoiler without tubes would be too heavy. Your boiler should be about 18 inches diameter and 32 nches high, with coke or anthracite coal, chestnut sire surface. Use coke or anthracite coal, chestnut size. You should The furnace should not be less lhan 12 inches deep (27) J. H. B. asks: How many horse power engine would be required to drive a single paddle 6 inches deep? The boat is a light draught catamaran 30 feet in length. Please state the size and stroke of cylinder and the number of square feet of heating sur-
face of boiler. Would it be as economical to have face of boiler. Would it be as econumical to have a long stroke engine with direct connection with crank shaft, and thus avoid the noise of the gear wheels. or a ghort stroke geared? How many turns should she be geared up? How many revolutions should the paddle
wheel make to insure a fair speed to the boat? A. One engine 4 inches cylinder by 10 or 12 inches stroke, direct connection to shaft. Boiler to have about 60 feet fire surface; 40 to 45 revolutions per minute.
(28) J. R. C. asks: Will you please let me pow in the next number of your paper the heating power nf crude petroleum as compared with the best will equal one ton of coal? A. Two-thirds of a ton of petroleum equals one ton of the coal. Heat of com-
bustion, 20,240 units. Evaporative power at 212°, $20 \cdot 33$ pounds water to 1 pound petroleum. Best coal, $20 \cdot 33$ pounds water to
$3 / 4$ of these amounts.
(29) H. B. S. writes: I want something to stick paper labels on to wood or glass that wili stand
being wet or put into water. It need not stand hot being wet or put into water. It need nol stand hot
water. A. In order to render glue insoluble in water even hot water, it is only necessary when dissolving the glue for use to add a little polassium bichromate to he water, and to expose the glued part to the light. The proportion of bichromate will vary with circumstances, but for most purposes about one-fiftieth of
(30) N. B. H. writes: 1. What would be he cost of machinery including engine, boiler, pro-
peller, and shaft. with all fixtures, such as is deécribed in Scientific American Supplement, No. 81 (July 21, 1877), on the hoat Flirt? A. Probably $\$ 280$ to $\$ 300$. . Would it be suitable for one of the Sharpie model the boat to run on the St. John River, N. B where in the lowest water there is not more than 18 or 20 inches. Smooth, gravelly botom. If that ma-
chinery would not be suitable for such a hoat, could you suggest iny that would answer the purpose, with cost? A. Yes, but would suggest that you make the The machinery would do very well for such a boat, vivThe machinery would do very well for such
ing her a speed of about 6 miles per hour
(31) C. A. P. asks: Will y ou please be kind enough to state why and when the kaolin should be etc., should be boiled? If so, how long, and how to prevent bubbles from furming on the surface of the hektograph? A. The kaolin shonld be added when the solution of the glue and plycerine is complete. It is added simply to give the pad a light color. For the therinformation consult article on copying process in
(32) E. K. E. asks: 1. What is the benefit be derived by searching for the north pole? A. The practical benefit 18 doubiful, but scientists hope information so obtained may guide us in researches on
magnetism and electricity; also teach us more of the istory of this planet, giveus a better inowledge cean currents, and throw light on many othor though it must be confessed a great many people doubt whether the probable berefits are worth the cost. 2. How would the explorers know when they would reach that that point? A. The explorers know their latitude by
obser vations there, the eame as on any other part of obser vatio
the earth.
(33) J. N. B. writes: I am trnubled to coat castiron perfectly with tin, having it roll off in places in strong the work was greasy. Have rried boiling it of vitriol, and then rinsed in water pased throunh dilute muriate of zinc, but have never been able to coat cast iron with the same perfect coat and gloss that I can wrought or malleable iron. I have seen some lots of malleable iron that were imperfectly an-
nealed that the tin would act in the same manner as nealed that the tin would act in the same manner as
with cast iron. What is the cause of it? A. Your with cast iron. What is the cause of it? A. Your
trouble in tinning cast iron is not yours alone. The trouble in tinning cast iron is not yours alone. Then
carbon in the cast iron is repellent to tin. The inventor of a perfect tinning process that is not expensive for cast iron will make a fortune if he can secure the pro cess for his own benefit.

