a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCLENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE SLEIENS REGENERATIVE GAS LAIP.
In the latler part of 1879, Frederick Siemens made the announcement that he bad practically succeeded in greatly increasing the light to he obtained from ordinary coal gas, by what be called the regenerative process, through the superheating of the gas and the air which supported combustion. In a lecture delivered at that time, before the Prussian Society for the Promotion of Industry, he stated that the idea was then twenty years old with him, and was one of the results of experiments relative to heat-regenerative furnaces, which bave done so much to clange the old order of things in nearly all branches of metallurgical work. He then experimented but little on the gas lamp, as it " seemed impossible to properly supply the gas flame with heated air, owing to the supposition that double glasses or chimneys, one within the other, were necessary to bring the combustion gases and the fresh air together, and the inner glass could not withstand the heat." His later experience in regenerative furnaces taught him to abandon separate combustion clambers, and utilize the natural currents of gas and heated air, in a large oven, and then it naturally followed that the regenerative principle could only be ap: plied to lighting purposes by taking advantage of the auto matic motion of air, gas, and the products of combustion at different temperalures. The introduction of the electric light, with the call thereby created for burners of higher lighting power, and the close investigations made as to the relative economy of gas and electricity, led Mr. Siemens to return to the subject of his earlier experiments, and the present Siemens regeverative gas lamp is the result.
This lamp, in its present improved construction, is shown in Figs. 1 and 2, Fig. 1 showing the details of internal arrangement. The gas enters from a pipe at the bottom to the chamber, A, passing up thence through the small gas tubes, B, around the flue, E (through which the products of combustion escape). to a number of small burners, C , arranged around a porcelain chimney, H. Air enters at the bottom to the chamber, D, and is heated with the gas around the central discharge flue, 80 that the gas and the air to feed the flame meet at a high temperature at the point of ignition. Outside of the burner proper there is a jacket of shect metal, I, between which and the burner a current of cool air ascends to prevent the overheating of the burner and also add to the supply of air to the flame.
The flue, F , connects the regenerative heating chamber with the chimney, as more fully shown in Fig. 2. The pipe, G, directly over the burner, to which the side arm is attached,
is the outlet for vitiated products of combustion, the connection thence to be made to a chimney or flue, which gives this burner great advantages as a ventilator. The glass cylinder, K, around the top of the burner, is simply to protect the flame from the action of the wind. When lighting, the gas is first turned on slowly until the flame reaches about one-fourth the height of the porcelain, and is allowed to remain thus for about ten minutes, until the different parts of the burner become heated; then it is further turned on until

THE BIRTGES REGENERATIVE GAS LAITP.

the flame enters the porcelain cylinder about an inch, the gas and heated air naturally taking the direction indicated, and making the heat in this regenerative heating chamber, or discharge flue, E , as high as about $1,600^{\circ} \mathrm{F}$. Any excess of gas beyond the quautity indicated interferes with the perfect combustion and dimiuishes the light.
The illustrations at the bottom of the page show the testing of the burners as set up at the factory, a burner as adapted for street lighting, and one of the styles suitable for lighting halls or assembly rooms. These lamps are made in sizes which enable them to compete on most favorable terms with some of the best electric lamps, running from 100 candle power to 1,200 candle power, the former burning
14 and the latter 100 cubic feet of gas per hour. Of the
comparative economy of burning gas with these burners, the testimonials are very numerous, and from the best of sources, although it is only about four years since they were frst put on the market in Europe. The illumination is said to be from two to three times greater, for the same quantity of gas used, than can be obtained by the ordinary burners, while the flame is white and remarkably steady, and the light is admirably diffused. This burner received the Richardson gold medal, as "an exhibit of pre-eminent merit,"
at the Sanitary Congress Exbibition in England in 1882, the London Times describing it as "saving 50 per cent of gas, and greatly lessening the unhealthy condition of the air in whieh gas is burnt." It has also received the warm indorsement of many leading firms throughout Europe, who have adopted of many leading firms throughout
its use in extensive manufactories.
The Siemens Co. light the restaurant of the Electrical Exhibition, a ronm 40×96 feet, ceiling $191 / 2$ feet high, with six lamps 500 candle power each, at a cost of about 9 cents per hour. The light is soft and pleasant to the sight, and casts no shadows.
The sole right to manufacture and sell this barner in the United States has been acquired by the Siemens Regenerative Gas Lamp Co., of Philadelphia, who have recently fitted up an extensive factory for the manufacture at the northeast corner of Twenty-first Street and Washington Avenue, in that city.

Soldering Aluminum.

M. Bourbourze (Comptes Rendus, xcviii., 1490) has found a means of soldering aluminum successfully. Hitherto the great drawback to the extended use of this metal in the arts and in scientitic instruments, for many of which it is peculiarly fitted by its great lightness and resonance, has been the difficulty of niaking good joints. M. Bourbourze uses alloys of tin aud zinc, or of tin, bismuth, and aluminum; but one of tin and aluminum yields the best results. The proportions of alloy vary with the kind of work it is intended for. For instruments which have to be turned or shaped after soldering, an alloy composed of 45 parts of tin and 10 of aluminum is most suitable. This will resist even hammering. Metal which it is desired to solder to aluminum should. be first tinued with pure tin.

The other morning in Philadelphia, at a session of the American Association, the reading of the first paper was about to proceed, so the story goes, on the "Nervous System of the Flea," when a nember jumped up and moved an adjournment. Unanimously carried. Thermometer, 98°.

sfientific glmerican.

HETABLIBHED 1845.
MUNN \& CO., Editors and Proprietors. published werkly at
NO. 361 BIROADWAY, NEW YORK.

O. D. MUNN

A. e. beach.

TRMMS FOR THE SOIENTIPIC AMERICAN.

One copy, one year postaze inoludod....
One copy, alx months postage Included
8320
160
Cimber,-One extra cupy of The soientifio american will be supplle every ciul of Hve subecribers at
Remit wy postal order. Address
MUNN \& CO.. 381 Broad way, corner of Franklin street, New York.

The Sclentife American Supplement

is a distinct paper from the sciristipic amirican. The SUPPIEEMENT

 all newa dealers throughout the country.
Comblined lintea. - The Scientific american and SUpplemint
will be sent for one year postage tree. on recelpt of seven dollars. Roth papers to one address or different addresses as desired.
The sufeast way to remit is by draft, postal order.
The sufeat way to remit is by draft, postal order. or realistered letter.
Addrees MUNN \& CO., 361 Broad way, oorner of Frankin street,

selentife a merican Export Edicion.

The SCIENTIFIC A MERICAN Rxport Fditlon is a larke and splendid perf
odical, issued ouce a month. Reich number ocntains about cine hundred odical, issued ouce a month. Ekich number ocntains about cine hundred lurge quarto pages, profusely 11 listrated. embrucing: 11.$)$ Most of the
plates and pages of the tour preceding weekly platee and pages of the four precedling weekly tesues of the Sciksti ic
AMEicicas, with its splendid engruvings and valuable information: (2.) Commerclal, trade, and namufacturing nnnouncements of leading houses.
 world. Single coples 50 cents. Cry Manufacturers and others who destre o secure foreign trade may have larke. and handsomety diap
nouncements pubished in this edition at a very moderate cost. The Sci RNTIFIC AM Klition Rxport Edition has a large guarunted circoation in all commercial places throughout the worli. Addrese MUNN \&

NEW YORK, SATURDAY, SEPTEMBER 27, 1884.
Contents.
(Illustrated articles are marked with au asterisk.)

TABLE OF CON'TENT'S OF
 NO. 456,
For the Week ending September 27, 1884.
Price 10 cents. For sale by all newsdealers.

1. Chrmigrist and metallurar.--The Union of bodies by

II.

 v. GRoLogry And MiNERALOGT.-The Natural Brige "Pro-
 VII. OPTICS.-Optical Illusions and Prestiagitation.- 8 figures.. T27
VIII. NATURAL MISTORY.-Edicated Antmals Exhiblted at Paris.

- Comblitation view.................................
Ix. MEDICINE AND HYGIENE.-Stretching the Spinal Cord........

soldering on cabt ibon.

There are cases where brass requires to be united to cast iron, and drilling and riveting would either make a clumsy job or would weaken the parts. Soldering, if effective, is incomparably the better way. By many mechanics it is supposed to be either a trade secret or a skillful trick to make solder adhere to cast iron, but it is not 80 . The process differs but slightly from soldering on an already tinned surface, as sheet tin.
If the cast iron is white iron, or a thin casting that has become chilled in the casting-iron not ameuable to the flle -it should he cleaned from surface impurities by scraping, or scouring and washing in potash water. Then dip it for an instant in clear water, and wash it quickly with undiluted muriatic acid of the ordinary commercial strength. Go over it at once with powdered rosin, and solder, with the so dering iron, before the surface has had time to dry.
Another plan, and a better one especially for soft gray iron castings, is to flle the surface clean, wash as before, wipe it over with a flux made of sheet zinc dissolved in muriatic acid until it is surcharged, or is a saturated solution, and has been diluted with its own quantity of water. Then sprinkle powdered sal ammoniac on it, and beat it over a charcoal or clear bard coal fire until the sal ammoniac smokes. Dip at once into melted tin, remove, and rap off the surplus tin.

RAW HIDE WHEELS.

In 1860, just before the war, the writer was employed to start a manufactory, one of the exactions being the construction of a machive for drawing and flattening fine brass wire. The connections of parts were first made by pulleys and belty-they did not hold; gears of necessarily very fine cogs broke their teeth; some were made of steel and hardened, but did not stand. The requisite appeared to be re sistance and toughness of materinl. Raw hide was suggest ed, and some gears made of that material did their work
well. Since then the well. Since then the use of this material bas been noticed under similar conditions. Lately bydraulic compressed raw hide has lieen favorably mentioned as material for friction rolls and pulleys, for skate rolls, and as facings for friction wheels. There is no question of its advantage as a material for small pinion gears where much strain comes on each toolb; if not exposed to the continuous action of oil-ani mal oil especially-these wheels will bear a deal of rough usage. One of the useful qualities of raw hide is its yielding to a shock or sudden atrain without breaking and with-
out giving a permanent backlash. Steel and the best of Norway iron will break under strains to which compressed raw hide will only slightly and temporarily yield. The teeth of raw hide blanks can be cut in the gear cutting engine as well as those of iron or steel, and the material can be more readily turned in the lathe. If a lubricant is re quired in the working, clear water is the best.

cancer.

Any disease which is acknowledged by all to be full of danger, is sure to be associated with quarkery. Unprincipled men take advantage of the popular ignorance of medical remedies to make money. In respect to no disease is this more true than in the case of cancer. And the success of imposition is nade casier from the fact that the uame is constantly applied to tumors of various kinds, which have nothing of a serious character, which will disappear of themselves if they are only let alone. If, bowever, the name of cancer has been suggested, aud then either a " cancer doctor" has been called, or without any such addition some one of the boasted remedies bas been employed, when the tumor gradually diminishes and eventually disappears, the case is heralded as a "cancer cure," and the delusion is greatly strengthened thereby. For instance, the common red clover has a great reputation in some parts of the country for curing cancer, and to attempt to convince the believers in its
efflcacy that they are under a mistake is perfectly useless. effecy that they are under a mistake is perfectly useless.
The case of this one and of that is quoted in proof, whereas no one of them doubtless had ever the least reason for fear or the slightest sign of cancer.
The simple fact is that cancer is not at all a lucal disease. It affects the eutire system; the change of tissues which constitutes what is recogoized as the "cancer" is only the local manifestation. Hence the well known truth that removal of the ulcerated part, the tumor, is constantly only a temporary relief; the disease returns to its power, and commouly is soon fatal. Hence the universal dread of "the knife," and hence the readiness to flee to those who give the com forting promise that they will "draw out the cancer by the roots;" nod beyond question such men will be encouraged in their imposture by continued applications for the use of their $k k \geq d$. If they treated only cases where true cancer exists there would be but comparatively small evil done, for there is too much reason to believe that the disease is of its very nature fatal, and that its progress to a painful death is sure and steady despite the utmost reach of human skill; but
harmless tumors are constantly submitted to their care. harmless tumors are constantly submitted to their care.
Everything with them is invariably a "cancer," and it must be drawn out. The applications which are made destroy the tissues, for how can they draw the cancer out without it? That which was harmless becomes a source of suffering aven of danger, and if the patient recovers after the "doctor" has taken all the money available, it is paraded as a cure, whereas no cure was needed. The domestic remedies, such as the clover above noted, are
to pacify the patient. If cancer is there, it goes on ite eril way unchecked; it a simple, non-malignant tumor is it volved, it either disappears or remains stationary in progress and presently clover or perbaps cancer root (Conopholis Americana) is in greater repute than ever.

The International Electrical Exposition,
 (Third papte.)

The number of visitors daily arriving in incoming trains shows a steady increase, and the great ball, which, during the very bot weather of two weeks ago, was but sparsely filled, is now, at certain hours of the day, almost crowded. At night there bas been, ever since the opening, a large attend ance; at times reaching the respectable figure of 7,000 visitors Crossing the wooden bridge which separates the main hal from the annex, and descending to the ground floor, the visit or has bis attention attracted by a circular railway with miniature locomotive and cars. This is the exhibit of a switch and signal company, and is constructed in exact imitation of a section of railroad. The general plan of titis system is not new, but novel features have recently been intro duced which do much to make a perfect safeguard against ordinary accidents. Experience has shown that no one person, however trustworthy, should be intrusted with the sigpaling of swift moving trains; and this automatic signal system, never tired, requiring no sleep, and not subject to sudden attacks of disease, is designed to operate railway signals with unfailing certainty It is operated by a current of electricity transmitted along the rails, showing the customary red targets when trains are in dangerous proxmity, and white targets when all is clear.
The trouble with this class of signals heretofore has been that when, by one of those accidents to which electric currents are subject, the flow of elec: ricity is stopped, the warnings cease. Not so, however, with this one. A stoppage of the current causes the dropping of the danger signal, and not until the circuit is again complete will the safely igual be shown.
An eminent authority, who has looked carefully into the matter of electric signaling, insists that the normal condition of the signals should be "danger," and that the agency through which they are worked should at all times lee active when "safety" is shown. The apparatus should be free from atmospheric influences, simple, strong, and not easily disarranged.
These conditions seem to be present in the apparatus decribed. Move the miniature locomotive along the same track on which another car rests or is moving, and, when it reaches the same section, the engineer is confronted with a series of red danger signals. He can follow another train if he will, but he cannot get into its immediate vicinity without being warned, not once, but frequently.
The track is, in fact, only used for a part of the circuit. There is a secondary or telltale signal; the switches are all automatically locked and fitted with a circuit breaker. To illustrate the working of this system, let us take a section of the track, insulated at the ends of the section from the adjacent rails. At one end of the section there is a battery consisting of a single cell, one pole being attached to each rail, while at the other end of the same section there is placed an electro-magnet with one wire attached to each rail. Here we have established a complete metallic circuit from the battery, through the rails and magnet, back again to the nitial point.
The electric current, seeking the point of least resistance, fies along the rails, for they have great conductivity. Thus, even during storms of rain and snow, the magnet is supplied with electricity. Now the magnet holds the signal at "safety;" but when there comes into the same section another train, the wheels, being better conductors than the mall wires of the magnet, effect the short circuiting of the current, and, demagnetization taking place, the signal "safe y " is permitted to drop, and in ite place appears the warning " danger." The projectors say that in order to insure per fect reliability of working, reliable metallic continuity must be had throughout the whole length of the signal section. The fish-joints, they say, make ordinarily electrical connectiou betweeu adjacent rails, but his connection cannot be relied upon; sometimes the splice will be loose, and often the rust and dust between the rails and splice bar will interfere with a coutiouous circuit. To make the circuil entirely reliable therefore at the rail joints, adjacent rails must be connected by wire. The ends of this wire are wrapped around the beads of stout rivets and soldered thereto; holes are then drilled in the flanges of the adjacent rails, and the rivets Armly driven into the holes, thus making an entirely reliable electrical connection from rail to rail. They thus explain the insulation of the track. Plates of flber about one-eighth inch thick are placed between the bottom of the rail and the chair, and between the forelocks and the rail. There is also placed a piece of the same material, of the shape of the rail ection, between the ends of the connecting rails, to prevent an electrical contact being made by the creeping or expan-
sion of the rails. The latter are insulated by using a wooden plice bar on the outside of the rails, a divided fish-bar on the inside, and a piece of fiber between the ends of the rails. It sbould be added that a single cell battery will operate the signals of this system tbrough a mile section of track
It seems somewhat odd that in an otherwise automatic system, the weights which operate the "danger "and "safe-
y" signals should be required to be wound up by hand. To ty" signals should be required to be wound up by hand. To
the average student of human nature, it would seem as easy
for a man to forget to wind up a pulley apparatus as it is for a switchman to forget to turn his switch or show his danger signal.
Now that the Edison exbibit is in good running order, it attracts, aud uaturally, much interest. The chief object is, of course, Edison bimself, though one of his employes, who is usually seated in the pagoda-like structure at the southern end of the exhibit, was frequently surrounded last week by a curious audience under the misapprehension tha they were in the presulace of the wizard.
In dynamos are shown the various sizes manufactured by the Edison Company, ranging from that of a capacity of twenty-five lights to the largest one ever constructed, and said to possess the power of generating 1,200 incandescence lights, each of 16 caudle power. The Edison dynamo of the ordinary type has often been described to the readers of the Scientific American. But there are two dynamos placed on exhibition here by the Edison Company which are in some wot unimportant features essentially novel. One is a type of disk machine, and the other the great 1,200 light machine aiready referred to. The principle upon which these two machines are consiructed is, of course, the same, but the application is dissimilar. In the disk dynamo there are two electro-magnets of the horseshoe pattern placed upon a Lorizontal plane surface, baving their opposite poles in series. Radial segments forming a disk of copper revolve between the poles. Tbese segments are insulated the one from the other. Upon the periphery of the disk there are a number of thiu pieces of copper-each being likewise insulated-
connecting certain pairs of segments. The armature of this dynamo is the disk itself, and as in the case with the wire of the armatures of dynamos of the
regular type, the current is excited by the passage of the regular type, the current is excited by the passage of the
segments tbrough the lines of force of the magnet. The axis is the initial point of departure of the current in this machine, thence it traverses the segment on routs to the circumferential strip. After completing half the circumference and reaching another segnient, it is led off by the brushes from the commutator. The current has therefore three consecutive times been led by the poles of the maguets; an operation which has served $t 0$ increase it. The great 1,200 incandescence light dynamo is again different from this. The magnet does not differ from that found in the Edison dynamo of the well-known type, save in its immensity. It is the armature of this machine which is particularly unique. There are circular iron plates forming the core placed similarly to like plates in the ordinary dynamos. On these, how ever, set up longitudinally, are copper bars $3 / 4$ of an inch wide and having a thickuess of $1 / 2$ inch. Each is served with a conting of parchment paper and mica for the purpose of rendering them well insulated, not only from the core, but from each other as well. There are spaces between these bars through which a current of dry air can be forced, so as to prevent, at all times, the armature from becoming beated. Then there are circular strips of copper at the end of the machine served with vulcanite in order to insulate them from each other. The bars are joined in pairs to these cir cular strips. The commutator is not reached by the current
until the latter has been twice through the magnetic field. So perfect is this mechanism that, it is said, not even a por tion of the current, not a spark, can leave the brushes of the commutator until it has done its work.
There are other apparatus in this Edison exhibit which, by reason of recent improvements, merit more than passing notice; new devices for systematizing small incandescence systems, new modes of controlling current, and the like
These will be noticed in a subsequeut article. As types of incaudescence lamps may be multiplied as long as any new material can be found for an incandescent loop, the crop of new lamps may safely be relied upon not to fail for some time to come. In the Weston exhibit is a new incandescence lamp which is said to give promising results when tested as to resistance and life. The filamen is formed of an altogether novel material called tamadine. It is prepared from cellulose hy a new process, the details not having yet been made public. It is said to be unusually strong when compared with other flaments used in this species of lighting, and to be capable of sustaining high temperatures. It is cut in sharp curves in the ordinary lonp-form. With gas and electric lighting in juxtaposition as they are here, and their respective adberents ready to demonstrate beir relative advantages, an excellent opportunity is offered for comparison. The description given on the fifth day o the National Conference of Electricians by Prof. Preece, of a recent installation of an isolated electric light plant in his
house to the exclusion of gas, proved a rather severe blow to the representatives of the gas lighting interests at the Exposition, not because of the fact, which really proves very litule, but because it comes from so distinguished a man a Prof. Preece said that he had experimented with, or rather established. the secondary battery in his own house as a means of supplying electricity for lighting. He explained
that he lived far away from any source of electricity, and consequently bis house had been lighted by gas. He preferred, he said, to burn his gas in the garden to avoid the poisonous products of combustion, and merely use it as a
means of power for running a dynaro-electric machine. His gas-engine was, he said, of two borse-power, and ran a
Gramme dynamo of 42 volts and supplying 52 amperes. This dynamo, running three hours each day, under the care This dynamo, running three hours each day, under the care
of a servant, charged 17 Plante cells, each containing 12 of a servant, charged 17 Plante cells, each containing 12
plates about two feet square. This arrangement, he con-
tinued, had run for about four months without the sign of failure, and lights his bouse perfectly with incandescen lights, besides being used lavisbly for other purposes.
Now, to those who have bad the time and inclination to compare the relative cost of gas lighting and that to be had
from electricity through the interposition of storage batfrom electricity through the interposition of storage batticularly commend itself. But to the casual observer it is otherwise, and when so good an authority as Prof. Preece talks abont "the poisonous products of combustion" in illuminating gas, it sends a cold shiver through him.
As a professor of physics remarked here the other day, there is nothing like giving figures when comparisons are
made, and it would bave been just as well if Prof. Preece had told us how much it had previously cost him to do with illuminating gas what he was now accomplishing with electricity, and just what his secondary battery plaut was costing him. Had be done this, there is excellent reason for the belief that those unw contemplating the establishment of a similar plaut would liever have a little poison in their at misphere and save their purses so unwonted a strain.
Speaking of giving figures, the following table bas been prepared by an authority, giving the comparative amounts of the products of combustion of clectricity, illuminating gas, and oil :

