a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, MARCH 8, 1884.

GIGANTIC LIFTITG WHEELS FOR THE COPPBR LINES. |height that it will fow off into the lake. Two of these of cast iron, and to them are bolted the spur segments and At the copper mines of the Calumet and Hecla Miuing wheels have been ordered: one was completed some time buckets. All the parts are beld together by turned bolts that Company, on the borders of Lake Superior, the amount of since and sent to the mines; the other is nearly finshed, as were driven in reamed holes.
refuse resulting from the process of mining is sufflient to shown in our engraving, which represents it standing in the The spur gear on the periphery is made up of sixteen cover an acre of ground one foot deep every forly-eight shops of the Dickson Manufacturing Company, at Scran- pieces, is 43 feet in diameter at the pitch line, $45 / 8$ inch pitch, hours. The disposal of this enormous mass is only accomplished by great labor and at heavy cost. It cannot be draiued to a locality where it would be out of the way, as
the elevation of the mines is not sufficieut. Tue inconvenithe elevation of the mines is not sufficieut. The incon venience, trouble, and expense consequent upon the present method of handling the waste products have been done away
The shset of tho wheels were built on, Pa., where both wheels were built. pieces, is 43 feet in diameter at the pitch line, 458 inch pitch,
12 inch fuce; all the teeth, 352 in number, have been cut epi-
with, and the question solved by the use of wheels of aches in diameter. It rests on ponderous pillow blocks $\begin{gathered}\text { five double elevating buckets or inverted pockets on each }\end{gathered}$ baving universal bearings. From the octagonal bub radiate side of the spur gear, making 100 buckets in all, which are wrought iron arns, which are pyramidal in form, and are stationary on the inside of the periphery of the wheel, and huilt up of four corver pieces converging toward the peri- are capable of scooping up at a single revolution nearly 2,000 of phery of the wheel, and united together by lattice work. gallons. mammoth proportions, which raise the debris to such a The ends of the arms, known as the bucket segments, are The most important feature of the wheel is the manner in

the great lifting wheels of the calumet and hecla mining co., lake superior.
which the spur was constructed. The teeth were laid out by band, a prick-puuch mark locativg each tooth. The teetb were cut by an ingenious device suggested by such a great task and specially planned for this work. The work was done by two cutters located one on each side of the whee at diametrically opposite points. One of these cutters is shown in the engraving. The rest holding the tool traveled on a bed placed just outside the periphery and in a line a right angles to the plane of the wheel. Figs. 1, 2, and 3 re present the cutting tools used; Fig. 1 was used as a stock cutter, the peculiar shape and arrangement of its cutting edges enabling it to rapidly aud easily clear itself; Fig. 2 was used as a tinishing cutter; and Fig. 3 was used to cu the face of the teetl. So successfully did the tool shown in Fig. 1 work, its clearing powers permitting deep cuts with out the danger of heating, that it is probable that it would be used alone-to the exclusion of the finishing cutter-in another job of this kind. By working upon both sides of the wheel at once the time occupied in milling and cutting the teeth was 215 hours, and the probability is that with the old plan of milling it would have taken four times as long.
The same process was used in the construction of the machinery for driving the Brooklyn Bridge cable, the company laving received both orders at the same time
This wonderful wheel is to be used to remove the refuse from the copper mines. It will be set in solid masonry. with arches through which the launders used for washing the ore will pour their contents, to be taken up to the buckets already described and deposited in outlet launders placed a an elevation of 40 fect, which will afford sufficient impetus to carry the waste into Lake Superior.
The whole will be driven by a stee! spur pinion, the slaft of which will be actuated by an engine of 175 horse power. It will make about four revolutions per minute, lifting 8,000 gallons in that time, or 480.010 gallons each hour.
The combined weight of both wheels is 124 tons, and their cost in place will not be less than $\$ 50,000$.
The Dickson Company is also building two of the largest locomotive fire bex boilers ever made, being 1,000 horse power each. They are made of steel plate nine-sixteenths of an inch thick. Each boiler will contain 199 three inch lapwelded tubes 16 feet long. These boilers will welgh 61 tons each, and will be used to work the immense marbinery of the Calumet and Hecla Mining Company.

The Correspondence Univeralty.

This is the title of an association of experienced instructors judiciously selected for their knowledge of the sabjects assigued them and their ability as teachers. Tbat sectarianism did not govern their selection is clearly shown by the fact that eight graduated at Cornell, six at Harvard, three at Yale, two at Amberst, and one each at University of Michigan, Michigan Agricultural College. Worcester Free Institute, Massachusetts Institute of Technology, Johus Hopkins, Vassar, Marietta, Brown, Columbia, and University of Lewisburg, besides several from abroad. Many, also, had taken post-graduate courses at Johns Hopkins.
so, had taken post-graduate courses at Johns Hopkins.
Students from whom the necessity of close mental appl cation has been removed quickly lose the power of concen trating the faculties for any length of time. Those who have been away from school or college for some time, and have stopped study, know how difficult a task it is to learn: they also know what a hard, tedious, and discouraging undertaking it is to regain this power. That it should ever have been lost is to be regretted, and a system which will insure its reinstatement, and be iucentive to those now possessing it never to lose it, is most certainly needed, and will be most heartily appreciated.
The objects which the Correspondence University aims to accomplish are most meritorious. Primarily, it hopes to stimulate to methodical study those who might otherwise find no opportunity for intellectual work, and to imbue them with the pleasure and profit arising from such application
It is intended to directly benefit those engaged in profes sional studies which can be taught by correspondence graduates doing advanced work; under-teachers in schools graduates doing advanced work; under-teachers in schools
and colleges; those preparing for college; members of culand colleges; those preparing for college; members of cul-
tivated families who are obliged to live in remote localities; tivated families who are obliged to live in remote localities
officers and men in the army or navy; persons intending to try any of the civil service examinations; young men and women engaged in occupations which prevent their atteud ing school and yet who desire to learn.
The fee for four weeks' tuition in any study of the grade required for admission to a college and in some collegiate studies is $\$ 6.35$; in studies of an advanced grade the fee is $\$ 3.25$. The list of studies now includes, agriculture, as tronomy, botany, drawing, engiceering, engraving, military science, music, physiology, zoology, mathematics, Greek Latin, English, German, Hebrew, philosophy, history, po litical science, and law. Mr. Lucien Λ. Wait, the Secretary of Ithaca, N. Y., is the proper person to address for fal particulars.

The French inventor who some time ago patented a ma chine for the use of concentrated solar rays as a genera motive power, has set up three of his machines in Algeria for the French Government. He is now carrying on his ex periments at the Island of Porquerolles, near Hyeres, in France, where be is thrashing Indian corn and raising water by the action of the sun's rays. It is not stated how much work he is able to accomplish, though.

\%rientific ${ }^{\text {sin}}$ meritan.

EETABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 261 BROADWAY, NEW YORK.
o. D. munn. A. e. beach.

TRENIS POR THE SCIENTIPIC AMERIGAN.
One corpy. one year postage included...
One copy, six months postage included
Clubs.-One extra cupy of 'the Scientific American will be supplit................ 160 ratis for every clut of tive subscribers at 85.20 emch; additional copies at me proportlonate rate. Postuge prepald
MUNN \& CO. 281
The Scientlic American supplement
Is a distinct paper from the scim.inific aymican. The suppiement with Scievtivic Ancrican. Terms of subscription tor furpicment 85.00 a year, postage pald, to subecribers single copies, 19 cents. =old by all news dealers throughout the countrs.
Comblined R Rntes.
Comblined lintes. - The Scientipic american and scpplisment WIIl be sent for one year postage free. on recelpt ot oc
papers to one address or different addresses as desired.
The sutest way to remit is by draft, postal order. or rexistered letter.
Sclentife american Export Edition.
The SCinntipic Americas Export Edition is a larke and splendid periodical, issued once a month. Each number ecntains abouit cine hundred
large quarto pages, profusely illustrated. embrucing: (1) Most of the piates and pages of the four preceding weekly isenes or the Scikr tivic AM ERicAN, with its srilendid engrivings and valuable information :
Comwerclal. trade. and manufacturing announcements of leading her T'erms for Export Edition, s5.00 a year, sent prepald to any part of the
world Single ooples 50 cents. Manufacturers and othera worid single ooples 30 cents. Tr Manufacturars and others who desire
to secure foreign trade may have large. and handsomely displayed nouncements published in this edition at a very moderate cost.
The ScIF TILIC AMculicAN Export Edition his Intion in all commercial places throaghout the world addrese circuco., 281 Broadway, corner of Warren street. New York.

NEW YORK, SATCRDAY, MARCH 8, 1884.

TABLE OF CON'TENTS OF
the scientific american supplement
NO. 487,
For the Week ending mareh $8,1884$.
Price 10 cents. For sale by all newsdealers.
Chemistey, metallurgi, etc.-Gaseous Fuel.- By L. T.
 of revenue from residual products.-l'ost of water gas.-Calorifo value of coal gas and of water gas.
Change or Volume of Xetals at M
engineerring.-The Morser Tuitin
ENGINEEERING.-The Mersey Tunnel.-With engraving and map.
New Bridge and Subway, London. 2 engravinga. New Brigke and Subway, London. -2 engravings
The Washington Aqueduct Tunnel and its Comp Stone Quarrying at Sydney. With engraving. -The Savant of the seventeeth century. -2 engravings... Application of Turbines to the Dynamo Machines Rallways. - With engravilig. A New Incandescent Lighting Apparatus,-With
A New Theory of Dew.-By Prof. B. F. NIBART GEOLOGY, MINING, ETC.-The Origin of Coral Reefs.-By A.
GEIKIE,DIreotor-General of the British Geological Survey.- Different theories of :ormation.-Bearing of recent investigations on Darwin's theory. With map

The " liad Lands " of the Little Missourt. - Wit h engraving. The Fosell Flields of 8
Alauinum In Nevada
. NATURAL History.-Mr. Barnum's White Elephant.-With
I. DOMESTIC ECONOMY.-The Solentific Basis of Cookery.-II Chemical and mechanical composition of Yood, and changes in same by cookery,-III. Frying properly conducted.- (heese rentable food....ile.-Micrabla conveyed by milk.-Cookery of vege

present steal engine practice.

There has been much comment by correspondents in the various engineering journals during the past year, in regard to the present status of steam engine practice; much of it ap parently by parties more or less interested in the manufac ture or success of some of the special types in progressive engine buiflding.
The special pleading of interested parties is doubtless legitimate in a business point of view, as may be also that of the advocacy of professional engineers who betake them selves to mathematical theories that begin aud end in nothing more tangible than algebraic formulas and arithmetical de ductions.
What is most wanted among steam users is, not what has been made some special test for gaining a small percentage in coal or power for a short and éspecially arranged trial, but, rather, what engine wears the longest, is liable to the least breakages, gives the least trouble, and runs steadily with reasonable economy in both coal and oil?
These are pertinent questions, in which steam users themselves are interested and ought to have something to suy from their own experience and time trials with these highly recommended types. They should know, not only how much coal is used for a given amount of power for a given length of time, but they should also know where it goes. How much of its value goes up the chimney; how much suffers a useless waste by radiation and leakage; and how much of the heat of the valuable exbaust is lost, or saved and returned to the boiler, or utilized for other purposes; that the engine may not be laid at fault, at the feet of a wasteful generator or more wasteful practice in the lack of beat saving adjuncts. For herein lies very much of the trouble with the coal pile.
There are, no doubt, special considerations requiring high peed engines running with high pressures, necessitating a more costly construction in material and workmanship, such as for locomotives, propellers, and their like, in whicb compactness and power must be had with the least material in both engice and boiler.
In such engines well considered devices, together with the use of steel and the best anti-friction alloys, for the purpose of strength and wear, have largely contributed to their present perfection.
But for the purposes of continued and steady power, the plea for high speed engines, because of less first cost and small space, cannot avail; for the difference in cost can scarcely compensate for the trouble of maistaining the adjustments due to high speed wear. Again, the difference in cost is not equal to the difference in size, from the necessit of making the wearing parts of hardened steel and the bes anti-friction metals, while the strength maintaining parts should be also of steel, that such an engine may have a life in common with its less pretentious and longer tried rivals.
The absolute requirement of oil for legitimate use becomes a matter of serious concern when it is diverted to the cool ing of bot bearings and other wearing surfices, bespatter ing both engine and floor with valuable oil and still more valuable abraded metal.
It is improbable that any one type of engine can take the lead for all purposes and requirements of power, as the cos and conditions of use naturally lead to the choice of any one of the many styles.
In the class of engines with revolving valves, with their small percentage of clearance, partially compensated for by cushioning, will no doubt he found the engine of the fu ture for steady, enduring, and economical work, as the power for our factories and workshops; for they certainly contain in the latest methods of construction the elemente ef economy, durability, and perfect control.
There seems to be a disposition to overreach the limit of economic expansion from an apparently popular idea " that the greater the expansion, the greater is the economy in fuel;" but by pushing expansion too far there is lese pressure upon the piston in the latter part of its stroke than is required to move the engine and overcome its friction thereby finishing the stroke of the piston by momentum; thus involving a negative value tor part of the stroke. This is very doubtful economy
Probably the most economical of all the engines now in use for developed horse power per pound of coal is found in the compound type, wherever the element of coudensation is economically available.
The boiler pressure has no doubt a very large influence in the economical rating of all engines, and which is often left out in the comparative statements of parties selting forth the merits of their specialties; nor does high pressure or medium pressure cover the true relations bet ween the boiler and the engine.
The economy of the boiler should bave an equal consid eration with that of the engine, and should be ample in all its capacities, so as to enable it to absorb so much of the heat generated in the furnace, that the excess passing up the chimney shall be the least possible with the necessities of draught; for unless all possible channels of waste are cared for or closed, we may go on and save at the spigot of fine spun expansion curves and waste the savings many times at the bunghole of the chimney.
There are other economies obscurely practiced that should become available to every well regulated steam plant, such as drawing the air for the furnaces from the ceiling of boiler and engine rooms, instead of wasting their heat by ventilating to the open air. Further, to utilize the waste of the heat of the chimney in heating the air fed to the furnace,
hus ad
Last, and possibly least, the injection of a small portion of the exhaust under the furnace as an auxiliary to combustion These comprise a fow of the neglected elements of moders steam practice.

ORMING SPIRAL SPRINGS.

Ordinary spiral springs, unless of unusual size and heavy tension, are commonly wound from wire; but some are wound from square steel, as those for railroad cars. For these latter, and indeed for any larger than No. 3 wire Brown and Sharpe gauge, spiral machinery must be used. There are machines built for winding spiral springs whic work wire from that gauge to smaller sizes, but wire from No. 6 down may be wound into springs on the lathe. Thi process is a simple one if certain preliminaries arc observed. If the finished spring is to be of a certain external diamete to fit some cylindrical cuvity, it should be wound on a core suitable for the purpose, and the diameter of this core may differ with the difference of the material of which the wire is made. Hard drawn iron and hard drawn brass make springs that require no tempering, but the spring of brass wire of the same gauge as that of iron wire will expand much more when released than the iron spring. The only method of determining the finish extreme diameter of a wound spiral spring is to make twoor three turns on a core or arbor, and measure until the proper diameter is attained. So much is this exact diameter a matter of trial that the manufacturers of tools for these purposes advertise in their catalogues that the inrst former of any pitch is apt to be expensive, as trials are necessary to attain the desired result. But it is not well to crowd the diameter of the spring; a good rulc is to give a minimum diameter of eight times the diameter of the wire used in furming the spring. As instances, No. 3 wire, which is nearly one-quarter of an inch diameter, should make a spring of two inches, and No. 11 wire, $0 \cdot 12$ or one-eighth of an inch, should make a spring of 0.96 of an inch, or one inch minimum diameter.
Consideration should be taken of the fact that a close or expanding spring diminishes its diameter under tension, while an open or contricting spring expands in diameter under tension. The amount of this diametrical expansion or contraction is not a constant with wire of the same gauge or liameter if of differing material, and it can be ascertained noly by trinls, as before suggested. In short, the formation of spiral springs of wire is empirical so far as tensional power is concerned as compared with diameter of wire. This statement receives illustration in the fact that the manufacturers of spring balances, so generally used for weighing moderate weights, test every spring, and do not de pend on diameter of wire or of spring, or on the supposed uniformity of material. So the mainsprings of fire arms, which are modifications of the spiral spring, are severally tested, although made of steel of the same quality and to a uniform gauge, and are tempered as much alike as is possible.
To wind a close spring in a lathe is simply to fasten one end of the wire in the dog that carries the core, or arbor, and lead the wire against the previous round as it is formed This may be done by hand, but if the lathe has a screw or other variable feed, that may be used for guiding the wire; thus, a feed of eight to the inch will make a close spring of No. 11 wire. If an open spring is desired, two may be wound at the same time. The best open or compressible spring is one the interstices between the coils of which are the same as the diameter of the wire. So, if two wires are led at one tibe, a double spring will be formed which may be separated into two spriugs by uncoiling or unscrewing them when formed. If a more open spring should be required, it may be wound by means of a simple guide, a piece of iron of the thickness required to form the spaces bet ween the successive coils. This should have a hole through it to receive the core, or arbor, and a small leading hole for the passage o the wire. Once started, the guide is beld by the operator pulling toward him (the lathe running reversed), and the wire follows and is laid in coils or rounds just as far apart as the thickness of the guide.

HOSTILE PATENT BLLLS NOW BEFORE CONGRESS,

House bill 3,925, introduced by Hon. Mr. Calkins, of In diaua, provides substantially that if the inventor or owner of a patent shall dare to attempt to sustain his rights by bring ing a suit against infringers, he shall recover no costs, and shall pay to the infringer's lawser a counsel fee of $\$ 50$ This bill was passed in the House of Representatives by an enormous majority, on January 21, and is now before the Senate for concurrence. The members who voted for it apparently regard it as a very upright proceeding to encourage the inventor to reveal his invention by passing laws to give him a patent, and then passing other laws to deprive him of the benefit of said patent. This is the way Congress exem plifies integrity and fair dealing before the people.
House bill 3 934, introduced by Mr. Vance of N. C., pro vides substantially that any person may use any patented article he pleases without liability, but shall become liable after receiving notice that a patent exists; and may then require the patentee to give him the use of the patent for a royalty to be named by the courts, thus robbing the patentee in the first instance and then depriving him of the control of his patent. This bill was passed by the House, January 82, 1884, by a vote of 114 ayes to 6 moes.

The texts of the foregoing bills will be found on page 7 f the Solentific American for Feb. 2.
House bill 3,617, introduced by Mr. Anderson, of Kansas, reduces the lifetime of a patent from 17 years to 5 years. Not yet passed, but perhaps soon will be by a great majority, as there is no member in the House who has so far veutured to say a word in protest or speak in favor of inventors or the present patent system.
In the Senate the bill introduced by Mr. Voorhees, of Indina ($8.1,558$), provides in effect that all patents shall be free the public. We gave the text last week. This bill caps the climax ; it has not yet passed; but soon will be if the members of the Senate share in the views of the House majority.
Once more we eutreat all friends of the patent laws and of bome industries to exert themselves in every possible way to enlighten and influence their senators and representatives against the consummation of these ill-considered and dis honorable enactments. Letters of remoustrance, protests petitions, should be forwarded to Washington without de

THE HILE AND THE SOUDAN.

