
a WEEKLY JOURNaL OF PRACTICAL INFORMATION. aRT. SCIENCE, MECHANICS, CHEMISTRY aND MANUFACTURES.
Vol. XLIXX.-NO. 6.]
NEW YORK, AUGUST 11, 1883.

THE TELEPHONE CENTRAL OFFICE SYSTEM OF PARIS. The annunciators and switches are arranged in groups of has charge of the staff of operators, and an inspector has Paris has ten telephone central offices aud three thousand twenty-five, the annunciators being above and the switches general supervision of the affairs of the office.
subscribers. The general plan of working the central offices below. Between every two sets of annunciators is placed a Important offices are provided with an instructor, whose does not differ materially from that of some of our American triangular blocis, which is colored and numbered. The call office is to teach telephony to beginners, a special hall being exchanges, but the arrangement of the line wires is very dif- bells, which are common to all subscribers of the same series, provided for this use. Order and regularity rules, and mis-

ferent from ours, and in many respects better. In the cen-| are placed at the extremities of the frames, and between the takes and delays are generally the fault of subscribers and tral offices the frames carrying the switches and annunciators sets of annunciators there are switches for connecting the not of the-operators.
are arranged along the walls on three sides of the room, emploves with the subscribers.
 wires for inspection, etc. ladies, and at night by a less number of men. A directress another, so that the subscribers of different offices may con-

THE CENTRAL TELEPHONE EXCHANGE, PARIS.
verse as conveniently as if both were directly connected with one office.
The subscribers' wires are united into cables of fourteen wires each. They are affixed to the vault of the sewer and are consequently out of sight and out of the way. The cables are laid by the administration of telegraph lines, to whom, as well as to the city of Paris, the company pays a tax of so much per meter. The employes of the company bave no right to enter the sewer, and when anything gets out of order it is the duty of a particular branch of the administration of the telegraph to repair it.
The telephone company extends the double telephone wires from the subscriber's instrument through a hole in the sewer, and connection with the proper wires and cable is made by the agents of the administration of the telegraph.
The pnds of the wires of the cables are distributed over the switch boards in the wire cellar of the central office, and upon one of these switch boards the double wire of the subscriber terminates and is readilr found. The wire is then connected with wires leading to the annunciator and switch board of the central office, where the subscriber is assigned a number.
The telephone used in Paris is Adir's. Three cells of Leclanché battery are employed, one for the transmitter and two for calling. Every three months the transmitters are changed, and although they might be able to work longer, this plan is adopted to insure good service. The telephone of each subscriber is tested daily as another precaution.

The Pittsburg Exposition.

The seventh annual exhibition of the Pittsburg Exposition Society will be beld in the city of Allegheny, opening September 6, and closing October 13, 1883. The main building is 600 feet long by 100 feet wide, with galleries 45 feet wide, extending around the entire building. The floral hall is. 130 by 90 feet with an annex 130 by 30 feet. The machinery lall is 170 by 150 feet, and the permanent steam power is sufficient to run the shafting, furnishing power free to all. The general reception of articles will begin August 25. The society propose as one of the attractions this year to create a "relic department," devoting a large room exclusively to the exhibition of old relics, pictures, and objects of interest of every character, large and small, particularly those connected or associated with the early history of Pittsburg or Western Pennsylvania, and to this end respectfully request the loan of any relic of this character.

A Fatal Earthquake.

The recent accounts of the destruction in the island of Ischia, opposite Naples, revives the gld time records of the ravages of the earthquake in Portugal and other countries. A sudden shock of earthquake was felt at a little after nine o'clock, July 28, in Casamicciola, Ischia, at which hour a large portion of the people were at the theater. The building was slaken down, and many of the people killed or injured. Nearly all the bouses in the town collapsed, and the killed and wounded number not less than 2,000.
The ground opened in many places, while in ol her places there was no movement. Water gushed out of springs. Several boilers in the bathing house burst. The theater, which is a wooden structure, was literally torn open, allowing the audience to escape.

The Brush Secondary Battery.

The patent interference case of the American Electric Storage Company of New York against Charles F. Brush of the Brusb Electric Company of Cleveland, Ohio, was decided Aug. 2 by giving Brush priority of invention. The declaration in the case contained three counts, each supposed to represent a distinct invention claimed by both parties, as fo!lows: First, a secondary battery baving a plate of cast lead supporting the active coating; second, a secondary battery element consisting primarily of cast lead; third, a metlond or process of making a secondary battery element consisting in casting a suitable body, frame, or other support of lead, and placing thereon an active or absorbing coating or substance.

Two Disagreements Ended.

A strike by about 900 cloakmakers in New York city was ended August 2, after an idleness of two weeks. The terms of the agreement finally made were a guarantee of $\$ 15$ per week to each salaried employe on the basis of eleven hours per day.
On the same day the lockout of 10,000 cigarmakers was ended by mutual concessions by the strikers and the manufacturers' union, the actual terms not having been made public. This lockout lasted sixteen days.

A fruitrul source of damage done to boilers, and one which has ruined thousands, is the practice of blowing a boiler off and immediately refilling it with cold water, while the brickwork is red hot. The Age of Steel believes that nothing will tear a boilar to pieces quicker than this. Boilers have exploded with disastrous effect from this cause after the fire had been drawn. Probably most persons not familiar with the matter would be surprised to know the pertinacity whth which cold water will cling to the lowest point of a boiler under these circumstances. Local contraction of such severity is thus induced that nothing can with stand its effects, and a few repetitions are generally sufficient to ruin any boiler.

Šrientifir ©

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year postage included....................... 8390
.160
Clubs.-One extra copy of 'The Scientifio Am erican will be supplied gratis for every cuut of tive subscribers at $\$ 3.20$ each - additional copies at same proportionate rate. Postage prepaid.
emit hy postal order. Address
MUNN \& CO., 261 Broadway, corner of Warren street, New York
The Scientific American Supplement is a distinct paper from the Scientific american. 'THE SUPPIEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size
with Scientific Americ an. Terms of subscription for SUPPLEMENT, 35.00 a year, pustage paid th. atl news dealers throughout the councry
will be sent for one year postage free. on American and SUPPlisment of will be sent for one year postage tree. on receipt of
The satfest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 261 Broad way, corner of Warren street, New York
Sclentife american Export Edition.
The Sciwntific A merican Export Edition is a large and splendid peri-
Jdical, issued once a month. Eich number contains about one hundred ofical, issued once a month. Eich number contains about nne hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the SCl wntific
American, with its splendid engravings and valuable in AMERICAN, with its splendid engravings and valuable in Pormation: (2.)
Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire
to secure foreign trade may have large. and handsomely displaged to secure foreign trade may have larke. and handsomely dis
nouncements published in this edition at a very moderate cost. nouncements published in this edition at a very moderate cost.
The Sci mivipic Ammucan Export Edition has a large guarinteed circuIation in all commercial places throughout the world. Address MUNN \& CO., 261 Broadway, corner of Warren street, New York

NEW YORK, SATURDAY, AUGUST 11, 1883.

TABLE OF CON'TEN'TS OF
THE SCIENTIFIC AMERICAN STPPLEMENT NO. 397,
For the Week ending August 11, 1883. Price 10 cents. For sale by all newsdealers

V. DECORATIVE ART.-Chairs from the Collection in the Louvre, ${ }_{\text {Paris. }- \text { An illustration }}$

VIII. MEDICLNE AND HYGIENE.- Common Defects in the Sanitary
Arrangement of Houses and their Remedies. By Prof. W. H.

THE REVIVAL OF CHERRY

Those to whom fifty years is a memory readily recall the cherrywood tables, bureaus, drawer chests, that were then in fashion, when the more gaudy and more costly maho gany had but lately come in. It is an evidence of a return to good taste that the wood of the cherry tree is again in favor, not only as it exists in old furniture, but in its new requirements. It is largely used in cases for musical in struments-melodeons and organs-and in furniture-chairs and tables-after being " ebonized," or blackened by acids and dyes. But it is also coming again into use in its natural color. One of the finest banking houses in the Eastern States is finished entirely in cherry, and it is heautiful. The wood, filled and not varnished, has a soft glow not possessed by any other, and has none of those distortions of grain that are so unpleasant in mahogany.
The timber is chosen from the wild cherry, which in New England and the North generally does not usually grow to a girth of more than t reenty inches, but in some of the Western States and in the South frequently attains a diameter of twenty-four inches. The domestic fruit cherry gives some good specimens of small timber, but as the tree is rarely sacrified until it is past bearing and is decayed, this source of supply is precarious. Like all close grained timber, the best specimens are those which grow singly in exposed situations and not in a dense forest. The facility with which cherry can be worked makes it a favorite with the cabinet maker.

EFFECT OF alcohol upon digestion.

It cannot be claimed that we have yet learned all that is to be known about our stomachs and the reactions that take place within them, notwithstanding the fact that one man, at least, lived for many years with an open window, as it were, in his stomach.
Every contribution to our knowledge of the subject based on real, first hand, experimental proof, has some value, hence we think that the recent experiments of Dr . P. J. Spenzer upon the effect of wine on the medical properties of pepsine are worthy of carefuland thoughtful attention, imperfect as they are.
Pepsin, also known as chimosin, is one of the active fer ments of digestion. For medicinal purposes it is prepared by scraping the well washed stomach of a bog, and in this state possesses the property of dissolving a large quantity of coagulated albumen, such as the white of egg. Dr. Spenzer, in his paper read before the Ohio State Pharmaceutical Association, gives the amount of white of egg (hard boiled) that will be dissolved by one grain of the pure pepsine, of different makers, when mixed with eight drops of pure concentrated hydrochloric acid in six hours. The amount varied from 68 to $1 \% 0$ grains, with an average of about 80 grains.
He found that the acid alone would dissolve half as much as the acid and epsin, or 40 grains, and that eight drops of acid and 100 c . c. of ten per cent alcohol would dissolve as much albumen as the ordinary commercial pepsine and acid would together. This would make alcohol equal to pepsine as a digestive ngent for egg albumen. For raw beef the case is quite different; acid and alcohol having less power than acid alone, while acid and milk sugar dissolved as much meat as the best pepsine with acid.
It is to be regretted that alcohcl was not tried in combiation with pepsine.
In conclusion, Dr. Spenzer states his conviction that an hour's exercise in the fresh air is equal in digestive power to any usual dose of pepsine, regardless of maker. When commercial pepsine is used it should be as frest as possible.
H. Seeman has proved (Centralblatt fur Med. Wissensch.), that free hydrochloric exists in the stomach, although the presence of peptones prevents its detection by means of methyl violet. This is probably one reason why it has so long been an unsettled question whether it was hydrochloric or lactic acid tlat gave the acidity to the gastric juice.

AERIAL NAVIGATION.

A certificate of incorporation has been filed in the office of the Secretary of State of Illinois for the "Aeriad Navigation Company of Chicago," the olject of the incorporators being "the transportation of passengers and freight through the air." It is asserted that the machines to be manufactured by this company are a perfection of the onc tested at Hartford, Conn., several years ago, which at the time attracted considerable interest. Probably this refers to several trials of a balloon made by Mr. E, F. Ritchel, of Bridgeport, Conn., who exbilited in Hartford, in June, 1878, a baloon with propelling apparatus attached by which the upward and downward movements of the balloon could be governed, and by which in calm weather its course could be directed.
The balloon was a horizontal cylinder of silk, twelre feet long and twenty-four inclies diameter, capable of containing about 3,00 feet of gas. Suspended to it by cords and steel rods was a fiat frame of brass pipe, pointed at each end, and rods was a flat frame of brass pipe, pointed at each end, and
having a seat for the operator. In front of the seat was a gear wheel with two cranks, connected by a vertical shaft and a horizontal sbaft to tho propeller wheels, one at the lower end of the vertical shaft under the frame, and the other in front of the operator, and this wheel was attached to the sbaft by a universal joint so that it could be turned a distance of about thirty degrees from the shaft in a horizontal plane by the feet of the aeronaut. This wheel was the tal plane by the feet of the aeronaut. This wheel was the
propelling power and also the steering device. The levitat-
ing power of the balloon was barely sufficient to raise the apparatus and its load, the vertical propeller assisting if a rapid rise was desired, and bringing the balloon down without emitting any of the gas.
At one trial, on a calm day, the balloon rose from the basehall grounds at Colt's Meadows, Hartford, passed over Colt's factory, and nearly over the Connecticut River, turned about and returned, descending to the ground at the place from which it started, the distance being probably balf a mile and return, the balloon's height after rising from the earth varying from 300 to 400 feet, or thereabout.
At another trial, on the succeeding day, with quite a stiff breeze blowing, the aeronaut was unable to turn his bal loon around, or to stem the wind, and was forced a distance of nearly nine miles, when he descended and came back, with bis balloon, by carriage. But on this occasion be dedescended once on his trip to the dooryard of a farmer, procured a glass of water from the well, and rose again, haping to make a return trip.
No accurate test was ever made of the propelling or lifting power of the two fans, but they were sufficient, as proved by repeated experiments, to raise, lower, and steer the balloon except in a strong wind, the operator rotating the cranks at the rate of 100 revolutions per minute, producing, by means of pinions, a revolution of the fans of 3,500 turns pe minute.

cholera.

The article quoted from the Lancet, July 28, says: "We know that it (cholera) is propagated solely through excreta,
obvinusly, if the excreta of a cholera patient are allowe to to obviously, if the excreta of a cholera patient are allow el to dry in contact with the air, the air will then becone infected. . . . It is wanton recklessness to let excereta pass into the sewers.
ploy, we should use at once."
The writer of the above was certainly not aware that our sanitary plumbing laws do not allow the excreta to pass intu the sewer without going through a long soil pipe in the house, where, before it enters the sewer, it encounters a current of fresh air which there is made to enter the pipe, and traveling in the opposite direction througb the whole length of the pipe to the top of the house after having, according to its nature, as is above stated to be well known, taken the iufection from the excreta, and then passes out through the open end at the top of the house.
On a calm day, when the atmosphere is called heavy, the air from lhousands of excreta pipes doubtless does sometimes make its presence known to the dwellers and walkers below, whose supply of air comes from above, but perbaps it was considered that the noxious quality of the infection would be lessened by the greatness of the number of people would be lessened by the greatness
On such days in London, when the foggy air enters the city at one end, there you may see a long distance; but as it slowly travels along its miles of streets, it gains gradually in density by the smoke from the tops of the houses growing darker and darker, until before it has reached the other end the continuously added contributions lave made it dark as night.
If infection add to the specific gravity of air, act in New York as coal smoke does in London?
A plausible plan would be to make it impossible for sewer gas to enter houses or otherwise do harm by causing draught from the houses to the sewer, and from the sewers through purifying fires and pipes heated by them, up high chimneys built for that purpose or those of manufacturers, who might be compensated for their use.
There may be some objection to that plan, but fifty years ago the largest hotel in Boston used it very successfully; a tall chimney in their courtyard, into which a draught was caused by a fire flue running into it, being made available.

china as a market.

An article in the London Journal of the Society of Arts for July gives some interesting statements in regard to China as a market for the manufactured goods of the Western countries. He says that the great and increasing demand for cotton grools has suggested to prominent Chinese the establishment of cotton mills to manufacture not only imported cotton, but that of native growth. The scheme has not, however, advanced mucl beyond the embryo stage. The writer says that there is a great demand in China for needles, matches, window glass, and kerosene oil. The oiled paper and semi transparent shell that has beretofore been the substitute for glass in wiudows is gradually disappearing in localities near the trading ports.
As an instance of the increasing demand for glass, the following figures are worti noting. At the newly opened port of Wu-bu, on the Yang-tse-Kiang, the importations increased from 9,000 square feet in 1877 to 47,000 square feet in 1880. Again, at Wenclow, the importations for the same period increased from 7,400 square feet to 28,200 square feet.
The trade in friction matches is a large one and is increasing. At Hankow the importation increased from 42.98 ? gross in 1877 to 324,317 gross in 1880 , while at Tientsin the figures were nearly doubled in one year, rising from 92,000 gross in 1880 to 181,540 in 1881.
Needles for hand sewing are largely imported, the English needles being deemed greatly superior to those made in China.

Brass buttons, fancy soaps, furniture, cutlery, clocks, toys, photographs, canned fruits, sweetmeats, and crackers and biscuit are all welcomed in Cbina, and command good prices. Old iron is a commodity greatly in demand. Bale hoops from baled packages, barrel hoops, plates of boiler iron, wheel tires, old horse shoes, pieces of wire, and similar waste are in demand for small manufactures of iron and for streugthening manufactures of wood. The Chinese workmen prefer these scraps of iron to the mercantile sizes and sbapes.
But the article of foreign commerce which threatens to distance all other competitors in point of popularity is kerosene nil. The development of the trade in this article bas been remarkable of late. It is entirely supplanting the native bean and tea oil, which has done duty hitherto for
liglting purposes, and may be truly described as supplying lighting purposes, and may be truly described as supplying a want long felt. The oil is at present almost entirely supplied from the factories at Philadelphia, and the trade is practically a monopoly. From the high popularity it enjoys, there is every reason to suppose that, until the petroleum wells, which are known to exist in China, are opened up, the importation of the foreign article will continue to increase for many years to come. The extent of this increase may be gathered from the following returns: At Hankow, the imports rose from 27,976 gallons in 1877 to 285,157 gallons in 1880; at Wu u hu, from 2,190 gallons to 71,110 gallons during the some period; while the returns for Shanghai show that 18n 1879, the importation renshed the prodigious total of $4,780,440$ gallons.