			ata
Electric lamp, nrc............. incandescent.	\%im	\% ${ }_{\text {\% }}$	

Next in importance, perhaps, to knowing what force electricity is the expression of-a problem for abstract contem-plation-comes the ability to accurately measure it. It may do to-day for a company with thousands of lights aglow and a great plant to offer the incandescent light for the same price as that demanded by the gas companies for the same intensity or candle-power. But should the gas companies lower their rates thirty per cent., or even fifty per ent., and there is good reason to believe that they could re duce them still lower than this, how are the electric-light people to know cxactly how much light each patron is using?
A voltameter will show the amount of electricity passing during a certain period, aud bence it might seem to have the requisite ability; but it is well-known that, as the amount of electricity which has gone through any part of a circuit is not a true measure of the work done unless accompanied by indication of the resistance through which it is forced, or the potential through which it falls, any apparatus, to give true results, st.ould indicate directly the number of units expended, or indirectly by expressing some function of what bas been done.
There are several meters that will perform this work more or less accurately, for it has long been known that a certain amount of current wouid transfer electrolytically a certain amount of metal from one electrode to another, and many electriciars have tried to get a meter founded on this action of the electric current, their labors being attended with nore or less success. It scems, however, that up to quite recently no one has attempted to join the bydrometer witb this well-known action of the electric motor. Such an instrument, with the bydrometer as a base, is now to be seen at the Exposition in Pbiladelphia.
It may be described as a hydrometer furnished beneath the bulb with an electrode, and still another connected with the cell, graduated to mark on the flotation-line as it goes up or down just what amount of electricity has gone througb. For example, suppose that the metal has been cbarged on be bulb electrode for three months. As a result of this charging, the hydrometer will be found to have been lowered in a just proportion. If now the current be reversed, for the same period of time, the electrical equivalent of the total metal that has been thrown off from the bulb will be found to be shown on the rising scale.
If this little apparatus, which it should be said is of simple construction, is found to give an exact measurement under all conditions, it is bound to become an indispensable adjunct to all electric lighting plants.
Though the Exposition has now been open since the 2d instant, not a single accident has been recorded, notwith-
standing the fact that powerful currents are at all times runaing from one end of the building to the other. This indicates how excellent has been the supervision of the commit-
tee, and does much to sustain the assertion made by the ec, and does much to sustain the assertion made by the was expressed against the maintenance of their street lines, bat, when properly insulated and left undisturbed, currents horoughfare without injury to either life or property.
All the circuits are insulated, and are metallic throughout,
no ground connections being used. The conductors of all the ground connections being used. The conductors of all the enable them to carry their currents without heating. In ases where circuits are taken from large to small conductors, and the large conductor carries a current likely to raise the
through it, an improved automatic safety device is introduc ed into the circuit of the smaller conductor, by which the circuit is automatically interrupted whenever the current, passing through the smaller conductor, is in excess of the point of safety. Similar automatic sufety devices are used in all circuits run in the vicinity of electric light and power circuits. Circuit wires exposed to moisture are provided, in addition to their insulated covering, with a coating of waterproof material.
When the electric motive force exceeds 300 volts, the different parts of circuits outside the electro-generator, or the apparatus which they energize, are not permitted to approach oue another nearer than eight ivches. Where it is practicable to do so, positive or outgoing conductors are clearly marken so as to distinguish them from negative or return conductors. Where circuit wires pass through walls, floors, or cellings, special insulating incombustible tubing is used to incase the wire. All the dynamo-electric machines are insulated from the ground, and are surrounded by railings, 80 as to prevent the too close approach of the public.

An Australian Drought.

In February last, in New South Wales, a correspondent of a provincial new spaper traveled for some 200 miles by railway, and throughout the whole journey he saw on cither side nothing but a desert-" a wilderness destitute of any green thing, without any water worthy of the name, of cattle in the paddocks, dead or dying; the sun'sscorching rays fell on fields as hard as iron. The leaves of the trecs were as motionless as death itself, there being not a breath of air motionless as death itself, there being not a breath of air
stirring. The state of affairs was quite as bad in other parts of the country. There were thousands of square miles of land, baked and cracked, with the dry, brown grass flying off in dust, without a vestige of green or a drop of water anywhere." The expedients resorted to in this terrible crisis were sometimes of a most desperate character. Some farmers endeavored to send their cattle down to the coasts or to the towns, but they died on the rnad, and their owners bad to bear uot only the loss of the animals, but the cost of their conveyauce. This double loss largely prevented others from imitating their example. They sat down in mute despair to watch their ruin. One man lost 20,000 , another 50,000 , and the third 150,000 sheep, without the slightest power to save one of them. Millions of sheep have died, and bundreds, and probably thousands, of colonists who were prosperous last year are poor and, perhaps, ruined to-day. Even in Sydney the drought was so severe that the inhabitants had to be placed on an intermittent allowance of water. Rain has at last falleu, and, therefore, the severity of the crisis may be regarded as past.

Death of Robert Hoe, Printing Prese Manufacturer.
The firm name of R. Hoe \& Co. is known wherever American printing presses are to be found, and that is in nearly every quarter of the world. The senior member of the loouse, Robert Hoe, died at Tarrytown, N. Y., Sept. 13, in his 70th year. The elder Robert Hoe, the father of the deceased, came to this country from England in 1803, and was the first man in the United States who made saws of cast steel, beginning the manufacture of printing presses in 1805. The late Robert Hoe, when a young man, with bis brother Ricbard M., succeeded to the business established liy their father, which has become the largest of its kind in the world. Their cylinder press, in 1827, marked the first great advance ou hand printing presses, and it was followed in 1837 by the double cylinder, and in 1846 by the rotary, of which he largest sized, or ten cylinder, would print twenty thousand sheets on one side in an hour. Their latest, or per fecting, press will print twenty tbousand large sheets on both sides in an hour, and deliver them folded. The deceased was a public spirited citizen, an active member of several charitable institutions, and one of the chief movers in the establishment of the Academy of Design.

The St. Loufs Industrial Exhibition.

This exbibition, which opened Sept 2, presented a worthy comparison with other similar displays being beld in several of our large cities. Over $\$ 600$, co0 had been beell expended on the erection of a fine exbibition building, and the aggregate exhibits are valued at more than $\$ 8,000,000$, ncluding machinery, textile fabrics, and a good representaion of the products of the West and Southwest. The railroads made low fares to intending visitors, and the city and State will undsubtedly reap the benefil of the enterprise and liberality which originated and carried through so creditabie au exposition.

Copper for Roofing.
The newspapers published in the Lake Superior copper mines region recommend the use of copper as a roof covering in place of tin. In reply to an inquiry by one of our contemporaries as to the relative economy and benefits of copper over tiu, an architect furnishes the following: We always specify the use of copper for covering roofs, when we can induce owners to allow us to do so, on account of its durability; although its cost is about $\$ 14$ per 100 square feet over price of tin roofing. But when we reflect that a tin roof requires constant repairs, and painting at least every two years, at a cost of two to three cents per foot, varying as to the number of coats, the cost of repairs for six years,

a watering device for btoci car.

The accompanying illustration indicates so plainly the principal features of an improved means of furnishing railway cars with watering troughs as to bardly call for any detailed description. The troughs are made of rubber cloth or otber waterproof flexible material, and have slides, rods, and bars arranged to fold the trough while being raised and open it while being lowered. The trough-ぃperating slides have straps or chains connecting them with wheels and sbafts, so the slides can be readily operated to raise and lower the troughs. The water tanks are placed in the upper part of the cars, from which pipes, as shown, lead down to

watering device for stoci car.

such positions as to discharge water into the ends of the troughs when they are lowered and opened, the tanks themselves being supplied with water in the same manner as the locomotives are watered, through spout projections in the roof of the car.
This iuvention bas been patented by Messrs. John P. Christopher and Murray McCallum, of Michigamme, Mich.

An Intermittent Oll Well

Pbillips Bros.' well near Butler, Pa., is one of the most phenomenal wells ever seen in the whole oil regions, and all interest is now centered there, to the exclusion of the lately discovered Glade district, which is rapidly waning. Phil lips' well was drilled on Aug. 30, and has been producing since over 1,300 barrels daily, reaching on the 7th 100 barrels an bour. It flows with the regularity of clockwork, the oil gushing out at intervals of nine minutes and a half, the flows lasting about four minutes. Large numbers of people visit the well.

AN IMPROVED DOOR KNOB.

The engraving represents a door knob recently patented by Mr. Edwin A. Johnson, of Allegheny City, Pu., which may be securely attached to the spindle and easily and quickly adjusted according to the thickness of the door. One end of the spindle is formed with a longitudinal slot. the inner side of one of the prongs of which is provided

with vertical serrations. The knob has the usual neck for receiving the end of the spindle, and also a vertical slot in the neck througb which a flat key is passed between the prongs; the key bas serrations upon one surface which exactly correspond with those on the prong, so that they will bind, and thus hold the parts firmly together and prevent ratlling. Both ends of the key receive the strain of the knob, and the bottom projection facilitates removal when necessary. The end of the spindle can be passed into the neck a greater or less distance, as may be required, accord ing to the thickness of the door; and in any position the knol can be locked in place by passing the key through the neck and between the prongs.

Tempering Steel by Compreasion.

M. Clemandot's method consists in heating the metal so that it becomes sufficiently ductile, and then submitting it during cooling to a strong pressure. He noticed that this treatment affected the structure of the metal in such a way that it acquired properties analogous to those brought out by tempering. The metal thus obtained differs considerably from steel simply cooled, by its finer grain, its greater hard ness, and its greater resistance to rupture, particularly with grades of pretty high carbon steel. In these respects it ap proaches in quality steel tempered in water, without being dentical with it. It has two different effects, almost simul-taneously-an energetic and continuous compres sion, and a rapid cooling of the steel. The cooling is caused by the contact with the platform of the hydraulic press, and takes place much more rapidly than when the same piece is allowed to cool without being compressed. The remarkable results obtained by M. Clemandot are explained by the combined actiou of cooling and compression. The first, in its results, resembles the compression effected by hammering or rolling; the second, the effect of tempering by immersion. It has been urged that the piece of steel must be inclosed by a mould into which it fits exactly. It is, bowever, only necessary that the compression act upon two opposite faces. A square bar, whether straight or curved to horseshoe shape, need only be laid down flat and compressed between the two platforms of an hydraulic press. In order to obtain the best results, the cherry-hot piece of steel should be as rapidly as possible subjected to the pressure settled upon beforehand, ranging from 10 to 30 kilo grammes per square millimeter.

While the tempering process by immersion brings about an increase in the volume of the steel and a corresponding decrease in its density, the action of high mechanical pressure during the entire process of cooling tends $t o$ bring the metal back to its original volume or its normal density, thus preventing the creation of a state of intermolecular tension noted in tempered steel. Actual ex periment has confirmed these theoretical deductions, so far as the resistance of the compressed steel to stress is con cerned.
A Dellcate Instrument used by the Government for Tenting Thickness.
The Post Office Department at W ashington recently cancelled a contract with an envelope manufacturing firm for not furnishing the precise article in matter of weight contracted for, and, according to one of our contemporaries, a curious little machine in the office of the Chief of the Stamp Bureau was the cause of the cancellation of the contract It is a queer looking contrivance, a cross between a set of butcher's scales and ordinary grocer's scales, or rather a combination of the two. There is a large dial, like the face of a clock, with a little hand that flies around the face pointing to the flgures at the side, which are arranged like the figures on the clock face, with little dots between. "You see three dots," said the gentleman in charge, inquiringly. "Well, the space between those indicates one sixteen-thousandth of an incb. Getting it down pretty fine, isu't it? You see this movable piece of iron here, which comes down with a smooth surface upon this other solid surface? Well, the raising or lowering of that moves the pointer which runs around the dial. To test the thickness of a sheet of paper, we simply place it between this movable piece and the solid surface below, and when the movable piece of iron comes down upon the paper the hand registers the true thickness of the paper. Delicate instrument? Well, I should think 30. Just give me a hair from your head, will you?'

Then he took a hair and slipped it deflly between the movable pieces. The hand on the dial followed the motions of the screw until it stopped at the figures 20 . "Just twenty sixteen-thousandths of an inch in diameter," he said. "Now let me try a hair from your mustache? They are generally much larger, especially if you have been in the habit of sbaving." He took up a pair of scissors, and clipped off a hair from the mustache and placed it in position. The hand stopped at 50 . "Fifty sixteen-thousandths of an inch thick," be said. "That shows the effect of shaving. I measured a hair from the hand of a gentleman a few minutes ago which was forty sixteen-thousandths thick, but those in his mustache were precisely the same thickness, the reason being that he had never shaved. Yes, that is the machine that proved that the firm making our envelopes was not fulfilling its contract," be said, as he fell back admiringly

Weather Forecante.

It seems to be overlooked by meteorologists, says a write in the Journal of Science, that when a season has taken a decided character, whetber as wet or dry, the ordinary indications of change seem to lose their meaning. In $18 i 9$ all signs of fair weather, drawn from the appearance of the clouds, the actions of birds and insects, etc., were quite misleading. And in the present season I have more than once seen the commonly accepted signs of rain go for nothing. The sky may become gradually overcast, with dark ragged masses of underscud; there may be a " hollow and a blustering wind," swallows may fly low, slugs come out in numbers, bubbles of gas rise from ditches, etc., but the weather remains dry, or at the most there is a slight shower.

AN IMPROVED FIRE ESCAPE.

The engraving shows a fire escape recently patented by Mr. W. F. Culleu, of Logansport, Ind. In any approved part of the building-frequently in one corver-and con necting with the main hall, is constructed a fireproof com partment on each floor, thus forming a series of compart ments one above another extending from the ground floor to the top of the building. The walls, floors, and ceilings of these chambers are built of fireproof material, and are provided with fireproof and self-closing doors communicat ng with the interior of the building and also with similar doors opening upon verandas which may be built only at the upper stories, or at all of the stories, to enable peopleto each the fire escape by the exterior passages when cut off from the more direct interior course by fire within the building. Double doors, made of boiler iron, are used, and are provided with springs for closing them self-actingly, one door swinging inward and the other outward. Within the compartments are constructed fireproof stairs leading from one story to another, and when an elevator is used, as shown in the engraving, in which the escape chamber is shown at a, the fireproof doors at b, the elevator at c, and the iron tairways at d, the shaft is built of fireproof material, and being thus protected, it will not act as a flue to accelerate and spread the fire, as elevator sbafts generally do. This device affords, practically, the advantrges of a completely freproof building-so far as protection frum fire is con-cerned-without the cost of making the whole structure

collen's mproved fire escape.
incombustible, and it may be readily built into buildings al ready erected.
The compartments are of sufficient size to contain at once as many people as are likely to occupy a floor at any one time, so that all can at once escape into chamber, and the door may be quickly closed behind them to exclude beat, smoke, and fire. Once within the compartment they may desceud at leisure, even though the fire be burning fiercely close by. Also, by reason of the safety and permanence of the chambers, firemen are enabled to pass up to the different stories to rescue those overcome with the heat and to batlle with the fire.

Buttered Flour.

A Connecticut company, says the Hartford Times, makes flour all ready for baking biscuit or strawberry shortcake; it only requires to be mixed with milk or cold water, and the batter is ready for the oven. The process of its manufacture is interesting. A quantity of wheat flour is sifted and dumped into a large cub. Butter cut into large cubes is added to the flour. Then the white coated operator weighs out certain mysterious quantities of baking soda and fine table salt, which go to swell the contents of the tub. Then the mixture is placed in a large polished cask, which revolves slowly in one direction, while a sort of dasber inside moves in the opposite direction. The cask revolves about 30 minutes, at the end of which time it is opened. It is found that the ingredicuts have been thoroughly mixed; every particle of moisture contained in the butter has been evaporated, and that the misture is as fragrant as new mown hay. It is then placed in bags and boxed for shipment.

BATCEET TOOL HANDLE.

Fig. 1 is a sectional side elevation, and Fig. 2 a sectional plun view of a ratchet tool bandle recently patented by Mr. Cbristian Hermann, of Bristol, R. I. The bandle is a straight bar of suitable length formed with a recess in which is seated a ratchet sleeve having an angular aperture for passing npon the tool shank. The handle is b ored lengthwise through both ends, and in one bole is a sliding pawl that engages the ratchet sleeve. A spiral spring acts to move the pawl, the movement being limited by a cross pin through the outer end of the dog, that enters a gronve in the handle to prevent the pawl from turning accidentally. The ratchet is held in the recess by a ring plate filted to the under side of the handle in a manner to allow removal. The hole in

HERMANF'S RATCHET TOOL HANDLE

the opposite end of the handle permits the insertion of the dog, and can be used to receive a bar and to give greater lev ernge.
This handle can be readily applied to bits, screw drivers, and other tools, and by drawing back the pawl and giving it a half turn the ratchet mechanism is changed from right to left, so that the handle can be used to withdraw a boring tool or back out a screw.

Brier Root Pipes.