INDEX OF INVENTIONS

For which Letters Patent of the United

 September 30, 1884,
AND EACH BEARING THAT DATE

Axle nut, carriage. R. M. Pierson
Axle skein. S. G. Cole ...
A x ele, vehicle. T. E. Gregg
Balance, F. F. Meyer
Balance, F. F. Meyer, Jr..................................
Baryta. manu facture of anhy drous caustic, MarBasket, wire, W. B. Bisbee
Bath. See Shower Bath.
Bed head rest, J. Q. A. Sargent
Bed head rest, J. Q. A. Sargent......
Bedstead and table, combined folding. M. Wagner.
Beer cooler, H. Na dortr
Bett clamp, E. Ainsworth..............
Blast furnace as seal,
Blow. A. Uehlig.
Blowing apparatus, J. M. Blackman
Bobbin, B. F. Landis
Boiler. See Coffee B Pressure Boiler.
Bolts, manufacture of, H. E. Coy.........
Book and index, combined, J. S. McDonald. Book support, E. W. Thompson. Boot and shoe heel and sole edges, burnishin
wax for use in flnishing J. F. Boot or shoe polishing machine, A. A. Sparks.
Boot or shoe sole, L. E. Moare. Bottle and attachmen
ed. J. E. Watson
ed. J. E. I.
Bottles, attach
E. Watson box.
Box, E. S . Coffln
Box for holding and displaying goods, J. MacCa
Brake. See Wagon brake.
Brake valve, engineer's, F.
Bridge, draw, T. Cooper..
Buckle, trace. E. G. Latta........................
Burner. See Vapor burner.
Butter shipping box, C. Yarnall, Jr
Can. See Oil can.
Candle mold, J. Bre
Canopy. A. I. Freeman
Capsule cutter, W. A. Tucker
Car coupling. B. A. Fisher
Car coupling, P. Hien.....
Car coupling. J. M. Lgoe
Car coupling, J. T. Wiisson
Car, dumping, D. . N. Niblic
Car, dumping, J. H. Cook.
Car. hand, J. H. Cook........
Carpet fastener, J. A. Water
Carpet sweeper, w. J. Drew.
Carriage spring. C. C. Bradley
Carriage wrench. D. True.
rier. Victual carrier.
Cash and parcel carrier.J. burn
Cash carrier, automatic, A. W, Bodell
Casting cannon, mold for. B. T. Babbit
Cement, manufactura of hydraulic. R. W. Lesle
Cement, manufacture of Portland, Lesley \& $\&$ (trit
Chain, ornamental, J. A. Isinger.
Chair. See Adjur for watch, C. S. P
Cheese vat. knock do wn, D. H. Roe
Chimney cap. ornamental, M. sc
Churn, H. Felt........
Churn power, J. A. Lawrenc
Clamp. See Belt clamp. Hand clamp
Cleaner. See Well cleane
Clock, D. W. Bradley
Clutch. gravity, friction, A.D. Simps
Coal elevator, P. Best.....
Coal scuttle. H. H. Pende
Cock, rage, T. R. Bingh:Im..
Cock, stop, and waste. J. Kell
Coffee roaster. P. A. Pe
Colter hanger. H. Shaw
Cooler. See Beer cooler.
Cop winding machine, Lever \& Grunds
Cop winding machine, Lever
Coupling. See Car coupling. Thill coupling
'rane, A. Grafton
Crank foroverocoming gead centers, T.............................. Cultivator, roller, Hering \& Daum.................. 306
Curtain stick, H. Lobdell.............. 30624,30 Curtains, device for hanging window, T. T. Dunn 300,009

Cutter. See Capsule cutter.
Decorating purposes, ornamented tube for, B. B. Ward...
Dental impression cup, R. F. Crowthe
Door hanger, Cogger \& Haml
Door 'plate, harness rosette. etc... Creteau \& Me.....
Draft equalizer, c. Duch
Drill. See Mining drill.
Drill feeding apparatus,
Drying machine, A. c. Getten. c. B. Rice
Dye vat, C. A. Hoffmann..
Electric alarm signal, I. H. Farnham
Electric cable, W. A. Shaw
Electric cable, T. G. Turne
Electric machines, mechanism for driving dyn $\underset{\text { min. J. K. Markle }}{\text { mectrolytic liquid for }}$
condary batteries, w.
Engine. See Pumping engine. Steam engine.
Feare box, J. F.'. Goodridge.
Feed rack. E. schannep.........
Fence builder's brard and wire holder and gage Filter, coffee pot. H. A. Manning
Filter, oil, D.S. Neiman

Gage. See Micrometer page
Game table, M. R. Gately....
Glove fastener, \mathbf{E}.J. Kraetze
Governor. engine, J. L. Heald automatic, H. A. \& W. M. Holmes.
Smith...................
Grate appliance, B.