Stewed Fruit for the Gouty and the Dyspeptic.*
Probably the impression first created by scanning the title of this paper will be as follows: "Why, what have either the gouty or the dyspeptic to do with stewed fruit at all?" That sugar is apt to disagree with sundry stomachs, causing great acidity, is a clinical fact not to be disputed. But because such is the case with a limited number of persons it dnes not seem, to me at least, that therefore a sweeping prolibitory law is to be laid down for a large section of the community. Gout poison, all admit, is a product derived from the albuminous constituents of our food, as nitrogen is a marked element in its composition. It is, then, the albuminous element in our food which has to be avoided in lithiasas. How sugar, fruits, and even vegetables came to be banned, my researches have not enabled me to ascertain.
From the time of Magendie's path-breaking essay, writers on gout have advised the restriction of the nitrogenized, or azotized, constituents of our food in cases of lithiasis. But that the objection to sugar in gouty cases exists may not be denied. In speaking of stewed fruit for the gouty and the dyspeptic my views will be heterodox in the eyes of many Buether the tight of etemfity yor the Tessons of practice conflict with my views. I am quite prepared to under the subject would be all the better for being thoroughly ventilated.
At the outset, I admit that for many persons-gouty, dyspeptic, and glycosuric-ordinary stewed fruit is objectionable from the amount of added sugar it contains. Where the acidity of fruit is masked or hidden by an excess of sugar, then the resultant product is cloying to many palates, and offensive to many stomachs. Probably in this all readers will agree with me. But it is by no means necessary to render stewed fruit objectionable by adding much sugar to it. Deprived of this excess of added sugar, stewed fruit can not only be rendered unobjectionable, but be converted into an actual propbylactic measure, especially in cases of lithiasis. In order to attain this end all that need be done is to neutralize the excessive acidity by an alkali, and then little or no sugar is required. Thrifty housewives have long been familiar with the fact that the addition of a small quantity of the bicarbonate of soda to stewed fruit reduced the acidity, so as to save the necessity for much sugar. This was done simply for economy. The principle bas a far wider application. Last June I was requested to visit a lunatic in the Midlands who was also gouty; and when the gout was acutely present she was more excitable and violent than of stewed fruit. To add potash to her stewed fruit was very easy, yet very effectual. After this I gave my cook instructions to perform a series of experiments for me with all our ordinary native fruits. The result of this was that the amount of bicarbonate of potash required for each pound of fruit was found to be about as mucb-as would lie upon a shilling. And this is a much better guide for a cook that to put so many grains.
With all fairly ripe fruit this was just sufficient to neutralize the acidity, and bring out the natural sweetness; indeed, the resultant product was quite sweet enough for most adult palates. Such stewed fruit could be eaten alone, or with milk puddings, or with cream, or the Swiss milk in bottles. Gooseberries, currants of all kinds, apples, and plums, all alike were excellent when so prepared. There are some points, bowever, to be attended to in practice, which are of more or less importance. The first matter is this: with dark fruits, as the black plum, for instance, the color is impaired by the alkali, and the fruit is less attractive to the eye tban is that of the ordinary stewed fruit, which is of a deep, clear crimson.
This matter is easily got over: a little cochineal will give
*By J. Milner Fothergill, M.D., physician to the City of London Hos-
pital for Diseases of the Chest. Communicated to the Zancet.
the desired color. Another is this: Where there is no natural sweetness, to neutralize the acid completely by an alkali leaves nothing, simply a cold mass, to which the palate is absolutely indifferent. Such is the case with rhubarb. Here it is well to use half or all the amount of alkali wilh some sugar. The same is the case with early gonseberries before they have any natural sweetness; no sugar formed in them. Here the full quantity of alkali should be used, and the remaining acidity met by sugar. Where three quarters of a pound of sugar is required to sweeten one pound of fruit, only one-quarter of a pound of sugar is necessary after the alkali has been added. The sour-sweet taste is thus secured, which is toothsome.
Now, in these two instances the stewed fruit is only rendered less objectionable to the stomach plagued with acidity, not made quite inoffensive. But for ordinary gouty individuals not troubled with acidity of the stomach, such stewed fruit is quite admissible, and forms a pleasant method of taking potash. The whole subject is one which deserves attention from invalids as well as their medical attendants, as it opens up to many a new field of diet altogether. Fruits au naturel-as the strawberry, for instance-are good in grut from the salts they contain, and are unobjectionable stewed, if it were not for the acetous fermentation of the added sugar. Here soda may be used. But where there is lithiasis the alkali ought to be potash. The gouty and the bilious alike are troubled with the products of the metamorphosis of albuminoids.
Neither the lithates of the gouty nor the bile acids of the bilious are derived from the saccharine or farinaceous elements of the food. It was possible to make bricks without straw, but it is impossible to make bricks without clay! No liver can make these nitrogenized substances from simple hydrocarbons: it is plysically impossible! The dietary for each is the same-a non-nitrogenized dietary, in which vegetables and farinaceous matters are indicated, and saccharine matters, too, unless acidity in the stomach is produced by tem. Milk puddings and stewed fruit are excellent for the dyspeptic, the bilious, and the gouty, as my experience tells me; and for one of those who suffers from taking sugar nineteen would be all the better for stewed fruit. But for those who dislike sweets, and for those who suffer from acidity, it is well to prepare the stewed fruit with alkalies, completely and solely or partially, as the case may be. This may sound very heterodox to some readers, but just let the ncredulous test the matter for themselves.
Now, there are two other matters remaining to be alluded to, on which it is impossible to speak dogmatically or $e x$ cathedra; they are, rather, matters of personal belief, and they are these: 1. It does not seem a matter of indifference in lithiasis what forms of albuminoids are taken. The flesh acid mellium-that is, by gastric digestion-tlan by trypsin in an alkaline medium. And such peptones seem specially liable to form lithates. Caseine is more specially digested ly trypsin in the intestine, and such caseine peptones seem less readily converted into lithates; the clinical fact being that a milk dietary or a pulse dietary is good for the subjects of lithiasis. Caseine is the form of albuminoid, it seems to me, best suited to the gouty. Milk or milk puddings (made without eggs) are capital food for the cholæmic or the lithæmic. These fibrin-albuminoids, digested by pepsin, are laxative, while caseine is bindiug or constipat ing.
Milk puddings, then, go well with stewed fruit, which is a laxative. Many thoughtful physicians agree with me in the above matter. Now I am approaching what some may hold very disputable ground, yet nevertheless I venture to say bere what I am beginning to think. Both for the classical diabetic and the glycosuric, cane sugar-the sugar of commerce-is bad, producing the unpleasant symptoms of sugar in the blood very readily. Yet many glycosuric individuals can take farinaceous matter with comparative immunity from discomfort. Starch in its way to grape sugar is much less troublesome than is cane sugar passing into grape sugar; why I do not know, but the fact remains. Now, with many glycosuric individuals fruit stewed in the manner advocated liere is quite permissible, while ordinary stewed fruit is very objectionable.
For the dyspeptic, the gouty, the bilious, and the glycosuric individual (as well as the truly rleumatic, a small class), fruit stewed with an alkali in the proportion of as much bicarbonate of soda as will lie upon a shilling to the pound of fruit when put in the oven, will be found both palatable and permissible. It saves the gastric acidity from the acetous fermentation of the sugar in the dyspeptic, or with the glycosuric relieves him from the excess of cane sugar which disagrees with him. Where there is distinct gout, not only is fruit stewed with an alkali good and unobjectionahle, but if it be prepared with the bicarbonate of potash it is converted into a therapeutic agent of no mean value; while the resultant product is quite sweet enough for a palate which has outlived the "sweet tootb" period. The whole matter is a simple one, yet it seems to cont:in much promise for many persons.

The reliability and excellence of this brake has become so well established by use on passenger cars that it is now being extensively applied to freight cars. We are informed that the Westinghouse Campany now has orders to fit up sixty
thousand freight cars with the brake.

THE DETECTION OF GAS LEARAGES

The accompanying illustrations show the principles of construction of two instruments designed by Herr C. Von Thicu, for estimating and discovering gaseous mixtures in air. The first is called a diffusiometer (Fig. 1), and shows the proportion of illuminating gas existing at any time as a mixture with air. A porous earthenware cylinder, a, is closed with an India-rubber stopper. By means of a perforation of the stopper, which rests upon the table, b, the pipe, c, is put in communication with the interior of the tube This pipe is closed at the bottom, but is connected at one side by the India-rubber pipe, d, with a gauge, e. The leg of the gauge is filled with litmus water. The vertical part of the gauge is eight millimeters in diameter, and is divided in millimeters, with the zero point at the water level. The

the detection of gas leakages.

calibration of the instrument is thus effected: A five liter gas-holder is to be half filied with air, and 100 cubic centimeters of common gas introduced therein. A plate of glass is then slipped under the bell when it is nearly drawn out of the water, and the contents lifted and shaken together. This process quickly and thoroughly mixes the air and gas, and the compound may then be applied to the porous cylinder by inverting the gas-bolder over it. Immediately the action of diffusion causes the water in the gauge to rise, and in the course of from five to ten seconds it reaches the maxi mum, which is marked. This is the 2 per cent line, and similar proceedings with 250 and 500 cubic centimeters of gas in the same mixing vessel give the 5 per cent and 10 per cent data. The diffusive action through the porous cylinder is so quick that in half a minute after the gaseous mixture has been removed the water in the gauge falls to its normal level. The purpose of this arrangement is to give warning of the presence of an explosive mixture of gas and air in closed apartments.
The second figure represents the other apparatus designed by Herr Von Thau, and is called a diffusioscope, which is intended to facilitate the discovery of leaks in gas mains or pipes. A glass tube is fixed in a very much flattened funnel, which is closed at a by a porous but otherwise airtight diaphragm. A capillary gauge, b, is connected by means of a cock inserted in the side of the funnel as shown. The up per end of the funnel-shaped stand is fitted with a tube, e provided with a cock, d, and connected at c with an India rubber cap. In use the cock, d, is first opened for a shor time, to establish equilibrium of pressures. This cock is then closed, the cover, g (usually kept on the bottom of the stand), removed, and the funnel is held over the suspected part of the gas main. Wherever there is a leak the gas collects under the porous plate, diffusion commences, and the gauge rises. To clear off the contained gas the gauge is taken off, and the cock, d, opened for a moment, when the instrument is ready for a new trial. When the delicacy of the apparatus is increased by the use of a diffusion dia phragm of large area in conjunction with a verysmall gauge, it is possible by it to discover leaks too small to ignite. The paper above referred to is given, in extenso, in the Journal für Gasbeleuchtung.

Asphalt as Fuel

Inventors ought to find a good field in the study of some effective means to utilize asphalt as fuel. The solution of this question would be of great service to this country. It is said that many of what were thought to be coal mines, recently discovered in various parts of Mexico, are really deposits of bitumen. Now while asphalt is highly combus tible there seems to be at present no practicable method to utilize it as fuel, owing to its melting when subjected to heat. It is likely, however, that with the demand for cheap fuel now felt all over the country for railway, mining, and other industrial purposes, some effective method can be devised to make practical use of its heat producing qualities; burning it, perhaps, after reducing it either to a liquid or vaporized form. The inventor of such a process could command a handsome iortune for the use of the right in this country. The products of the new oil wells in Vera Cruz, much of which are said to be too heavy for illuminating purposes, might also be utilized in the same manner.-Mexi san Financier.

The East and West India Docks Company of London has oldly embarked in a gigantic euterprise, for which sume commercial prophets predict a failure. This is the construction of docks at Tilbury, on the Thames, opposite Gravesend, of such magnitude that the Globe says: "On the whole, this dock extension promises to be the most remarkable that even London has ever witnessed, and will leave all other ports in the world far behind." They will have a tidal basin with a depth of forty-three feet, and the largest vessels afloat will go in and out without regard to the tide. The contracts call for four dry docks, with a total length of 1,730 feet, a floating derrick with a lifting capacity of 100 lons, special wharves and abattoirs for the cattle traffic, 15,000 lineal feet of quay berths, from forty to fifty miles of permanent railroad tracks, and a large botel for the accommodation of passengers. "Tilbury is certainly at a considerable distance from London," says the Globe, " but with the railway facilities to be organized, a few miles more or less will really be a matter of no great importance, while it is undeniable that, with the huge ships of the present day -and they still seem to be continually advancing in dimen-sions-the avoidance of a few miles of river navigation, with its windings and shallows and fogs, and the necessary cost of tonnage and pilotage, must be an immense advantage." The contracts call for the completion of the work within two years and a half, of which one year has already elapsed.

Novel Mode of Making Electric Lamps.

A new way of making incandescence lamps has been patented by Messrs. Soward, Probert, and Boulton. They take a glass bulb with two electrodes through it at a suitable distance apart, and either solid or tubular. A carbonaceous gas is then inserted into the bulb, and the electrodes connected to a generator of higb tension. Sparks pass through the gas inside the globe between the electrodes and decompose the gas, so as to build up an arch or loop of carbon between the electrodes. This bridge is the filament, and after exhausting the globe of air the lamp is ready for use.

NEW NUT LOCK.

A right hand screw thread is first cut upon the bolt of any desired pitch. A left-hand screw thread is cut upon as much as is desired of the right-hand screw, and a right-hand or support nut is turned upon the right hand thread, and a left-hand or locking nut is turned upon the left-hand thread of the screw. When the right-hand nut is turned to its place, and followed to a snug contact by the left-hand nut, any tendency of the right hand or support nut to unscrew will equally tend to tighten the left-hand or lock nut, so that the righe-hasd nut is positively and securely locked.
Projections are formed on the lock nut contact side of the support nut, and furrows or depressions are made in the contact side of the lock nut.
When the nuts are made in this form, the support nut must be turned past the point at which it is ultimately, to rest to just half the length of the projections. The lock nut is then turned almost to contact with the projections of the support nut, and so that these projections correspond to their respective depressions, at which position, if the nuts

IMPROVED NUT LOCK.
have been properly constructed, their wrench surfaces wil be in the same planes. Now, by turning both at once with the wrench, the support nut will turn down to its resting place, and the lock nut will turn up to a snug contact with the support nut, when, as in the former case, every tendency of the support nut to unscrew will only force the lock nut more snugly against it.
In the engraving Fig. 1 shows the nuts in place on the bolt, and Figs. 2 and 3 show the contact faces of the nuts. This invention has been patented by Mr. B. S. Cocker. Further information may be obtained by addressing Messrs. Cocker \& Hill, Tupeka, Kan.

COMBINED TAG AND ENVELOPE.

We give an engraving of a novel device which permits of sending the bill or invoice with the goods in all classes of business, a matter which is often of great importance, especially when the goods are of a perishable nature, the object being to enåble the dealer to know at once the cost of the merchandise, so that the goods can be sold without delay. The greatest advantage is the saving of stamp and envelope. as this combined tag and envelope does the whole thing for simply price of tag. Another advantage is that the address is concealed, and dealers cannot ascertain the address of the customers of their competitors, while at the same time railway and express companies can readily obtain the address when necessary.
The invention consists of an envelope made of tough paper-preferably waterproof-and provided with a long flap capable of covering one side of the envelope, and both euvelope and flap are provided with an eyelet. The bill or invoice is inserted in the envelope, and a string, wire, or hook is passed through the eyelets, securely fastening the envelope. The tag may be tacked to a barrel, box, or other package, and the flap may be secured by means of a rubber

or oilcloth strip, or other device. It is stated that there are over 150,000 now in use.
This useful invention has been patented by Mr. Jos. T Dunham, and is manufactured by Jos. T. Dunham \& Co., Pier•24, North River, New York city.

Improved Method of Producing Printing Surfaces from Gelatine Reliefs.
Messrs. Browu, Barnes and Bell, of England, have lately made an improvement on the Woodbury plan of producing printing surfaces. The method of working is to take a plate or sheet of lead and place above and beneath it lat sheets of steel; outside of the steel are placed sheets of cardboard, to give elastic pressure. On top of the cardboard another sheet of lead is placed, on it a lead plate, then a steel plate, and lastly a second sheet of cardboard. The sheets as thus arranged are passed between an adjustable spring metal roller press, set to a certain thickness. The sheets of lead are reduced to the thickness of the set of the press when passed through the same. This action produces a true, even, and proper surface for receiving the impression from the gelatine relief.
The gelatine relief is obtained in the well known manner of sensitizing with bichromate of potash.
To imprint the gelatine relief upon the sheet of lead prepared as described, the relief is placed upon the lead plate, then covered on both sides with a sheet of steel and cardboard, and all are passed through the spring roller press, which has the same set or adjustment as before; the addition of the gelatine relief causes an impression from the relief to be produced upon the lead sheet, which serves, when backed up, as the type for printing from.
When it is desired to print with greasy or fatty inks a grained surface is used, which is first obtained in the production of the original gelatine relief by placing between the positive and sensitive gelatine sheet a gauze or perforated sheet. A grained surface is thus incorporated into the original gelatine relief during the process of light printing. As thus prepared the relief is laid upon the lead sheet, and both are passed through the press as before stated. The grain of the gelatine relief is thus transferred to the lead sheet.
In place of producing the grained surface as above de scribed, after the gelatine relief has been impressed upon the lead sheet, a sheet of fine wire gauze, muslin soaked in glue and dried, sand paper, or their like is laid upon the impressed lead sheet and backed with a soft cloth, and all are passed through the press between the steel plates and cardboards.
A roughened surface is thus imparted to the lead plate. The advantage claimed for the general method as described is, that the gelatine relief is more easily impressed upon thin sheets of lead than upon thick plates by hydraulic pressure. Large sheets can be easily prepared, and less expensive machinery is required.

Vesuvios.-Letters from Naples say that the condition of the volcano has again become an object of serious attention to Professor Palmieri, and of wondering interest to ordinary spectators. Since the 21 st June the activity of the crater bas been steadily increasing, the first symptom being the upburst of a column of flame, visible at a great distance. Every night a fiery glow, like a gigantic crown, hovers over the summit, forming in the clear summer night a spectacle of mingled picturesqueness and terror.

THE BRUSH ELECTRIC LIGHT WORKS, ROCHESTER, N. Y. to its diameter, while at the same time the percentage o The following description of the power station for the power in proportion to water expended (accoraing to tests Brush Electric Lighting Company, of Rochester, N. Y., is made at the Holyoke testing flume) ranks it among the from the Milling World. These works are located on the highest and best. Another advantage possessed by this wheel west bank of Genesee River, at what are styled " the Lower Falls," within the city of Rochester, N. Y., and they derive their motive power from the waters of that river. They are intended for generating electricity for lighting purposes in the city of Rochester and vicinity. They consist of a brick superstructural building or house, 100 feet long by 50 feet wide, and one story high, resting upon and supported by substantial substructural walls and piers of stone and brick, of various heights and forms, and substantially based upon prepared foundations at various levels in the solid rock.

Fig. 1 is a cross sectional elevation through the wheel and gear pit, as viewed from the north or down stream end. Fig. 2 is a longitudinal section from the bottom of the wheel pit upward, as viewed from the west or land side of the works
The superstructure is spanned across its width at the base of the roof with nine trussed girders, which support the roof and the line shafting with its leading wooden immed band wheel, 5 foot diam eter by 4 foot 8 inch face, and 18 pairs of fast and loose wood-rimmed pulleys, 42 inch diameter by 13 inch face each, making 360 revolutions per minute, and connecting by 12 inch belts with 18 elec-tro-dynamic machines arranged upon the floor near either side of the either side of the building, as shown
in Fig. 1, giving in Fig. 1, giving
them 756 revolutions per minute, at an expense of 40 horse power each, making a total of 720 horse power, supporting 720 lights equat to 40 lights per machine, or one light per horse power. The magnittede of the lights is not stated. In Fig. 2 is a side elevation of one of the machines. The fast and loose pul leys which drive the dynamos were furnished by the Taper Sleeve Pulley Works of Erie, Pa., and they are so constructed and arranged that by one single and gradual movement of a double-beaded oscillating cam, in connection with : belt shifter, the loose pulley, which lonse pulley, which
hangs ou a hollow hangs ou a bollow independent bear-
ing (not shown in ing (not shown in
the cut), concentric with and surround-
ing the shaft without contact therewith, is thrown into gear and set in motion, so that as the cam is continuously moved forward through the extent of its parallel arc, which holds the loose pulley in gear, the belt is shifted on to it, when, by a little further movement of the cam, its inclived part at the rear end disengages the clutch, and the loose pulley, together with the belt and the actuated machines, cease moving and remain idle, until the cam is moved in the reverse direction, setting the idler in motion, shifting the belt into working position, and setting the machine in motion, when by the inclined part of the opposite end of the cam from that afore-mentioned, the clutch is disengaged and the idler is again at rest, out of contact with any of the running parts.
It is in contemplation to add 9 more electric machines in this same building, to be driven by the same power, should time and circumstance demand it, making 27 in all, producing 1,080 lights and requiring 1,080 horse power. The power is to be obtained by the use of two Victor turbine water wheels, 20 inches in diameter, made by the Stilbine water wheels, 20 inches in diameter, made by the Stil-
well \& Bierce Mfg. Co., Dayton, Ohio. This wheel is noted well \& Bierce Mfg. Co., Dayton, Ohio. This wheel is noted
for the extraordinary power developed by it, in proportion
is that its comparatively small diameter for a given power
causes it to revolve so rapidly as to make a considerable saving in the cost of shafting and gearing.
The situation and surroundings of the. water wheels and their appurtenances in this case are indeed unique and ex traordinary, and indicate a perspicacity of discernment, acuteness of conception, boldness of design, and thoroughness of execution on the part of the projector, that stamps him at once as eminently qualified to place and execute a work like this, environed as it is by great natural obstacles and serious practical difficulties. To make a proper place for the flume or forebay, an open recess or bay was cut into the upper rock bank about 32 feet horizontal deptb by 20 feet wide and 46 feet perpendicular depth, down to a level with the bottom of the head race. The bottom of this bay is about 45 feet below the floor of the superstructure, and extends under it about 28 feet. From the bottom of this
port to the stand pipes by their connection with the iron forebays, A A, they and the wheel cases, C C, are supported at their bottoms by iron beams, as shown in cuts. The turbines are placed in the wheel cases, C, and each one has about 58 feet of steel shafting, $31 / 8$ inches in diameter, coupled to it and supported by bracket bearings projecting from the stand pipes, B B. Each of said shafts has on it, near its top end, a spur pinion $213 / 4$ inches in diameter by 17 inch face, 17 teeth, 4 inch pitch, machine dressed. These gear into a core spur wheel $691 / 8$ inches in diameter, having 54 wooden cogs, and which is hung on near the bottom of a steel countershaft 6 inches in diameter and 60 feet long, on which, near its top end, is a bevel wheel 88 inches in diameter, 18 inch face, 55 teeth, 5 inch pitch, gearing into a core bevel wheel, $99 \cdot 6$ inches in diameter, with 56 wooden cogs, 18 inches wide.
This wheel is on a short, horizontal shaft, 6 inches in diameter, having on its farther end, beneath the floor of the building, an iron spider carrying a wooden rim band wheel, 10 feet in diameter by 4 feet 8 inches face, carrying a rubber belt 4 feet 6 inches wide by three-eighths inch thick, which
connects with the heretofore described five-foot leading band belt 4 feet 6 inches wide by three-eighths inch thick, which
connects with the heretofore described five-foot leading band recess at its back side is a shaft about 12 feet square, sunk connects with the heretofore described five-foot leading band
wheel ou the main

line of shafting above, and drives them.
The turbines operate under 94 feet head of water, including the ten foot draught tubes, and are estimated to make 582 revolutions per minute, and develop 572 horse power each, which, combined, equals 1,144 horse power. The counter upright shaft makes 183.22 revo. lutions per minute, the counter horizontal shaft, with the ten foot band wheel, $179 \cdot 95$ revo lutions per minute the main line shaft about $359 \cdot 9$ revolutions per minute, and the electro dynamos $755 \cdot 79$ revolutions per minute.
This work bas all been carried out under the direction and immediate su pervision of Mr . Joseph Cowles, of Rochester.