In a report on the trade and commerce of Leghorn, the following note on the so-called brier root pipes, which have become so large an industry of late years, will be read with interest: "An interesting industry has been started here within the last tbree years by a Frenchman from Carcasonne, for the export of material for the mauufacture of wooden pipes. Similar works are also to be found at Sienna and Grosseto. Selected ronts of the heath (Erica arborea)-preference beag given to the male variety-are collected on the hills of the Maremma, where tbe plant grows luxuriantly and attains a great size. When brought to the factory the roots are cleared of earth, and any decayed parts are cut away. They are then slaped into blocks of various dimensions with a circular saw set in motion by a small steam engine. Great dexterity is necessary at this stage in cutting the wood to the best advantage, and it is only after a ong apprenticeship that a workman is thoroughly efflicient. The blocks are then placed in a vat, and subjected to a gentle simmering for a space of twelve hours. During this process they acquire the rich yellowish brown hue for which the best pipes are noted, and are then in a condition to receive the final turning and boring, but this is not done bere. The rough blocks are packed in sacks containing 40 to 100 dozen each, and sent abroad, principally to France (St. Cloud), where they are finished into the famous G. B. D., or 'Pipes de Bruyere,' known to smokers in England under the name of ' brier wood pipes.' The production of this article is considerable, four hands turning out about 60 sacks per month. Consignments are also made to England and Germany, but at present the demand is said to be rather slack."-The Gardeners' Chronicle.

Ingenious Idea

It is told of a man in Connecticut who wanted to put a water pipe through a drain several feet below the surface of the ground, without digging up the drain. To accomplish it he tied a string to a cat's leg, thrust ber into one end of the drain, and giving a terrific "scat," the feline quickly appeared at the other end; the pipe was drawn through the drain by means of the line, thus saving considerable expense.

HORSESHOES OF DIFFERRNT NATIONS.

AN IMPROVED CLOCX FRAME.
The invention herewith illustrated provides for the ready removal of the main spring or spriugs and main wheels of a clock wihout disturbing the rest of the movement, or taking it apart in case of breakage or for necessary repair, and so they may be quickly and easily replaced. The front plate of the frame, A, Fig. 1, is made with a peculiar slotted construction for a screw boss or front bearing for the arbor of the main wheel, as shown at G, the form of these detachable screw bosses being as represented by F, Fig. 4. One main spring, C, and wheel, D, are shown opposite, fixed in place in a similar bearing. E represents the pillar or holt of the main frame, to which the main spring is attached. and

WYKHUYsER'S IMPROVED CLOCK FRAICE.
this pillar bas at its rear end a screw thread adapted to screw into the back plate of the movement, B, as shown in Fig. 2, although the rear bosses may be permanent attachments, as in Fig. 3.
This invention has been patented by Mr. Hendrik Wykhuysen, of Holland, Mich., to whom communications should be addressed.

A Whale Caught by a Telegraph cable.

Mr. Robinson Kendal, cbairman of the West Coast of America Telegraph Company, has communicated the folowing extracts from letters received from that company's officials on the west coast of South America, to the papers. The captain of the company's repairing steamer writes: " Having picked up 21 knots of cable, and while continuing picking up, an immense whale came up to the bows entangled in the cable. It seemed to be about 70 feet in length. Iu its struggles to get free the cable cut right into its side, the whole of its entrails coming out, and greal streams of blood. In its last dying struggle it parted the cable on the bow sheaves, and floated to windward of the steamer.
"The cable was twisted up in the form of a wire rope for about two fathoms, and in six different parts it had the appearance of having been bitten through sufficiently to stop all communication. There is no doubt the whale has been the cause of the interruption." Their manager also writes: "The cause of the breakage of the cable, as has been pointed out to you in Captain Morton's report, was a buge whale, which became entangled in the turns of the cable, and was beld prisoner for seven days; the interruption was unfortunate, but it is, at least, satisfactory to know that the cable did not give way naturally, and that where picked up, the sheathing yarn and core were found to be in an almost perfect state of preservation, in fact, looked as good as on the day the cable was first laid.'

Great Fire in Oleveland.

On the 7th of September the city of Cleveland, Ohio, was the scene of a gigantic fire, which swept away for the time armor. They sometimes weighed over two pounds, and were wide, pointed at the toe, and provided at the heel with a loug projection.
In the French sboe (Figs. 5 and 6) we distinguish the toe \mathbf{P}, the mammelles, M, the branches, B, aud beel, \mathbf{E}.
The English shoe (Figs. 7 and 8) differs from the Freuch as regards the arrangement of the iron and the method of applying it to the hoof.-Science et Nature.

According to the Journal d'Hygiene, citric acid is a most powerful disinfectant, preserving meat from putrefaction, and proving rapidly fatal to septic microbia. The soluble citrates have no similar action.

Antwerp International Exhibition, 1885.
The International Exbibition at Antwerp will bea national and governmental undertaking, under the immediate patronage of His Majesty the King of the Belgians. The president of the exhibition will be His Royal Highness the Count of Flanders, and the vice-president the Minister of Agriculture, Industry, and Commerce. The committee will consist 450 diembers, and the Belgian Parliament will be asked to vote a sum of moncy for the commission. The State will nominate the jury and regulate its functions. The exhibition will be opened on May 2, 1885, and will embrace five principal divisions or sections, namely: 1. Education, including the fine arts and art applied to industry. 2. Manufactures. 3. Commerce and navigation, fisheries and pisciculture. 4. Electricity. 5. Agriculture and horticulture. Each of which will again be subdivided into groups and classes. The triennial exhibition of painting, sculpture, and architecture, to which artists of all countries will be invited to contribute, will coincide in 1880 with the universal extibition.
All necessary measures will, it is stated, be taken on the part of the Belgian Government to protect all patentable inventions, mudels, drawings, or trade marks which may fgure at the exhibition.

The Manuracture of Glags Pots.

One of the first essentials to a successful manufacture of glass is the preparation of the melting pots. These pots are composed of clay, which is required to be as free as possible from lime and iron. A clay obtained from the carbonifer ous shales of W orcestershire, in the neighborhood of Stourbridge, is highly esteemed for this purpose; it consists of pretty nearly equal proportions of silica and alumina, and there are excellent clays both in Germany and the United States. The clay is carefully dried and sifted, after which it is mixed with bot water, and worked into a paste; it is then transferred to the kneading floor, and when suffliciently kneaded-which is done by men treading it with nuked feet -it is laid in large masses in a damp store cellar to ripen, a process the theory of which is not well understood. When required for forming the pots, a sufficient quantity is taken and again kneaded with one-fouth of its quantity of the waterial of old pots, which are ground to fine powder and carefully sifted; this material gives firmness and consistency to the paste, and renders it less liable to be affected by the bat
The pots are of two kinds, the opened and the covered. The first is used for melting common glass, such as window and bottle glass; the other for flint glass. In each case the pots are made by hand, and require great skill and care. The bottom is first moulded ou a board. When the bottom is finished, the workmen begins to build up the side of the pot by first forming a ring of the same height all round, tuking care to round off the upper edge to a semicircular curve of great regularity; upon this be begins bending over other lumps of the paste until another equal layer is formed, and these are continued until the pot is complete; but the workmen do not work continuously at each pot until it is finished; they leave off from time to time, spreading wet cloths over the edges when they discontinue working. This is necessary, to admit of a certain amount of drying, otherwise, says the Glassware Reporter, the large weight of clay used would prevent the form being kept, and the pot would fall to pieces or lose shape seriously; the building of the pot is consequently extended over several days.
Those made in a favorite mode are from three to four inches thick, but the flint glass pots are only from'two to three inches. After the potter has finished bis work the pots are removed into the first drying floor, where they are only protected from draughts, so that the drying may be conducted with the grentest possible uniformity. When they bave progressed sufficiently they are removed to the second drying floor, which is beated with a stove, and the drying is here completed. They are then placed in the store, where usually a gond stock is kept on hand, as time improves them, and they are seldom kept less than six or nine months.
When required for use, they are placed for four or flve days in the annealing furnace, which is on the reverberatory principle, and they are there kept at a red heat. This furnace is so situated that the pots, when ready, can be most quickly transferred to the main furnace-an operation of exceeding difficult,y, and requiring great skill and dexterity, as they have to be removed while red bot, and it must be done so quickly that no sudden cooling shall injure the pot, a difficulty which can only be understood by remembering that the ordinary pots are nearly four feet in depth, are the same in width at the mouth, by about thirty inches at the bottom, and they weigh several hundredweight. The enormous amount of labor bestowed upou these pots makes them very expensive, their value being from $\$ 30$ to $\$ 50$ each.
Their removal from the annealiug oven to the main furnace is effected by an immense pair of forceps several feet in length, which are placed horizontally upon an upright ron pillar about three feet in height, which rises from a small iron truck on four wheels, so that the whole apparatus can be easily moved from place to place. By means of this instrument the pot is lifted and dexterously withdrawn from
the oven, and as quickly transferred to its positinn in the main furnace, in which usually ten or twelve are placed on a platform of firebrick or stene, each pot being opposite to a small arched opening through which it cau be filled and
the pots have been introduced, is then closed with a mova ble door of frebrick, and covered over with fireclay, to prevent the escape of beat; the pots in the furnace are filled with the prepared materials for glass, now called grit, mixed with about a sixth or eighth part of cullet, or broken glass; the openings are closed temporarily for two or three hours, by which time the first charge of material has melted down leaving room for a further supply, which is then thrown into the pot, and this is repeated two or three times until the pot is completely full. The openings are then.closed, and the heat increased to the utmost for ten or twelve hours; and the result of it is to perfectly melt and vitrify the materials.

BOILER FOR HEATING BUILDINGS.

The engraving represents a boiler composed of sections mounted one upon the other, for use either in heating and circulating water, or for generating and circulating steam, to he used in heating buildings and for other purposes. The fire box section and the several horizontal sections are cas or made of metal. The joints of the sections bave putty or cement applied to them to prevent leakage, and the sections are held firmly together by bolts passing through lugs upon opposite sides of the boiler. Cast with each section is a
 series of parallel borizontal water
ducts; these are so arranged that the ducts of one section will be over the flue spaces of the section immediately above or below it, thus establishing tortuous channels for the passage of the products of combustion. The ducts in each section are iu communication with each other at their ends, and the water spaces are alternately connected above and below, on opposite sides of the boiler, by tubular nozzles constructed so as lorm sockets. These connections provide for the circula保 of the water alterately in reverse directions througb ee sections. One or more of the sides of the boiler may be fitted with doors opposite the flue spaces to provi
for removing matter deposited on top of the ducts.
Further information concerning this invention may be obtained from Messrs. Redman \& Byram, of Fistkill Landing, N. Y.

swise Wood Carving.

The London Times, in a letter from one of its correspondents referring to the removal of a number of Swiss carvers to the United States, says that they earn as much as eight dolars a day-more than they can earn at home in a week. This turned into francs sounds a good deal, and is, indeed. an undeniably high wage, eight dollars a day being nearly 10 pounds a week, only a little less, says the writer, than the salary of the President of the Confederation. For all bat, the Bernor Post and other papers of the district are better of opinion that the wood carvers would do much better to stay at home. They say: "Do not be so selash as tablish in America a new trade which will compete with one of our most important local industries. In the United States you will be far away from your native mountains, from the scenes which suggest and the objects which inspire. The only works of art. you will see are statues of Washington and Lafayette, and though you may earn more money you will not be half as happy as you are at Brienz and Meyringen and Interlaken. Stay at home, and instead of going to America let the Americans come to you and buy your chalets, your bears, and your chamois, in the land where hey are made."
How far these persuasions will be effective remains to be seen, but it is greatly to be feared that the inducement of 40 francs a day may prove more potent. On the other hand, the attachment of the Swiss to their homes has passed into a proverb; and although some of the watchmakers of the Jura have gone to America, the deftest of them, those who live in the valley of Lake Joux, resolutely refuse to leave their native mountains and abandon their traditioual babits for all he inducements that foreign capital can offer.
Sriss wood carving is a much younger industry than Swiss walch making. It was introduced into the Bernese Oberland some fifty years ago by Christian Fischer, a selftaught peasant artist of Brienz. But he was more peasant than artist, detested working indoors, and bis ambition did woodend beyond carving rings for table napkins, culting wooden egg cups, and adorning them with flowers. He was
also a musician and village bone setter, and altogether, a man of versatile genius. But his great merit was being the creator of a new industry, for though Fischer did no great doings himself, be put into practice a valuable idea, and founded a school. Peter Baumaun, of Grindelwald, and a man named Flenz, belonging to the same country, improvSwiss chalets, now so popular, and which it is now almost de rigeur for tourists in Switzerland to purchase. What was more natural than for these peasant artists to model, first of all their own picturesque bouses with their overhanging roofs, their quaint galleries, their painted ornaments, and carved figures, brown with age, standing on a plinth of white stone, overshadowed with trees, within sound of a rushing torrent, and sheltered from avalanches and the
north wind by the rocky rampart of some Alpine beight? Peter Baumann, who seems to have been more thrifty and
steadfast than bis predecessor, settled at Meyringen aud taught his art to his three sons, one of whom, Andreas, became the facile princeps of wood carving. His work is deemed unapproachable, and his bouquets of roses still serve as models for aspiring sculptors. The success and celebrity acquired by the Baumanns caused the industry to spread, and wood carving soon became the winter occupation of every bousehold in the vale of Hasli. But there was no regular market for their productions, their only customers were casual visitors, their only agents hotel porters and small shop keepers, who took the lion's share of the profits. The trade wanted organizing, in fact, and, after several tentative efforts in this direction, the Brothers Wirth established their extensive workshops, where several hundred sculptors of the Oberland now find regular employment. In this iudustry, as in almost every other, the best results are oblained by a division of labor. Every carver has his or her specialty. Some prefer to sbape groups of animals, others like better plunts and flowers, others again take to building miniature chalets, and making curious caskets, and what they like the best is generally the best done. Elaborate artistic furniture is also made in great variety in the establishment of the Brothers Wirth. In 1862 the industry had become so important that the Cantonal Government deemed it expedient to found a school of design at Brienz, which is maintained by the State, the communes, and the fees of pupils, the last, however, being little more than nominal. In 1869 a master modeler, muintained in like manner, was appointed for the instruction of the carvers of Interlaken. The pay of a sculptor varies from two francs a day for beginners to tive francs for the more expert, among whom is a large proportion of women, their natural tastefulness and definess of touch making them formidable rivals to the men. Brienz is the headquarters and chief mart of the trade, which has entirely changed the character of the town, and gives it an appearance of prosperity that in former years was conspicuous by its absence. The number of male and female sculptors employed at Meyringen and Brienz amounts to 2,500, and tbeir industry brings into the district some two million francs a year. Successful enterprise is always a bealthy and stimulating influcnce, and the success of wood carving at Brienz sug gested the idea of making parqueterie and chalets at Interlaken. The former has already grown into a large business, the annual production of one establishment alone amounting to nearly 700,000 square feet of parqueterie, valued at half a million francs. Chalets are made for use, not for show, in parts, and, the parts being numbered and arranged to fit without trouble, a man may order a house by post, have it delivered by rail, and enter into possession, all within a few weeks. Attempts have also been successfully made to turn to account the indigenous stone of the country-variegated marbles, which are found in great variety, as also a soft stone, peculiar to the Oberland, which, while easily worked and susceptible of a bigh polish, acquires by exposure to the air an adamantine bardness, and has the further quality of being almost indestructible by fire.

Determination of the Earth'n Magnetism at Paris.
Very careful determinations of H, the value of the horizontal component of the terrestrial magnetic field, bave recently been made at Paris by M. Mascart, the well known electrician. The measurements were made in the observa tory of the Parc St. Maur, and the method of Gauss was adopted as one of those giving the most correct results. This consists in oscillating a magnetized bar under the influence of the earth; then placing it a certain distance from another bar submitted to the action of the earth, and noting the de viation suffered by the latter. Let
$\mathbf{M}=$ magnetic moment of the bar.
$K=i t s$ moment of inertia.
$\mathrm{T}=$ the duration of infinitely small oscillations.
$\mathbf{R}=$ the distance between the centers of the two bars. $\alpha=$ the deviation of the auxiliary bar.
$a=a$ constant determined by experiment.
If the deviating bar is perpendicular to the magnetic meridian, and directed toward the middle of the bar deviated, we have

$$
H=\frac{\pi}{T} \sqrt{K}-\frac{2}{R \tan \cdot \alpha} \sqrt{\frac{1}{R}\left(1+\frac{a}{R^{2}}\right)}
$$

If the deviating bar remains perpendicular to the direction of the bar deviated, tan. α should be replaced by $\sin \alpha$. It results from the experiments that the mean value of the horizontal component at the observatory of the Parc St. Maur on July 1, 1884, is $\mathrm{H}=0.19414 \pm 000012$ C. G. S. unit. The error is probably below 0.0001 .

An International Scientific Congreas.

During the recent meeting of the American and British Associations a proposition was brought forward for the or ganization of an International Scientific Association, to meet at intervals in different countries of the civilized world. It came in the shape of a petition signed by eight past presidents of the A. A. A. S., and many members of both associations. The matter was referred to a committee from the British Association consisting of Sir William Thomson, Sir Lyon Playfair, and Vernon Harcourt; and from the American Association a similar committee was appointed, namely, Professors Newcomb, Hunt, Barker, Pickering, Powell, Rensen, and Minot. The joint committee will confer and report hereafter. The idea meets with very general

Curregumudeuct

The Planet Neith.

To the Editor of the Scientific American:
The interesting article in your last number on the supposed planet of Neith brought to my mind a hypothesis en tertained upon the discovery of the satellites of Mars, tha they were not its own original production, according to the nebular theory, but were some of the planetoids which had come within the range of its attraction.
Jupiter has sifted out belts of space in the region of the planetoids which are now comparatively empty; may no Mars bave done a little, a very little, on the other side the group?
J. R.

Ottawa, Sept. 9, 1884

The Planet Nelth.
 To the Editor of the Scientific American:

Your issue of Sept. 6, 1884, contains an interesting article on the "Problematic Planet Neith," in which it is said tha hat is the name given the little planet in honor of the mys terious goddess sais, whose veil no mortal has raised.

This is as confusing as it could well be made, for, first, the article is to prove that the veil has been raised, and the name is therefore singularly inappropriate. Second, Sais was not a goddess, but a town in Egypt, in which Neith was worshiped. Neith was a goddess of great local vener ation, who represented universal motherhood.
Her name would therefore be more appropriate for the son, which, no doubt (in my m
orshiped under this designation. by astronomers that new planets should have Latin mythological designations, so the name of Herschel was refused to the world he discovered, and it was bardly suggested tbat Leverrier sbould attach his patronymic to the planet he gave

If it be true that the new planet was formerly a satellite of Venus, and is now bejond her attraction, the name Adonis, typical of the loved and
J. C. B.

Balaneing or Wheels and Cylindera.

To the Editor of the Scrientific American.
An article entilled " Balancing Wheels and Cylinders," in your issue of Aug. 30, excites many thoughts which may be carried further. No. 368 of Scientific Ambrican Supplement published the most exhaustive article on the subject of balancing which has yet appeared. The balancing of highly speeded machinery is imperative. Your suggestion that an olject, a pulley, for instance, should be poised so as to be free to oscillate in all directions about its center, is the key to the correct method for balancing all rotating objects the center of which is accessible by a pivot or other equivalent means of support. It can then be, first, reduced to a standing halance by applying weights in deficient parts, and afterward, by rotating, be made to indicate where, in lines transversely to the plane of rotation, the weights should be placed to secure a running balance.
That the process involves no uncertainty we may fee sure, from the fact that Pratt \& Whitney bave recently established in their works in Hartford, Conn., a complete set of apparatus for securing a running balance to all rotat ing or revolving parts of machinery. They are able to sus pend a cylinder, the center of which is inaccessible by a pivot, between two centers, with the axis perpendicular and obtaiu indications showing points of excess or def ciency of weight. It is obvious that the center of gravity of a rotating body and its mecharical center muxt coincide A running balance will in every case, therefore, be a standing balance; and a balance at one rate of speed is a balance at all rates of speed. The inside of the rim of a wheel may be improved by turning; but cannot often be brought to π balance by that means, as the lack of homogeneity will defeat.