To fully understand the situation in Egypt, one has to look beyond the map of Egypt proper. The government of the late Khedive placed the territory of Egypt and its depend ent provinces at $1,406,000$ square miles (bardly one-half of which is shown in the accompanying map), with a popula tion of $17,000,000$. The area of Egypt proper, however could hardly be considered to extend above the second cata ract of the Nile, embracing 175,000 square miles, with a population of $5,500,000$. This limit would be some 500 miles below Khartoum, at the junction of the White and the Blue Nile, which the late government made the bead-

quarters of its operations in the Soudan. So far as this, and even to El Obeid, 200 miles to the southwest, the authorty of the Khedive was generally respected, and was a least of much more potency than that of the native chiefs. But the whole territory of the Soudan extends from Abys siuia on the cast to Senegambia on the west, or pretty wearly from the Gulf of Aden on the Indian Ocean to the Atlantic. The territory thus designated, reaching from about he tenth to the eighteenth degree nurth latitude, and cov ring some 2,000 miles from east to west, has a population, according to Behm and Wagner, the German geographers, exceeding $78,000,000$. For about one-half the population of this belt of fertile country across the African coutinent, just south of the Sahara desert, the Niger and its branches afford neans of communication, and the Atlantic coast trading posts in Senegambia and Guinea the nutural channel for trade with the rest of the world. For the other portion, or for a population estimated at $35,000.000$, independent of that of Egypt proper, the only trading heretofore done with the world has been through the Nile Valley or the Red Sea ports. Work is hardly necessary to live in this region, very ittle animal food being used, and a few farinaceous articles being raised almost without attention. They export ostric feathers, elephants' tusks, senna, gum arabic, and a few spices, with the proceeds of which they purchase coffee, tobacco, cotton cloth, firearms, and knick-knacks
The trade, and in fact the government, of such portion of the Soudan as Egypt ever claimed bas been done princ pally through the sheiks and the petty chiefs they controlled but the main item of proft in the business, for the govern-
ment and the sheiks alike, was in the marketing of slaves from this Soudan region.
When the English and French assumed the joint control, and cut off or largely reduced the profits from this business, hey started the general feeling of discontent of which (or El Md El Mahdi were only the exponents. Kl Mahd
year old authority as the deliverer of the Mussulman world) represents the tribal interests of this Soudan population in two strong points-first, as the opponent of interference with a trade in which their leaders have found almost al their profit ; and, second, as himself the representative of the promised Mohammedan supremacy aud triumph in the world. It is perhaps, now, the indefinable aud incalculable force their peculiar fruaticism may assume which presents the only uncertain quantities that have to be dealt with. The country is one of the most fertile in the world, and almost as thickly populated as any portion of India, but the natives are effeminate and ignorant to the last degree ; they are, however, substantially governed by Arab chiefs, who keep up constant intercourse with the Mohammedans of Turkey, Arabia, and India, and are making strenuous exer tions to enlist them all in a crusade for "the Faithful."
The map herewith given shows the scene of the late operations around the Red Sea port of Suakim, and will give an idea of the relative situations and distances of the principal points thus far mentioned in connection with the campaign of the False Prophet.

decibions relating to patente

J. B. CIRCUIT COURT. - BOUTHERN DIBTRICT OF NEW YORE. Wallace, J.
There is no distinction between letters patent for an invention and for land as regurds the rights and remedies for vacating them when oblained by fraud. The right is the same as that which a Slate has to annul the charter of a corporation created by its legislature if obtained by fruud.
The appropriate remedy in bebalf of the United States when a patent for an invention has been obtained by fraud is by a bill in equity.

U. B. OIRCUIT COURT.-NORTHERN DIBTRICT OF NEW YORE.

 ROBERTS 08. WALLEY.Coxe, J. :
In a suit for the infringement of a patent, where the validity of the patent and the infringement are denied, the complainant cannot, as part of his preliminary proof, compel the defendant to disclose the names of his confidential customers to whom be has furnisbed articles alleged to be covered by the patent, but he may be required to give the name of one person to whom he has furnished such articles.

The examiuer has no power to rule on the admissibility of evidence, and defendant, when a witness before him, has a right, unon a question not free from doubt, to take the opinion of the court; and when he refuses to answer under advice of counsel and apparently in good faith, he should not be punished for contempt of court, even though he acted mistakenly.

UAIFORIITY OF SHOP HEAT.

Measurements of the metals in working are reduced to such exactness that very slight changes of external conditions affect their integrity. When a company that produces exact standards of measurement claims an accuracy of one five-hundred thousandth of an inch in linear measurement and advertises to produce it, and another producer of tools of exactness insists on filting work to one fifty-tbousandth of an inch, it may be considered that extraneous influences no formerly noticed may be sufficient to seriously affect these measurements. One of these influences is that of shop tcm perature. Exact measurements must be taken under certain temperamental conditions; when these conditions vary within limited periods, or while the job to which they per tain is in progress, there will be a difference that in some cases would be sufficient to impair the accuracy of the work lo one instance noted, a planer stood by the wall of the shop, the head-upright close to a window. When the plane stopped on a winter night there was on its platen a lathe bed nearly finished, the Vs lacked only the finishing chip. The tool carriage on the cross saddle had been left on the inue or shop side. In the morning, after a blustering, cold, windy night, the operator thought to test the theory of cold contraction, aud he set the square-nose finishing tool to touch the top of the V on the shop side and ran it across to the wall side. The cutter scored across the cold side of the planer, plowing a gouge of at least one thirty-second of an inch deep in the opposite V, a distance from the other $V o$ but little over two feet.

Technical schoole in Saxony.

The amount of attention given to purely technical educa ion in Saxony is shown by the fact that there are now in that kingdom the following schools: A technical bigh schoo in Dresden, a technical state institute at Chemnitz, and art schools in Dresden and Leipzig, also four builders' schools two for the manufacture of toys, six for shipbuilders, three or basket weavers, and fourteen for lace making.
Besides these there are the following trade schools support ed by different trades, foundations, endowments, and districts: Two for decorative painting, one for watchmakere, one for sheet metal workers, three for musical instrument makers, one for drugeists (not pharmncy), twenty-seven for weaving, one for machine embroidery, t wo for tailors, one for barbers and hairdressers, three for hand spinning, six for traw weaving, three for wood carving, four for steam boiler heating, six for female handiwork. There are, moreover, seventeen technical advanced scbools; two for gardeners, ight agricultural, and twenty-six commercial schools. Deut. Industric Zoitung, No. 8.

Tornadoes.

In commenting on the terrible tornadoes which bave lately raged in the Soutn, the New York Herald says that the tornado which is reported to have demolished a thousand residences in the nortbwestern part of Georgia was a typical storm of its class, evidently due to an unusual northward movement of the Gulf air, laden with tropical vapor. Such violent gyratury storms, consequent upon excessive condensation of vapor, can only take place in the presence of the bumid equatorial current. But as the latter is now struggling to spread itself over the Gulf States, and will gain fresh force with every day's advance of the sun toward the northern tropic, tornadoes will increase in frequency till July. Out of vearly six hundred toruadoes examined by Mr. J. P. Finley, of the Signal Service, the relative frequency of their occurrence by months was twenty-one in February, thirty seven in March, ninety-seven in April, after which the num bers slowly increase to one hundred and twelve in June.
The peculiar shape of the barometric depression which gave rise to Tuesday's tornadoes should be noted by meteor ologists, as it suggests the conditions under which thes storms originate in greatest intensity and may be more surely foretold. On Tuesday morning, February 19, the depres sion had taken a distioct trough shape, reaching from Lak Superior to Arkansas. In connection with just such a deprossion (" much elongnted in form" and extending from Louisiana to Kentucky) occurred the fearful tornadoes which ravaged Alabama and Georgia on March 20, 1875. The northeasterly extension of a low pressure area crossing the country, by facilitating the rush of warm, vapor laden ntmosphere from the Gulf and allowing its elevated strata to ac quire great velocity, seems to favor the genesis of the most destructive tornadoes. That this explanation is correct is confirmed by the fact that the storm bearing Gulf current on Tuesday reached the latitude of Petersburg, Va., where at midnight "a tremendous thunder storm burst over the city, followed by an immense rainfull and a heavy gale of wind."

- IITPROVED sTEAY COOKER.

The accompanying engraving represents an invention recently patented by Mr. Hudson Maxim, of Pittsfield, Mass. Fig. 2 is a sectional elevation. The cylindrical ves sel, A, closed at the bottom and open at the top, is held in the upper part of a conical vessel, B, the upper edge of which is securely fasteved, steam tight, to the outer surface of the vessel, \mathbf{A}, at about one-third of its beight. A tube, \mathbf{C}, extends from the bottom of the vessel, B, to the upper edge of the vessel, A , and at its upper end has a screw neck on which a cap, \mathbf{D}, Ats. The tube is provided with a cock, E , helow the bottom of the vessel, A. A pipe, F, much small er than the tube, C, extends from the top of the tube through the bottom of the vessel, B, and is then carried forward and back across the bottom of the vessel, and is then turned int a spiral between the bottom and layer of pipe already form ed, and is finally carried through the bottom of the vessel, B, to the bottom of the upper vessel, where it terminates at G, the end of the pipe being flared and provided with an up wardly opening check valve, H .
The cover, I , which fits over the vessel, A , is of such height that it extends down to the top of the under vessel It is provided wilh an annular groove, J, containing a packing strip which resto r xinst the upper edge of the vessel, A, when the cover is on. The top of the cover has a weight, K. to prevent the steam pressure from raising it. The upper end of the pipe, F , is bent downward, so that water poured

hatim's miproved steay cooker.

through the tube to fill the lower vessel will not pass into the pipe.

After the vessel, B , has been filled with water the cooker is placed on the fire, when the water is converted into steam which rises in the tube, C , passes through the pipe, F (in which it is superbeated), and enters the vessel, A, when it cooks the articles placed therein. The steam then escapes at the top of the vessel, A, and passes down between the sides and cover, heating the sides The valve, H, prevents solids or fluids contained in the vessel from entering the pipe.
The food in the chamber, being subjected to steam super heated to a bigh temperature, is cooked rapidly, and with out the loss of any of the soluble salta.

tronir lift preaervir

The trunk shown in the accompanying engraving can be used as a float to save lives at sea. It is made of very light wood or cork, and is furnished with a covering that makes it absolutely waterproof. The trunk is composed of top and bnttom sections (shown in the perspective view Fig. 2, and in Fig 3, which is a section through the side showing the joint), provided with lap joints, be tween which rubber packing rings are placed. The sides of the trunk have an upward inclination from the bottom, thus giving it a broad base, which enables it to ride better and safer on the water. A wing made of cork, or other buoyant material, is pivoted to the bottom along each longitudinal edge. These wings can be folded under the bottom when

ESGBENHORN'S DCPROVED TRONE.

the trunk is not in actual service as a life saving device. On top are rows of eyes for fastening a rope to which a life preserver can be attached, or two or more trunks can be united by means of the ropes to form a raft, as indicated in the lower illustration. The wings materially increase the buoyancy and stability of the trunk. The interior is divided into compartments in the usual manner.
Further information concerning this invention can be ob lained by addressing Mr. E. Gustav Eschenhorn, 17 New Kolln a. W., Berlin, Prussia.

Heating Games.

Dr. H. Bunte delivered a lecture before a German gas and water association, from which the Chemaker Zeitung makea the folloring abstract:
The speaker divided the gases used for beating into five lasses, namely: 1. Illuminating gas. 2. Generator gas. 8. Water gas. 4. Mixed gas (Schweelgas). 5. Generator water gas. These gases are made as follows: Illuminating (or coal) gas is made by distilling bituminous coal in red ho retorts; generator gas, by burning coke in air so as to produce only carbonic oxide; water gas, by decomposing steam with red hot (anthracite) coal; schweelgas is a mixture of illuminating gas and generator gas, and is obtained by feeding the generator with cosl instead of coke; generator wate gas is produced when a coke generator is fed with air and gas is produced
The composition and heating power of each are given in ound numbers in the following table:

Of these five kinds, those with small heating power require very large pipes: the Beckton and Loudon Company have two 4 foot mains. Generator gas as well as schweelgas possesses another disadvantage for household use, that they are difficult to ignite. Aside from their cost, water gas and illuminating gas are to be considered as the only general sources of heat supplied from some central plant. From economical considerations it has been proposed to separate the first portion of the coal gas, which is rich in hydrocarthe first portion of the coal gas, which is rich in hydrocar-
bons, from the second and less luminous portion, and to seud bons, from the second and less luminous portion, and to send
them through separate pipes to be used, the former for illumination, the second for heating only. But aside from the cost of material for making coal gas, there is the further ez pense of two sets of pipes, which is a very large one.
The lecturer thought that the American method of making water gas and carbureting it with naphtha solved the problem for both lighting and heating. Or, the carburetng may be omitted and the pure water gas employed for illumination in the so-called incandescent lamp.
In a discussion that followed this lecture H. Von Quaglio tated that the cost of naphtha in Germany being much greater than in America was a serious obstacle to the use of carbureted water gas there, but that he had great expecta tions from the incandescent lamps. Lewis', Popp's, and Clamond's lamps have a disadvantage in that they require the use of compressed air, but Clamond has invented a new
form of lamp in which a tiseue of magnesia fibers is heated to a glow without compressed air. This new lamp gives a very agreeable light of 27 to 30 candles with a consumption of 120 liters ($41 / 4$ cubic feet) per hour.
There is a water gas generator in Schultz \& Knaudt's fac. tory in Essen, which works very satisfactorily.

They All Enew How.

A writer in the Portland (Me.) Press says that he took a spider from his web, put him on a chip, and set him afloat on the quiet waters of the pond. "He walked all about the sides of the bark, surveying the situation very carefully, and when the fact that he was really afloat and about a yard from shore seemed to be fully comprehended, he prospected for the nearest point of land. This point fairly settled upon, he immediately began to cast a web for it. He threw it as far as possible in the air and with the wind. It soon reached the shore and made fast to the spires of grass. Then he turned himself about and in true sailor fashion began to haul in hand over hand on his cable. Carefully he drew upon it until his bark began to move toward the shore. As it moved the faster, the faster he drew upon it, to keep his it moved the faster, the faster he drew upon it, to keep his
hawser taut, and from touching the water. Very soon he reached the shore, and quickly leaping to terra firma, he sped his way homeward. Thinking, then, that he might be a special expert, and an exception in that line of boatmanship to the rest of his companions, I tried several of them, and they all came to shore in a like manner."

Rird Migration.

The American Ornithologists' Union asks the assistance of field collectors, sportsmen, and all observers of nature in North America, in their investigations on the subject of the migration of birds in the United States and British North America. They not only want time arrivals, but all data showing the causes influencing migration from season to sea son, suchas the weather, opening of leaves and plants, abundance of insects, etc., affecting the robin, mocking bird, bluebird, catbird, barn swallow, bobolink, kingfisher, whippoorwill (when flrst heard), nighthawk (when first seen), and, in fact, all the migrating birds. Tbirteen districts have been established, covering the whole country, to whom residents are asked to send their reports, and a plan of the work laid out may be obtained of C. Hart Merriam, chairman of the Committee on Migration, Locust Grove, Lew is County, N. Y.

IIPRROVED HORE COUPLITG.

The engravings represent a hose coupling, recently patented by Mr. Samuel Hamer, of Salt Lake City, Utah, which can be locked so that it cannot be uncoupled accidentally. Fig. 1 is a side elevation, showing the hose sections uncoupled. Fig. 2 is a plan view, showing the two sections coupled. On the end of one hose is a tubular socket, a, which receives the tapering neck, b, nn the end of the other hose. At the bottom of the oocket a is a groore that holds a packing ring, against which the outer end of the neck, b, is held. This construction is shown in the part broken away in Fig. 2. A fork, h, terminating in a haudle, has the ends of its prongs recessed in order that they may rest on two pins, e, projecting from diametrically opposite points of the neck. Near the ends of the fork are pivoted two links, g, the opposite ends of which are pivoted to the

HAMER'S IMPROVED HOSE COUPLING

outside of the socket, a. The fork can be entirely detached from the neck, b. A spring lever, f, is pivoted on the cross piece of the fork at the base of the handle, and is furnished with an end notch. The neck, b, is provided with studs, c, which are to be passed into the notch in the spring lever. When the two sections are coupled, the spring lever is swung so as to be parallel with the handle, d-during the operation of bringing the ends togetber it having been at right angles to the handle-so that one of the studs, c, can pass into the notch in the lever, which is thereby locked in place, and which, in turn, locks the fork in place, and prevents accidental uncoupling. It will readily be seen that the device is easily and quickly operated, and the hose sections firmly united.

$\left.\mathrm{MAR}^{\mathrm{CH}} 8,1884.\right]$
 Ponce Cutting in Toras
 "Fence cutting," said a native who knows Texas like a

 book, "is the protest of a very peculiar people against evils quite as remarkable and nearly as outrageous as the present trouble growing out of them. Scattered among the public and private lands in the grazing country are school lunds that could be made to produce a revenue that would do away with the school tax. In the same country are little farms worked by settlers, and litlle nests which used to be the headquarters of those liberty-loving Texans who pastured their cattle on the open country, and never dreamed that it did not belong to them and to all mankind in common. In this country there are few roads. You might confine yourselves to patches as big as half New Jersey, and say there are no roads at all. Water holes and water courses, regarded as God's endowment to the cattle raisers seam the prairie. Imagine great corporations, whose stock is owned in Paris, London, New York, and Chicago, suddenly buying up vast tracts and fencing in whole counties even two whole counties together. Imagine their vast herds let loose to pasture on the public lands (used, though with no better right, by the nesters), and only taken into the fenced lands in the winter."Imagine," he continued, " these fences inclosing squares of school land that never have been leased, boxing in water boles and streams that the nesters and cattle depended upon for life, inclosing the little farms and oesters' tracts, and pasture lands of small beginners; shutting in the roads and trails, and everything for miles upon miles of territory in their tremendous grasp. Imagine, also, to fully understand the matter, a population growing so fast that there had been to 1830 more than 90 per cent added to the sum of inhabitants in 1870, and thal gave, in the shape of farmers, a fixed and settled character to what had before been a quasi noma dic population, composed of men on horseback aud women to whom one part of the Southwest was as gond a place to live in as auother. The permanent farmers, who were fenced within the beart of great pastures, and the communistic nesters, who were fenced out of the pasture lands of bygone years, cried aloud for relief, and got none. They could not get it from the stockholders of Paris add New York, or from the agents of these persons in the pastures."

The 8ky Colors.

Mr. K. A Proctor, in a letter to the Tribune, says: The strange sunsets and sunrises, with long lasting ruddy twilights, green and blue sun, and strangely tinted moon, continue deservedly to attract attention. The strangest thing of all is that they continue still to be seen. They began in September, and now as I write-late in January-I see after sunset a red glare reaching to the nortbern boriznn. Consider what this means. For the northern skies to be red dened in this way after sunset, the region of dust, or what

ICPROVED NUT LOCR.

An invention recently patented by Mr. John W. Haley, of North Hartland, Verinont, is represented in the accompanying engraving. The fish plate, against which the nut rests, is provided with two hook lugs-one to the left of the upper corner of the nut, and the other to the right of the lower corner. The lower ligg has a downwardly projecting prong and the upper an upwardly projecting prong. A metal rame fits closely on the nut, and is furnished with two lugs, t diagonally opposite corners, extending in op posite direc ions, and which fit in the notches formed in the hook lugs. The nut, which is secured on the bolt passing through the ash plates and rail, is drawn up tight, the frame is passed ver it, and then the nut is turned back or loosened, until the

haley's niproved nut lock

lugs on the frame pass into the notches formed by the hook lugs. The nut is thus held securely in place against all jar ring, and cannot be removed until it is turned forward suf ficiently to permit the removal of the frame.

BORING, DRILLING, AND SUBFACIMG MACEMTE

We illustrate a horizontal boring, drilling, and surfacing machine, constructed, says Engineering, by Mr. W. Asquith of Bighroad Well Works, Halifax, for an engineering firm in the United States. The main standard carrying the steel boring spindle, which is 6 in . in diameter, is adjustable ver tically and transversely both by hand and power. The spindle is capable of variable feed in either direction, and can be made stationary for surfacing. It can also be withdrawn instantly from the work when required. The two standards which carry the bearings for the boring bars are adjustable in any direction by hand. There also two portable stand ards carrying boring heads. These have self-acting feed motions, and are designed for drilling or borjing objects simultaneously with the main boring spindle. The whole

Sugar Refining in Ouba

The first sugar refinery ever established on this island, and which is now in course of construction in Cardenas, will soon be ready to begin work. According to a pamphlet issued by the company, the refinery will cost $\$ 318,258$, while the capital provided for the construction amounts to $\$ 360,000$. The establishment will refine 40,000 kilogrammes of sugar daily, or about 1,000 tons monthly, and will, there fore allowing for two monibs of internis produce 10,000 tons yearly, which represents about one produce 1,000 tons yearly, which represents about one-
sixth of the sugar consumed on the island. Should the sixth of the sugar consumed on the island. Should the
Cuban consumers fail to favor the new enterprise, the com pany contend that the low price at which they can offer their product in view of the perfected machinery will be auch that Spain and other countries using refined sugars will find it to their advantage to buy it of the Cardenas refinery.