The Fatal Cramp.
 A writer in thE

 British.Medical Jour nal calls attention to the frequent notices of death, by cramps, of bathers and suggests some preventives-reme dies are in these cases too late. He says that cramp is a painful and tonic muscular spasm. It may occur in any part of the body, but it is especially apt to occur in the lower extremities and, in its milderperpendicularly into the rock to a depth of about 90 fee to a point some four or flve feet below the surface of the backwater from the river below the falls, which are nearly 100 feet high, as will be seen by the cuts. From this shaft a culvert extending about 36 feet in height from the bottom of the shaft is cut through the rock out to the river, as shown in the cuts. Between the top of this opening or doorway, and the bottom of the race and forebay, is about 55 feet vertical thickness of rock, as shown in cuts, being represented in section in Fig. 1.
On the bottom of said recess in the rock, and partly over the shaft therein, is the flume, containing two U-shaped iron forebays, AA, seven feet high, opening toward the head race, and from the bottom of which are suspended two iron stand pipes, BB, 76 feet and 10 inches long by $421 / 2$ inches in diameter, their upper ends opening into the forebays to receive water to supply the wheels. At one side of each stand pipe, and connected thereto with a short cylindrical tube, is an iron wheel case, \mathbf{C}, with a draught tube attached to its bottom, and extending some ten feet downward, and entering the back water. One wheel case in each figure is
partly broken away, to show the wheels. Besides the sup-
forms, it is limited to a single muscle. Pain is severe, and the contracted muscles are hard and exquisitely tender. In a few minutes the spasm and pain cease, leaving a local sensation of fatigue and soreness. When cramp affects only one extremity, no swimmer or bather, endowed with average presence of mind, need drown; but when cramp seizes the whole of the voluntary muscular system, as it probably does in the worst cases, nothing, in the absence of prompt and efficient exiraneous assistance, can save the individual from drowning. Its most powerful and most avoidable cause is the sudden immersion of the body, when its surface is highly heated, in water of a relatively low temperature.

How a Woodchuck Looks to a Child.

The Boston Post says, a gentleman from Boston was riding with his two little daughters in Maine the other day when a w oodchuck scampered along the road in front of the horse. The youngest of the little girls, aged about $31 / 2$ years, watched the woodchuck with eager interest, and when he turned and disappeared in the woods, she said to her father, with the relieved air of having sołved a mystery, "Papa, it was a sponge, wasn't it?"

Development of the Artificial Ultramarine Industry.
The following abstract of a paper prepared by Dr. Ernst Rohrig for the Chemiker Zeitung, has been made especially for our columns as presenting facts of world wide interest Although it is doubtful whether the animal consumption is steadily increasing, the German factories, according to Dr. Rohrig, show an increased production in the last ten years of about three million pounds. Aniline colors are fast crowding ultramarine to the wall for paper making, and the poor quality of some of the ultramarine that has been put on the market has also brought the whole into disrepute. Germany surpasses in number and size of its factories all other countries, although not protected by import duty on ultramarine, so that large quantities are imported from France and Austria. There are a few factories in this country, but they are not able to supply the home demand.
Artificial ultramarine was first prepared in 1828 by Guimet in Toulouse, and simultaneously by the celebrated German chemist Gmelin. The contest for priority of the discovery was settled by the late R. Von Wagner, by means of documentary evidence showing that the discovery was made in dependently by both. (The editor of the Chemiker Zeitung considers Gmelin's priority to have been very positively established.) Simultaneous discoveries in chemistry have been frequent enough, as in case of chloroform, gun cotton, and even oxygen.
Before artificial ultramarine was discovered, the natural ultramarine was made from the costly lapis lazuli, by a tedious method of grinding, washing, floating, and purifying, so that it cost then $\$ 225$ per pound. Its use was very limited owing to its price.
The chemical composition, according to Clemens, and Desormes, is as follows:

While the process which Guimet discovered for making ultramarine remains a secret to the present day, Gmelin at once published his discovery and observations, and thereby became the creator of the German ultramarine industry.
Gmelin's publications in Liebig's Annalen induced many other scientific men to institute investigations into the theory of ultramarine production, but up to the present time no satisfactory theory bas been established. For a closer study of the subject Rohrig refers to the excellent essays of Ritter and Ebell. Gmelin's discovery at once furnished the technical chemist with an impulse to institute experiments for making a practical use of the discovery. Each strove to invent for bimself a practical method for making artificial ultramarine on a large scale, and in this way the different ultramarine factories of Germany have been gradually called into existence.

The earliest of these factories was that of Leverkus, established in 1834 in Cologne, and next that of Leykauf in Nuremberg, founded in 1837 , in both of which a more or less independent process of manufacture was built up. And even at the present time each separate factory has its own special peculiarities of manufacture, some of which are more or less important, with others that are perfectly nou-essential.
There are two kinds of ultramarine, known as sulphate ultramarine and soda ultramarine. They differ from each other in their external appearance, in their properties, in the methods of preparation, and in the raw material from which they are made.
The raw materials used in making "sulphate" ultramarine are kaoline clay with but little silica, sulphate of soda, sulphur, and resin or coal; those employed for soda ultramarine are silicious clay, quartz or infusorial earth, soda, sulphur, and resin. The proportions of each to be used will depend upon the shade and quality of the ultramarine to be produced. For example, an increase of sulphur deepens the color, more silica will better enable it to resist acids and alum, and gives it a reddish shade, while less sulphur, with but little silica, gives a light blue of little coloring power and unable to resist alum. The sulphate ultramarine has less resistance for acids, yet has greater coloring power, and the color shades toward green.

The manufacture of ultramarine embraces the following operatious:

1. Preparation and Mixing of the Raw Materials.-The clays are ignited more or less strongly according to the requirements of ultramarine, and then ground as finely as possible by means of millstones, and the quartz likewise, if it is used. After the clay has been mixed with the other substances they are run one or more times through the millstones to secure an intimate and thorough mixing.
2. Igniting or Burning the Mixture.-This is mostly done in crucibles placed in rectangular furnaces with fire beneath or in muffle furnaces, and in a few cases in retort furnaces. The heating differs with the mixture and the furnace. The sulphate mixture, for example, requires a much greater heat in burning than the mixture for soda ultramarine, for it requires an orange-red heat to convert sulphate of soda into sulphide of sodium, while soda ultramarine is formed at a much lower temperature.

The chemical changes in this process take place in two stages; in the first, Ritter's white ultramarine is formed; a silicate of soda and alumina, which contains sulphide of
sodium, either mixed or chemically combined. A polysulphide is likewise formed, which is mixed with it mechanically.
In the second stage, which begins as the furnace cools and the reducing gases disappear, the mechanically intermixed polysulphide is oxidized by the air to sulphate, and the white ultramarine changes to blue.
An intermediate stage is the production of green ultramarine, which is formed more largely in burning the sulphate ultramarine, because the white ultramarine, or mother substance, does not contain enough polysulphides to make a blue. To convert this green ultramarine into the blue requires special roasting with the addition of sulphur. Green ultramarine also finds cousiderable usedirectly as a pigment. Soda ultramarine made as above is perfectly blue at first.
3. Washing the Crude Ultramarine.-This operation is necessary in order to remove the soluble constitutents (sulphate of soda and dirt) from the crude product, and is accomplished by boiling it separately in distilled water heated by steam.
4. Grinding the Crude Ultramarine.-Its power as a pigment is developed by grinding. "The finer it is ground the greater its power and the lighter shade. It is ground on wet moma
5. Floating the Ground Ultramarine.-This operation separates the coarser from the finer particles; the coarse grains have a darker color but less power than the finer ones.
6. Drying the Ground Pigment.-This is accomplished in kilns of various construction.
7. Preparing the Dried Pigment for the Market.-As it becomes somewhat packed in drying, it requires to be broken up and sifted. It now only requires suitable adulteration to fit it for the market.

Induration of Soft Limestones with Fluosilicates.
The use hitherto made of alkaline silicates to harden limestones is far from satisfactory; it leaves the stone impregnated with soluble salts which are only expelled after long exposure to rain. These salts of potassa and soda rapidly nitrify, and assist the growth of fungous bodies for which the potassa salt is a manure. Another mischievous consequence, resulting from this process, is the formation of an enamel impermeable to water upon the surface of the stones wash, and this enamel upon the arrival of trost imprisons the water, which freezing underneath this obstinate varnish forcibly detaches the glassy coating and breaks and injures the underlying surface. M. L. Kessler has apparently succeeded in replacing this indurating bath by a solution of fluosilicates of bases whose oxides and carbonates are insoluble in a free state.
When soft limestone is saturated with a concentrated solution of a fluosilicate of magnesium, aluminum, zinc, or lead, a degree of induration is soon reached which is very considerable. In fact, except the liberated carbonic anhydride there is formed only fluorspar, silica, aluminic oxide, and carbonates of zinc and lead or fluoride of magnesium, all of which are less soluble than the limestone itself. No varnish is formed and therefore no danger threatened from the expansion of frost underneath it, the process has per-
fectly resisted the severe tests of winter, and this method of silicification is only slightly more expensive than the old process it is intended to replace.
It possesses unexpected advantages. It is frequently valule to give to the surfaces of soft limestones the appearance and the polish of the hard marbles, if only to avoid the settlement of dust and soot upon their rough surfaces. In order to smooth and polish the coarsest limestone it answers to coat it with a paste made of the pulverized stone and water, and after drying to impregnate it with the fluosilicate chosen for its lapidification. It forms a homogeneous body finely granular in texture, and as hard and refractory as the stone itself. It is only necessary to take some very simple precautions to avert the carrying away of fine dust in the beginning of the operation, caused by the rapid disengagement of carbonic anhydride. The skill in its application consists in flowing the solution in a thin film over a surface sufficiently dried.
When a coloring substance insoluble in water is mixed with the paste, a very variable and interesting series of decorative effects are secured. Finally, by employing colored fluosilicates, as those of copper, chromium, iron, etc., the limestone is colored even in its interior by the formation of insoluble compounds. These colors follow the intimate construction of the stone and afford designs of considerable
beauty.-Les Mondes.

. The Value of String.

Perhaps it is natural instinct that makes the "smal boy" tie up to a piece of string. But the possession of string in an emergency is the subject of more than one truthful although romantic tale. The descent of a work-
man left on a chimney, by means of a string to pull up a rope, is familiar, and the stretching of a connecting cord across a Virginia chasm by means of a kite, saving three persons from the fate of Indian captives, in the early days of the country, is remembered. But a better because nearer city Rose Street. Fourteen firemen were cut off in the upper Rose Street. Fourteen firemen were cut off in the upper
stories of the building by a "back draught," which surrounded them suddenly with smoke and flames, and cut off
their retreat by the stairs or fire escape. They crawled on
their hands and knees to a window and called for help, but the noise in the street prevented their cries from being understood, it being thought by those below that they were calling for more hose, and preparations were making to send it up to them. Meantime they were in danger of being suffocated, and the flames were gradually advancing upon them. Finally Chief Gicquel saw their peril, and a ladder was raised for their rescue, but it was too short. Finally one of the imprisoned men found a piece of string, which he lowered to the ground, a life line was drawn up, speedily made fast inside, and the men began their descent to the ground. One of them was so faint from exhaustion that he was unable to clasp the rope, and slid down it some fifty feet, lacerating his hands terribly. He was caught at the bottom by a companion, and saved from further injury. The others reached the ground in safety, but scarcely had they done so when the flames burst from the windows they had just abandoned.

An Editor's Experience with Lichtning.

Mr. H. M. Burt, editor of Above the Clouds, published at the Summit House, Mount Washington, N. H., writes to a friend in Hartford, Conn., detailing his experience with a bolt of lightsing. He said that he was in his office at about six P.M., July 28, when he felt a tremencous blow in the back. "I could not imagine at first what caused it, but instantly thereafter I saw a ball of fire as large as a man's head in front of me, not three feet off. It exploded with a tremendous noise, seemingly as loud as a cannon, and then I knew what must have happened. My left leg seemed to be completely paralyzed, and I fell to the floor. Three of my printers were in the room at the time, two sitting at the table near me and one standing up a little further off. The latter had the skin on one hand torn up, another was hit in the back, and the third escaped without injury."
Mr. Burt gradually recovered from the temporary paralysis induced by the electric stroke, and he winds up his account by saying: "You have probably heard of the impression of a tree being found upon the bodies of those killed by lightning. The same thing was noticed upon my back, and, as there are no trees upon MountWashingtou, it seems to me that the peculiar appearance must be the result of the blood settling in the smaller veins."

Dr. Henry Macaulay, M.D., of Belfast, has recently made a suggestion which, if followed in tropical countries, will turn the tables on the sun with a vengeance. He suggests that Mouchot's sun engine should be used to pump cold air into dwellings, factories, etc., pointing out that the temperature, can in this way be reduced from 100° or more to 60°. He points out that not only will this reduce the temperature especially at night, thus rendering sleep possible, but fresh air will be guaranteed during the day, and the plague of flies and insects would be excluded. The weak point about this arrangement is that it requires ice. We think, however, adds Nature, that sooner or later in America where the heat in summer is more distressing than in any other part of the world, and ice is everywhere, this arrangement, or one like it, is certain to be adopted.

Steel Nails.

At first the extra cost of steel nails was one and a half cents per pound, or $\$ 1.50$ per keg, but it has now been reduced to $\$ 1$. The great advantage of the steel nails is that they can be driven into hardwood as easily as an iron nail will go into a pine board. Stee! nails have been driven into white oak knot without bending. Nothing else is now used in laying bardwood floors, as they require no boring, but are driven readily. For all kinds of finish they are especially adapted, and as so much hard finish is now em ployed, their use must be on the increase. They are also used largely by builders, and box makers are increasing their demand for them. Box makers have been using the better grades of iron nails, as they desire those that can be drawn and redriven.

Dakota Enterprise.

The following newspaper item well illustrates the rapid utilization of lumber in new sections of the country: "Towns grow out West. A denizen of La Bean, Dakota, was re cently asked what the population of that town was, and he replied: "Well, the first lumber was received two weeks ago last Sunday. Now there are six general stores, one dry goods store, one bardware stnre, five saloons, one meat market, three lumber yards, one bank, one newspaper office, one telegraph office, a post office (with 280 calls and 80 lock boxes of the Yale pattern, in a building 20x30, two stories high), two hotels, and some other structures. Since then there has been started anotuer bank, a 50 room hatel, a hardware store, a dry goods house 30×80, and a Presbyterian church."

Over the ocean on Wheels.

A dispatch from London, dated July 29, says that Terry, the man who left Dover at 9 o'clock yesterday morning on a floating tricycle, crossed the English Channel and arrived safely at Calais at 5 o'clock in the afternoon. His machine was a tricycle of two side wheels of large diameter and one steering wheel of smaller diameter, each of them buoyant by a hollnw composition of water-tight material. The propelling power was his own legs, the larger wheels being furnished with paddles at proper distances on their peripheries.

Cortex Mundtur.

Storage of Wind Power.

To the Editor of the Scientific American:
Upon reading your first article offered by W. O. A., on the storage of wind power, a plan occurred to me which would do away with the engine, which I suppose would be necessary if you took power from compressed air; my plan iscto raise a heavy weight in a shaft, runuing from the ground to the roof, the size of weight to be determined by the amount of power required. I would have wind wheels attached to weiglt by proper gear, so that we could wind up power at the same time we were using it, and have two o three days' power in advance, which would be imparted to machinery upon the clockwork principle. The idea seemed to me very simple.
Calais, Me., July 24, 1883.

Rotary from Reciprocating.

To the Editor of the Scientific American.
While developing an invention several years ago, I had occasion to make use of a mechanism which would give me a one-way rotary movement from a reciprocating rotary motion. Not being able to find such, I devised one; and never baving seen anything like it anywhere, or the same movement effected in any other way automatically, I deem it may be new, and if so, of use to some of your mectarical readers.
In the cut, B is the power shaft, and A the transmitting shaft, the separation of the two being indicated in dotted lines. Bevel gear, E, is free upon shaft, B, idle wheel, D, is loose upon its axle, and C is fast or keyed to shaft, A. The double forced grip or frictional adherence " clutch," b,

is free to move longituainally upon both shafts. Projecting from sbaft, B, is a pin, a, or may be a tongue free to slide smoothly in a slot or recess set at an angle, formed into said "clutch." Now, when B is rotated, as shown by as to direction and speed, and when B reverses, as per arrows, x^{\prime}, the "clutch" shifts instantly to bevel wheel, E, in which case the shaft, A, is driven as before; and from the reciprocating rotary motion of B we get a one-way rotary movement of A. The promptness with which the shifting of b is made is dependent upon the pitch of the angular slot and the clearance of the frictional adbering surfaces.
S. D. Мотt.

59 Astor House, New York.

How to Get Rid of Red Ants.

To the Editor of the Scientific American:
In the Scientific American of July 14, I noticed among the Notes and Queries (No. 1) the question: "What will kill, remove, or destroy the small red ants?" The reply was, greased paper. I tried greased paper for many seasons, but the ants returned again with every summer.
For four years I have used water treatment, and have not seen an ant since the first year of using water. If the ants come in at the pantry window, wet several folds of old cotton cloth, and lay it the whole length of the outside window sill, occasionally pouring water over the cloth, and this will effectually prevent the ants from entering.
Ascertain where they come in, and treat them with the wet cloths. They cannot crawl over anything wet.

Plymouth, Mass., July 25, 1883.

Prehistoric Man.

Professor Marsh contributes a paper to the American Journal of Science for August in regard to the reported finding of human footpridts in sandstone near Carson, Nevada. He says that many different kinds of tracks were found, some of which were made by an animal allied to the elephant; some resembled thise of the horse and the deer; others were apparently made by a wolf. There were also tracks made by large birds. The supposed human footprints are in six series, each with alternate right and left tracks. The stride is from two and one-half to over three feet in extent. The individual footprints are from eighteen to twenty inches in length, and about eight inches wide. The distance between the line of right hand and left band tracks, or the striddle, is eighteen to nineteen inches. The size of these footprints. and especially the width between the right and left series, are strong evidence that they were not made by men, as has been so generally supposed. A more probable explanation is that the impressions are the tracks of a large sloth, either $M y$ lodon or Morotherium, remains of which have been found in essentially the same horizon.

[San Francisoo Chronicle.]