All rotating bodies will strive to rotate in planes paralle to their greatest sectional weight. A pulley or cylinder whose axial dimension is greater than its equatorial dimension, cannot be long retained upon its mechanical axi when poised near its center of gravity; but upnn slight dis turbance will fall out of the plane in which it is desired it shall run. It can in no case, unaided, recover rotation in such plane. It is, therefore, necessary, when balancing a cylinder, whose length exceeds its diameter, to poise it sn that it be restrained from assuming a plane of rotation paral lel to its greatest sectional weight. Yet the restraint should not be so great as to prevent each end of the cy!inder from rotating upon its center of gravits. The mode of zuspen sion mentioned above as adopted by Pratt \& Whitney is be lieved to be the best.

An unbalanced pulley running at a bigh velocity in the middle of a slender shaft, will deflect the shaft no more than enough to permit the mass, consisting of shaft and pulley, to rotate upon its center of gravity. But within that limitation, however small, its energy is irresistible The point of greatest prominence of the pulley will coincide with the point of greatest deficiency of weight. It is very frequently but erroneously supposed that the opposite effect is realized, and that the heavy portion of the pulley wil
"throw, off" by centrifugal force, like the ball of an aor; to an extent limited only by
at the shatt.
W. M. D.

A Now Imvemtion Called For.
There is an opportunily now presented to inventors with some knowledge of the facts such as rarely is open to any man.
Wanted, a cotton gin: one which does not abuse the cot on like the saw gin, one that is more positive in its feeding arraugements and with greater facility of doing work pro perly than the roller gin. The gin wanted is for the grade of cotton known as peeler, or medium between the uplan and Sea Island.
There is an increasing demand to-day for a better grade of cotton than is raised in Georgia, South Carolina, with more certainty to the staple than with the Florida cotton, with the fineness that the best Louisiana, Mississippi, and Alabama cotton is noted for, but with an increased length of staple running from $11 / 4$ to $13 / 4$ inches.
The saw gin tears this cotton to pieces. The roller gin is 30 slow that it does not pay the planters to raise this extra staple cotton, for the simple reason that it takes them, to use th
The saw gin must sooner or later be abandoned for all cottou, and yet to-day it is the best gin in use for upland and common cotion. Inventors who would make a succes of this must study the cotton question, and in severa things must absolutely abandon previous practice. The saw first of all doubles the staple or fiber into several sharp turns. This is done suddenly with a great deal of force, and if the cotion is not perfectly dry, the outside of the fiber is torn and its strength is forever gone. The roller gins of to-day are covered with leather, rubber, paper, cotton cloth, and a half dozen other mixtures. They drop the cotton of from the seed, and there are quite a number of systems o machinery which are not particularly speedy in quantity. In some of these a straight edged knife, like the doffer on the cotton card, strikes across another knife of the same kind without injuring the flber of cotton, but in this way while the fiber is bent over the top of the knife, held agains it by the pressure of the rubber or cloth covered roll, it breaks the seed away from the fibers, the cotton is carried through and thrown into the pile. This is practically the way cotton is ginned to-day.
There must be some Yankee who can see bis way out to perfect a gin which is free from the faults of the saw gin in handling the cotton, and has vastly more virtues than any roller gin ever yet put on the market. What is wanted is something which will take the flbers of cotton from the seed, leave the fibers as nearly parallel as possible and with out injuring them. The man who perfects this machinery will have a far more legitimate and quite as valuable a mat ter in his hands as the telephone or any of the other inven ions of the past few years.
If a man can be found who can raise this kind of a gin without going into some kind of a stock speculation, or without putting it upon the market until after it is tho roughly tested, that man will not need to do much work th rest of his natural life unless he attempts to ape some of the bonanza kings or other fungous growth of society. There are a great many questions included in this of the cotton gin. The doors are wide open. There are no patents on the records bat amount to a straw man, and whoever can see some way to do this properly, thoroughly, and efficiently, will nd a rich harvest.
The ginning of colton to-day, so far as the saw gin goes, is barbaruus, so far as the roller gin goes is not worth considering in the amount of work the roller gin will do, yet he demand is for better cotton. The planters are ready to furnish it. We should suppose the spinners might take a ittle interest in some of these things, but they are too busy bying cbeap cotton. The woods are full of inventors and patents which are principally worth the value of the pape n which they are written, per pound, at least so far as th spinner gocs, for really accomplishing the object aimed. Who is the man that tackles the job?-Manufacturer Gazette.

The New Australian silver wines.

Australia has long been noted as a gold produc.jg coun ry, and now what bids fair to be an extensive silver pro ducing region has been found. The mines are in the Barne ranges of New South Wales, near where the colony joins South Australia. Silver bearing ores were first found there in 1872, by a shepherd, but the nature of the ore was not understood, and nothing was done. Two years ago a lot of ore was sent to England, this time with better results, hnugh through inexperience the miners selected the lowest grade ores, viz., argentiferous galena. They netted the handsome return of $£ 7$ per ton on the shipment, after the ighest commissions and clarges had been exacted. Miners who were working silver properties in these parts were al making moncy before they sold out.
Now there has been an influx of miners, and a town known as Silverton has been built up. The country is represented as inloospitable, rocky, and mountainous. Over the whole of the great mountain chain are found localitien of the precious metals, and, following their leading structural idea, hey arrange themselves in parallel zones of a similar nature o those of the Cordilleras and California. Where the section of the formation can be examined, there can be seen colds of more or less complexity, twisted and warped by ongitudinal forces and often compressed into a series of zigzags of a wonderful nature. The mines of this district consist of two groups. The one at Silverton embraces eleven
claims, in which the ore consists of sulphides of lead or argentiferous galena. The profits secured on these ores mount to $£ 12$ per ton. About eight of these mines are opened up, six of them to a considerable extent. There is one shaft down 180 feet, carrying the lode very strong in the bottom. The lode at this point gives indications of turning from sulphides of lead into sulphides of silver. Fiftern shafts have been sunk on different parts of these eleven mines, their depth varying from 30 feet to 75 feet, one being 30 feet. The lode is disclosed in each of these shafts, and found to be of a thickness varying from 1 foot to 3 feet. Some rich returns are now being obtained from these mines, the ore yielding, as above stated, a clear profit of $£ 12$ per ton. The second and larger group of mines is situated at a distance of 28 miles from Silverton. They are called the Lakes Camp group. The ores here are purely sulphides of silver, and very rich. Two tons of ore recently sent to England for assay were sold for $\mathbf{5 6 0 0}$. Shafts have been sunk in many parts of the ground held by the syndicate, and ore has been discovered everywhere, but, of course, all of it is not of the richest quality.
The lodes have all the appearance of permanency. In one slaft, the deepest of this group, the lode has been traced o the total depth- 75 feet-and at the bottom it is six inches thick, with indications of continuance and improvement. A great drawback to the rapid development of tbese mines is the scarcity of labor at Silverton.

Covered and Uncovered Bollers.

In order to ascertain the degree of advantage obtainable by felting and lagging steam boilers, Mr. B. H. Thwaite, F.C.S., has carefully carried out the following experiments on a Bull type of vertical boiler: A deflite quantity of water was poured into a vessel of a size sufficient to cover one square foot of plate surface, the vessel being externally lined with wood. The rise in degrees of heat during the hour's exposure was noted. The same weight of water, with identical initial temperature, was then placed for the same tiine on the surface of the lagging, which consisted of three thicknesses of three-eighths inch felt, covered with one-half inch ongued and grooved battens. On the naked plate it was found that 516.75 beat units per square foot were absorbed by the water; and on the lagged portion only $145 \cdot 75$ units per square foot were given off. This is equivalent to a reduction of wasteful radiation, due to the lagging, of 34 per cent; or with a vertical boiler, say 4 feet in diameter and 9 eet in height, working for ten hours, there would be saving. due to the lagging, of at least 70 pounds of coal.

Rallway Law.

Rsilmay companies are often called upon, says the St. Louis Raihoay Register, to defend suits in which passengers, who bave, either by their own carelessness or misfortune, suffered losses of property, attempt to recover compensation herefor. It is interesting to read reports of these cases, and to know how far common carriers of passengers can be held for such losses. Without attempting any subtle analysis of the cases, or argument as to their correctness, we will briefly refer to some of them, and try to deduce the princiles involved.
At New Orleans, recently, Mrs. Henderson sued the Louisville and Nashville Railroad Company to recover ten thousand dollars for the loss of a little handbag which conlained money and jewelry worth that sum. It seems that she was going from Mobile to New Orleans, and, as the wind came in too strong through the open window, she arose to close it, having ber bag in her hand. In some unexplained way she lost her treasures through the window, and the conductor refused to stop the train until it arrived at the next station. Then she sent a man back for the bag, but it was too late, it had been picked up and kept by some one. The Federal court decided that although, possibly, there was a moral obligation resting upon the conductor to stop the train when apprised of the loss, he was not legally bound to do so, and the company was not liable for the property lost.
Some years ago one McElvoy took a train on the Marietta and Cincinnati Railroad with 4,000 dollars in his pocket belonging to a bank for which he was agent. The train went through a sliaky bridge, caught fire, and poor McElvoy and the money were both burned up. His widow sued fordamages for his death, and the bank sued for the money. How the first sult resulted we do not know, but the bank was beaten in its attempt to milke itself good. The court said that McElroy ought to have sent the money hy express if be wished for absolute security; and that when be carred the funds in his pocket he assumed the risks himself. In New Hampsbire, once, Mrs. Smith, a poor woman who sewed for herliving, trok a train with a big bundle of coats, cut ready for making, and placed it on the seat with her. During a few minutes' absence ber property was stolen, and she sued for its value. The jugge decided that the company was not liable, for there was no agreement to carry the bundle either as goods or freight. A certain Mr. Weeks was still more unfortunate. He was going to New York on the New York and New Haven road, and when the train arrived, horses were attached to the car to pull it down to the station. Weeks went to the door to watch the work, when three men at tacked and robbed him of 16.000 dollars in casb. He sued the company, also, and the higbest court in Connecticut ecided that the corporaticn could not be made to assume the loss.

A IEW steay carriage.

A few weeks ago an experiment was made ou Grande Armee Aveuue, at Paris, with a steam carriage that greatly excited the curiosity of passers-by. This apparatus, which we figure herewith, and which is the invention of Messrs. Dion, Bouton \& Treparduux, consists of two trains of wheels, which are connected to the frame to which the generator and motor are fixed by means of springs that are double behind and single in front. The entire affair, then, is supported by springs, and the wheels are provided with rubber tires. The hind, steering wheelsare loose upon two independent axles, each of which is provided with a crank connected by a rod that receives from the directing lever to the right of the driver a transverse motion from left to right or vice versa. The carriage is slowed up or stopped by means of two Prony brakes coupled to a single maneuvering lever placed to the left of the driver and acting unon the two large wheels.
The carriage is actuated by two independent oscillating motors. The diameter of the cylioders is $23 / 4$ inches, and the stroke of the piston 4 inches. The number of revoJutions for a velocity of $23 / 2$ miles per hour is about 450 , or 900 piston strokes per min ute. The escapement from the motors occurs in a jacket that surrounds the fire box. The steam cools the sides of the latter, becomes super heated, and then enters the
mokestack, above the damper, and makes its exit colorless. The water is heated by stean in the reservoir, and enters the boiler nearly at the boiling point.
The generator employed is of a new system, and the arrangement of it is shown in Fig. 2. It consists (1) of a double-shell, E E, C C, that carries all the necessary accessories of a boiler; and (2) of an internal cylinder, D, which is connected with the shell by a number of tubes, T, radiating from it in an inclined position. The water is therefore inclosed between the two cylinders, E and C , in the tubes, T ,
double-acting pump, which is actuated directly by a special motor, which takes its steam from the boiler at the normal height of the water level. The carriage can be run with the ash pan open or closed. In the latter case the combustion is quickened by means of two steam blowers that introduce air mixed with steam under the grate. The exact dimensions of the carriage are as follows:

the carriage are as follows:

Length of frame, 6 feet; distance between the wheels from

A NEW STEAM CARRIAGE.

axle to axle, $51 / 4$ feet; height of seat above ground, 35 inches; height of frame above ground, 20 inches; diameter of large wheels, 4 feet; and of small ones, $21 / 2$ feet. The carriage, properly so called, weighs 285 pounds; the boiler, fire box blowers, etc., 895 pounds; the motors, 55 pounds; the feed water, 22 pounds; and the maneuvering apparatus, etc., 88 pounds. With a supply of 18 gallons of water, sufficient for an bour and a balf, and 65 pounds of coke, the total weight is 1,034 pounds.
The carriage makes very little noise; it operates without range. exceed 10 cwt .

IMPROVED HOTCHKISS RAPID SIX POUNDER GUN.
and in the vertical cylinder, D. The flames circulate around \mid visible escape of steam or smoke; will turn around in a cir the cylinders and inpinge against the tubes. This arrange- cumference of 8 feet radius; and is capabie of reaching, on ment permits of an economical utilization of the fuel and of a good road, a speed of $21 / 2$ miles per hour. In our engrava rapid circulation in the direction of the arrows. The va- ing (Fig. 1) the driver is represented at the moment at which porization reaches about 10 pounds of steam per pound of he is grasping the starting lever.-La Nature. coke. A self-regulating and constant level feed water is connected with the boiler. The level regulates itself without is ever having to be looked after. This feed water is a

A poultry raiser says that short eggs produce hen
chickens and long eggs produce cocks.

IMPROVED HOTCHRISS RAPID SIX POUNDER GUR.
The important order for single barrel machine gun recently iven by the British Government to Mr. Hotchkiss, of ridgeport, Conn., is the result of the competitive trials arried out last year by the Ordnance Committee at Shoeuryness.
In 1881 it was decided by the British war offlce to invite inventors to supply a new gun for the light armament of the navy, and the following memorandum of conditions to guide manufacturers was issued by the War Office, dated December 29, 1881.
Quick Jiiring Rifled Breech loading Gun for Auxiliary Armaments.

1. The gun to be a breech. loader which will range with accuracy to 4,000 yards.
2. The muzzle velocity of the projectile to be not less than 1,800 f. s.
3. The projectile to be shell and steel shot of 6 pounds weight.
4 The projectiles and powder charges to be made up in one cartridge for simultaneous loading.
4. The service of the gun to be capable of being performed by three men.
5. The gun to be able to fire under the above conditions not less than twelve aimed rounds per minute.
6. The mounting to be suitable for either ship or boat service. An alternative mounting to be provided, to enable the gun to be readily mounted for field service.
7. To be capable of readily delivering an all-round fire

9 The recoil to be reduced to the lowest limits, and the gun to return after recoil to the flring position.
10. The gun to be provided with an easy removable sbield, proof against the fire of the Martini-Henry rifle at 100 yards
11. The total weight of the gun and ship mounting not to

In the spring of 1883 three different guns constructed to fulfill, as neariy as possible, the above conditions, were delivered for trial by the following firms: Sir William Armstrong, Michell \& Co., Hotchkiss \& Co., and Thorstein Nordenfelt.
The Armstrong gun was withdrawn from trial after the prelimioary experiments, as it did not give, says Engineering, the expected results, the Ordnance Committee recommend ing the Hotchkiss gun, after a series of very successful experiments at Sheeburyness. There being, however, some diversity of opinion in the navy on the system of training the guns the Admiralty decided to order, besides the Hotchkiss gun, a certain number o Mr. Nordenfelt, who was to adopt the Hotchkiss non-recoil system of mounting, and to embody similar ballistical fea lures in his gun, so that the ammunition could be fire from either system with exactly similar ballistical results.

Fig. 2.-DIAGRAM OF STEAM CARRIAGE.
The exact shape of the pedestal for the guns is not yet decided; it will vary somewhat, according to the construc tion of the sbips and the places for the guns. The first 77 Hotchkiss guns ordered are, according to the term of the contract, to be delivered by Hotchkiss \& Co. by the beginning of Aprit next.
The Hotchkiss guns are called "non-recoil" because they are generally mounted on fixed elastic pivots and have no
perceptible recoil, although the guns in reality have a definite amount of movement at the departure of the projectile, sufficient to relieve the mountings of undue shock.
Iu all cases, except for the larger calibers for boat service and for the field, these guns are laid by means of a stock, or shoulder piece, bearing against the left shoulder (as in the Hotchkiss revolving cannon) and a pistol grip with trigger, which the gunner grasps with his right hand. He fres the moment his sights bear upon the object aimed at, by pulling the trigger, so that it will be seen that this gun has the general characteristics of the Hotcbkiss mounting, viz.:

1. The gun is mounted on a pivot and trained direct by the shoulder without the aid of any elevating or directing mectanism; thus enabling it to be pointed easily and rapidly from moving and rolling vessels against swiftly moving objects.
2. The sighting and firing are effected by a single man, as clearly indicated in the perspective view upon the opposite page.

The gun is made of Whitworth's fluid-pressed steel, oil tempered. The body consists of a tube aud a jacket carrying the breech and the trunuions, so that the longitudinal
gegses. RENARD AND KREBG ELRECTEIC BALLOON.
The problem of steering balloons, which was for a long time regarded as visionary, has made great progress in recent years, and may now be considered as solved. Captains Renard and Krebs have the honor of being the first to suc cessfully accomplish this, and therefore merit the gratitude of their contemporaries. But, of whatever interest be their work, we must not forget those who have preceded them, and shown them the path that they should follow. Before speak ing of the memorable ascension of Aug. 9, 1884, we think it indispensable to trace the history of the steering of elongat ed balloons provided with screw propellers.
It was in 1852, thirty-two years ago, that the way was opened by our great engineer Henri Giffard. It was then that a true aerial ship, of elongated form, and provided with a screw and rudder, was for the first time seen to rise into space. This ship was 44 meters in length, and its equatorial diameter was 12 meters. The balloon was surrounded on every side, except beneath and at the ends, with a netting whose extremities united on a stiff wooden bar. At the extremity of this latter there was a triangular sail, movable around a rotary axis, which served as a rudder and keel.
were followed by the fine experiment executed by Mr. Du puy de Lome, on the $2 d$ of February, 1872. This gentle man's balloon was 36 meters in length, and about 15 in equatorial diameter. It had a capacity of 8,500 cubic me ters, and was inflated with pure hydrogen. The propelling screw was 6 meters in diameter, and was actuated by seven men in the car. The motor was assuredly insufficient, but De Lome, under the influence of his screw, nevertheless ob tained an appreciable deviation from the line of the wind, and uscertained that his aerial ship had a velocity 8 kilo meters per hour.
What had been wanting up to this time was a motor that was truly adapted to balloons-a light motor that did not ecessitate the use of fire, and that should lose no weigh during its operation. As long ago as 1881 Mr . Gaston Tissaudier made known the result of his studies and experi ments upon the "Applications of Electricity to Aerial Navigation." In a note presented to the Academy Aug. 1, 1881, "e expresses himself thus:
"The recent improvements made in dynamo-electric ma chines have given me the idea of employing them for the directing of balloons, concurrently with secondary batte-

MESSRS. RENARD \& KREBS ELECTRIC BALLOON.
and transverse strains are divided. The jacket is shrunk over the tube, and to prevent any slipping they are locked together by a screwed collar, carrying the fore sight. The gun is exactly balanced in the trunnious,
The breech action belongs to the class of guns with a breech-block sliding vertically through a mortise, and actuated by a lever, the movement of which opens the breech, extracts the fired cartridge case, and cocks the hammer for the next shot. The action is composed of the following parts, viz., the wedge, with its stop-screw for limiting the run; crank and crank handle, for moving the wedge up and down; firing bammer and its rocking shaft; main spring, trigger sear, trigger spring and trigger, and the extractor.

A statistician, Dr. Farr, we believe it was, recently stated that if one could watch the march of $1,000,000$ people through life, the following would be observable: Nearly 150,000 would die the first year, 53,000 the second year, 28,000 the third year, and less than 4,000 in the thirteenth. At the end of forty-five years 500,000 have died. At the end of sixty years 370,000 would be still living; at the ond of eighty years, 97,000 ; at eighty-five, 31,000 ; and at elvety-five years there would be 223 ; at the end of 108 jain there will be one survivor.