In Favor of the Cable system.

The Rapid Transit Commissioners of New York have passed a resolution declaring that at present they considered the cable system of construction upon the new routes the most desirable, whether wholly or in part upon the surface. Although no designation has as yet been made, it is intended that none of the routes shall bave elevated structures. with the exception of three, and it is a foregone conclusion among the members of the commission, that the fare on the new roads (28 in number) shall not exceed five cents.

An Rlephant-shaped Hotel.

A hotel modeled after an elephant is to be shortly erected on Coney Island. The dimensions of the hotel are as follows:
The height will be 122 feet to the top of the dome; length, 50 feet; length of body, 80 feet ; circumference, 168 feet. The head is to be 48 feet long and 132 feet in circumference; the neck will be 10 feet long, with a circumference of 108 feet; the legs will be 40 feet long by 60 feet in circumference; the ears will be 34 feet long by 20 feet wide; the tail 50 feet long, diameter 11 feet, tapering to 16 inches; the trunk 52 feet long, diameter 14 feet, tapering to 3 feet 4 inches; the tusks 32 feet long and 6 feet in diameter, tapering to 1 inch.
The eyes, 4 feet in diameter, will contain large lenses, through which, by the aid of other optical apparatus, objects at Sandy Honk may be distinctly seen. The elephant will face the ocean. The entrance and exit are to be through the hind feet. The forelegs and trough, out of which the elephant will be eating, will be occupied as bazears.
The saddle bags are to be 16 feet long, and will contain wo rnoms outside of the body. The main hall in the body flepe elephant is to be 80 feet long by 32 feet 4 inches wide. The room in the head is to be 48 by 78 feet. The dimen-

IMPROVED HORIZONTAL BORING, DRILLING, AND SURFACING MACHINE.
ever else it may be which is illuminated with ruddy light, must be at least twenty miles above the earth's surface
I have nothing to add to the various suggestions which have been offered, except to note that if the whole earth has been peppered with volcanic dust from Krakatoa, the evidence respecting meteoric dust, on which the views recently accepted have been chiefly based, must be recon sidered. For it becomes clear that one large volcanic outburst can do more to bring matter simulating the appearance of meteor dust to the earth's surface than would suffice for fifty years of meteoric supply as hitherto calculated. The smaller volcanic explosions taking place every year would, therefore, quite easily acconnt for every particle of supposed meteoric dust hitherto collected.
apparatus is mounted on a strong cast iron bed plate, 24 ft long by 8 ft . wide, accurately planed on the face, sides, and slots, and weighs 25 tons.

Stretching of the Brooklyn Bridge Railway Cable. The strain upon the bridge cable in pulling the cars has had the result of stretching it gradually, until last week it was more than 100 feet longer than when the cars were first started. Early on Sunday morning a gang of men from the Trenton manufactory, where the cable was constructed, shortened it, under the supervision of the bridge engineer. A piece of the cable 30 feet long was cut out, and then it was respliced in time to draw the cars as usual in the morning.
sious of the two side body saloons will be 44 feet by 10 feet. There will be two thigh rooms, 28 by 10 feet ; two shoulder rooms, 22 by 10 feet ; two cheek rooms, 32 by 10 feet; one throat room, 32 by 8 feet ; and one stomach room, 56 by 22 feet. This latter is to be a grand saloon. There will be four foot rooms, 12 feet 8 incbes by 12 feet 8 inches; six leg rooms, 12 feet 8 inches long by 12 feet 8 inches high and 12 feet wide.
A gallery extending out from and encircling the body of the elephant will be 270 feet long. In this gallery there will be two side rooms, 42 feet long by 10 feet wide each. There will be two hip rooms, 28 by 10 feet
The trough room, into which the trunk protrudes, is circular, 11 feet in diameter by 11 feet high.
mortality in Now York Otty.
By report of the Registrnr of Vital Statistics for the year the totul number of deaths in New York was 33,882-3,942 less than for the preceding year. The causes of death as summed up and classifi
years were as follows:

Small por	1888.
Measles	18
Scarlatins .	\%
Dlpatheris....a000	58
Dpatheris...................1.1205	000
mbranous crrap 729	40
Whooping cough.... ${ }^{\text {a }}$ 88	27
Erysipelas... 149	178
Typhas fever	15
Typhoid fever	40
Cerebrospinal fe	
Puerpural diseases........ 407	R
Remittent, typho, malarial, etc.... 540	27
Diarrheal diseases of children....8,479	87
Diarrheal dieeases, all ages.......4,050	3,380
Alcooholism	118
Rhenmatism and goat....... 184	4
	3
Phthisis palmonalis...............s,281	
Bronchits............1,1,888	28
Pneamonia.	3,188
Heart diseases 1,474	00
Marsemus, secrofula,	
Hydrocephelas and meningitis......... 639	57
Meningtitis and encepbailitis 741	71
Convalsions........... 685	516
Sanstroke................. 108	
Brain and nervous system....................... 2,971	
oplexy......... 16	
Peritonitis and gastritis.......................... 287	31
Bright's diease...........1,856	
Suiclde....................... 199	
Drowniug 207	49
Deaths by violence........1.876	
Total zymotic diceaees18.428	80
Total constitutional diseases..7.88	7.419
Total local diseasees........................... 14,130	10.601
Total development diseases........2,172	15
Total deaths from all causes..................37,824 dEatr by agrs.	83,889
Perrons seventy years and over... 2,388	
Cblidren under one year.......................... 0,\%\%7	8,724
Children ander two years........................18,462	11,288
en under five years........................17,520	13.70

Rendering Cbeese Digentible.

A writing signing bimself " Sea Cook" refers in the Nautical Magazine (London) to a lecture by Professor Williams before the Society of Arts, on the comparative nutriment of different foods, and he follows with a receipt of his own for restoring a chemical quality in cheese of which it is deprived in the ordinary mode of manufacture.
Any one, says the writer, who is able to find a substitute for salt junk is a benefactor to uur seamen, and it would appear that such a benefactor has arisen in the person of Mr. W. Mattieu Williams, F.C.S. The substitute is cheese. Not cheese eaten as it is purchased, but cheese to which has been restored the proper amount of the salts of potass necessary to convert it into nutritious and digestible food. It is well known that the chief reason why salt meat is unwholesome and not nutritious is that the salts of potass have been driven out of it in the pickling. It is now known that one reason why cheese is indigestible is because the salts of potass originally in milk are absent from cheese.
As regards the relative nutriment in meat and cheese, th Professor tells us that-
"Taking the composition of a whole skinned and pre pared sheep or ox as it hangs in a butcher's shop, the amoun of uutriment in it is about equal to one-third of its weigh of cheese. The fat is abont the same in both, but the dif ference is due to the bones and excess of water. Thus 20 pounds of cheese contains as much nutritious material as a sheep of 60 pounds weight, and would bave the same valu as practical nutriment of it could be as easily digested. Cheese is the most portable of all food, even more so tha Wheat, on account of the greater value in a given bulk."
Mr. Williams goes on to tell us that the common English or American cheese is the best for purposes of food. Here, then, we have in our midst the most valuable food to be obtained, and it is not used simply for the reason that owing to absence of salts of potass it is indigestible. Make it digestible by restoring the potass, and we have food for our toiling millions on shore, and for those at sea a food which will go far to uot only nourish the consumer, but to make him proof against scurvy as well.

Here is the recipe, and "Sea Cook" advises all mas ter mariners to copy it into their private logs, and those who are landsmen to have a copy made for use in the kitcben. Cheese prepared as below is not only good and sufficient of itself for a meal with potatoes, rice, etc., but forms a most useful, digestible, and appetizing adjunct to the menu of even a "swell" dinner.

1. Cut the cheesc into shreds, or grate it, or chop it up fine like suet.
2. To every pound of cheese thus treated add quarter of an ounce of bicarbonate of potass.*
3. Put the mixture of cheese and bicarbonate of potass into a saucepan with eitber three times its bulk of eold water or four times its bulk of cold milk, and mix well.
4. Put the saucepan on the fire and bring the mixture slowly to the boiling point, taking care to stir it all the time. *This as nearly as possible pats back into the cheese the amount of potans that was
orkfinal milk.
5. Having got it to boil, keep it hot until the cheese melted, which does not take long.
6. Turn it out into a dish, and the result gives a beautifu nutritious mixture which thickens like a custard in cooling. This custard may be eaten with impunity even by those per sons who would be ill after eating a piece of cheese the size of a nut, and is peculiarly adapted \cdots food for all persons who work hard with either brain o: \cdots uscle.
Funcy dishes may be made by the ship's cook in the following manner for the captain's and passengers' tables, e.g. take the mixture of cheese ind bicarbonate and water (or milk) given above, and add to it two eggs, white and yolk beaten up together, for every quarter of a pound of cheese in the mixture. Put into a dish or a series of little dishes (previously buttered), and bake till brown. This must be eaten with bread or biscuit. Another way is to make the mixture a little thinner by adding a little more milk or water, and to put it in a pie dish with slices of bread laid one over the other. The custard should be poured in cold and left for an hour to soak before it is baked. This dish is a great improvement on the ordinary bread and butter pudding.

Luminous Paper.

This paper may with greal advantage be used for various useful purposes, such as, among others, for match box la bels, luggage labels, labels for bottles (especially for bottles containing poisons), labels for crates containing fragile goods, which, by being thus distinguished, will be rendered less liable to rough treatment when being moved about on dark nights; also for wall paper, designs blocked upon which may be highly ornamented, while such paper will be serviceable for lighting up to a useful extent passages and chambers, especially water closets and other places wherein only moderate light is required; for writing paper and envelopes, business, private, and Christmas cards, and for advertisements, and especially for railway coach tablets, which, afflxed to the ceilings and backs of compartments, will serve the twofold purpose of producing prominent announcements and rendering the carriage sufficiently light to enable lamps to be dispensed with when passing througb tunnels during the daytime.
The inventor uses what is known to cbemists as "sulphide of calcium," taking care that it is of a quality that will, after exposure to light, remain (as seen in a dark place) luminous for a considerable time (say, for instance, a whole night). This is either sprinkled over the paper pulp when in the engine, mixing the pulp and powder (in proportions bont one hundred pounds of luminons powder to one hundred and thirty pounds or paper in pulp form, containing as little water as possible to carry it through the drying cylinders) thoroughly by stirring, and the paper is then finished in the ordinary way of paper making; or, a paste is made by adding to the powder twice its weight of boiling water, al lowing the mixture to stand for a period of about thirty-six bours, but stirring it at intervals during that period. The supernatant water is then poured off, and the product is a paste termed "luminous water paste." This luminous water paste is mixed with paper pulp, preferably in the condition known in the trade as "three-quarter stuff." Thus, to one hundred and eighty pounds of ordinary paper pulp n condition containing as little water as possible, and known as "three-quarter stuff," one hundred and forty pounds of uminous water paste are added. With these is mixed a small percentage of smalt or ultramarine, if white paper is desired, and the compound is stirred well in the engine. It is then run off and tub sized in the way usually practiced by paper makers, using size such as is ordinarily employed by them. When desired, the size is given a watetproof character by adding to it a small percentage of tannin or bichromate of ammonia or other waterproofing substance; but care must be taken to avoid introducing or leaving in the paper pulp any substances (such, for example, as acids) that will react on the suiphide of calcium, and thereby lessen or de-
stroy its luminosity. The size ought to be ueutral. All stroy its luminosity. The size ought to be ueutral. All
bleaching powder must be removed, and the quantity of alum employed should be as small as possible.
In carrying out the processes it is important that iron to should not be employed. Wooden tools are suitable
This invention may, besides being applied in the manufacture of white paper, be employed also in conjunction with colors to produce colored luminous papers; but colors
containing lead and the heavy metals in general are not so suitable as other pigments.

Dried Apricots.

California fruit growers have discovered that apricots bleached with sulphur fumes and then drjed in the sun are superior to those that are dried in any other manner, or that are canued. They regard this fact of very great importance to the whole State. It enables every fruit culturist, how-
ever limited his means, and however small the product of bis orchards, to dry bis.own fruit for market, and makes him independent of the canning factories. It is also stated that fruit can be prepared in this manner more cheaply than in any other, that its weight is better preserved, and that it is of superior flavor.
Large dealers in dried fruit say that the market for such products of California orchards will always be greater than the supply can possibly be. The United States alone will readily take all the fruit of the kind and quality now being produced by the sub-drying process that California can ever
raise. Many thousands of apricot trees have been planted within a recent date in orchard form in southern California. Sun-dried apricots are being sold to California dealers at double the price paid for the best raisins.

Government Heavy Ordnance.

The report of the Ordnance Foundry Board, covering the conclusions arrived at from the investigations of the past year, has but recently been made. The board was required by Congress to answer the following questions :

1. "Which of the navy yards or arsenals owned br the Government has the best location and is best adapted for the establishment of a Government foundry q."
2. "What other method, if any (apart from the establishment of a Government foundry), should be adopted for the manufacture of heavy ordnance adapted to modern warfare for the use of the Army and Navy of the United States?"
3. " The cost of all buildings, tools, and implements necessary to be used in the manufacture thereof, including the cost of a steam hammer, or apparatus of sufficient size for the manufacture of the heaviest guns."
The Board recommend separate gun factories for the Army and the Navy, the former to be at the Watervliet Arsenal, West Troy, N. Y., and the latter at the Washing. ton Navy Yard. The Board, however, does not recommend the establishment of a Government gun foundry complete, but rather that it "should establish on its own territory a plant for the fabrication of cannon, and should contract with private parties to such amounts as would enable them to supply from the private industries of the country the forged and tempered material," t. e., "the Government" should give contracts of sufficient magnitude to enable the steel workers of the country to supply the finished guns without its direct aid," while the Government establish ments should be general finishing shops and "assembling' factories. In this connection the view is put forth that the Government should provide itself with factory facilities on a sufficient scale to perform the work of establishing stand ards, making experimental guns, and fabricating cannon on a moderate scale ; but it is not considered judicious to concentrate in the Government establishments all the work of fabrication, or to include within their operations the preparation of such material as can be provided by the private industries of the country. As proposed, it is thought the purchase of the steel required for cannon will stimulate ou own manufacturers and interest them in the operations of own manufacture
the Government
At present, in the opinion of the Board, the steel manu facturers of our country are not prepared to produce the materialirequired for the larger calibers, and the important question arises, What means shall be adopted to induce them to study the subject, and embark in the manufacture on a large scale? They cannot be expected to do this at a sacrifice of their own interests. This object can only be achieved by holding out a fair prospect of ultimate remuneration for the expenditures necessary to undertake the work and this can only be done by the action of Congress.
As io the cost of plant for producing the tempercd parts of guns up to 1,000 tons, ready for delivery at gun foundry. the Board make the following estimate :

Casting.	50,000
Forging (hydranlic press).	150,000
Rough boring and tarning.	210,000
Tempering	50,000
Total	8680,000
Additional cost if liquid compression be adopted	175,000
Approximate cost of plant for gun factories :	
Guns up to 6 inch caliber	\$50,000
Guns from 6 to 12 inch caliber	150,000
Buildings and shrinking pot	850,000
	8550,0

Three years, it is said, will be required to complete the tools, construct the shops, and establish the plant. Such a factory will be able to turn out, per year, fifty 6 inch, sevenleen 12 inch, and twelve 16 inch guns, or a proportionately larger number of smaller calibers, at a yearly expense of about $\$ 2,000,000$. These figures the Board is confident closely approximate accuracy. The calculations are based closely approximate accuracy. The calculations are based
upon estimates obtained abroad, and do not include ocean upon estimates obtained a
freight and customs dues.
Though the act of Congress replied to in the above report is one of inquiry, the Board desires to emphasize the neces sity of a proper encouragemeut of the private stecl manufacturers, which slall insure the supply of gun material without loss to the Government or private companies ; and is of opinion if Congress sball be pleased to appropriate an adequate sum for providing modern artillery for the Army and Navy, to be held in the Treasury to be expended under the authority of the President, that (with such a prospect of remuneration) there are steel manufacturers in the United States who will undertake the production of gun metal on a large scale on the sole condition that their steel shall meet the required tests.

The Proposed Five-Year Limitation

A boyhood acquaintance of Speaker Carlisle has written to that gentleman a forcible protest against the passage of the bill now before the House, limiting the duration of patents to five years. He relates to the Speaker an incident of an inventor in his neighborhood who had been working six years at an invention, but who, when asked what he should do if the law passed, replied, "I would throw these traps to the dogs and go fishiug.'

Citutespaufletct.

The Rights of Inventors and the Policy of the

To the EIditor of the Scientific American

The main cause of difference between the civilized man and the savage is, one labors to till the soil as a foundation for civilization, and the other does not. One has tools and machinery to work with, the other has not. Tools and machinery render our present civilization possible. Take a way permanently all the tools and machinery of civilization from the world, and civilization would bave to cease.
All the tools and machinery that exist have been invented by somebody. Invention is simply adapting means to ends to render man's life on earth easier and more comfortable. Two centuries of labor, by the aid of tools and machinery, have made this country what it is to-day. The savage without tools for ages had done nothing to break the wilderness. Now, if our life as a nation is any better or more comfortable than that of the red man before us, we may as well thank the inventors of the world for the tools which have enabled us to go as high up as we are. Stop invention to-day, and the world will go no higher than our present inventions will allow us to go.
The right of the individual to what he produces or obtains by his labor is recognized by law, and protected; but if a man is foolish enough to spend his time ánd means, and go through poverty and self-denial to give a machine, or a convenience, or composition of matter to the world, which it never had before to use, and which will give civilization a higher plane of life, be is not protected as an inventor, and as a matter of justice to him, but on the principle that the patent law is based upon-that of good policy on the part of the public to offer him a patent for a limited time- 17 years-and then his ownership ceases, and the great public own it. During this brief protection what is his condition? If a man steals a horse, the State attorney stands ready to prosecute, and the court casts him into prison at the State expense. But let a man steal an inventiou, and it is only an infringement, and you may get damages enough to pay your lawyer, and perhaps not. I suppose horses are of more consequence than inventors or their machines.
The patent law is based on public policy, not on justice to the inventor. It is said that an invention is a monopoly, but it does not monopolize anything the world bas had before. It does not make a corner in breadstuffs, and oppress the millions, or raise the price of anything men have already; but invention cheapens the things we already have. An invention is not corn or wheat, that the public must bave, and the public won't buy unless convibced they are the gainers by so doing. If an invention is held too high in price the public won't buy, so nobody is hurt but he inventor
The bill lately passed by the House of Representatives seeks to shield the buyer of a patented article from liability to the inventor for royalty or damages. The innocent buyer of a stolen horse has no redress when the rightful owner takes his horse. It is safe to presume, on the part of the buyer, that a new and improved article is patented, and the purchaser should act accordingly, and buy of the rightful owners. If we have no sense of justice to the inventor, I do not believe we can afford to commit suicide by curtailing the limited protection at present thrown around inventions, and stay the progress of civilization and improvement. I do not believe the majority of people of the United States are in favor of any such movement. Let the people be heard.

Avon, Conn., February 16, 1884.

On Infringoments of Patents.

To the Evititor of the Scientific American:
I see by your valuable journal that you condemn the bills now before Congress altering or amending the patent laws. That shows that you are fully alive to the interests of inventors and patentees, for if the bills referred to become law, patentees may throw their patents into the fire, for they will be of no more value then than so much waste paper.
The plea tbat these bills are intended to protect innocent purchasers is too thin, for the Gazette records of the Patent Office are to be found almost everywhere, and persons who are anxious to avoid being swindled can get sufficient information from the records, and from other available sources, to guide them in their purchases; and if people get swindled, the best way in my opiuion to put an end to that sort of business would be to authorize the Commissioner of Patents to keep a patentes' register in his office, in which patentees or owners of patents could, by paying the Commissioner proper fees, get the names of their attorneys and agents registered, including the proper address of all such; and it should be made a rule that no attorney or agent should be permitted to act as such until he had first obtained, from the Commissioner of Patents, a certified cony under seal of the authority filed in the Patent Offlee by the awner of the patent; and it should be made a law or rule, alsn, that any person who should attempt to sell patented articles, without having in his possession a certitied copy of the authority of the owner, should be liable to arrest and fine. If some such amendment as this could be made to the patent laws, ample protection would be given to the public against swindling dealers in articles covered by a patent, and there would be no need of the dubious bills now before Congress.

