a WeEkly JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE. MECHANICS. CHEMISTRY aND MANUFACTURES

UNITED BTATES SCREW 8TEAY CRUIBER ATLANTA.
During the last session of Congress the construction of the smaller of the two cruisers provided for in the act of 1882 was reauthorized, and in addition two cruisers of about 3,000 tons displacement and one dispatch boat, for which $\$ 1,300,000$ were appropriated. Mr. John Roach, of Chester, Pa., the lowest bidder, obtained the contracts.

According to the act of Congress, these vessels were to be consiructed of steel, of domestic mavufacture, baving as near as may be a tensile strength of not less than 60,000 pounds to the square inch, and a ductility in 8 inches of not less than 25 per cent
We present, on this page, an engraving of the single screw steam cruiser Atlanta.
The contract price for the hull, machinery, and fittings, exclusive of masts, spars, rigging, boats, etc., was $\$ \mathbf{8 1 8 , 0 0 0}$.

Length between perpendiculars	7	feet.
Length on water line.	8	"
Length over all..	288	"
Depth from garboard strake to under side of superstructure deck \qquad	84	*
Height of main deck port sill from load water line...	11	
Free board at extremities of superstructure..	9	"
Breadth-extreme	42	"
Draught at load water line, m	16 fe	nch
Displacement at water line.	8,00	
Area of plain sail.	10.400	feet.
Complement of men.	230	
Battery, four 8 -inch and six 6 -inch B. L. R.		
Indicated horse power.	8,500	
Sea speed..	18	knots.
Capacity of coal bunkera............ ...	580	
There will be eight complete transver	rse	eads

tending to the main deck, dividing the vessel into nine main compartments, one of which is occupied by the en gines. Longitudinal bulkheads will extend on each side throughout the machinery space, forming side coal bunkers, which afford a coal armor of about 8 feet in thickness above the water line and an average thickness of about 5 feet below it. The coal bunkers will have a capacity of 580 tons, but nearly 200 tons more can be safely carried, thus giving an endurance of 2,500 miles at full speed and 5,300 miles at 10 knots an hour.
The vessel will be divided into seventy-three water-tight compartments, and great care has been exercised in arrang ing the openings in order to make them really water-tight the doors being arranged for manipulation either from below or from the main deck.
(Continued on page 308.)

THE KEW UNITED STATES BHIP OF WAR ATLANTA.

§rieutifit ${ }^{\text {ghm micran. }}$

EESTABLIBHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACh.

TERMS FOR THE SOIENTIEIC AMERICAN.
One cony, one year postage included....
One copy, six months postage included

Clubs.-One extra copy of THR SCIENTIPIC AN ERICAN will be supplied gratis for every clut of nive subscribers at \&
Hame proportionate rate. Postase pal
Hemit by postal order. Addrens
MUNN \& CO., 281 Broadway, corner of Warren street, New York.
The Scientife American Supplement

is a alistinet paper from the Scievtipic amirican. The suppliemment is issued weekiv. Every number containa 16 vectavo pages, uniform in aize | With Scientipic Americas. Terms of subseription for Supplement |
| :--- |
| 5500 a year, pustage pald, to subscribers single coples, 10 cents. Sold by | 500 a year, pustage pald, to subscribers

all news dealers throughout the country
Comblued linten. - The Scikntific americas and scpplement will be sent fur one year postage tree. on receipt ot
papers to one address or different aduresses an desiren.
The surest way tu remit in by draft, postal ordesiren.

selentile Amerlean Export Edition

The Scirntimic American Rxport Rdition in n larke and aplendid pert-
odical, issued once a month. Eith number ochtalina about une hundred large quarto nagen, profusely illuntrumed. embraoing: at., Most of the plates and pages of the four preceding weekly insues of the scik tir
Amemicav, with its splendid engravings and valuable information: Coumerclai, trade, and manufacturing unnouncements of leading houses.
T'erms for Kxport Editimn, 85.00 a gear, ment prepaid to any part of the world single conples 50 cents. 8 a Manufacturers and othern who desire to secure forelgn trude may have large. and handsomely disp
nouncements published in this edition at a very moderate cost. The SCI antlon in all commercial places throughout the world Address MUNN Co , 281 Broadway, corner of Warren street, New York - NEW YORK, SATCRDAY, NOVEMBER 17, 1883.

Contentr.

table of contents of
the socentific american supplekicent NO. 411,
For the Wook ending November 17, 1888.
 Cast iron boxes with wronght iron or steel spindles have done well where the weight and speed are not excersive. All soft metal bearings, as Babbitt or composition, ought to be protected from the grinding influences of dust. but cast iron, if kept well oiled, soon forms a glaze that is almost indestructible. In all cases the journal should give space enough for a film of oil, especially for bigh speeds under which it may become beated and slightly expanded. Many journals and boxes are injured by binding, the consequence of a too finical ft.

COTTON ERED OIL.

When Mr. Edward Atkinson, at the time of the Atlanta Cotton Exbibition, made a most able argument to show the great weulth certain to come to the Cotton States when they began to really utilize cotton seed, which had theretofore been principally a waste product, many people were really surprised that resources for such prosperity already to hand had not previously been employed. This was two years ago, when a grod deal of cotton seed had been crusbed, the oil marketed. and the oil cake sold to planters for feed and for fertilizing purposes. There has since been a large increase in the manufacture of cotton seed oil, with a propor tiouate amount of oil cake offered to the planters, with whom the past two years bave been the most prosperous probably ever known in the Soutb. But it seems that the users of the oil and the oil cake are not yet sufflciently numerous to call for the crushing of anything like the whole amount of seed grown. The last year's production of oil has been
not far from 500,000 barrels, with the result that the price
has fallen from 65 to 45 cents a gallon, and the crusbers are complaining that the busioess is unprofitable and largely overdone, allbough they bave not been crusbing one-balf of the amount of seed actually available. One part of Mr. Atkinson's programme, however, contenplated a large in. crease in the number of catle raised in the South, to be fed with the oil cake. This could come about only gradually. of course, but crushers are not likely to furnish oil cake unless they can profitably market the oil, and the probabilities seem to be that it will be some time yet before there will be enough call for cotton seed oil in the world's markets to result in the utilization of all the cotton seed. The demand for the oil has been steadily growing, but its properties, and the uses to which it can be put in our industries, are now pretty generally understood, so that nobody looks for a " boom" in this line.

prgeent gteam engine practice.

It is generally believed that the improvement in steam engine economy that has been made within the last fifteen or twenty years has been owing mainly to the introductim of high speed practice-that all, or most of the increase of power for diameter and stroke of cylinder and pistun. and most of the cconomy in fuel, are due to the increand piston speed. To some extent this is true; but it is also true that engines are built on better plans and under the guidance of better mechanical judgment than was formally possible. Much of this improvement is to be attributed to thr Increasing use of the indicator, which not only points out the faults of the engine, but designates the reason and there by suggests the remedy. The head of a large engine building establishment recently pointed out a discarded engine in the setting-up department which was in perfect order, and which eighteen years ago was a type of the best style of horizontal stationary engines then in use. When running it had a piston speed of 450 feet, and developed, by the indicator, about 100 H. P. Annther engine of the same diameter of piston aud same length of stroke, of the modern style, was running at a speed of 490 feet per minute and yet was developing nearly $200 \mathrm{H} . \mathrm{P}$.-twice as much as the other. The reasons for this difference were several, that of 40 additional feet of piston speed per minute bring only one. The modern engine had generous ports, both of ingress and egress; the friction was, by careful halancing and exact workmanship, reduced to a minimum; all the thrusts were exactly in line, with no canting leverage; and the journals, crank pin, weight and length of connecting rod were all adapted one to the other and made for the work they were to do. Not a pound of superfluous metal, not a suggestion of a makeshift, nor a fancy of a draughtsman could be found on the modern machine.
Another instance of the improvements that have been made in engine building and engine practice was noticed at the same establishment, where an engine of the modern type. 11 inches by 21 inches, was performing all the work that had been done until recently by an angine 18 iuches by 36 inches that was built nbout sevent eeu years ago. and yet wan not requiring two-thirds of the fuel used to furnizh steam for the old time engine running the same number of hours.

SOME CURIOSITIES OF STEEL.

Eight master taps, or hobs, were made from the same bar of four-inch steel, each cut to a pitch of three to the inch, each scored, heated, hardened. and drawn to temper at the same time. Six hours after the tempering one of them "exploded," or at least cracked into three pieces with a re port. The fractures give to the trained mechanical eye the appearance of good stcel. and show no water cracks on other evidence of previous fracture. At the same establisb ment where this breaking occurred, one of its most import. ant departments is the production of taps, reamers, dies. and similar tools. It has been abundantly proved that forged taps and reamers are inferior to those made direct from the sized commercial bar, not only in their resistance to torsion, but in the retention of their integrity under the exactions of hardening and tempering; the best taps are those which are turned direct from the bar.
There seems to be a tendency of forged steel. under certain forms, to return to the shape of the original har. This is shown especially when the forging from a square bar is flattencd. Sometimes a flattened piece will curve in the hardening as though its flbers had been stretched, and, when relaxed by the heat and again placed under tension by the cooling process, contracted toward tise original condensed square form. A singular example was noticed recently. A plug gange two and five eighths inches wide and one and three-sixteenths inches llick was forged frum a square bar, finished, and hardened. After hardeniug it was to be ground to exact size by a corundum wheel, when the ground side immediately swelled in the center almost enough to be seen by the unaided eye, but was quite apparent with the straight edge. The other face, from which the skin of hardening bad not been removed, remained straight, but as soon as that bad been ground it acted just as the other did and both the side faces were swelled, and so much so that the increase in thickness by the micrometer yauge was more than onehundredth of an inch. On treating the edges a contrary result was produced; each edge face became concave. * that when the grinding was completed the plug had two opposite convex sides and two opposite concave edges. The plug was then annealed and redressed to truth; then re hardened and reground with the same results as at flust. A
second time it was annealed, trued, and then case-hardenet,
sut even then it continu ed its perversity, and it is to be kept 8 curiosity as it is,
The most vexations thing about these "queerities" is that no theory that bears the test of practice has, so rar, accounted or them. If the "reason why" could be discovered the causes could be removed and the working of steel be made an exact and certain art. Stil!, there has been great progress in this direction during the lavt twenty years; the percentage of loss in hardening and tempering steel has been reduced to a very low figure. These improvements bave been owing to the greater uniformity in the character of the steel produced as well as to the greater skill in its after manipulation. We may not despair of yet being able to make the production of hardened steel articles as even and certain as those from any other material.

A HEW TREATMENT FOR THE DEAD.

The question of cemeteries interests the public more and more, and in view of its hygienic relations has been discussed by scientific societies, legislatures, and municipalities. M. Ch. Depérais announces in the Cosmos les Mondes a new method of treating corpses by which they are rendered innocuous.
To day a feeling generally prevails that the cemeteries are centers of infection for the diffusion of epidemic maladies, and that their neighborhood is a menace by reason of their emanations and their influence upon percoluting waters. This hurtful influence has long been recognized. In India the natives yet expose their dead upon the banks of the Ganges or at the sumuit of the Towers of Silence. They become a prey in both instances to rapacious animals, and become partially harmless through their destruction.
The Jews, Etruscans, Ethiopians, Greeks, and Romans had recourse to embalmment or incineration. Cremation fully satisfies the requirements of modern sanitation. The ensbalmment as practiced to-day demands cares and expenses which are never applied, and it has been shown that the chemical bodies employed are insufficient to destroy all the sorts of germs, spores, bacterin, etc., which arise. It only momentarily protects the body.
The process of embalmment among the Egyptians was long and complicated. It was hased upon the use of reagents and upon drying in the air or in furnaces. Cremation as at present executed is completely satisfactory, every atom of noxious gas even being consumed. Nevertheless, the feelings of most people are opposed to it, and there are practical difficulties connected with it not always easily overcome.
It seems therefore necessary to find a new method which, while it guarantees the destruction of the causes of infection, conciliates our customs and desires and is reasonable in its expense. M. Depérais has explained a process based on the fact or statement that at 108° Cent. these pernicious germs are destroyed. He utilizes the well known fact that saline solutions do not boil until after the boiling point of water (100° Cent., $212^{\circ} \mathrm{F}$.) bas been passed. The salt he employs is the chloride of calcium, on account of its cheapness, the ease of its management, and because it is antiseptic and tanning in Baume and slowly raising the temperature of the bath, it is Baume and slowly raising the temperature of then the temperature passes 100° Cent. the water ovident that when the temperachre and tissues will evaporate.
Continuing the heat, the body contracts and the c:hloride of calcium impregnates it. The prolonged bath kills the disease spores, and the bardening and antiseptic properties of the salt partially embalm the body; as, however, chloride of calcium is deliquescent, the body would not dry on removal from the bath. It is removed by immersion in a bath of sulphate of soda, by which the lime salt remaining in the body and incrusting all its flbers becomes the sulphate of lime, and the chloride of sodium is free in the bath. The the body is dried either in the open air or in an oven.

OSAGE ORANGE V8. MULBERRY FOR THE BILKWORY.

There is a strong disposition on the part of those who look for making money by the propagation and sale of mulberry trees to underrate the use of Osage orange as silkworm food. We have thorougbly demonstrated by the most careful lests on several occasions that when Maclura aurantica is properly used for this purpose, the resulting silk loses nothing in quantity or quality, and we have now a strain of Sericaria mori that has been fed upon the plant for twelve consecutive years without deterioration. There is, perhaps, a slight loss of color, which, if anything, must be looked npon as an advantage. It is more than likely, however, that
the different races will differ in their adaptability to the Maclura, and that for the first year the sudden transition to Maclura from Morus, upon which the worms have been fed for centuries, may result in some depreciation. Mr. Virion des Lauriers at the silk farm at Genito has completed some experiments which be details in the opening number of the Slik Grower's Guide and Manufacturer's Gazette, on the relative value of the two plants. Four varieties of worms
were reared. The race known as the "Var" was fed thronghnut on mulberry leaves. The "Pyrenean" and "Cervennes" worms were fed throughout on leaves and branches of Osage orange, while the "Milanese" worms were fed on Maclura up to the second moult and then chang. et to mulberry leaves.
At the close samples of each variety of coconns were sent to the secretary of the Silk Buard at Lyons, and appraised hy hirm. The Maclura fed cocoons were rated at 85 cents per pound; those ratsed partly on Osage and partly on mulberry
at 95 cents per pound; and those fed entirely on mulberry at $\$ 1.11$ per pound. This, M. Des Lauriers thinks, seems to show that the difference between Maclura and Morus as silkworm food is some "twenty-five to thirty per cent in favor of the latter." while it is evident that "the leaf of the Osage orange can be used with some advantage during the first two ages of the worms, thus allowing the mulberry trees The experire leafy for feeding during the last three ages." the simple fact that different races were used in the different tests and not the same race, so that the result may have been due to race and not to food.-C. I. Riley.

REAPPEARANCE OF THE COMET OF 1818.

On the third of September, Mr. Brooks, of Phelps, New York, discovered a telescopic comet. Its advent was quick ly made known to the scientific world, and it was described as round and faint, and having no tail. Its course was toward the earth, and it was hoped that it would become visible to the naked eye in two or three months. It was generally nccepted as a new-comer making its first visit to the clime of the sun, and was known as comet Brooks, or comet b 1883.
Instead however of being a new comer, this comet is an old friend that made its first recorded visit in 1812, and is known as Pons' comet from the name of the discoverer, or, more simply, as the comet of 1812 . Encke, an astronomer of the time, found that the comet moved in an ellipse with a probable period of nearly 71 years, so that its returu was looked for about this time.
The Rev. George Searle, of New York, was the observer who discovered the identity of comet Brooks and the comet of 1812.
Cometic astronomy was comparatively in its infancy when Encke made the computation of the orbit of this comet. It is simply wonderful that, with the data at his command, he should have reacbed a result so nearly accurate. Within a few years, however, two series of cbservations of the come have been discovered which were unknown to Encke. Two French astronomers, Messrs. Schulbof and Bossert, underlook to recompute the orbit, using all the data known. The Paris observatory published the result of their labors in a pamphlet of 200 pages. From time to time, the enthusiastic French observers issued memoranda of the probable position of the comet when near enough to be seen. Unforunately, the first observations of comet Brooks did not seem to agree with the French ephemeris, and it was hastily concluded that the erratic visitor was a new member of the cometic fanily, come to take its first peep at our little planet.
The Rev. Mr. Searle studied the question more carefully, and verified the computations more accurately. He proved beyond question that the positions marked out for comet Brooks were identical, at the time of observation with those which a comet would be found that was traveling in the ellipse computed by Encke. He went further, using the new orbit of the French astronomers, and proving that the comet was observed in the exact position where it should have been found according to the orbit computed 70 years ago.
There is therefore no shadow of a doubt that our eyes behold the long expected comet of.1812. Its peribelion passage will take place on the 25th of January, 1884. It will then be about $60,000,000$ miles distant from the earth, two-tbirds the distance of the sun.
In 1812, the comet presented, when discovered in July, the appearance of an irregular nebulous mass, with the tai entirely wanting. In September, the nucleus was 5 ' in diameter, and the tail was $2^{\circ} 17^{\prime}$ in length. Though not very bright, it was distinctly visible to the naked eye, and was bserved for ten weeks before it disappeared in the sta depths. The returning comet, when first seen, presented similar elements. About the 23d of September, bowever, a remarkable and unexpected outburst occurred, the nucleus expanding into a confused circular nebulous patch of light, and the comet increasing many times in brilliancy in the course of iwo or three days. On the 23d, the nebulous mass was 2 in diameter; on the 25 th, it was 4^{\prime} in diameter and bone with a luster equaling a star of the seventh magni ude. The activity of the display is almost unparalleled in cometic bistory, and is specially noteworthy on account of he comet's great distance from the sun at the present time. Since this curious outburst, the comet has been a well behaved member of the family, but it is impossible to predict what vagary it may next indulge iu.
The comet of 1812 may now be seen in the evening in the northwest in a telescope of moderate power, and is said to be visible in a good opera glass. In a few weeks it will be easily perceptible to the unassisted eye, and when the year 1884 makes its advent, it will be near its culminating point. t will not equal the superb comet of 1882 in size or brilliancy, but it will be visible in the evening sky and will be so much more convenient to observe that there will be compensation in its lessened splendor.
It is an astronomical triumph, that with the inadequate means at command for computing an ephemeris, an astronomer seventy years ago was able to predict nearly the exact time for this comet's return. Our ancient friend is winging its swift fight toward us, and before long our eyes will be gladdened by a sight of its face after a long travel of hreescore years and ten, when almost every eye that noted hat nightly arches over the earth.

There are several comets with a computed period of from 70 to 75 years. Halley's'comet with a period of 75 years is the only one of them that has made mure than one return Its last appearance was in 1835, and it is next expected in 911. The comet of 1812 with a period of 71 years now re cords its tirst return. The comet of 1815 with a period of 74 years is confidently anticipated in 1889.