At six meters beneath the bar a steam engine monnted upon a wooden frame was suspended along with its accessories The propeller, which consisted of two large blades, was $3 \cdot 4$ meters in diameter, and made 110 revolutions per minute. Empty, the engine and boiler weighed 150 kilogrammes. Provided with water and coal for starting, they weighed 210 kilogrammes; the accessories to the engine and the supply of conl and wood weighed 420 kilogrammes more
Henri Giffard had then no financial resources. He agreed to make his first ascent on a certain day at the Paris Hippo drome. On the 24th of September, 1852, the balloon was inflated with illuminating gas, and Giffard ascended all alone to the sbarp whistling of his engine. The wind was very strong that day, and the inventor could not think of stemming the aerial current, but the different maneuvers were effected with the completest success. The action of the rudder made itself felt very plainly, thus proving that the aerial ship had a very appreciable velocity. At an altitude of 1,500 meters, Giffard met slower currents, and found it passible at moments to keep bead to the wind. The future inventor of the injector had performed an experiment which caused him to be called by a celebrated writer of the time the Fulton of aerial navigation."
Giffard's efforts, which were renewed by .him in 1855,
arge amount although
"Such o motor, connected with s propelling screw, offer advantages over all others, from an aerostatic standpoint. It operates without any fire, and thus prevents all danger from that element under a mass of hydrogen. It has a constant weight, and does not give out products of combustion which continuously unballast the balloon and tend to make it rise in the air. It is easily set running by the simple conact of a commutator.
"I have had a small elongated balloon made, which terminates in two points and is 3.5 meters in length by 1.3 me ters in diameter at the center. This balloon has a capacity of about 2,200 liters. Inflated with pure hydrogen, it has n excess of ascensional power of two kilogrammes.
"The balloon is provided with a small Siemens dynamo machine weighing 220 grammes, whose shaft is connected hrough the intermedium of a gearing, with a very light, two-bladed helix, 0.4 meter in diameter. This little motor is fixed to the lower part of the balloon, with a secondary battery weighing 1.3 kilogrammes. The screw, under such circumstances, revolves at the rate of $61 / 2$ revolutions per second, acts as a propeller, and gives the balloou in still air a velocity of 1 meter per second for more than forty min-
utes. With two secondary batteries mounted for tension, and weighing 500 grains each, I can gear with the motor a screw, 0.6 meter in diameter, that will give the balloon a velocity of about 2 meters per second for about ten minutes. With three elements the velocity reaches 3 meters. I have With three elements the velocity reaches 3 meters.
renewed the experiments a large number of times."
It will be remembered that this model was exbibited while the Exbibition of Electricity in 1881 lasted. After these first experiments Mr. Tissandier had constructed at the Siemens works a light dynamo machine, and soon devised a new style of bichrowate of potash pile, which gave him a powerful and light generator of electricity that was more favorable than accumulators of the same weight. He then resolved to construct a screw-propelled electric balloon designed to work in the free air. M. Alb. Tissandier, his brother, joined efforts with him, and it was at the expense and with the collaboration of the two in common that the first trial of aerial navigation by electricity was made last October. The Tissandier balloon was 28 meters in length and 9.2 in diameter at the center. As we bave already given an illustrated description of it,* we need not here repeat it, but may pass on to the remarkable experiments of Messrs. Renard and Krebs.
The balloon constructed by these gentlemen is 50.42 meters in length and 8.4 in diameter, and has a capacity of 1,864 cubic meters.
The motor is constructed in such a way as to make it possible to develop upon the shaft 8.5 H . P., representing for the current at the entrance terminals $12 \mathrm{H} . \mathrm{P}$. It transmits its motion to the shaft of the screw through the intermedium of a pinion that gears with a large wheel.

The pile is divided into four sections that are capable of being grouped for surface or tension in three different ways. Its weight is 19.35 kilogrammes.
On August 9,1884 , at 4 o'clock in the afternonn, the air being nearly quiet, the balluon, being freed and possessing a very slight ascensional power, arose slowly in the air. The machine was set in motion, and under its impulsion the balloon soon quickened its pace, faithfully obeying the least indication of its rudder.
The first directinu taken was from north to south, over the plateau from Choisy to Versailles. So as not to stand over the trees, however, the direction was clanged and the fore end of the ballonn pointed toward Versailles. Over Villacoublay, about 4 kilnmeters from Chalais, the aeronauts, entirely satisfied with the bebavior of the balloon thus far, decided to retrace their steps, and attempt to descend at Chalais, notwithstanding the slight space that existed free from trees. The balloon made its half turn to the right by a very slight angle (about 11°) given to the rudder. The diameter of the circle described was about 300 meters. The dome of the Invalides, taken as a directing point, then left Chalais a little to the left of the route. Reaching the level of this point, the balloon changed its direction to the left with as much ease as it did before, and was soon hovering at a heigbt of 300 meters over its starting point.
Its tendency to descend at this moment was shown the more by a maneuver of the valve. During this time it be came necessary to run backward and forward several times,
in order to bring the balloon over the spot chosen for anin order to bring the balloon over the spot chosen for an-
chorage. At a distance of 80 meters above the ground the rope was thrown out, and, being seized by men, the balloon was drawn down to the very field from whence it had started.
In our engraving the balloon is shown in profile, at the moment when it is beginning to be set in motion. The ecrew is in front, and, in revolving, it drives the air laterally over the two sides of the large, elongated car, 83 meters
in length. We are informed that the dynamo employed was constructed by Mr. Gramme. The generator of electricity consists of a battery of piles whose nature has not been made known by Captain Renard. Tbe travelers sland in the center of the car, and one of them runs the machine, while the other governs the rudder.-I'lllustration.

Predicting the Weather from the Color or the Stars. From the fact, determined by W. Spring, tbat the color of pure water in great bulk is blue, M. Ch. Montigny explains the predominance of this color in the scintillation of the stars just before and during wet weather. The luminous rays, he argues, traversing the air charged with large quantities of pure water are necessarily tinged with the blue
color of this medium. The excess of blue thus becomes an color of this medium. The excess of blue thus becomes an
almost certain means of predicting rain. This theoretic conclusion corresponds with the resulis of his observations continued for several years past on the appearance of the stellar rays in connection with the state of the weather. During the few months of five weather in the present year blue has been much less conspicuous than in the corresponding months of previous years since 1876, when wet weather prevailed. It also appears that green, which had always
coincided with clear skies during the fine years before 1876, has recently again beconue predominant. Hence be thinks it probable that we have got over the cycle of bad seasons, and that dry weather and more normal summers may be anticipated, at least for some time to come. The above is from Natnre, and the same number contains an abstract of a paper by Professor C. Michie Smith, on green colored suns, in which be concludes that this phenomenon is due to the presence of unusual quantitics of watery vapor in the at
mosphere.

- Bomatific ankrican Suppliment, No. 416.

A German correspondent shoptice.

A German correspondent of the Railroad Gaectle says Wood working machinery in German shops is compara creasing use of iron in all parts. This is due to increasing cheapness of iron as compared with wood, and of wrought iron as compared wilh cast in proportion to its security. The use of wrought iron instead of cast is very extended. I saw barrow gauge stock building at Cbemnitz and Leipzig with
ron frames throughout, which bad absolutely no cast iron in any part except the journal boxes. The increased use of iron is regretted by some master mechanics, on account of he greater rigidity and of the consequently greater violence of shocks in train service. A surfacer, band eaw, cut-off
saw, or driving planer aud boring machine are the tools ordinarily found in German wood shops. Suctions for carrying shavings to the boiler room are not used in the shops I bave seen. The shavings are used, however, very extenweight of coal slack.
This coal slack costs $841 / 2$ cents per ton delivered at the railroad. It is fired automatically with a bopper and a screw, which pushes the fuel in under the fire. It is also fired by being run from a hopper above the fire door over a grate, inclined forward, from which it drops into the fire. The latter is raked partly back under the inclined grate, so that the fuel is well heated before joining the fire, and its sinoke products pass over the front portion of the fire on their way to their flues, and are very effectually consumed. This firing method is common, I believe, to several styles of firebox, but I do not remember to have heard before of its application to this kind of fuel, to which it is well adapted. By the use of this fuel and firing the boilers of the Chemnitz shops of the Saxon State Railway evaporate 100 pounds of water at an expense of $1 \cdot 11$ cents.

Trial of Shear Binder Harvesterm.

A competitive trial of sheaf-hinder harvesters extending over eight days was lately made under the auspices of the Royal Agricultural Society, near Shrewsbury, England. On the sixth day, according to the Engineer, the competition was narrowed down to eight machines, two of the
McCormick and one each of the Howard, Kearsley, and McCormick and one each of the Howard, Kearsley, and
Wood make having been thrown out from the previous day, leaving three of Hornsby's, two of Howard's, and one of Samuelson's, Wood's, and McCormick's respectively. In the morning nothing was done beyond testing with dynamometer, in consequence, as far as we could gather, of the next field not being staked out and mown round. It was ot ready till somewhere about one o'clock. Out of a field of 18 acres, about seven or eight were parceled off in one piece, the eight machines being required to take a preliminary run up one side and down the otber, followed by three similar cuts, offlcially recognized. Only one attendant was allowed to follow, and he was prohibited from touching the binder, unless called upon. This system gave the ordinary onlooker a much better opportunity of forming an opinion as to the relative merits of the competing implements. The test here assigned was much more severe than any previous one, partly on account of a boggy hollow in one portion of the field, and partly because of the flat condition of the crop. Hornsby's 4,569 was the first to start, and it managed to get through without much difficulty, and with only a slight pause. Next came Wrod's selected machine. It made several stoppages; a good deal of straw and grain were wasted, in consequence of the reel having been set too backward and toolow; and the delivery was hy no means perfect. Howard's No. 45 left a clean cut stubbie, but the nature of the crop made separation difflcult, many of the sheaves hanging together. A leather band in the barley caused one stop. In Samuelson's portion we noticed an undue proportion of "baby" as well as "giant" sheaves, and some loose ones. Many heads of grain were left on the ground, in laid parts the corn and straw were cousiderably knocked about and wasted, and the pressure on the driving wheel seemed to be too beavy. Still the machine got through the most difflcult portions without much trouble. Howard's No. 47 had three stops in the three journeys; some sheaves were missed, and the separation was not easy. A McCormick harvester finished the day's work; il left a few sheaves unbound, and a small, badly laid piece was uncut; but all things ennsidered, it did fairly all through.
On the next and last day they were the most varied, most exciting, and most difficult of all. The only competiors now left were Hornsby (3 machines), Howard (2), and Samuelson (1). Hornsby made a very good commencement the remainder of barley left from the previous day. The delivery and separation of sheaves were difflcult processes to manage for all the competitors, and it may be doubted whether there was a very substantial difference in the work done. To make good performances was out of the question. in one place, and presumably for that reason they were not allowed to complete their plot. In the afteruoon the judges pitched upon another piece of barley nearly an acre in exent, more fiattened than ever, with the additional disadvantase of being purposely winding and hilly. For this final test Howard's 47 and Hornsby's 4,568 machines were or-
dered out. But now the competitors were used to rough work, and they submitted to the undertaking without a murmur. Each was given a preliminary canter, and then plot. Howard, runs of about three minutes each round the
hedgehog on the second round, the knife cutting deeply into the unfortunate creature, otherwise the machine went smoothly both up bill and down dale. Hornsby's machine made as nearly as possible similar work, Howard, perhaps, baving the advantage with their very useful butting board. Throughout this day, more than previously, the work of the two machines seemed to be pretty nearly on an equality, so that when the last cut was taken as the clock struck three, the opinion was. formed that the judges would have a particularly difficuli task in arriving at a decision beyond recall. Nevertheless, an hour later the awards were announced as follows:

Class 1.
First prize of $£ 100$ for a sbeaf binding reaper, the binding material to be other than wire: Awarded to Messirs. Hornsby and Sons, for No. 4,568.

Stcond prize of 250 for a sheaf binding reaper, the binding material to be other than wire: Awarded to Mesers. J. and F. Howard, for No. 47.

Class 2.
Separate sheaf binder, the binding material to be other than wire: Prize withheld.

The " Drop" Method of Chemical Analyaid.
The customary metbods of testing medicinal agents, which are both tedious and require a larger quantity of material, can be superseded by a method which requires merely single drops of the reagent ad well as of the liquid to be examined.
For this method the following regents are needed:
Red and blue litmus paper and turneric paper.
Extract of indigo paper, which is turned yellow by hot itric acid and caustic alkalies, but not by ammonia.
Rosaniline paper as a test for alcohol.
Potassium ferrocyanide paper as a reagent for ferric salts (blue), copper and uranium (deep brown), gold (greenish brown), platinum (brownish green to reddish), thallium and vanadic acid (yellow).
Potassium sulphocyanide paper is turned decidedly yellow by bismuth nitrate, bluish hlack by salts of copper, red by solution of gold, white by mercuric nitrate, black by mercurous nitrate, and blood red by ferric salts.
Potassium iodide paper is turned red by mercuric salts, green by mercurous salts, yellow by solution of lead. For detecting chlorates 2 to 3 c . c. of the liquid are placed in a small test tube along with a slip of the paper; 1 c . c. of dilute sulphuric acid is then added, and heat is applied. If chlorate is present, the liquid turns yellow.
Mercurous nitrate paper serves when moistened to detect ammoniacal gas, which turns it black; caustic alkalies and alkalive monocarbonates stain it greenish brown to black, while the alkaline bicarbonates leave it colorless.
Silver bichromate paper turns yellow with free bydrochloric acid.
Besides these, the author mentions a number of other papers less frequently needed. The use of all consists in letting a drop of the liquid in question fall upon a slip of the paper.
The author tests for arsenic (arseuious and arsenic acids) by means of slips of sheet brass, 2.5 to 3 centimeters in length and 15 to 17 centimeters in length. The hydrochloric solution is mixed with a little oxalic acid, or the ammoniacal solution is supersalurated with hydrochloric acid and mixed with oxalic acid in order to reduce arsenic to arsenious acid. A drop of the solution is put upon a brass plate and sharply dried; the place of the drop is then washed with water, when a dark spot of a permanganate color reveals the presence of arsenic. Dark thin outlines still appear in case of dilution with 150,000 parts.
In cases where the papers and the brass plate are not used the auther places the two drops (of the reagent and the liquid in question) near each other upon a slip of glass, and mixes them. The transparency of the glass renders the slightest turbidity visible.-Dr. H. Hager, Pharmacout. Central Halle and Chemiker Zeitung; Chem. News.

Rallway from Sweden to Lapland.

The North of Europe Railway Company (Limited) has been formed in London, for the purpose of constructing a Fjord in the from Lulea in the Gulf of Bothnia to Ofoten Fjord in the North Atlantic Ocean, and thereby open up the rich stores of mineral wealth in that part of Lapland, and especially in the mines of Kirunavarra, Liosavaara, and Gellivaara. The legal guarantee has been deposited with be Swedish and Norwegian Governments, and Mr. P. Von Ehrenheim and Captain C. G. Hjertaboth, gentlemen of high standing in Sweden, and Lieutenant Lund in Norway, have been appointed resident directors. It is expected that one-
third of the line, the Lulea-Gellivaara section, will be comthird of the line, the Lulea-Gellivaara section, will be comevel and easily traversed the local authorities from the opening up of the districts by this. railway and also in peopling the northern provinces of Sweden, which now consist principally of waste lands, and are almost uninbabited. The province of Norrbotten, in Lapland, contains 105,000 square kilouneters out of the
440,000 which form the whole of Sweden (uearly one fourth of the kingdom), while its population only one-fourth 92,000, or not quite one person per square kilometer; nevertheless Norrbotten is Sweden's ricbest province, its irou ores being unsurpassed anywhere in quality or magnitude. The great drawback to this province has always been the want of communication with the other parts of Sweden; along the

decibions relating to patrets.

United states Circuit Court.-Distriet or Indiana. CAR AND MANUFACTURING COMPANY et al
Car Braks Bhoe Patent of James Bing, grantod Oct. 6, 1888. Woods, J. (charging jury):
In an action at law for infringement of a patent all parties who participate in the infringement are liable, although some are simply acting as officers of a corporation. All parties who participate in a tort or trespass are liable, and a man cannot retreat bebind a corporation and escape liability for infringements in which he actively participates.
It is for the court, as a matter of law, to construe a patent, and for the jury, as a question of fact, to determine whether it has been infringed, and the amount of damages that should be allowed.
In an infringement suit the burden is on the plaintifi to show the amount of damages he has suffered; and if he furnishes reasonably satiafactory evidence on that subject, he is entitled to substantial damages; otherwise to nominal damages.
On the question of damages, it is competent for the patentee to prove the prices at which licenses were granted under the patent while it was in force; but in order to be competent evidence of value, the prices agreed upon must have been prices fixed with regard to the future use, when, there being no liability between the parties, they are presumed on both sides to have acted voluntarily, and therefore to have made up their minds deliberately as to what was a fair price. Such arrangements, licenses thus granted, fees thus fixed, are competent evidence to consider in determining what the actual value of an invention is and What the recovery ought to be for its use.
It is not competent for a patentee to prove the prices paid for infringements already perpetrated. Such settlements are not at all admissible on the subject of value.
The value of an invention for which an infringer is liable is the value at the time of the infringement. A man who has got a palcnt owns it as property, and if avybody sees fit to infringe it he is bound to pay for its fair value; and the fact that there is sometling else as good or better does not entirely destroy its value, but may affect it.
The doctrine of a confusion of goods has no application to a suit for infringement of a patent, especially where there is only a confusion of bookkeeping, and not a coufusion of the articles themselves, the articles being incapable of mixture.
If a party shors an unwillingness to let the truth ont, sud keeps back facts and the means of getting at facts in his power, then the jury is warranted in drawing the strongest possible inferences against him which may be drawn from the evidence actually given in favor of the other party; but if he comes forward with his books, furnishes all the evidence in his power, and is fairly candid in the matter, no inferences should be drawn against him, except such as are fairly drawn from the evidence adduced.
Every one is bound to take notice of the existence of a patent and of the rights of parties under it. Like the ecord of a deed to real estate, the record of a patent at Washington is notice thereof to all the world.

United States Oircuit Court.-District or Miamachusetts.

COLLINS COMPANY we. COES et al.
Patent of Lucius Jordan and Laindor EE. Smith, Oot. 10, 1865, for an Improvement in Wrenches. Before Gray and Nelson, Judges.
Gray, J.:
The application to a device of a feature which had already been in use for the same purpose in another form of tool lacks the invention requisite to support a patent within the decisions of the Supreme Court.

Abstract of Paper on Training for Mechanical Engineora.