The keeping of such a register as I have named would only entail a little extra work on the Patent Office, for which the fees to be collected would more than make up, for they would largely increase the rivenues of the Paten Office for all time to come.
I have more than oue invention of my own, for which I intended to ask you to apply for patents for me without delay. To these I have given much valuable time, but if Congress is going to tamper with the patent laws, as it is threatening to do, then I shall not apply for patents in this country, but send my inventions to England, believing that the vew patent law of that country offers now superior in ducements to inventors and patentees.
H. F. Ross.

San Francisco, Feb. 10, 1884.
[It must not be forgotten there are stringent laws now in force, State and Federal, for the severe punishment of any person who practices any kind of fraud or misrepresenta tion, whether in respect to patents, other persunal property, real estate, etc. Those who, like some of the Cougress members, aim to destroy property in patents because they fancy that somebody is cheated by patent rogues, ought to go a step further and pass laws to depreciate the bolding of Eds.]

How to Obtain Pure Wator.

To the Editor of the Scientific American
Let the first water of a shower waste till roof is washed off, then catch a 20 gallon stone jar full and cover it up for twenty-four hours, then carefully dip it out and place in another jar in the cellar, all but a few inches in the bottom, which will contain all the impurities any filter will extract. This can be easily washed out, and the jar is ready to use again
The jars impart no taste to the water, and do not leak This is sufficient water for a family of tive to drink from Well water used for tea and coffee is purified by boiling. Most so-called filters depend on gravity to force particle of water past particles of impurity. while the latter ar supposed to be beld mecbanically by a strainer composed of various substances, while my dependence is simply a clean vessel and the force of gravity to get rid of the impurities. As the impurities continue to settle and we use the water off the top, we get the purest kind of a drink-clear and sparkling. The purity of the water that passes through most filters, ever after the first shower has left its filth, is ques-
tionable, as-the imporities are not gotten rid of, but accumulate to befoul the passage for the next water that comes.
My arrangement requires no more attention than any filter sbould bave, and may be modifled to soxit one's consettle. To get a cold drink in summer, bang a jugful in the well.
F. W. Burr.

La Fox, Illinois, February, 1884.

The Foucault Experiment.

To the Editor of the Scientific American
In your issue of January 12, one of your correspondents, referring to the Foucault experiment witb the pendulum, which is said to prove the axial motion of the earth, expressed a great desire to bave the experiment repeated in Wrshington. I sincerely hope a committee of scientific men will take the matter up, and test the experiment thor nugh!y, and demonstrate beyond dispute the truth or falsity of it. Because, aside from the pendulum experiment. w have no direct, palpable proof of the axial motion of the éarth.
Quite recently a number of scientific gentlemen in Great
Britain and some of the public journals asserted the Foucault Britain and some of the public journals asserted the Foucault experiment false, coming to that conclusion after repeated tests of their own. In mauy cases the experiments bave shown no change at all in the plane of oscillation of the pendulum; in others the alteration in the plane of vibration has been in the wrong direction, and very often the rate of
variation has been altogether different to that which theory indicated: The Liverpool Journal siates that a scientific gen tleman in Dundee tried the pendulum experiment, and said that, as far as proving the axial motion of the earth was concerned, it was a gross delusion; but that it tends to the magnetic meridian he found to be a fact. The Mrochester Ex F.R.A.S., in the Library Hall of the Manchester Athenæum, in which the rate of variation was entirely different to the ac cepted theory. Did space permit I could give particulars of several other experiments with like results. Now, in the face of all this, I agree with your correspondent, that a thorough tevt of the Foucault experiment ought to be made n Washington to prove the truth or falsity of it.
I would also singgest that two pendulums be used, one of metal the sarhe as Foucault's, another' of wooden rods pinned and glued together and glass ball, or constructed of some perfect non-nonductors of electric and magnetic currents. A cord would not answer, as the torsion might cause the pendulum to vibrate with a circular motion; the point of suspension ought also to be uon-conducting, resting on a glass bear ing. My iden for having ne pendulum a perfect non-con-
ductor is, that if a metal ne is affected by electric currents luctor is, that if a metal one is affected by electric current the two pendulums continued their oscillations in exactly the same plane, I think it would prove that electric or magnetic currents bad no influence on the direction of their vibrations. In starting the pendulum great care is required to avoid giving any bias from the true plane of vibration. In
the experiments referred to, a thread having a loop at one end was passed over the pninter on the under side of the ball, the pendulum drawn back and tied. When perfectly at
rest the thread was burned apart, and the pendulum started rest the thread was burned apart, and the pendulum started on its course, the loop falling off. I would like to see immediate steps taken for a thorough practical test of this celebrated experiment.

Goderich, Ontario, February 18. 1884.
Whmer Smith.

Catherive C. Hopley, who bas written a great deal on snakes and their habits, came to America from England last summer with the intention of obtaining, if possible, some new facts and illustrations of snake life. She writes to Land and Wator that one object of her ambition wae to procure for one of the muscums a mother snake with ber brood refuged in her throat; but, though hitherto unsuccessful, she has reasonable hopes that a thus refuged family of little ophidians will be furnished to more than one of the national museums next summer, enthusiasts promising tonat no efforts shall be wanting to afford ocular proof of this maternal instinct. That it should still be doubted any where arouses the ire of many in America, she adds, who have for years been offering testimony as eye-witnesses. What is now desired is that observations should be extended to Africa, India, and Australia; because if the babit of a Africa, India, and Australia; because if the babit of a
mother snake receiving ber young into her throat for refuge should be confined to this continent only and to England, it is a remarkable feature in ophidian bistory for the most learned biologists to work out.
But, is regards Australia, some few cases are not wanting. A gentleman, who is a great traveler, an ardent sportsman, assured the writer that he had himself seen an alarmed black snake (probably Preudechis porphyriacus) open her mouth and thus receive ber young. On shooting ber, the young ones escaped from the mouth again.
A gentleman who writes in the American Field, under the name of "Snipe," described "a dark colored snake of about six feet long," opening its mouth and receiving its roung. Watching for reed birds-the " $B \circ h u^{\prime}$ Link" of the Eastern States, and the "rice bunting", f the South-he was lying flat on the ground with his gun, in the latter part of August, when about ten feet off be saw the suake with her mouth wide open, ad the young ones hurrying in as if eager to hide themselves. He watched her for some minutes, when his friend who was shooting with him carne near and disturbed ' ':e snake, which then began to move off with the hidden snakelings, while a number of little brother and siater snakes, "not yet taken iu" followed closely. "Snipe" then took aim and shot off its head, and on opening the snake found the young ones all alive, coiled in a ball near the throat; while further down were a bird and a meadow mouse, recently swallowed. He relates the incident in opposition to the hypothesis that snakes, being cannibals, might swallow their young for food, and describes this mother as patiently waiting with her mouth open, all action being coufined to the eager young ones.

Apparatus for Producing a very

Cailletet has constructed a continuous apparatus for producing intense cold, which consists of a closed steel cylinder in which is a coil of copper pipe which projects from each end of the cylinder. Two copper tubes are also screwed into the cylinder, and one of these communicates with the mercurial piston pump already nsed by Cailletet, while the other receives the ethylene which bas heen compressed by the pump and cooled by methyl chloride. By this arrangement he forms a circuit in which the same quantity of condensed ethylene is repeatedly evaporated in the copper coil, producing intense cold, and then enmpressed again by the pump being sufficiently cooled with metbyl chloride and ready for evaporation again. This process goes on as long as the sucking and compressing pumps are worisingCompt. Rendus, p. 1115.

The Panama Canal.

Rear Admiral Ammen, who is well informed on such matters, says that, whatever they may say to the contrary. all that they are doing at Panama looks to the construction of a canal that must have 124 feet lockage, and will then cost $\$ 200,000,000$, in addition to the $\$ 100,000,000$ called in on stock or nit: ined on bonds. A bout $\$ 20,000,000$ has gone to the founders and sub-founders;-about as much more for the purchase of tu: Panama Railroad, and 10 per cent in advertising and extra fees to bankers; and as much more to contractors as a bonus. I have from an engineer, conversant with th: work. that every cubic meter of hard ground excarated costs $\$ 2.50$, which is five times what it should cost, even there: But the difficulty, even for a lock canal, is to get rid of the excavated material. An enormous amount of excavation will be required to get proper slopes in the Calebra cut. This is almost wholly in earth, and the summit level of the railroad is a mere "hog's back"-that is to say, it has very steep grades on both sides. The cut was made only 25 feet decp, because of the tendency of the earth to slide. In fact, a train was caught in this gap by a slide, and it required days to dig it out. The earth had to be carried off in buckets, and it was like putty. If the canal has a lockage of 125 feet, then the deep cut will be at least 200 feet. So you see what a cut in width it must be, and what

The Dwarf Treee of Ohind

The dwarf trees of China are curiosities of forestry. Every child knows how the Chinese cramp their women' feet by bandaging them when they are infants, and thu render it impossible for them to walk. It is, bowever, wo derful to see miniuture oaks, chestnuts, pines, and cedar growing in flower-pots, fifty years old and yet not a foot high. To do this take a young plant, cut off its tap-root and place it in a basin in which there is good soil kept well watered. If it grows too rapidly, dig down and shorten in several roots. Every year the leaves grow smaller, and the little dwarf trees make interesting pets, just as some people raise canary birds, and others squirrels.-Oultivator

Porpoises and salmon.

From good authority we learn that the porpoises are the worst enemies the salmon of the lower St. Luwrence have. They cruise off the mouths of the tributary salmon rivers, and when the salmon are running in, from about the middle of June to August, the shore is alive with them, feeding on the salmon. "We al ways know pretty nearly," says the writer, " when the salmon will strike in by the presence of the porpoises, which bave followed them in from the ocean."

DREDGER ON THE TANCARVILLE CANAL.

It is now a long time since the idea was put into practice of employing artificial means of transportation for removing the debris in excavating. At Suez the dredges, in order that they might be kept constantly running, employed a number of trains of earth cars for this purpose.
These different attempts, for the most part vain, or at least unsatisfactory, have caused our engineers and contractors to give up the ides. of continuing this method of removal of rubbish.
The device for transporting rubbish, which has this year put in its appearance in our large works of excavating, consists of a long metal frame resting upon two cars which are movable along railroad tracks. This frame supports two series of rollers upon which rests the endless carrier, made of rubber and cotton tissue. It is this carrier, of ove meter in width, that receives the rubbish as it falls directly from in width, that receives the rubbish as it falls directly from
the buckets of the dredge and transports it, by its constant movement, to a distance. The frame being about 60 meters in length, requires a carrier of 124 meters. The carrier travels at the rate of about two meters a second, and is moved by two small vertical engines located on the cars which support the framework and give a rotary motion to the two end rollers, which have a circumference of about one meter, while the other rollers are ouly about oue-third as large, and in order to afford a continuous support to the carrier filled with rubbish, are located only one meter apart.
The dredger, raising about 1,800 to 2,000 cubic meters of matter a day, is readily cleared by the carriers, and at the outer extremity of the frame is seen a bank equal in size to the trench of the canal.
The carrier is able to work up or down hill, according to the nature of the country. If the depositing bed is lowe than the point under excava tion, the power required to operate the carrier is very slight, the weight of the load alone actuating the carrier; in the other case, however, considerable power will be needed.
If, now, we could go back several years and compare the methods employed at that time with the system we have just been considering, now in operation on the canal be tween Havre and Tancarville, we should be flled with as we should be There, where tonishment. There, where selves up in the work of years, science flew to thei assistance, and now we find nature transformed as if by enchantment by the will of man. Yesterday, indeed, that rand Frenchman De Les

DREDGER AND CARRIER ON THE CANAL OF TANCARVILLE, FRANCE.

Drying Power or Dalcium Chloride

The affinity of deliquescent salts for water, and especially that of calcium chloride, is utilized in drying gases, in organic analysis for absorbing water, and for drying the air in desiccators. Fleischer bas made some experiments with Lambrecht's hygrometer, and found that fused calcium chloride is less efficient than was generally supposed. He placed the bygrometer in a desiccator charged with calcium cbloride. The air in the desiccator contained 62 per cent of moisture at the beginning of the experiment, and at the end of two hours it had fallen to 31 per cent, in two hours more to 25 per cent, and at the end of six bours to 21 per cent, where it remained stationary. In a second experiment, at the end of five hours it indicated 27 per cent.
When the desiccator was charged with sulphuric acid, 66° B., the moisture decreased from 67 to 30 per cent in 35 mi . nutes. At the end of an hour it had fallen to 18 , and iu 105 minutes to 0.0 per cent, or absolute dryness.-Zeitschrift Anal. Chemie.

Steatite Gan Burnern

The following facts relative to the nature of steatite and its manufacture into gas burners are given in the Civil-ingenieur.
Steatite occurs either in detached masses or in thick layers, and varies in color from a white, through shades of blue, green, and yellow, to a brown.
The most impurtant deposits of steatite in Europe are a Gopfersgrun, near Wunsiedel, in Bavaria.
There are legends which state that at one time this steatite was made into balls, burned, and used as projectiles.
In composition it is cbiefly a silicate of magnesia. The following are analyses of the yellow and white varieties:

	Yellow.	White.
silicic acid.	$50 \cdot 80$	62.91
Magnesia.	86.04	88.51
Alumina..	128	$1 \cdot 21$
Iron oxide	0.81	0.12
Alkalies.	0.21	017
Water (combined)..	1.62	1.82
Water (hygroecopic)	$0 \cdot 84$	0\% 28

The steatite burner mnnufactory of Lanboeck \& Hilper was established at Nuremberg in 1867, but was removed to Wunsiedel, in 1871 in order to avoid the transportation of the raw material.

A force of fourteen miners is employed, and the steatite deposits are worked by means of a shaft, which at presen is about 55 feet in depth. The quantity mined yearly is 5,000 hundredweight of the white and yellow varieties.
Steatite is especially suitable for gas burners, since by burning it becomes very hard, and is not affected by heatproperties which are of great importance where exactness properties which are of gre
and uniformity are desired.
mine in pieces the size of man's fist and smaller. It is first cut into plates whose thickness corresponds with the height of the burner. The burners are then cut out and turned on a lathe, after which they are placed in crucibles with sawdust and moderately beated. This process gives the steatite a slight degree of hardness, which is necessary in order to obtain slits aud holes of exact dimensions. The burners are theu cut or bored as desired, and subse quently subjected to a strong white heat in muffles. This changes the black color re sulting from the first firing to a ligbt yellowish color, and makes the tips very bard.
For standardizing burners with regard to their consump tion these are connected with the factory works for the manufacture of coal gas and oil gas.
The establishment employs about forty persons, and fur nishes weekly from five to six hundred gross of burners according to the kind. About three hundred kinds of burn ers are manufactured for coa gas and oil gas. grand Frenchman, De Les-
seps, who is to be found wherever there is any great work which the spokes from the felly segment connect, so that \mid The waste from the factory, consisting of steatite powder to be done, said with that jovial good humor which is one the latter can be swung out. The segment is beld in place and small pieces of the mineral, is sold for use in paper facof his corict "If a me pick it up and ristics, "If a mountain stands in our way, we pick it up and cast it to one side." To-morrow, perhaps, we shall behold a way opened up to the desert, even as we have seen the bold attack of four of these carrier dredges working together in the canal of Havre and Tancarville, struggling powerfully and yielding to no obstacle that may be in the way. Scarcely a hundred men are now employed where formerly thousands would have hardly sufficed. The carrier dredge which we have illustrated will soon be employed in digging the trenches of the Panama Canal.-La Nature
[A r illustration of an American dredge built for Panama was given in the Scientific American of March 3, 1883.] by latches, operated by a hand wheel at the inner side of the tories, tanneries, and terra-cotta works. continuous felly. By this construction a light and substantial machine is obtained.

A Proposed Addition to Our Navy.
There is at present a bill before Congress which provides for the construction of seven steel vessels besides one ram, one cruising torpedo boat, and two barbor torpedo boats Of the seven vessels two shall be cruisers (of 4,500 and 3,000 tons, respectively), one a dispatch vessel of 1,500 tons, two beavily armed gun boats of 1,500 tons each, and one gun boat not to exceed 900 tons, to be built on plans and specifications to be furnished by the Admiral of the Navy.

The German Tailors, Academy at Dresden.
This institution had, in 1883,355 pupils of both sexes. Of these the majority were men who devoted themselves to learning how to cut men's clothing; 239 took this course. Ninety-two pupils of both sexes received instruction in cutting ladies' and children's dresses, and 24 in cutting underclothing.
The academy also offered instruction in commercial arithmetic and bookkeeping, and 98 pupils embraced the opportunity of learning these branches.

MAX VON PETTENEOFER.

Max von Pettenkofer, one of the greatest of German scientiste, was born December 13, 1818, at Lichtenheim, near Neuburg on the Danube, in Buvaria; and received his earlier instructions in the village school, until he was taken to Munich by his uncle, the well known Court Apothecary, Franz Xavier Pettenkofer. After passing through the Latin School and the Lyceum in Munich, he studied pharmacy and medicine at the Munich University, and graduated In 1843 as Doctor of Medicine. As he had no great inclination for the uccupation of a practical pbysician, and upon the advice of the chemist and mineralogist Von Fuchs, he devoted his time and attention to the study of chemistry. He studied in the laboratories of Professors Keiser, of Munich, Scherer in Wurzburg, and Liebig in Giessen. Upon bis return to Munich in 1845, he was employed as an assistant in the Mint, and in 1847 was appointed extraordinary Professor of Medicine at the University of Munich. In 1850 be was appointed Superintendent of the Court Pharmacy, and in 1853 be was apponted regular professor. In 1856 he was elected a member of the Academy of Sciences.
In all his scientific works, Pettenkofer has endeavored to utilize practically the results of his scientific researches for improving the sanitary conditions of dwellings, hospitals, and other like in stitutions, and for benefiting mankind by the results of science. This is dis tinctly sbown in his earlier works on the refining of gold, on platinum, the difference between German and Eng lisfí bydraulic limes, on heating by means of stoves and hot air, and the great invention of the manufacture of Illuminating gas from wood. Petten kofer is specially well known hy his works on ventilation, his examinations in relation to respiration, for which be bas constructed especial apparatus,and bis researches and observations on cholera and its relation to the nature of the ground and the surface water all of which are published in his work on Cholera, Munich, 1855 , and in Lis report on the cholera epidemics of 185 and 1865. - Pettenkofer also invented new method of preserving oil paint ings, which bas replaced all other methods heretofore used for this purpose
Since the Bavarian Ministry ha created a chair for hygiene in the University of Municb, and since 1865 at which time Pettenkofer was made Professor of Hygiene at Munich, he has devoted his time exclusively to bygiene and sanitary measures. The results of his scientific researches he has published in Liebig's and Woebl's "Annalen der Chemie," in Dingler' " Polytechnischen Journal," and othe periodicals, and lately in the "Zeit schrift fur Biologie," which he Las edited since 1865, with Professurs Buhl, Radlkofer, and Veit, in Munich. He was an expert and autbority on lechuo-chemical institutions, etc., and questions of sanitary supervision and police regulations, on which he. has given some very valuable opinions, some of which have appeared in print The portrait given herewith is take from an etching in Nord und Sud.