Clocks and Rallway Time Tablen to be Changed

 November 18.The changes to be made on Sunday, Nov. 18, in the time by which about all the railroads in the country are run, cannot be brouglt about, at the best, without considerable riction. In Boston, for iustance, there is no little opposi tion to the putting of clocks and watches back some 17 mi nutes, as will be necessary under the new provision for "Eastern standard" time, but orders have been issued for many of the public clocks in that city to be so regulated, and, as the whole railroad system of the Eastern States will be controlled by this standard, the prevailing opinion seems to be that the innovation will be generally accepted. There may be some who will at first carry the two kinds of time, the " standard" and the true, as can be readily done by having two minute hands on a watch: this is now frequeutly practiced to keep both New York and Boston time, by those who travel much between the two cities. In New York city, where the chañ̃c required calls for putting back the rue time only four minutes, there will probably be less opposition to the adoption of the new standard, but it may be readily conceived that great confusion will inevitably be caused wherever it is attempted to use the two kinds of time simultaneously.
Full particulars relative to the adoption of the new plan. whereby there will practically be only four standards of ime throughout the country, instead of forty-nine, as at present, were published in the Scientific American of Oct. 13. The time tables of many of the railroads will also have to be changed, as well as the clocks, in order to facilitate the making of connections between lines affected over considerable distances east and west. The following list of changes has, therefore, been furnished by Mr. W. F. Allenf Secretary of the railroad conventions which decided upon the doption of the new standard, the letter f denoting that he clock is to be set ahead, and the letter s that it is to be et back :
Atchison, Toptka, and Santa Fe, east of Dodge City, locks only, 9 minutes, f.
Atchison, Topeka, and Santa Fe, west of Dodge City, locks and schedules, 51 minutes, s.
Baltimore and Ohio (west), hoth clocks and schedules, 8 minutes, s.
Boston, Hoosac Tunnel and Western, both clocks and chedules, 4 minutes, s.
Boston and Albany, clocks only, 16 minutes, s.
Canadian Pacific (Eastern division), clocks only, 6 mines, s.
Central Vermont, both clocks and schedules. 12 minutes,
Chesapeake and Obio, both clocks and schedules, 8 minutes, f.
Chicago and Grand Trunk, both clocks and schedules, 9 minutes, s.
Cleveland, Columbus, Cincinnati, and Indianapolis, both accks and schedules, 28 minutes, s.
Delaware and Hudson Canal Company, clocks only, 4 minutes, s .
Delaware, Lackawanna, and Western, both clocks and chedules, 4 minutes, s.
Fort Wayne, Cincinnati, and Louisville, both clocks and chedules, 23 minutes, s.
Frechold and New York, both clocks and schedules, 4 minutes, s.
Hartford and Connecticut Western, clocks only, $4 \mathrm{mi}-$ nutes, s.
Lake Shore and Michigan Southern, both clocks and chedules, 28 minutes, s
Lehigh Valley, clocks only, 1 minute, f.
Louisville and Nashville, clocks only, 18 minutes, 8.
Missouri Pacific, clocks, schedules at St. Louis only, 8 minutes, 8 .
New York, Lake Erie, and Western, clocks only, 4 miutes, s
New York Central and Hudson River, clocks only, 4 minutes, 8 .
New York City and Northern, clocks only, 4 minutes, s. New York and New England (east of Connecticut), both locks and schedules, 14 minutes, s.
New York-and New England (in Connecticut), both clocks and schedules, 4 minutes, \&
Pennsylvania, New York division, both clocks and schedules, 1 minute, f.
Pennsylvania, all divisions except New York, clocks only, minute, f.
Pliladelphia and Reading, both clocks and schedules, 1 micute, f.
Rome, Watertown, and Ogdensburg, clocks only, 4 miRome,
nutes, s.

The Swiss railroad companies now cover a portion of heir carriages with a phosphorescent preparation, which makes them visible at night.

The Poselblition of Land Culture

A remarkable illustration of what may be done with ten acres of land only has been furnisbed by a fruit planter named Dillon, of Woodiand, California. Six years ago he planted five acres with Muscatel grape, since which he bas added two more acres. He has also planted one acre with prunes, nectarines, and peaches. From the five acres first mentioned his gross returns last year were $\$ 1,200$. Last year he planted three-fourths of an acre of beets, which yielded 35 tons. By the aid of these, and a little bran or short, be kept a span of horses and two cows seven months, besides which he sold $\$ 30$ worth of beets. One of the cows yields from 10 pounds to 11 pounds of butter per week, besides the milk which the planter's small family uses. By the side of his fencing Dillon further planted 20 wrlnut trees, which have borne fruit for two years. From the wood cut from these trees this year in the trimmings be made a little over three cords of stove wood. Gum trees planted six years ago, and some of them 12 inches in diameter, will make when cut into wood from one fourth to one half a cord of wood per tree. In the condition in which he now has his fruits and vines, this enterprising grower on a small scale states that he can make a living for himself and family, and lay by from $\$ 300$ to $\$ 1,000$ annually. His family consists of himself, wife, and one child. It is evident that Mr. Dillon, of Woodland, California, dues not allow anything within his reach to lie idle or unutilized.

Preservative Vaporm.

Mention is made in the Lancet of two small specimens of lungs, recently exhibited by a well known physician, which had been kept in chloroform vapor, untouched, in their respective bottles, for thirty-five years, and were well preerved. An illustration of the preservative power of ammonia vapor is also cited, namely, a specimen of blood which had been drawn from a sheep's neck in April, 1862, and kept in a well corked bottle ever since, and heing still perfectly fresh and fluid. It is found that structures containing mucl fat become saponified unless chloroform is mixed with ammonia, and that, when it is desirable to retain the color of the blood, the addition to the chloroform of coal gas, which contains sufflicient carbonic oxide for the purpose, is entirely successful.

Eecipe for Datmeal Caken.

For the benefit of various inquirers Mr. S. N. Stewart gives the following recipe for the oatmeal cakes or crackers recently mentioned in our paper: To coarse oat meal, such as is bere known as coarsest Akron (from Akron, Ohio), add sufficient white flour to lold it together. While dry add salt and shortening-butter is best-and rub thoroughly togetber; then add cold water enough to make quite soft. Let it stand half au hour, when it will have become a stiff dough. Roll very thin, cut in cakes, and bake brown in a slow oven. If fine oatmeal is used, no white flour need added. Of course they can be made without shortening.

OIL EXTRACTOR.

A simple and efficient device for extracting oil from flsh liver or blubber, and which can be used on board vessels or on shore, has been recently patented by Mr. F. Payzant, of Lockport, Nova Scotia. A cylindrical furnace is provided with a grate, below which is an ash pit. Air is admitted to the fire by a pipe entering the furnace below the grate and having its upper end, which is above the top of the furnace,

payzant's oll extractor.

provided with an adjustable hood for catching the air. The furnace is surrounded by a water jacket which can be filled by means of a funnel. The furnace is moved about by the aid of handles altached to it. It is placed upright in a tank, vat, or tub containing the liver or blubber, and is held in place by suitable arms. To use the extractor the jacket is filled with water and fire is started in the furnace. The beated water forces the oil from the liver or blubber and i rises to the surface, the livers sinking to the bottom of the vessel. The oil is then skjmmed off, or removed by dippers, or is drawn off by means of a suitable faucet. The jacket must be kept full of water, as the direct heat from the fire will not extract the oil. The engraving represents the tractor with certain parts cut away to show the interior.

folding boat.

The accompanying engraving presents two views of a folding boat recently patented by Mr. C. M. Douglas, of Toronto, Canada, and now being manufactured by the drie
Ontario Canoe Company, of Peterboro, Canada. To the ends of the keelson are secured a stem and stern port braced and stiffeued hy blocks. The gunwales are curved ike the sides of the boat, and are hinged at the ends to the stem and stern posts by shackles, so that they can be folded down when the boat is to be folded for transportation. The shell of the vessel is formed of waterproof canvas or other suitable material tacked to the gunwales and to the bottom of the keelson. Strips are tacked to the outer and inner sur face of the canvas for the purpose of stiffening it. Ther

dodalas' folding boat.

re two or more stretchers used, which are curved in the same manner as the ribs of ordinary boats, and passed into recesses in the upper edge of the keelson, over which recesse prongs fastened to the keelson project, :nd under the prong the stretchers pass. The upper ends of the stretchers are passed in between the canvas and the inner strip of the gun wale, which extends below the outer strip and keens the gun wales raised and separated. The stretchers are made of wood or steel. On the inner surfaces of the stretchers blocks are secured from which upwardly projecting pins pass into holes in transverse boards serving as stiffeners fo the ribs and supports for the seat. False bottom planks res on each side of the keelson, and are kept in place by buttons. The boat can be folded very compactly, so as to be easily mits a

Oxalic Actd in Bleaching.

The march of improvement, in the processes of bleach ing vegetable fiber, has hardly kept pace with that of dyeing Indications that it will do so ere long are not wanting, bu as yet we go on in the old way. We get rid of the impuri les, natural and otherwise, by prolonged boiling in sod ye. We follow this with our bleach proper, consisting of solutions of chlorinated lime (chloride of lime), at first con centrated, then weaker and weaker. We alternate these with the souring, sometimes with sulphuric acid, sometimes with hydrocbloric, and with baths of soda lye. The acid set free the chlorine of the solution of chlorinated lime, which saturates the fibers, and combines with the lime, while the lye serves to neutralize the otherwise destructive action of the acid. During these operations the tissues are washed many times with the largest possible quantity of water. Improvements in these operations cannot come too soon. A present they are costly and inconvenient. The water must be heated. The capital required for the first installation is considerable, and even with the best tonls and appliances the time laken up, and the amount of hand labor required. are also great.
In order to lessen the inconveniences, says the Monitour des Fils et Tissus, Mr. C. Beyrich, of Arnsdorf, Silesia, has proposed a process based on the three following points: 1. That oxalic acid, either free or as the oxalate of potassa, possesses the property of combining with the lime of the chlorinated lime more energetically than either or both of the acids commonly used in bleaching. 2. That the oxalic acid never attacks the fiber as do the other acids. 3. That the presence of vegetable substances, which, under the common system, are removed before the bleaching proper, does not interfere with the action of oxalic acid.
Of the three substances which compose chlorinated lime, but one, hypochlorite of lime, may be said to be of practical value in bleaching. Instantly deprived of its lime in presence of oxalic acid, the hypochlorous acid is set free, and almost immediately decomposed; its two constituents, chlorine and oxygen, being in the nascent state, act with reloubled energy; the oxygen directly on the coloring matter The chlorine indirectly through the decomposition of water The cloth to be bleached is soaked at a temperature of from $: 0^{\circ}$ to $26^{\circ} \mathrm{C}$. for five or six hours in a bath of chlorinated lime, to which oxalic acid has been added. All of he oxalic acid is not introduced at once, the greater part being thus used, and the remainder in an hour or two. After
bleaching, the goods are carefully rinsed and passed through a weak solution of sulphuric acid, then through one of sodic carbonate to neutralize the acid, and finally rinsed and dried.
The objections to the process, on the score of the exprnw. of the oxalic acid, would probably not hold were a deman: created for the acid The materials of which it is made ar comparatively cheap, the methods of manufacture simple. and, stimulated by the demand, active competition would reduce cost. It must not, bowever, be forgotten that the oxalate of lime formed on the fabric is one of the most insoluble salts known. For scouring, many bleachers prefer hydrucbloric acid to sulphuric, because the resulting salt is so readily washed out. They would find the oxalate of lime more objectionable than the sulpbate, because of its greater insolubility. The invention is a move in the right direction, and as sucb it is deserving of a fair tria both with and without the modifications which will readily suggest themselves to experienced hands.

L Learned Woman.

The life of Miss Anna Sutton, recently published in Eng and, presents a character which it is more easy to admire than to imitate. Sue was born in the province of Ulster Ireland, in 1791, and died in 1881. At 20 years of age, har ing previously received only a rudimental education, she ound a Latin grammar, and forthwith attempted to master it. She learned the language, and read all the chief classics Next she took up Greek and read the New Testament Homer and such other Greek works as fell in her way French, Italian, Hebrew, Arabic, and Chaldaic followed and when past 80 years of age she astonished a learned de scendant of Abraham by conversing with him in Hebrew After the age of 70 she lost her eyesight and learned to read the books for the blind printed in raised letters. She was a devoted member of the Methodist communion and a "clasi leader" till within a year of her death. Sbe, of course, must bave had an extraordinary aptitude for lavguages Still, ber example shows how much more than is supposed the average mind is capable of doing, in any direction 10 which the taste may lead.

Flying Money.

While riding on top of a freight car in Chicago last Satur day, going toward the fair grounds, C. W. Leffler noticed a piece of paper flying toward him over the tops of the cars The train was running at the rote of five or six miles an hour, and the bit of paper when first seen was distant som four or five car lengths. It came directly toward him, and kept on coming until it struck him near his vest watch pocket. He grabbed it, held on to it, scanned it, and ascer lained tbat it was a genuine one dollar bill. Where it came from, or how it got started, will remain a mystery. It is not every day that money is obtained in that way. - Aurora (14.) Beacon.

STEAT TRAP.

The steam trap herewith illustrated was recently patented by Mr. James A. Trane, of La Crosse, Wis. The trap cas is made, preferably, of cast metal, has one removable head and is furnished with legs for standing on the floor. In the case is fitted an inlet pipe and a waste pipe, for the water, the latter pipe extending nearly to the bottom of the case, and being provided with a valve wbich has for its

trank's steay trap.

stem a triangular plate, b, having a curved slot in which wo stop pins are adjustably fitted. On the center of the valve stem is one end of a lever, to the other end of whicb is a float, c, and which plays between the two stop pins. The ower pin is so adjusted that the float will close the valve when it descends by the fall of water, and shut off the eacape through the pipe, just before the water falls below the end of the pipe. The other pin is to be set according to the height it is desired that the water shall rise before opeuing he pipe. On the top of the case is an air cock, e, and a the bottom a waste cock to draw off the water in cold eather when the trap is not in use.
By this arrangement the water caunot in any case le forced out so that the steam will blow through.

COMPRESSION COCK.

In the compression cock berewith illustrated, the valve, a, is closed up uuder the paitition, b, by the pressure of the water uuder it, and falls and vents the pipe, c, so that the water will drain cut whevever the supply is shut off in the mains, aud automatically closes the passage when the water is turned on. The valve har a stem extending up through a socket in the lower end of the handle stem, d, that screws down in the cap to open the valve against the pressure of the water, by the upper end of the valve stem coming in conlact with the bottom of the socket. The valve stem

barr's compresolor cock.
has a recess turneci in it below the upper end for connecting it to the stem, d, by a set screw, f, which is so placed that it will limit the fall of the valve by the collar, g, which will lodge on it and thus prevent the valve from falling so low Hat it will fail to close by the pressure of the water. The stem, d, is packed by a cap, e.
This invention has been patented by Mr. James S. Barr, of Wheeling, W. Va.

The old Locomotive "A rablan,"

After vearly ffty years of faithful service, was at last destroyed in the burning of the Pittsburgh Exposition building. The "Arabian" was not the first locomotive, but it was among the first, which did practical service in bauling trains on a railroad, and the excellence of its construction is attested by the fact that it was still at work after so many years of rough service. One or two older engines survired, but they were laid up and carefully presserved as curiosities, while the "Arabiau" could claim without contradiction that it bad been steudily at work longer than any other locomotive inthe world, and could be considered as the stillactive grandfather of the numerous family of its kind now running in this country. It was exhibited in Cbicago, and on its return the Baltimore and Obio Company allowed it to remain in Pittsburgb during the local exbibition there.

Mieroscopic Organiems in Building Materiais.

An article in the Ban Francisco Chronicle by W. W. Good rich, is as follows: "Having occasion to examine a brick that was taken from an old ruined and forsaken building, which was being torn down, I was somewhat startled, upon adjusting a microscupe upon a fragment, to see each pore of the brick inhabited by a peculiar rod-like animalcule of the geuus bacilli. These insects cannot be seen except by aid of the microscope, even when they live in the human syslem and prey upon our vitality; neitber are they visible in the soil or substances in which they may live and hive, ex cept tbrough a powerful glass.

Their motions when they were agitated by blows were as the liuks of a chain, reminding oue of a system of joints to be extended and contracted. They were semi-transparent, with a light, scintillating column nearly two-thirds their length, extending from near their head to their pointed tails, probably their spinal column. As this brick was from the foundation, and being underground and next to the street sidewalk, it illustrates forcibly the fact that, however hard burned and well made, porous substances should uot be put underground for foundations or sewers. Solid rock or concrete or terra cotta are the only proper building materials below the level of the sidewalks.
'If we wish a healthful city we must have healthful bomes, liealthful business houses, and healthful apartments. It has been suid that the fetid breath of any person disseminates the floating germs of the disease that caused that foul breath, and if so of a person, the same will be true of any porous building material where the dampness of any soil or sub wil bas sufficient moisture to geverate the germs, and there is putrescent matter floating and dropping about continually to keep the germs in active principle. Buildings should have stone foundations where exposed to any possible seepnge from any drainage or from sewers."
Writing to the Amorican Architect, he adds: "I have re reatedly examined porous building materials, and in all cuses where subject to human or auimal evacuations I have fouat the oronuisms mentioned. The bacilli wre the same
that I have seen from humau kidneys affected by Bright's disease, and more especially after persons bad died, and where uric acid had been very prominent. In oue case of Addison's disease an examination indicated the same animalcule3. I have a fonduess for the curious, and mere accident caused me to examine a brick, and following up the clew thus obtained I have discovered the same conditions of life to exist in several instances.

DUST AND CLINER DEFLECTOR.

The accompany engraving represents an automatic dust and cinder deflector, applied to the windows of a car, which prevents those annoying particles from entering the car aud at the same time keeps up a circulation of air. A stee elliptical spring, 14 inches long, has a bar of wood the same length atlacbed to the center and outside of one leaf. To the outside of this bar is attached a strip having a width sufficient to reach just outside the window, and having a height equal to the raised window, and having a rebate cut in the outer edge of its top. To the onter edge of this strip the deflector is secured by coil spring binges. The deflector has a beight equal to that of the strip, projects $21 / 2$ inches beyond the body of the car, and is kept at an oblique angle by the springs and a stop block attached to the sill. In the top and bottom of the bar are grooves, so that the combination may slide forward and backward along horizontal bars placed across the space in the side of the car. The device is pressed outward by the elliptical spring. The deflector may be moved inward and retained at the angle required by the levers operated by a key from the inside of the car. The deflectors are arranged on both sides of the windows, so that one set may be used when the train moves in one direction and the other set for the contrary direction; when not in use the deffectors remain in the recesses provided for them The device prevents cinders from entering the window and creates a draught which relieves the car of impure air. By a slight change in the device the windows may be held at any

herarg dust and cinder derlector.
beight, thereby doing away with the common catch spring Further information can he obtained from the inventor, Mr. H. B. Mears, Santa Cruz, Cal

FOLDING TABLE.

The table is designed for use in cars, steamboats, houses, and other places where it is desirable to have a table that may be readily set up in position for use and as readily put aw ay compactly. In the engraving the table is represented as in use and also (in the sectional drawing) when put away. The table top, a, has a hinged extension, d, on one side and a jointed brace, b, attached to the under side, and is fitted to slide endwise up and down in a vertical case. The end opposite the one having the jointed section may have a knol

ABBOT'S FOLDIIVG TABLE.
as e, or an ornamental moulding. To adjust the table for use the top is raised until the joint reaches the top of the case, when it is swung down to a level position, where it is supported by the brace whose end is placed in a rocket, c. Any suitable stops may be provided in connection with the jointed section to prevent it from being drawn out of the case. The under side of the top has a groove in which the brace sinks flush with the surface. To fit the table into a perfectly flat surface or into a wall, the top may be made without todgucs to slide in grooves in the case, so that it
may swing forward before rising out of the case. In this form a hook is employed the prevent the table from falling corward. The case may be constructed so as to be self-supporting on its own base for a portable arrangement of the table.
The invention has been patented by Charlotte E. Abbot. of Portland, Maine.

CLEVIS

The main bar of the clevis is made in the usual form with upper and lower arms and a vertical frout bar having a

ROUSE'S IMPROVED CLEVIS.
series of holes for adjustable connection of the draught. The clevis is connected to the beam of the pluw by two pins, shown in Fig. 2, the rear pin being made the stronger and having its head elungated and recessed at the top (a, Fig. 1) to serve for a wrench which shall always be at hand when required. The pins have heads on which the tongues of the lock bar, b, overlap when the bar is swung on its pivol, by which it is swiveled to the upper clevis arm. The pins are thus held securely in place. The parts are held in position by a simple \cap-shaped latch, f, that is passed through the lock bar transversely, the arms of the latch passing on each side of the bar and clevis, thereby preventing the bar from tu:ning off the heads of the pins. The joint shoulders of the lock bar and pin heads are made obliquely, as indicated in Fig. 2, so that the bar can swing ouly one way. This invention has been patented by Mr. R. A. Rouse, of Levee Township, Illinois.

The Largent of Apple Troes.

By н. c. hover

In a wild state the apple tree seldom grows to great size, the largest specimen of the American crab apple that I have seen being but twenty feet high, and having a trunk but a foot io diameter. The average size of the cultivated tree, under favorable conditions, considerably exceeds this, and specimens are not rare with a spread of forty feet, and a trunk two or three feet through. Such are to be seen on the old farms of New England, relics of the days of hard cider and the best of vinegar. It has been discovered that these old orchards, whose fruit long ago ceased to be of marketable value, make excellent kindling wood; and it is a fact that many of the largest trees are thus disappearing in smoke.
While visiting such an orchard near New Haven not long ago, the farmer, perceiving me to be taking notes as to the dimensions of his trees, told me that probably the largest apple tree in the world was to be seen on the farm of Delos Hotchkiss, in Marion, Conn. I need not give the size as originally stated by my informant, and which was, like most such matters, much exaggerated; for I have just had exact measurements taken, as follows:

Height of tree.....
A peculiarity of this tree is that it is what is termed " an alteruate bearer;" five limbs bearing one ycar and four the next. The usual yield from the five limbs is alout 85 bushels, although in a single instance it reached 110 bushels; and the four limbs vary from 35 to 40 bushels. The fruit is said to be excellent for winter use, though on this point I can only speak from hearsay
The age of this venerable apple tree is estimated at about 175 to 180 years. Curiously enough the patriotic old tree marked the centennial year by bearing fruit on all its branches, the first time it was knnwn to do 80 in its life, and it has continued to do so down to the present time. Sume of the limbs are now dying, others are broken down; signs of decay appear in many places, and it is thought that this noble specimen of Pyrus malus will be numbered among the things of the past.