BY GNO. I. ALDIM, WOBOEETER, MASs.
Progress in education is secured by forces outside and above the schools. When a few have made discoveries in science, or advancement in art, or in engineering, they have set a standard which must thereafter be the aim of edu-
cators. Mechanical engineering as taugit in the schools is cators. Mechanical engineering as taugit in the schools is
subject to the general law of progress. It is taking a high rank as a liberal profession, and offers a broad tield for the activity of the best powers of young men who enter it. The schools must look for progress in the education and training of engineers to two forces, viz., the sciontific attainments and practical achiedements of those foremost in engineering science and practice. A school for training engineers is properly a professional school, and should bold its standards of professional work sufficiently bigh to secure the success of its graduates, that it may be able to demand of candidates a liberal course of preparatory study for matriculation. It profession, and to lay the sure foundations for growth which shall enable them finally to take up the uninished work of the engineers of this generation and carry it forward into the the engineers of this gene
next century of progress.
To aim at practical achievements is not enough, for the man is more than his profession. Scientific attainments are not alone sufficient. The ability to apply knowledge to practical ends is valuable in the development of the individual as well as essential to professional success. The ne-
cessary scientifc attainments are more than mere knowledge of facts and principles. The evidence of such attainments
is the ability within a suffciently wide range of inquiry to give accurate answers to definite questions. To secure thi ability the studies in the curriculum of the schools should be taught by the most thorough and direct methods, with the aid of numerous well selected problems, and practice in laboratories. These problems should approach as nearly as possible the character of actual engineering problems, to the end that the student may acquire that complete assimilation and personal appropriatiou of the subjects taught throughout the course which is characteristie of the scientific attainments toward which the school should aim.
The practical achievements of the engineer are closely related not only to bis scientific attainments, but also to the progress of machine shop methods and practice. All his deaigns must be sent to the shop in a form consistent with such practice. To secure a knowledge of machine shop methods, limitations, and possibilities, most scientific schools of to-day have a practical or shop department in their engineering course. It is important that the successful engineers of the country should say what the standards of such a department should be and what it should accomplish. The shop is made a department in the school, to add methods as well as facritices of instruction. It should not, therefore, be such an institution as would be developed out of or by the school, but should be superior in all its ap. pointments, for practical work. It should have not only the tool, metbods, and facilities, but also the business, of a
leading productive machine shop, with unusual means for leading productive machine shop, with unusual means for gineering problems. Such a shop is able to adopt in its full measure the modern method of instruction aimed at in other departments, bringing the student as close as possible to the realities to which bis studies are intended to direct his thought. The instruction will be in accordance with the economical principle of teaching analysis and synthesis in close relation. Work on real, practical, valuable products has important elements of training, which are in a great degree lacking in work on simple pieces. It cultivates practical judgment, and gives real experience and available skill. The high standards of practical achievement necessary to secure the best efflciency of the shop training are kept up by
the demands of the open markets. The giving of instruction to the students will lower the productioc capacity of the shop, but need not impair the quality of its producta, and must not, if they are to be sold at the highest current prices. Such a business shop will stimulate to breadth and thorough-
ness of instruction in the theoretical studies of the school, ness of instruction in the theoretical studies of the school,
and will itself ultimately reach a higher standard of practice, on account of its relation to the school.
It will give students who spend about ten bours per week for four years as much skill (and more general ability) in the shop as an ordinary three years' apprenticesbip. This skill and ability open to every graduate a wide door to the profession, and secures to him independent selfsupport. The shop unites the study of theory and practice, and promotes economy of the school time by variety of occupation. From fifty to one hundred thousand dollars for shop and one hundred students, and from three to ten thousand dollars per year would be required for current expenses. Experience shows that money expended in founding and fostering such a department yields large returns, both to the indi vidual students and the engineering profession.

The Analysis of Ammoniacal Liquors.

A novel method for the quantitative determination of carbonic acid in the presence of alkaline sulphides, sulphites, and hyposulphites is described in a recent issue of the Ohemical Neros, into which it is translated from the Zeitschrifl fur Analytische Ohemie; and as it appears to be peculiarly adapted for use in the analysis of ammoniacal liquors, we
here reproduce it. The process is as follows: The substance here reproduce it. The process is as follows: The substance to be analyzed is placed in a flask holding 800 c.c., and fitted with a choutchouc stopper, having two perforations. and reaching down nearly to the bottom of the flask Through the other aperture it is connected air tight with the following pieces of apparatus: (1) A Liebig's bulb tube, containing a dilute soiution of permanganate, slightly acidi tied. (2) A U-tube, filled with calcium chloride. (3) A
Liebig's bulb tube filled with potash lye (sp. gr. 127), and Liebig's bulb tube flled with potash lye (sp. gr. 1.27), and
weigbed. (4) A U-tube, filled with calcium clloride. After the whole has been joined together, and the connections have been found air tight, a solution of permanganate contain tube rammes per liter is allowed to flow down the funne tube, slaking occasionally until the solution takes a perma nent dark red color. The acid necessary for the decomposition of the carbonate (dilute sulphuric, nitric, or acetir, but
never hydrochloric) is next introduced. The cock of the funnel tube is closed, and the decomposition of the carbonate and expulsion of the carbonic acid are effected by the
application of heat, very gently at first, but afterward application of heat, very gently at first, but afterward
raised to a simmer. The heat is then withdrawn, the cock opened, and the funnel tube placed in connection with a washing bottle, filled with potash lye, when air is aspirated through the apparatus for 30 to 45 minutes. The increase of weight in the Liebig's bulb tube containing potassa gives
directly the weight of the carbonic acid. The total sulphur present in the sulphur compounds can be determined in the same portion of the sample. After the determination of the carbonic acid, the contents of the decomposition flask and
of the Liebig's bulb tube containing permanganate are rinsed into a beaker. The excess of permanganate is destroyed by the addition of bydrochloric acid and the application of heat, which at the same time redissolves any precipitate. The liquid is boiled to expel chlorine, and the sulphuric acid is determined in the ordinary manner. Of course, only nitric or acetic acid must have been used to decompose the carbonate.

What Constituter One Houce.

A house, according to Mr. Justice Kaye, of England, is an edifice wbose occupauts may get in or out of without recourse to a door or staircase likewise used by occupants of neighboring apartments. It appears that the tenant of a piece of land held it under a covenant not to build on it a house worth less than $£ 400$. He began to build two bouses, but the municipal authorities restrained him from carrying out bis plans, on the ground that if completed as proposed there would not be enough air space behind them. He then lessened the beight of the buildings, and to bring bimself within the covenant, established communications between hem on the ground floor, and called tbem one bouse. Each had a street door and a shop front, and luzzet her they cost more than $£ 400$. In Justice Kaye's opinion a common ashpit and closet, and a door between them, do not convert two houses ato one. If they did, adds Building, there are places in this city where three or four tenement buildings would, in a legal sense, be but one house.

Leut. Greely's Arctic Discoveries.

Althoingh yet so feeble as to need to apologize to his hearers for his weakness, Lieut. Greely read a brief paper before the British Association, as follows:
"The geographicul work of the Lady Franklin Bay expedition was nearly three degrees of latitude and over forty degrees of lougitude. Starting from latitude $81 \cdot 44$ and longiude $84 \cdot 45$, Lieut. Lockwood reached, May 18, 1882, on the north coast of Greenland, latitude $83 \cdot 24$ and longitude $40 \cdot 46$. rom the same starting point he reached to the southwest in May, 1888, Greely Fiord an inlet of the Western Polar Ocean, latitude $80 \cdot 48$ and longitude $78 \cdot 26$. This journey to the northward resulted in the addition to our charts of a new coast ine of nearly one hundred miles befond the furthest point seen by Lieut. Beaumont, R. N. It also carried Greenland over four hundred miles northward, giving that continent a much greater extension in that direction than it had generally been credited with. The vegetation resembled closely that of Grinnell Land. Among the specimens brought back, the Arctic poppy and several saxifrages were identified. About the eigbty-third parallel, truces of the polar bear, lemming, and Arctic fox were seen, and a hare and ptarmigan were killed. Lieut. Lock wood and myself journeyed across Grinuell Land, and examined into its physical condition, discovering what may have been hitherto unsuspected, that between the heads of Archer and Greely tiords, a distance of some seventy miles, stretches the perpendicular front of an immense ice-cap, which follows closely from east to west the eighty-first parallel. The average beight was not less than 150 feet. The undulations of the surface of the ice conformed closely to the configuration of the country, so that the variations in the thickness of the ice-cap were inconsiderable. In bout sixty miles but two places were found where the slope and space were so modified as to render an ascent of the ice possible. This ice-cap, extending southward, covers Grinnell Land almost entirely from the eighty-first parallel to Hayes's Sound and from Kennedy Channel westward to Greely Fiord in the Polar Ocean. In connection with the line of perpetual snow, I may say that on Mount Arthur it was not far from 3,500 feet above the sea. From barometrical measurements it appeared that the crest of Grinnell Land was of about 2,500 feet elevation in front of the southern ice cap and 3,000 feet near Mount Arthur."
The paper was enthusiastically applauded. Mr. Henry Lefroy said, amid unbounded enthusiasm, that the British Association felt honored in teing able to bonor Lieut. Greely as the brave explorer who had surpassed the billiant achievements of a glorious line of predecessors, and had been successful in the honorable desire to plant his national flag nearest to the North Pole, thus exceeding the noblest efforts ver made. Referring to the persistence of purpose shown by Lieut. Greely's party in bringing back the pendulum apparatus, he remarked that there was nothing nobler in the annals of acientific heroism than the determination of these
hungry men to drag the cumbersome box along their weary hungry men to drag the cumbersome box along their weary way.

Intoresting Experiment with Magnets.

A curious and instructive experiment bas just been made by M. Duter, who took a number of very thin plates or disks of tempered steel, about a millimeter thick, and from five millimeters to forty centimeters wide, and built them into piles, the adjacent plates being sometimes in contact, and
sometimes separated by a sbeet of paper or cardboard. These piles were then inserted in a very powerful magnetic field, and witbdrawn. It was then found that they had become powerful permanent magnets; but when the individual plates were separated they seemed to have lost their magnetism. On building up the pile again the original plates have not really lost their polarity on being withdrawn rom the exciting field. Some of Professor D. E. Hughes'
recent experiments have a great similarity to M. Duter's.

ENGINEERING INVENTIONS

A valve gear has been patented by Mr. Joept Ralstin, of San Jacinto, Ind. This invention relates to reversing gear for plain alide valve engines, and

AGRICULTURAL INVENTIONS.

A grain drill has been patented by $\mathbf{M r}$. samuel H. Koble, of Hickman Mille, Mo. This invention covers certain novel features in the construction and arrangement of parts to promote convenience in
operating and controlling grain drills, and to secare aniformity in the distribution of seed.
A check row planter has been patented by Mr. Charles R. Dollarbide, of Paris, III. By this inention the seed dropping mechanism is operated by wheels by means of projections on the chain, which are placed in contact with the ground, the device having also various novel features of construction
A self-dropping corn planter has been palented by Mr. John A. Jolinson, of London Mills, III. The self-dropping slide is connected with the axle of
the drive wheels by a wheel on the axle, aud prothe drive wheels by a wheel on the axle, aud pro-
vided with cams operating upon a vibrating frame, vided with cams operating upon a vibrating frame,
pivoted atone end of the carriage frame, and connected at the other end by a wire or attached to the seedtop of the axle, with other novel features.

ITISCELLANEOUS INVENTIONS

An improvement in fences has been patented by Mr. Charles C. Hinkle, of Hazleton, Ind. Tuis invention relates to portable board fences, the con-
struction being such as to make a frictional joint bestraction being such as to make a frictional joint be-
tween the panels, with varioas other novel fealures.
A fitting for gas brackets has been patented by Mr. Henry P. Drew, of New York city. This of parts to prevent gas from escaping, strengthen the brackets, and prevent the swings from being turned
A steam boiler bas been patented by Mr. George W. Shealey, of Marshalltown, Iowa. The object of this invention is to provide an economical food
cooker and boiler for steaming food for stock and the cooker and boiler for steaming food for stock, and the
device is one which has great working capacity is dence is one which has great working capacity, is
easily operated, and is adapted to varions kinds of fuel.
A fire escape has been patented by Mr. EdWard Painter. of Easthampton. Mass. It is constructed of two endlers chains or cables passed over notched
wheels mounted on shafts journaled at the top and Wheels mounted on shapts journaled at the top and
bottom of the building, the chains being united by bottom of the building, the chains being anited by
cross rods, and buckets being hung on the chaing.

A door sigual has been patented by Mr. Alonzo L. Dorn, of Chicago, Ill. It consists of a conrivance to disclose a word signal and to sound a bell in connection with the unlatching wire extending from the front door to the interior or upper portion of the
house, to admit people withont descending the stairs
A balanced stack roof has been patented by Mr. Frederick W. King, of Farmington, Iowa. It has
slotted posts and rafters covered with slotled posts and rafters covered witb boards and
shingles, with ropes attached to the roof, passing over palleys pivoted in the apper part of the slotted posts with balancing weights attached to their ends, so the roof can be readily raised and lowered.
A band elevator for packages has been patented by Mr. Frank Schamann, of Memphis, Tenn. a pivoted clamping arm, making a device for use in depositing packages and small articles upon elevated shelving, or for taking them down, thas dispensing
A log binder has been patented by Mr John Flynn, of Roscommon, Mich. The invention consists in a lever with a grab and a locking latch pivsome fixed object, one link being placed in che grab the chain drawn tant, and the lever locked on the frame by means of the larch.
A sping holder for napkins has been patented by Mr John C. Tutt, of Kansas City, Mo. This invention combines with the end of a spiral spring a
sharp pointed hook with a rigld cross bar, one at eack end of the spring, so the contraction of tbe spring draws the hooks together, and holds the napkin, handkerchie, or other garmeat to the desired adjusiment. A trace carrier has been patented by
Messrs John C. Glaser and Charles A. Cammings, of Messrs John C. Glaser and Charles A. Cumminge, of
Monticello, Towa. This invention consists iu a metalMonticello, Towa. This invention consists in a metal-
lic loop with sockets adapted to fit and slide upon a lic loop with sockete adapted to fit and sllde upon a
metallic bar or slide secired to the skirt of the saddle, a thumb screw being screwed into the slide to limit
A padlock bas been patented by Mr. William W. Richards, of Waskington, Ga. The invention
consists mainly in the peculiar form of locking bolt and its combination wlich a spring, a tumbler, and key, the revolving tumbler barrel swlveling on the case, and
the key having bits adapted to engage with and pull down the bolt.

$$
\begin{aligned}
& \text { A fender for wagon bodies has been pa- } \\
& \text { tented by Mr. Christian L. Haubeil, of Waverly, Ohio. }
\end{aligned}
$$

A friction balanced spring roller has been This Invention covers an improvement on a a former pa which is cheap, durable and rellible, and in some caees, for very heavy window shade, a rabber washer is employed upon the spring head.
A gearing for windmills has been patented by Mr. Charles W. Roberts, of Oskaloosa, Kan. There mitting rotary motion from the wheel ehaft of the mill to the line or driving shaft, with provision for certain of the driving gears to run Idle in a back direction
when the mill shifts or turns in the wind.
A railroad switch has been patented by Mr Abraham Agres, of New York city. This invention ree-
lates to that class of railroad switclies which are ope lates to that class of railroad switclies which are ope
rated by the weight of the horses drawing the cars, the rated by the weight of the horsas drawing the cars, the
ewict tongue being shifted by the movement of a liability in action
A wagon spring and gearing has been pa invention covers a novel construction and arrangement of main and auxiliary springs in wagons, making a gearing that is substantial and comparatively inexpensive combined with which is a fifth wheel that relleve A buan the king boll.
A button attaching implement has been patented by Mr. Milton H. McNair, of Meadville, Pa.
This invention relates to improvements in a magazine implement where the fastenings pass through the eyes of the battons, and consista in a novel constrnction and arrangement of parts, and the implement may be treadle or other power
A pail, tub, or barrel of novel construction Porms the subject of a patent isaned io Mr. James W
Weston, of New York clty. The invention consigts in the comblnation, with head sections and key, for clos ed or headed receptacles, of a removable support m
follower, to close the openings of the adjacent hea Pollower, to close the openings of the adjacent head
sections, and there is also a novel device of sampling hole and plag.

A lead press has been patented by Mr. William A. Shaw, of Pittsburg, Pa. This inveution covers a novel constraction resulting in a daplex ma-
chine in which one charge of metal cools to proper consistency in position in its holder or cylinder, while another is being forced through the die of a differen cylinder, bo that no ume is lost by the attendants in A carriage pole or shaft has been patented by Mr. James M. Dille, of Cooperstown, Pa. The invention covers a novel construction of devices for a part of the thills or pole to so attach the horse that he
will have free and unobstructed movement of his limbe Wind to relieve both the brose and the occapant of the
and carriage from
A boiler for heating buildings has been patented by Mr. William H. Byram, of New York city it is composed of independent sections arranged one by tongue and groove joints, and the sections secured together by bolts, to make an efficient and economical sectional boiler, maintaining a postive circulation, and comparatively or wholly free from leakage.
A bicycle has been patented by Mr. William Clemson, of Middletown, N. Y. In combination with the wheels and fork, levers at or near their cen-
ters on the cranks, bars connecting the front ends of the on che cranks, bars connecting the front ends of evers and foot rests on their rear end, to give greater leverage aod enable the bicycle to be more eaaily

A fire extinguisher has been patented by perforated, botule holding cylinder is. A revolvable. a vessel, and there is a shaft for revolving the within the shaft being also arranged to liberate acid and mix it with the contents of the vessel, making a simple portable fire extinguisher, which can be quickly A combined lint room and press has been patented by Mr. William B. Padgett, of Batesville, Ark. and provides an improved contrivance for tramping the cotton in the press case, avoiding the former laborlons and anhealthy method of tramping by the foet,
while doing the work more effictently and with leas ex-

A harness has been patented by Mr. Cicero . Ferrill, of Shubata, Miss. This invention relates to and consists in part in adapting the ordinary breant col, lar to be ased in connection with devices for attaching thills to a pair of hames directly, to dispense w!th all other parts of a harness except a collar and breeching, the latter attacted to the thills.
A fire escape has been patented by Mr. Joseph M. Hodson, of Amherstburg, Ontario, Canada. It is formed of a casing on which a dram is pivoted, on
which a wire is coiled, the wire being passed through Which a wire is coiled, the wire being passed throngh
apertured lags or brake levers pivoted in the casing, the wire also passing between transverse plins or rods from descending too rapidily.
A workbox has been patented by Mr .

$2 \pm=2=$

A milk cooler has been patented by $\mathbf{M r}$ Francis S. Hartzell, of Bean Pa. The object of this cream in the shortest time, and for this parpose is pmo vided an outer and inner metallic tank of special conruction, so that the water spaces furnish a very largo cooling surface, and the contents of the can are quickiy and uniformly cooled.
A photographic camera has been patented Mr. Walter Clark, of New York city. The invenon provides a camera partition in front of the adjastabe reflector and compartment or chamber in which he sensitive plate is exposed, thas dividing the hox into two sections, whereby provision is made for inclosing the lens case and working mechanism within he box, and doing away with objectionab
The manufacture of solidified compound metals forms the subject of a patent isened to Mr. Ferinand E. Canda, of New York city. This inventio more metals or anoys, and then coating the particles Fith tin or Babbitt metal or other alloy melting at a low temperacure, atter which the mirture so made may be treated in a die or mould, after huring been suilably heated.

The Oharge for Ineetion under this head is One Dollar a line for each insertion; about edght woords to a line. as early as Thitrsday morning to apparar in next issuce. 121/2 inch Portable Reflecting Telescope, \$300. TydeMake a fortune by forming Con
Make a fortune by forming Company in your etty for the speed and one-half cost horse roeds No locomotive, cinders, smike, nolse, hence majority property owners
favor it. Stimulates growth; enhancess values; has values; has N. Stewart, 3041 Danphin, Phila., U. S. Agt.