The Anclent Roman Bridge-Pont

 du Gard.A correspondent of the Philadelphia Ledger writes from Nimes, France, as follows:
In your issue of December 12, I see that my fellow citizens are exercised the erection of a stone bridge at Market Street in an lighter weight, and as I read 1 looked again at the ponderous structure I had crossed, which bas stood bere for 2,000 years, and wondered if Philadelphia could perpe trate the blunder again of a temporary bridge of wood or iron. Let me give some details of this superb structure, which is one of the most magnificent Roman remains yet in existence. It is formed of 3 tiers of arches, the lowest com prising 6 , the middle 11 , of equal size, and the upper 85 . Above the highest tier is an aqueduct of about tive feet in depth, roofed in with immense stones, which was formerly in use to convey water from a distance of 25 miles to Nimes.
The Pont du Gard is 160 feet high and 888 feet long When this stupendous work was constructed is unknown but it is conjectured to have been built by Agrippa, the son-in-law of Augustus, B. C. 19. Conceive the difference in economy between an erection of this sort and an iron bridge which must grow continually weaker. We have an example of an iron bridge conceived in sin and raised with iniquity whose slender fabric needs an annual coat of paint, and whose rods, and nuts, and bolts will need piecemeal renewa if not entire replacement. In all this ancient structure,
though eaten by the tooth of time, I could only fivd one crack, and that so slight as hardly to be visible. Why not then, give us at Market Street a durable bridge that will need no paint to protect it or hide its weakness ?
Can a great municipality like Pliiladelphia afford to put up another trifling bridge, iuvolving it in annual repairs and early renewal? If there is a necessity of a more solic foundation than is easily found, by all meaus go deep enough to secure solidity and permanence, but do not re reat the mistake of Girard Avenue. The superb bridge of the Reading Railroad at the Falls, over which heavy trains pass almost momentarily, is another illustration, quite in the view of Philadelphians, as to the merit of a stone over an iron construction. And vow that I bave returned from my visit to the Pont du Gard, only fifteen miles distant, let me give some description also of the grand Roman amphitheater in the center of this city. It consists of two stories, each of 60 arcades, 70 feet high, the lower barricades serving as so many doors. There were originally 32 tiers of seats, add it is estimated that it would contain 22,000 to 25,000 persons. Wide corridors, both above and below, ran around the whole of the building. In the subterranean vaults and substrucof the building. In the subterranean vaults and substruc-
tures were confined the wild animals, and directly opposite

The Beat Knowlodge

The knowledge which we crave and work for, which we ook for and find, which we think out or dig out for ourselves, which we rejoice in as in a newly found treasurethat is the knowledge, be it small or great, that is worth having. It is like the food for which we hunger, it gives us fresh power and fuller life. It matters far less even what his knowledge is than the way in which it was gained.
The most systematic and well-prepared course of study. worried through by a sludent whose only care is that be may get his diploma, is of far less value to him or to the world than the vital thought of the young mechanic, who, anxious to master the secrets of his trade, patiently studies its details, discovers its principles, and infuses into it his own fresh aud living force; perhaps in the form of some eew iqvention, or perhaps in a more skillful touch or a nore delicate finish than it has yet received.
Knowledge, like the blood, is only healthy while in brisk circulation. Its work is to supply the veins and arteries of our mental life, thus continually being transformed into new bought and fresh activity. It sbould feed our whole lives, making them richer, happier. more powerful, more valuable. The knowledge that does this has attained its object, whether it be the higbest culture of the scbools, or the practical business of the office or the factory; whether it be the latest results of scientiftc research, or the faithful observation of a single flower; whether it be the knowledge of buman nature that enables a general to conduct a campaign, or that which helps a gentle woman to maintain barmony in ber fumily.
At the best no one can know much. Compared with the infinite realms above and beyond us to be yet discovered, the knowledge of the most learned man covers but a tiny spot, and what fraction of such a spot ours may cover is but a small matter. But it does matter to ourselves and to all around us the use we shall make of what we do possess; whether we shall carry it around for exbibition, or whether we shall convert it into a living force, to elevate our own natures and to bless and help mankind.-Phil. Ledger.

Injurious Effecte of Baking Powders.

A writer in the Journal of the American Medical Association avers that there is no doubt that baking powders, even the best of them, are damaging to healtb. He says

To make the matter clear, it may be stated that the average baking powder is composed of bicarbonate of soda, cream tartar, and starch, with a possible admixture of other things. The continued use of even this purest baking powder will affect the system seriously, commencing with only a slight derangement of the digestive organs, which gradually becomes chronic, changing the secretions of the stomach necessary for digestion (muriatic acid); in fact, altering the whole chemistry of the human stomach

The continued use of alkalies in any form injures the health. Look at the alkali country west of us, where the alkali is found in the drinking water. The same dangers will arise from the persistent alkaline medication of our daily bread. The various forms of daily bread. The various forms of
dyspepsia, bladder troubles, Bright's disease, consumption-the newest researches speak about a wrong propor-
ane room where the bodies of the men slain in the gladia- tion of the alkalies in lhis disease-are nly torial combats were deposited until their burial or cremation. The vaults of the lower corridor or portico are like a vast natural cavern; the upper one is roofed with huge stone beams 18 feet lonir, reaching from side to side.
The amphitheater is built of limestone in immense blocks laid in courses with perfect regularity and without mortar. The passages all extend outward, thus admitting of a speedy evacuation of the amphitheater through its sixty vomitorix. The building is an ellipse, the dimensions being 437 fee rom east to west and 322 feet from north to south. As the sixty passages radiate at different angles, the ring stones of the immense arches would seem to be all different. Each part of the facade forms part of the ellipse, and therefore each of these stones needs to be cut to form part of the great arc. This edifice is therefore replete with varied inter ests. To the historian it speaks of that great nation which conquered "all the world;" the humanitariau, gazing into its arena, caunot but recall the gladiatorial combats it ha witnessed; the architect and mechanic will regard it with nost respectful interest; and for all it is an epic in stone.

Tese production of the Lake Superior copper mines for 1888 was sixty million pounds of copper.
by this modern substitute for the old, time-honored, common sense practice of using yeast.

A New Form or steel.

At a recent meeting of the Institution of Mechanical Engineers, London, the Hadfield Steel Foundry Company showed specimens of steel castings and pieces of steel wholly witbout magnetic capacity, including axes and otber tools carrying a fine cutting edge, which were the subjects of very great interest to those present, for these cast tools require no treatment of any kind when they come from the mould. They are very bard, but what is the more remarkable is that they are very tough at the same time. They require no hardening or tempering. The steel of these remarkable properties is made by thoroughly incorporating, under Mr. Robert Hadfield's patent, from 7 to 12 per cent of rich ferro-manganese, contain ing about 80 per cent of manganese. The applications of this remarkable metal are, it need hardly be said, innumerable. Tools of almost every description can now go straight from foundry to grinding and finishing rooms, while for the numerous engineering purposes to which steel is applied for strength, toughness, and hardness are now added.

The Now Forth Bridec.

The most interesting structure at present in progress, says Engineering, is the Forth Bridge, the largest ever under taken. It will consist of two spans of 1,700 feet, two of 67 feet, fourteen of 168 feet, and six of 50 feet, with a clear headway for navigation of 150 feet above high water of spring tides. The two large spans are two cantilevers, each 075 feet long, with a central girder 350 feet long, the depth of the cantilevers being 350 feet at the piers and 50 feet in the center. To hcld aloft and to maintain the immense weigbt of steel of which the cantilevers and girder will be composed, piers will be required of corresponding magnitude. The central pier, on the island of Inchgarvie, will
consist of four cylindrical masses of concrete and masonry, 45 feet in diameter at the top and 70 feet at the bottom. They will be founded on rock at a depth below high water varying from 24 feet to 70 feet, and will be carried up to 18 feet above high water. The length of the bridge will be more than a mile, and of the viaduct approaches 2,754 feet. The contract bas been let for $£ 1,600,000$. Considerable progress bas been made with the masonry, about 17,000 cubic feet of granite masonry having been set, and the number of men employed will soon reach 800 .
As it is intended to manufacture the steel superstructure of the bridge on the spot, very extensive worke, lighted by electric lamps, have been constructed at Queensferry, and the plant provided includes about fifty steam engines of various classes, and a large number of specially designed hydraulic tools, drilling machines, and other tools for dealing with the 45,000 tons of steel which will be used in the bridge. The manufacture of the superstructure of the bridge will soon be commenced. All the important members subject to compression will be of a tubular form, as will bave been gathered by those who read the paper on the subject read at Southampton in 1882, by Mr. Baker.
About three miles of steel tubes, ranging from 12 feet to 5 feet in diameter, and from 1,4 inches to $1 / 2$ an inch in theckness, will be required. Plant, including gas and other furbaces, has been provided for this purpose. The steel plates are heated in gas furnaces, and stamped to a desired curvature in a 2,000 ton hydraulic press; the edges planed, and the plates temporarily clamped together to form a tube about 400 feet in length. Traveling drilling machines will then traverse the tube and drill all the holes required to rivet the plates together, but this riveting will not be done until the bridge is erecting, plate by plate, across the Forth. All the machinery required to begin the manufacture of the tubes in the new works has been designed by Mr. Arrol, one of the contractors.

How to Wake Printeru Rollers.

The old formula of one pound of glue and one quart of molasses is the best. A first quality glue only should be used. Put the glue to soak over night, letting it take up all the water it can, until eacb and every piece is soft ; then drain it thoroughly, after which place it in a kettle coustructed upon the same principle as a regular glue kettlethe outer shell filled with water, the inner one the composition. Boil (we do not mean simmer) the glue until it is all melted, leaving no bard pieces, then add the molasses (the old fashioned New Orleaus molasses is the best), and stir constantly for about three-quarters of an hour.
It is important that the roller mould should be well and thoroughly oiled, so that the roller, when cast, can be removed, which must be done steadily and without haste, else the face of the roller will be marred. Do not attempt to remove the roller from the mould in less than twenty-four hours. In warm weather use more glue in proportion to the molasses; in cold weather, rice versa. A roller made in this manner will last longer and dọ better work than any of the alleged patent compositions.
The roller being cast and successfully removed from the mould, sbould not te used for several days, until it is thoroughly surfaced.
To keep it always in good condition, it should not be cleaned eitber with kerosene or henzine, as thes burn out the molasses, leaving an unyielding mass of glue, full of cracks and perfectly useless. Wash the roller in oil, wipe off with a rag, and you will have a roller that is always off with
reliable.

Tolephones an Watchmen's Tell-Tales.

"Farmers' and Mechavics' Bank O. K.," "Centennial Bank O. K." These messages, and announcements of a s:milar character from nearly every bank in the city of Philadelphia, came rushing into the telephoue exchange at Fourth and Cbestnut Strects one nigbt lately at 10 o'clock, and for a few minutes the operators were kept busy receiving word from the watchmen who are locked up in the big financial institutions as to the condition of affairs behind the granite and iron walls.
As an additional police precaution against robbery, fire, or accident, during the past few years nearly every bank, large banking house, and several prominent business establishments bave bad their places connected by telephone with the exchange. Beginning at 7 o'clock in the evening and ending at 6 in the morning, the watchmen of these institulions communicate half-hourly with the operator at the exchange. At the ajpointed time, in case there is no report from a particular place, a man is sent to the bank or mercantile house to ascertain the cause for the failure. If the watchman does not answer the messenger, then the authori-
ties are communicated with and the bank is opened. A failure to report is also marked on the slip in the exchange, and word is sent to the bank or mercantile house the next morning. This new method of policing bas become popu-lar.-Electrical Revicu.

A RECERT BOILER EXPLOBION AT CINCINRATI, OHIO

At 1:30 P. M. of Saturday, the 19th of January, 1884, the right hand boiler of two used by the Cincinuati Corrugating Company exploded.
Both boilers were horizontal, two-flue, 44 in . in diameter and 22 ft . long. The left hand one was double riveted on the longitudinal seams, and was built of thicker iron than

the exploded one, and by a different firm of hoiler makers. The right band boiler, which exploded, was single riveted, and contained shorter sheets, consequently more rings of plates. The hoilers were connected by 9 in. necks to a common mud drum on the rear sheet, and to a common steam drum at the sixth and seventh seams. They were sustained on the cast iron fronts and the neck of the mud drums, having no stand at their centers.
Both boilers were put together with a steam riveter. The machine with which the right hand or exploded boiler was made strikes a direct blow of about 9 in . drop, and operates so fast, that if a defect is discovered it cannot be stopped till everal blows are struck; this would seem to be the primary cause of this explosion, as every fracture follows the line of

the rivets, leaving the end of each outer sbeet on the under sheet, the upper sheet being the one subjected to the most torture in riveting by this process. Other steam, compressed air, and hydraulic riveters are in use, which do not torture the iron as mucb; the bydraulic, perhaps, is the best, as it presses the

This boiler gave way first at the fourth sheet from the front end, just behind the bridge wall. The force of steam and the large body of water suddeuly turning into steam drove the forward part forward on to a slight emi nence till it struck the foundation wall of the building The other portion was torn from the steam drum and mud drum connection and projected against the opposite wall.

In the writer's opinion, this explosion could not have been the result of low water, as the scale was present on the sheets and the flues retained their circular form; besides which, if this had been the cause, the other boiler would have shared the same fate, whereas it was uninjured. except that it was disconvected from its companion. On the other band, there is abundant proof to my mind that the seams were weakeued in the manner-indicated.
In the sketch Fig. 1 represents the former position of the boiler, with the rear portion in the position in which it was left. Fig. 2 represents the front head with three sheets projected forward. Fig. 3 shows how the sheets were torn through the rivet holes. Fig. 4 is a section of the sheet to

The proposed aqueduct which is to supply New York city with water is estimated to cost $\$ 15,864,308$, according to the report of the Commissioner of Public Works. The estimate, the report says, is based on a rate of progress of 200 feet per month, that being understood to be the minimum rate intended to be required by the Commissioners. It is assumed that the tunnel for the aqueduct throughout its entire length will be in rock. The finished diameter of the aqueduct is taken to be 14 feet, and the diameter of the excavation 16 feet, with an allowance of one-third of a cubic yard in excess of that area for every foot in length, beyond which the contracter shall not be paid, unless otherwise provided for in the contract. This is equal to 7.75 cubic yards per lineal foot $n f$ tunnel. It is also assumed that the aqueduct sball be lined with an average thickness of three rings of brick, equal to 17.45 cubic yards per lineal foot, and that there will be ? back filling of concrete of an average of three-tenths of a cubic yard per lineal foot.
The prices allowed are $\$ 9$ per cubic jard for rock excavation; brick work, $\$ 13$ per cubic yard; and back flling of concrete, $\$ 5$ per cubic yard. The cost of the shafts is included in the $\$ 9$ per cubic yard, as the cost is but a very cluded in the $\$ 9$ per cubic yard, as the cost is but a very
small fraction of the total cost of the tunnel. The above small fraction of the total cost of the tunnel. The above
prices make the cost $\$ 94.01$ per lineal foot; to this should be added the cost of hoisting in sbafts. This is estimated at $\$ 1$ per 100 feet. The total length of the tunnel to the Harlem River is 129,098 feet. Of this length four-fifths will be worked by shafts and one-fifth by portal. Calling the total cost $\$ 06$ per running foot, then 129,098 feet will give a total of $\$ 12,393,408$. Of this length 34,800 feet is the siphon line and that part of the line under the Harlem River, and though of less diameter than the main conduit, it may be expected to cost about $\$ 4$ per lineal foot in addition, or $\$ 139,200$, making the total cost of the tunnel conduit from Croton Lake to the north side of Manbattan Valley \$12,532,608.
In addition the above there are at Pocantico River crossing 2,300 feet; at Jay Gould's swamp crossing, 1,000 feet; at Saw MillgRiver crossing, 4,000 feet, and at Tibbitts Brook crossing 3,300 feet; making a total of 10,600 feet. Altogether there are 10,600 lineal feet of excavation, for which gether there are 10,000 lineal feet of excavation, for which
the data at hand is not sufficient to enable a better estimate the data at hand is not sufficient to enable a better estimate
than, say, $\$ 141$ per lineal foot, or about 50 per cent in excess of the cost of the tunnel. The following is a recapitulation of the estimate:

Tunnel-Aqueduct from Croton Lake to north side Manhattan Valley.	.812.582,008
Aqueduct in excavation.	1.494.600
Gate houses and appurienances at Croton Lake,	00
Waste wetr	1.0
Pumplog etation, Harlem River	75.000
Gate honse, north side Manhatian Valley	75,000
Piping from abore gate honge to Central Park Reservoir, including changes and connections with present mains 'and gate honees; pipes to have capacity of $100,000,000$ gallons per day...................... .	. $1,187,100$
.	\$15.68

Reduction of Metallic Solutions by Gases.

Dr. G. Gore, F.R.S., has recently concluded a series of experiments with various solutions of metals. in order to reduce them to the metalic state by contact with gases and different organic compounds. The solutions chiefly employed were those of palladium, iridium, platinum, gold, ilver, and mercury; and less frequently those of copper, ead, iron, manganese, chromium, vanadium, and tellurium. The gases used were bydrogen, carbonic nxide, coal gas, and crude acetylene. Tbe organic compounds included both liquid and sulid substances. The liquids were amylene, liquid and silid substances. The liquids were amylene,
petroleum, benzine, Persian naphtha, xylol, toluol, carbolic petroleum,' benzine, Persian naphtha, xylol. toluol, carbolic
acid, "petroleum ether," mesitylene, and liquid chioride of carbon; while the solids were parafin, ozokerit, naphthalene, anthracene, chrysene, elaterite, solid chloride of carbon, etc. By contact with gases, the metals were generally reduced in the form of films upon the surface of the liquids, as well as in that of precipitated powder; some of the films produced, both by the contact of gases and by that of non-miscible liquids, being remarkably beautiful, and of a surprising degree of thinness. Among the most conspicuous instances of reduction were the foliowing: A solution of palladic chloride was rapidly reduced by carbonic oxide. bydrogen, coal gas, and amylene. One of terchloride of gold was quickly decomposed and reduced by coal gas, carbolic acid, and amylene. The most beautiful films were those which were produced by a solution of tercbloride of gold with coal gas or with amylene. It is, Dr. Gore thinks, wortlyy of consideration by geologists whetber the reduction of metals to the native state in the interior of the earth may not in some cases have been effected by contact of their solutions with liquid or gaseous hydrocarbons derived from coal and other mineral substances of organic orígin.

Horse-fifese is, according to U. S. Consul Ballou, largely eaten in Alsace ; the retailers sell the choice cuts for about 8 cents per pound : for ordinary, 6 cents. A large quantity is used in the manufacture of sausages. All horses are, before and after being killed, given a strict examination, and if found in any way diseased are rejected. The price of this meat renders it possible for many of the working-people to have meat occasionally upon their table, which would otherwis be impossible. The consumption of horse-flesh is principally confined to the working classes. The flesh of thirty horses is eaten every week in Strassburg.

False Comete.