 (Continued from first page.)The drainage has been closely attended to, and the total pumping power of the steam and circular pumps, with ca pacity of 2,500 tons per hour, can be concentrated on any main compartment. In additiou there will be six continu ous acting hand pumps on the berth deck, which will have independent suctions to each main compartment and each compartment of the double bottow; they can be used for flooding any compartment or flushing the drain pipes, aud will deliver into the fire main or directly overboard as may be required.
The machinery spaces, for 100 feet, will be protected by a steel deck, $13 / /$ inches thick, and this deck will be so placed with reference to the water as to afford the maximum pro tection to the buoyancy. The deck is to be stiffened at the sides by transverse franes in the lower coal bunkers, the brackets in the upper, the fore, and aft coal bunker bulkbeads, and amidships by decp I-beams. An inner bottom will extend the length of the machinery spaces, forming a watertight double bottom containing twelve watertight cells All of these cruisers will be fitted up with bilge keels.
The outside plating will be 23 pounds per square foo with a double plate at the water line from the stem to near the stern. The fixed ammunition and shell rooms and the magazines are to be in the hold amidships, directly befor and abaft the machinery space.
The motive power will be obtained from a three cylinder compound, horizontal, back acting engine of 3,500 indicated horse power. The engine will have one high pressure cylinder 54 inches in diameter, and two low pressure 74 inches in diameter; the stroke being 42 inches. The cylinders will be located with their axes parallel, $9 \downarrow$ feet apart, on the starboard side of the vessel. The crank shaft will be made in three interchangeable sections secured to the line shafting and to each other by couplings forged on the sbafts. The low pressure cylinder cranks will be set at rigbt angles, and the crank of the high pressure cylinder will be set between the others at angles of 135 degrees. The shaft will be steel 16 inches in diameter at the main journals.
The screw will be 17 feet in diameter with a mean pitch of 20 feet, will have four adjustable blades, and will be made of steel.
Steam will be furnished by eigbt horizoutal returu tubular steel boilers placed forward of the engine and divided into two sets by a watertight bulkhead athwartship. Each boiler will be $93 / 4$ feet long. $11 \frac{\text { feet in externalediameter, and will }}{}$ have two cylindrical furnaces 43 inches in internal diameter, made of corrugated steel.
The disposition of the battery is thus described by Assistant Naval Constructor F. T. Bowles, U. S. N., Secretary o the Naval Advisory Board, in a paper presented to the United States Naval Institute, and from which the above items were condensed: "Outside the forward port angle, and the after starboard angle of the superstructure, an 8 inch long rifled gun will be mounted in a barbette about 9 feet high, built of 2 inch steel plates. The forward gun has a train from 40 degrees abaft the beam on the port side, sweeping the whole deck forward to 30 degrees abaft the beam on the starboard side; similarly for the after gun. Within the superstructure six 6 -inch B. L. R.'s will be mounted two, on each broadside, with a train of $\mathbf{6 0}$ degrees before and abaft the beam; one, forward in the starboard angle of the superstructure, may fight either through a forward or a broadside port, giving a total train of from 20 degrees across the bow to 60 degrees abaft the beam. The remaining gun is similarly mounted on the port side aft."

Fall of the Wisconsin Capitol.

The disastrous effect of pushing work on masonry so rapidly that the mortar has not time to set before being sub. jected to an excessive load, was most painfully illustrated at Madison, Wis., on the 8th iust. Work on the second story of the balcony of the south wing of the new capitol building was being hurreed, in order tha the building might be closed in before cold weather came The "green" mortar bad not acquired strength enougb to withstand the pressure, and as a uatural sequence the wing fell with a crash, killing four men outright and more or less serinusly injuring uineteen others. Although mortar takes a loug time to attain its full strength, it becomes, in a comparatively short period, strong enough to bear a heavy tendy pressure; and when we consider that this fact i well known to builders, the custom of rusbing up a struc ture cannot be too emphatically denounced. Because this plan is being pursued every day with impunity is no excuse the practice is dangerous.

The Greek Sponge Fisheries.

The Greek sponge fisheries have been very much devel oped within the last two years, and at the present time ther are 723 boats, 183 of which are provided with diving bells, employed in this business. These boats, which carry from five to seven men, nearly all belong to the ports of Hydra, Egina, Cranidi, Hermione, and Trikeri. The fishing season commences in April and ends in August, the boats which are provided with diving bells going as far to sea as Tuni and Tripoli, while the others do not go beyond the coast o Greece and Crete. The value of the sponges taken during the past season is put at $£ 98,000$, nearly half of which is
credited to the Hydra boats, while those from Egine touk about $£ 27,000$ worth of the remainder.

Mr. Herbert Speucer thought that the most valuable piece of advice he could leave us in departing from our shores wa of less restless-co work less and play mine. that Eug lish philosopher, who spoke with the more feeling and the tronger emphasis on the subject because he himself was a victim of the very excess against which he warned us. He had come to the United States, in truth, with the hope of restoring tone to his nervous system, so shattered by in discreet application to study that he was unable to sleep soundly.
Sensible people here, however. kuew very well that working too hard was not an American vice. It is rare to find in American whose tendency to sin takes that direction. The men who complain most of overwork are usually those who are unfiting themselves for exertion by bad habits of self-indulgence. They could do their work without undue strain if they did not otherwise overtax their verves.
But there is another very frequent cause of nervous prostration. It is hasty and unmethodical labor, the habit of burrying. But that cause, it seems, is commonly active in London no less than in New York.
The London Lancet warns the " city men," that is, the business men, that they are wearing themselves out with unnecessary hurry and bustle. It also tells physicians tha they would do far more to prevent the spread of nervous disease if they undertook to cure this vicious mental habit, than they can bope to do by dealing only with the particu lar ills which come from it.
One of the chief characteristics of business life, the Lan cat says, is to be always in a hurry. The moment a lad en ters a business bouse " be begins to make believe to others and too quickly to himself, that he is overwhelmed with work. The result is the formation of a 'mental habit' of hurrying, which before long becomes the keynute and motive of the whole life. It is the custom to write and speak as though commercial men were really as much pressed for time as they pretend 10° be. Now, the simple fact is that all their haste and turmoil, prejudicial and often ruinous as it is, is artificial."
The bustling, hurrying man, as a matter of fact, is a poor worker, and accomplishes comparalively little in a day. Too much of his steam power is expended in kicking up a dust. The hahit of hurrying and of feeling in a hurry is fatal to ood work, and diminishes the amount of work a man can get through with. The friction is too great. So little of practical value is accomplished, despite all the superfluous expenditure of energy, that he cannot go home at night with the sweet consclousness of duty done, of a day's work com pleted. He las left too many stitches to be taken up.
The men who accomplish the most never scem io a hurry no matter how much they have to do. Everybody must have observed that. They are not troubled for lack of time for they make the most of the minutes by working in a cool lear, orderly, and methodical fashion, finishing ench job properly, and not wasting their nervous force on trittes or expending it in bustle. They never complain of overwork. They are more likely to be bunting up new work to do, iu order to give their faculties more varied employmeni and to exercise some which are not sufficiently used.
Too much work to dol The highest pleasure and great st satisfaction are found in work only, and the more work a man has to do, if it is work to which he is adapted, the better be likes it. The men to pity are those who can get nothing to do, and those whose only business is to hunt for pleasure for itself-the fellows who have no other occupa tion than that of killing time. But we are also sorry for the men. whose manner, as described by the Lancet, suggests a boiler worked up to the highest pressure and only saved from bursting by frequent letting off of steam. $-N$. Y. Sun.

Onderground Tolegraphy.

A successful trial of a new system of underground tele graphy was latcly made in Philadelphia, according to the Press of that city. The system is that controlled by the Brooks Onderground Conduit Company, of Delaware, which has now in operation a subterranean pipe containing thirty hree wires from Third and Chestnut Streets to the depot of the Pennsylvania Railroad Company at Kensington, a dis lance of two and a half miles. The cable is laid eighteen inches underground, and the old difflculty heretofore ex perienced in ruuning telegraph and telephone wires in the ame duct is obviated. The Western Union has ten of its New York wires in the pipe to Kensinglon, which are being used for transaction of ordinary business. The conductors are immersed in paraffine oil to keep out dampuess. The outer covering consists of lead. It is claimed that electric light wires can be carried by this system. and the cost of introducing them into bouses will not exceed that of putting telegraph and telephove wires into buildings.

Yollow Ocher.

At Bermuda, Fa., on the Appomattox River, about one thou*and tons of yellow ocher are annually taken, at least one-third of all the fine ochers used in the United States, large portion of our supply coming from France. The Virginia deposit contains about ten per cent of sand or grit, which num be washed out before the ocher cau be ground
and brill.l. but the French ochers are so pure as not to retuire washidg.

Final Eheote of Rectorta.

After a couple of years of cultivation and growth of bacteria, using about one bundred hommorpathic vials, witb various animal and vegetable infusions as commonly made, it appears that in all cases the material wrought upon is never left alone till it is fully decomposed as an organic substance and resolved back into its simple constituents.
Although many kinds of bacteria in many cases assisted each other in the work of disorganization, yet the main work was done by the B. termo, which greatly outnumbered, overpowered, and destroyed all before it, including other dead, unencysted bacteria, or even its own dead.
Could an average proportion of bacteria, bacilli, micrococci, and spirilli be made, it would stand about as $90: 10: 10: 5$; yet these varied very greatly in vegetable infusions, some forms appearing only transieutly, and of the first numed ninety-vine hundredths were B. tormo. Some in rusious were longer in being changed, as circumstances were more or less favorable; but in all cases, when the work of decomposition was fully finished, only an impal pable gray powder or sediment remained, with a beautifully lear and apparently pure liquid above.
How this beautifully clear liquid could be obtained from such a putrid mass is a mystery, and, strange to say, bot sediment and liquid were free from smell, although some of the vials had been kept tightly corked, except to be examined occasionally.
This fragmentary experiment goes to show that thes organisms properly hold their sphere between the living and the dead, to prepare new material out of the old for th immediate demands of new and subsequent organic life.J. M. Adams, in the Microscope.

Proponed Employment for our Naval Engimeort.
In the annnal report of the Bureau of Steam Engineering, he principal facts of which have just heen published, it is recommended "that assistant engineer officers be more gen erally utilized in navy yards as heads of the several shope for which their profession fits them. The expense for sal aries for master workmen or foremeu would thus be save in many instances." This recommendation, however, seems hardly consistent with a paragraph further along in the report, which reads as follows:
"The difficulty of securing engineer officers for each ship in service has already made itself seriously felt. With he number of assistant engineers fixed by the act approved August 5, 1882, it is impossible to properly officer our shipe in the Engineering Department. To intrust the watches to the young naval cadets, except they may have had eqpecial training thercfor, or to the present finishers, is bat to invite disaster, and the occurrence of some great calamity can only be a question of time. If the lives of the officers and men of the Navy are of less consequence, or if the care of the machinery of our vessels of war is of small importance hen such a system needs no criticism."
We should think that if it was already difficultito obtain sood engineers for necessary duties on shipboard, it would hardly"be policy to try and "utilize" any of the present avail able officers by making them heads of machine shops on land. The report adds that the varinus shops under the control of the Bureau are in good wo:ining order, and call attention to the superiority of mild s^{*} ei to iron in boiler construction.

Look out for Leaks in Ammonia Ice Machine Pipes.
The cellars of a Cincinnati brewery are cooled by ammo nia gas, carried through them in pipes. A leak recently occurred just outside the cellars, and the gas was set free under the stables, forming, in the moist atmosphere, hydrat ed ammonia, intensely corrosive to animal tissues. In few secouds this began to act upon the lungs and eyes of the horses, and 66 of them were soon dead or dying. Even some street car horses passing were said to be so powerfully affected that they fell to their knees, and were with difficulty roused to drag a car and its passengers out of danger. One man, standing near the stable door, was seen to fall, but was rescucd by those who had noticed it from a distance. This singular accident should impress upon those who have the management of ice machines the necessity for great care and watchfulness, that we may not some day have an accifient in this line as serious as the blowing up of a stcam boller can sometimes be.

Propagation of Carp.

The water was recently drawu off from a carp pond at Washington, located between the White House and the Potomac River, used by the Fish Counmission for propagating purposes. This poud covered about five acres, the water being shallow, as carp do not require great depth. Wben the water was reduced to a uarrow stream crossing the pond, the fish were scooped out with nets, transferred to tubs, and having been carefully counted, were ready for shipment to such points as Prof. Spencer F. Baird, the Commissioner of Fish and Fisheries. had directed. The increase had been 65,000 in one year. The fish taken were varied in size from the minute specimens half an inch or less in length to those of two or three pounds in weight. They were principally mirror carp, having a few'scales along the back, but there were in their company not a few leather carp and an occasional hybrid and tench.

cattespoudeute.

Apprentioen not Wanted, and Poor Journeym Namerous because Machinery does no Much.

To the Editor of the Scientific American:
Dr. Walker's plan for directing the Boston boys toward industrial occupations, as noted in your issue of Novembe 3, is, no doubt, practicable so far as regards some manufactures. But how about the facts as touching carpenters' apprentices? In times within my memory every carpenter shop beld at least one apprentice, some of them half a dozen or more. Then the apprentice boy commenced at the very bottom of the business and learned it from there up. The tirst thing to learn was to hold the chalk line, next to rip out furring strips, then to plane boards. After a little practice in such rudimentary occupations he was taught to plane up and joint panel stuff, next to make, perbaps, a window shut er or a door, and so on up until "out of his time," so tha when he commenced as a journeyman he was a pretty good mechanic-say a hundred per cent better than the averag journeyman of the present day.
The principal cause of the present changed conditions i to be found in the large use of improved woodworking machines. The occupation of the apprentice boy of former days is gone. He has no chalk line to hold, no furring strips to rip, no boards to plane, no shutter or door to make Machinery now planes the boards. saws the strips, rabbets the jaubs, "sticks" all the mo:aldings and casings, stop beads, shelf cleats, etc., and planes all the bases, makes al the panel work, wooden mantels, window frames, and drawers. Much of the trimming of a house nowadays is even fitted together and glued up in the mill, so that about all the carpenter has to do is to put it in place, while be has only a small part to cut and fil together. It is not strange therefore, that the " trade," as now professed by many workmen, is mostly " picked up."
Such tools as these "journeymen" have, too! If you courd only see some of them, you would just turn round and sough. And what is true of the carpenter business is also true of plumbing, tinning, painting, etc., and to the sam causes must be mainly attributed the "choking up of the paths of life leading to fame and fortune," as described by Dr. Walker.
Brooklyn, November 2, 1883. Samuel R. Goodsell.

storage of Power

Ta the Editor of the Scientific American:
We notice considerable attention is lately given by the in venting public to furnishing a cheap and effectual method for storing power, to be subsequently used as desired. It soems that we must look to the electrician to supply this want, and we confidently expect, if we live long enough, to see a customer walk into a retail hardware store and buy 10 H. P. for one hour, which he shall carry home in his hand as would a commercial traveler his " grip." That some ac cumulator of electricity can be made thus much powerful and portable seems to us to be a destined fact, and the man with the pluck, luck, and brains to do this is already born. The ingenious individual who proposed to set a water whee at Niagara and run a line shaft to Bostou and New York, renting power along the line, would be commonplace beside the msn who, using Niagara or other power, should so bot tle up energy that it could be transported anywhere, regardless of a line shaft, and used for any of the thousand pur poses for which power is used. Think of sending to marke for a package of H. \mathbf{P}. to run our electric light this evening or to run our sewing machine or to rock the baby! Further it may not be convenient to always send to market. Suppose we have a good windmill, of which several good ones are built besides the Champion self-governing mill, which we make.
A small mill of this kind will produce an effective power of one horse, in a fair wind, equal to 24 H . P. for one hour of the day, provided the wind continues to blow. As the latter is uncertain, suppose we say it can in 24 hours store 10 H. P. for one hour, the power to be used as needed at any time.
Electric lights could be alınost as common as kerosene lamps, much more common than gas now is outside of cities. It might seem that this power could be stored by means of raising weights, winding springs, raising water into reservoirs or compressing air; but so far nothing bas met the require ments of cheapness of plant and economy of using the powe thus stored.
To lift 33,000 pounds one foot in one minute, and so con inue for 24 hours, would require a tower capable of sustain ing this weight 1,440 feet high; twice the weight, balf the elevation, and like proportion, an estimate of the cost of which is fatal to its practicability. Springs have similar objections. Raising water requires, first, that you have the water; next, that you have the elevated reservoir into which to raise it; and then you have the wastage of leakage and evaporation. To store compressed air requires an expeusiv plant, and is attended with great wastage of power.
Now, Mr. Editor, we are driven to expect that the elec trician is to help us out of this dilemma, and we trust in you to stimulate the experts in this science, so that before we leave this sphere we shall see marketable H. P. as common as soap boxes are now; and when we move on, that the un dertaker shall send out and buy the motive power to move the procession, and let the horses rest.
Waukegan, IL.
Powehl \& Douglas.

In an article in the Franklin Journal, Prof. W. P. Blake suys the cost of cutting ice and packing it away io the ic the perfection of the arrangements and the skillful use of all the appliances. With an unlimited supply of good ice all the appliances. With an unlimited supply of good cee,
sat 10 in 12 inches thick, the cost may be as low as 12 cents per ton. At an ice house where some 10,000 tons were har vested during the past winter, the cost was estimated at 15 cents per tou. The average cost is uearer 25 cents.
When the crop is abundant, it is not unusual for the uwn ers of the plunt for filling large ice bouses, after the house are filled, to continue cutting for the beneff of persons who wish to flll private ice houses. This is practiced near some of the populous cities and villages within carting distance from the lake or river. Ice, the past winter, was sold in this manner at Lake Whitney, two miles from New Haven, a 40 cents per ton on the plat form by the road side ready to load iuto wayons. The cost of carting to the city was from 50 cents to 60 cents per ton, beiling more than the cutting and raising the ice to the platform.
But the first cost of the ice, as stored away in the ice houses, is not a just basis of an estimate of its final cost to the ice dealer when it leaves his hands and passes into those of the consumer.
The loss in weight of ice by melting, evaporation, and breakage is very great, and is an important item in the busidess, for although ice may be gathered and housed at an apparently trifing cost, only a fractional part of the quantity barvested is utilized. One dealer who puts up some 10,000 ons yearly, estimates the wastage at 25 per cent by melting in the houses during the season, 25 per cent in taking out and carting, and of the remaining one-half there is often a loss of 33 per cent in retail vendiug, or a total wastage of our-sixths of the entire amount stored. This is probably a large estimate. Others place the loss by melling from the cose of winter to the end of the season at 25 per cent, and an additional loss of 25 per cent to 30 per cent in carting and delivering to consumers.
It is estimated that the consumption of ice in the city of New York is upward of 700,000 tons annually, with an an nual increase of 15 per cent. There are fifteen or more ice companies, besides small dealers who buy of the large companies. The manufacture of artificial ice does not appear to affect the demand for the naturally formed article.
The Upper Hudson is a great source of ice for the New York market. Those who travel between New York and Albany, either by boat or by rail, cannot fail to notice the many large ice houses which crowd the banks in some places frow Troy and Albauy as far down as Rbinebeck, Rondout, and Kingston. The river not only yields the product, but in summer gives it cheap transportation.
The conditions for the ice industry are thus exceptionably avorable. Full statistics for the present year* show that there are nearly two hundred ice houses along the river, with a storage capacity of from 500 tons in 60,000 tons each. The total amount barvested this jear is not less than $3,000,000$ tons-one of the largest harvests of ice ever gathered along the river. The ice crop for the past six winters has been as follows:

Year.	Harrested tons
1878. 2.408,500
1879. 2,081.500
1880	. 150.000
1881.	. 2,500,000
1882.	. 2,000,000
1888	.. 8,000,000

The Leopard Frog.