947
$\begin{array}{l}\text { Hammer guide, steam. T. } \\ \text { Hand clamp, J. W. Weiser }\end{array}$

Hat and coit hook, F. Taylor Hat and coat hook, F. Taylor.....
Hat and coat hook, wire, F. Taylor
Hay
 Head light. locomotive, I. A. Williams Hinge. butt, B. F. Levering.
Hog scalding device, D. W. Peters

 Hoop pointing and lapping machine, A. F. Ward. 305,868
Horse detacher, Daugherty \& Thomas........... 305.746 Horse detacher, Stevenson \& For brake for, W. ${ }^{305,858}$ Remington. F. H. Holmes. ing wire and thread in the manufacture Leigh \& Clark
Jack. See Lifting jack.
Joint. See Railway rail joint.
Key ring, G. W. Jopson
Lamp, cooking. H. Langosch
Lamp, electric, T. L. Dennis
Lamp, incandescent electric, Hickman \& $M c \mathrm{CCO}$
lamp, va por burning, street, Z. Davis
Lathe, wood turning, E. H. Hudson.
Lifting jack, Robinson 8
Light. See Head light.
Lock. See Alarm lock. Firearm safety lock.
Lock, N. J. Coté...............
Locomotiv
rand...
Loom belt shifting device and stop motion, S.
Allen
Low pressure boiler. D. S.
labricator. W. H. Craig
Marker for we.t.
J. Hamm
Match box, J. Lines
Measure and register, automatic erain aud seed Jeasuring tank. C.audin.
\qquad
Mica sheet, composite, F. Peckham
Micrometer gage. F. H.
Mill. See Grinding mill.
Mining drill H C.
Mining machine, coal, A.J. \& J. T. Baggs
Mold. See Candle mold.
Motion, device for con
Motor. W. Chilton....
Motor. C. D. Vadersen............
Mowing machine. C. W. McKelvey
Mowing machine. C. W. McKelvey......
Mowing machine. knife. J. M. Hamblin
Conwell..
Music:al instrument, me
Nut lock, A. B. Clark....
Oil can, M. A. W. Louis.
Oil for lubricating, etc., composite. G. W. Banke Ores, apparatus for tre:ting, T. R. Jorda
Ovens, heat indicator for, E. G. Nunn... Overshoe, rubber, F. Richardson... oxidizing and chloridizing furnace, J. R. Brett. Package fastener. E. C. Bruen. Paint, J. A. Shephard (r)
laper box machine, M. Marques. Paper hanger's table, L. A. Young.................
Paper in ia continuous web, apparatus for and
process of tub sizing air
 Pin. See Safety pin.
Wanter and fertilizer distributer, combined, cor
w. Cassill........................
Planter and fertilizer dist
tonseed, \mathbf{N}. H. Divis
Planter. check row, corn, S. ©. . Williams
Plow, T. C. Belding.
Plow point, self-sharp
Plumb bob, , G. Morrison.
Pole, vehicle, A. A. Holt.
Power. See Churn power.
Power, device for transmiting, G. L. Kitson..
Prest Precious stones, incrusting in relief on, T. Peit
Printing machine delivery apparatus, C. B. Co
trell........... B. Cottrell..
Printing marein Printing mar
E. Jones. Printing press cutting apparatus. C. B. Cottrell.
Pulley. O. R. Olsen
Pulley, J. E. Sanders.
Pulley, friction, P. Peartree.
Pump, L. G. Careaga y Saenz
Pump, Paxson \& Cottleld.
Pump, E. M. Turner
Pump, chain G. W. Derrick Pump, mining, A. Sjogren Pumping engine, steam, C. Sint
Quoin diver, W. Cox.
Rack. See Feed rack.
Kailway rail chair. Thompson \& Race
Railway rail joint. A. W. Wright
Railway track cleaner, w. H. Fergus
Ratchet, gravity, friction,
Reflector, C.J. Higgins.
Reflector, window, A. Holberg.....
Refrigerator, J. P. E. Wiillfhagen
 Phillips .
Rotary meter,
Rotary meter, S. Shaw.
Safe, Johnston \& Rogers
Safety pin, G. H. Smith
Saw lifter, circular, w. G. Baumgardner Saw mill dog. F. M. Underwoo
Sawing machine, C. M. Pierce Sawing machine, C. M. Pierce
Sawing machine, circu 'ar, J. W. Robbins. Seal. car. J. W. Burd, J Sewing machine f.
B. F. Landis..

TRADE MARKS.