The Coining Process at the San Francisco Mint.
There have been but few registered visitors at the mint since that time, but a reporter, unobserved, passed in among the number and commenced his annual investigations. A number of bars of bullion were the interesting objects first
pointed out by the conductor to his visitor. After that inpointed out by the conductor to his visitor. After that introduction of the subject of money making he continued his interesting narrative, detailing every process in the coining of a dollar, from its receipt as metal of an uncertain value to of a dollar, from its receipt as metal of an uncertain value to
its issuance for circulation. Bullion is received is the form its issuance for circulation. Bullion is received in the form
of bricks of all sizes and very peculiar shape when it comes from Spanish American countries. The regular shaped bricks often weigh as heavy as 150 pounds.
The Mexicans melt their silver and run it into the most crude shaped moulds in the world, in quantities so large and heavy that a burro could not carry one casting. It seems strange at first to think of these indolent people performing a very troublesome and laborious operation only to find themselves confronted with more labor. There is good reason, however, for the large castings. If the valuable metal were carried in quantities convenient for handling, raiders for miles around would be after it and demand the whole or a large portion of the silver as salvage for protection against other raiders. The Mexican silver received at the mint is taken to the machine shop and cut up before it is in shape to be put into any of the largest crucibles. The regular shaped bricks are taken first to the assay office, where the diagonally opposite corners of opposite surfaces are clipped and the brick bored into both ways. An assay is then made of the clippings and borings. The result of an assay is made known to the person making the deposit in about twelve hours. He gets his money and the government gets his bullion.
After the assay the bullion passes to the refinery if it should require tbe operations there performed. It is melted in the refinery and poured out on water. There is a great sputtering for a few moments, and then a result called "the granulations" is perceptible. The solid molten mass has become scattered in particles of many sizes and indescribable shapes. The general appearance is that of the fallen leaves of forest trees which have become crisped up by the frost. The granulations are then weighed and put into large calThe granulations are then weighed and put into large cal-
drons of ironstone china about the size of a barrel. The caldrons of ironstone china about the size of a barrel. The cal-
drons are valued at $\$ 100$ each, and the men working about them are very careful in their movements lest they should damage or destroy one. The caldrons are set in rows on a false floor, under which pass steam pipes. Water flows around them to the height of about a foot. A quantity of muriatic acid is then placed in the caldrons proportionate to the amount of granulations. They are then closed
to pipes beneath the false floor, and the steam heats the caldrons and their contents. The red fumes at the chimney tops are generated in this process. This heating reduces the granulations to a fluid state if they are silver, but gold remains solid in granulations if part gold and part silver. The fluid is drawn off by a siphon and deposited in tanks about twelve feet in diameter which contain a stirring apparatus driven by steam power.
Common salt is then placed in the solution to precipitate the silver. It is deposited as chloride of silver, and the liquid is drawn off through filters and allowed to flow away. The chloride of silver precipitate is about the consistency of a mason's putty coat, and resembles it very closely in other respects. The acids are then cleansed out by washings in what is well known as the sweetening process. When the silver has been obtained in a state as near as possible to ab solute purity it is taken to the press room, and by hydraulic pressure compressed into solid circular masses of from
twelve to fifteen inches in diameter and five inches thick, resembling very much the shape of a cheese. The silver is then placed in an oven in iron pans. A fire is raised and the iron and oven are brought to a cherry red color for the purpose only of driving off moisture in the chloride of silver. The least portion of moisture in the crucibles would break them, and the silver would he lost in the ashes. The cakes next go to the melter and are run into bricks. If it goes on the market as bullín, its weight in ounces and its value is
stamped upon each brick. If it is to be turned into coin, it is again melted and an alloy of one-tenth copper is put in both for silver and gold, and the whole is then run into ingots.
These are heated and rolled to the proper thickness and width, and the strips are then annealed and whitencd. The blanks are next punched and cleansed of the grease from the rollers, and are then sent to the adjusters. Each piece is weighed and if found too heavy a little is filed off the edge; if under weight, it is remelted. From the adjusters the blanks pass to the stamping room. The milling, as it is generally termed, is then put on, but not at all according to the popular idea. If the blacksmith's homely but expressive word of "upsetting" were used instead of milling, there would be but little doubt as to the process.
After it is upset, to raise the ring on the surface, the blank passes under the die. The impression is made on both sides from one blow. The milling is in reality by pressure-squeezing the silver out into the little grooves of the mould. A rule of the coiner's department does not allow an employe
to leave it during the dav until after the accounts are adto leave it during the day until after the accounts are ad-
justed. From the coiner the money passes to the counter who with the aid of a counting board, which holds an exact number of pieces, is able to count thousands where a person ordinarily would count only units. The counting board
carries just 1,000 silver dollars. One of the most interesting objects to be seen in the mint is a large balance scale, so nicely adjusted that one may take a hair from the head, split it and place it on one of the scale pans, and the beam will be noticeably deflected. Only dollars and "twenties" are now being coined, but there is money enough on hand in the mint to make half the town rich. There is more money than can be handled. The reporter noticed the heavy doors for a new vault which is to be constructed as a strong place for the excess of coinage. There is $\$ 15,000,000$ in one vault, $\$ 8,0: 0,000$ in another, and $\$ 6,00$?.$\$ 15,000,000$ in one vault, $\$ 8,0 \% 0,000$ in another, and $\$ 6,00 ?$,-
000 in another, bes 1 les bullion which will turned into money 000 in another, bes des bullion which wi
as soon as the new vault is completed.

Eruption of a Volcano in Lake Nicaragua,

During the past three or four months the extinct volcano of Ometepe-au island in Lake Nicaragua, twenty miles long-has given signs that it was about to burst into activity. Smoke, flames, ashes, pumice stone, small lava flows, and all the accessories which mark a complete volcanic outlet have been seen. The inhabitants of the island have been frightened, and for leagues around on the mainland the people have been in a constant state of excitement, as is proved by the following interesting relation given in the Panama Star and Herald. On June 19, for the first time, the lava streamed from the new crater and ran in the direc tion of Las Pilas, but until the 2?d it had not reached the main road at Sinacapa. On the night of the 20th the sides of the mountain were alive with fire as the lava poured down, sweeping with it trees, rocks, and earth, while the continued bellowings of the volcano struck terror into the hearts of all who heard them. On the 23d, the whole island was continually quaking, many of the inhabitants fled, and the authorities commenced preparations for the removal of every one from the island. On the 24ih the lava bed had covered up the road, and two young men who had gone with others to watch the flow had been buried under it. The lava continued to pour out in an almost uninterrupted stream, but up to the 25th of June it had not reached the bore.
On the 26th a panic set in among the populace caused by the prolonged and incessant rumblings, the torrents of lava and the clouds of ashes and dirt which continually issued from the mountain. In consequence schooners and boats were sent to the island to transport the people to Granada, Rivas, and other cities. The lava flow on Tuesday, the 26th, took a new direction, and pouring down within a mile of the town cut off communication with the farms and pastures upon which the islanders depend for their living. On the 27 th and 28th the eruptions were horrible in their intensity, and led to the few remaining people fleeing to the mainland. ides of the mountain and the pleasant slopes which have been cultivated for centuries by the peculiar and ancient race which inhabited the island. The view of the volcano when in eruption is said to be one of surpassing grandeur. Clouds of smoke sweep upward, through them flash glittering masses of burning, half molten rocks, which shatter into a thousand fragments on coming into contact with the cold air, while underneath there swells, bubbles, and throbs the ever-surging mass of red hot lava destined to carry ruin to the villagers whon have hitherto lived on the flanks of the volcano. Although the ground is in a continual tremor no earthquakes have been experienced, and the clouds of ashes which constantly rise do not trouble visitors to the island. The strong winds sweep them over to Rivas, where land owners are becoming alarmed at the prospect of their crops being damaged.

Experiments with Peas.

. Experiments have been made this season, at the New York Agricultural Experiment Station, at Geneva, N. Y. on the period of growth of peas and the relative value of seed matured from the earliest and the later pods. It appears from experiments with sixty-eight so called varieties the earliest edible pods were obtained in fifty-five days from planting, and of fifteen others the latest required fifty nine and a half days. Of seed peas gathered from the first pods and from the latest pods, the average difference in the vegetation of the seeds was fourteen and one-half per cent in favor of those earliest matured, and in favor of earliest production of edible peas a difference of five days in favor of the earliest matured seeds. In productiveness, also, the difference in favor of those from the earliest matured seed is considerable, from an equal number of plants the earliest seed vines producing in the same time thirty-eight well filled pods to only thirteen well filled pods from the later matured seed.

Postal Notes.

It is only a month before the public will have the new postal notes, the limit of their preparation being September 3. They will prove to be a great convenience, as the sedder can transmit any sum from one cent to five dollars. The New York Tribune illustrates the convenience of the new arrangement loy stating that " a lady living out of town who wants to send $\$ 3.79$ to a drygoods store in New York will hand that sum, and 3 cents fee, to the postmaster. He will give her an order with the figure three punched in the dolar column, the figure seven in the column of dimes, and the figure nine in the column of cents. Thisis simple and easy, and offers no chance for fraud."

tUNNEL BORING MACHINE．

The illustration of the boring machine for tunneling the English Channel，herewith shown，is from a photograph furnished by Mr．Thomas English，the patentee of the in－ vention．The main framing of the machine consists of two parts．The under frame or bed is of trough like form； fitting the lower part of the circular tunnel，and having at its upper edges suitable guides parallel to the axis of the tun－ nel，along which the upper part of the framing is fitted to slide longitudinally
On the upper frame the axis of the boring head is mount－ ed in bearings with gearing and an engine worked by com－ pressed air，so as to cause the boring head to revolve slowly． The axis of the boring head extending backward is made tubular and fitted with a piston，the rod of which projects backward and is fixed at its end to the under frame or bed． An air engine works hydraulic pumps，whose throw can be varied at will，forcing water into the hollow axis of the varied at will，forcing water into the hollow axis of the
boring head tbrough a channel provided within the piston rod，and thus causing it to advance while it revolves．When it has advanced as far as the length of the guides permits，the gearing by which it is revolved is disconnected from the en－ gine，its axis is relieved from the hydraulic pressure，and by means of four hydraulic jacks projecting down from the upper framing and made to bear against the lower part of the tunnel，the whole machine is slightly raised．The water under pressure is then admitted into the annular space round the piston rod，and while the upper frame remains stationary the under frame or bed is caused to advance under it，after which the lifting jacks being relieved from pressure allow the bed to take its bearing in its advanced position，and the boring head is again put in motion forward．
The boring head consists of two strong radial arms pro－

Exhibition of Insects．

The exhibition of insects lately opened at the Palais de l＇In The exhibition of insects lately opened at the Palais de l＇In－
dustrie，is the twenty－sixth exhibition of insects held in Paris under the auspices of the Societe Centrale d＇Apiculture et d＇Insectologie，the object of the society being to classify and improve the insects useful to man，and to point out the best means of extirpating the noxious ones，or at least of check ing their ravages．The association，at the head of which is Dr．Marmottan，deputy for the Department of the Seine， has succeeded very well in its attempts，and the exhibition this year is，says the American Register，organized on a very complete scale，being composed of four main divisions and one subsidiary one（devoted to snails and slugs）．The first division comprises all insects of recognized utility to man and the various stages of their development，from the egg to the perfect state．The second division contains noxious in－ sects；they have very advisedly been classed，not according to the scientific grouping，but according to the plants they prey upon．There are ten classes in the noxious division， the firstsix of which include the parasites of vegetables and trees；the seventh and eighth contain the insects which prey upon timber and upon manufactured materials，silk，linen， etc．；the ninth class comprises the ordinary parasites，such as the flea，etc．；and the tenth the insects injurious to pisci－ culture．The third division groups together all the birds， animals，and reptiles which tend to destroy the harmful insect，and thus act as friends to man．The fourth division is devoted to the arts and manufactures more directly con－ nected with the cultivation of insects．The principal features of the exhibition are naturally the silkworm and bee，with their various methods of culture，products，etc． Apiculture is not very largely represented at the exhibition of insects，and if the bee industry is not better carried on in
exhaust suction a large shaft runs from the foul air chamber down to the back of the kitchen fire，where the heat of the boiler and the fire suffice to attract the air．From the back of the kitchen fire，in the basement of the house，the air again travels up．A square brick shaft or chimney conveys it through the roof and into the open．In the center of this shaft is a circular metallic flue，which carries away the smoke of the kitchen fire，and this flue，always more or less heated， stimulates the current of air．A comparison of the minimum velocity at which the air moves forward in the extracting flues（ 200 feet per minute）with the cubic contents of the house，shows that the atmosphere is entirely changed throughout the dwelling once in every twenty minutes． This result is obtained imperceptibly－that is，without the slightest drought；yet ten persons smoking in one room felt no inconvenience，and next morning there was not the slight－ est trace or taint of tobacco odor remaining．＇
It is claimed that in addition to the equal heating of the entire house，the cost of fuel is reduced one－third from that of the ordinary method．But as the common way of beat－ ing houses in England is by open grates，this proportion might not be applicable to the American system of furvace or stoves．

The Mineral Riches of Tonquin．

Its gold mines，says a writer in the Paris Figaro，can rival those of California and Australia．The natives use that metal for exchange；the females of the Muongs of the Black River，on their way to and from market，gamble with thousands of francs＇worth of it，without caring whether they win or lose．The mines of Talan，near Yuen－Kiang， on the Red River，were visited by the Commission of the Meikong，who found gold there in bars as well as dust．

IMPROVED BORING MACHINE USED IN THE CHANNEL TUNNEL．

jecting in opposite directions from the axis，each arm hav－ ing through it a number of cylindrical holes to receive tool holders which are clamped therein by keys，and any of which can be withdrawn backward for the purpose of repairing or replacing their tools．The cutting tools are so arranged as to cut concentric annular chases in the face of the rock，leav－ ing between them narrow portions of the material，which can be readily broken away，or which crumble away while the machine is at work．Within the trough hollow of the bed are arranged inclined worms which cause the excavated ma－ terial to travel backward and upward，so that it is delivered bebind the machine into trucks，by which it is removed from the tunnel．We are indebted to the Engineer for our cut and the above particulars．

The Refuse of a Great City．

In New York the garbage and ashes are placed in boxes and barrels on the sidewalks and removed daily by the carts of the Street Cleaning Department，which haul them to the nearest department dock，where they are dumped on scows； and these scows are towed out to sea in deep water and there emptied．
The street sweepings are disposed of in a similar manner．
The offal，such as dead animals and diseased meat，comes within the province of the Health Department，which lets out by contract to certain parties the removal of this mate－ rial from the entire city．For this present year this work is done for $\$ 40,000$ ．The offal is taken by the contractors to Barren Island and then converted into fertilizers．
Two kinds of street sweeping machines are used，says Engineering Newos，one made by the Chapman \＆O＇Neil Manufacturing Company，at No． 291 Avenue C，New York， Manufacturing Company，at No． 291 Avenue C，New York，
and the other，called the＂Boston machine，＂made by the and the other，called the＂Boston machine，＂made by the
Abbot－Downing Manufacturing Company，of Concord， Mass．A single horse machine costs about $\$ 350$ to $\$ 400$ ．

France than would seem to be the case from a visit to the Palais de l＇Industrie，there is room for improvement in this
respect．Sericulture，as the French term the rearing of silkworms，is also inadequately represented at the exhibi－ tion；indeed，the only silk grower of any importance there represented is Baroness Hérold de Pages，who owns a large magnanerie，or manufacture of silkworms，at Lourmaria，in the Department of Vaucluse．The show of bee hives is good enough，and the honey exhibited is of very fine ap pearance．Butterflies and beetles，some of them classed as noxious and others as useful，are very numerously repre－ sented．The section of snakes and lizards（exbibited on ac－ count of their relations to insects－the relations of the de－ stroyer and the destroyed）is more complete than might have been expected．The owl，so fatal to mice and rodents in general，stands all by himself in a post of honor，while the rodents who destroy grain are pilloried in cages．

Heating and Ventilating a Dwelling．

The London Lancet describes an experiment recently made by Dr．Hogg，of Cbiswick，in warming，cooling，and ventilat－ ing a dwelling．The house has not been built long enough to thorougbly test the means for cooling the compartments， but the warming and the ventilation work admirably． ＂None of the windows can be opened．There is but one fireplace，that in the kitchen．Underneath the hall a large passage is used as the intake of fresh air．Here it can be cosled in summer by ice or water spray，while in winter it is warmed by hot steam pipes，which are economically heated by a small coke stove．The air then passes up into the hall， from which it is only separated by an iron trelliswork，and travels into every room of the house by apertures made in the skirtings and cornices．In the ceiling of each room there are one or two openings and exhaust shafts，leading to the foul air chamber in the roof of the house．＇I＇o produce the

Still higher near the source of the Red River，the precious metal is obtained in large quantities．Silver also is not rare，and copper is found everywhere，all the domestic utensils of the people being made of this metal．The tin mines are not worked for want of capital，although those worked near Mong－tsze，in Yunnan，near the Red River，are the most valuable known to exist．Zinc，lead，iron，and bis muth are also known．The coal mines，however，are the most important of all．Tonquin produces also musk，tortoise shell，mother－of－pearl，wax，silk，peacocks＇feathers，as well as those of the blue pheasant，and other birds of brilliant plumage．＂In short，＂concludes the Figaro，＂it is a rich country，and worth the trouble of occupying it．＂

Oily Substances in Rice．

According to G．Campari（＂A nnals of the Milan Society of Applied Chemistry＇），oily substances are contained in large quantities in the embryo of the rice，which he finds to be composed of 95.54 per cent of fatty acids，and 4.46 per cent of glycerine．Treatment with bisulphide of carbon produces a yellow wax－like substance which readily sa－ ponifies with bases，melts at $32^{\circ} \mathrm{C}$ ．，becoming quite solid at $28^{\circ} \mathrm{C}$ ．，with a specific gravity of 0.93005 ．It is completely soluble in ether，chloroform，and benzine；its composition appears to be C $79 \cdot 2, \mathrm{H} \mathrm{10.9}, \mathrm{O} 9.9$ per cent．The fatty acids melt at $36^{\circ} \mathrm{C}$ ．，emit a perceptible pear－like odor，and vield，when saponified and heated with magnesium acetate， a body which melts at $62^{\circ} \mathrm{C}$ ．，and exhibits the composition of palmitic acid－ $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}$ ．

The pine forest along the Adriatic at Ravenna，Italy， celebrated hy Dante and Byron，and which furnished the shipyards of Rome and Venice，are to be cut down，because n excavation for a railroad has so drained the soil that the rees have died．

GREAT LOSS IN THE DIAMOND FIELDS.
The late unfavorable news from the African diamond fields has been the cause for quite an advance in diamonds both in European and American markets. The excellent illustration of the great mine at Kimberly, which together with our facts is taken from the Jewelers' Journal, renders the description more graphic.
Mr. H. B. Joseph, one of the passengers by the Austrian bark, Lea, just arrived at New York from Cape Town, and who is a Cape commission dealer in diamonds, copper, wool, etc., tells most distressing tales of the great sufferings in Cape Colony. In parts of the country, he says, there bas been no rain for three years, and the people are starving. The condition of affairs in Cape Town, at Kimberly, Du Toits Pan (the diamond fields), the Leydenburg gold fields, the Orange Free States, and surrounding country is worse than it has been for years. What adds to the general distress consequent on the failure of the crops, is a disaster at the great diamoud mine at Kimberly, 600 miles up from Cape Town and 400 miles from Natal. The mine is 380 feet deep and $13 / 4$ miles in circumference. The soft debris has fallen back into the mine in such quantities that it is estimated that eighteen months will be required for its removal.

Upward of 4,000 tons fell within twenty-four hours. The extent of the calamity can be judged by the fact that this celebrated mine has yielded $\$ 15,000,000$ in diamonds a year. The effect at Cape Town has been most disastrous. The revenue has fallen off 50 per cent, and the mining shares

Perbaps there is no place in the world where wire rope ramways are employed to so great an extent as in the spot represented in our engraving. It will be seen that the ropes extend in great numbers to the banks on either side of the fields, where the earth is deposited in vehicles of various sorts, and from whence it is conveyed to more roomy quarters to be picked over or washed.
The engraving shows that some of the claims have been worked to a far greater extent than others, some of the miners having made deep excavations, leaving the mines of others actually above the average level.

Genius, Talent, Industry.

"Talent" is a quality which enables its possessor to acquire knowledge by learning from others and by unassisted study.
"Genius," on the other hand, is characterized by a great independence of instruction; it takes its own course, and originates new ideas and inventions never thought of before. It may of course enlarge its sphere of knowledge by reading, by observation, and by experiment; but it is by no means characteristic of genius to be apt to be taught; on the contrary, embryo geniuses are often dull fellows at school and idle to boot. It rather dislikes to follow in the track of others, and rises superior to obstacles of circumstances and deficiencies of education. Genius may safely be left to hew a path for itself. Talent is greedy of instruction. Hence the two have very different relations to education, a subject
a poor lad, with all his possessions upon his back and a dollar in his pocket. As Mark Twain depreciatingly remarks, "Anybody might have done that; the only difficulty is to ave the dollar." But how few out of the millions who have begun life with a dollar, or even with less, have arrived to be Franklins!
On the other hand, it seems absolutely immaterial with what seemingly insuperable disadvantages genius may be oppressed; it will make its way to the surface and triumph over all.
Can industry then supply the place of genius? Emphatically, No! Industry may compensate for paucity of talent; for talent, as we have said, is a common heritage, and its presence or absence is a matter of degree, and whatever results are attributed to talent are the joint product of talent multiplied by industry.
"Genius" is as a living organism, instinct with its own life, performing its appointed functions spontaneously, as of necessity.
"Talent" is an elaborate engine, skillfully devised to move many wheels and to perform divers works, but wanting the motive power
" Industry " is the motive power. $-\boldsymbol{R}$. W. Giles.

The Captive Dolphin.