The leopard frog (Rana halecina) is the most common species of our five American genera. If there is any beauty to be seen in the lowly members of this order, he might also be called the handsomest of the species. His color varies from ight to dark green, or brown above and white or yellow beneath. There are two dorsal and two lateral rows of dark obong spots extending longitudinally the length of his body the lateral rows continuing along the thighs and legs. These spots are often margined with y ellow. The tympanum is green; the nostrils are lateral, and about midway between the eyes and muzzle. His length, including legs, is eight or oine inches.
The leopard frog is a great leaper. I was once sitting in the woods at some distance from a little mountain stream when I was startled by a shrill peeping cry, rapidly repeated, and surprised to see one of these frogs leap by me, covering fully ten feet at every jump. It was pursued for a short distance from the stream by a large water snake which was he cause of its fright.
This frog inhabits wet places in marshes, the borders of streams, and woody pools. Often in the summer evenings, and especially durivg wet weather, they wander long distances in search of their prey, and may be found in the meadows far from the water. It is widely distributed throughout the United Siates, and if we include, with many authorities, the marsh frog (R. palustris), as a variety, it has representatives in all the Southern and Eastern States. This species is the analogue and nearest representative here of the European green frog, being like that sought after for food. The meat is delicate and very nutritious, and the establishment of "froggeries" in various parts of the counry will in time make it a popular dish.
In our Northern States frogs grow very fat during the fall
and spend the winter in a dormant state. The length of their biberuatiou seems to depend entirely upon the severity of the season, and io captivity, if kept in a warm place, they show no desire to hide themselves or undertake their long sleep.
About a year ago the writer captured a leopard frog in a meadow. It had not lost the direction of the water, for, on being pursued, it took long leaps toward the brook, which it could not see. It was brought bome and a place prepared for it in a fern case. A vessel of water surrounded by moss and stones and growing ferns was covered by a large glass case. In this prison the frog passed the entire winter. He bad for company two red salamanders and a younger brother of his own kind. The latter disappeared during the first day, eaten by the larger amphibian, and after him weat every creeping and flying thiog whose size would permit it to be swallowed, except the salamanders. It was amusing to see Rana undertake a meal of salamander meat. He tried it several times before he learned better. His little victim would almost disappear from view down the capacious gullet, but the pungent liquid thrown out from all parts of the body seemed too much for the frog's palate, and it was invariably ejected. After this trial of strength the three prisoners became great friends, and the salamanders would often crawl over the frog, he winking at their familiarity and rarely paying any attention to them.
If the case were allowed to become cold, Rana would dig out a cavity in the moss where be would sit buried up to his eyes, always, however, spending the greater part of the night in the water. During nearly two months nothing was given to him to eat, and when spring brought back the insects his voraciousness knew no bounds. Flies, grasshoppers, bugs and bees, all were given to him and all devoured. Large beetles, such as the June bug, were tried, but their tough coats protected them. Though taken into the mouth they were finally thrown out. It was very amusing to watch him capture a wasp or bee. Instinct or experience had taught him to dread the sting, I suppose, as his method with them differed from other insects. He would first crush them between bis jaws and then swallow them; sometimes he would drop them from his moutb and take them up again, as if seeking a better hold. Frogs will attack nothing unless it is alive or moving. A piece of meat drawn by a string was evough to attract my prisoner, but one of those curious insects, the walking stick, escaped his attention for a long time. It was amusing to see the frog jump at flies which were on the outside of the glass case. He would even spring at the point of a lead pencil if slowly moved over the glass.

In the early spring a large grasshopper fully as long as my frog was put into the case, and immediately seized. Then followed one of the most curious and laughable scenes im aginable. About half of the insecl's body was easily swallowed; the otber end was then placed agninst a stone, and the frog gave a succession of little leaps, thus pushing himself over the remainder. One leg of his victim refused to go down, and after protruding from the corner of his mouth for a day and night, was finally brushed away with his hind foot.
My animals and plants lived well together under the air tight glass case through the entire winter, mutually benefting each other, I bave un doubt, just as water plants and fish preserve the purity of an aquarium. I recommend the plan to those who desire an opportunity of studying this class of animal life, and learning much of their habits and peculiarities.
W. W. Thoburn.

Decisions Relating to Patenta.

The Commissioner of Pateuts holds that although a party may be first to conceive and embody an invention in practical form, where it appears that his invention was laid aside, lost sight of, forgotteu, and abandoned, and other means adopted for securing the same result, he forfeits bis right in favor of a subsequent and independent inventor. His original efforts must be regarded as an abandoned experiment, and cannot be revived after the subsequent iuvention of the same device by another.
On an appeal from the Primary Examiner the Commissioner has decided that two independent inventious cannot lawfully be included in one application for a patent. The law contemplates that a patent shall be granted for each distinct and independent invention, not for a multiplicity of inventions. In a case where there can be no question that there are two independent inventions embraced in the application within the meaning of the patent law, to grant a patent covering both would be a violation of duty on the part of the officer granting the patent and a violation of the law when it was granted. It is possible that the ccurt would sustain the patent if granted, if there was any doubt as to whether the matter covered by the patent was a single invention; but if it was clear that two distinct inventions were embraced in the patent, not dependent upon each other, I have no doubt that the court would hold such a patent invalid, and the patentee remediless theremader. With such view of the law but one course can be taken. Applicant must divide lis application as required by the Examiner and if he desires to cover botb iuventions by patents, embrace them in separate applications.

In boring an artesian well in Monroe County, Miss., : petrified \log was struck at a depth of 214 feel.

IMPROVED COMBINED EHBARS AND PUNGH.

 The machine tool shown in the accompanying illustration is given to show the prevailing European style. It has been designed in view of quickly satisfying certain constantly sccurring needs connected with work in large naval establishments, boiler manufactories, etc.It consists of two solid frames connected together by means of eight large bolts and of wrought iron honps put on while hot. These frames are hollow in the interior, and each elbowed extremity is strengthened by strong ribs.
A punch and shears are arranged symmetrically upon the machine and, besides these, shears for cutting angle irons are fixed longitudinally in the space between the frames. engine, which is fixed to one of the sides of the punch. The piston of this motor is 260 mm . in diameter, and its stroke is 400 mm . The connecting rod is pivoted to a crank plate which is supported by the driving shaft. This latter runs in three pillow blocks provided witb bronze bearings, one of them being in front of the flywhecl. The transmission of motion for actuating the doubles gearings, whose teeth with the greatest care. The with the grealest care. Tha last wheel sets rolation a longitudinal shaft which carries three eccentrics for actuating the shears for culting iron plate, those for cutting angle irons, and the punch, respectively. This shaft rerespectively. This shaft revolves in boxes lined with hardened cast iron. The tool
carriers slide in large guides, which are adjusted with care, and which can be regulated by means of screws. Each of them is provided with an easily maneuvered starting gear To the sides of the gear. To the sides of the frames there are fixed upright columns, which are
strongly cross braced and carry wrought iron cranes for holding and manipulating the pieces of iron to be cut or punched.
The opening in the shears frame (figured to the left in the cut) is 0.7 m . in depth, and permits of cuttiug in a longitudinal direction, and into two equal parts, sheets of iron as much as 1.4 meters in width. The blades are capable of cutting through capable of cutting through metal 82 mm . in thickness.
The longitudinal distance of the axis of the punch from the frame is 0.65 meter. This tool is capable of punching holes 38 mm . in diameter through iron plate 32 mm . in thickness. Finally the cenbickness. Finally, the central shears are arranged for
cutting through angle irons cutting through angle irons
whose sides have, at a maziwhose sides have, at a maz
mum, a width of 150 mm .
This machine has a total weight of nearly 17 tons. It has already received three applications in slip building establishments in Northern Germany, and is one of the largest multiple machine tools in use.-Revue Industrielle.

An Englinh Exprese Locomotive

A correspondent of the Rail. road Gazette says: A passenger engine on the London and Northwestern Railway has recently run 151,000 miles in 15 months. This was chiefly composed of daily trips from Manchester to London and back, a distance of 875 miles. The engine has cylinders 17 inches by 24 inches, four wheels coupled 6 feet 6 inches diameter, and a pair of leading wheels which accommodate themselves to curves by means of a lateral motion, which is regulated by double inclined surfaces on the top of the axle boxes and through which the weight is transmitted from the springs. This gives a slight flexibility to the wheel base. The load taken was very regular, and consisted of about 100 tons for more than balf the journey, and about 150 tons for the remainder. During the 15 months all the wheels were turned and the axle boxes metaled up; and at the end of the period the engine was sent into the shop for a fortnight, Whell the chief repairs consisted of a new set of tubes, and the engine was again placed on her usual run of $\mathbf{3 7 5}$ miles daily, and bids fair to have completed her 200,000 miles at the end of this year. The engine is worked by one crew of men only. The hoiler is kept in excellent condition by being blown out at the end of every trip, and is flled up by

means of its own injectors using steam from a stationary boiler in the engine shed.
It is interesting to note that the bard deposit of scale in the boiler and the corrosion of the plates has been very much reduced in this and similar boilers by inserting a block of zinc. In this manner it is found that 20 pounds of zinc dissolves every month in a boiler undergoing bard work. But the absence of corrosion and the readiness with which the scale fulls off amply repay this expenditure of zinc. The engine above mentioned was built at Crewe, in March, 1882, and is of the ordinary straight liuk type.

Wood Paving in Paris.

After giving macadam and asplall a fair trial to replace the stones in the streets of Paris, wooden pavements to a very limited extent were resorted to some few years ago by way of experiment, but they turved out a failure. An Eng. lish company, however, came over to show the Parisians how the thing is to be done. About a third of the Champs Elysees was last autumn paved with wood by the English company, and the result has been so encouraging that the

Romody for Condenued stoam Shoviers.

In the busincess portion of many cities, during the winter it is impossible for a lady to pass through the streets with out having her clothes sprinkled, and often spoiled, by the air weather showers which she encounters beside every building furnished with an elevator or a high pressure stean engine of any kind, and other persons besides ladies feel the annoyance in a greater or less degree. The American Archilect says: The remedy is so simple that it is a pily that its application should not be made compulsory everywhere, as it is in New York, where, notwithstanding a very general use of steam power in the business quarters, the exhaust showers are unknown. In that city no exhaust pipe is alowed under any circumstances to open directly into the at mosphere.
Where cheapness is the first consideratiou the law against open exhausts is complied with by placing an inverted cyl indrical receiver or " kettle" over the mouth of the exhaust pipe, which projects just above the roof. The stream of mingled steam and water from the exhaust strikes the inside of the "kettle," and is there separated, the water altaching itself to the iuner surface of the kettle, and dripping thence harmlessly upon the roof, while the ligbt vapor. freed from its burden, passe; off and. is dissolved in the air. The use of these simple kettles, which cost but a few dollars, is open to the objection that the constint trickle of warm condensed water from them over the roof leaus in time to the deterioration of the roofing material; and a better but more expelisive device is used ill many cases, consisting of a closed kettle. standing on the roof, and having its cover perforated with two holes, one of which receives the exhaust pipe. bent over and downward into it, while a short piece of straight pipe is inserted in the otber. The pxhaust steam is freed from its suspended water in this kettle, in the same way as in the other, and parses out as light vapor through the short pipe in the cover, and a small drip pipe leading from the bottom of the kettle conveys the condensed water into the nearest wasle pipe or rain nearest waste pipe or rain water leader.

The Coral Reefn of Cuba.

A study of the elevated coral reefs of Cuba has been recently made by Mr. W. O. Crosby, and his conclusion is that they indicate a slow subsidence of that island during their formation, and bence that Darwin's theory of the origin of coral islands is the true one. The reefs are in terraces along the sides of the island, expecially on the uortbern and eastern sides of the island. The lowest terrace is 30 feet bigh, and varies in width from a few rods to a mile. It was obviouly the fringing reef of the thore at one time. The second terrace rises abruply from the level of the lower 10 a height of 200 feet to 250 feet. The third recf has an Municipal Council of Paris have resolved to give the English altitude of 500 feet; the fourth of 800 feet. These terraces system a more extensive tria. The French, who are quick run round the whole island, but are best preserved on the to copy, are hard at work in paving some of the principal western part of the island, where the crosiou has been less streets, such as the Rue de Rivoli, the Boulevards, Faubourg rapid, and on the summits of the highest hills. The hills St. Germain, and the remaining portion of the Champs Ely- about Havana and Matanzas, which reach a height of 200 sees, and it is pleasant to see French and English workmen employed so harmoniously together.

quamen Chip: In Beer.

In the neighboring town of New Britain there is a factory for the production of quassia cups-the quassia wood being so intensely bitter that a cup of fresh water, if it is a quassia cup, will become very bitter in one minute, and these cups long have been in use in some families for this tonic quality they impart to water. The chips and shavings in the cup actory were thrown away or burned, until some of the ager beer brewers discovered that they were available in the place of hops for lager beer; then a demand arose for them, until now the proprietor of the shop is making more mon. \vee oult of his chips and shavings than be is making out - Harlford Times.
feet, are entirely composed of reef limestone. In the mountain of El Yunque (the Auvil), five miles west of Baracoa, the reef stone is 1,000 feet thick, and composes the upper part of the mountain, the lower part being of slate and part of the mountain, the lower part being of slate and
eruptive rocks. Originally the upper limit of this reef stone must have been 2,000 feet above the sea level. The Jamaica reef stones are of the same altitude, and it is pro bable that during their formation the Caribbean area was sunk until the Great Antilles were reduced to a few small islands.

Eleven new jute works are being erected in Germing, with fully 2,000 looms, and the new mills and extensions in Calculta will add 3,000 looms to the present number. making a totcl of 5,000 additional looms in Germany and India.

bREAD YARING AT HoMrs.

Visitors to the Jardiu d'Acclimatation, of Paris, have re cently seen in uperation a curious system of domestic apparatus, which is being constructed by Mr. L. Dathis, and which consists of a portable oven and a kneading machine that pernit of bread being made at home-something that will prove very advantageous for rural districts and locali ties that are far removed from centers of population.
The Portable Oven. -The portable oven (Fig. 1) consists o two principal parts, to wit: (1) of a cylinder closed beneath, which is placed upon the fireplace; and (2) of a dome-sbaped piece which fits over the cylinder and serves as a cover for it. This cylinder contaius three racks, that are designed to support two disks, which are isolated from its sides so as to give a circular passageway around them. The first of these disks is simple, and is placed at the bottom of the apparatus upon the last notch of the rack. The second, which is double and contains a stratum of air between its two faces, is placed above the other at heights varying according to cir cumstances and to the size of the objects to be baked. Finally, there is an injector, which serves, when the appa ratus is closed, for leading a small quantity of water from the exterior and throwing it upon the bottom disk. This water at once produces steam, and the latter thereupon con denses in the form of mist upon the cold dough that has just been put into the oven. The effect of this is to brown the bread, pastry, etc., and belp its expansion, and, when weat is being cooked, to render it more tender and juicy.
The cover of the oven is provided with an external layer of a nou-conducting substance that prevents the contact of air with it, and that consequently keeps it from cooling. It is also furnished with the following accessories: (1) A ther mometer for showing the interial temperature of the apparatus; (2) two sight holes for permitting operations to be watched; (3) two handles for lifting it off the cylinder; and (4) finally, in the apparatus of larger size, two rings to which are affled a handle that is connected with a chain ruuning over a pulley, so that the cover may be more easily lifted and kept suspended while the oven is being filled.
The heat entering at the bottom and stored up in the ove is distributed througb the latter in two ways, onc of them direct and the other reverbera tory; that is to say a portion of the heat rays traverses the disks and heat the underside of the objects, while another portion, finding a passage between the disks and the sides of the cylinder, rises to the dome and he dome and is rections upon di bread or other ma terial that is being laked.
This furnace re quires no specia
preparation for its reception, but may be placed, like a pot, over any fireplace whatever, even in the open air. It heats about twenty minutes. It serves not only for baking bread, pastry, etc., but also for roasting meat, poultry, etc.
The Domestic Kneading Machine.-What is an essentia condition in kneading is not to compress the dough so as to render it compact and of bad quality, but to take care, on the contrary. to stretch it out and aerate it as much as possible in order to make it pliant, smooth, and light. Kneading by hand requires long practice and great care, and this is why it is rarely well doue, aud why people have poor suc cess when they attempt to make bread at home.
The object of Mr. Dathis' apparatus is to overcome this difficulty, to do away with manual labor, and to permit an idexperienced person to make bread of an excellent quality without any trouble.
The apparatus, which is shown in Fig. 2, consists of the following parts, to wit: (1) Of a vertical disk, A, which is provided with pins, B, arranged according to certain radi starting from its center, and which is fixed upon a horizonta axle that is itself mounted upon a vertical support and provided with a flywheel aud crank for rotating it; (2) of a sec ond vertical disk, \mathbf{B}^{\prime}, which is provided with pins that are arranged according to radii that differ from those of the otber disk, so tbat one series may pass between the other and not touch during the revolution of the disks. This disk B^{\prime}, is hinged so that it may be turned back into a borizontal position. Movable disks that have apertures corresponding with the pins in the disks, A and B, are placed in these la ter. The purpose of these will be noted further along.
After mixing the flour with yeast, water, and the necessary accessories, by means of a spatula or otherwise, so as to ake a coupact ball of dough of it, the apparatus is opened and the mixture is placed upon the disk, B. The machin is then closed and afterward revolved until the dough has assumed the desired viscosity tbrough the stretching and aeratinn that it bas undergone between the pins of the disk, B, which form points of resistance, and those of the disk

A, which form points of rotary traction. The vertical postion of the disks, \mathbf{A} and B, offers the adrantage that it causes the dough, which is always tending to fall by its own weigb from one pin to another, to successively advance toward and recede from the center of rotation, and thus to become mor regularly mixed.
When the operation is finished, and it is desired to remove he dough from the apparatus, it is only necessary to open the latter to take the movable disks in succession off the pins on which they are fixed, and to allow the dough to drop into the vessel in which it is to rise.-La Nature.

A Now Mothod of sower Ventilation.

An English apparatus by Mr. T. S. Wilson, F.S.I., and Mr. H. T. Johnson, is called the patent hygienic furuace. Profting by the proximity of the gas mains to the sewers, the patentees have constructed a gas furnace to be inserted in the manholes. The gas is in troduced into a little chamber, where it is mixed with a due proportion of air and supplies some Bunsen burners. Immediately above the gas there are some fireclay plates, which soon become heated while above them are iron divisions. The heat naturally draws the air up from the sewer below; it passes through the Bunsen burners backward and forward over the fireclay plates and iron divisions, till at last it finds its exit in the ventilation cbamber or manhole, and hence through the grate into the street. The furnace not only causes a strong current of air from the sewer, but, as it is capable of being heated at from 600° to 700° Fahr., it should destroy all the germ life that travels with the sewer gas. Experiments with sterilized infusions of meat have been made, and whereas ordinary air drawn from the street soon caused the infusions o become turbid with animalcules and fungoid life, no suct iffect was produced by the sewer air taken after it had passed through this furnace.

The Rebuilding of Camamicciola

A commission of Neapolitan engineers and architects, whicb has for some time been occupied in considering th best mode of providing for the future of the island of lschin,

"I" and "Ito"

It is one of Ruskin's pithy sayings that " the obstinacy of the mean man is in the pronunciation of ' I ', and the obstingcy of the great man iu the pronunciation of ' lt .' This difference may be said to divide all energetic men and women into two general classes, those who are bent upen establishing themselves, and those who are bent upon estab lishing something which they hold more important than themselves. Each of these cbaracters may be seen in every station of life, and in every occupation. Two men are per forming the same manual labor with equal industry; one is calculating how much labor he need expend in order to sat isfy his employer and keep his situation: the other, while fully conscious that he is earning an howest livelihood, is also interested in the outcome of his work, and is anxious to ee it well done.
Two men are decply engaged in politics: one puts forth all his force and Ingenuity to secure for himself some coveted position; the other is equally energetic iu pushing forward a needed reform, or in securing the best mau for an import ant post, that the-welfare of his country may be promoted. Two scientists are both earnest in maintaining a recent theory, or in diffusing a recent discovery; one because be hopes thus to lift himself into notice in the scientific world and be looked up to as an authority; the other because he frmly believes in it and desires that mankind shall benefit by it. Two artists are putting forth every power; one for the sake of fame, the other for the sake of embodying his conceptions and giving them to the world. Two women are capable teachers; one is planning solely to secure ber own promotion; the other is incited by the idea of elevating and enriching the young minds intrusted to her care. Two others are diligently engaged in works of charity; one in the hope of being called Lady Bountiful; the other desiring nothing so much as to lift some of the heavy burdens of the poor, and to let in a ray of sunsbine upon the afflicted. In every case the one is absorbed with the thought of " I." the other by the thought of "It." Though working appa rently for the same purpose, and using perhaps the same methods, their aims and aspirations point in opposite directions, their lopes and fears are center. ed around different objects, and the suc. cess of either one alone would appear like failure to the other.
It may seem at first sight that, if the energy of each of these character: is equally expended in the same direc tion, the difference of their secret motives cannot concerd any one but them. selves. If their work is done, and done well, what
more has society to ask? It wiil be found, however. work be performed
has now closed its deliberations, which were approved by the gencral assembly of the profession. Their investiga ions were confined to the causes of the great disaster of Casamicciola from an architectural point of view, and to the best method of reconstructing the bonses. During the
investigation they were much atruck by finding in the midst onvestigation they were much atruck by finding in the mids of the ruins a zone of about 300 meters square which bad caped untoucbed. There is not the sligh evere earthquake in this oasis-no house was damaged, and we walls of the gardens are intact. Wood and iron are re commended as the best materials to be employed for rebuilding the houses, and two types of this mode of con struction were minutely examined-the one called the "Calabrese," consisting of wood and mason work on walls; the other, much used in America, consisting of iron. Preference was, however, given to the Calabrian type. One thing was decided-that vaulted roofs should be avoided in country subject to continual shocks. The sum total of what has been collected for the sufferers in Ischia now amounts to $2,73 \mathrm{j}, 268$ lire, or about 110000 .