Wanted.-Pariles prepared to manufacture AgriculParry. Seot., 1001 Maln St., Richmond, Ind.
Mechanics and others sen
Wanted. - Δ competent man with nnexceptional rep rences as foreman in an optical workshop. "Foreman," tation "D," N. Y. City Post Omce.
For Sale.- One 12 Horse Power Westinghonse En-
dnes one 16 Horse Power Westinghouese Boller, anes one 16 Horse Power Weatinghouse Boller, with
steam pipe, shafting, and attingsi bailt last year; used steam pipe, shafting, and attings i built last year; used
only 5 months : perfect order. Wni be sold at a bargain. Address or apply to Colline Arnold. 418 River St., Troy
Lin
Linen, Cotton, and Ruhber Hose,
an
arees. Greene, Tweed $\&$ Con New York.
Sbafing For Sale.- Exceilent 2d hand, whit its conpnugs and couplink bolts all Atted, true, and polished;
With or without hangers, as customer may profer an
 1W": Send for fun particulars and pricos per 1b., stating
size and amount required. Forsaith Machine Co., Manchester, N. H.
For Sale.-Two new, Arst class engine lathes ; each back-z'd, sc.-cut, rod-f'd, power oress rd, compound
 Wanter.-A competent head draughtaman thoroughly
conversant with the construotion of injectors, who cai assume superintendency of factory; salary no object. Ress ind Reqnired.-Cash capital of $\$ 5,000$ to advertise and power and ecanomy of space in all innds of Belt Driving machinery. This patent has already been adopted
by one of the princl pni electric light companies of this oountry, and is in use in Fngland and France. Atrention of a manufacturer with the above amount to invest is good investment. For full particulars apply to 8 . Sam per \& Co., No. 184 Pearl Street, New York.
Tue Cyclone Steam Flue Cleaner on 30 days'
rellable parties. Crescent Mfg. Co., Cleveland, 0
For Steam and Power Pumping Machinery of Single and Duplex Pattern, embracing boller feed, fire and low pressure pumps, independent condensing outfts, vac
uum, hydrallic, artesian, and deep well por pressors. andress Geo. F. Blake Mfk. Co.. 44 WashingQuinn's device for stopping leaks in boiler tobes Address S. M. Co., South Newmarket, N. H.
Mills, Engines, and Boilers for all parposes and of
every description. Send for ctrcalars. Newell Univer ail Mill Co., 10 Barclay Screet, N. ₹.
Wanted--Patented articles or machinery to manafac
ture and introduce. Lexington Mfg. Co., Lexington, \mathbf{K} Brash Electric Are Lights and Storage Batteries. machine gives 65 Aro Lights with 45 horse power. Our
mor Storage Battery is the only practical one in the market. Brush Electric Co., Cleveland, 0.
"How to Keep Boilers Clean." Book
Sames F. Hotchikiss, 88 John St., Now York.
Stationary, Marine, Portable, and Locomotive Bolle Presses \& Dies. Ferracute Mach. Co., Bridgeton. N. I,
The Hyatt fiters and methods gaaranteed to render
Send for Monthly Ma
Send for Monthly Machinery List
to the George Place Machinery Company,
Chambers and 103 Reade Streets, New York,
$\pm=\square=$

Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumplng
tion. Send for oatalogne.

Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts. pollshing compositions. etc. ComNewark, N. J., and 92 and 94 Liberty St.. New York Sapplement Catalogue.-Persons in pursuit of infor nation on any spectal engincering. mechanical. or scien-
the sabject, can have catalogue of contents of the ENTIFIC AMEMICAN SUPPLigMicnt sent to them tre The SUPDi,knesty contalns lengthy articies embracing the whole range of engineering, mechanies, and physl-
solence. Address Munn $E \subset \mathbf{C o}$. Publishers, New York. Heary Walrus Leather for polishing. Factory supSt. New York.
Machinery for Light Manufacturing, on hand and Cartis Pressure Regulator and Steam Trap. See p. 78. Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 77. Drop Forgings. Billings \& Spencer Co., Hartford, Conn. The Chester Steel Castings Co., office 407 Library St. 5b,000 Gear Wheels. now in use, the superiority of thejr Castings over all others. Circular and price list free The Improved Hydraulic Jacks. Punches and Tab Expanders. R. Dudeoon 24 Columbla St., New York Priction Clutch Pulleys. D. Frisbie \& Co., Phila. Tyght and Slack Barrel Machinery a specialty. Jobn Renshaw's Ratchet Drills. No. 1, \$10; No. 3, \$18.
Cash with order. Pratt \& Whitney Co.. Hartford, Conn Electrical Alarms, Bells, Batteries. See Workshop
Recelpts, v. 8, \&8.00. E. \& F. N. Spon. 35 Murray St.. N.F.

HINTS TO CORRESPONDENTS.
Name and Addrease must accompany all letters, information, and not for plnblication. This is for our
References, former aricles or answers shoald girences do pormer aricles or answers shonld
give paper and page or number of question
In uifes not answered in reasonable time hould some answers require no will bear in mitle researh, that
though we endeavor to reply to all, either by letler or mail, each mast take his turn. personal rather than general interest. and requests
for Prompt Answers Ry Letter. shoulde
accompanied with remitance of \$1 to
to the subject., accoording such service without remuneration.
Bcientinc American Supplemente referred
to may be had at the office. Price 10 cents to may be had at the office. Price 10 cents each.
minerale bent for examination should be distinculy
marked or labeled.
(1) G. H. asks: On what part of the boiler does scale mostly collect-on shell or fuye? . A. It
depends upon construction and way of overating. An
(2) Mrs. T. P. J. asks if there is any way removing rast from cat steel ornaments. A. There (3) W. B. asks a recipe for making the iquid used in the brilliant gold paint manufactured in Baltumore, or a liquid that would do. A. We do not know what is used in the preparation of the paint you
mention, but benzine and parafline are sometimes em. (4) For this purpose.
(4) F. A. J. asks what the fulcrum of a safety valve is. A. The fulcram is the center on which
the lever moves. 2. What is meant by an antomatic he lever moves. 2. What is meant by an automatic ongine A. An antomatic engine is one governing its
peed by the work it does, or having cut-off governors (5) A. S. B. asks what to put in hard water o keep lime from forming in his water pipes that feed his bathroom. A. A little caustic soda put into the tank
will tend to break ap the lime scale in the hot wate pipes. Abont an up the lime scale in the hot wate (6) J. H. says: We have four sections of dry docks here in the Manatee River which are raied by hand pamps; why is it that the pumps work so wach harder when we raise a large schooner than when
we raise a light one? It looks as if we were pumpin water from a reservoir, and the weight were pumpin effect on the pumps. A. Your pumps work harder on acconnt of the increased height of the column of water (7) S H B
() S. H. B. asks for a good formula for gether one pound of resin and add two fluid drachm of linseed oil. While the mixtare is warm dip a spatals no l , and spread what adheres to the blade on foolscap paper. Different samples of resin require varying
proportions of oil to make fi spread properly
(8) J. H S.

Ivania req. asks: Is there a mine in Penn sare of 1,500 pounds to the square inch, for the purpoes of pumping out water! A. No The pressure is somepipe and fitings have to be tested to 2,000 pors." so that (9) D T W.-To (9) D. T. W.-To run water mixed with wise according to ones fancy, is allowed to dro quickly into a little funnel at the top of the glase mhe $\hat{V}=$

This carries air in with the drop, and may be managed
so as to represent a string of colored ur silver beads,
(10) C. H. K. asks if any of the readers of
the Sctentific A merican

September 27, 1884.]
§rixntific Amtricau.
(12) C. B. S. -The paint peels off the smoke stack becanase it is too thick. Use plumbago, lampblack, and boiled lingeed oil. Thin with turpentine.
Scrape off the old paint. Ii the brase of the boiler head is alwayy hot. you can clean it with washed
(13) W. P. asks: What is the best wood to make a banjo with, and what kind of wood is used by
the makers? A. We believe that the kind of wood used in a banjo has very little infuence on its tone. Curled or pin mapie is larkely ueed. Any etrong wood capa-
ble of being tienmed and bent mas be used for tre ble op being teamed and bent may be used tor the
hoop, and the kind of wood employed for the neck is merely a matuer of tate.
(14) C. G. R.-We know of no reliable method of plating with nickel without a hatery, or tis
equivalent in the ehape of a dynamo. You can tin equivalent in the ebape of a dynamo. Yon can tin artucles by cleaning them thoronghly, and
in metted tin covered with wax or tallow.
(15) T. R. asks how to make a solder that will come off easily withont belng heated after being
pat on. A. We know of no solder that will answer put on. A.
this parpeee.
(16) W. D.-We know of no solder that can be nsed on tin withoot resin, acid, or eome other
form of flux. Oul is sometimes used unstead of resin.
(17) G. B.-The lenses of a magic lantern will answer for a camera; it is not nacommon to one
camerat tubefor mazic lanteran. Mapect lantern tubes, a general thing, are non-achromatic, and a tabe of
(18) H. C. B.-The phonograph cannot be applied in the manner suggested by yon. It is necesany effect. The phonograph is the only instrum
now known that will record ariciculate counds.
(19) P. McC. says: I have a triangular boxwood ecale that is dull in appearance and loses distinct
nese by nee. How cau I varnish it zo that it will re-

oot of French spirtlvarnish would improve your gcale.
(20) J. K. C. asks the focal distances of the different glasees in the eyepiece as shown in Fig. 10 .
SurrisusNT, No 890 . A. Bekinntug at the eyd end, the focal lenkths are. respectively 1 inch, 2 inches, 1% inches and $14 / 4$ inches.
(21) E. F. McR. asks the proper method to clean olly waste. A. Place the waste in a aolution of
water and sal moda, and then blow steam through the
mixture.
(22) W. B.-" Boiling coal tar" thickens
W. It aurd makes it re
volatile element.
(23) J. M. asks how long it takes a train to
come to astandastill when the Weatioghoose brakes are put on. and what caasees them not to act sometumes?
A. A train running forty miles an hoor can be stopped A. A train runing forty miles an hoor can be stopped
insme of 50 feeto a a level. The irain will not stop so quickly if the brakes become locked on the wheels. (24) R. W. asks if the condensing of steam an ordinary locomotive boiler, atier the ire is pat
out at night. will canse a sumflent vacuum to draw walar rrom a cank, the waser in which is but litule
belox the level of the water in the boiler, or will it canee a vacuam at alls A Yes; it will draw the boiler
nearly fulit it he evive on the feed is not cloeed, proVided that the enfety valve, gange cocks, etc., are tight,
and atso depending somewhat on the temperature of the atmosphere. More apt to do so in winter than in
(25) L. J. S. writes: We have an artesian down 380 feet with 3 inch pipe; the water does not come up any higher than \#j feet from the surface, and we are pnmping it out. Now, about ten years ago this
wel! was bullt, and was bored down 525 feet; it then filewed oot of tabing at gurface; one year atter this it
was drilled deeper,down to ihe preeent depth 1,100 feet -and the water stopped flowing and we had topump
ever since. Now I would like to all this well up with some material or plag it so that it will only be 523 feet oep, as it originally was, and think it will then how drilled well for $11 .$, distance beween 5×3 feet and the
botloom containa 112 cabic feet. As clean sharp sand is botiom containa 112 cabic feet. As clean sharp sand is
the safest material to all in with. we recommend it. Suart hy slowly illing in 25 cabic feet, and observe
whether the water rises; if not, another 25 cubbic feet, Whether the water rises; if not, another 25 cubic feet,
so on until you have put in 112 cubbic feet. Then soond so on until you have put in 112 cobic feet. Then soond
the well. and if the sand has not gone the same way
that the loet water went, you ehould find botiom at boont 5 so feet, with a restoration of the old fow.
(28) N. W. asks: 1. What saving in friction is eflected by anti-friction rollers, say 1 Inch
diameter, surrounding an axle of 2 inch diameter? 1 diameter, surrounding an axile of 2 inch diameter? I
reter to rollers whose eurfaces wuch the axile and to box, not to rollers which turn on axles of their own.
The saving of the latter is easily calculated, but the former seem dificult becanse they grind against each other. A. Friclon rollers should not gritnd against each other, but should have end bearting runnigg In a
ring, which keepseach roller in its proper place. This ring. which keeps each roller in its proper place. This
form bas the least friction. We have not the data for the amount. 2. Haswellis work on Engineering, page 15 poondes per ton and that of trialns only 8 locomotive is 15 pounda per ton and that of traling only 8 poands per
ton. Is this true, and if so, why goo A . The difer-
ence offriction in locomotives and cars arises from the (27) J. C. asks: 1 . Is there any formula for
Ifferent wining the lifting power of

determin not say nets. A circums for dete fohould doction der 24 w

(28) R. S. N. asks: (1) Is there any sodium
 rate (KCio, \& A. There is. 2. Conid it not be prodaced in the same way 28 the KClO ? . A. The simpleas
method of preparing sodium chlorate is by treastiog hy drofaosilicice acid with potaselum chlorate, piving ribe acid thus formed with sodium carbonate. 8. In my Barker's Chemistry I And the formala for sallipeter to

 menclature. 4. Conald not a tomperature sumicientuy
higg be produced (and by what) to canse the combus tion of nitrogen in orygen or airf A. Nitrugen wil burn in air or oxygen when sn elecrric spark is pasead
throunh the mixture. s. ought unwashed nlirogiscerine to explode under the hammer? A. If pure ittroglycerine is placed upon an anvil and struck with a ham mer, only the particle receiving the blow explodees, catat
tering the remainder. 6. In attempting to make nitrotering the remainder. 6. In attempting to make nitro-
glycerine I put the three ingrodients cogether and agi-
 a brown liquid. What were these, and why did I no aucceed in geting the nitroelscerne? A. The gas wa
the raporn of the decompoed nitric acid, and the colora tion of the liquilt was due to the same canae. Soe
 dealer will have on hand or obtain for you a work of

Bo standard a character as Watte' Dictionary of Chem| so $\begin{array}{l}\text { gand } \\ \text { istry. }\end{array}$ |
| :--- |

(29) W. M. G. asks the reason why salt adds to the freesing quallities of ice,and if chere ls anything tnown that will draw out as mach coldness wilh-
out meting the ice. Also the ingredents need in ico manufaciurlng. A. Salt has an affinty for water, and
in exerting thic characteristic feature causes the ice to in exerting thie characteristic Peature cavases the ice to
melt,which then abborbs treat tin the action of liquefying. melt, which then absorbs treat in the action of iliquefying.
In the Scimintirio Axraioan for June 81, 1884, we give, in anower to query 4 , a number which act similis to salt in this respect. There are va-
 MENT. such as Noe. 85, 82, 73, , 177, ttc.
(30) H. D. H. writes: 1 . We are making
 tor than mica and ferrotype tla of which to make the
diaphragm A. No. 2. What improvements have diaphragms A. No. 2. What Improvements have
been made on the phonograph since your Surpunirxv No. 183 ,was published A . No material improvement have been made on the phonograph since its invention 3. Has an invention yet been made that will dapll
cate the vibrations on the tin foil, so that jou could
ate transfer a copy of the vibrations on to another piece of tin foil, and make it repeas what had been said on the arstip A. We tulink not. Poesibly they might be elec-
(31) D. C. S.-Every chimney, gable, tower and sellient point of your bullding shoold be protocted by a liphtnting rod. It is well to have a groond connec-
tion at each corner of the building, and all of the meand with the rods. The lower ends of the rods should ex tend to a sumfient depth in che earth to reach a stratum
 and shonld be snrroanded with metal ecrapes, or better with coarrely granulated coke. Rods mas be of copper this diameter. All the jointa shonid be boldered sa well as secrewed together. Insulators are morse than neo-
leas. For information on anding a latitude consult SUPple urxt, No. 816
(32) E. F. S. asks: 1. What telephone has the most extenstre use? A. The Bell telephone is naed
almost exclueively. 2 . What telephone wonld be most
 tric teleppones will anawer your purpooe. 8. Is a non-
electric telephone good for dietances of a mile or two A. Acoustic telephones will work well for a distance of a mile in a still day. 4. Can the telephone be made to pay in a village of 2.500 or 8.000 inhabitanis, and what is the usaal plan of charging or recelving payment for Its nae? A. It would probably pay. For full Informa-
tion on the management of central oflces, you should write to eome of the telephone companies,
(33) J. P. C. asks: What speed will a cannon ball have if when ifred the cannon is on a train moring
at the rate of 1.000 feet per second, and the ball is dred at the rate of 1.000 feet per second, and the ball is ired In the same direction with sufficient powder to give it
aliso a velocily of 1,000 feet per second? A . Apart from the additional friction by the train noring againat somewbat retard the velocty of the ball, the ball mould have a velocity due to to discharke from the
gun added to the speed of the traln or 2,600 feet per gecond, and in one second would be 1,000 feet ahead of the train, less what would be dne to the friction of the
air.
(34) W. W. H. asks: What is the best pro
 dyeing wood black. A recert process consists poaring 4 quarts of bolling water over 1 ounce of
powdered extract of logwood, and when the solupowdered extract or lozwood, and when the sean
tion is effected add 1 drachm of potaselnum chromate and stir the whole well. Continue the application anti1 the wood is dark enoogh. When the work has become dry, sandpaper down the errain to get a a smooth face: and
as the work to be elonize mont be quite free from
holes, oil and fill in any of them with powdered drop

Discharge for $1 / /$ inch nozzle, $3 \% /$ gallons per minate do. for 3 nozzile, nearly 2 gallons per minute; do. for $3 /$ nozzle, $\%$ of a gallon per minute. 2. Will the wate
 will not seen to pase the a
(38) A. J. D. asks: What is the dark blusah crocas used by burnishers for polishing? A. It is
ouge. 2. What is the beat record for a 100 mille go as you please? A. The best time for 100 miles is 18 hours 8 minutes and 15 seconds, in London. The best time in United States if, 150 miles 850 yards in 24 hours. Hazael aade 600 miles 220 yards in 6 daye.
(37) W. R. H. writes: 1. I wish to run a sewing machine by power; wonld yon advise weight or
water powert \mathbf{A}. We advise water power if it is avail. ble; bat if yon are obliged to pump ap the water to se are the power, it would be better for you to procure ome form of emall motor. 2. Conld you give me disctions for making a very small tarbine wheel, sag nob or so, which would run my machine 2 hoars with hogshead of water at a beight of abont 20 feet makera who advertise in our columns. 8. Is the Backne water motor a platn breast fintur wheelp A it is plain fan wheel. 4. Please give me directions for col oring gold the Etruscan color. A. Etraccan is made by ealing the alloy from the su
chemical or electrical process.
(38) E. C. B. asks the number of cubic feet water and the number of pounds of coal engines of it 60 pounds pressure. A. Engines and bollers, in thelt modern variety of kind and economy, present so many and variable features of construction that no special to 1 cubic foot of water per horse power per bour are bout the extremes, using about 3 to 6 pounds coal per
(39) T. H. B. writes: Suppose the cylinder of an ordinary steam engine to be lengthened out to wice its present length, no matter what that may be that the cabic eppece in the cylinder will remain as large as before and bold the same amount of steam; will the lifting power on the end of the piston rod be the same as in the ehorter and wider cylinder? Δ. No; the lifting power, or force apon the piston rod, is propor-
tioned to the area of the piton. The larger diameter exerts the greater force. The length of the atroke is (40) A. Mo ander that
(40) A. E. M. asks: 1. What could I use in bookcases, closets, and wardrobes to get rid of wood
lice, book worms, and small spiders, etc., which keep lice, book worms, and small spiders, etc., which keep
getting in continaally? A. Use camphor gum in small gettiog in continually? A. Use camphor gum in smal
boxes set apon the shelves or among the books of your cases set apon the shelves or among the
2. Could sulpharic acid, carbonate of potash, or some other absorbent of moistare be ased of potash or quick lime in open glase veseels will ab sorb moisture. Use no acid. 8. There is an idea prevalent among the country people bere that tives should be felled for timber when the moon is waning, as the sap has then dencended. I, myself, am inclined to he moon, and shoald like to get your opinion on the abject. A. The moon has no influence apon the time or fall of the leaf. I wish to carry a lightning rod into well close to the walle of the house; but I have a pump set over it which works in all kinds of weather, and I fear it would be dangerous to handle it during storm. Do you think there would be any risk to the attendant? A. Carry the lightning rod several fee nderground to the well, and then down to the bottom without tonching any part of the pump. It will be thander storm, and still safer to make a water connection at a distance of 2 or 8 rods from bonse and well. We do not know who makes the wagons you ask about
(41) C. M. asks: 1. Would a bullet or other misaile thrown perpendicularly into the air, fall to the received upon starting? A. Theoretically yes; practically only if in a vacuum. a. Can electricity be used for thy purpose of heating and warming honses, and for has not yet been practically realized, though it is certainly possible. 8. Would a steamboat made upon the catamaran, or double hall, plan require a greater or less rater, carring a a a given velocity lhrough the o propel a single hall steamer with the same load on steamer of equal displacement with the first, if both boats are made of the best shape of their kiod? A The steam catamaran has not thus far been shown eq
to single bulled boats in the atilization of power.
(42) B. W. S. says: Many makers of mowing machines claim they get rid of side draught oy
means of a rod running from shoe to the whifletree connection on pole. Will yon inform me if this is good reasoning, or possible: \boldsymbol{A}. If by the arrangement designaled the power is applied at the center of resistance, de draught will of courne be obviated.
(43) J. K. says: I have a lens 5 inches in arge phot, 24 inches rocus, for the camera obscura to enIn one of your Supprimentr. I put the lens in a tin tabe, one sliding within the other, so as to give it the right focus; my box is 12×12 inches and my mirror is
12×14 inches. Please let me know where the defect is.