The whale which was found by a fisherman in Selsea Bay ome six weeks since, and preseuted to the Brighton Aquarium, is, says Nature, a valuable addition to that es-

VIEW IN THE DIAMOND MINES, SOUTH AFRICA.
have gone down to 75 per cent. It is estimated, said Mr. Joseph, that it will cost $\$ 1,250,000$ to clear the mine. The fall in the prices of diamond shares has ended in a great tragedy. There are sixty-five diamond mining companies, with a subscribed capital of $\$ 35,000,000$, and of these companies only fourteen are paying dividends. Most of these mines are within a radius of 150 miles, and at an average of $\mathbf{6 0 0}$ miles from Cape Town. The extent of the commercial convulsion is illustrated by the Great Central Diamond Company. It has a subscribed capital of $\$ 4,500,000$, and paid taxes on $\$ 4,200,000$. Two years ago the shares were rated $\$ 1,800$ each, but to-day they are worth only $\$ 400$. The Frerers' Diamond Mining Company at De Beers, a quarter of a mile from the Kimberly mine, with a subscribed capital of $\$ 650,000-\$ 500$ a sbare-has been sold out by the sheriff for $\$ 75,000$ for rates owed to the mining board. Mr . Herm Wilegroot, a leading merchant, blew out his brains on account of all these troubles, and two weeks afterward Mr. S. R. Schonz, resident magistrate, killed himself. Altogether, there bave been about ten suicides of leading men caused by the commercial depression. The most terrible stories of starvation come from the copper region, especially from the neighborhood of the Manamaculand mines. Capt. Segarich said that commercial circles in Cape Colony are so greatly depressed that many of the colonists are returning to Europe, especially to England. He said he could have brought many more passengers if he had had room.
If these reports prove true, there is no doubt but that the recent advance of from twenty-five to thirty per cent in diamonds will be followed by others, and those dealers who have bought before the rise will be among the most fortunate of the trade.
upon which I should much like to dilate, but the lengtb into which I have been unintentionally betrayed warns me to avoid the temptation.
Arkwright perfected his invention of the spinning frame in the uncongenial atmosphere of a barber's shop, in the teeth of a scolding wife who more than once broke up his models on the eve of completion, and who habitually upbraided him for neglecting the profitable occupation of "an easy shave for a penoy," with the elegant apostrophe "Cuss the 'cheenery!" I believe she lived to be Lady Arkwright. Let us hope that she learnt to moderate the rancor of her tongue.
George Stephenson, inventor of the locomotive and the father of railways, developed his extraordinary engineering genius in the obscurity, physical and metaphorical, of a coal pit; eking out his slender earnings by mending the boots of his fellow workmen and occasionally a watch or clock.
Sir Humphry Davy, who was described as an "ridle and incorrigible schoolboy," was apprenticed to an obscure apothecary in Penzance; be afterward became assistant in the laboratory of Dr. Beddoes, of the Hotwells, Bristol, well known to my father, who was then serving his apprenticeship at the same place, but I cannot discover that he knew anything of the Doctor's more illustrious subordinate. Faraday's father was a Yorkshire blacksmith, who migrated to London, presumably in search of work, and Faraday himself was apprenticed to a bookbinder. A chance at tendance upon four lectures by Sir Humphry Davy was the immediate cause of his directing his attention to science, and he was some time after introduced to the Laboratory of the Royal Institution through Davy's instrumentality. Benjamin Franklin made his first entry into Philadelphia,
tablishment. Although undoubtedly belonging to the whale family, competent authorities have pronounced it to be a bottle-uosed dolphin, a creature rarely to be seen alive in an aquarium. It has been placed in a tank which holds 100,000 gallons of water, and is 110 feet in length, so that the animal, which is ten feet long, has some amount of freedom It seeus to be doing quite well, for not only has it not lost in bulk since its capture, but has even gained, weighing now more than eight hundredweight. It is very tame, taking its food from the attendant. At present it subsists upon mackerel, that being the food most easily obtained just now. Of these it takes five meals each day, and man ages to eat some four hundred of them during a week. The mackerel season is, however, almost over, and some other diet must be found for the animal, perhaps herrings. When first placed in the tank, it retreated to one end. After a week's sojourn there, it sought the other end of the tank. Here it remains swimming in circles. When swimming it keeps close to the surface of the water, moving through it with a graceful undulating movement, coming now and again to the surface, and taking in a fresh supply of air about every third or fourth time it thus rises. The animal is certainly an interesting acquisition to the aquarium.

Substitute for Rubber.

A composition has been invented by MM. Dankworth and Landers, of St. Petersburg, which is reported to be tough, elastic, waterproof, insulating-in short, a nearly sufficient substitute for India rubber. It is composed of a mixture of wood and coal tar, linseed oil, ozokerite, spermaceti, and sulphur, which are thoroughly mixed and heated for a long time in large vessels by means of superheated steam.

Dowel Making and Doweling.

The method of putting things together by means of dowels, or doweling, as it is termed, is one of the utmost importance, and is required in some part or other of nearly all articles of furniture. I shall describe, first, the manner of making them, and then give a few directions for their use.
For making dowels you must select a strong and tough wood. The best for the purpose is beech, although oak or walnut will answer very well for some purposes; it must be straight grained, as straight as you can possibly obtain it, and thoroughly dry. The dowels are made in various sizes; those most generally in use are $1 / 8 \mathrm{in} ., 1 / 4 \mathrm{in}$., $\frac{8}{8} \mathrm{in}$., and $1 / 2 \mathrm{in}$. in diameter, according to requirements, a size very nearly $1 / 4$ in. diameter (about that of an ordinary lead pencil) being very useful. You must purchase or make a dowel plate. They are sold with holes in them for making three or four different sizes, but it is not a very difficult matter to make one out of a piece of iron $\frac{1}{8}$ inch or so thick by punching a hole in it, and enlarging it to the size you require. You will wat a brace and the necessary bits to correspond with the plate holes; now mark your wood out; about 10 in . or 11 in . lengths are the most handy to work, and the widths should be rather more than the diameter you intend the dowel to be.
Having cut out the lengths, plane them up square, then take off each corner of the square with the plane, so as to get them to correspond nearly with the boles. The best way to do this, which is rather an awkward job, is the following: Get a piece of pine $\frac{8}{4} \mathrm{in}$. thick, $21 / 2$ or 3 in . wide, and about 2 in . longer than your dowel lengths; straighten one edge of it , and mark a $1 / 4 \mathrm{in}$. margin each side upon it ; from this cut inwardly on the bevel to a depth of $1 / 4$ or $\frac{2}{8}$ in. This will give you a V-sbaped groove. You may cut it out throughout its length, and put a screw or pin in one end to form a stop; but it is better to leave $1 / 2 \mathrm{in}$. square at one end, and to cut the groove the remainder of lengtb. This placed in the bench screw, and you will find your length will lie in it while you plane off the corners; you can then reverse and proceed until all are completed. It is necessary to take a little more-about two or three shavings-off one corner, it is immaterial wbich, than off the remainder.
I shall explain the reason for this presently. Having done this, take the dowel plate. You will notice that the holes on one side of it are larger around the apertures than the other; rest it with this side upward, upon the bench over a hole, underneath the one you intend using, and drive the lengths steadily through. You must commence carefully, holding the length with the left hand near the bottom, while you tap it gently with the hammer with the right until you get it fairly entered. Then go on more firmly. When you have driven it through rather more than the thickness of the bench, you will find it bet ter to hold the length from the underneath side, as this will prevent the plate from jarring. The lengths should not go through without a moderate amount of driving force, and on the other hand they must not require too much, or they will be likely to break without going through. A little practice will familiarize you witù this; but it is better at first to use your lengths a little shorter than I have previously recommended, and you will be less likely to break them. You must take care to keep them as upright as possible, and hit them fairly on the top. When made, they should, when looked at endways, or in section anywhere, be circular in appearance, and fit the plate hole tightly with the exception of that portion where the additional amount was taken off the square corner, which should nozo appear a trifle off.
Before doweling anything, it is necessary that the various parts intended to be secured by this method should first be fitted exactly in the position they are to ultimately remain in. Suppose, for example, we bave the head of a desk, the top of a cabinet, or anything of a similar nature we wish to dowel. It is first accurately fitted and placed in position. Now, take a marking awl and mark lightly-a small mark $1 / 8 \mathrm{in}$. long is sufficient-on the outside edge of the carcass, one or two or as many points as you require dowels. You must, of course, be guided by the requirements of your work; a distance of from 4 in . to 6. in apart answers generally very well; but use sufficient to make it quite secure. When marking these points on the carcass, mark the top to correspond at the same time, by simply drawing the awl upword and marking it on its underneath side, taking care that it does not move or shift at all while marking. Then gauge on each, setting the gauge so that it will mark in such a position that you can bore with safety, not too near the sdge or where there is any likelihood of splitting anything. From the previous markings draw a line at right angles to the gauged mark until it meets it. This is done by running a square along it. The points where these two lines meet
will be those for the center of the dowel and its correspondwill be those for the center of the dowel and its correspond-
ing hole. In some cases, you will easily be able to find exing hole. In some cases, you will easily be able to find amples. We can obtain the position in this way.
Take the piece of work to be doweled, and consider the most suitable place for them. Mark this, and bore a bole in it with a ine bradawl; now, get a needle point, or
a tack with the head knocked off, insert it in this bole, and a tack with the head knocked off, insert it in this hole, and
give it a gentle tap; carefully press it home, aud it will mark the required spot. This method is more applicable where some part of the work act.s as a support to the other, and you merely want a dowel or so to steady it; like a piece of carving or fretwork. Our points being now all marked, bore the holes with a centerbit the size of dow $\epsilon 1$ you intend using. Do not use them too large. If you are doweling into $\frac{8}{4} \mathrm{in}$. or 1 in . stuff, use edgeroays. A $\frac{1}{4} \mathrm{in}$. or $\frac{8}{8}$ in. is quite large enough. If you have not one the same size,
use a smaller. You can then enlarge this with a quillbit, and remove the core prod uced by boring with a nosebit. Bore them perfectly upright. The depth will vary, according to circumstances, from $\frac{3}{8} \mathrm{in}$. to 1 in . In some cases, it is immaterial how deep you bore; in others, this must be carefully attended to, because a hole bored right through might disfigure your work.
It is best to drive the dowels first into that part of the work where you can bore deepest. You must glue the holes well with good, hot glue. You will find a piece of iron wire very useful for this, and it can be used repeatedly, as the dried glue eft on it after using will not adhere to the metallic surface. Now take your dowel length, and drive it into the hole, until it is home, and will go no further. You will notice while driving in, that the glue and air will escape from that portion of the bole where the dowel, as previously described, does not quitefit. If this were not so, the driving force necessary would, in all probability, split the wood around. You must saw the lengths off now, leaving sufficient to fill he other holes yon have bored. If you cannot judge the requisite length sufficiently accurate with your eye, measure it, and do not get them too long. After sawing off, remove all the edges and round the top of the dowel with a rasp. It is best just to try that the holes are right, and the work in right position, by knocking it on temporarily. If so, glue the holes and put the parts together, press them firmly down to each other, and get a close join. If you have any diffculty in this, it is better to apply gentle pressure by using a hand screw or cramp to force them together than to strike them with a hammer or anything.-Building News.

The Wrinkling Strain of Pillars.

It is not often that pillars are made of thin plate iron; but as the failure of pillars of this kind is analogous to that of plate girders, the student of construction may profitably consider the question of wrinkling strain. A plate iron pillar may fail in one of three ways: (1) by crushing, (2) by flexure, and (3) by wrinkling, each of these modes being governed by laws peculiar to itself. It is seldom that a pillar fails by crushing, as it is generally made of a proportion in which simple compression does not come into play. More generally a pillar yields by both bending and crushing, but in plate iron pillars failure may take place first by wrinkling or corrugation. A pillar made of wrought iron plates of a size that would prevent failure by flexure ought to have the plates of sufficient thickness to prevent wrinkling. Let us imagine a stanchion of [section formed by plates. It is readily conceived that the unsupported edges would wrinkle. It is found by experiment that the edges of such a section would fail by wrinkling unless the distance of the unsupported edges is small.
Mr. T. Box, in his treatise on "Strength of Materials," illustrates this strain by an example of a rectangular pillar of thin wrought iron plates both ends flat, $8 \cdot 1$ inches $\times 4.1$ inches external dimensions, with a thickness of 0.061 , and a length of $2 \frac{1}{3}$ feet. By calculation, this pillar would fail with 1,173 tons, or 766 tons per square inch. But the absolute crushing weight of wrought iron in pillars is only 19 tons per square inch, or one-fortieth of the theoretical breaking weight by lar, as it actually failed by wrinkling with $7 \cdot 108$ tons per square inch, or little more than one-tbird of the crushing strain; the ratios of the strains being, by wrinkling $1 \cdot 0$, by crushing $2 \cdot 7$, and by flexure 108. The actual breaking load in this case was only $\frac{1}{108}$ of the bending strength. By increasing the length of the pillar, flexure may become the principal source of weakness, its resistance to that being so reduced until it became less than the wrinkling strain. It often happens in practice that a pillar gives way partly by flexure and partly by wrinkling-a mixed result being obtained. Thus, in studying the laws of wrinkling strain, the experiments are made on short pillars, where flexure cannot
come into play. come into play.
Mr. Hodgkinson's experiments may be expressed by the following rule for the compressive strain in tons per square nch, with which the plate will wrinkle: $\mathrm{W}=\sqrt{\overline{t+b}} \times \mathrm{M}$, where $W=$ the compressive strain in tons per square inch, $t=$ the thickness of the plate in inches, and b the breadth in inches of a plate supported at both edges, as in a square pillar; $M=$ the multiple found from experiment, the mean value of which is 80 for rectangular pillars. In a pillar of this kind the plates would be joined at the corners by angle irons, then the breadth is measured between the edges of the angle pieces. Hodgkinson's experiments have clearly demonstrated that the wrinkling strain is independent of tie length of plate. Experience has also shown that in long platepillars the plate often fails near the end. As Mr. Box observes, the crushing strain due to flexure is a maximum at the center, and at the ends it is nil; but the crushing strain of direct pressure is the same from end to end.
The best plan of strengthening plate iron against wrinkling is by the addition of angle irons or ribs, which practically reduce the breadth of plate. A center rib, for instance, reduces the width to half, and the wrinkling strain is de creased 41 per cent. Indeed, the object in all structures composed of thin plate iron, like pillars and beams, is to reduce the practical breadth of the unsupported plate by celluar arrangements, by ribs, or otherwise, such that the wrinking strain shall be made equal to the crusbing strain, or 19 on wrinkling inch. Those who wish to study the subject
haustive manner in Mr. Box's treatise. Thin plateiron pillars are seldom used by the architect; but the engineer resorts to them in the piers of bridges and other purposes, and he will find the addition of angle iron stiffeners increase the strength in a direct ratio.-Building Newo.

New Rules for the Shipment of Explosives.

Commissioner J. W. Midgley has issued the following circular, under date of July 21, for the use of the railroads in the Southwestern Railroad Association, Iowa Trunk Line Association, and Colorado Traffic Association:
Shipments of Hercules powder, Atlas powder, giant powder, and other explosives of which nitro-glycerine forms the basis, when subject to the above associations, except California, will hereafter be trausported on the following conditions and at the following classification:

1. That, at the cost of shippers, the bottom of the car containing the above mentioned explosives must be covered to the depth of at least two inches with sawdust, to absorb possible leakage.
2. That the packages containing the explosives shall be so placed and loaded that the cartridges sball always lie on their sides and not on their ends.
3. That the cars shall be so marked, on both sides and ends, that those who will have charge of them will not do anytbing ignorantly to incur danger.
4. In less than car loads, this property will be received (when made into cartridges only, and not in bulk under any circumstances) on the following conditions:
Packed in wooden cases, in cartridges, each case not exceeding 100 pounds, nor less than 5 pounds of explosives, provided that such explosives are packed in dry sawdust, as follows:
Each cartridge shall be surrounded on all sides with dry sawdust, and all interstices between such cartridges and a space of at least one inch between the outer side of such cartridge and the inner side of the case sliall be filled with dry sawdust. Each of these cases shall be plainly marked on at least three of its sides with the name of its contents and "Explosives-Dangerous," so as to be readily seen by those who are to handle it.
5. In no case must the caps, fuse, or exploders used for exploding these powders be loaded in the same car with the explosives, and under no circumstances will the cars be recived if so loaded.
6. Any and all nitrate or other explosive preparations not in accordance with such specifications (except ordixary black powder) will in no case be received for shipment.
7. All loss or damage to such property that may result from explosios or from a disregard of any of the above conditions hy ehippers or by the agents of the lines com prised in the above associations must be assumed by the shipper or owner.
8. Under the above conditions, the rates will be: In quantities less than car loads, actual weight, twice first class; in car loads, actual weight, minimum 20,000 pounds per car, first class. No shipment will be rated at less than 100 pounds.
The right of any of the railroad companies comprised in the above associations to refuse to receive high explosive for transportation under any circumstances is reserved.
This circular is a most important one, as heretofore high explosives were not mentioned in the tariffs of these associations, being accepted by the different lines at special rates.

Mexican Railroads.

The Mexican Financier gives the following list from offl cial sources of the railroads completed in Mexico up to the end of April:

The table foots $2,3791 / 4$ miles, although the Financier ives the total completed road at 2,437 miles. The Mexican National, the Interoceanic, the Hildago, and the Yucatan lines are narrow gauge, the rest standard gauge. A number of the shorter lines given above are worked by horse power, and some of them have been in existence a long time.

Hydrokinone, a New Developer for Gelatine Plates.

by edwin banks.

Hydroquinone, or hydrokinone, or quinol-for it is known by all these names-partakes very much of the nature of and is closely allied to pyrogallol. Like pyrogallol, it is a derivative of benzine. The solution of it is neutral to litmus paper. It has a powerful attraction for oxygen, absorbing it when dissolved in water from the atmosphere, and more rapidly when rendered alkaline, though in neither case does it do so as rapidly as pyro; hence its solution will keep better, and, when mixed with alkali, retain its developing power a longer time than pyro. The chemical formula is also very similar. Pyrogallol has $\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{3}$, and quinol $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}$; so that, it will be observed, while each contains six atoms of carbon and six atoms of hydrogen, which is the composition of benzine, pyrogallic coutains three atoms of oxygen and quinol only two. Another resemblance to pyro consists in the fact that both exist in nature in certain vegetable productions; pyro exists as gallic acid in gallnuts and oak bark, and quinol as arbutive in the leaves of the arbutus, or berberry, and other Ericasece.
Commercially, quinol is made from aniline and from car bolic acid, both also benzine derivatives. It is first obtained as quinone $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ by the oxidation of auiline. One part of aniline is dissolved in eight parts of sulphuric acid diluted with twice its bulk of water. After cooling, a saturated with twice its bulk of water. After cooling, a saturated
solution of two and a half parts of bichromate of potassium solution of two and a half parts of bichromate of potassium
is added very gradually to avoid too great rise in temperatnre. At first a thick, pulpy mass of aniline black is formed, the reaction being the same as that which takes place in the aniline printing process. This shortly changes to a dirty brown solution. It is then treated with sulphurous acid in excess, when quinol or hydrokinone is formed. This is extracted from a solution by ether, and on evaporation crude quinol is left. Other methods are given, but sufficient has been said to give an idea of its nature. Its characteristics as a developer are of the most interest to photographers.
Captain Abney, who, I believe, was the first in this country to draw attention to its developing power, says that it is twice as powerful as pyro. It is very certain that it will bring out a fully developed picture with at least half the ex
posure necessary when pyro is employed. At first sight this appears strange when it is observed how much more powerfully pyro absorbs oxygen; but the explanation probably is in the fact that hydrokinone is more gradual in its action, and has a more "selective" power than pyro. With a collodio-bromide film, for instance, which is not so much protect ed from chemical action as a gelatine one, pyrogallic acts with such energy, when mixed with an alkali, that the whole film is reduced immediately, and no image, or only a faint one enveloped in fog, appears; bence there must be

A soluble bromide, which is usually used, has this effect, but, unfortunately, at the same time, partially undoes the work which the light has done, rendering it necessary to give longer-exposure. But with hydrokinone no restrainer is necessary unless a great error in exposure has been made. It does its work rapidly and clean, in this resembling the ferrous oxalate; it does not discolor during development so mucl as pyro, and consequently does not stain the film so much, while full printing vigor is very easily obtained without having to resort to intensification. The color and general appearance of the negative are more like the wet-plate process, since the sladows remain so clear aud free from fog. It seems almost impossible to fog a plate with it.
A collodio-bromide, or even a collodio-chloride, plate exposed in the camera will develop clean and rapidly without any restrainer. This property of developing a chloride is very surprising, and will probably be very important. I have tried a collodion containing all chloride, with no trace of iodide or bromide or of free silver, and in the camera it is nearly, if not quite, as rapid as a bromide when developed with hydrokinone and an alkali; while I think it bas the advantage in roundness and vigor. One grain to the ounce is strong enough for most purposes. With sume samples of hard gelatine it is advisable to use two; but with most kinds and with collodion one grain is quite sufficient. I prefer using it with a saturated solution of washing soda as an alkali. Two or three drops of this to the ounce of solution of bydrokinone rapidly develops the image, and the addition of a few drops more to complete develupment is all that is needed. A soluble bromide acts very powerfully as a retarder and restrainer. With a mere trace added, development is very much slower.
Although its cost per ounce is greater than pyro, an ounce of it will go as far as two of py:o, so the difference is not so much as it appears. No doubt, if a demand sprang up for it the price would also be reduced considerably. Many of you, I dare say, can remember the time when pyro was seven shillings and sixpence per ounce, and hypo two shillings per pound; but greater consumption, and consequent demand for them, soon brought these prices down. The same will for them, soon brought these prices down. The same will
doabtless take place when the value of hydrokinone becomes recognized.
I must not omit to mention, before concluding, another useful property of this developer-that is, its suitability for developing on paper either a bromide or a chloride film, whether it he produced by an emulsion, or by the older method of first brushing over the paper the haloid, and afterward the siiver. The clearness with which it works renders it very suitable for this purpose, and for enlargement or printing enables pictures to be obtained with very short
exposures.