Progress in Wood-Working Machinery
The great advances which bave been made within a very ew years in perfecting machinery for all kinds of wood working are forcibly brought to mind in glancing over a beautiful illustrated catalogue just issued by Messrs. J. A Fay \& Co., of Cincinnati, O. The number and variety of machines shown, and the illustrations giving diagrams of different shapes into which wood can be worked-for carpenters and builders, cabinet makers, carriage makers, etc. -furnisb a ready explanation of the rapidly increasing use f such machinery, and constitute of themselves a splendid memorial of the genius and skill of American mechanics.

Professor Sylvester, of Johus Hopkins University, has been called to the clair of mathematics in one of the colleges of Oxford, England. It is to be regretted that he has accepted the call, for by his departure the country sustains a loss that will not soon be made good
ell when the aim is wholly seltish. There comes a time to each man and to each woman when his or her own interest and the excellence of the work seem at least to clash.
Perhaps a larger view would show that there really is on such conflict, that eventually the good of the worker and the good of nis work will be identical. But at present, at least, we are not always able to take this larger view, and, whenever they seem to us to come into collision, one or the other must give way. The self-seeker has no hesitation. His own interest is uppermost in his miud, and if he imagines that is to be promoted by slacking bis efforts or adulterating his goods. or giving short weight or measure, or catering to what he knows to be a corrupt taste, or sacrificing some public benctit, the die is cast, and society is by so much impoverished and injured. He who on the other hand keeps his eye fixed on excellence as the chief good, can stoop to none of these things. If his own interest is to suffer it must suffer, for he has higher hopes and nobler aspirations that he will not sacrifice. Whatever stands in the way of his best accomplishment must yield, and thus it is in every case the man who emphasizes "It," not be who empliasizes " 1 ," who is of the highest value to the world. Every employer knows how to prize a conscientious subordinate who makes the employer's interest his own, and society will be dull, indeed, if it does not prize its conscientious servants, who in every walk of life make its best welfare and happiness their first and main concern

This interest in our work, for its own sake, is a cultivata ble quality. We all possess it in some degree, aud we may all increase it if we will. Children may be accustomed at a very early age to take pleasure in the success of their own efforts, quite apart from any personal good they may derive from it. The careful observer of child nature will notice that this is a natural delight, and is only deadened and diminished by the growth of selfish considerations. If care is taken to make work as congenial as possible, to prevent its: being excessive and exhausting, and to sympathize and ell. courage the natural joy of success, there is no reason wh courage the natural jny of success, there is no reason w should ever decrease. - Philadelphia Lodger.

The Cannon, the Steam Engine, Mran, and the Insect
 Considered as Mochanical motors.

Under the above title, we give a resumé of some very curious and interesting information published in a recent work of Mr. E. Jouffret, entitled "Introduction to the Theory of Energy."

These examples, which are submitted in a simple and clear way, are well calculated for disseminating a knowledge of the phenomena of conservalion and transformation of energy, by presenting them under a concrete form accessible to all those who are not making a special and continued study of them.
A 100-ton cannon (Italian model of 1879) costs 400,000 francs. It requires a 250 kilogramme charge of powder, and throws a projectile weighing 917 kilogrammes, with an initial velocity, at the mouth of the cannon, of 588 meters per second.
The energy possessed by the projectile, in the form of live power, is $12,7 i 2,000$ kilogrammeters.
The energy represented by one kilogramme of powder is, according to Noble and Abel, 300,000 kilogrammeters, or $75.000,000$ kilogrammeters for the charge of 250 kilogrammes.

The cannon, considered as a machine, converts then into work seoenteen per cent of the total energy of the combustion of the powder. This figure is higher than that furnished by the best steam engines, as these convert into work less than ten per ceut of the total energy represented by the coal.

It is the animal machine in which the performance is the bighest, and this fact may be established, in a particular case, as follows:

According to the Guide Joanne, the ascent of Mont Blanc, starting from Chamounix, is effected in seventeen hours, resting spells not included. The difference of level is 3,760 meters. A person ascending, who has a mean weight of 70 kilogrammes, produces, then, in order to rise, a work of $3.760 \times 70=263,000$ kilogrammeters. This work is borrowed from the beat that the carbon and bydrogen contaiued in the food eaten disengages upon being burned in the lunge. For the sake of simplicity, if we reduce the entire energy to a combustion of carbon, and recall that a kilogramme of the latter furnishes $3,000,000$ kilogrammeters, we find that the 263,000 kilogrammeters represented by the ascent correspond to a consumption of 94 grammes of coal-a consumption that comes to be added to the normal rations necessary for the operation of the organs duriug a state of rest. Such consumption is 8.35 grammes per hour, or 142 grammes for the seventeen hours. The total consumption of coal is 256 grammes, representing 708,000 kilogrammeters. The performance, then,

$$
\frac{263,000}{708,000}=37 \text { per cent. }
$$

The performance of the human machine drops to 21 per cent when we consider a period of twenty-four hours composed of ten hours of work and fourteen of rest, and a mean daily work of 280,000 kilogrammeters.

The cannon, considered as a machine, is incomparably superior to the steam engine as regards the time necessary to produce a given quantity of mechanical work.
Thus, for example, the 100 ton cannon develops in onehundredth of a second a quantity of work equal to that which would be yielded by a 47 -horse power steam engine in one hour. A man of average strength is still lighter then an ordinary steam engine of equal power, but he is much inferior to the other animals of creation, and particularly to insects.
Thus, for example, the libellula, which is capable, without apparent fatigue, of following a train of cars for several hours, giving its wings during this whole time some thou sands of backward and forward motions per second, is a hundred times lighter than a steam engine capable of producing an equivalent work.
This is what renders the problem of aerial locomotion so difficult, and, as Mr. Hiru says, it explaius why we can fly in imagination only.-La Nature.

Microscopic Examination of Water.

J. Brautlecht produces a precipitate in the water by addiug to 100 c. c. 5 drops of a solution consisting of one part aluminum sulphate, one part hydrochloric acid, and eight parts water, followed up by one to three drops of liquid ammonia. The precipitate settles readily, and after decanting off the clear is collected upon a smooth filter, stroked off with a glass rod, and thus trausferred to a test tube, in which it is dissolved in ten to fifteen drops of dilute acetic acid. The clear solution is examined with the microscope, at first alone, and then after the addition of a solution of saffranine. By adding one-balf per ceut of gelatine, permanent preparations may be obtained on Koch's principle.-Rep. Anal. Chemie und Ohem. Zeitung (Cothen).

The Paramite of Malaria.

The observations of M. Richard seem to affirm those of Leverau; he found in the red corpuscles of the blood of persons suffering from acute malaria a parasite of oscillating form moviug very rapidly, and sometimes disengaging itself from the globule. These parasites have been met with in a uumber sufficiently large to obstruct the capillary vessels, at:d to explain many of the symptoms of iutermittent fevers. It has also been proved that the culcure of these parasites in a fertile grlatine basis can be brought to an immediate cessation if a two per cent quinine solution is added.

btoci mbet.

A convenient, portable, and simple stock rest for the use of carpenters has recently been invented by Mr. James McVane, 2 Shawmut Place. Boston, Mass. The vertical main bar, a, is formed with a series of notches so that it may be held at any elevation by the pawl pivoted to the block. b, the bar sliding in the dovetailed groove in the block. The block is formed with a borizontal T-shaped groove which fits upon the guide rail, c, which is made in sections so as to be conveniently packed in a tool chest. The upper end of the vertical bar is provided with a cross bead, d, that supports the timber being worked and that is made T-shaped iu cross section in order to carry the dog, e, which holds the imber upon the cross bead against lateral movement. A set screw holds the dog in place. The guide rail is secured to

movane's gtoci rest.

the side of the bench as shown. The block, b, aud guide rail, c, may be made of cast iron and the other parts of malleable cast iron. Constructed in this manner it will readily be seen that the rest can be adapted to all the adjustments necessary, and the changes can be rapidly and easily effected. In addition it can be detached from the bench, taken apart, and packed in a small space in the tool chest.

FRLLOE AND GPOKE TIGHTEIERR

This inventiou provides meaus for tightening or taking up the play in felloes of wheels so as to avoid the necessity of resetting the tire in the ordinary way, and also provides for making the spokes fit tightly between the felloe and hub. There is a right and left threaded screw, represented at A, having an angular head, a, midway of its length, and upon the threaded ends screw two bars, B, provided respectively with right and left hand threads. The bars may be of iron and have the threads formed in them, or they may be of wood simply bored and provided with straps embracing two or more sides and having the threads formed in the portions which are at the inner ends of the bars. At d is shown a plate baving its inner surface gouged out and serrated, and at oue end provided with a slot to allow for adjustment in connectiug the plate. Two of these plates are attached to the outer end of each bar, B, by a bolt and nut, thereby forming a pair of clamping jaws. A clamp-

GALBRAITH'S FELLOE AND SPOEE TIGHTERER.
ing bar having bolt holes at its ends is showu at c and c Two of these bars are attached to each bar, B, between the jaws and the inner end by a bolt, e^{\prime}, and by aid of a bolt passing through the holes in the other ends forming a pair of clamping bars for holding the apparatus in place, as shown in Fig. 1. The bars are also intended for use to clamp across the ends of the clamping jaws, d, which are thereby beld securely against the felloes when the tightener is to be used to draw the felloes together. The outer end of each bar, B, is provided with a cushion of some seft material in order that the surface may not be injured.
To use the apparatus the cusbioued ends of the bars are placed against the spokes and felloes and the clamping jaws, d, arranged as in either Fig. 1 or 3 . The bars, c, are then placed on each side of the felloe aud over the jaws and secured by the bolts, e and b. The device can be arranged with the clamping jaws in the position tnost convenient, and The felloes call be tightened by either a drawing or pushing
turning the screw, a, either in one direction or the other. When drawn together, the space between the felloe and tire is filled by thin perforated pieces of any suitable material put in with any cernent or with barbed tacks to hold them in place. A hoop tapering toward the ends can be used. By turniag the screw in the opposite direction the felloes are pushed away from each other, and the juints thus formed are filled witt a suitable material.
The device obviates the necessity of leaving home to riait the smith, as one of ordinary ability cau screw back the nut, put in the material, and screw up again. The exact amount of pressure needed can be put on each place, thus preventing dishing or straining. The felloes are not scorched so as to be in a condition to soak water. When not in use otberwise, the nut and right and left threaded screw bolts constitute a pressure jack.
The spoke tightening device shown in Fig. 2 consists of a cup made of suitable substance, covered to prevent it from chafing the wond, and of a size to fit over the end of a spoke. Extending through the cup is a screw bolt provided with a nut. The cup is applied to the end of the spoke, one end of the bolt entering the spoke and the other entering the bole in the felloe from which the spoke tenon has been removed. The felloes can be either drawn in or ahoved out by turning the nut one way or the other. Instead of using a cup the bolt may be made as a cup to set over the spoke, and the nut is made with a flange haviug holes for screws by which the nut is beld to the felloe. In case there is not room enough for the device between the spoke and felloe, the spoke may be cut off.
This invention has been patented by Mr. Archimedes Galbraith, of Amadore, Mich.

Polishing and Promerving Parquet Floors.

The finish and care of hardwood or parquet floors bas been and is now a source of great trouble and annoyance to housekeepers, except in cases where the owners bave taken the trouble themselves to look the matter up, or have instructed their architects to be particular about that item. It is too bad that where beautiful floors bave been laid, in so many cases they have been left to be finished by persons who have not troubled themselves with finding out the best method of finishing. The usual way for such persons to do is to treat them with shellac or varnish, which is all wrong, as a moment's thought will convince any one that a surface that is constautly walked over needs something different to the coating of gum that is left on the surface after the spirit used in dissolving the shellac or varnish is evaporated.
This coating becomes, then, brittle, and is ground up into minute particles by the nails in the boots, and swept away, leaving the wond bare right where it is most exposed to view. As a matter of course, the beauly of the floor is soon gone, and instead of heing an attractive part of the furnisbing, the sanitary consideration very often is about all that keeps one from nailing a carpet over the whole floor. Others use linseed oil, and everybody knows that an oil tinish is one of the best methods of tinishing wood, but the objection to that method is that each time the oil is applied it darkens the wood, and in a short time the different kinds of wood are of the same color. Now the question arises, Which is the true and only way of flisishing floors properly and the answer is, by the use of hard wax, which, however, must be so prepared that the trouble of applying it, and the stickiness attending ordinary beeswax and turpentine, are entirely obviated. The wax is treated with special liquids and made into a preparation.
The writer has tried many things and found this hard was to be the most satisfactory in its results. It is so simple, that when once the floor has been properly filled and finished with it, any servant can renew and keep the floors fresh and bright as long as the wood lasts, and it does not materially change the color-the wood always retains its beauty. An application about oftee a year is all that is necessary, if the application about once a year is all are rubbed over, when a hitle dull, with a weighted brush or cloth. In repolishing old floors that bave been in use for a lengit of time aud become dull looking, it is only neceseary after they have been cleaned to rub on a thiu coat of the hard wax finish with the brush or cloth, as stated before. If the floors have been varnished and the varoist is worn off in places, as mentioned above, the best way is $t o$ have the varnish scraped off, and then a thin coat of the hard wax should be applied and treated as the new wood after it is filled. But if it is inconvenient to have the floor scraped, or the expense too much, the main nbject being to restore the color in those places which are worn and defaced. the following mixture is recommended: One part linseed oil, one part liquid drier, and two parts turpentine. A clotb should be dampened with this and applied to the worn and defaced places, which will have the desired effect. After being wiped off clean it ought to dry twenty-rour hours, and then polished with the hard wax finish. It is very important never to use the wax over oil that is not thorougbly dry, as the floor would invariably be sticky. Finally, it would be well to mention that hard wood or parquet flours should never be washed with soap and water, as it raises the grain and discolors the wood.
After the floors bave been properly filled and finished with he hard wax, dirt will not get into the pores, but stays on the surface, and consequently can be removed with a brusb or cloth; or, if uecessary, dampen cloth with a little turpenine. This will take off any stain from the finish-Decorator and Furnisher.

Practieal hints Regarding Tormadoem.

The following hints regarding tornadoes are given in the belief that many people are killed every year who could save their lives by a little practical knowledge of the movements f these destructive storms.
The tornado season is embraced between the 1st of April and the 1st of September, but in the latitude of Kansas City most tornadnes occur in the months of May and June. As we go north or south of this latitude they are proportionally earlier or later, and early or late seasons vary the time of their occurrence correspondingly.
Tornadoes occur in the aftornoon. generally between two o'clock and evening, four o'clock being called the tornado hour.
Tornadoes move from southwest to northeast, generally cast about thoenty degrees north, and their linear movement is ordiuarily from thirty to forty miles an hour.
Tornadoes occur on sullery days, or when the temperature is very high and the air is thoroughly saturated with moisture.

Tornadoes occur wheu the eloctrical conditions are high, or hen the air is highly charged with electricity.
The approach of a tornado may be known by ominous clouds appearing in the southwest and northwest. The clouds sometimes resemble the smoke of a bay stack, at other times they appear like iridescent fog. Sometimes they present a deep greenish hue, or are intensely black, or have a purplish, yellowish, or bluish tinge. When these two masses or banks of clouds, under the impulse of opposing currents, approach each other they are thrown into great confusion; there is a roaring, likened to the rumbling of distant thunder, and an upward expulsion of air and vapor. Soon the funnel of the tornado is let down to the earth and moves to the front, while scuds of clouds play around it. The tornado now formed has four characteristic movements: a linear movement toward the northeast; a gyratory movement (north of the equator), contrary to the hands of a watch; a zigzag or swaying movement, which leaves dentatee edges in the path of the tornado; and a rising and falling movement, the poise of the upper current, by which the tornado leaps over portions of its path.
If one is familiar with these premonitory signs he is put on bis guard, and when the tornado appears, he is prepared to act intelligently and promptly. Under the preceding principles he can easily determine the projected path of the tornado, from the location of the funnel, and whether it will be necessary to run north or south to escape from it He must, of course, not run east or west.
When a tornado is imminent, certain precautions should be obserred. Doors and windows in houses should be closed, animals in harness unhitched, and animals in stables let out. The safest place in a house is the southwest corner on the first floor, or better perhaps, the south west corner in the cellar. If a tornado overtakes one on a prairie, lie face downward, head toward the east, and place the hands over the head for protection. If near a low solid object, like a large stone or stump, lie face downward, east of it, head toward the object, with hands over the head for protection.
Every home should have a dug out at a convenient distance from the house, or, what is better, a tornado room built iuto the west or south wall of the cellar, large enough for the family, and for things of great value like deeds or money.
The destructive effects of tornadoes result from the gyratory movement, which is estimated at from one hundred to five bundred miles an hour. Tornadoes with the hour glass form of cloud are the most intense, and seem to be irresistible, but the greater number of tornadoes are of a lower intensity and we can build against them. Frame houses are more tenacious or elastic than brick or stone, and when overthrown are not so destructive to life. They should have strong frames. Brick houses should have an extra layer of brick laid in cement in the west and south walls. Some bouses with very thick walls laid in cement are comparatively safe against most tornadoes.

Houses built near a hill or bluff presenting an elevation should be located on the northeast side, as the elevation tends to lift the tornado over the house. A grove of hard wood, such as oak, maple, walnut, and hickory, southwest of a bouse, or a forest southwest of a town, has a tendency to break the force of a tornado and drive it into the upper air, although it is uot afe for a person to be near a tree or in a grove during a tornado for fear of being struck by flying timber. Occasionally a tornado of great intensity will cut a clean swath through a grove, but forests tend to break the force of tornadoes, and will drive most of them into the upper air. All towns in prairie States should plant heavy groves of hard timber southwest of them. During a residence of forty years in southern Michigan wben it was heavily timbered, cornadoes were unknown, that is, they were driven into the upper air and rendered harmless; but since the forests have been cut away tornadoes in that part of the State have become somew hat frequent and destructive. Not t, build and protect against tornadoes seems like not taking medicine for fevers. Sometimes a fever proves fatal, but most fevers can be cured, and so most tornadoes can be rendered comparatively harmless.
By a carerul study of the principles which underlie these storms, and un observance of the premonitory signs, during the tornado season, it is believed that few if any persons, who keep their presence of mind and act intelligently and promptly, when the storm appears, need be killed by a tor-
nado. Still it is always best to have a clear conscience whatever may happen.
Meteorologists are carefully studying these storms. The Signal Sorvice already, in their daily reports during the season, indicate the barometric trough of low pressure, extend ing from the southwest toward the northeast, ulong which tornadoes move, and it is believed that the time is not far distant when they will predict to certain districts probable tornado days. - Kansas Cuty Reviow.

The Suez Canal.
The following is the statement of the tonnage which has passed through the Suez Canal in the last four years, with receipts and profits:

The Now British Standard Wire Gauge DENOMINATION OF STANDARDS.

Descriptive number.	Rquivalents in parts of an inch.	Deecriptive number.	Equivalentsi in parts of an inch.
No.	Inch.	No.	Inch.
${ }_{8}^{7-0}$. 500	$\stackrel{23}{93}$	-020
S00	${ }_{-488}$	${ }_{2} 8$	-020
$\stackrel{4-0}{8-0}$	-400	${ }_{8} 8$	-018
$\stackrel{80}{2-0}$	- 378		.0164
$\xrightarrow{2}$	-348	${ }_{29}^{28}$.0148
1	. 800	30	-0124
3	-2888	81	.0116
3	-288	$\stackrel{88}{88}$.0108
5	- 212	84	. 0098
${ }^{6}$	-192	${ }_{88}^{35}$.0084
8	-180	${ }_{87}^{86}$.00068
9	. 144	88	-0060
10	-1188	39 40	.0068
${ }_{12}^{11}$	-1164	41	-0044
18	-008	42	. 0040
14	-080	48	.00088
16	-064	45	.0028
17	. 056	46	.0024
${ }_{19}^{18}$.048	48	$\cdot .0020$
${ }_{21}^{20}$	-036	${ }_{50}$.0012
${ }_{21}^{21}$	${ }_{-028}^{082}$		0010

On andafter March 1st next no other wire gauge can be dealing trade in kngland, that is to say, no contracts other sizes than those above given.