The account of the remarkable phenomenon seen in Porto Rico, published in the Screatific American of the 19th of January, brings forth reports of several similar apparitions. A correspondent, as well as a practical observer, gives a very interesting description of several of these shadowy ghosts of comets seen by him in Philadelphia and its vicinity. About two years ago, the writer, on his way frcm the city to his home, saw, in the southeast, a brilliant comet with tail 2 degrees in lengtb. On reaching home, he rusbed to his observatory for a better view of his celestial visitor, but found no trace. It had disappeared as suddenly as it came.
A few evenings later, the comet was again visible, and the writer observed it through the telescope. There was no decided nucleus, and there was no perceptible motion, excepting a fluctuation of light. The next night, the phantom disappeared, aud was seen no more.
About six months later, a fine comet was seen in the south west by numerous observers, the writer being among the number. He examined it with the telescope, found its characteristics similar to those of the object seen in the southeast, aud concluded that both objects were atmospheric phe nomena, and were not in the remotest degree connected with the cometic family
Our correspondent has kept close watch over the pseudocomets for a year, and has elaborated an ingenious theory to account for their origin. He learned that from time to time certain gas wells had been " struck" within a radius of per baps forty or fifty miles. He ascertained their bearings, and found that the positions of the shadowy comets correspond ed with those of the gas wells.
This natural gas has recently been brougbt into this city. Escape pipes have been run up to the height of thirty feet or more, and when any break occurs, or other work is to be done. the gas is blown out through these escape pipes and then lighted. The result is that there are comets every time the gas is lighted if, at the same time, the atmosphere contains moisture in sufficient quantity to reflect the light from the jets, which extend upward for a great distance, rushing with great velocity on account of the immeuse pressure. The writer can see from his observatory three of these jets of burning gas, and a few evenings since, he saw three of the mythical comets. One of them seemed for a while to extend it tail from one of the starsin Ursa Major, and " was a comet that would deceive the very elect.
Our correspondent has received numerous letters concern ing these deceptive apparitious, and incloses a telegram and letter as illustrations. The sender of the telegram is an experienced observer of McKeesport, Pa, and records the appearance of a "large, bright comet two hours preceding Aldebaran, due west," on the 6th of November, 1888. The writer of the letter is well posted on the subject, and de scribes the recent appearance of a " monster" comet iu the sontheast in the
in his family.
We cannot be sure that the problem concerning the ori gin of false comets in Pennsylvania has been solved, any more than we can tell whether the recent superb afterglows have been caused by the Java earthquake or meteoric dust or some unknown agent. But the theory has a plausible as pect and is good till a better one is found.
The phenomena seen at. Porto Rico and at Sulphur Springs, Ohio, are probably due to peculiar conditions of the atmo sphere. They differ from the Pennaylvania phenomena only in being on a larger scale and more brilliant in manifestation. If there are no natural gas wells in these localities there are otber agents, within or without the bowels of the earth, capable of producing similar results. Doublless, care ful observers who study closely and ponder long may find some key to the mysterious pictures painted on the sky by the pencil of unknown artists.
Meantime, every wonder of the beavens is to be carefully noted, and recorded as an item in that vast collection of ob servations that constitutes the astronomical work of the present generation, and that will take form in the astronomy of the future. If observers are not fortunate enough to reach results, they will at least be helpers in a great struc ture built on a foundation partly laid in the present age.
Of one thing observers may be reasonably certain, tha few real comets will escape sharp sighted astronomical eyes. A number of astronomers do little else but sweep the sky for comets. If one is found in telescopic search, no bigger than a pin bead, it is eagerly seized as a rare celestial prize, and its advent is cabled all over the civilized world. Some times the comets manage to elude the astronomers. Thus the great comet of 1882 appeared full fledged upon the scene, bright enough to be visible in the daylight, and in the near presence of the sun, when first discovered by northern observers.

Now Gampurliying Material

At the congress of the Societe Technique, held at Marseilles in May last, a communication was presented by M Lux on the subject of the employment of alkalized hydrated oxide of iron for the purification of coal gas. The matter had previousiy been brought under the notice of the Italian Gas Managers' Society, at their congress held at Florence in the previous jear, when M. Rebuffel, manager of the gas works at Milan, described and explained the use of the material. It is known by the name of Lux-masse, and its use is stated to be attended with very satisfactory results; the expenses of purification being reduced by about two-thirds when it is substituted for lime. Some trials of the material
have been made at Leyden, the results being very carefully recorded. From these it appears that in the years 1881-82 the expenses of purifcation by the old system amounted to 2,300 florins (£192), while with the new process they did no exceed about 860 florins ((772). Very good results are said to be obtained by using a mixture of 1 part of the materia with 5 parts of sawdust, and spreading it in a single layer about 2 ft .3 in . thick. From an experiment recently made it was found that 1 cubic meter, or $271 / 2$ bushels, of the mixed inaterial purifled 123,000 cubic feet of gas without being changed. This is equivalent to something like 742,000 cubie feet for the above-named quantity of the materia used in its pure state. The cost of the misture at Milan is 15 frs .76 c . per cubic meter, or, in round numbers, 6 d . per bushel. The outlay for this system of purification, supposing the material to be used only ouce, would be 4 frs. 50 c per 1,000 cubic meters, or, roughly, $£ 5$ per million cubic feet of gas puritied; but, as it is susceptible of revivificution s many as thirty times, the cost comes down to 15 c . pe , 000 cubic meters, or about 38 . 6 d . per million cubic feet of gas. Further economy may, bowever, be realized by carry ing the process of revivification (which is effected in the puriflers themselves by meaus of a jet of air) still further and even then it appears that the spent material would be salable.

A Now Eucalyptus from Tonquin.

An extract from a paper on eucalyptus, which appeared originally in the Delhi Gazette, has been communicated to he Agri-Horticultural Society of Madras. It is as follows
" Those who have introduced the eucalyptus in Ceylon as a fever plant will do well to gather some information abou an entirely new and superior plant found indigenous in Tonquin. It is called the "y-dizi." It grows to a heigh of about six feet, and is not only a nutritious plant, but destroys miasma and purifies stagnant water. Travelers re are assured, use the y-dizi in the same manner as 'tea is used in China. The grains are stated to have valuable pro perties, affording a refreshing beverage, which purifies the lond, invigorates the stomach, and is diuretic. To make this beverage, the husk of the fruit is taken off the seeds, or as they are called, almonds are extracted, and they are then boiled in water. Well-to-do people in Tonquin make very requent use of the y-dizi during the summer. The plan grows well and rapidly, and produces a large quantity of eeds. It is sown near pools and streams, and around gar dens in waste ground.

New Photo-engraving Procesmem.

The Klic process was a secret at first, but we are in ormed that the principle of working is as follows:
A copper plate is dusted with powdered asphalt, and the plate is heated so that the asphalt becomes nearly melled. A negative carbon print is now transferred on to the copper plate, and the plate, now covered with the negative iu car bon, is etched, at first by a strong solution of perchloride of iron, which penetrates only the thinnest parts of the pic ure; then by a weaker solution of the same salt, the solu tion etching through the thicker parts. By employing more and more diluted solutions. it is possible to etch through thicker and thicker layers of gelatine, so that only the high-lights remain unetched.
One advantage of the Klic process is the circumstance that the plates are very quickly finished. Goupil, who akes an electrotype from a grained relief, requires several weeks for depositing metal of sufficient thickness. The etching process of Klic is rapid, and plates may be produce a a day or less.
Obernetter's Photo-Eingraving Process.-The eminent photo graphic chemist Obernetter, of Munich, to whom we are indebted for so many improvements in photographic mat ers, has invented a quite new process, which gives results like Goupil photogravure. He has sent excellent proof pictures by bis process to the Society for the Advancemen of Photography in Berlin.
The most striking feature of the Obernetter prints is the richness of the tone in the lights, and the principle of the method is stated to be as follows: A diapositive is made by he Obernetter method on a plate containing a maximum of silver and a minimum of gelatine, and the film, having been stripped, is treated with a mixture of perchloride of ron and chromic acid, so as to convert the wbole of the silver into chloride. This film, cbarged with chloride of silver, is now placed in contact with a copper plate, and the copper gradually decomposes the silver chloride, metallic ilver being liberated. This decomposition of the chloride is of course accompanied by a corresponding etching of the

The new principle now published is an important one, and we have found that if a collodion positive or an ordinary gelatino-bromide transparency is converted into a chloride picture by suituble means, it easily etches a copper plate with which it is pressed in contact. We found the metbod described by Mr. E. De Zuccato in these columns to be the most convenient for converting the silver picture into chloride, viz., treating with a mixture of dilute hydrochloric cid and bichromate of potassium.
If the film, before being placed on the copper, be moist ned with a weak solution of chloride of zinc, the etching roceeds more rapidly than otherwis.
We are not aware that the new methord of etching copper plates bas been patented in this country, and we bope our
us know the result. It is scarcely necessary to say that the method is also adapted for the production of high or typographic plates, but in this case the lines of the chloride of silver picture must correspond to those parts of the block which are required to print white.-Photo. Noros.

obituary.

PROFEBSOR C. A. BMTTH

The death is announced on Feb. 2 of Prof. Charles A. Smith, from 1869 till a little more than a year ago Professor of Civil Eugineerirg in Washington University, St. Louis, but at the same time engaged in the practice of engineering an extent rare among instructors.
Professor Smith was born in St. Louis April 8, 1846, but in bis infaucy his parents removed to Newburyport, Mass., which he seems to have considered his home thereafter, and whither he returned to die. He was educated at the Massachusetts Institute of Technology, Boston, where be graduated in 1868 in a class including the late Frank R. Firth (who rose to be Superintendent of the Atcbison \& Nebraska Railroad. and was killed by an accident on it only four years after graduating), and Prof. Charles E. Greene, of the University of Michigan. After graduating he was for a time in the office of Mr. J. B. Francis, of Lowell, the eminent bydraulic engineer, and with Professor Henck, of Boston. He was engaged for a time in the surveys for the Unin Pacific Railroad, and also made some surveys in North Carolina. But it was very soon after graduating that he began o give instruction in engineering in Washington University, and uearly all his practical experience in engineering was gained while he was professor there, his duties baving been purposely arranged so as to eaable him to spend a large part of bis time in engineeriug work, which, perhaps because of his position as a teacber, he pursued with a student's eagerness. At one time be made a special study of bridge work, and was intimately associated with the accomplished engineers who built the St. Louis Bridge; be also made plans for water works at Hannibal and St. Charles, Mo. and for pumping machinery at Richmond, Va. A little later he turned bis attention to mechanical engineering; and henceforward seems to have made that his chief study. With Mr. Jacob Johann, of the Wabash Railway, he made ome experiments with locomotives, the results of which were published with the reporte of the Master Mechanics' Association, and recently he has been writing " A Practical Treatise on Boilers and their Use," which is appearing in he American Engineer, and will be published in book form by Wiley.
Professor Smith was a man of great energy and enthu iasm in hris profession, eager to experiment and investigate, and had already made such additions to engineering knowdedge that much was to be expected from him in the future. Aside from his books, which have not yet appeared. he was the author of various reports and many short articles in echnical journals, the first of whicb, probably, appeared in the Railroad Gazette more than 12 years ago. For 12 years he was Secretary of the Fingineers' Club of St. Lnuis. He was an associate member of the Master Mechanics' Association, and made important contributions to its papers. He was a member of the American Society of Civil Engineers from April, 1880.

JOHN HUTTON BALFOUR. F.R.s.

This distinguished scientist, Professor of Botany in the University of Edinbargh, and author of several books on that subject, died in February, in the seventy-sixth year of his age. He was a graduate of the Edinburgh College of Surgeons, and practiced medicine in tiat city some years until elected to the chair of botany, in 1845.
8. wells williams, ll.d.

Professor Williams, Lecturer on Cbivese at Yale College, died in New Haven, Feb. 16, in the seventy-second year of his age. In 1833 he went to Canton as printer to the A meri can Board of Fureign Missions, where be rapidly gained an extensive acquaintance with the Chinese language, and pub lished a number of standard books. Professor Williams completed at Macao, in 1835, the printing of Melburst's "Hokkeen Dictionary." In 1837 he visited Japan to return some shipwrecked sailots, and soon after learned the Japanese language, into which he translated the Book of Genesis and Matthew. He aided Dr. Bridgman in preparing the "Cbinese Chrestomathy," and in 1842 he- published hi " Easy Lessons in Chinese." This was followed in 1844 by "The Chinese Commercial Guide" and an "English and Chinese Vocabulary in the Court Dialect." In 1845 Dr Williams returned to the United States, and in 1848 be pub ished " The Middle Kingdom," a work still considered to be the best of the kind on China. In 1848 he returned to China with a new font of Chinese trpe, made in Berlin. In 185B-54 he accompanied Commodore Perry to Japan as the inter preter for the expedition. He was appounted secretary and interpreter for the United States Legation in Japan, of which he bad charge until the arrival of the first Minister. In 1856 Dr. Williains published a "Tonic Dictionary of the Chinese Language in the Canton Dialect," but most of the copies were burned with the mission press at Macao, in December of that year. In 1858 he aided William B. Reed in negotiat ing the treaty of Tientsin. In 1874 he brought out at Shanghai the great work of his life, "The Syllabic Dic tionary of the Chinese Language," and in 1876 he returned to the United States, baving been appointed Lecturer on

bNGINEREING INVENTIONS.

 An improved car brake has been patented by Mr. Charles Treagoning. of heas City, Dakotat Ter.This orake is appled antomatically to carrs by the slackThis brake is applited antomatically to cars by the slack-
ouing of the speed of the enkine, and is removed when uing of the speed of the engine, and is removed when
the engine exerts sufficient presaure to back the carsa a The engine exerts suficient pressare to back the cars,
special constractlon providing that, as the drawheads special conatruction prording that, as the drawheads
meet, they will apply.the brakes to different cars in sacansion
An air or liquid brake bas been patented by Mr. Robert M.McKinney, of Elizabeth, Penn. The invention covers contrivances whereby air or liqqid preaare is made to hold aprings in tenslon, to he releasea to apply brakes to car wheel, and so under the engi-
neeris control that the brakes may be put on all the cars of a trail almultaneousily, or only on one or another desired.
An improved car coupling has been patented by Mr. John J. Lloyd, of Streator. III. A allding blook Lio arranged for in the link socket, with a epiral spring nd supporting the suring so that croseng the sock ng pin is ralsed the block is thrust forward to hold p, or when the cars come together it will be tripped nd let fall.
A car truck has been patented by Mr. Alex Acer i. McConnell, or New Orieans, La. The live on covers novel combinations aud arrangements of eries of superimposed wheels and their Ax les and hear gme win a sarres of car axies in the same trncr rame, bricand the wheels being made to ran steadier.

cercianical inventions.

A pipe wrench has been patented by Mr. Danlei S. Brown, of Bardette, N. Y. This is a wren Wherein, by gearing the handie anc jaw together by so the wrench may be easily applied to a pipe or olter object to be turned, and the jaw may be closed and held
thereon with great inm nees.
A spoke shave bas been patented by Mr Addison E. Chapman, of Olean, N. Y. The handele ha and a screw peculiarly ande a wedge of special design forming a fasteulng device to place yet one chat mes be gickly lonee to the biade.

A cutter head for handle turning lathes bas Pa_{a}. Its special .eature D . Westcott, of Union City, pa. Its special feature is that the edges of the brought together by the action of beveled arms on beve ed hlocks or lags; the tarned stick passes throngh a ta bolar shaft, and the knives can be set to give the stic A globe valve grinder
A globe valve grinder has been patented by Mr. John R. Doyle, of Richmond, Ind. The tool cover a cylindrical socket armed with sharp steel points a its lower extremity, together with a bushing, and cially worn out odes, withoat removing the valve, shell, and seat from the pipe, the construction being anch tha the ralve may be firmil
jury to the valve stem.

AGRICULTURAL INVENTIONB.

A sulky cultivator has been patented by $\mathbf{M r}$ Reading L. Carver, of Pre-emption, ill. This inventio covers a special combination and arrangement of parto
wherehy the plow beams can be adjusted at a greater o less distance apart as may be desired, and the genera well as convenience in goidy of cultivators increased,
A sheep shearing table has been patente by Mr. Joseph L. Addison, of Qaaker Clty, Ohio. The ing the sheep on his haunches, and above the seat is a shoulder, neck, and head rest, with straps for securin the sheep, so the shearer may employ both hands, and readily turn the seat as desired, the fleece falling on the
bench.

LIBCELLANEOUS INVENTIONA

Fireproof timber forms the subject of a pa

 tent issued to Mr. William H. Dolman, of New Yorkcity. The ohject is to form consenient pockets chambers for holding noo-conducting material amand building and other timbers, for which purpose narrow strips and metallic sheets are combined with the joists A combined implement ior tailor's use, ring a chalk knife, waste ering a chaik knife, waste chaik receiver, pin cap, and
paper weight, has been patented by Mr. Clandius Ed-
lund, of Bmoklyn, and, of Brooklyn, N. Y. There is a hollow body with recessed to receive knives with corrugated paces, the bottom opening being closed by a atopper.
An improved process for relining denta plates has been patented by Mr. Frank T. Hyatt, of
Norwalk, Conn. The procees covers the cutting ont of the old plate. so that only the gums holding the teeth remain, then forming a thin lining of rubber on the top of the gams, and by means of this
gams and forming a new roof plate.
A show box for trimming
A show box for trimmings has been patented by Messrs. S. G. Bernstein and Michael Simonson,
of New York city. This invention covers several combinations of parts to prevent trimmings from becoming shop worn, so the goods may thereby be nicely kept in hanging porition wothout being crushed. folded, o
wrinkled, and may be easily handled and exhibited. wrinkled, and may be easily handled and exhibited.
A corn silking machine has been patenter A corn silking machine has been patented
by Mr. William S. Horn, of Mill Green, Md. It by Mr. William S. Horn, of Mill Green, Md. It is for
removing the silk of green corn preparatory for canning, and covers a traveling belt provided with pointsor angers, a brush for cleaning the fingers. a hopper, and rapid operation and thoroughness of work.

A spike extractor has been patented by Mr. John Erbbert, of Rockaway Beach, N. Y. This inven to relates to certain improvernents on a former paten spikes may be more convenienily effected when the rails are of different beights, and the tool may be made atronger, cheaper, and more durable.
A packer for flour, bran, etc., has been pa tented by Messrs. Jacob and Benjamin C. Frysinger, of tentod by Messrs. Jacob and Benjamin C. Frysinger, of
Rock Island, II . This invention covers a novel construction in pressers for packing flour, etc., in cases or
barrels, the press bor baving a chate and slide in one side, and in another side an opening with,a eliding apro for placing a head between the compresilng follower and the material to be compressed
A process of and apparatus for extracting crystalized sugar from bagasee has been patented by
Mr. Thomas B. Yale, of Columbia, Texas. The bagasese ts subjected to hot steam while it is under heary pressare in a suitably devised cylinder, then the steam is shat ofr and an air pump pat in operation to withdraw charine material by means of a vacuam.
A wagon tongue support has been patented by Mr. Nathaniel Johnson, of Harrisburg, Ill. Combined with the arle is a plate held on the ends of a yoke secared to the axle, to which plate and the alie the
hounds are fastened, between which the rear end of the ongue is held, the design being to relleve horses of the weight of the tongue, and also allowing the tongue to be readily detached from the wagon.
A ball rack for pool playing bas been parented by Mr. Jacob S. Hausman, of New York city. The rack has a back plate with vertical rack bars, and with plates hinged to the lower edge, the hinged plates being connected by pivoted bars and levers, and to the lower hinged plate are dovetailed flanges to hold a tri-
angular plate, short sponts serving to guide the balls ngular plate, short spouts aerving to guide the balis A beer cooler has been patented by \mathbf{M} Charles A. Barlifif. of Bartlett, Tenn. It is a tran ormable beer and water cooler and mixer of stale and Tresh beer, whereby flat beer may be revived, and for this purpose a combined ice basket and beer pipe are hrough this cooler and mixer, the gas of the fresh beer will have time to act on and revive the stale beer.
A combination lock has been patented Mr. Charles Tregoning, of Lead Clty, Dakota Ter. This le index, means for changing the relation of the disks to their indices, for drawing the boit or "for preventing It from being drawn, thas providing a lock to be opeunks, operate under different indices.

An improved velocipede bas been patented y Mr. John W. Woodraff, of Wise, West Va. The foot awl mechanisms by oscillating a horizontal trea wheel with the feet, the tread wheel heing in front of he.driver's seat, and so connected by ratchet habs on he axle that the ratchet of one hab drives ahead while for combining foot and hand power
A ball trap has been patented by Mr. Chas. F. Stock, of Peoria, Ill. This is a positively-acting de and other objects for target practice. Δ hollow post sup ports the operative parts, there are two interchangeable throwing arms, so supported that they may give the tar get any desired direction, and it is provided that an ope-
rating cord leading twenty or more yarde away may be rating cord leading twenty or more yar
A bicycle has been patented by Messr ichard C. Thompson, of Brixton, and William Spence, of Surbiton, Surrey County, England. In comblnatio ith the steering fork are arms attached rigidly to he lower extremities of the fork or formed therewith, and passing clear of the paths of the cranks and pedais, distance therefrom as to admit the rider's legs betwee them and the fork, and of handles attached to the upper ends of the arms.
An improved form for hulls of vessels, ad mitting of a constraction designed to eive high speed Inkable, has been patented by Mr. Amedee M. G Se billot, of Paris, France. The vessel has three longitadi nal compartments, the middle one narrow and sharp a both ends, the outer opes increasing'In width to abou the middle of the vessel, and then extending to the sten at a uniform width, where they are ronaded. The side down as far the botrom of the midde

NEW BOOKS AND PUBLICATIONS.