Steel in ite Relation to Modern Guns.

At a recent meeting of a number of artillery and naval officers at Karlsborg, Sweden, Captain John Bratt, of the Swedish artillery, read a paper on " The Steel Industry and its Relation to the Manufacture of Modern Guns." The author has for many years been the government inspector of Swedish gun factories, and has paid many visits to the gun factories of Russia, Germany, and France. In his paper, having given an account of the importance of iron in modern civilization, the author stated that there was no other raw material which had been subjected to such a successful process of refining.
It was in its most important and interesting form, viz., teel, that he intended to deal with it on this occasion. Captain Bratt proceeded to show, by drawings and diagrams, the metallurgical processes and methods of refining in use at the present moment. Having referred to the various kinds of steel and their manufacture, the author urged the necessity of subjecting all cast steel, of whatever kind, to a mechanical process of treatment by which the cavities which are caused by the gases contained in every steel bath are entirely removed. The steel, he said, should be perfectly close and homogeneous in order to be suitable for manufacture.
The
The means of obtaining this indispensable quality was the steam hammer. The largest at present in use were those at Le Creusot, Essen, and Perm (Russia). The latter rested n the largest block of cast iron in the world. It had a cubic contents of 83 cubic meters, and contained 700 tons of pig-iron. The difficulties, the cost, and, in some instances, he danger of forging great blocks of steel made it a matter of moment to discover some method whereby the gases in he bath might be removed and a homogeneous steel produced.
Such a method was discovered in 1870, and had been per fected at Terre-Noire, and consisted chiefly in adding a flux of silicon in the Martin furnace immediately before the steel is tapped. The author showed some samples of steel made at Bofors, in Sweden, by that method. One was taken rom the hearth immediately before, and the other just after, the silicon was added. The former had a surface similar to a fracture, and was covered with blisters, wbereas that of the latter was perfectly smooth. The Bofors Ironworks were the first Swedish works which had procured the Terra-Noire patent, and thus the first producers of this kind of steel in Sweden; and the method had a special interest to those assembled by the fact that guns of Bofors steel had been manufactured with the most satisfactory result, which led him to believe that Sweden would very soon make her own guns.
The author next gave an account of Krupp's manufacture ployed $\dot{7} 2 \mathrm{men}$; in 1882 their number was 16,000 , while some years ago they had in five months turned out no less than 1,400 pieces of artillery. In twenty-four hours the works could roll sufficient rails for a Swedish mile of railway (six English miles). Captain Bratt then referred to his per sonal study of the Krupp method. He had been present at the casting of guns at the foundry which had been established by Messrs. Krupp near St. Petersburg. He stated that the ingots for some of the largest guns numbered up 500.

He then described the beating of the metal for forging, and the difficulties attending this operation, the forging under the steam hammer, whereby the cast metal is compressed to under four times its original size, and, finally, how the gun, after being bored and turned, is made redhot and hardened in oil. The author next gave an account of the experiments which had during the last few years been made in Sweden, to solve the question of producing first-class guns of close cast steel by the Terre-Noire method.

The trials made iacluded the bursting of a smooth-bore 4 lb. muzzle loading gun. It had shown a very high degree of resistance, and had, in fact, only been burst by loading it right up to the muzzle. No less than 1,041 shots had been fired from a 12-centimeter rifled breech-loader, which was at last burst under the excessive pressure in the chamber of 5,500 atmospheres, while the normal one was from 2,000 to 2,100 . The last experiment was the firing of three 8-centimeter guns of the new model gun of the Swedish artillery. Each of these guns had, without suffering in the least degree, fired 2,000 shots, with normal changes.
Two of them were then, after 152 and 154 attempts had been made, burst, under a pressure in the chamber of 5,000 atmospheres, the normal one being 1,800. The third gun could not be burst, but only cracked in the breech. All these guns had been cast at Bofors, and were finished at the gun factory at Finspong. In conclusion, Captain Bratt stated that lately a competition had sprung up between these two woriss, which had before worked in concord. This was caused by the fact that the problem whether first rate steel guns could be made in Sweden had been solved, and that these two works desired in future to be independent of each other in gun making. At Bofors there was
now erecting the plant required for finishing guns, and at Finspong a steel foundry. Both had received orders from the government, and he trusted that at no distant date they would receive them also from foreign governments.

Physicians say that ginger ale is a poor substitute for water, because the capsicum it contains irritates the lining of the stomach and produces dangerous inflammation.

Possibly the matter will some time attain importance enough to question the present assumption of municipal and other corporations of the right to use any flowing stream as an open air sewer. In Hartford, Conn., this aspect of the question has assumed a serious character. A stream called Park River, an affluent of the Counecticut River, receives the principal portion of the sewage of the city of New Britain, the sewage of not less than ten manufactories within the limits of Hartford, and then courses the• boundaries in the limits of Hartford, and then courses the• boundaries
of the Bushnell Park, on which stands the Capitol, receiving in its course around the park the emptyings of several of the principal sewers of the city. The result is an open sewer of the vilest description in the heart of the city. In the light of the common law and of recent decisions on this subject, it is possible that a suit by any individual citizen might not lie against the city as a corporation for permitting the befoulment of the stream to the annoyance of passengers the befoulment of the stream to the an
on the streets and visitors to the park.

A case was recently tried in the Supreme Court of New York, in which the plaintiff sued the city of Rochester for damage to him by reason of sewage poured into a stream that flowed through his land, the water being used for his cattle. The court gave him a verdict for damages. The judge decided that the plaintiff has a right to say that nobody shall increase the natural flow, nor can he be combody shall increase the natural flow, nor can he be com-
pelled to take any more drainage than flows by reason of pelled to take any more drainage than flows by reason of
the natural shape of the land, nor can the people above him turn anything into the stream which would not naturally flow there if left to its ordinary course. They cannot in crease the area drained, the amount of the drainage, or send down into the stream any waters or things that would not naturally flow there.
The Sanitary Engineer, in summing up the common law on this subject, makes these points from authorities:

The fact that the water of a stream has been polluted in a similar way for more than twenty years, does not confer a prescriptive right to continue it, particularly when the nuisance results from the increase of the pollution. The fact that a town has legislative authority to dispose of its sewage does not give it the right to discharge that sewage into a stream adapted for domestic use.
' The fact that a person owning property on the banks of a stream, and thereby owning an interest in the water, does not use the water for domestic purposes and has no desire to so use it, does not prevent him from bringing an action to protect himself against the acquirement by others of a prescriptive right to pollute the stream, and thereby depriving him of his right to receive the water unimpaired either in quality or quantity. The English precedents forbidding in quality or quantity. The English precedents forbidding
the contamination of streams by sewage are very numerous, the health of a large city requires the removal of its sewage, and that this cannot be done except at great expense with out discharging it into a stream, does not justify such discharge if there are even but a very few persons to be affected by the nuisance thus created. The city must either buy the rights of these few persons or compensate them for their violation."

Artesian Wells in Algeria.

In the south of the province of Constantine, Algeria, the boring of artesian wells, begun in 1856, was continued with renewed activity, after the interruption occasioned by the Fracco-Prussian war, under the direction of M. Jus. At the end of 1879 the long line of wells following the Wady Rir, between Biskra and Tugurt, included 434 sunk by the Arabs, and yielding 64.000 liters a minute, and 68 bored by the French, yielding 113,000 liters. In the same decade, the number of palm trees in the oases bad increased from 359,000 to 517,000 ; of fruit trees, from 40,000 to 90,000 ; of inlabitants, from 6,672 to 12,897 . During the first half of 1880 twelve new wells were bored, yielding 22,000 liters, and, at the end of 1881, the total supply of water from these underground sources was 209,000 liters a minute.-Rev. Geogr.

A Bushel of Coal.

In consequence of the practice of peddlers of coal in Boston of selling by means of short measure, getting retail price for three pecks of coal for a nominal bushel, a law has been passed specifying that in the sale by measure of coal in quantities less than five bundred pounds, the baskets or measures used shall be of a cylindrical form, of the following dimensions: nineteen iuches in diameter in every part, and nine inches in depth, measured from the highest part of the bottom, each of which shall be deemed to be of the capacity of one bushel; or nineteen inches in diameter in every part, and four inches and one-balf in depth, measured from the bighest part of the buttom, each of which shall be deemed to be of the capacity of one-half bushel. Such measures, in selling, shall be filled level full, and shall be sealed by a sealer of the city or town in which the person using the same usually resides or does business.

artifilal fitering stone.

K. Steinman, in Tiefenfurt bei Gorlitz, proposes filtering plates from the following mixture:
Clay....

The ingredients are mixed thoroughly in water, moulded, nd hard burnt.-Dingler's Journal.

ENGINEERING INVENTIONS
An improved steam motor boiler, in which steam is generated by employing a large proportionate
heating surface, has been patented by Mr. Josef heating surface, has been patented by Mr. Josef
Schreiber, of Vienna, Austria. A series of tubes deSchreiber, of from the bottom of the boiler into the furnace, and within these are suspended smaller circulating
tubes. The object of the series of tubes is to produce and within these are
tubes. The object of the
superheated dry steam.
An improvement relating to refrigerator cars has been patented by Mr. Charles P. Jackson, of Chicago, Ill. An ice chamber extends the whole length
of the car. An inside partition extends all around the of the car. An inside partition extends all around the car, which serves to prevent the passage of the hot air from without and the cold air from within. The ice
rests upon supports at the top of the car. These suprests upon supports at the top of the car. These sup-
ports may be raised or lowered to admit of a greater or less quantity of ice for lowering or increasing temperature. Pans are provided for receiving the drip from the melting ice.
An improved traction engine, which is claimed to be lighter and to have its weight and strain more equally distributed upon the supporting wheels than any previously constructed, has been patented by
Mr. L. E. Bandelier, of New Haven, Ind. In this machine all four of the wheels are made to act as drivers, and any one of them may be driven by itself indepen-
dently of the others, to facilitate turning. The invention dently of the others, to facilitate turning. The invention are provided with radial spokes, and with oblique and angular thrust braces, which it is claimed greatly increase their strength.
An improvement relating to balanced slide ines, has been patented by Mr. James B. Allifee en Cumberland, Md. The object of the invention is to pre vent the thump consequent upon the sudden shatting off
of the steam. The improved valve is provided with two of the steam. The improved valve is provided with two
valve seats placed parallel with one another, and having two other valves arranged to reciprocate thereon limit of separation. Springs are provided which retain heir approach to each other when unduly pressed An ingenious device for opening up snow banks to permit the passage of trains has been patented motive is provided with a long tube, one end of which terminates within the caboose, while the other projects in front of the locomotive. The locomotive is likewise
furnished with a snow plow, and when this is insufficifurnished with a snow plow, and when this is insuffici-
ent for clearing away the snow a torpedo is inserted in ent for clearing away the snow a torpedo is inserted it
the tube, which is exploded by coming in contact with an anvil at the end of the tube, thereby scattering and loosening the drift for the more ready entrance of the
plow. The same inventor has also oblained a patent for another powerful device for clearing away snow on a railroad track. The invention consists in a cannon for
loosening the snow, which cannon is preferably provided with side apertures or tubular arms which serve to loosen up the snow in front of the plow for
facilitating the action of the latter. The same inventor has also obtained a patent for still another form of de car suitably arranged for the purpose, is raised a towe having a shaft projecting horizontally from its top. The torpedo is run out on this shaft to its extremity and then dropped into the snow bank, where it is exploded by jerking the rope which regulated the descent
of the torpedo into the snow bank. The car is likewise provided with a plow for clearing the track when the snow has been loosened by the explosion.

MECHANICAL INVENTIONS.

A very simple and inexpensive hand press has been patented by Mr. Thomas L. Vought, of Made-
lia, Mirn. The especial object of the improved press lia, Minn. The especial object of the improved press
is to facilitate the compression of corn stalks, straw, hay, aud
Mr. John J. Myers, of Baltimore, Md., has obtained a patent for an improved dry gas meter, in
which the stop;plates are so constructed that it is imposwhich the stop, plates are so constructed that it is imposwith the works. With this meter persons with dishonest intent are prevented from disturbing the flow of gas, or its registry.
A very simple meat chopper, an improvemont upon a patent granted to same inventor July 4,
1882, has been patented by Mr. Adam Metz, of Burling ton, Iowa. The improvement consists in suspending from the rocking lever a series of segmental knives, by
which means the meat is more quickly chopped, and at the same time more effective work is claimed to
Mr. George W. Con verse, of Spokane Falls, ashington Ter., has obtained a patent for an improve
ment in turbine water wheels of that class in which the ment in turbine water wheels of that class in which the
water descends in an annulus through chutes which cause it to project obliquely against the sides of the
bucket, on which it acts both by its impact and its weight, escaping from the bottom of the wheel in an annular stream.
An improved mill in which the grain or other substances are crushed between rullers has been
patented by Mr. James B. Allfree, of Cumberland, Md This machine is provided with two permanent rollers and
with two revolving rollers, which are provided with springs, so that when any hard substance is encountered, the rollere will yield and save the mill from breaka very simple washing machine has recently been patented which consists in a box having a
semi-cylindrical battened bottom, and a dasher provided with projecting teeth which is so mounted on the box of the machine that either a pounding motion or a
lateral to and fro rubbing motion is brought to bear on lateral to and fro rubbing motion is brought to bear on
the clothes. The inventor is Mr. L. N. Myers, of Middleburg. Pa.
An improved sewing machine shuttle has been patented by Elizabeth Chavers, of Siddon, Mich. or silk, which apool is mounted on a spindle in fthe

shattle, the thread passing through an aperture in the	gers, and to enable the operator to grasp the hand
more firmly than is possible with the ordinary hand saw	

tended for propelling sewing machines, bicycles, and tended for propelling sewing machines, bicycles, and
like purposes where small power is required. By the use of a spring connected to the driving shaft, and the adaptasy simple cotor and the fiventor has produced very simple mo
siderable merit.
Mr. Edgar T. Gordon, of New York city, is turning lathes for light ing the wearing portions of steel or iron, and completing the structure by casting the metal in and around these parts. This avoids all labor of tapping, drilling, keying,
etc., and enables a very good machine to be made at little cost.

A simple but practical device to prevent doors from rattling has been patented by Mr. John
Milton, of Hamilton, Va. This improvement is designed to be attached to the ordinary latch of a door, and consists in an accessory latch operated by the knob and
simultaneously with the ordinary latch, and so connect ed with it that when the door is closed this latch will press against the keeper, and thus close the doorfirmly and prevent rattling by the wind
Mr. James Hobson, of Bury, near Maniester, England, has obtained a patentfor an improved pile wire motion for looms used for weaving carpets,
velvets, plush, etc. A stationary track is provided upon which slides the carriage for inserting the pile wires
into the fabric, and this is further provided with an osinto the fabric, and this is further provided with an os-
cillating switch pivoted to the outer end of the track in cillating switch pivoted to the outer end of the track in
such manner that it shall be capable of movement to and from the carriage track to receive and properly into the fabric.
Mr. Geo. W. Wilson, of Lanesborough, Minn,, is the patentee of a very simple separator an purifer for grain, meal, etc. This machine is provided
with a number of sieves which are set in a frame, and shaken by the rocker that is mounted upon a rotary shaft, the grain being delivered on to these sieves
through a spout. In the space above these sieves is arthrough a spout. In the space above these sieves is ar-
ranged a suction blower for carrying away the dust and ranged a suction blower for carrying away the dust and
chaff from the grain. Suitable slides are arranged for regulating the power of the blast, and the sieves are so arranged that they may be changed according
grain, fine middlings, or meal is to be purified.
An improved machine for cutting and stamping crackers from sheets of dough has recently been patented. The dough is pressed out into a
sheet by rollers, and is then delivered upon an endless apron which carries it beneath the stamps, and cutters. By pressing the dough before stamping the crackers
are rendered of a more uniform diameter and appearance. The bed plate, which is located underneath th catters to resist the pressure from the latter, is support ed by rubber blocks upon a secondary plate, which is adjustable upon four screws, so that it may be regula lated according to the thickuess of the dough. The in-
ventors are Messrs. D. H. Cornell, of Brooklyn, and August Schincke, of New York city.
Among the recent inventions in treating ores, of which Mr. W. H. Howland, of San Francisco, Cal., has patented many, is a new machine for grinding and pulverizing ores. The ore is deposited in the present machine at the center, and when the driver is rotat-
ed the ore is thrown out by centrifugal force, and by rotating arms. In this way the fragments of ore are face of the internal wall of the mill, and become pulverrating the ore. Incicase the mechanical action is not suf cient for pulverizing the ore, steam is used for heating the water, which facilitates the grinding.
An improved instrument for measuring by Mr Samuel Dewell, of River Sioux, Ind A large heel is journaled between two shafts and an odomete with dials and pointers is placed on the axle to record each revolution of the wheel, the rim of which is marked off into twenty-five equal parts, each division represent-
ing one link of a surveyor's chain. One of the several ing one link of a surveyor's chain. One of the several
spokes in the wheel is painted a different color from the rest, so that every revolution of the wheel is observed, ment is attached for calculating the distance across streams, etc., where the machine cannot be propelled. With the geodometer an inexperienced person can take measurements, and determine numbers of acres with-
out much calculation, the distance traveled being automatically recorded by the odometer.

AGRICULTURAL INVENTIONS.

A machine which combines the whole operation of harvesting and husking corn has been patent machine is designed to be driven over the Iowa. Thi and the ears are stripped from the stalks as the machine passes along, by radial wings, which'are connected with a rotating shaft. The ears are then carried by an endless apron to the rollers located in the back part of the
machine, which rollers strip the husk from off the ea and deposit the latt
An improved draught equalizer hae been patented by Mr. Elmer E. Stevenson, of Quincy, Minn.
This is adapted especially to be applied to harvesting machines, and consists in a bar secured traneversely to the tongue of the machine and having two oscillatory passes around a pulley connecting the triangle draugh attachment in such a way that the draught is equalized so that a less powerful animal does only the work relative to his strength.

MISCELLANEOUS INVENTIONS.