High steoples.
The following are the beights of a few of the tallest steeples:

,	
Baltimore, Washington Monument	
Montreal, Notre Dame Cathedral.	
Boston, Bunker Hill Monument	
Moutreal, Engish Cathedral	
Paris, Notre Dame.	24
Bologns, leaning tower	
Cairo, minaret of Mosque of Sultan medan minaret in the world...	
New York, Trinity Church..	
Florence, Campanile, or Giotto's T	
Lincoln, Cathedral	
Washington, Capitol	
Tenice, Campanile.	
New York, St. Patrick's Cathedral	
Utrecht, Cabbedral (formerly 864).	
Florence, Cathedral	
Milan, Cathedral.	
London, St. Paul's	
Brassels, Hotel de	
Lubeck, Cathedral. .	
Antwerp, Cathedral.	
Amiens, Cathedral..	
Hambarg, St. Michael's	
Landshat, St. Martin's.	
Calro, Pyramid of Chefren	
Vienna, St. Slephen'	
Cairo, Pyramid of Cheops (original	
Rome, St. Peter'e............	
Ronen, Notre Dame. .	46
Strassburg, Cathedral.	
Hamburg. St. Nicholas.	
Cologne, Cathedral.	
Washington Monument (to be)	

Alizarine Blue.

This bright and solid blue is manufactured by the Badische Anilin und Soda Fabrik, in the form of paste, containing from 10 to 12 per cent of the dry material. The great obstacle to its use bas been its slight solubility in water, but this objection has recently been removed by combining it with the bisulphite of soda in a way which, according to the Teatile Record, is described in the Monilour de la Teinture.
The paste is intimately mixed with a concentrated solu tion of bisulphite of soda. specific gravity $1 \cdot 25$, and the mix ture set aside for a week or two. It is then filtered. The alizarine blue, which has not been transformed, remains ou the filter. The now soluble portion is found in the filtrate. It may be separated either by precipitation with a solution of common sall, or by crystallizing out by evaporation at a low
temperature. The result is a reddish brown powder com-
posed of microscopic crystals, which may be heated to 150° C. without their undergoing decomposition. The powder is known in commerce as alizarine blue S . It is excessively soluble in water, but slightly so in coucentrated alcohol. Iu the state of aqueous solution it is much less stable, its decomposition beginning to take place at $60^{\circ} \mathrm{C}$., and if the solulion be boiled the whole of the alizarine is precipitated in the primitive insoluble form
At ordinary temperatures the combination of alizarine blue with bisulphite of soda can be mixed with a solution o acetate of chrome without producing the least precipitate, but if heat be applied and the temperature raised to 60° or 70° C., the chrome lake of alizarine blue is formed. It is to this property of alizarine blue S . that we may ascribe the success which has attended its application in calico printing. For that purpose the following composition is largely em ployed:
120 grammes solution of starch of 10 per cent.
15 to 20 grammes alizarine blue S .
20 to 30 grammes solution acetate of chrome 20° Baume. Steam printed cloth from ten to tweuty minutes, and the color will be developed. Wash, soap, and dry. To steam under pressure is useless but not injurious.
This combination of alizarine blue produces a coloring matter which, once fixed ou the cloth, perfectly resists the action of light, of soap, and even of chlorine. In this respect it is superior to indigo, all the shades of which it will give.
So much does it differ from the ordinary alizarine blue in its solubility that it can with difficulty be obtained in the form of crystals. Before crystallization is complete, decomposition begins; small quantities of the insoluble blue are precipitated, and the liquid when filtered is found to be richer in the bisulphite. Aualyses of the pure product obtained by precipitation with common salt show that one molecule of alizarine blue is combined with two molecules of bisulphite of soda, and that the combination has for its formula, $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{NO}_{4}+-\mathrm{HNa} 2 \mathrm{SO}_{3}$.
The mode of formation of insoluble alizarine blue strougly warrants the assumption that this body belongs to the anthracene series, of which its power to combine with the bisulphite is a new proof. Alizarine and purpurine do not furnish analogous compounds, while with the quidolines combinations very wel! crystallized are obtained. Of that group alizarine blue certainly possesses the character istic:.

Extensive Mining In Montana.

The enormous mining enterprises carried ou in our Westarn States and Territuries, and the vast cost for machinery and fuel employed in working the mines, seem aimost incomprehensible to persons unacquaiuted with such matters. A correspondent in Montana gives to the Chicago Tribune an account of the mining operations in one section of that Territory. Near the Anaconda, says the writer, is the Colusa mine-also copper. It runs its ore directly into smelting works of its own. For the year ending September 1 it had shipped 8,100 tons for export, which averaged 65 per cent shipped 8,100 tons for export, which averaged 65 per cent
copper aud 55 ounces silver per ton. Within five minutes' copper aud 55 ounces silver per ton. Within five minutes'
ride of the Anaconda are the Lexington, Alice, and Moulton, all silver mines. The first named, after yielding $\$ 1,800$, 000 to its owners, was sold to a French company for $\$ 3,000$,000. It runs sixiy stamps. Its works cover several acres. Its montbly production of silver bullion nuw averages $\$ 1,106$,000 -about half profit. The Alice Mine produces $\$ 100$,000 monthly, the Moulton, $\$ 65,000$, the Silver Bow Company, $\$ 35,000$, and so on through a long list of smaller properties, until the mind is bewildered, and millions begin to seem the unit of counting. The shipments of gold aud silver bullion, chiefly the latter, average about $\$ 500,000$ a month. The weekly shipments of copper ore and matteas the product after smelting is called-averages 100 car loads, or about 3,000 tons, per month. There are 40 mines equipped with steam hoisting machinery, and over 100 equipped with steam hoisting inachinery
smaller mines, all worked ut a good profit.
While individuals by prospecting bave made valuable dis coveries, and attained a moderate competency, the great results mentioned above are only possible where enormous capital can be commanded for the development. Most of these great mines were sold by their first discoverers for $\$ 30,000$ and less. Then capital stepped in aud began its work. One of those above expended $\$ 1,700,000$ in preparation. One paid $\$ 95,000$ freight on the machinery and material for its buildings. The silver ure in its reduction requires a ton of salt to each ten tons of ore. The salt costs $\$ 30$ per ton. Each "pan" of 3,000 pounds of the ore pre pared for the action of quicksilver requires 300 pounds of the latter article every hour. Wood costs $\$ 6.50$ a cord. The Alice, Lexington, and Moulton burn 3,300 cords per month. One mine returned $\$ 100,000$ to the assessor as the value of its wood on hand. The Colorado and Montaua smelters consume each 25,000 cords per year. Coke is brought from Penusylvania for the smelters, and coal from Utah. The mines and reduction works employ about 2,500 workmen, and their weekly pay roll is about half a milliou dollars.

The Chihuahua Enterprise, published in New Mexico quotes dressed sheep to be worth in Chihuahua 75 cents apiece at the present time, 25 cents for a hind quarter, aud $12 \frac{1}{2}$ cents for the fore quarter. The pelt of a sheep is worth 55 cents. From the tallow is realized trom $\$ 1$ to $\$ 1.50$ Euch sheep killed is worth $\$ 2.50$ to $\$ 8.00$.

ENGINEERING INVENTIONS.
A simple duplex rotary steam engine is the subject of a patent recently issued to Mr. L. D. Hooper of Coffeyville, Kas. The improvements relate to the the inventor claims that its pecure working is greatly the inventor claims thed thereby

A traction engine guide mechanisu has been palented by Mr. Gustar A. Thode, or Holstein, ing wheels, provided with a tongue connected with an endless chain paseing over sprocket wheels, en that the axle may be turned to one side of the engine or the

An improved automatic car coupling de vice has been patented by Mr. E. H. Cady Tompkins,
of Glen's Falls, N. Y. It provides for holding the link in position by springs, arranged in slots in the walls of the drawheads, so that sufficient allowance will be mad for the swaying of the cars, but the link will a ways b
properly presented. The coupling ping have offtote, by which they may be held in sugpenofon. The device simple, readily applied, and easily operated.
Mr. C. J. Fortson, of Washington, Ga., has recently patented a pin and link car coapling in which the pin is aupported for antomatic couplang
with a link by a gravity catch. A choulder which supports the pin is located between the pivot and the long end of the catch, and is adapted to support the pin regardless of the weight of the catch. A comparawith tue necessity of a lurge chamber in the drawhead, therefore making it easier to support the link in ther, ition
Messrs. William V. Browu and Thomess S Poole, of Arcadia, N. S . Canada, have patented an im-
proved car coupling, to be used on cars of varying proved car coupling, to be used on cars of varying
height, and also in connection with couplers at present in ase, being especially adapted for going arounct curves drawbar, so that the outward end may swing up and down, but is arranged to be held in place by a suring. and screw hold is widened at the rear, so that a block and screw hotd up the pin for self coupling. or when
the pin is down, and the link coupled, the spring preeses it forward in
other drawbar.

MECEANICAL INVENTIONS

Mr. John R. ('onnor, of Framklin, Pa., has patented an improvement in sheet metal rivetling ma chines. The invention is for heading rivets in she tion. and the patent coniemplates the running of the A damper for stove pipes and drums has been patented by Mr. Fredric C. Davis, of Auburb Ind., which, by arranging and connecting sectiona damper plates, caases, when desired, a deflected or re aurface, thas effecting considerable economy in heat.
Mr. John Z. Gitiord, of New York city, has patented au improved lumop daring machine to facilitate
the working of metal hoops. It consists of properly arranged rollo and gearing, so that the rolls adjust themselves to varying thicknesses of huop iron, and exet a pressore increasing automatically with the thick ness of the iron. The rolls have a screw adjustment a
one end, and different bearings, spring and screw, a A printer's galley for providing a simple means for locking up matter, in either newspaper or
iob offces, has been patented by Mr. Nicholas Roemer, of Qaincy, III. It provides for a longitudinal side bar sat by a thumb nut nt the head of the gailey, and en paging in a cross stick at the foot, so that the locking For locking a partly filled column, a clamp is applite to the locking bar.
A liuk bending machine has been patented hy Mr. Charles O. Subingki, of St. Loals, Mo., designe to cut from a rod of metal a section with tapered end
and bend it around in oval form, to constitute a complete link, with the exception of oniting the two tape ed ends. which are subsequently welded together. The machine has a shear to cut off a section of roc, theu rising and falling former gives it the shape of the link,
after which a pair of advancing and receding jaws bend after wbich a pair of advancing and receding jaws ben
the link section around the former, and a ping jaws and swaging block bend the ends inwardly ping jaws and swaging block bend the eng
An improved dry ore concentrator has been patented by Mr. J. G. Vollmer, of Austin, Tex. This pulverized ore and sand from rocks and other worthless matter. The sand and pulverized ore is couducted the proper place to be dried by the heat from fire in a
box below, or by the steam or hot air introduced through box below, or by the stram or hot air introduced through
pipes from a distance. The sand and ore is then condact ed on to suitable screens, ore beds. etc., during which is subjected to a strong current of air which serves stil further to effect the thorough separation. With this a short time and with little cost. There is no expens for a motor, as the ore to be concentrated works the machine itself.

AGRICULTURAL INVENTIONS

 A stump pulling machine has been paten ed by Mr. Orren A. Anthony, of Mayfleld. N. Y. It isso constructed that in operation it tips the stump out so constructed that in operation it tips the stump out
of the ground sidewise, thas carrying less soil; it is comparatively cheap, easily bandled, and strong and

A grain thrasher and separator has been pa tented by Mr. Ole O. Graven, of Highland, Dakota
Ter. It has remcrable tooth bars and plate, and removable rack below. and with the winged beaters is
vibrating rack baving inclined whaterehy rack having inclined cross slats with ingers is carried back and the loose grain
wher

An improved cribbing plate, a practical de Hice to be placed on horses' teeth, has been patented sists of two slightly curved steel plates, with loops adapted to book over the teeth, and lags through which crews pass for drawing the plates toget
Feeders for grinding rolls are the subjec of a patented improvement by Mr. Garduer B. Root, of Amberst, Wis. The object is to se cure even feed of
material to orinders, the feeder having shell attached to material togrinders, the feeder having shell attached to sopper, with cross slots in the bottom, and an interio s to evenly distribute the malerial to be ground.
Mr. Robert Griswold, of Woodey, La., ba patented an improved apparatus for unloading hay and grain. It consists of a poriable platform, with rope hooks to engage with rings on inner edge of a netuing on the wagon rack beneath the load. The draw rop also has snap hooks, and is constructed with branche of graded length.
Draught attachments for plows form the abject of a patent issaed to Mr. Heinrich Raaths, of Appleton, Wis. By this invention the trace rods may by a simple arrangement, be so changed as to narrow or widen the furrow cul. and the conirivance of the fram is such that, should the plow strike an obetruction, the position of the line of draught and carry the plow Mr. Chapman E.
Chapman E. Gage, of Whitehall, Wis. has patented an improved grain screen, by which whea
may be separated from oats. Through a sheet metal plate perforations are made by punching down tongues, while in advance of the perforations depressions are made punched wheat grains coming throuzh the perforadons are pro jected forward, while the oats, being longer, a
A patent has recently been granted for an improved seed planter and fertilizer distributer. I
this machine the peculiarity consists in the wheels be ing constracted out of metal and withoat tires, and wit poses having enlarged ends to prevent them from
sinking deep into the ground. The machine is furthe provided with a revolving hopper having a series of circumferertial noles through which the qrain or fermeans of which the amount of grain to be deposited in the ground is regulated. The inventor of this improve planter is Mr. Cornelius Young, of Selma, Ala A very efficient machine for scouring brushing, and separating wheat and other grain pre-
paratory to the grinding, has been patented by Mr. paratory to the grinding, has been patented by Mr
John T. Ewan, of Bethaito, Ill. The two brusines o couring cylinders are journaled one above the other in from above, the grain belng compelled to traverse th whole length of both cylinders in its passage through the machine. Before entering the casing and all the whil
during its paskage through the machine, the grain during its paskage through the machine, the grain f air which is maintainad by the exhanst fan, an which separates and carries off the dust and other im Letters patent have been issued to Letters patent have been issued to Mr Heber Parish, of Burlinglo, In this, machine the sepa
grain separator and cleaner. In rator and cleaner is made in two parts, each part cou disting of a sel of parallel serrated bars, and each bein will exactly balance one another aud the two sety will sinccessively move upward. backward, downward, and
orward, the bars of each set raising the straw and car orward, the bars of each set raising the straw and car rating the grain and carrying the straw toward the rea of the machine, while the grain falls through on to sicve below, where it is acted upon by a blast from the
fan blower. Devices are further provided for adjuxt fan blower.
ing the sieve.

HISCELLANEOUS INVENTIONS

A fireproof partition block, with depres
 and the mould therefor, in which wire or cord neting employed, has been patented by Mr. Martial Lape
A sheet metal roof valley, made in sec t:ons, forms the subject of a patent granted to Mr.
Charles B. Cooper, of Nashville. Tenn. The sections have lugs at their upper corners, preventing the over upper ende, and downward at lower edge on sides an be readily attached and prevent water overlowing and getting to roof boards.
Mr. A. Floyd Delafield, of Noroton, Conn. tas patented an improved electric battery, in which
the box for receiring the cells is provided at the end with pindes or trannions resting on a frame; thits permits the cell box to be tilted or inclined, so that the su perfluous liquid can ran from all the cells at the same time, and the level will be the same in all. The inven-
tion also covers a cell with a boss on each side and on the bottom, to prevent surfaces from coming in con wact with each other or
Mr. Orlando B. Jennings, of Honey Creek, facture of sugar from sugar cane, sorghum, maize, etc. cane to sagar the invention contemplates reducing tie thoroughly crushed and roptared, and for this he pro vides for a combination of circular saws, and sprinkles. or mixes with the finely divided cane, before defecation ing to a temperature of not less than $212^{\circ} \mathrm{F}$, although it will average from 288° to $267^{\circ} \mathrm{F}$., according to ripe ness of the material, the juice is removed from the for which a specially contrived vessel and appliances
geysurauce

somethine new in hife insur

 The Sitna Life Insurance Company, of Hartiord, Conn., has introduced and copsrighted a New Plan o Insurance, which gives more privileges to the Insuredand promises to yleld a larger return (considering the and promises to yiela a larger return (considering the other plan or Company can \&ive. The premium charged very low-it approximates near the common life rate it is an Endowment Poliog payable at the end of the specified time, or it can be converted it payable, the com-
periods. At the time cash values are paya pany pays to the insured the socumulated Sarplue. With its method of dividing proats the Acoumulations
are likgly to be large. Send for a circular describing the are ilisaly to be large. Send for a circuiar describing tan
plan. Agents wanted at all points where the Company plan. Agents wanted at al points where the Company
is not at present represented. Address the Stras Life insurance Company, Hartford, Conn.
In Illinois, during the year 1882, 8,730 ufe insurance pollicles were issued, covering $\$ 2,566,715$ of insurance
During the same period the citizens of that State pald During the same period the cllisens of that State pald
$63,461,281.85$ of premiums on pollcles, and received 81.414 ,35,461, 881.88 of premiums on poilicles, and received 81.414 ,-
152.18 in payment of losses and claims. A comparison of 52.18 in payment of losses and clalms. A comparison of
the business transacted in the state during 1882 with that of 1881 , shows an Increase in the number of pollices of \&2,082, cion an in increase of amuunt of preminums re cived of sico an ficrease of amunnt of preminums re The earthquake at Ischia has involved French and

The 'Iravelers' Iusurance Company, of Hartford, have assets amounting to neariy $87,000,000$, and a surplus of
over $\$ 1.700,000$. This is the oldest and stronsest acoddent Tisa
The Mulual Life Insarance Company, of New York, 00.000 of ancots. 000.000 or assets.

finaurial

The Treasury Department is receiving daily called prealdents of national banks, but not verifed by the bank's seal. Heretofore the signatures of bank officers ave boen certifed by Treasury oflctials after compurison with the signatures on ille in the omoe of the Comp-
roller of the Currency and known to be genuine. It has een decided, however, that this practice Involves too nuch risk. and bereafter when the seal of the bank is misoling the bonde will be returned to the senders. Judge Bond, of the U. S. Circuit Court of Virginia, ass declded that State coupons are legal tender for
taxes. The case will be carried to the U.S.Supreme

The Director of the Midt, in his report just puhlished. and during the year ending June 30. 10x3.
Poit. Wales \& Co.. 72 Broadway, New York, make a

gataufacturicy kotes.

The Pope Manufacturing Company, of Boston, have had to eolarge thelr factory at Hartford. Conn., as during the last summer they were unable
mand for their bicycles and tricycles.
The Jarvis Furnace, Boston, has been exteusively ande indies. It ullizee an. etc., and is used with great advantage on sugar

The american Bell Telephone Compauy is overrun with orders, and is licensing new companies dally. There he syya wn in the Kar West, of over 8.000 , but bas he system, and it is in mach grenter use than here. av.
many of the business men have it in their houses in ail dition to their omices.
The Foessil Meal Company, of New York, mike a composition that is very durable, Areproof, and easlly ap-
plied. The sales are rapldiy incrasing.

The new road cart made by Bradley \& Co., of Syra-
cuse, has proved a decided success, and large orders and cuse, has proved a decided success, and large orders are
being reeetved dally.

Buturss and zersonal.

The Charge.for Insertion under this head is One Dollar a line for each insertion; about eir/lt words to a line. aseasly as Thurrsday morning to atpen in mizat offce

Dnrham is historic. It was neutral ground while the armistice was pending between Sherman and Johnston.
Soldiers of both armies flled their pouches with the to dacco stored there, and, after the surrender. marched omeward. Soon orders came from East, West, North,
and South. for "more of that elegant tobaco." Then ten men ran an unknown factory. Now it employs 800 urham But pink and pick of the Golden Belt. and the vorld: Blackwell's Durham Long Cut is Durham In Its soupt
Soapatone Packing, Empire Gum Core, and all Engine Steam Pipe and Boiler Coverng. Roofng Paints, Prehil Carey \& Co.. 127 Central Avenue, Cincinnatl 0 Ajax Metal Company, Pbila. Clamer's Ajax Metals for rallroad, rolling mill. engine bearings. cocks, and valves.