Cartridges for breech loading fire
ter Repeating Arms Company
 Crockery ware, china, and porc
Des. package. Dunn \& White.
Fireples Fireplace fixtures, C. L. Page.
Gin, wines, and distilled liquor Gin, wines, and distilled liquors. A. C. Har
Knives, razors, and shears, F. Westpfal.. Medicine for men, horses, and cattle. H. Hinrichs
Medicine for uriary disorders, A. . . Goodyear Medicine for urinary disorders, A. B. Goodyear
Medicines, various, proprietary Medicines, various, proprietary
Nerve pencils, G. L. Lawrence Oil, high test burning. Beacon Oil Company.......
oil, standard illuminating, Beacon Oil Company.. Oils and their products,essential and volatile vege
table A.M. Optical goods, T. Mundorff Perfumery. J. S. Tr Tree....
Plows, A. G. Starke.... Plows, A. G. Starke.... Saws. E. C. Atkins \& Co.
Screw. round head,, \& F. Corb
Shirts. Martin Brown Compeny
\qquad
A printed copy of the specifleation and drawing of any patent in the foregoing list, also or any patent
issued since 1866 . will be furnished from this office for 25 cents. In ordering please state the number and date of the patent desired. and remit to Munn \& Co, 361
Broadway, New York. We also furnish copies of patents granted prior to 1866 ; but at increased cost, as the
spenifications, not being printed, must be copied by Canadian lPatents may now be obtained by the
inventors for any of the inventions named in the foregoing list. at a cost of $\$ 40$ each. For full instructions
address Munn \& Co., 361 Broadway, New York. Other

DYNAMO ELECTRIC mACHINERY.
A Manual for Students of Electrotechnics,
by PRof, silvanus p. thompson, b.a
408 Pages with 230 Illustrations. Price, $\$ 5.00$. descriptive circulars free.
E. \&F. N. SPON, 35 Murray St., N. Y.

THERMOMETERS. STANDARD THFRMOMETER CO.

FRICTION CLUTCH Pulleys and Cut-of Couplings.

COUNTERSINK and DRILL COMBINED.

The Countersink following the Drill, the fob is finish-
ed at one operation, siving the adjusting of toos and
wort PATENTS.

lication of the sientific Amirican, continue to ex amine Improv

for Inventors.
for lnventors.
In this line of business they have had thirty-erght years' experience, and now have "nequaled facilities for
the preparation of Patent. Drawings. Specifications. and the prosecution of Applications for Patents in the Cinited States, Canada. and Foreign Countries. Messrs.
Muun \& © 'o. also attend to the preparation of Caveats, Mumn \& (O a. also attend to the preparation of Caveats,
Copyrights for Books. Labels. Reissues, Assignments, Copyrights for Books. Labels, Reissles, Assignments,
and Reports on Infringements of Patents. All basiness and Reports on Infringements of Patents. All basiness
intrusted to them is done with special care and promptsonable terms.
A pampillet sent free of charge, on application, concure them; directions concerning Labels, Copyrights, Designs. Patents, Appeals. Reissues, Infringements, As-
signments, Rejected Cases, Hints on the Sale of Patents, etc.
We aiso send. free af charlle. a Synopsis of Foreign
Patent Laws. showing the cost and methoi of securing DIUNN

ROOFING

HASWELL'S Engineers'

Pocket-Book

NEW EDITION,
Enlarged and Entirely Rewritten. FROM NEW ELECTROTYPE PLATES.

MACHINISTS

IRON, STEEL, AND METAL WORKING TRADES A. C. FARLEY \& CO., Pubilishers, Philadelphia.

A

 CONTEMPORARY SOCIALISM.

 fifty teirs, observation of men and EVENTS, CIVIL AND MILITARY
By E. D. Kexes, Brevet Brig. Gen. U. S. A. A., and late

 $*$ These books are for rale by all booksellers, or will besent CHARLES SCRIBNER'S SONS,

For Sale or Lease Handle. Factory, 30 HH . P. Engine
 JUST PUBLISHED.
Steam Engine Indicator,
A GUDEE TO ANACTICL WOOKING ENGINEERS,

SHIPMAN STEAM ENGINE, A BOAT AND STATIONARY ENGINE.
No skilled attendant required! Safe from fre and
explosion! No expense when engine stops!
 SHIPMAN ENGINE CO. 55 Franklin St., Boston.

NEW YORK BELTING AND PACKING COMP'Y.

 $\boldsymbol{S O I T}$ The Oldest and Largest Manufacturers of the original
 Jön H. CHeverer, Treas;

Warhouse, 15 Park Row, opp. Astor House,
Branches:
OB Chestnut St. Phila., aud 164 Madison St., Chicag.