Mr. Frank A. Buell, of Brooklyn, N. Y has patented an improved saw handle. The object of
the invention being to avoid any cramping of the fin-

Mr. Charles H. Niggeman, of Lexington, Mich., is the patentee of an improved stud button, in cal shank within which is a spiral spring. One of the heads is detached from the shank to admit the latter being attached to the shirt, and then so firmly secured For forming dove-tailed mortises in the ront of drawers, and like purposes, the Eagle Lock Company, of Terryville, Conn., have by assignmen patent granted to them for an improved router bit. By his implement locks are made to fit in cupboard and ithout screws.
Mr. P. J. Leonard de Rache, of New York city, is the patentee of an improved freproof ceiling. The ceiling is composed of tiles supported from the
joists by hangers, and having facing tiles placed agains joists by hangers, and having facing tiles placed agains the sides of the joists, and top tiles placed between the
upper parts of the joists. The top tiles and the tops of apper parts of the joists. The top tiles and the tops of
the joists are covered by a layer of cement, rendering he ceiling secure against fire
An improved manner of balancing two wheeled vehicles has been patented by Messrs. John W
Coe and Daniel Merritt, of Brooklyn, N. Y. The body is hinged at its forward end to the crosebar bod shafts, and connected at its rear ends with springs which rest upon adjustable supports altached to the hafts in the rear of the crossbar, so that hy simply will be raised or lowered at the rear to balance the car properly for persons of different weights or horses different size.
An improved sash holder, for holding and locking a sash in any desired position, is the subject of
a patent granted to Mr. William Conner, of Missouri Valley, Iowa. Within the window casing is placed a edge-shaped piece to which is attached a cone with the link attachment. By operating this handle the wedge is brought more or less forcibly against the edge of the sash, holding the window partially open or An improved
An improved device for holding a door ikewise anst the wall of a room, and which serve G. Matthews and Rudolph Matthews, of Wichita, Kan A beveled catch is attached to the lower edge of the door and a spring catch is fastened to the base board of
the room, so that when the door is swung open the che room, so that when the door is swang open the
catch on the door hooks into the spring catch on the d, holding the door aja
A machine for cleaning small fruit, such as currents, huckleberries, etc., has recently been patented
by Mr. J. F. Hudson, of Brooklyn, N. Y. The fruit is deposited in a receiver whence it passes into a cylindri cal screen composed of longitudinal wires and furnish creen. In this way the stems, dust, and other refuse pass through the wires and fall into a receiver below, while the berries are carried down and delivered into a box underneath the machine.
Mr. Alex. G. Points, of Staunton, Va., is the patentee of an improved dinner pail for the use of workmen and excursionists. The casing is cylindrica bove thed with a series of circular pans placed one signed for meats, eggs, or other foods. The opening at the top of the cylinder is closed by a tea kettle. A eceptacle is formed at the end for carrying knives, forks, etc. Provision is made for carrying a tin cup on well arranged for the purpose for which it is intended.
Mr. Michael Hannan, of New York city, as obtained a patentfor an improved snow melting aptreets. This consists in a tank open at the top, so that the snow may be readily shoveled into it. A cylindrical furnace is placed within the tank. The snow as it falls pon the heated wall over the furnace flues is immediaely melted, and the water fiowing into a reservoir may e used for clearing away any remaining snow upon stror in
An improvement in blackboards used in schools for displaying examples in mathematics and similar purposes has been patented by Mr. Otis M
Mitchell, of Marathon, N. Y. It is so constructed that an example or copy may be exbibited in connection with the board, and at the same time the latter may be used as a desk, arrangement being made for swinging it from the wall, and lowering the npper portion to form a table or desk. A convenient able or desk for making
drawings, etc., is thus improvised, when the article is ot required for a blackboard.
Messrs. Silas B. Hazen and G. L. Van Gorder, of Winamac, Ind., have obtained a patent for a
very simple device for holding a door open or in any osition desired. This device is not permanently at tached to the door or wall, but consists in a wedge used with like good results. When in use the meta strip or wire frame is laid upon the floor, and the door is swung over it and a latch prevents the door closing again, and the wedge-shape of the check prevents the door swinging further open, so that the door is held in any desired position by very simple means.
An invention which recommends itself to the attention of grocers is the patent of Mr. Addison M. Herman, of Newtonia, Mo., for an improved tilting barrel or bin. This improvement not only facilitates contents against insects and dust The but procts the secured to bars which are mounted on pivots, the sock a liquid for preventing the passage of insects into the barrel. To the rear ends of the tilting bars are hinged links fastened to the cover of the barrel or bin, so that when the barrel is tipped forward the lid will be
imultaneously raised, affording ready access to the

The Charge for Insertion under this head is One Dollar a line for each insertion : about eig/tt words to a line. Advertisements must be received at publication office
asearly as Thursday inorning to appear in next issue.

Graining and imitating woods, finely, rapidly, and asily. Stamp for catalogue. J. J. Callow, Cleveland, o. Helios, Blue Process, Paper; the best made; war-
anted. Sold at all stationers, or Keuffel \& Esser, New Fanted.
Fire

Fire Brick, Tile, and Clay Retorts, all shapes. Borgner
O'Brien, M'f'rs, 23d St., above Race, Phila.. Pa.
Peck's Patent Drop Press. See adv. page 76.

Curtis Pressure Regulator and Steam Trap. See p.78.

Millstone Dressing Diamonds. Simple, effective, and

steam Expanders. R. Dudgeon, 24 Columbia St., New York. 50,000 Emerson's Hand Book of Saws. New Edition. For Pat. Safety Elevators, Hoisting Engines, Friction ould \& Eberhardt's Machinists' Tools. See adv.,p. 77 Barrel, Keg, Hogshead, Stave Mach'y. See ad., p. 78. or Mill Mach'y \& Mill Farnishing, see illus. adv. p.76. Hand and Power Bolt Cutters, Screw Plates, Taps in Mineral Lands Prospected, Artesian Wells Bored, by Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423. Pottsville. Pa. See p. 77. For best low price Planer and Matcner. and latest mproved Sash, Door, and Blind Machinery, Send for

The Porter-Allen High Speed Steam Engine. SouthLightning Screw Plates, Labor-saving Tools, p. 78
Hollar's Safe and Lock Co., York, Pa., manufacturers f improved Fire and Burglar-proof Safes, Bank and $25^{\prime \prime}$ Lathes of the best design. Calvin Carr's Cornice
Uachinery. G. A. Ohl \& Co., East Newark, N. J. Drop Forgings. Billings \& Spencer Co. See adv., p. 45. The Ide Automatic Engine, A. L. Ide, Springfield, Ill. Brush Electric Arc Lights and Storage Batteries. Twenty thousand Arc Lights already sold. Our larkest
machine gives 65 Arc Lights with 35 horse power. Our torage Battery is the only practical one in the market Brus
Engines, 10 to 50 horse power, complete, with governor, $\$ 250$ to 8550 . Satisfaction guaranteed. More than
Ight hundred in use. For circular address Heald \& Morris (Drawer 127), Bald winsville, N. ₹.
Best Squaring Shears, Tinuers', and Canners' Tools Lath Lathes 14 in. swing, with and without
The Best.-The Dueber Watch Case.
If an invention has not been patented in the Unted States for more than one year, it may still be patented in
Canada. Cost for Canadian patent, \$40. Various other reign patents may also be obtained. For instruction ddress Munn \& Co., Scientific
Agency, 261 Broad way, New York.
Farley's Directories of the Metal Workers, Hardware rade, and Mines of the United States. Price $\$ 3.00$ Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping Machinery of every descrip-
tion. Send for catalogue. ion. Send for catalogue
Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel saits, polishing compositions, etc. Com-
plete outat tor plating, etc. Hanson \& Van Winkle Nete outflt tor plating, etc. Hanson \& Van Winkle, Lists $29,30 \& 31$, describing 4,000 new and 2 d-hand Machines, ready for distribution. State just what machines
wanted. Forsaith \& Co., Manchester, N. H., \& N. Y. city. For Power \& Economy, Alcott's Turbine, Mt.Holly, N.J. "Abbe" Bolt Forging Machines and "Palmer" Power

Railway and Machine Shop Equipment.
Send for Monthly Machinery List Send for Monthly Machinery List
the George Place Machinery Company to the George Place Machinery Company, "How to. Keep Boilers Clean." Book sent free by James F. Hotchkiss, 84 John St., New York.
Wanted.-Patented articles or machinery to make
and introduce. Gaynor \& Fitzgerald, New Haven, Conn. Water purified for all purposes, from household supplies to those of larkest cittes, by the improved filters manufactured by the
merce St.. Newark, N.J.
Latest Improved Diamond Drills. Send for circular Ice Cullock Mig. Co., 80 to 88 Market St., Chicago, $\mathbf{t h}$ Ice Making Machines and Machines for Cooling Breweries, etc. Pictet Artiflial lee Co. (Limite
Greenwich Street. P. O. Boz 3083, New York city. Presses \& Dies. Ferracute Mach. Co., Bridgeton. N. J. Machinery for Light Manufacturing, on hand and Split Pulleys at low prices, and of same strength an apperrance as Whole Pulleys. Yocom \& Son's Shafting Works. Drinker St., Philadelphia. Pa.
Supplement Catalogue.-Persons in pursuit of infortation on any special engineering. mechanical, or scien tific subject. can have catalogue of contents of the Sci-
ENTIFIC AM LiICAN SUPPLEMENT sent The SUPPIIGMENT containg lengthy articles embracing the whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co . Publishers, New York. The Sweetland Chuck. See illus. adv., p. 46. Improved Skinner Portable Engines. Erie, Pa
Catalogues free.-Scientific Books, 100 pages; Electrial Books, 14 pages. E. \& F. N. Spon, 35 Murray St., N. Y. C. B. Rogers \& Co.. Norwich, Conn.. Wood Working
Machinery of every kind. See adv., page 62.

August in, 1883.]
STientific Amprican.

NEW BOOKS AND PUBLICATIONS

Die the Triniscie Kraftubertragun tricity). Edward Japing. Wien, Pes Leipzig: A. Hartleben, 1883. 236 pages Various means have been devised for transmittin power, and the last is by the use of electricity. Mr which is now before us, on the above subject. He firs describes the natural and artificial powers adapted for operating the electric generators, the various kinds their advantase and defects the man electectrona dynamo-electric machines, and the relative costs offpro The following chaptess of of the theory of convert ing the current into work, the theoretical calculatio in relation to transmitting power great distances, the ter-currents, the ber of revolutions the armature, etc. The transmitting wires and cables the insulation of the same, the division of the current and the accumulators or storage batteries, especially lowing chapters. The last chapters are devoted to the losses sustained by transmitting power, examples of practical use of the electric transmission of power and the relative cost of such transmission. This work constitutes the second volume of Hartleben's Electro Technical Library
The Watchmaker's Hand Book. By larged by Julien Tripplin and Edward
Rigg, M.A. Illustrated by wood cuts
and copper plates. Published by Juliu
Tripplin, and by A. Fischer, London.
This handy sized volume contains much that may be aseful to other workers in the metals besides those en gaged in watch making. The treatment of cast steel,
brass, copper, and bronze, the contrivance of appliances for their working, the choice, use, and care tools, and many handy shop hints, make the usefulnes of the manual extend beyond the particular branch of the watch maker and the watch repairer, the directions are so minute and exact and the illustrations so frequent that the book must be valuable for reference to workmen and useful as an instructor to apprentices and

HINIS TO CORRESPONDENTS.
No attention will be paid to communications unless
tecompanied with the full name and address of the accompanied with the full name and address of the
writer. Names and addre
iven to inquirers.
given to inquirers. o former answers or articles, will be kind enough to of the question.
Correspondents whose inquiries do not appear after reasonable time should repeat them. If not then published, they may conc
Editor declines them.
Editor declines them.
Persons desiring
Persons desiring special information which is purely a a personal character, and not of general interest, as we cannol be expected to spend time and labor to obtain such information without remuneration
Any numbers of the Scientific American SuppleMENT referred to in these columns may be had at the ffice. Price 10 cents each
Correspondents sending samples of minerals, etc.,
for examination, should be careful to distinctly mark or Celtir mecimens 00 co lication.
(1) O. W. R. asks: What would be the weight of a body on the surface of the sun as com-
pared with its weight on the surface of the earth? scientists seem to vary largely in their estimates. Proctor says a lecter weighing half an ounce on the earth would weigh about four tons on the sun, which is about in proportion to the mass of the sun as compared with the earth, taking into consideration the fact that the specific gravity of our luminary is only one-half that of the earth. Other writers place the weight of a body at the sun as only about 27 times as great as on the earth.
Which is rights A. The sun's mass is about 354936 thes is right? A. The sun's mass is about 35493 imes that of the earth. Hence the difference of the masses divided by the square of the dufference in their radii equals the difference in gravity at their surfaces, or the difference in gravity is inversely as the square the radius. Thus $354 \cdot 936$

$$
\frac{5111 \cdot 8^{2}}{1079}=27 \cdot \text { or a body at }
$$

he sun's surfaces would weigh 279 times more than the earth's surface, under the same conditions. But a aporized by the intense heat at the sun's surface, and its condition in regardto gravitating influence might be materially changed. We think that it would be some hon less than the above figures. We think the quotation from Proctor an
(2) E. P.--The following is recommended as a good mucilage for labels: Marcerate 5 parts of the liquid add 9 parts of rock candy and 3 parts of gum arabic. 'The mist.ure can be brushed upon paper while ukewarm; it keeps well, does not stick together, and when moistened adheres firmly to bottles. For the labels of soda or seltzer water bottles it is well to prepare a paste of good rye flour and glue, to which linseed oil, varnish, and turpentine have been added in the proportion of half an ounce of each to the pound. aamp cellars.
(3) J. M. B. writes: There is a difference opinion here as to the power of two engines. One marine engine, 6 inches in its diameter, 6 inches stroke; one marine engine $61 / 2$ inches in !ts diameter,
inches stroke, 100 pounds steam. 28 inch two blade 8 inches stroke, 100 pounds steam. 28 inch two blade
propeller. Which has the most power, and what is propeller. Which has the most power, and wh
the difference, same number of revolutions? nches by 8 inches stroke has 20 per ceut more powe
(4) M. S. R. writes: Haviug an old Gregoran telescope, the brass tube of which is a little over inches in diameter, that in its present state is of no in your Notes and Queries: 1 . What should be the focal length of the plano-convex objective 5 inches diameter, in order to make a cheap achromatic telescope on the dialytic principle of about 5 feet focal length when inished? 2. What should be the focal length of the int achromatizer? 3. Whether a single plano-concave will answer, or if a compound one, consisting of a plano-concave of fint and a plano-convex of crown lass, will be required? 4. Can the correction be made what an aculd be the bjectives For your dialytic telescope, plano-conves lens $43 / 4$ inches diameter, 28 in. focus or the object glass, of crown glass. A plano concave lens $21 /$ inches diameter, 21 inches focus.
dense flint glass. Place the fint lens at about 13 inches from the object glass, plane side toward the eye, and in a manner to allow of a small adjustment
for final correction. The focus of the combination will for final correctio
be about 5 feet.

INDEX OF INVENTIONS For which Letters Patent of the United States were Granted

July 24, 1883,

AND EACH BEARING THATE DATE.

[See note at end of list about copies of these patents.]

Atomizer, B. F. Sutton
Automatic gate, D. Hershberger.
Averaging machine, W. S. Auchincloss
Bag, bale, and bundle tie, D. E. Ladd..

Basket handle, McConnell \& Chandler
Bearing, anti-friction, H. G. Yates....
Bed, cot, C.T. Segar.....
Bed, spring, S. Pariseault
and venting, P. Brady
Belt fastening, E. Ma
Bit. See Driving bit.
Bit stock, W.L. Parmelee.........
Bleaching palm oil, etc., B. T. Babbitt

kins....................
Boot cleaner, M. Lesser
Boot or shoe, G. C. Buch........................
Boots and shoes, manraracture of, tal, J. M. Hanscom Bottle case, metal, J.
Box. See Service box.
Brake for winding or hoisting engines, w. C.
Breech loader, W. Gardner.
Bridges and elevated railway structures, safet
device for, J. W. Young.............
Button fastener, R. J. Gilmore
Button fastener, J. H. McClure....
Cabinet for type-writers and sewing machine
w. Horrocks
Cable ways, grip for endless, L. J. J. Wing. Can filling machine, M. Jensen Car coupping, N. J. Cheeney
Caring, R. H. Dowling. Car coupling, w. McConway Car coupling, F. Miller...
Car coupling, J. O'Conno Car coupling, J. O'Conno
Car coupling, F. Sloat....
Car electrical Car electrical circuit coupler, railway, P.
Rickets Ricketts..
Car heating apparatus, I. Shirpser
Car starter, W. B. Cleveland..
Carriage, child's, G. W. Bryan
Carriage gearing A. s. Carlet
Carriage tops, jointed brace for, B. Taylor Carrier. See Egg carrier
Case. See Bottle case.
Case. See Bottle case.
Cement compound, w. J. Budington.
Chain, ornamental, J. Etzensperge
Chain link, drive, A. S. Held..
Chair. See Recumbent chair.
Chair. See Recumbent chair
Chart. dress. L. A. Call......
Check, baggake, C. Sears.
Check book, N. A. Gibbs..
Chuck, drill, I. G: Tod...
Churn, H. W. Merritt....
Clamp. See Floor clamp.
Clasp. See Corset clasp.
Cleaner. See Boot cleaner. Coal clean
Clipping machine, horse, R. K. Carpenter.
Clothes drier, O. F. Smith
Clothes wringer, o. P. Gould...
Clutch, friction,
Compass and apparatus for reading its indic
tions, clinometer, E. F. Macgeorge.
Condenser, F. A. Wilmans
Condenser, surface, A. W. Robertson
Confection,
Copy holder, A. Gerard
Copying book, manifold, J. . . Carter (r). Corn sheller, J. R. Hamilton

$\begin{array}{ll}281,803 & \mathrm{Ga} \\ 21,893 & \mathrm{Ge}\end{array}$

G

Corset, C.M. A. Barry......
Corset clasp, C. . L. Laufer..
Corset stayp plate. J. A. Ray..
Cotton separator and
cotton separator and cleaner, seed, w. o. Cole
man
Coupling. See Car couph
Cradle, w. H. Burgess...
Creamer, centrifugal, L. B. Nielsen
Crimping forms, machine for the manufacture o
J. W.D. Fiffeld
Crushing and grinding machine, C. Kim
Cultivator and seed planter, J. F. Hill..
Cultivator, sulky, J. C. Bayley.
Cut-offrvalve, N. W. Williames
Cutter. See Earvester
Cutter. See Earvester cutter. Ice cutter. Daesiccating machine. . Kimplen................
Dies, etc., manufacture of metal, G. F. Champ
ney.......................
Drawers, G. Wredging apparatus, s. Meinesz
Dredging machine. Johnson \& Johnsen.
Drier. See Clothes arier. Grain drier.
Drier. See Clothes dri
Drill. See Rock drill.
Driving bit, E , H, Gilm
Educational apparatus, Lamberet \& Billoud Egg carrier, C. W. Hunter............
Electric call apparatus, C.S. Shivier
Electric circuits, automatic cut-out for, R. J..........................

lectrrc light regulator, R. J. Sheehy

Electric machine, dynamo, E. A. Edwards
Electric machine, dynamo and magneto, J. M
McMahan
$\underset{\text { Mlectric switch, }}{\text { Mahan. }}$
Electric switch, automatic.
Electrical conductors, system of
ranean, W. R. Patterson......................
Elevator. See Hay elevator. Hydraulic elevator
Elevator buckets to belts, attaching, wittich \&
Strader......
Strader......
Trase Rotary engine
Evaporator, J. A. Morrell.
Excarator and wrecker combined, N.................
Feeding device, salt, J. Goldstein Feeding device, salt, J. Goldstein..
Feed gate, automatic, D. W. Marm
Feed water heater and purifier, W. S. McKinney Feeder, boiller, Knowlton \& Sage.
Fence posts, machine for driving, H. \& B. Dl........
Fertilizer, W. J. Courts
ourts
Fertilizers, process of and apparatus for manu
facturing, H . Hogan.......................
Filing the teeth of rotary cutters, machine for.
Berry
Fire alarm and call bell system, electric, \mathbf{c}. \mathbf{H}.
Frank......................
Firearms, recoil cushion for, H. G. Piffard...
Fre escape, o. R. Bowie

Flower pot for artiflcial flowers, B. Lobwy.......................
Frame. See Quilting frame. Slate frame.
dow screen frame
Fruit bleacher, R. E. Stone
Frutt press, H. H. Brown
Fur garment, W. Keller....
Furnace. See Glass furn

Gas producer, J. Zellweger.................................
Gate. See Automatic gate. End gate. Feed
Gear cutting machine, c. E. Albro
Glass furnace, E. Jones....
Glassware, J. Locke
1,810 Glove fastener. D. T. Chambers.....................
Grain drier, J. C. Slaughter....
Grate and lining. C. T. Barnes.
Grinding mill. E. H.\& C. Morgan
Grinding mill, \&. Wilson....... Guard. See Keyhole guard. Saw guard.
Hair rooter, knitter, and hackle, M. Campbell...
Halter, R. H. Armatrong.
Hammer and box opening and scraping devic Hammer and box opening
combined. J. J. Wylie.....
Handle. hooks, machine for forming tub, J. H.
Dunbar...................
Harness, E. P. Thornton.
Harness breast chain, w. Rudolph, Sr
Harrow, A. C. Evans
Harvester cutter, I. F. Bassford......
Harvesting machine, grain, C. Whitne
Harvesting wachine, grain, C. Whtne.
Hay elevator and carrier, M. Stentz..
Hay press, portable, G. W. Freeman. Hay press, portable, G. W.
Hay rake, A. W. Taylor..
Hay stacker, W. Louden.
 Heel trimming machine, H. A. Henderso Hinge. D. McCurdy........
Hoe, spring, J. S. Heath..

```
tographic plate holder.
```

one, knife, T. Williams.
Hook. See Tug hook.
Hook for hats, etc.,. F. Young.............
Hoop dressing machine, N. P. Stevens.
Hoop dressing machine, N. P.
Horse detacher, O. T. Jones.
Horse detacher, C. J. Spindle
Horse detacher, C. . Spindle.
Horseshoe, E. \& v. D. Simar
Hydraulic elevator, W. H. Milliken.
ce cream, etc., non-heat conducting package for,
Ice harvester, C. B. Church............................... 281, 281,752
Ice shaving machine, M. Gonzales....................
Indicator. See Temperature indicator. Station
Indicator. See Temperature indicator. Station
indicator.
nlaid metal work for jewelry. etc., J. Rothschild. 281,988
nsulated eiectric conductor, A. A. Cowles.......
F. Gilpin.
sulating compound for electrical conductors
and apparatus for compounding and applying
the same. J. B. Hyde........................
on high in carbon and low in silicon, manufac-
ture of cast, J. Reese
281,659
281,771

\square M Miller ack. See Last jack. Joint. See Universal ioint. | 281,671 | $\begin{array}{l}\text { Joint fastener, R. W. Fergus }\end{array}$ |
| :--- | :--- |
| Kettle, lamp, W. Pountne | |

 Knifc cleaning machine, W. H. D. Jones Knob attachment. .J. Kirby, J
Ladder, adjustable, N. Coons.
Lader, extension, C. Frizell.