length. Your mirror mas be much maller than the projected image, but to get the best reenils you shnuld vex lens to concentrate form of a doable or plano-conver lens to concentrate the light on the picture. 8.
Couid I aliso cops pictures with the "blue process of copying tracings " in the camera obscorra, that is, could I copy pictures by palting the senaitive paper in the cox and refecting the image on It? A. The blue process of copying cannot be atilized in this way.
(44) W. S F. asks how the water proof blackldog. or more properly speaking "iliquid glose,",
for ladies' and children's shoes is made. Kindiy give compostion and quantity of each. A. A ine liguld blacklig consisis of ivory back and molaseses, of each one pound. sweet oil and salphuric acld, of each four
ounces. Rab topether the firat three until the oill la perfectly killed, then gradually add the sulphuric acid, dilated with three times its weight of water. Mix well and let it sland for three hours, when it may be reduced to a proper consistency with water or sour beer.
number of recent shoe polishes and varnishes are described on page 150 of Scinemtirio Ancsbions, for March 10, 1888, to which we refer jou.
(45) R. P. Y. asks: Does the telegraph cable sink the full depth of the ocean, which I believe
five miles, and if so, what sort of grappling ma chinery is it that will work at that depth? A. There may be narrow chasme in the ocean bottom over Which the cable is suspended, but generally the
cable reats on the ocean botiom. We have in the back numbers of our paper described several forms of grappling apparatus for raising ocean cables. The etween England and France and Newfoundland was between England and France and Newfonndland, was
nowhere over 15,000 feet, the bed consisting of two valleys separated by a broad ridge running from the Azores to Iceland, and the depth on this ridge being renerally abont 9,000 feet. A depth of about tive miles has been reported south of the Grand Bank of Newfonndland, but all the cables run on the higher platean the north of this.
(46) A. C. C. asks: How many cells would it rake of a Grenet finid battery, zincs $5 \times 21 / 6 \times 1 / 2$
nch thick, carbona same dimensions, to heat to incandescence $2 / /$ inclies or 8 inches No. 38 platinum wire, nd how long will each zinc last, if used 5 hours every vening: A. Six cells would probably do it. If the two months.
(47) T. W. H. writes: The reservoir of our water works consists of a stand pipe 6 feet in diameter more or less with ice forming around inside of the pipe. We have a large cylinder atove at the base; don't on think if we would ran about a four inch gae pipe ap through the water on the inside, then keep a good Are at the base and let all of the heat go up through, hat it would keep the pipe free from ice? A. Better the inside, and pump the water to the top during very cold weather. This will keep up a circulation, and revent freezing.
(48) G. C. P. asks: 1. Can 1 build a dam of coment and sand by making a box to hold the mortar ntil it hardens? A. Yes. 2. Can I use mall stones to heip in up and save cement, Blones to be from 8 inchee hick atbotom and 216 feet thick at lop font ide pendicular and pond side slanting A. Use as mucb large stone as possible. Make the filling with coarse sharpsand and Portland cement. 8. What proportion o be built on can 1 use and bave it strong? The dam tream and is 50 feet long. A. Use as much small stone Which will be the best stones to use roand cobble stones or ledge stone got by blaeting? A. Fragments are better than cobble stones, and will reeist water and ice cat. The top of the dam should be capped with a layer of the largest stone that you can get. laid inclined a litte toward the pond, so that ice will not push them off. Back the dam by a filtug of sand and stone for several feet level with the top for tlood proection. Make an ample slnice way of plank or with two walls and a covering of large stone for the stream
while bullding the dam. Make the top perfectly level and as longas possible, for the possibilities or a flood, and protect the ends thoroughly against leakage throngh the soil if the banks are not rocky. Lastly, dam of this kind will be stronger if slightly arched

(49) J. S. asks for a receipt for removing of the very best roach ens. Borax is considered one alverized and sprinkled around the infested places. A solation of 1 oz . poke root bolled in 1 pint of water antil the strength is exhausled, and then mixed with molases and spread on platess anc placed in localities infested wilh these peste, is "sure death." Paris ons. A paste made of 1 part powdered chloride of me and $1 /$ part of some fatry matter is said to be offectaal in driving cockroaches away.

INDEX OF INVENTIONS

For which Lettern Patent of the United statem were Granted
September 9, 1884,
AND EACH BEARING THAT DATE,

Battery. See Electrlic battery. Voltalc battery.
Beam or girder, metal, E. M. Buts,
304,794, $304,7 \%, 504,797$, Beams. girders, etc., structural shape for. F. M
Buts............................... 881
 Blcycle saddle, W. S. Kelley
Boats. construction of. T. B. Morgan

Book cover. copy. J. H. Mose Boot Jack. J. Reining

 Bor . F. MoreBoots, shoes, ete
 Bridge gate. T. H. Barnad.
 Buckle, D. Freer
Buakle, \mathbf{w}. E. Smith
Bullding, freproof. E. M. Buts........................80,
Buildings, construction of metal, E. M. Butz Burglar alarm circuit closer. A. Iske.

Cane mill. J. Fehrenbatct
Car coup.ing.
Car dumplng apparatus, rallway, P. Leavit
Car, rallway, H. Root...
Car spring. E. Cilif
Card, playing, W. Ramsay....
Cart. fertilizing and seeding machine, combined, Cartridge, W. Gardner
Cusk roilling machine, L. A. Mueller
Centrifugal machine, G. E. Stilliman Charown as, bed, chill's suaspended adjustable. W. $\underset{\text { Chandeller, exte }}{\text { H. }}$
arn Hey ens
Clamp. See Ball and socket olam
Clothes line. J. Paul.....
Collar, horse, J. straus.... Column, \&Irder, or pilaster, metal. . . M. Butz.
Column, pliaster, or girder, metal, E. M. Butz Columns, pilasters, etc., structural shape for. Cooler. See Milk cooler. Cotion press. R. Volkt. Cultivatur, M. M. Kst

Cultivator, sprikg, J. M. ER Rerer. Cultivator, thill. J. M. Ripeonn. Deck plate, H. Adams
Dental plair, Walace a Bnyder Derrick forke, apparatus for working. C. Stone Dlish. Coverea, Elison \& Smilth Door signal, A. L. Dorn... hing machine, centrifugal, \mathbf{H}. W. Laffert Drill. See Graln drill. Rock drill. Electric battery, self-sustaining. W. A. Shaw Elleotric lighting system, E. Weeton...... 301,8 meectrical meter, C. L. Clarke Elevator. Bee Graln elevator................. nevator, M. N. Hutchinson Vaughan
mello $\mathbf{r} \mathbf{P}$......... Elevators
Clarke
End gate, Ta c. c.
rine. See Steam engine.
Expanding wrench and mandrel, A. E. Lycle.. Extractor. Soe Bung extractor. Tack extraot Fence, \subset C. C. Hinkle
Horous materials, binding composition for, J. H Fitth wheel. vehicle, J. McEntee.
Mre alurm, B. J. Antrim
Firearm mapazine, L. P. Dis
Fire escape, Buuer \& Williams
Fire escupe. J. M. Hodso
Fire escape ladder, foldinin, F. F. W. Ho...ele.......
vilax in the retting or steeping process, tre ment of, R. H. Collyer.......
Floor bolting apparatus. Stanley dery Furnace grate. R. S. T. Cissel Gas, appuratus for manafacturing. J. Crutche

. 801.871

DESIGNS.

TRADE MARK8.

gars, cigarettes. and smoking and chew bacco, G. Fuchs. rees, D. Nicholson Irees, teas, und spices, D. Nichoison tracts of leaves. barks, and woods for and dyoing, Action-Gesellschaft fur F Fabrikate seoticlde. Weatbrook \& Hines ctic acdd for table use and as a beverage Lactate Company miment. J. 8. Gold. quors, malt, P. Best Brewing Company medy for neuralgia, J. F. Rudd.. oes, children's. T. M. Harris \& Co. rap in imitation of maple eirup, H. H. bee \& Co. its. boys' and children's, A. Levy \& Bro xtlle tabrics wholly or in part of a tur color, J. C. Sleater. hlsky. T. E. Hunt. arns and knitted fabrics and garments. W. Benger Soehne.

A printed copy of the specitication and draving of any patent in the forexoing list. aso of any patent
issued since 1888 , will be furnished from this oflce for x. centa. In ordering please state the number and dato
of the patent desired, and remit to Munn \& co. \& Broadway, New York. We also furnish copies of patenth
granted pritor to 1856 ; but at increaed coost. as the hand.
Canadian Patents may now be obtalned by the

team cylinders, duplex safety apparaiue tol.
mam engine
team mumer, A. Berney...
Stocking supporter. I. V. Ford.
Stove knob. J. E. Galtiey
Stoves. wick tube and raiser for oll
Strap. See Trunk and bundle atrap.
Strap fastener, J. Molver....
Straw stacker, E. Hrooks....
straw stacker, E. Hrooks.....
Straw stacker. T. H. Ruasell.

Table. See Extension table.
Tack extractor. carpet,
Tanning. J. Roberts ..
eleph end telecraph switch boa Smith..................
eliphone excbanges, multiple switchboard P
hermometer. clinica,
Thrashing machine, H. \& C. Fran Tile laying machine, c. A. Barne Tool handle, blacksmith's, w. E. Whitileton. orch, holder, G. J. L. Jan Trace attachment, W. M. \& S. E. Smither
Tram way, suspended. W. F. Elj Trap. See Δ nti-elphoning trap. Sewer trap. rave ing bar, M. Schwerin.
Tray, dinner, H. Douttell Tree protector, T. J. Longacr Truck, basket. I. T. T. Jones
Trunk follower. T. W. Adams Trunk lid lifter. J. K. Mınor... Tug, hame. M. E. Lasheriln Type writing machloe, Yost \& Brao
Un winding threed from spools or bo Unwinding thread from
for. r. R. Nichols...
alve gear. J. Halstin
Valve motion, steam engine. G. 8. Strong. . 304,9 Valve. stenm engine, (a. 8. 8trong V eloclpede. Rodine \& Malmgien Ventllating apparatus, \mathbf{H}. N. wicke Ventilator. See Car ventilator.
Vessels. device for loading. C. Miller Vessels. device for loading.
Voltaic battery,
N. Baseet. Voltalc battery, N. Basaet.
Wakon jack, w. H. Brace.

```
利 supplying locomotives.
``` Maner crane
Mandid.
W ater meter, J. B. Erwin
Wherproof circular, L. c. Iavion.
WIndmill, w. N. Bryan...
Wire stretcher. F. H. Bissell. Wire stretching device. W. Younk.... Wool washing machine,
Work box. H. s. Dickson. Wrench. See Expandin
Wrench, B. Klmore ...
Tranch, E. H. St. John.:-
anc from gaenas carrying allver and metall
oxides and ealphides, epparation of, P.
address Munn CO.. 981 Broadway, N
Torelen patenta may also be obtalned.
Idyrtisements.

CET THE BEST AND CHEAPEST.
Silver Finish.

\section*{}
J. A. \(\overline{\mathrm{F}} \mathrm{A} \boldsymbol{A}\)

Exelusive Agents sindinnatititeriot U. S. U. Anited States, of the

THE CORINTH CANAL-A DESCRIP.

ROOFING

\section*{}

PAPERS UPON INDUSTRIAL CHEM

6STEMWINDING Pefmpition Lok STEMWINDNG Nef-1.iniontiont

\section*{Frearavidusiz}

OPIUM\(\underset{\text { cured with }}{\&}\) WHISKITS

THE SCIENCE OF LIFE ONLY I\$
 A Great Medical Work on Manhood

 The Science of Life should be read by the young for
instructon and by the antileted for rellef. It will bene
nt anl-

\section*{PATENTS}
meation of the scimetific Ansrican, continue to es amine Improvements, and to act as Solicitors of Palents for Inventors.
In this line of business they have had thirty-erght years experience, and now haye unequalod facilitise for the preparation of Patent Drawings, Speciicalions, an Cnited States, Canada, and Foreign Countries. Mesers Munn \& (co. also attend to the preparation of Caveats, Copyrights for Books. Labels, Reissues, Assignments, and reports on Infringements of Patents. And prompt acss, on very reasonable terms.
A pamphlet sent free of charge, on application, concuining fall information aboat Patents and how them; directions concerning Labels, Copyright Desigus. Parents, Appeals, Reissues, Infringements, As signments, Rejected Cases, Hints on the Sale of Pa
We aieo send. fres af charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securing patcants in all the principal coantries of the world.
2.

\footnotetext{
watindionj: 0
}

\section*{1884 INTMRNAHION会N Kin 1884 OPENSISEPT. 2? SFRANKLIN INSTITGTE FPHILADELPHIA CLOSES OCT.ITM}

Fin For Packing the Piston Rods and Valve Stems of Steam Engines and Pumps.
 NEW YORK BELTING \& PACKINC CO.,

1, I, Knds dimension lumber Sawed. Planed Shaped
Bored, or Turned. Matulison \& Pierce. Bennington, \(V\),

PERMAN'S Wrount Iron Fence.port Lotertit signtor has brought an action to set aside the AB
signent to Wm. W . Ford. All parties notifled not to
 SEBASTIAN, MA \(\&\) Co.s.
ImPROVED
860 Screw Cutting Lathe

 So ©incin wii, Panal st., RIPON CATHEDRAL - FULL PAGE

For Mahogany,

HOWELL'S PATEVT
cut off 0 ff,

\section*{WATCHMAKER8.}

\section*{PERFECT}

NEWSPAPER FITE
The Foon Patan File for prearing noppapern

 MUNE \& \(\mathbf{C O}\) abluhers 8cis: titic Anerican
 Lectro-magnetism as a prime

LE PAGE'S LIQUID GLUE. UNEOUALLED FOR CEMENTINC

NORDENSKJOLD'S GREENLAND EX pedition of 1889-An interesting resume of the resulte
reached by Baron Nordenskjold during his recent expe

\% New Catalogue of Valuable Papers
 HOW TO COLOR LANTERN TRANSPA-

The celebrated Nhapley
Portible, Yeriticha, nhi
Horizontal Automatic

thard to a halifing fuel and
water over silde valve en-
flines. The easiest running
Cnylne made
Wenils, Blinghamton, N. \(\mathbf{Y}\).
arce on Jan. 1st. enab:es partles to secure went int Great Britain on very modarate terms. A British pa Channel Les Kngland, Scotland, Wales, Ireland, and the ananclal and commeral Britain is the ncknowiedged goods are sent to every quarter of the globe. A good invention is likely to realize as much for the patente him at have, and the for almost every patentee in this country to secure a patected as in the United States.
OTHBR COUNTIRIES.- Patents are also obtained on very reasonable terms in France. Belgium, Germany Austria, Russia, Italy, spain the latter includes Cubs Australia, and the other British Colonies
An experienoe of thirty-kiout years has enabled the pablishers of The Scientific Aminican to establish competent and trustworthy agencies in all the principa have the busineas of their cllents promptly and properIy done and their interests fuithfully guarded.
A pamphlet containing a synopisis of che patent laws of ail count ries. Including the cost for each, and othe
information useful to persons contemplating the pro information useful to persons contemplating the pro
curing of patents abroed, may be had on application to this omice.
MUNN \& CO. Editors and Proprietors of THE SCl aNTITIC AMzrican, cordialy invite all persons desiring any informade-marks. in this country or abroad, to call at thel ofilces, 981 Broadway. Kixamination of Inventions, consultation, and adrice free. Inquirles by mail promptly suncered.
answer
ddress, MUNN \& CO..

\section*{davertisements. \\ (Abrut elght words to a line.)

 \\ Great Baroains} NEW PULLEYS AT UNPRECEDENTEDLY LOW PRICES. Write for particulars to
buFfal
THE PAYNE AUTOMATIC ENGINE
 made, and 50 per cent more power than rated at, Al
engines warranted. All sizes and styles, 2 to 200 horse

NVENTORN and MANUFACTURERS, Minne ence invited. L. F. MENAGE, Mineapous, Man.

\section*{}

WITHERBY, RUGiG \& RICHA RDSON, Manufacturer
of Patent Wood Working Machinery of every descrip

\section*{H.W.JOHIS asbesfor TIQUID PATITIES}

Asbestos Roofing.
The standard and rellable portable roofing for stee
or nat roots in any climate. Skilled labor not require Asbestos Building Felt. For interliningng frame buldings, froors, etc. It is wind Plastic Stove Lining. For Repairing Stove and Flue Joints, Broken Frie Brick
Iron LInlings, etc., ett. Ready for
Immediate use.

Send for full Descriptive Catalogue,
H. W. Johns manualturimg co. No. 87 Maiden Lane; N. Y.,

F. Brown's Patent

FRICTION
CLUTCH.
Send for 1 Ilustrated Cata
logue and Discount Sheet
解
The " MONITOR."

Best Boiler Feede
in the world.

Smathan manuacturina bricmoraciv,

Emerson's New

SPEAKING TELEPHONES.
THE AMERICAN BELL TELEPHONE COMPAN President. W. Treasurer. Gen. Manager.
Alexander Grabam Hell's patent oo Marh 7, 1586,

can be procured directly or through the authoriz
agentsot ot tho oum otayned except from this company
Ats telenones obtinn anthorize

KORTING UNIVERSAL

\begin{tabular}{l|l|l}
Philada.,12th \& Thompson Sts. & \(\begin{array}{l}\text { New. York, } \\
\text { Boston, } 61 \text { Oiver St. }\end{array} 109\) Liber
\end{tabular}

Scientific Immerican
The Most Popular Scientific Paper in the World. Only 83.20 a \(Y\) Year, including postage. Weekly This widely circulated and splendidly Illustrated teen pages of useful information, and a large number of original engravings of new inventions and discoveries representing Engineering Works, Steam Machiners New Inventions, Novelties in Mechanies, Manufactures
Chemistry, Eleetricity, Telegraphy, Photography, Arehi ecture. Agriculture, Horticulture, Natural History, etc All Classes of Readers find in the screstrip Ambrican a popular resume of the best scientite in-
formation of the day; and it is the alm of the publishers formation of the day; and it is the alm of the publishers
to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowlegge and progress in
every community where it circulates. Terms of Subscription.-One copy of the Screspostaze prepaid, to any subscriber in the United States cents by the publishers; six months, \$1.e日; three months, \(\$ 1.00\). CAN will - One extra cony of the SCIENTIFIO AMERLat \(\$ 3.20\) each; additional copies at same proportionate
rate. One copy of the Scientific American and one copy for one year, postage prepaid, to any subseriber in the
United States or Canada on receipt of seven dollars br The publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefuuy securely sealed, and correctly addressed, , eselom goes
astray, but is at the sender's risk. Address all letters

\section*{MITJIVIN \& CO}

361 Broadway New York.

\(\qquad\)
\(\qquad\)
\(\qquad\)

\footnotetext{
HARRIS-CORLISS ENCINE, PRTMTITING TINTEB
}```