The Topographer; hit Instruments and Mertods. By Lewis M. Haupt. A.M.,
C.E.J. M. Stoddart, New York, Pbila delphia, and London. 1llustrated.
The importance of that department of engineering oclicarion laying special stress upon the duties, require ments, and theoretical qualifications necessary for the position, led to the writing of this book. After defin ing the requisite cbaracieristics of the topographer, the anthor describes the latest 1 mprovements in instrumenta with their numerous time and labor saving devices. list of the subjects rier a notice to give more than maps, forms of record gramog which are scales maps, forms of record, graphical representations, re true meridian. leveling, sarveying, and flling in, hydro graphy, underground topography, field sketching, com putations, and modeling. The firal ckapter deals with the applications. Prof. Haupt has prodaced a manua of great practical value to the embryo topographer, and
one which the experienced engineer will find to be of one which
mach ase.

Illubtrations of a Variety of Flies. A beautiful and most artistic representation of trout
and black bass fies has been published by M . Wake man Holberton, of 50 Maiden Lane, New York. There are two plates, one for each variet ty Mr. Holberton himself. In the center of each plate fine specimen of one or the other of these gamy fis graphically portrayed.
ookery for Beginners; Familiar Lessgons for Young Housekrerpers.
Marion Harland.
D. Lothrop \& Co. Boston. 16mo. Price $\$ 1$.
This book is traly entitled one "for beginners," as is
tells at the ootaet how to make the yeast and the Ars oar; the book does not neglect in the latter chapters to all abont making desserts, cake, jellies, cream, etc bot these have only their proper proportionate place and the solids of plain cookery get not only the firs place.
ment.
Tables for Calculating the Cubic Con tents of Excavations and Embank Diagonals and Side Triangles. By John R. Hudson, C.E. John W This will no doubt prove a handy book to railroad ongineers especially. While embankment and excava tion tables are in existence, the anthor of the presen
tables claims a eaperiority over them as regards both accuracy and rapinity of calculation. The method employed divides the work into level cross sections and side triangles. The rables give the contents in cabic by one- herghts ranging from 0 to 50 feet, advancing width from 10 to 28 fert together with varying in slopes. The book givee the methad of calculation, and several examples make the nse of the tables clear
Plant Description, or Record Book for Plantr Analyses. By George G. Grofl, A.M., M.
D. Science and Health Publighing Co Rammay Turn Outs. A system of lay ing out instanily by inspection from tables. By Jacob Electricity and Muan

Notes designed to accompany silvanus P. Thompson's Elemen-
tary Lessons. By Lient. J. B. Mardock, U. S. Navy. Macmillan \& Co., New York.
An illustrated catalogue and price list of Ane fisbing lackle has been poblished by Mesors. Abbey Imbrie, of 48 Maiden Lane, New York. The book ha pliance in this live, and in such profasion of atyles as would probably delight even our most expert of fishermen, President Arihur

zusuress and zersonal.

The Charge for Insertion under this head is one Dollat a line for each insertion ; about eight woords to a line. asearly as Thurrday morning to appear in next issuce.

Wanted.-To purchase a light patent, one that can be handied by agents and sold in every household. For a
uitable patent a sood round sum will be pald to the pa uiltable patent a good round sum will be pald to the pa-
entee. All communicatlons strictlr conflential. Ad dress, giving full particulars, T. H. Murray, Pittsburg. Pa Job lots in Rabber Beiting, Packing, Tabing, and South Street. New York.
We see a new medical compound for children regiscered in Patent Offloe December 11. 1888, which takes the chace nence or anything of the kind ever issued from
Being prepared entirely without the nie arontic drugs it is possossed of rare merit, and is especialy adapted to ittle chilidren and their diseases. This
preparation, which is called Mrs. Cary's Compound, was
invented by Mrs. Sarah E. Mcintosh, of Almond, N. \mathbf{Y}. Raili by Mrs. Sarah E. Mcintosh, of Almond, N. Y. Rall kinde Greene, Tweed \& Co., 118 Chambers St., N.Y. Neither the pipe mor cigarette smoter can go wrong Who chooses Black well's Durham Long Cut. It is the ne absolutely pure tobacco; and then it has all the
uperb flavor and dellcate fracrance of the Golden Beit lear, possessed by no other tobacco in the world.

Economy 18 Wealit."

Why not make your own gra
Kachine," and save money? two-thirds of their bills by use of our Gas Maching han or the incredulous we are willing to furnish and put result, and take payment in the savings. Gllbert Barker Mr'g Co.,
Springtela. Mass.
The Chapman Patent Spoke Shaves are carried in tock by L. \& I. . J. White, manufacturers of Cooperis
Toois, Bumalo, N. Y. sleeve nats, best, cheapest. Pittsburgh Sleeve Nut W 'ks. Private line telephones. S. s. Baker, Chebanse, II Iron and Steel Drop Forgings of every description. "The Sweetland Chack." see ad. p. 108
If yon want the best Helve Hammer in the world. Hoieting Engines for Mines, Quarries, Bridge Builders,
Railroad Construction, etc. Construction, etc. Send for
Copeland \& Bacon, New York.
Quinn's device for atopping leaks in boiler tabes. Quinn's device for atoping leaks in b
ddress s. M. Co., south Newmarket, N. H. "How to Keep Boilers Clean." Book
mea F. Hotehkiss. 88 John St. New York.
Iron Planer, Lathe, Drill, and other machine tools of modern design. New Haven Mfg. Co., New Haven, Conn Pumps-Hand \& Power. Boiler Pumps. The Goulds
Mfg. Co., Seneca Falls, N. Y.. \& 15 Park Place, Now York. Fox's Corrucated Boiler Furnace, illus. p. 854. Ha Rann. Le Doux \& Meecker, sole agents, 134 Pearl St.,N. Y. Walrus Leather. Emery. Nickel Anodes, Nickel Salts, Gears.-Grant, 4 Alden St., Boeton.-Water motors.

For Freight and Passenger Elevators send to L. S.
Best Squaring Shears, Tinuers', and Canners' Tools Lathes 14 in. swing, with and without back gears and
crew. J. Birkenheed, Mansfleld, Mase.
The Best.-The Dueber Watch Case
If an invention has not been patented in the United tates for more than one year, it may still be patented in
canada. Cost for Canadian patent, sto. Various ot her foretgn patents may also bo obtained. For IIcstructions
address Mun \& C., Sirviric AK Ericas Patent address Munn \& Co., Solirntiric american Patent genoy, 281 Broudway, New York:
Guild \& Garrison's Steam Pump Works, Brooklyn, T. Y. Steam Pumping
lon. Send for catalogue.
or Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. Railway and Machine Shop Eqqipment.
Send for Montily Machinery List the George Place Machinery Compa
${ }_{121}$ Chambers and 108 Reade Streets, New York.
Wanted.-Patented articles or machinery to make Water purifled illes to those of larkest eities, oy the tmproved filters manufactured by the Newark Filtering Co., 177 Com-
Presses \& Dies. Ferracate Mach. Co., Bridgeton, N. J. Supplement Catalogne.- Persons in parsuit of inforufic subject, can have catalogue of contents of or solien antifio amkilican bupplikinit sent to them free The Suppicaiz.st contains lengthy articies embracing the whole range of englneering, mechanics, and physi-
sal sclence. Address Mund \& Co.. Publishers, New York. Machinery for Light Manufacturing, on band and Straight Line Engine Co. Syracase, N. Y. Best in Improved Skinner Portable Engines. Frie, Pa
Lightning Screw Plates, Labor-saving. Tools, p. 82 For MIII - iach's \& Mill Farnishing, see illus. adv. p. 108 Mineral Lands Prospected, Artesian Wells Bored, b Steam Pumps. See adv. Sulth, Vaile \& Co., p. 107. Catalogu -Scientific Booke, 100 pages; Electit al Booke, 14 pages. er. \& F. N. Drop Forgings. Billings \& Spencer Co. See adv., p. 12 Ajax Metal Company, Phila. Clamer's A jax Metals for Curtis Pre Curtis Pressure Regulator and Steam Trap. See p. 142. Steam Hammers. Improved Hydranlic Jacks, and Tube Kmanders. R. Dudgeon, 24 Columbla st., New York.
 Free. Adaress Emerson, Smith \& Co., Beaver Falls. Pa
Hoisting Engines. Friction Clatch Pulleys, Cat-of \& Po Phel Phia Best Popular Science Works, 15 centa. J. Fitzgerald oould \& Eberhardt's Machinists' Tools. See adv.,p. 141 Barrel, Keg, Hogshead, Stave Mach'y. See adv. p. 142 Combined Concentric and Eccentric Universal and In dependent
ford, Conn.
For best low price Planer and Matcher, and latest mproved Sash, Door, and Blind Machinery, Send to Woodwor to Rowley \& Hermadee, Williamsport, Pa. C. B. Roger Machinery of every kina. See sidy., paze 142.
Steam lannch or factory engine 4 in. by 4 in ., 890. Stamp for 28 p. list. Steam la lanches. new and second
hand. Bnyder Engine Co., 108 Liberty St.. N. Y .

HINTS TO CORRESPONDENTS.
No attention will be paid 10 commanications unles
accompanied with the full name and address of the writer.
Names and addresses of correspondents will not be given to inquirers.
We renew our request that correspondents, in referring
io former answers or ariccles, will be tind o former answers or articles, will be kind enough to of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pablished, they may conclude that, for good reasons, the aditor declines them.
Persons desiring
Persons desiring special information which is parely a personal character, and not of general interest,
should remit from $\$ 1$ to 85 , according to the subject, as we cannol be expected to spend time and lahor to obtain such information without remuneration
Any numbers of the Scientipic Axirions Suppleinst referred to in these co
offce. Price in cenis each
Correspondents sending samples of minerals, etc.,
for examination, shonld be careful to distinctly mark or label their specimens so as to avoid error in their mandentiacation
(1) H.S. H. asks: If a bichromatic battery could be used for silver plating small articles, and also would be small electrotypes. If so, how large a one bichromatic battery poanding pins, chains, etc.2 If answer the best kind and gize for above work? A. Better uee a Daniels or gravity battery. Two or three cells will do
(2) C. E. S. writes: I have made an in duction coll giving a spark of six-eighths in. With one
cell of Grenet battery, size of plates $6 \times 8 \mathrm{in}$. Thif coil will give a spark of only oneeighth in. with one cell of cells of gravity. What I wish to know is how many give a spark of six-eighthe in, with the aforesaid coil? A. It will require eight or ten cells of gravity battery tea cells of gravity battery
(3) G. W. E. asks: How the celebrated " amber varnibh 18 prepared, such as is seen on genuine
Cremona volins? A. It is impossible to give you the ingredients of the varinghes ased in the mannafactue of
viotins by makers anch has you mention. Their method Violing by makers such as you mention. Their method
of trating the viollin was kept a eccret. The following of treating the violin was kepta vecret. The following
we can recommend as being desirable. Rectifed spirtis We can recommend as belig deeirabie. Rectined gipitis
of wine, half gallon; add 8 oze. mastic, and hair pint turpentiee varnish. Pat the above disoolvod; strain, and keep for nase. If you and it it harder
nish.
(4) J. W. H. asks: 1. Is a five foot wheel wittit three Inch pltch, nine inch face, saffcient to carry
the po ser from an engtine, bore eighteen lichee diame ter, piston velocity 400 feet per minnte, steam pressare T5 pounds on bollert A. If of very strong fron your
wheels would anawer, bat we shonld not conslder them wheels would anower, bat we ehonild not consilder them
safe for orer 90 sate for over 80 horse power. We think they ehoolat be
at least inch pitch and 10 inch face, and diameter s11 feet, 2 . Will the engine give 150 horse power? A.
Allowing 0 ponde
 it less than 50 pounde, the speed must be increased to
be 150 horse power. 8. Wull webbing the wheel deaden be 150 horse power. 8. Wull webbing the wheel deade
the noise much? A. It would do so to some extent.
(J) M. J. B. asks: Will the electrical machine described in Suppuxixwt No. 181, and 4 of the No. 4 baturles deecribed in SUPpLisirnt No. 149, con-
nected with the light machlue in give lizhtequal to a common kerosene lamp? A. Betlamp. It te dificile to mate a amall arc lamp work well for any length of time.
(6) A. L. D. Writes: Please inform me what the ascensional force of a cablc yard of hydrogen is?
Which has the greatest ascensional force: hydrogen, coal
 What monld apparatus for making hydrogen coot that
would make so to 00 cubic yards per hoort
A. It requires abont 12 cab o f feet of hydrogen to sapport one pound in the air. Hydrogen is lighter than coal gas,
bat the latter is now generally useed in balloons. Hot air is no longer nsed oxcept in toy balloons. Hydrogen all and instructiona for making it
 is required.
(7) C. K. asks: Will a kerosene sil beating stove radiate more heat with a heating drum on than
without? If there is a certain amount of heat in
 When the heat of the fame is commanicated to the
drum, the raciating earface is incrased and the same amount of fuel in rendered more effective owing to the
spapiority of the ron over alr as a condactor and rasuperiority of the tron over alr as a condactor and ra.
diatar or heat. (8) J. B. Bays: Can you give in your Notes
and eneries any praction pian of drying the celliar of a aity house quickly after it mas been tooded. As the celling of the majortty of cellara io below the surface of the ground, there is no way to create a d danght. A.
Keep ap a good fire in the cellar furnace, nud (1) open the door from baeement hall to cellari; or (2) make an near the bottom of cellar, and extend the dranghtopening of furnace, by means of a box, nearly ap to the
celling. A few words on the spot tic casees like this, by some one accuastomed to dealing wilh ventiliating pro
blems maj save other visits by the family doctor.
(9) W. C. W. asks: Is there any non-con ductor of magnetism. or, in other words, is there any.
thing that when placed between a magneet aud piece of thing that when placed betwoen a magnet aud piece of
iron will prevent the lron trom being attract od by the
mannetp (10) W. L. \& Co. write: We have a set of of gas pipe (the ordicary pipe ased for gas and waterpurpooes) compared with square or round iron rods. We use Ifeq. Irds, bat they are not trong enongh fort the boring
hero. If it
ofan of 8 in. pipe compared with 1 t eq. Iron on test of its resiletance to twist a s. The torsional strength of your
squ ire rod is not as great asis round rod of the same velight per running foot. The toritonal atrength of a squary Iron is about $4 \times 1 \mathrm{lb}$. 101 foot in length; is per cent off
 strength. The nearest to this igure 1s 1s 1/ in. extra
strong pipe. Two in. common plpe welghs $9 \% 1$ b. to 1 foot and is stronger than your 11 in. rod, but common
plpe as now made to thin at the threads and liable to accidents for drilling parposes, unlese extra precantlon is taken to make a st-ong Jolnt. Sometlmes the threads Unga to match. This maken a atrong rod for the dismond drill, and Is in ase in this part of the United States. We woold recommend to jon, if yon have
muce drilling to do, to nae the extra serong pipe 2 in. as being no heavier than your 1 in. square rods, and with mach more torsional etrength, its extra thickneess
allowing of your making stronger couplings than can allowing of your making stro
(11) E. H. D. asks: What the composition lo that is ased on the backs of mirrors; I mean the black, not the silver, aleo how to apply it? A. Use
black coloring mater diseolved in a japan varish. can be applied wlth a brash. Freequently an oragge o
red coloriog material is employed. red coloring material is employed.
(12) L. A. B. writes: 1. I have about 5,000 gallons of red claret that has become soar. Is there
ans way of reatoring it to its former atate-how? How can I make good white vinegar oot of it? Δ. Sour wine may somottmes be restored by the addition of neor ral
tarruate of potanesiam or potash alone. Thus to 2 gill lons of wine add 4 oances potash diseolved in a litile
water and atir well with a etick for ten mintes. The

storage at present known. You can do it by mak-
ing a storage battery, according to directlons given in