Amatenr Photographers can have their negatives Perper ilarked by Rockwood. No. 17 Unlon Square. Perpetual Calendar to let on royalty. Will take part

Wanted.-A porlco as gencral agent or nuperintend Boilers, 2 H. P.. s60. T. McDonough, Montclair. N.J. Microscopes, Microscopic Mouning Instruments, and
Materials. Send for catalukue. Queen \& Co., Phila

For Sale.-Five patents entire, Noe. 235.844, 24.414,
254 21, M7.280, 28, 545. Paper Pulp Ensine. Pay a Cotton, Rubber, and Leather Belting, Rabber, Linell, For Sale.-Valuable patent in amall shelf-hardware didress Patentee. Box No. 988, Leedvile, CoL.
Dies, Patterns, etc., Chas. A. Bailey, Middletown, C Straight Line Engine Co., Syracuse. N. Y. Beet in Back Back numbers, volumes, and sets Scientific Ayce. For Freight and Passenger Elevators send to L. 8 . raves \& Son. Rochester, N. Y
Brash Electric Arc Lights and Storage Batterie. wenty thousaind Arc Ligats alreudy sold. Oar larree machine gives 80 Are Lagnts with is horse power. Oo 8torake Battery is the only pract
Brush Electric Co., Cleveland, 0.
Best Squaring Shears, Tinuere', and Canvers' Tools Lathes 14 lt swing with and without back rear and Mem. J. Birkenhead, Mansteld, Mass.
The Best.-The Dueber Watch Case.
If an invention has not been patented in the Unier Canada. Cost for Canadian patent, 80. Various utbe forelgn patents may also obe obtainned. For inatraction address munn a Co., scisntific american Paten Ould
Guild \&Garrison's Steain Pump Works, Brooklyn N. Y. Steam Pumplng
tion. Send for catalogue.

Nickel Plating.-Sole mannfaciurers cast nickel an odes, pure nickel salts. polishing compositions. etc. Com
plete outat for plating, etc. Hanson Newark, N. J., and 92 and 94 Liberty St.. New York.
Lists 29.30 \& 81 , describing 4,000 new and 2 d -liand M_{2} ohines, ready for distribation. State just what muchloe
wanted. Forsaith \& Co., Manchester, N. II. \& N. Y. cty For Power \& Economy, Alcolt's Turbine, Mt.Holly, N. "Abbe" Bolt Forging Machines and "Palmer" Power
Hammers a specialty. Foraalth \& Co., Malchester. N.

Ballway and Machine Shop Equipment Send for Montuly Machinery List
the George Place Machinery 10 the Georke Place Machinery Company.
21 Chambers and 103 Reade Streets, New York. "How to Keep Boilers Clean." Book sent free b James F. Hotchkiss, 84 John St., New York. Sets of Teat Leuses and inetruments for ocalien alalogue. Queen \& Co., Pailadelphin. Wanted.-Paiented articles or machinery to make Water purifed for all purposes, from honsehold sup
Nies to those of larkest cittes, by the plies to those of larkest elties, by the improved ilter
manufactured by the Newark Filtering Co., 177 Com

Improved Skinner Portable Engines. Erie. Pa
Latest Improved Diamond Drills. Send for circuisr
o M. C. Bullock Mfg. Co.. 80 to 88 Market St., Chicago.11. Ice Making Machines and Machines for Coolin Sreweries, etc. Piotet Δ ritidedal lce Co. (Limited,
reenwich Street. P. o. Box a08s, New York Preases \& Dles. Ferracute Mach. Co., Bridgeton. N.
Machlnery for Light Manufacturing, on hand and
wallt to order. E. E. Garvin \& Co., 139 Center St. N. \bar{y} Split Pulleys at low prices, and of same streegth an appeurunce as Whole Pulleys. Yocom
Works. Drinker St., l'hlladelphia. Pa.
Supplement Catalogue. - Persons In parsuit of info mation on any special englneering. mechanical. or scied
 The sUPiI,kMENT contalns lengthy articles embracin the whole range of engineering, mechunics, and phrel
cal sclence. Address Munn \& Co.. Pablisbers, New Yort. Fossil Meal Composition, the leading non-conducting Drop Forgings. Billings \& Spencer Co. See adv., p. 1 Drop liorgings. Bimngs \& Spencer Co. See adv., p. 180
For Mill Macb'y \& Mill Farnishiug, see illus. adv. p288. Mineral Lands Prospected, Artesian Wolis Bored, by Curtis' Expansion Tr C. B. Rogers \& Co.. Norwich, Conn.. Wood Worki acting of ever ind.
Lightning Screw Plates, Labor-saving Tools, p. 244. Emerson's 1884 Re- Book of Saws. New matter. 73,000
Free. Address Kmerson, Smith \& Co.. Beaver Falls, iz Fire Brick. Tile, and Clay Retorts, all shapes. Borgoe Drop Forgings of Iron or Steel. See adv., page 301 . Bradley's Road Cart Syracuse, N. Y. See p. 301 Millstone Dressing Dlamonds. Simple, effective, and
durable. J. Dickinson. 64 Nassean street. New York. Steam Hammers, It proved Hydrailic Jacks, and Tub
 Holtating Engines, Friction Clutch Palleys, Cato號
Barrel, Keg, Hogshead, Stave Mach'y. See all., p. 301 The Lelingh Valley Emery Wheel Co.. Lehighton. Pa sell a new Stove Plate Grinder, with traverse motion. and an Automatic Planer Knife Grinder. with a co Magic Lanterns and Stereopiticons of all kinds and hibitions, Sunday schools, colleges, and home ontertain ment. 116 page illustrated catalogue free. Mcallister. Manufacturing Opticlan, 49 Nassan St., Now Yort Lathes. Planers, Drills, with modern improvement
The Pratt \& whitney Co The Pratt a Whitney Co., Hartford, Conn.
For best low price Planer and Matcier, and latess
Improved Sash, Door, and Blint Machinery, Send for Improved Sash, Door. and Blini Machinery, Send tor
catalogue to Rowley \& Hernance, Williamsport, Pa. Woodwork'g Mach'y. Rollstone Mach.Co. Adv., p. 5 . Stean Pumps. See adv. Suith. Vaile \& Co., p. 801. The Porter-Allen High Speed Steam Engine. Soutb
work Foundry A Mach. Co., 430 Washington A Ve, Phil Pa

Stereoplicons and Views for public and private er
bibitions. Send for cataloguc. Queen a Co.. fisal

Muck (muis
HINTS TO CORRRSPONDENTS.
No atrention will be paid to communications unless
ccompanied with the fnl name and address of the accompa
writer.

rriter.

iven to inquirers.
We renew our request that correspondents, in referring ame the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear aftel a rensonable time should repeat them. If not then pub lished, they may concl
Bditor declines them.
Persons desiring spectat information which is parely of a personal character, and not of general incerest, should remit from $\$ 1$ to $\$ 5$, according to the subject, ab we cannol be expected to spend time and
 MENT referred to in these co
office. Price 10 cents each.
Correspondents sending samples of minerals, etc. or examination, should be careful to distinctly mark on fication.
(1) J. A. J. asks where aluminum can be ought and what it will cost. A. Aluminam can be par chased of most of the dealers in chemical apparatus or
through any large wholesale druggist. Its value is boot 800 per ounce, MENT No. 85 gives quite a complete description of the metal. Its manafacture is again described on page 3906 of Sotestipio Amirican Supplemine, No. 245. On page 19 of the Sotinntifse Ayinrican ror January
18, 1888, will be found an English patented process of ecent date
(2) J. de W. C. asks formula for preparing boroglyceril, or that aubstance asserted to have the
power of preserving desh. A. Pure glycerine, 82 parte. heated to $300^{\circ} \mathrm{Mah}$., and boracic acid, 62 parts, which should be prepared to facilitate the reaction, is added.
For forther details, consult Soirstiric Anrrican Supor further details, consuls.
(3) J. B.-Elastic paint is simply an ordiary paint to which a littie rubber dissolved in benzine Japan drier or a little manganese borate, and you will have a "siccative paint:
(4) I. T. \& F. D. S. ask the rule to figure $\frac{\text { eit, size of pult }}{800}=$ H. P.
This for narrow beita, say below 6 inches. For wide
belts make the denominger belts make the denominator 600 instead of 800 . 2. Please pive as the usual rule for ascertaining how much power
being used in case of rental. A. There is no way of ascertaining, except by ase of indicator or dynamometer. Iformerly, eays editor, had occasion to inquire of parties who rent power, and foond they had no rule.
but would say, "I will rent you power to drive that machine (whatever it may be) for so much;" the power
can be approximated by the belt required to drive the can be approximated by the belt required to drive the
muchine.
(5) F. P. S. asks for a formula for coating cast iron a gloesy black color; one that will stand wash-
ing and lieat. A. Take oil of turpentine and add to it ing and lieat. A. Take oil of turpentine and add to it
strong ealphuric acid, drop by drop, while stirring. otil a sirupy precipitate is formed and no more of it is prodaced on further addition of a drop of acid. The time renewed after a good stirring, until the water does not exhibit any more acid reaction wilh blue litmus paper. The precipitate is next brought upoo a cloth
Nlter, and after all the water has run off, the sirap is fil or ane. This thickish deposit is painted over the fron with a brash; if it happens to be too atif, It is pre-
viously diluted with some oil of turpentine. Immed viosely dilated with some oil of turpentine. Immediin by a gentle heat, and after cooling, the black surface rabbed over with a piece of linen stuff dipped in and Protecting Ifon," Scievtitic amerioan Supplibiernt
No. 228 .
(6) A. A. D. asks bow to make a solution in which, if paper be soaked; and then dried, it will
turn blae on exposure to sunlight. A. Use the following: 1. Potassium ferricyanide, $11 / 4$ ounces, dissolved in 8 onnces water. 2. Ammonium iron citrate, $17 /$ onaces, mixed, fluered, and preserved in a dark room. Soal he paper in the dark, expose to sunlight, and wash of excess of solation. According to the length of
posare the blue color will be more or less intense
(7) D. W. W. writes: Years ago I made an excellent black ink with a quarter of a pound of exract logwood, 90 grains hichromate of yotash, and 15 grains prossiate potash. I recently made a conple of
galons for sample, which after standing a few days became thick and ropy, with a scum on the surface. What is the trouble? A. Your receipt is one of the
forms of what is known as Runge's ink, concerning which an English writer says: "An ink prepared from hese ingredients is not affected by acids or water, is
bluck, torms no deposit, and is not acted on, nor doe fact on the pen in using. Unfortunately, after it has tion is is sotally andime, it gelatinizer, in which condilion it is totally unft for use, nor have means yet been has taken place," A copying ink con restore tonce in addition of a slight quantity of sugar or glycerine to
(8) J. C. G. asks what to apply to iron pat rerns to make them smooth and prevent them from
ruating. Δ, sholicic varaith is cometimes noed, but for
 smoky fre of pline shaviugs. When sufficiently warm to melt the wax, apply the wax and allow the surplus to drain off. When the pattern is perfectly cold, smooth it with chisel shaped tools of hard wood, and lastly polish with a shoe brash.
(9) O. P. asks how to make indigo blue ink, such as used by paper ralers, A. 1. Dissolve basic or
soluble Pruselan blue in pare water. This is the most permanent and beautiful ank known. 8. Triturate to a perfectly smooth paste, six parts pare Pruseian blue and one part oxalic acld, with a litile water; then dilate
with sufficient soft water to make it futd. 8. Dissolve With sufficient soft water to make it fuld. 8. Dissolve
two-thirds ounce sulphate of mdigo in 1 gall on of water. (10) J. G. D. writes: Some time ago I put plece of thin sheet brass between a magnet and a piece of ateel (norse shoe magnet). Fhe attractive
power of the magnet for the ateel was much diminished. Now, what I want to know is, what shall I put between he magnet and plece of steel to kill the attractive rass diminished the maquetism is becanse the distance between the magnet and armature was tncreased. insulator for magnetism has been discovered.
(11) A. E. W. asks: What is the best way make carbon plates for batteries, other than sawiug verize it. Mix wilh it a small proportion of powdered bitominoas coal. Ram into an iron monld. Place the mould in an iron box and surround it with powdered coke. Cover the box with an iron lid. Submit the box and contents to a red heat until the powderea bituminous coal is coked. Allow the box and contents to coo thinned with water. Replace it in the box and sorroand with powdered coke. Heat as before, aud repea sprocess until you are satisfied with the product.
(12) F. M. C. asks how to arrange an elecric alarm clock. A. Place yonr battery and bell as you nect one of them with the clock morement, and con nect the other with a light spring that the hoor hand will tonch when it reachen it in the course of fis revoln
(13) E. C. L. writes: I have a fifteen horse tubular boller, located In a small addition to a two steam from this boiler. The water line in the boiler is situated 18 inches below the level of the irst floor. Can I return the condensed water, which comes from the radiators, into the boiler withont the assistance of a rap or any other mechanica! appliancesp A. It would
not be very certaln in its operation. Better trap off the water and return to boiler by pamp or injector
(14) W. M. B. asks: 1. How can I give or obtain a bright Anish on wainut coffins, or purnitare made of walnut, after neatly dressing with smoothing plane? Δ. Take pulverized asphaltum, put it in a jar or bothe, poar over it about twice its bulk of tarpen ine or benzol, put in a warm place and shake occasionwith a cloth or siff brosb; and apply it to the wood dilate with turpentine or benzol. If desired to dring out the grain still more, apply a mixture of bolled on and turpentine; this is better than oil alone. When the oll is dry, the wood can be polished with the following: Shellac varnish, 2 parts: boiled oil, 1 part; shake it wel efore nsing. Apply with a cloth, rubbling briskly. 2 How can I imitate walua, as above of pine, of a dark stain: Water, 1 quart; waehing sods, 11/ ounces; Vanyke brown, $11 / 2$ ounces; potassinm bichromate, one brush in either hot or cold atate.
(15) J. D. G. asks: What would I gain by exhaust steam undic cat-off engine when I use all the inch I do not have enough exhanst. I admit live steam in the exhaust pipe when pressure falls below 8 pounds. If nge a plain slide valve engine and take seam seven-elghths of stroke, do I lose any when through your engine is required for other parposes, the gain would be little if anything, by adding an antomatic
(16) C. P. R. asks what are the advantages and disadvantages of the two forms of rail now in use by street car companies, and known as the "side bearsidered best for orduary traffic on a cedar block paved street? A. The side bearing rail is least obstrucife to of all tinds to ran and artin good racilifies for wagons by vehicle owners. The center hesring mail is preferred by the railway compantes. It is self-cleaning stands a ittle bigher, wagons cannot run on it and so wear a out; it obstructs ordinary vebiclos more than the side beariag rail.
(17) G. F. P. asks: How can I prevent iving out wet steam from a coil! A. Add a steam

Minerals, etc.-Specimens have been reeived from the following correspondents, and xamined, with the results stated:
H. M. M.-1. Quartz containing mica and pyrite (proably nickeliferonk). 2. Quartz with calcite and chon-
drouite. 8. Quariz with pyrite in rock. $-W$. specimens hardly resemble tin ore. and it would be mpossible to express a positive opinion without first assaying them, the expense of which woald be $\$ 5.00$ and a larger quandily of the ore would be desirable for proper eampling.-S. B. E.-The specimen is quartz containing a iitile pyrite very inely divided, and may 19.8 and that
etal.
Erratum.-On page 298, Sci. Am., Nov. Erratum.-On page 298, Sct. Am., Nov.
1883, Notes and queries (57), $\$ 80$ to $\$ 90$, should read 100 to 90 .
staten were Granted
October 30, 1883.
AND EACR GEARING THAT DATE
[See note at end of list about coples of these patents.]
Adj
Aer
Ag
Ale
Am
Am
Ax
Ax
Ax
Bat
Be
Aerial rall ray. D. R. Olmsted W. Miller

Alarm. See Burglar alarm. Wilson....

xle box, car. O. Pagan.
xxle, vehcle, R. W. \& W. Hubbard
Axle, wagon, J. \& P. Hat....
Bag fastener, C. W. Bradford
Battery. See Electric hats.
Beits, tool for connecting and difconnecting the ends of, G. H. Clark
Bicycle. s. A. Potter...
Bioy cles, bail bearing for, A. E. schaal
Blind and
Blind and shutter. H. L. Page...
Block facing machire, J. Y. sim
Board. See Ironing board.
Boller. Bee Locomotive boller.
Riker.... Vacuam pamp, combined, c.
Bolting machine, centrifugal, F. Stetter...
Box. See A xle box. Packing and storing
Brace. See Rell
Brace. See Rallway rall krace.
Breast strap fender. J. C. Look.
Brick kiln, G. F. Cotton.
Brick rillo, F.L. Hall
Brick, manufacture of, F. W. Meeker.
Bucket, milk Ring milk cans, J. J. Quinn
Burglar alarm, detonating. W. H. Reir
Candy heater, T. Burkhard
Car conpling, J. Brown.......
Car coupling. Brown \& Poole
Car coupinng. Brown \& Po
Car coupling, T. Gates....
ar coupling, J. E. McMurtrey et al.
Car coupling, A. Muller
Car coupling, E. H. C. Tompking
Car, dumplng, W. Fullon....
Car, dumping, J. T. Good..
car repplaceer, \mathbf{w}. T. Toombs
Car roonng, W. . Paige..

Car wheel truing machine, J.
ars, plow for nuloading, J. McMul
Carbonixing moula. T. A. Edlison.
Carding machline, R. T. Barier.

Tis \& Finck.

Carriage jack, A.J. Church
arriage top, H. M. Bowden
arrier. Bee Trace carrter
Cartridge closing machine, Leet \& Northall. Cartridges, can for holding blasting, C. C. White.
Case. See Extension case. Spectacle case. Type
case.
Caster attachment to rockers, W. C. Ranney ..
Casting copper, apparatus for, Durfee \& Fglest Chain for bracelets, etc., C. A.
Chimney cap, F. H. Leonard. Clasp pivot pin. W. W. Ander
Claw bar, Moore \& O'Leary
Cleaner. See Track cleander.
Clock pendulum. I. B. Woodruff et al
Clothes rack, J. H. French.......
Clothes wringer, C. K. Stinson
Cock, gauge. L. B. Fulton (r)........
Collar rim plate, horse W. L. Bells
Colter, rolling. II. M. Mkinner
Comping mamposition, . . s.
cor
Cork puller or screw, F. Cappe
Corn sheller, G. Prichard
Corset clasp fastening, W. F. G. Gibert.
Cotton and hay press, W. D. slanson.
Coupling. See Car coupiling. Shatt coupling.
over, pan, S. C. . Dowdell...
ribbing plate. A. Quinque
Criblng plate. A. Quinque.
Cultivator, W. A. Knowlton
Cultivator, W. A. Knowlton mer...
Cultivator
Cultivator spring. .J. B. Nerf......
cap. See Salt and pepper cup.
Curtain roller, spring. L. L. Sawyer
Cutter. See Nall muct
Cutter. See Nall machine cutter.
Damper, F. C. Davis.........
Decorative fabric. E. Baron
Dental engine hand plece, J. W. Gilbert

Desk. C. Ignatius
 \section*{Desk. C. Ignatius Desk, C. P. Ross

}Detector. See TIme dete
Dish cover, baktng, A. A. Curtis.
Dish draining rack, M. Ranghtigan
Dredging machine. A. Cook
Dredking or excavating machine, Drier. See Fruit drior.
Dril. See Grain drill.
Eccentric, C. W. Barmaby

Electric battery, A. F. Delafeld.................. Electric circuitu. safety catch for, C. Goddard.
Electric distribution, system of, \boldsymbol{T}. A. Edison. Electric distribution, system of, T. A. Edison.
Electric generator, dynamo or magneto, F. Ba. Electrio Mlkhting systems, indicator for, W. P.
Freeman.
Freeman. .
Electric machin

Flectric machine, dynamo or magneto, F. Bain... 287,512 to
Electric machlue, dinate
Electric machline, dynamo or magneto. T. A. Edi-
son..................................61,
mectric machine, dynamo or makneto, J. E.

287,579
287,481

8

meotric machine regulator, dynamo. T. A. E

Electric rogulator. T. A. Edison.
Riectrical conductors, junction for, c. Go........
Electrical distribution, regulator for systems of
Edison \& Clarke
Electrical tenting, c. s. Bradley
Mlevator. see Grain elevator. Safety elevator.
Mlerator

Filter. oll, Clark \& Beeche Frre alarm, A.\& A. Iske..

Fire alarm apparratus, eleotric....... ©.................
Firearm, breech-loading. J. Turner............
Firearm, breech-loadIng. J. Turner
Mrearm stock. G. R. Vickers, Jr.....
Fire escape, C. . . Bierbach..
Fire өecape,
 Fire kindler attachment for stoves and arates,
F. Allis Frieproof partition block, M. Lap
Flatiron, electric, Dyer it Seely. Fluax poller, A. C. Damar
Folding table, J. Tull
Fooding table, J. Tull................................

Frame corner plate, H. M. Frutt drier, J. H. Hunter.