THE CAMERON STEAM PUMP
 30,000 IN USE.
 30, OOO IN USE. MANUFAGTURED SOLELY BY

HI ITTII FAS DNHINE OVER 10.000 IN USE

A S40 Theintriin sior For Si2

$\mathrm{W}_{9}^{\mathrm{ElGHT}} \mathrm{LBS}$. GOOD SHOOTS ACCURATELY UP TO 1200 Y EVANS' 26-SHOT SPORTING MAGAZINE GUN SHOOTS TWENTY-SIX SHOTS IN SIXTY SECONDS,
 NO HAMMER IN THE WAY. THROWING DOWN THE GUARD EECTS, LOADS AND COCKS.

 Finididid all Rongh Pulless LE PAGE'S at greatly reduced prices TO CLOSE OUT STOCK. The John T. Noye Mifg. Co.,

FOR SALE Two Exhaust F^{2}
,
 THE NORTHERN PACIFIC RAILROAD

WHAT SHALL BE DONE WITH THE

E. New Catalogue of Valuable Papers
 DR. KARL WEDL, PROFESSOR OF

NEWSPAPER FILE

 MUNN \& CO.

THE INTERNATIONAL BUREAU OF

VVATPR

Cities, Towns, and Manufactories -patent tube and gang well system. Wm. D. Andrews \& Bro, 233 Broadway, N. Y.

WINCHESTER CATHEDRAL. - FULL

 A.A.GFIFFING IRON CO STEAM HEATING Apparatug BUNDY STEAM RADIATOR

WATCHMAKERS

40

GOLD MINES OF SIBERIA. - INTEREST

POsimivia BLAsir
REVOLVERS, PERFECTLY BALANCED, Has Fewer Parts than any other Blower,
P. H. \& F. M. ROOTS, Manufacturers,
 JAS. BEGGS \& CO., Selling Agts. 9 Dey Street,
SEND FOR PRICED CATALOGUE.

BOLIVIAN EXPLORATION.-BY REV.

ONLY \$1.00 BY MAIL, POSTPAID.
 A Great Medical Work on Manhood.

 Parker Nos the Peabe

29.

FOREIGN PATENTS.
Their Cost Reduced.
The expenses attending the procuring of patents in most foreign countries having been considerably re-
duced, the obstacle of cost is no longer in the way of a large proportion of our Inventors patenting their inven tions abroad
CANADA.-The cost of a patent in Canada is even
less than the cost of a United States patent. and the less than the cost of a United States patent. and the
former includes the Provinces of Ontario. Quebec, New Brunswick, 「'ova Scotia, British Columbia, and Mani-
The number of our patentees who avail themselves of the cheap and eassy method now offered for obtaining
patentsin Canada is very large, and is steadily increas-
ing. foree on Jan. 1st. enabes parties to secure patents in
Great Britain on very moderate terms. A British paGreat Britain on very moderate terms. A British pa-
tent includes England, scotland, Wales, Ireland, and the Channel Islands. Great Britain is the acknowledged
financial and commercial center of the world, and her goods are sent to every quarter of the globe. A good invention is likeiy to realize as much for the patentee
ir England as his United States patent produces for him at hrome. and the small cost now renders it possible
for almost every patentee in this country to secure a paent in Great Britaiu, where his rights are as well pro tected as in the United States.
O'IHER COUNI'RIES.
on very reasonable terms in France, Belgium, Germany on verg reasonable terms in France, Belgium, Germany
Austria. Russia. Italy, Spain (the latter includes Cuba
and all the other and all the other spanish Colonies), Brazil, British ludia Australia, and the other British Colonies
An experience of
An experience of THIRTY--IGHT years has enabled
the publishersof THE SCIENTIFIC AMEIICAN to establish
competent competent and trustworthy agencies in all the principal
foreign countries, and it has always been their aim to foreign countries, and it has always been their aim to
have the business of their clients promptly and properhave the business of their clients prompty and their interests faithfully guarded.
A pamphlet containing a synopsis of the patent laws
of all count ries, including the cost for each, and othe information useful to persons contemplating the pro-
curing of patents abroad, may be had on application to this office.
MUNN \& CO.. Editors and Proprietors of THE ScIrantific American, cordially invite all persons desiring
any information relative to patents, or the registry of any information relative to patents, or the registry of
trade-marks, in this country or abroad, to call at their trade-marks. in this country or abroad, to call at their
ofices. 361 Broadway. Examination of inventions, consultation, and advice free. Inquiries by mail promptly

MUNN \& CO.,
Branch offce. cor. Fand 7 Ith Streets, opposite Patent
Oflce, Washington, D. C.