(13) W. P. C. asks: Is there any objection on asiog condensed water from heatiog coils and radian
ors over and over again fu our boilerst We have ors over and over again fiu our bollery? We have a
case when we nee nothing bat rain water in the boilers. Hase when we nee nothing bat rain water in the bollers.
Hare a large number of radiators, and retorn all con. densation to the boilers continoally. Some say it will We do no think any injury can take place, bat would advise that the condensed water be discharged
into a tauk, so as to be exposed to the air before return. ing to the boller.
(14) A. B. writes: I wish to know through your valuable paper if a skilifful englineer, controlling
and handling an Edson recording and alarm steam gauge, cannot settle or ax the machine according to his own wants, and thereby prevent his employer from asedf If he conld do th, by what means a can he reach his ohject? A. When the gauge referred to is properly atted and locked, it could nor be readily tampered gauge might be cat, and the "skilifol engineer " might insert a device to malnatin any dearred prossure; bot ast
is common in such casesthe "skilltal engineer") might common in such cases the "skillfal engineer" migth
(15) F. W. M. asks: 1. Wheth
(15) F. W. M. asks: 1. Whether the twistIng gtrain is less in a rod in ft. long than in one 4 ft . Iong of the same diameter? A. The ultimate torsional the long rod has a grrater range of toraico, and Ahould be semewhat larger than the short one for atifiuese. 2. Alos the emallest aize of ohaft that would reaist the po wer of one horse turning it st 15 ft . distance leogit lever shonld be 2 in. diameter, and 2% in. if the nature or the work is liable to suaden stoppage, so as to large-
Increase the strain.
(16) H. C. W.-Glass beads are made by drawing the glaps into amall tabee and breaking the
tabee into saitable lengtts for torming the beade . The material is then placed upon a fat plate like a frying pan, which is heated jast hot enough to allow he glase to draw the sharp edges into a round; at the same time the plate or pan is gently vibrated so as to prevent co-
henion of the softened beads. A cylinder is alco used henion of the softened beads. A cylinder 18 a 1 ieo besed
something 11 ke a coffee roaster on a emall ceale. The cylinder can be made of cast iron quite thin. Faceted beade are made be pressing the glass in small mound
that tave sharp edges and a panch, so that the eye is punched and tho bead faceted at one nperation, using mall rods cf glass heated in a mame fraace. The and, and Venice.
(17) G. A. T. asks for a receipt for a cheap blue paint which dries quickly and is saitable for headis
of barrelas A. Prepare a paint by mixing aitramarine a cheap Prasslan blne with resin dis solved in benzine. (18) G. B. S. asks: 1. How can I stain maple wood to make it look like rosewood $\begin{aligned} & \text { A. To produce } \\ & \text { rosewood atain take equal parts of lokwood and red }\end{aligned}$ arosewood atain take equan parts of logwood and red-
wood chipa, boil well in water sumfcient to make a
 or three coats, according to the depth or color desired. ing A. In time the iron will become coated with calcium carbonate, which it will aboorb from the water,
and thus work out its own cure. Thero are enamele but it woald be necessary to fase these on to the iron,
which is probalis not practicale in your case.
(19) F. J. H. asks: How to color cotton Torkey red. A. Firme oil the cotion with Torkey red
asesistance, and then allow to age for a day or so. Next aseistance, and then allow to age for a day or so. Next
steam the material and then mordant it with hot sumace for twelve hoors, and again with aluminum acetate;
red.
soda.
(2i) W. H. P. asks: What solution or acid shall I ne for tabidg the black from small
teel goods, so that the surface will be left in pood con Seel goods, so that the surface will be left in good con-t-el goods be polished wo that they will aloo take a fine biuef Δ. If the goods cannot be tumbled or brusbed
with pumice stone or tripoli, orifis the black is too deep,
 goods, a bath of hydrochloric (muriatic) acid and water -one part acld, eight to tell parts water-and rinoe in and dry quickly. Small steel poods can be tramled
and With nne sand to receive a grained sarface. If not
saltable for tumbling, brusuling or bumng is next in surdiare, which can be done the snme way that jewelry
order polished, ony that the fiest four of emery should (21) T. L. asks how to make ordinary solder, such as is used for tin work, stick to cast and Wronght iron, aleo the best way to tin a sinder iron? A. chipe or dilings as the acid will take up. File or otherwith powdered resin and the hot ooldering tron with common solder or pure tin. Tin a soldering iron (or
copper) by heating it, rabbing it on a brick to brighten t, and applying the acid and reetin as before, with
(22) C. S.-In order to produce a glass enamel for metaia, 123 parts of ordinary gint kines. 20 parto of soda, and 19 parts of boric acid are meltod together.
The coloring matter eboold be added to above mixture. In the case of white enamel add tin oxide or cryolite. The fused maes is thoroughy incorporated and ponred powder to mixed with water clases of soo B.; the metal which is $t \mathrm{~b}$ be enameled is then covered with the mixture. The object prepared in the above described man-
ner is then heated to the polntes at which the glase melts in a mumfe. Tuls enamel will be found very tenaciona
applied to tron and stee
(23) G. W. C. asks: Can lead, copper, or brase be nlckel platod? A. Yes. See sofplimens,
No. 810 .
(24) G. W. asks for a receipt for oxidizing silver varions colors. A. There are two distinct shadeat in use, one produced by a chloride, which hasa brownblack tint. To prodace the former, it is only necessary
to wnit the article with a eolution of nal ammoniac (am to wnht the article with a eolotion of nal ammoniac (am-
monium chloride). A much more beautiful tint may be obsained by employiug a solution composed of equal parts of copper sulphate and ammonium chloride fin may be produced by a Alightly warm solution of sodiam or potasesium salphide.
(25) F. O. asks: 1. Can zinc be prepared so as to avoid ordd: :Ing on exposare for a long time to
the atuosphere, and still retain the color and characterlitice of zinc? Δ. No. 2. Can it be entirely freed from coppery If not, white effect will the usual amoont of
copper in zinc have, so far as ruating is concerned, and copper in zinc have, so far as rasting is concernod, and
can zinc be buccesseully naed in inanafacture of tombsiones? A. It caul be fred from copper by distillation; why zinc could not be used for tombstones except for the oridation. 8. What are white bronze monuments, and will they resist the action of the elements for any
length of timet A . White bronza is com pooed of varylength of time? A. White bronza is com poeed of varying propurtious of copper, zinc, and tin, with 20 per
cent of nickel. This tint and renders the alloy almost enitrely inoxidizable. ${ }_{(26)} G$ W H aiks: Wha 1 , 1889
(26) G. W. H. abks: What colors are used In colorrug geographies, maps, etc. 9 Please give ns be be
trade name for yellow plink, and bue. A. Tile colors
weed Conled carmine: and blue called solnole blue. Thete are all dry colors that can be dissoived in water.
(2v) W. G. J. asks: 1. What is the compo
slluon of "Axitite," ased in "axing" pencil and crayon Work (keep from rabbing offir? A. A. Athin solution of
shellac redaced with alcohol. 2 . What cances the barsh ringtog, jarting vibrations of guitar stringe at times
(28) A T. M the gat who
(28) A. T. M. writes: I would like to know if there ts any Inexpensive way by which I coold prodare
an electric light large enough to 1 light a room $12 \times 12 \mathrm{by}$ a hlgh speed model engine, the cyllider about $\% \times 2$ lnches?
battery.
(29) G. S. writes: I have been experiment Ing a long time, and cannot come to a conclasion whethe not, in order that it may be felt. In most all succh, es pecislly medical batteries, I perceive a maguet and
vibrotor which, in turn is attracted and repelled from Vibrator which, in turn, ls attracted and repelled from
the magnet. I venture to ask if you could not give $m e$ astmple metbod of arranging b batery in succ a manne that it mas be felt? A. You can arrange an electromagnet io your battery circuil, and place the armatare
on a fat spriug which will sllow ft to vibraie in front of on a fal spiug wild will siliow it w vibrate in front of
the holes of the magnuen Take a wire from your bat tery to the armature spring. Arrange another wire to touch the back of the spring, and connect with one terminal of the magnet, Connect the other terminal of
the maxnet with the battery. Now connect with each terminal of the magnet a wire provided wilh a metal handile, and the arrangement is complete. The armatore the armature spring and wire is broken; the armature coutact and when the spring will make anothe coll of the magnat, will be felt by the hands applied to the handles.
duction coil.
(30) E. R. writes: I have an induction coil capable or kiving a $8 \% /$ in. apark with 8 quart size tatal, or even a danyerous shock A. The shock would
be pintull and be painful and injurions, but probably not fatal to a
person in heulth. It is beat to avold sstrong electric person in heailu.
ahocks in any case.
(31) O. M. W. writes: I have made a small side valve engline, size 118×8 in. Now, I I wish tomake
emall copper boiler to run it, but do not understand the construction of one. Will you please let me know the name of a book which contans directions for mak-
ing amall steam boilers?
 of you no work on small steam boilers. Make the shell or your boiler 12 in. in diameter and 24 tn. long from
metal three thirty-secunds to. thick. Make the heads Aive thirty-seconds in. thick, dooble rivet the seams,
and pnt in 38 to 401 inch copper tubes expanded at the and pnt in 88 to 401 inch copper tabes expand ed at the
ends. 8 . Will 1 be able to cast brase in the moulds
 17, or will I have 10 use
monlds for brase casting.
(82) J. W. writes: Which is the correc olde of a leather belt to run next to palleys I I bad an
argument about belting, and I s sald that a belt rua with argument about betting, and I sald that a belt ruan win usily be just as good and smooth as if it were run the orher way. My friend zays it won't. A. Either side
But many meehanices and millwrikhts insist that th crain हlde next che pnlley gives a better surface. The subject is a matter of opinion rather than a demonstrat
ed fact. To ran a belt succeastully with flesh side to ed fact. To ran a belt successfully with feesh side to
the palley needs more caretul and even skiving than to done on most cheap belts. whereas the grain is always plisble, ndd. for some uses, will "take hold " better.
(33) J. J. I. asks how large the anode must be in a siliver electroplating bath to plate an article with
150 sq. in. of surface, and how mach oattery is required, 150 sq. In. of surface, and how mach battery is required,
and will old filver watch caees and spoons answer for the anode as well as new silver? $\mathbf{\Lambda}$. The anode and cathode sbould be abont equal in area. The amount of bas
tery must be governed by the condition of the solation cery must be Roverned by the condition of the solution,
quality of the work, etc. It thoold be as groat as pos sible withool makting a hard or granular or brown de
(34) M. J. B. asks: Is there any staddard ruie for measuritog the cande power of a light? Can 1 ,
piabed by compartng the shadow cast hy a rod in the ght to be tested. By moving the latter toward or away rom the rod a point will be reached at which the shadow cast by both lights will be of the same in-
tensity. The intensitiee of the two lights are direculy proportional to the squares of their dietances from the
hadows, $i . e$, sappose the light to be teacted ts three times the dietance of the candie, its illominating power is nine times as great.
(35) E. R., of Rochester, N. Y., asks how oo mako alam kid without nsing alum? A. We do not
mow of any such process. A soft white leather or aresed dkin mas be made in several ways without alam, but it does not take the place of alum kid. Nearly all oar best qualities of kid are :mported, the making hareof requaring' more hand labor than our manufac-
torers can afford. The ekin, after beling relieved of the hair, by sweating in piles and liming in weak limes. is reatod with a warm brau drench, and 'hen, atter thorough washing, with an alum bath and emulsion of eqg yoke. These effectually sway, but do not tan the okin,
(38) K. asks: How many cells of a "Grenet" battery would be necessary to run one incandescent
 (37) G. M. asks: 1. How is a good, clear, dad transparent varoish for lithorrapher's ase mannactured! I nse a pure and fresh linseed oll for thla Curpose, but I cannot get a good, clear varnish. A.
Cunada balsam, 1 oz.; spirits of turpentine, 2 oz.; miz together. Before applying this varnish the picture olation of isinglase in water and dried. Apply with a soft camel's halr brash. 2 . Beeides glue, what other kind of preparation can I nse with success for sizing, writing. rinting, and wrapping paper, and how is such preparaion made? A. Glue and alam water is abont as satisfacabove, a mixture of asarch or dextrine and alnm caned be sed. The cheaper sizes are made by heating cllippinga hides, horus, bones, etc. The process is as follows: he aricles, generally the irst mentioned, are softened they are well clcaned by washing in running water. The next operation is to boil or rather heat them with water. The temperature rhould never be allowed to rise mach
above $85^{\circ} \mathrm{C}$. ($185^{\circ} \mathrm{F}$.), as gelatine atrongly heated for any length of time loses its power of gelatinizing. The
operation shonld be conducted in an fron or copper vessel, provided with a false bottom or a casing outside, where steam may be introduced, and it should extend over aboat 15 honrs. The solation should then be rawn off and filtered into some convenient receptacle. The residue can be again heated with water and a fresh quantity obtained, which may be added to the baily. A quantity of alum (aboat 20 per cent of the clippinga)
dissolved in water is added. The size shonid be well iltered through woolen felt, after which it requires no further treatment.
Minerals, etc.-Specimens have been received from the following correspondents, and xamined, with the results stated
F. H. McI.-The black is hornblende.the white quartz. and shiny particles are mica. The mineral is of no
value.-P. L. H.-The specimen is a variety of rock losely resembling gneiss. Its value as a building material depends npon its availability. It is frequently
ased for building purposes, bat not, as far 28 we know of, for monamental purposee. It fis not blaestone.-W. or, G. The specimen is calcite (calcium carbonate),
D.

index of inventions

For which Letters Patent of the United

states were Granted

February 19, 1884,
AND EACR BEARING THAT DATE.

[See note at end of list about coples of these patenta.]

Adding machine. C. G. Spalding. Δ djustable wrench, A. B. Smatt

Air brake cook, N. J. Paradise...............
Air or liquld brake, R. M. McKinnej....
Alarm lock. R. G. V ssagr Alarm lock. R. G. Vassar......
Alloy for ooting metals, B. B.
Amalkamator, T. H. Becker...
ketell..
Ball trap. C
228, 089
298.814
293,812
Ball trap. C. F . Sto...ck.
Band fastoning, W. W.208,845Barrel or cask for liquidd and similar artio
Schimper...................................Bedstead and crib. folding. C. T. 8be
Bedstead wardrobe, W. D. Snyder 283,077
2939796
289808
288,978
Bees, devlce for hiving F. C. Morrow.228,978
288,905
Praudler. 208.009
208,288
Bell pall, electric. A. S. BunkeBelt and attachment, prote
Bench. See Wash bench.Blcyole saddle, C. E. DuryBleyole saddle, J. A Lamplug
Boats, construction ofBoals, constructam botlier.
Boller. See Steam
Boller furnace, A. Backus,
Boll
Boor zand flice, asease, J. Baker
Boot and sheBoot and
Clark.J. H. Br...288,94
oots or shoes, machine for forming felt. D. Bee Fa
Bracelet clasp. S. Wullach..
Brake. See Alr or liguia b

TRADE MARKS.
Animal trap, E. P. Poecock 10,977
Biecuits, crackert, or cakes, W. G. Wilaon........ 10.958 Bilecults, crackert, or cakes, W. G. Whison........... 10.986
Blscults or crackers, E. J. Larrabee \& Co........ 10.90 Crackers, J. B. Ruger \& Sons.
Meli.................. 10.894
10.
 Oranges and lemons. A. Minaldi............ 10.881 to 10,468
Spoons and forks, tinned, G. I. Mix \& Co.......... 10,967
 Kens dico..
Tobecoo, clgars, and clgarettes, plag, twiot.
ine Tollet plin, T. Porter............... 10,92
10,98
10,95

A printed copy of the speolfcation and drawing of any patent in the forezolng list, alao or any patent
issued ilnce lses, will be furuished from this office for 2 s cents. In ordering please slate the number and dute
of the patent desired. ahd remit to Munn \& Co, zol Broadway, New York. We also furnish copies of patents granted prior to 1838 ; but at increased cost, as the
speciidcations, not being printed, must be copled by
hand.
Canadian Patente may now be obtained by the
inventors for any of the, Inventions named in the foregoing list. at n cost of 810 each. For full Instructions
addrese Munn \& Co., 281 Broadway, New York. Other madrese Munn \& C., 281 Broadway,
foreign patents may also be obtalned.
adxrrtisements.
 Engravings may heari adver tisements at the same rate
per line, by measurement. as the letter press. Adver. per line oy measurement. as the letter press. Adver.
tisements must me received at publication office as early
as Thursday morning to appear in next issue.

BORING and TURNING

MILLS,

48 and 72 ineh swing. Upright Drills
srums.
H. BICKFORD, Cincin'ti,
Ohio.

BPAEENTMG
\rightarrow FIRE -AND-VERMIN:PROOF Sample and Circular Free by mall. U. s. MINERAL WOOL CO., 22 Courtandt Stu, M. Y.

UITITIEREAT

HAIR RESTORERSS- AN INTERESTNG

BARNES

$\underset{\substack{\text { atent } \\ \text { atootan } \\ \text { cam Power Mactur }}}{\text { BARN }}$, WZOKERITE, OR L Lay.

THEORIES REGARDING POLAR AU

 correspondence with
able for Southern use.

W Ast teD-By an American, Ph.D of Zurich, chemIcal or manufacturing, in America. English, Gerana

CONSUMPTION.

Hix witazat

RUPTURE

266th EDITION. PRICE ONLY \$I

KNOW THYSELF, Mas

A Great Medical Work on Manhood,

 This book should beread by the young for instruction
and by the afflicted for rellef. It will beneftit all.-Lon-
don Lancet. There is no member of society to whom this book will
not be uefol, whether youth, parent, kuardian, instruct

 battied the skill of all other physicians HEAL Save
specailty. Such treated successfully THYSELF
without an instance of failure.

NEW YORK BELTINGAND PACKING COMP'Y. EMERY NEW YORK BELTING AND PACKING CO,

PRICE 1.00

THE CHEMISTRT OF LIGNIFICATION

WATER.

Cities, Towns, and Manufactories
 patevt tube and gang well system. Wm. D. Andrews \& Bro, 233 Broadway, N. I Infringers of above patents will be prosecuted.
 WANTED. A young man, 2 y yarar of of ape whit

PERFECT

NEWSPAPER FILE

 MUNN \& CO.,

OOSS's INDUCTION ELECTRICAL

THE CHEMISTRY OF HOPS.-BY R. L

THE PHOTOPHONE.-DESCRIPTION

AN old, woilknown German dim mans to repreant
 TRANSMISSION OF POWER TO A DIS

ROOTS NEW |RON BLOWEN

IRON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturers,
 SEND FOR PRICED CATALOGUE.

AMERICAN STEAM GAUGE CO.,

THE SOLAR ECLIPSE OF MAY 6.1883

Manufacturers'

 Southern Location In Florida.
 EXPERIMENTS IN ACOUSTICS. - A

W 1 NTP R man capable of siper nending contruc
 ASPHALTUM - A COMPREHENSIVE Rape treating oftit geologieal oryinim. mode of preparan

PATENTS.

MESSRS. MUNN \& CO. in connection with the pub. mine Improvements, and to act as Solicitors of Patents In this line of business they have had thirty-ight years experience, and now have inequaled facilities for the prosecution of Applications for Patents in the Onited States, Canada, and Foreign Countries. Messrs. Copyrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done with special care and promptness, on very reasonable terms.
taining full information sbout pate, on application, con cure them; directions concerning Labels, Copyrights,
Designs. Patents, Appeals, Reissues, Infringements As. signments, Rejected Cases, Hints on the Sale of Pa We also send. free of charge. a Synopsis of Foreign Patent Laws, showng cost and method of securing MUNN A CO., Solicitors of Patents,
${ }^{261}$ Broadway, New York,
BRANCH OFFICE.-Corner of F and 7th Streeta,
Washinglon, D. C.

The Best in the World.

We make the Best Packing that can be made regardless
of cost: Users will sustain us by calling for the "JENKINS STANDARD PACKING."
Our "Trade Mark" is stan
renuine unless so stamped. Send for Price List "B JENKINS BROS.,
71 John Street, N. Y. 79 Kilby Street, Boston,

SIBLEY'S TESTED SEEDS,

 HIRAM SIBLEY \& CO., Rochester, N. Y., Chicago, III.

30 to 300 Horse Power. Send for Illastrated Cireular and Reference List STATE THE HORSE POWER REQUIRED,
ASK OUR PRICES:

THE WESTINGHOUSE MACHINE CO.

RAISING AND MOVING MASONRY
Buildings.-Description of some of the more approved Buildings.-Description of some of the more approved
methots of liftring massive trucutures and moving them
mo another location, with full page of eng ravings illus

$\frac{\text { VOLNEY W. MASON \& CO }}{}$., FRICTION PULLEYS, CLUTCHES, and ELEVATORS, PROVIDENCE, R.I.

HAKTFORD
STEAM BOILER Inspection \& I isur ce COMPA
W. b. Panilun.v. Pres't. J. I
J. B. PIERCE. se

BOOKS ON BUILDINE

ROOFINC.

RALIPACIFIC R. R. RERRY.

CHEMISTRY OF BUILDING MATErials. The bearings of chemical science on certain promi-
nemt materials used forbomilding purposes, such as prones
imes, mortars, cements, brick, marble, etc. 1 . A brief imes, mortars, cements, brick, marble, ete. 1. A brief
ceoumt of the general pricilpoe of chemistry. The
chemical substances which enter into the composition of
hem

NFLUENCE OF AGE UPON THE IN cellect.-A very interesting paper, giving an enumera-
ton of some of the greatest witers and thinkers that
to

ERICSSON'S

 NEW CALORIC PUMPING ENGINE, Dwellings \& Country Seats Delamater Tron Wriks, C. H. Proapmeters ac co.,

THE DUPLEX INJECTOR.

SPEAKING TELEPHONES THE AMERICAN BELL TELEPIIONE COMPANY,
W. H. FORBEs, W. R. DRIVER, THEO. N.VAIL, President. Treasurer. Gen. Manaper. Alexander Grabam Bell's patent of March 7, 1776,
owned by this company, corvers every formor of apparatus.
including Microphones or Carbon Telephones, in which
 The Commissioner of Patents and the U. S. Circuit Court
have deccided this to be the true meann十 of his claim,
te validity of the patent has been sustained in the Cir-

 can be procurea directly or through the authorized All telephones obtanied exept from this company or
Its authorizes licensees. are infringements, and the
makers. sellers. and usere will be proceeded against. Information furnished upon application. Address ail communications to the
AMERIGAN BEEAT TE1EPHONE COMPAN Y,
95 Mils Street, Boston, Mass.

Mupy

Scientific Americai

FOR 1884.

The Most Popular Seientific Paper in the World.
Only 83.20 n Year, including postage. Weekly.
52 Numbers a Year.
This widely circulated and splendidy fllustrated paper is published weekly. Every number contains sixteen pages of useful information, and a large number of
original engravings of new inventions and discoveries origina engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanies, Manufactures. Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Henders find in the BCIENTIFIC Ambrican a popular resume of the best scientifile information of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as
possibie abstruse terms. To every inteligent mind, possibie abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in every community where it circulates.
Terms of subscription. - One copy of the SoIEN-
TLFTC AMIGTCAN will be sent for one year- 52 numbers Tific Amirican will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States postage prepaid, to any subscriber in the United States
or Canada, on receipt of ihree dollars and iwenty
cents by the phelise cents by the publishers; six months, $\$ 1.60$; three
\qquad Clubs.-One extra copy of the SCIENTIFIo Amerias will be supplied gratis for every club of five subscribers
at $\$ 3.20$ each; additional coples at same proportionate
One copy of the SCIENTific American and one copy for one year, postage prepald, to any subscriber in the for one year, postage prepaid, to any subscriber in the
United States or Canada, on recelpt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters IIUIVIV \& CO

261 Broadway, New York.

To Foreign Subscribers.-Under the faclitles of
The Postal Union, the Scientipic American is now sent
by post direct from New Tork, with regularity, to sub
scribers in Great Britain. India, Australia, and all other
British colonies; to France, Austria, Belgium, Germany,
British colonies ; to France, Austria, Belgium, Germany,
Russia, and all other European States , Japan, Brazin,
Mexico, and all States of Central and South America.
Terms, when sent to foreign countries, Canada excepted
\$4, gold, for SCIENTIFTC AMERTCAN, one year; ;99, gold,
for both ScIENTiFIC AMERTCAN and SUPPLEMENT for
one year. This includes postage, which we pay. Remit
by postal order or draft to order of
MUNN \& CO., 281 Broadway, New York.
PRINTING INKE