Fralt pleker, J. Sealame
Furnace, L. P. Hrench...
Furnace and working the same, J. Hene ierson (r)
Furnace for glass factorles, etc., J. D. Pntnam..
Furnaces, alr injector for. J. W. Bonta...........
Furnuces, alr injector for. J. W. Bonta............
Furnces, combustion device for steam boiler, W.
rnaces for recelving the d
oupola. \mathbf{H}. w. Fayette ..
Gauge. See Pressure gauge.
Gas and coke kiln, H. H. Hall

Glass products, manufacture of decorative. H. F.
Miles..
Oovernor attachment, steam engine, \mathbf{W}.
288,788
287,620
Grain binder, c... Lidaren ...
Grain binding apparatus, C. Lidren
Grain cutting machine. R. L. Phelpe.......287,468,
Grain drill, A. \& M. Ranstet
Grain elevator, W. Wutson.
Grain meter. Grifith \& Ra
Grain separator, H. Campbell...........................
Grindlug and polishing machine, E. B. Ware.. .
Grinding apparatus, portable, M. Lennon...
Grinding roll feeder, G. B. Root
Gun barrels, machine for turning, C. A. Kin

Hat bodies, machine for hardening. and sizing, W
H. Behrens................................
Hatchwar, elevator, w.......................
Hay aud cotton press. E. C. Worthen.
Hay and grain. apyaratus for unloading, R. Gris
wold.
Hay eleva
Hay rake, horse, R. O. Bey 28
Heater. See Candy

Heellng machine, D. Whtlock. 27
Holder. See Necktie and scart holder. Reln
brella holder. Whip and retn holder.
op flaring machine, J. Z. Girord...............
Hors chacing and unchecking device, D. 287.058
Ccx................................ 287,419
Hub. metallic. J. Douglass............................. 287,64
Hydrant. fire, W. H. . Leonard................ . 27.55
He plows and markers, guide for, F. J. Fischer... 281.42
ice plows and markers, guide for, F. J. Fischer...
Iee tongs, G. J. Dickson................... 24

Insulated electric conductor, H. O. Phillips
Iron. See Flatiron. Waffe iron.
rroning board, P. F. Weber........................... 287,55
Jack. See Carriake jack. Lifting Jack.

Lamp, plummet, J. Ronch...........................

A. Edison 287.518
athe, turning . N. Porter....

287.715
287.673
8789

287.555

Lightnigg arrester, J. W. Dyer
Link bending machine, C. \mathbf{O}. ${ }^{2}$ Hink bending machine, C. Lock. See Time loc
Lock gates. apparatus for opening and closing,
H. Policel.............. Locomotive Loiler, C. B. Coventry Magneto-cleotric machine, P. P. N Manure distributer. V. M. Snow..... Mechanical moveruent. W. H. Behrens
Mechanical movement. W. M. Phelps Mechanical movement. W. M. Phelps....
Medicated effervescent saits, ©. B. Shate Medicine, veterinury. T. L. Miller. Metal, manufacture of Bessemer, W. R. Jones Meter. See Grain meter. Rotary meter. W Micrometer, s. Darillag.... Middilngs purifer, C. Wehner.
Mining machine. coal, W. Hiton Mould. See Carbonising monid Motor. I. L. Rison
Nail machine cutter, W. Wickersham Neck wear shields, pin holder for. W. Fichten
Necktte fastener, E. C.c. Kahler.... Netting, W. H. Boyd......
Nippers, G. W. Hubbard Nippers. cutting, J. Steven
Nuts. process of and apparatus for cleaning, tint-
Ing, and polishiug pecan and

Packing and storing box, A. J. Herring.... tus for, rulson \&. Snow.
Packing piston, L. . Hall.
Packing, metallic wire. S. Armatrong
Pncking, stean Joints, R. A. Bulkiey
Paint or colorink material to artists' academy
boards, apparatus for the application of, K
14. Friedrichs.....................
Paper bags, making,. O. Blowers.
corring and ad
Justing device for. T. C. Dexter.
Paper machine, T. A. \boldsymbol{d} J. Boyne. Jr
Paper stock. method of and apparatus for treating
rags for. \mathbf{C}. \boldsymbol{F}. Tay rags for. C. F. Taylor...
Parer. apple. J. L. Wulcox.
Pattern for cutting dress patterns, M. s. Schafer treating. J. B. Hyde..
Poker. See Fruit picker Ploker. See Fruit picker.
Pin. See Clasp pivot pin.
Pitmen off dead centers, spring for keeping, \mathbf{c}. A

Plane, H. B. Beach

Plane, S. R. \& A. E. Kast
Planter cheak rower, curn. McKinniss \& inttere Plow, H. Rauths ..
Plow, gang. T. L. Grigaby...
Plow jointer, G. S. Roberts
Plumber's trap, F. N. Du Bois.....
Pole, carriage, C. M. Blydenburkh
Power. See Fout puwer.
Power converter, H. Crott. Jr.
Press. See Dle press. Hay and cotton press.
Pressure gauge. recording. F. A. Jones .. .287, Pressure gauge. recording. F. A. J Nones ... 287 ,
1'ressure gauge. recording, Jones \& Glines ... Printer's galley, N . Roemer.
Printing press inking apperatus, J. W. O...........
Printing presses, paper folding. pasting. and trim ming attachment for, T. C. Dexter.............
Puller. See Corn paller. Max puller. Weed
Pulley, roller
Pulley, roller. or friot ind whee'. J. W. Osborne
Pulley, roller, or wheel, J. W. Onborne..........
l'ulp. machine for forn
woou. J. G. Bodge ..
Pulverizing machine
Pump, centrifugal, N. Didiot......
Pump, mensuring, H. E. Marchand
Pumping artesian welle. machine for, T. Korner.
Rack. See Clothen ruck. Dixh draining rack. Key
Radiator. steam, S. H. Morrill........
Rallway crossing gate, E. J. Henkle Railway heads, evaner for, A. Sohaer Rallway rall brace. M. R. Perkins
Railway signal. elcctric. W. W. Le Grande Railway signala, electrical connection for. T
Pottinger Rallway track clearer. G. Royal Rallway tracks, device for connecting portable. J. Reke. See Hay rake.
Refrikerator. G. Koons

Refrigerator. G. Koons

chine regulator.
Heln holder, vehicle, D. McDougald Riveting machine, J. R. Connor. Riveting machine. inatine. J. L. ©axe... Road engine, B. F. Opp.
Roller. See Pulles roll
Roof valley, sheet metal,
Rutury meter. H. Fredrick II. C. Brainerd
Ruler, metal, C. A.

Safe, burglar pr A. Smith...

Safety elevator, J. W. Kink.

sallis, reefing and furliug fore-and aft. T. O'Brien Salt and pepper cup. combluwd. T. B. Clevelan
Sandal or shoe, unti-slipping. J. W. White Sash tastener, F. Bell..........
Sam. gin. C. W. Manno...
Leach $\&$ ulds.........ister. combined grain
Seat. Sec Car seat.
Separator See Girain separato
ener trap, J. riodine
Sewing machine, J. W. Post
 at Vernay
Shaft couplinge. A. Faust.
hingle saving machiner
Rignal. See Radway signal.

zketns of silk, method of and appliance for lock-
ing separate. J. \& J. Nightingale
Sled, H. H. Miller.....................
soap. medicated. J. J. Dilurd.
odium carbonata, making. C. Knab.

Splttoon, C. Gordon
Sple
pool or bobbin, C. Elikan
pring. See Car
hicle spring
Stave baling machine. C. A. Harris
Steam generator. G. W. McAlister.
Steam renerator. G. W. MaAllister.................
Steam. generator, magaxine or bace bursing,
one smoot hink machine. J. Fgrer.
Stove. C. Mattice.... .
Stove. G. W. Mcalister
Stove krate. J. Hahn.............
Stoveplpe elbow, J. P. Barker

tump pulling machlne, o. A. Anthony........
manufacture of, \mathbf{O}. B . Jennings
Sulky, adjustable frame. J. Caleeg....
sulphides, treating, C. A. Stetefeld
ulphides, treating, C. A. Stete
Syringe, vaginal. C. L. Jensen..
Table. See Folding table.
Telephone receiver, H. E. Waite.........
Oram..........
elephonic repeater and. relay, J. A. Maloney
Thrasher and separator, grailn. O. O. Gra
Tlicket nolder, W. B. Van Amripge.....
Tiles, device for handling drain, J. Ros
Time detector, elect ric, T. A hearn
Time lock. eleotric, W. E. Pelroe.
mepieces, winding indicator for. B. F. Mer
mann....
op. J. H. S
op, J. H. Sunderman.
oy pistol. J. H. Rose.
Trace carrler, C. F. Miller...............
Track cleaner. Birnbaum \& Richmond.
raction engline, G. A. Thode
Tricycle, T. O'Brien.............
rimmings, etc., former for dress, E. H. . God
shalk
den
Tonneling machine, M.
Type case. W. H. Golding.
Umurella case fastener. W. P. Riohards.
Umbrella holder. F. S. Hesseltine...
Underground condult, J. S. Du Bois
Valve, steam actuated, T. Northey
Vehicle spring. V. M. Backus
Ventllation. A. J. Hendry
Ventllation. A. J. Hendry
Ventliator, W. schmolz
Ventilatnr, W. Schmolz
Vessels, apparatus for raising sunken, H. Schay
ler...
oting mach
A. Enos.

Wagon, dumpling, C. Kaeppol.
Wagon, platform, P. Kaeppel.
Water closet. S. G. McFarlan
Water meter. D. B. Spooner.
Water wheel turbine, B. R. Anstin
Weed puller, Hisinbotham \& Ball.
Well point. drive, O. B. Olmsted....................
Wheel. See Car wheel. Fitth wheel. Gear
Wheel. Water wheel.
Wire barbing machine, E. P. Peacock
Wire barbing machine, E. P. Peeour
Wire barbing machine. D. C. Stover
Wool, etc.., process of and apparatus for extrac
ing oll, fat, and oily and fatty matters fro
ing oin, rat. and
T.J. Mullings.
Wringer. See Clothes wringer
Wrought and sheethes riron veseer. J. Chaumnnt.
yove for draught animals. E. L. Joh

DESIGNS.

 Cockeye, clip, G, F. Rberhard...........Fireplace back, Jackson \& Hankinson... Fireplace casing, A. Osborne...
Fireplace casings, factnk for, A. Osborne. Freplace casings, facing for, A. Osborne.
Fireplace facting, A. Osborne
 licture frame moulding, E. Rug, R. P. Hemming
Rug, A. Petsold.... Rug, A. Petmold..................
Skirt, lady's waiking, C. O'Hara. Wrap, lady's. C. O'Hara..

TRADE MARKS
Bitters, B. Metnhard.
Bitters, H. H. Warder...........
Bitters. tonic, H. H. Warner Butters. tonic. H. H. Warn
Burning fulds, J. G. Gorrel Calcimine, W. B. Price....
Cigars, , untin. Nichois \& Co.
Cigars and smoking and chew
 berlain, Dewatne \& Co...
Cigars, Havana, M. Irrmann
Harseshove nalls, Aasable Horse Nal
Liquors and cordlais, A. T. A rfura Liquors and cordlals, A. F. A riura Medicine, certain proprietary. C. A. Higetins nedicine. certann prop
lulley blocks H. Ioud Tobaceo, chewing and smokin Wine, champagne, J. Bollinker. \qquad
 iny patent in the forexolng list, alao or any patent
issued since 1×66, will be furnighed from this onfice for 25 cents. In ordering please slate the number und date of the paitent destred, and remit to Munn \& Co, 281
Broad way, New York. We aleo furnish oopies of patents aranted prtor to 1866 ; but at increased cost, ns the
specifications, not being printed, must be copled by hand.
Canadian Patente may now be obtalined by the inventors for any of the inventions named in the foreeddress Munn \& Co., 281 Broedway,
gavertisements.

 ELECTRICITY MOTIVE POWER.

 E. \& P. N. SPON, 35 MURRAY ST, NEW YORI

UINITEREAT
 10 Barclay St., N. Y. City.

MEssRs. MINN \& CO. in connection with the pub-
lication of the :CiRNTIITIC Am Mrican continue to ex-
lication of He ChN \& Ciriric AMERIIAN, continue to ex-
amine Improvementa, and to act as Solicitors of Patents amine mprovemeuta, and to act as soliciors of Patents
for lnventors.
In this line of business they have had thirly-ight
years experience, and now have unequaled facilitien for yeare experience, and now have unequaled facilitiea for
the prepartaion of Pateat Drawings, Specifications. and
the prosecution of Applications the preparation of Patent Drawings, Specincations, and
the prosecution of Applications for Parents in the
Cnited State, Canada and Foreign Countriee. Mears.
Unum \& Mmun \& (o. also attcind to the preparation of Caveats,
Conyrighs for Books. Isbels. Reisues, Assignments,
and Reports on and Reports on Infringements. of Patenens. Aseignments, All businesi
ntrusted to them is done with special care and prompt ness, on very reasonable terms.
A pamphet sent free on chape aplication, con
taining fall information about ratents and how to pro taining fall information about Patenta and how to pro
care them; directions concerning Labels, Copyright

 WUNN the principal countries of the woria. . Solicitors of Paten
281 Bromdway, Now York.
BRANCR OFMCE.-Corner of F and the streets
Washington, D.C.

fiuaucial.

Preston,Keansela

 Bankers. онicaco, ith.

 Hitiaiximinem plication.
land saiso.
land
POST, WALES \& CO. 72 Broadway, New York. EHPOCESE BONDS BOUGHT AND SOLD AT BEST RATES.

Inventment Securitien a Spocinalty.

MAVERICK

NATIONAI BANK, BO8TON, MA88.

FISK \& HATCH,

Banlxere, A at Doalorin tin Goverment, Bonat and No. 5 MASSAD STEEET, NEW YORE.

NEW ENCLAND

 MUTUAL LIFE INBURANCE CO.,

November $17,1883$.]
BAIRD'S BOOKS
PRAGYHCEL MIGN

 REVOLUNNG BOOKCASE. SECURED BY SEVEN PATENTS. Tre onitimal and bext in the World.
Thousands of these cases now in ase througbout the
world. Made in varions sizes, styles, and prices. Warranted to give co plete satísfaction or no sale. Beware of infringements. Send for illustrated price
JOHN DANAER, WANTED-Foreman in Foundry,

 AII OPTICAL WONDER Par batinam

 Thie perfect stylographic pen.
Mitivi

 OPIUM

RUPTIURE

Srientific Smerican.

THE "BELGIAN" BREECHLOADING GUN.
 KILLS AT 100 YARDS!
 Beautifully Engraved -ay ses and Polished Wainet Stooks

THE FARM, FIELD AND FIRESIDE

 RTAD THEPST THSTIMONTATS:

 Address FARM, FIELD \& FIRESIDE, 89 Randolph St., Chicago, III, Our readers should not farl to take advantage of thes offer as at will not be made again

ICE MAKING MACHINES,

And Machines for Cooling Breweries, Pork Packing Establishments, Cold Storage Warehouses, Hospitals, etc. and for hauntratki and iesiciptive circuliars.
PICTET ARTIFICIAL ICE CO. (Limited), 142 Greenwich St., New York City, N. Y

HENDERSON'S SPECIAL REFRACTORY COMPOUNDS

Cold rolled

POETMIVB BTAESN. IRON REYOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturers,

 SEND FOR PRICED CATALOGUE CATALOGUES FREE TO ANY ADDRESS

Parties Having Patented Articles

 WANTED.-Agents in all large manufacturing town
 Bollers. Steam Hipes, etc. See adv, pake sis. Adircem.
with references, Foosil Meal Co., 48 Cedar St., New York.

WATCHMAKERS.

 ${ }_{3}$

MEW HAVEN MANUFACTURINGCO.

STEEL STAMPS

 THE BEST STEAM PUMP.
Tin Dinemt Patent

Steel Castings

ORMAN'S PRINTING PRESSES BEAT THE WORLD

Gdyertisements.

STAR HACK SAW

This Saw is very much harder than a file, and will cat ron and 8teel almost as readily as wood. One times, or a bar of nutempered steel forty times. It ost. As it cats everything, it will do most of the The Frame is made of Steel,
Thol ished and Nickel

Plated, and will face the saw in Your different direc| Plated, and will face the saw in four different direc- |
| :--- |
| tions. Frame and 12 Saws sent by mail on receipt | tions. Frame and 12 Saws sent by mail on receipt

\$1.50. Hard ware dealers will fornish them at the
Game price. All genuine goods are marked with a Millers Falls Co.,

74 Chambers St., New York
COLUMBIA BICYCLES AND TRICYCLE8.
 THE POPENDFC.

FOSSIL MEAL COMPOSITION, The Leading Non-Conducting Covering With \% to x inch thickness it radiates leas heat than
 FOSSIL MEAL CO., 48 Cedar St., New York.

SPEAKING TELEPHONES.
 Alexander Grabam liell's patent of March 7 T. 1888 ,
owned by this company, covers every form or apparatue.

 Tescriptive catalognes forwarded on application.)

TOOPWes Asbestos Lined Removable Covering

ROOFING.
Vor steep or flat roofs. Applied by ordinary workmen
atonethird the costoot tin. Circurars and samples free.
ARente Wanted. T. NEW, 22 John Street, New York.

NEW YORK BELTING AND PACKING COMP'Y.
 EMERY WHEELS

 NEW YORK BELTING AND PACKINE CO.,

 TV PACKE PATENT KETLES,
 THE POOLEY ROTARY STEAM ENGINE.

 BGARDS PATENT UNVERSALE ECOEN

 ROCK BREAKERS AND ORE CRUSHERS.

AMERICAN STEAM QAUQE CO.

Original Steam Gange C Rus. Etate in 1 1ss)
TMPROVED THOMPSON INDICATOR PLANIMETER AND
PANTOGRAPH. Chardon St

M'R'G OPTICIANS. STRREBTILG IIISTRTIIRYMS
DRAWINE INSTRUMENTS

MATHEMATICAL INSTRUMENTS

Drawing
Materials
The Largest
BEST STOCK
United States

QUEEN \& CO., Philadelphia

Antomatic Enginem 30 to 300 Horne Power. Over 450 Engines and 10,000 Horse Power now in use. Send or Illastrated Circolar and Referencec List and ASK OUR PRCES!
The Westinghouse Machine Co., pittsbírg, pa.

O ICE MACHINES
 so Tons per Day
Binary Absorption System. simplien heliable.
Delamater Iron Works, 16 Cortandt $8 t_{5}$,
NEW YOR
 HARBACH ORGANINACO.Phila.Pa

FRICTION PULLEIS, CLJTCHES. and ELEVATORS

Pyrometers. For ahorink hati

 SharispoulirsThe " MONITOR."
A NKW .1 MTIN:
NNiD NON.

 EJECTORS
 HARTFORD
STEAM BOILER Inspection \& Insuraneo COMPANY.
II. B. Pranklin.V. Pres't. J. M. AlldB. Pmot J. B. PIERCB. Sec'y.

GAS ENGINES,
POWER DETERMINED BY ACREAL TRET. THE CONTINENTAL GAS EMGINE CO, (P) Frown's Pataent FRICTION CLUTCH. 5ixisw in

§rientific Americau

The Most Popular Scientific Paper in the World.
oniy $\$ 3.20 \mathrm{n}$ Year, incimaing poecagon Weekis.
Thin widely circulated and splendidy mustrue paper is published weekly. Kivery number contuina six een pazes of nseful information, and a large number of rikina engravings of new Inventions and dscoreries ipw Inventions, Noveltiea in Mechaniss Manvectiner 'licmintry. Electricty, Telegraphy. Photokraphy. Arcbiert ure. Agriculture, Horticultare, Natural History, etc All Clingee of lienders find in the scisitinc AmRRICAN a popular resume of the beat sclentitic io-
formation of the day; and it is the atm of the pablisben to present it in an attractive form, avolding as moch es posable abstruse terms. To every intelligent miva this journal arfords a constant supply of instructire reading. It is promotive of knowledge and progree Terms of Subscription.-One
tific Δ avehican will be sent for one year- 5 the sciser: pontame prepald, to any subscriber in the United stues or Canada, on recelpt of three dollars and iweut crutren by the
months, 81.00 .
Anbr.- One exirn copy of the Scrisitifio Aurbr at $\$ 8.20$ each; suplled gratis for every chub of five subiceribn rate.
One copy of the Scientific Aniricay end one cops
of the Bciver for one year, postage prican gipplizmgyr will be ent United States or cianada. on to any the publishers.
The nafest way to remit is by Pontal brate mina Fxpress. Muney carrfully placed instde of envelopes
securely sealed, and correctly addressed, seldom seet astray, but is at the mender's risk. Addreas all letier and make all orders, drafts, etc.. payable to

MIUININ \& CO.
261 Broadway, Now York.
 the Postal Union. the SciEn tipic AMERICAx 1 Dow swi
by post direct from New York, With regulatty, to sion scribers in Great Britaln. Indla, Australlia, and all other British colonies ; to France, Austria, Beigiam, Ge.
Russia, and all other European States ; Japan. Hrul. Mexico, and all States of Central and Sorth Amerka Terms, when sent to foreign countries, Cansid excepted
 one year. This includes postage,
by postal order or draft to order of

PRINTING INKS,