281..887	Ladder, adjustable, N. Coons...
281,878	
2Li,957	Ladder, extension, C. Frizell..
Ladder. extension, J. Spangler.	

281,957	Ladder. extension, J. Spangle
281,812	Lamp, W. L. Ewing............

Lamp, W. L. Ewing.
Lamp, W. Newman.
Lamp burner. w. W. Eastman.
Lamp, electric arc, N. S. Keith.
Lamp, electric arc, N. S. Kei

281,970	Lamp fixture, extension. Parker			
281,798	Lamp lid, miner's. Deeds \& Mack		1816	Lamp lid, miner's. Deeds \& M
:---	:---			
Lamp, night, T. Bergmann...				

Lantern, A. J. Sawyer et
Last jack, G. M. Wells
Last jack, G. M. Wells..
Leather skiving machine, W. W. Currier.

281,991	Leather washer. T. Gingras.....
Lemorade shaker. W. M. Reed	

281,770	Life-preserver, Е. Bauer.................................... 281,981284
Life-raft, Е. А. Науes.......................... 281,689	

281.696	$\begin{array}{l}\text { Life-raft, E. A. Hayes................................ } \\ \text { 281.931 } \\ \text { Light. See Headlight. } \\ \text { Lightning arrester for electric wires, W. R. Pat- }\end{array}$

Lightning arrester for electric wires, W. R. Pat-
terson................................... 281,723

Matches, frame for dipping, G. . Milleu... 281,777
Matches from the dipping frame, etc.. machine
for transferring, G. H. Millen
Measuring machine, skin, C. G. Winter.............. 281.776.
281,745

Mechanical movement, Parsons \& Borchardt..... 281
Mechanical movement. O. F. Stedman........... 281
Metal boxes machine for manu facturing, Dauché
\& Deniaud............... R...................... 281,980
Mill. See Grinding mill. Roilin mill.
Moulding machine. 281,926
Moulding machine, H. Reynolds.................... 281,926
Mortising machine, H Feyh.................. 281,855
Motive power, Seebach \& Bettschen............. 281,299
Motor. See Rotary motor.
Motor, J. R. Ford..................................281,858
Mowing and reaping machine, L. M. Hawes 281,
Musical instrument isey board, M.H. McChesney.
281,
Musical instruments, mechanical key board at-
tachment for, w. Thorpe.................... 281,947
Necktie holder, D. E. Ladd................... 2810703
Necktie holder, D. E. Ladd....................... 281,703
Needle blanks, machine for feeding, J. Berry.... 281,961
Oar and oar lock, S. S. Hazeland................ 281,873
Ordnance, breech-loading. T. Nordenfelt.... 282008

Ore roasting furnace, J. M. Thompson..945
Pantaloon garment, C. C. Pearson 281,790
Paper feeding machine, sheet, R. . Stuart...... 282014

| Perambulator, T. F. Simmons........................... 281,933 |
| :--- | :--- |
| 281,933 |

Photographic
Pianos, stringing, J. P. Richardson....
Picture exhibitor, revolving, A Nelson
\& Marlay....

Plow jointer, D. W oodward.. 281,81
Poke, animal, J. E. Hunter...........
Post. See Fence post.
Pot. See Flower pot.
Power. See Motive power.
Press. See Baling press. Fruit press. Glass
press. Hay press.
press. Hay press.
Printing press gripper mechanism. J. T. Hawkins. 281.763

	.
	Pulley, W. F. Boysen
	Pulley, W. H. Carruthers.......................... 281,669
	Pump, W. H. \& C. A. Holcombe................... 281,695
	Punch, ticket, W. H. Campbell. 281,
	Quilting frame, R. B. Bledsoe....... 281,826
	Quilting machine, L. Schultz 281,732
	Quoit. H. F. Mann............ 281.779
	Radiator, T. McAvity, Jr
	Rallway, electric, F. B. Crocker et al................ 281,6
	Railway pneumatic switch and electric indicator, C. A. Cooper........ 281,899
	Railway tie, A. R. Spaulding.............. 281,806
	Railway, traction, W. B. Rea
	Rake. See Hay rake.
	Ram. Hydraulic, G. Yellott......................... 281,749
	Recumbent chair, E. E. Peck....................... 281,724
	Reel. See Fishing reel.
	Refrigerating apparatus, J, Reid
	Refrigerator and beer
	Regulator. See Damper regulator. Electric

Road making machine, F. M. Moulton............... 281,715
Rock drill, W. H. Randall.......................... 281,922
Rock drilling machine, Parsons \& Borchardt.....
Rock drilling machine, hand, Parsons \& Bor
chardt....... 281,97
Rolling mill, A. Crandell.
Rotary engine, O. H. Robinson.................................. 281,700
Rotory motor, A. Kissam...
Rubber waste separatin foreign substances from
India, A. W. Kent.
Sash fastener, M. Judd
Sash fastener, McCloskey \& Sash fastener, A. Montant ...
Saw frame, buck, W. Clemson Saw frame, buck, W. Clemson.
Saw guard, T. P. Heinemann..
Sawmill head block, H. R. Barnhurst
Sawmill head block facing, A. F. Griswold
Scale, weighing, W. G. Collier....
Scraper, ditch and road, J. w. Hedges et al
Scraper, diteh and road, J. W.
Scraper, sulky. P. Englehart
Screw, wood i. F. Brown
Seal, car, F. G. Gillmore.
Seal lock, w. H. Williams
Seed huller, cotton, P. McDermot
271,780
281,854

181,958

81,926

81,858
81,872
18189

$1,1,947$
., 961
.873
.008 1,782
1,945
1,790
21,014

281,876

Service box, cast lead, E. W. Meyer.....
Sheet dclivery apparatus, L. C. Crowell. Sheet metal vessel handles, attachment of, E. Mouhat.

See Corn sheller.
Shoe fristener, F. J. Mix.
Shutter worker, A. C. Wyckoff
silk and thread polishing machine, W. R. Land Slate frame. C. Nelson.. Slate frames, machi
for, C. Nelson.... Sliding gate, S. J. Mille Suap, harness, L. Flagg..
Snow plow, w. H. H. Bak
Soap, W. H. T'ownsend
Spark arrester. R. M. Howling Speculum and dilator, N. S. 11 Spring. See Vehicle spring.
Square, c. W. Green.......... Square, C. W. Green........... Steam boiler and furnace, A. C. Engert Steam boiler, vertical. J, A. Langdon. Steam engine, F. D. Cumme
Steam engine, J. walrath... team engine, J. Nairaln tereoscope, II. C. White... W.P. Thompso Stirrup for riding saddles, P. Ganzhorn Stone and or
nan. Jr.

tool, piano, J. Emerson

topper. See T'ube stopp
Stove, gas, E. E. Gold..........
Stove, heating, C. L. Ridgway
tove. oil or vapor, R. S. Oliver.
tove sheif, J. Wenzel.
Target, fling. D. A. Johnson
Telegraph, automatic printing F. Johnson.... Telophone exchanges. spring j, F. Ostrogovich Warner
Lockwood
emperature indicator, electric
oupling, Wood \& Taylor
Thrashing machine tooth, M. L. Horner Railway tie.
Tile machine, C. J. Merrill..
oasting bread and broiling meats, etc..............
co moulds or shapes, composition of matte
for greasing plug, i. i. Huddleston
Toy, A. Vick..
oy velocipede, H. s. Lock wood rraction wheel, F. E. Young.... Trunk, J. A. Ball.
ube stopper, D. J. Morgan
Umbrella. Bollack \& Mayer
Underground wires, etc., carrier for, T. A..........
Universal joint, R. Edmonds
alve balance, J. B. Miller....
Valve, steam engine, G. H. Burley
Vegetable and fruit drytrg ypparatus, F. Copk.
 ebicle spring. G. F. Putnam Vehicle, two-wheeled, Chandler \& williams,
Vehicle, two-wheeled. L. Christy. Vehicle, two-wheeled, F. A. Maus. Vehicle, two-wheeled, C. M. Murch Velncipede peilal, J. Knous
Wagon, J. Moses.
asher. See Leather washe
Washing machine. J. F. Trit.
Washing machine, A. L. Johnso
Watch and timepiece movement, full plate, F
Watch escapement, detachable, F. Fitt.. Watchnaker's tool, A. W. Bush Weather strip. J. Shoemaker.........................
Vheel. See Traction wheel. Wheelbarrow Wheelbarrow wheel, L. H. Goodwin Tindlass, Moore \& Heaberlin inilow screen frame, E. J. Brent ire fabric and , S. Sean. sume, J. Simonson. Wood tiller. R. Parke.

DESIGNS.
Carpet, F. Allen.
carpet; A. L. Halliday
Carpet, T. E. Meagh
arpet, T. Onslow.
Carpet, S. Smith
Glass articles, cut, G. E. Hatch
Iat, E. E. \& O. H. Widdiffeld.
Mirror or picture frame, F. G. Newel
Oilcloth. fioor, C. T. \& V. E. Meyer iano case, square, A. Kaucher............ ctureframe and easel, W. H. Brownell Ruffing or collarette. H. Rosenthal. poon or fork handle, 't. J. Pairpoin Upholstery.two-ply, A. Moniot............
Ventilator or air grate, w. W. Drummond

TRADE MARKS.
Alum, concentrated, Harrison Brothers \& Co.. ...

Bitters, tonic, J. Boyd
Cabs. D. P. Nichols \& C
anned fruits and vegetables. Reid, Murdoch Cigars, Loz
Cologne water. essential oils, extracts, essences. tonics, and articles of this class, West India
Manufacturing Company.......s. Manufacturing Company.
Flour, Joseph \& Anderson......................10.455. the like diseases, H. R. Stevenson Oars, sweeps, sculls, and handspikes. New Tork
Boat Oar Company............................ Paint, Are and watarp

Valaable U. S. Patent for Mixing and Crushing

WOOD, TABER \& MORSE, Eaton, Madison Co., N. Y., PoRTABLE AND AGRICULTURAL Steam Engines
 Practically Portable Steam Engines,

 ned their manufacture, the
Standard Portable and Agricaltural Engines of the world. Descriptive Circulars sent on application.
Mention this paper.

THE nttontion of MANUFACTURERS

pOUGHKEEPSIE OFFERS plentiful supply of good a
 $\begin{aligned} & \text { wages. } \\ & \text { Adractive and healthy place of residence. } \\ & \text { Adress } \\ & \text { Associnition } \\ & \text { Uor }\end{aligned}$ the $\mathbf{P r o m o t}$ Useful Manufactures;", JOHN I. PLATT, President. \$72 A A WEFK, \$12 day at home easily made. Costly.

ENGINEER AND MACHINIST,

The New Baxter Patent Portable Steam Engine.

 \begin{tabular}{l|l}
$11 /$ Horse Power, $\$ 150$. \& 3 Horse Power, $\$ 290$.

$11 / 2$ \& Horse Power, 190.

Horse Power, \& 245.

5 \& Horse Power, 350.

\end{tabular}

J. C. TODD, Paterson, N. J. Or No. 17 Barclay St., New York.

WATCHMAKERS.

NEW TELEPHONE!

UPRIGHT
DRILLS
all sizes.
BORING TURNING MILLS

48 and 72 inch
BICFPORD CIncinnati, ohio.

SIBLEY \& WARE, South Bend. Indiana. $19 \frac{1}{2}$ NCH DRRLL PRESSES, AND GEAR CUTTING.
 NEW HAVEN MANUFACTURINGCO.
MAGHEINTEMOOLS
Lathes, Planers, Drills, Shaper*, ete.
illustrated catalogue on application.

FOR SALF,
An 18×36 WRISHT AUTOMATIC ENGINE, in
good order. UMM ER ENGINE CO., Cleveland. Ohio. THOUGHTS ON CHEMICAL AFFINITY. -By Charles Morris. An interesting discussion of the
attributes and combining propertice of the mooleules of
matter. Contained in

$\$ 5$ to $\$ 20 \begin{gathered}\text { per day at home. Samplesworth } \begin{array}{c}\text { \$5f ree. } \\ \text { Address STINson }\end{array} \text { \& Co., Portland, Me. }\end{gathered}$

(x) PAND-VE
 ample and Circular Free by mail

U. S. MINERAL WOOL CO., 22 Courtlandt St, No Y

TUGENGINE WANTED

G. A. GRAY, Jr. \& CO., Iron and Brass Working MACHINERY,

42 EAST 8ih STREET, CINCINNETI, OHIO.

PATENTS.

MESSRS. MUNN \& CO.. in connection with the publication of the ScIrNTIFIC AMIRICAN, continue to examine Improve
In this line of business they have had thirty-fight years' experience, and now have unequaled facilities for the preparation of Patent Drawings, Specifications, and
the prosecution of Applications for Patents in the Cnited States, Canada, and Foreign Countries. Messrs. Mmin \& Co. also attend to the preparation of Caveats,
Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements of Patents. All businces intrasted to them is done with special care and prompt-
ness, on very reasonable terms. A pampllet sent free of charge, on application, con taining fall information about Patents and how to pro
cure them; directions concerning Labels, Copyrights Designs, Patents, Appeals. Reissues, Infringements, As signments, Rejected Cases, Hints on the Saie of Paents, etc.
We also send. free of charge. a Synopsis of Foreign
Patent Laws, showing the cost and method of securing patents in all the principal countries of the world.
MUNN \& CO., Solicitors of Patents,
261 Broadway, New York.
BRANCH OFFICE - Corner of F und 7th Street

THE B.ERKSHIRE HILLS.-A new Coiored

BïBB'S

OPIUM

RUPTURE

MANHOOD!

A Book for Every Man
Young, Midlle-Aced. and Old.

HENDERSON'S SPECIAL REFRACTORY COMPOUNDS.

ICE MAKING MACHINES,

And Machines for Cooling Breweries, Pork Packing Establishments, Cold Storage Warehouses, Hospitals, etc. PICTET ARTIFICIAL ICE CO. (Limited) P. O. Box 3083.

ROOT'S NEW IRON BLOWER

posixIve minasiu

IRON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturers,
 SEND FOR PRICED CATALOGUE.

SPEAKING TELEPHONES. THE ABLIRICAN BELL TVLLEPIIONE CONPANY,
W. H. Folibes, W. R. DRIVER, THVO. N. VAIL,
 the roice of the speaker causes electric undu ations
corresponding to the ords spoken. and which articula-
tinn

 its authorized licenses, are infrinements, and the
makers. sellers, and usere will be roceeded against.
Information furnished upon anplication.

Cold Rolled STA ATMTNG

The tact that this sbafting has 75 per cent. greater
stregth, atner finish, and is truer to gauge, than any
otherin use renders it indoubtedly the most economtcal.

 STEAM PUMPS Of every description and for pvery purpose.
Bo ler Feeding and Fire Pump a specialty. Pumping
returns from steam heating appa-
 ARIESAN M/ELI $\begin{aligned} & \text { DRILLING, WELL } \\ & \text { BORANG AND MIN- } \\ & \text { ERLI }\end{aligned}$

 Clarls's Noiseless Rubber Wherls.
Absolutely prevent sintering and wearlig
of floors caused by use of Iron Whels.
Adapted for Trucks. Boxes, Taskets, Tables.
 Steel Castings
 Mind

WESTON DYNAWO-ELECTRIC MACHINE

 ${ }^{\text {or }}$ flectroplading AND bleetrnopping, refer to all the principal Stove Manufacturers, Nickeland Silver Platers in the country. Over 1,500 now in use Are also manufacturers of Pure Nickel Anodrs,
Nickel Salts, Polishing Compositions of all kinds, Nickel Salts, Polishing Compositions of all kinds,
and every variety of supplies for Nickel, Silver, and and every variety of supplies for Nickel, Silver, and
Gold Plating; also, Bronze and Brass Solutions. Com-
plete outfits for plating. Estimates and catalogues fur-
nished upon application.
HANSON VAN WINKLE \& CU...
SOLE AGENTS NEWHK. V:I.

BURLAND'S PATENT INJECTOR CO., Limited, BOOKS ON BUILDING, PAINTING,

COLUMBIA BICYCLES AND TRICYCLES.

Seventh Annual Exhibition Piltsuniy Empusition Incielty, OPEN FROM
September 6 to October 13, 1883

J. C. PATTERSON, Secretary, P. O. Box 895, Pittsburg, Pa.

The "' MONITOR."

 A NEW AIFTINGAND NON
 Steam Pressure.
Also Patent
EJECTORS Water Elerators

HW.JOHIS'

 asbesfosASBKSTOS ROPE PACKING, asbestos shertoc rlac packing,

H. W. JOHNS M'F'G CO. 87 Maidon Lane, Now York,
Sole Mannatacturers of H. W. Johns Genuine

 Extabl EACLE ANVILS. 1843. Solid Cast steel. Face and Horn. Are Fully war

[^0] Lehigh Valley Emery Wheel Co. Emery ECorumum

AND GRINDING MACHINERY,

ONE THOUSAND TONS METALLIC SHINGLES Are now being used by the W. S. and B. R. R. on depots
between New orik and Buffalo. ANGLO-AMERICAN ROOFINGCO.

 HARRIN-COMRLINS ENGINE JACKET PAENT KTLES,

ERICSSON'S New Caloric

 Yumpiily ${ }_{\text {roi }}$ Ensine,

EVAPORATING FRUIT

 Waynesboro, Pa.

NEW YORK BELTINGAND PACKING COMP'Y.

$\mathbf{E} M \mathbf{M} \mathbf{E} \mathbf{Y} \mathbf{W} \mathbf{H} \mathbf{E} \mathbf{E} \mathbf{R} \mathbf{N}$

F. Brown's Patent friction CLUTCH.
 A. \& f. brown, 43 Park Place, New Yorko SHAFTS PULLEYTLAGERS

HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.
W. B. Franklin,V. Pres't. J. M. nhiden. Pres't. J. B. Pierce. Secty.

THE DUPLEX INJECTOR.

ダcientifir Ancrexicau
The Most Popular Scientific l'aper in the World. Only 83.20 n Year, including postage. Weelily.
$\boldsymbol{5 : 2}$ Numbers a Year.
This widely circulated and splendidly illustrated
paper is published weekly. Every number contains sixpuper is published weekly. Every number contains six-
teen pages of useful information, and a large number of teen pages of useful information, and a large number of
original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanies, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the Scievtipic american a popular resume of the best scientific information of the day; and it is the aim of the publishers
to present it in an attractive form, avoiding as much to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind, possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. every community where it circulates.
Terms of Subscription.-One. copy of the ScIen-
TIFIC AMEHICAN will be sent for TIFIC AMERIICAN will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States pos Canada, on receipt of three dollars and twenty
or
cents by the publishers; six months, \$1.60; three months, $\$ 1.00$,
Clubs.-One extra copy of the SCIENTipio Ameri-
cAN will be supplied gratis for every clubof fve suberibers at $\$ 3.20$ each; additional coples at same proportionate

rate. | rate. |
| :--- |
| One |

One copy of the ScIENTIFIC AMierican and one copy
of the Scientipic American SUPPLEMENT will be sent of the ScIENTIFIC AMERICAN SUPPLEMENT will be sent
for one year, postage prepaid, to any subscriber in the for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters astray, but is at the sender's risk. Address all letters
and make all orders, drafts, etc., payable to MIUNTN \& CO., 261 Broadway, New York. To Foreign Subscribers.-Under the facilities of
the Postal Union, the ScIENTIFIC AMERICAN is now sent by post direct from New York, with regularity, to sub-
scribers in Great Britain, India, Australia, and all other scribers in Great Britain, India, Australia, and all other
British colonies; to France, Austria, Belgium, Germany, British colonies; to France, Austria, Belgium, Germany,
Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted, \$4, gold, for ScIentipic American, one year; \$9, gold,
for both ScIENTIFIC AMERICAN and SUPPI for both Scientipic American and SUPPLEment for
one year. This includes postage, which we pay. Remit one year. This includes postage, which we pay. Remit
by postal order or draft to order of

PRINTING INKKS.

[^1]
[^0]: PYrometers. For shomiti heat

[^1]:

