
a WeEkiy Journal of practical information. art. science. mechanics. Chemistry and manufactures.


## RALL ROLLING ILILL EIGINES.

Our engraving illustrates an engine constructed by Messrs. Davey Brothers, Limited, of the Park Iron Works, Sheftield, for the rail mill of the Tredegar Bessemer Works. The figure shows the reversing cogging mill engines. The cylinders, which are overhung, are 40 inches in diameter and 5 feet stroke, and are fitted with balanced slide valves, worked, through reversing links of the Allan type, by eccentrics fitted to separate shafts and driven by drag links from the main cranks. The reversing is effected by a steam cylinder fitted with suitable controlling gear, so arranged as to dispense with the usual oil cataract. All the starting han dles are brought to an elevated platform erected over the center of the engine, so that the man in charge bas a complete view both of the engine and of the rolls.

The cranks are of cast steel and have the counter weights cast on. The crankshaft is of best wrought scrap iron, 10 inches in diameter in the journals and 20 inches in the middle. The second motion shaft is also best wrought scrap iron, 20 inches in diameter in the bearings and 24 inches in the middle. The spur gearing has a ratio of about 2 to 1 ; it is 8 inches pitch and 24 inches wide at the points of the
teeth. The total weight of the engines is about 140 tons. We may state that a modern rail plant, consisting of cogging, roughing, and fivishing engines and mills, will turn out 3,000 tons of rails per week with ease, while formerly 700 to 800 lons was considered a splendid week's work. Engineering.

Realotance on Rallway Curves.
At a recent meeting of the Institution of Civil Engineers, it was stated by Mr. John Mackenzie that when a six-wheeled engine with parallel axles was running round a curve, the tendency which the outer leading wheel flange had to mount the rail was evidently caused by its adhesion to the side or result of a side pressure which, at low speeds, was principally caused by the resistance the treads of the wheels offered to the sliding motion that took place iu going round a curve. He contended that this side pressure increased with increased adbesion of the treads of the wheels to the rails, and that the adbesion of the flange itself to the rail also increased with the increased ratio of adhesion, so that the tendency of
ratio of the fraction representing the coefficient of adhesion. As the point of contact between the flange and the rail was in advance of the center of the axle, the motion of the flange at that point was downward, imparting a downward pressure to the rail, and an upward pressure to the wheel, so that when the flange adhered to the rail the wheel rose.
Thus the pressure which would cause the flange to mount the rail was not that which, with the wheel at rest, would force it over the rail in opposition to friction as well as to gravitation, but the very much smaller pressure which, when the wheel was at rest and the tread raised slightly above the rail, would cause friction sufficient to prevent its falling into its place again. It had been found by actual experiment that the adbesion between wheels and wet rails with sand sometimes rose above 40 per cent of the weight; and it might be found, by calculation, that with this proporticn of adhesion the side pressure on the flange of the outer leading wheel of many six-wheeled engincs of not unusual proportions might, under certain circumstances, be so great as to cause the flange to adhere and mount the rail; and that, as regarded running off the rails, six-wheeled ennd that, as regarded running off the rails, six-wheel
inenerally had a very narrow margin of safety.


## sricentific Gmrxitan.

## ESTABLIBHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

## TREMS FOR THE SCIENTIFIC AMERICAN.

 One copy. one year portage inoluded.....One copy, alx mouthe pootage induded
Clubs.-0 160
 came provortionate rite. Pouluese propali.
Remit ly postal order. Address
MUNN \& CO., 201 Broadway, corner of Warren street, New York.
The solentife American Supplement
 with scientivic Americas. Termb of subeciption tor supplemint 25.00 a year, postage pald, to subscribers.
all news deelera throughout the country
all nows dealera throughout the country
 $T$ pe mest

## selontiac amertean Export Edition.

 large quarto paceo, profusoly luustrated, embrracing: (1.) Mont o1 the


 worms singie coploes 50 cents. to seoure forelgn trude may have larree. and handsomely displajed an

 co., \$1 Broodwas, corner of Warron street, NeF York.

NEW YORK, SATURDAY, MAY 19, 1888.
Contouts.
allastrated articlee are marked with an asterisk.)


TABLE OF CONTENTS OF

## the scirntipic aycrican supplemigat

## NO. 388,

## For the Wook onding may 19, 1883.

Price 10 cents. For eale by all newadeners.
L. NATURAL HISTORY.-Finhes of

Panax Viot orim. -1 IUnestration....
A Note on sap. By Prof. ATTriz
A Note on sapp. By Prof. ATTFikLD.
The Crom. - Iliuatration.
The Pryying Mantita and itio
Tha Prysing Mantis and its
II. TECHNOLOGY.-A Qulok way to Asoertaln the Foous of a Lenn. 1 diagram...................................................... on

 of meetul tutuee, plateos, bacre, and frames.-Improvements of Meyer,
 asures.
iil. midicine and hygienk.-The Polionous Properties of Nitrate of silver and a Recent Case of Politooning with the same.
By A. A. Morr Jr.... By H. H. A. . MOTrT J. J...
Tabercle Bacill in
Malaria. By Dr. J JMis H. si................................
 canse of acue. - Notes on marrah misemm. - Analigstis of malaria plant. - Nomerous ifures
IV. ENGinemring.-Torpoao Boate.-Full paze illustration.
 ape. -1 Agures
V. RLLECTRICITY, LIGHT, AND HEAT.-Serivanow's Chloride of silver Pilie.-2 Ingures....
On the Lummoalty of
VI. CHEMISTRY.-New Bloeching Procoses, with Regenerationil or the Baths Uneo. By M. Bownsillican
VII. ARCHTY'RCTURE.-The Pantheon at Rome..
ViI. MISCELLANEOUS.-The Rapheol Celebration at Rome................... trations


## THE PROPOBED 8RA OF BAHARA.

The project for inundating the Desert of Sahara, and thus changing it into a new oceanic empire, is the most astonishing of all the gigantic enterprises of the age. We are inclined to favor it because of its very boldness and grandeur. Since it was first brought out. in 1877, by M. De Lesseps in the French Academy of Sciences, scarcely a word bas been spoken against it, although its originator admits that its execution will require the services of an army of at least 100,000 workmen, and an outlay of not less than $\$ 30,000,000$.
A reasonable protest has at last appeared, from the pen of Mr. R. W. Wright, published in the New Haveu Jour nal and Courier, the main points of which are worth considering. Conceding that M. De Lesseps is to be recognized af a great and successful civil engineer, it is denied that he is wise enough to tell whether balf a continent had better be submerged, and the climate of the globe materially clanged. The mere fact that the daring French engineer succeeded in cutting the Suez Canal, thus making a valuable commercial highway, does not prove that he had better flood the great African desert. He has demonstrated the possibility of digging a canal through Tunis from the Mediterranean Sea, but he has failed to give any reliable topography of the vast desert that is to be thus changed into an inland sea, nor has he suitably informed us what compensating advantages the
civilized world is to gain in place of certain positive benefits civilized world is to gain in place of certain positive beneft: accruing from the existing state of ching.
1 Thr Wisiting desert is "a meat

1. The exic in fact than the Gulf Streator of heat, many imes greater in fact than the Gulf Stream." It operates, like that oceanic current, to force the "thermal equator"
northward, and to change it as proposed would affect the mean temperature of all Europe, and might seriously modify its area of civilization.
2. The desert acts "as a great aerial sponge," absorbing atmospheric moisture over a wide and rainless region, and thus ameliorating the climate of a large portion of the Eastern hemisphere.
3. This vast sand plain acts as a "storm barrier," arresting and breaking up the tornadoes on their way from the tropics to derastate Europe. It is a mistake to suppose these de-
structive winds to be generated amid the solitudes of the desert. The cause of the simoom, which often takes on the alarming form of a huge sand spout, is the fact that when a tornado strikes the desert it begins at once to lap up the particles of sand, until it has thus gathered into itself thousands of tons, which tinally load it down beyond its carrying power, and it falls with its burden and finds it fury spent.
4. The sands of Salara act as a great "absorbent of ualaria," thus preventing the fatal maladies of Africa from invading Europe. The desert is known to be absolutely free from malaria, for the good reason that it contains nothing to produce it. The equatorial regions south of the desert breed the most dreadful diseases known on the globe. Substitute an inland sea for the waste of sand, and the pestilential winds would sweep more swiftiy across to precipitate their plague-germs on the population of Europe.
5. Mr. Wright's greatest objection to the project is that it would create a "dead sea," similar to that of Palestine, only on a far larger scale. There would be an artificial inlet, but no outlet. The waters would be hopelessly stagnant, receiring no fresh water streums from the African watershed, and out of the way of the oceanic currents. The Tunisian canal would let in the salt water from the Mediterranean, which would become more and more briny by constaut evaporation, ncreased further by the extensive natural depasits of salt already known to exist in portions of the desert. The in evitable result would be the creation of a lifeless, terrible waste of dead waters, environed by dreary salt hills and dismal marshes like those that now surround the site of ancient Sodom.
To there valid objections must be added certain considerations as to the mechanical action of an immense body of water rushing in from the Mediterranean Sea to deluge the far lower regions of the Sahara. De Lesseps reports the highest parts of the great desert as being about 1,300 feet higlest parts of the great desert as being about 1,300 feet
above the sea level, and other spots as being more than 1,000 abeet below it. He also finds sand, sand everywhere, without any rocky ridges to hold in check the mighty rush of water from the higher to the far lower level whenever it shall begin. No system of locks can be constructed sufficiently strong to regulate such a formidable deluge, especially as their sandy foundations would be liable at any moment to be swept away. The inevitable result would be the filling, not only of one or two "schotts," or dry basins, as now proposed, but the breaking down of all barriers and the filling posed, but the breaking down of all barriers and the filling
of all the series of basins, till they bad risen to the level of of al the series of basins, till
the Mediterraneau reservoir.
The vastness of this region can be seen from the measure-
derness shall blossom as the rose." This beneficent scheme may not be applauded by the French Academy, but it has the prosaic merit of being safe; it would require no greater expenditure of funds than its practical results would warrant: nor would it encounter more serious hiuderances than the ancient Egyptians overcame in making the sandy valley of the Nile the garden of the world.

## apprentices to mechamical trades.

The opinion appears to be spreading that fewer opportunities are given boys to learn mechanical trades then formerly, and that the number of boys who desire to learn to be skillful mechanics is constantly lessening. In a hearing before a legislative committee in a New England State, a few weeks ago, it was testifted that while formerly it was the desire of boys to enter on a mechanical apprenticeship, the contrary was now the fact, one witness saying that the boys all aimed to get positions in insurance offices, and another expressing the belief that the future supply of mechanics' apprentices must come from the State reformatory institutions. Another gentleman of acute observation said that " the growing tendency of the times is not to have boys learn a trade. The old system of apprenticeship is no longer in vogue. The trades seem to be despised."
Other statements have been published to the effect that our skillful mechanical work is fast passing into the hands of foreign-taught mechanics, and that Americans are becoming scarce in mechanical establishments. It is asserted, also, that labor unions, introduced and sustained by foreigners, discourage the reception and education of apprentices in the shops, and that they bave so great an influence as to materially change the constituents of shop labor.
It is possible that all these statements are drawn from a condition of things that is limited if not isolated, or they may be assertions made on general grounds, without particular circumstances to give them authenticity. It is certain that if these conditions do exist at any one point, they are not general and common. If the intelligent observer will visit a number of our first-class mechanical establishments, he will ascertain that a fair proportion of the emploged are apprentices and learners-as large a proportion as can be employed to advantage. A single example may be citedonly one of many.
One of the offlcers of a large mechanical establishment, whose products are sent all over the civilized world and whose name insures excellence, if not superiority, of production. stated recently that the company employed as large a number of apprentices as the nature of their work would permit, from economical reasons, among others-they were generally a source of profit. The system is to take the apprentice on probatiun under certain conditions. If, after sufflcient trial, it was found that the apprentice bad no mechanical bent or lacked in the natural qualities to become a good workman, he was allowed to go. If, however, he and his work agreed, the permanent arrangement was made. The terms are 70 cents per day for the first year, 80 cents second year, 90 cents third year, and $\$ 1.20$ the fourth year. As a bond for failuful performince of contract, the apprentice deposits $\$ 100$, to be held until the termination of his apprenticeship, and to be forfeited if he refuses to serve his full time. Usually this deposit takes the iorm of a retention of $\$ 8.50$ per month from the first year's wages. Apprentices received after the completion of twenty-one years begin on the second year and serve only three years, subject, however, to the same bond.
It may sound strange to hear of an applicant for appren. ticeship of the age of twenty-one years, but applications have been made at this establishment by men above thirty ycars old. To show that the desire to learn a trade is not extinct among our boys, it may be stated that the applica tion book of this establishment contains the names of not less than one hundred and fifty patient waiters, and these were culled out of probably as many as flve hundred applicants. The apprentices received here have the opportunity to learn either the moulding (foundry) business, pattern making, or any department of the machinist work, their tendency to any division of the machinist trade showing itself as they progress.
It requires no assurance of the fact to convince one of the profit of apprentice work to the company under these circumstances, and no logic to prove that refusal of opportunities to learn a trade would be poor policy. And the fact that the numbers offering as apprentices are ten times greater than the opportunities shows that it is not generally true that " trades seem to be despised."
Perbaps the applications of those of the somewhat mature youth of twenty-one and upward, and of thirty years, comes from an experience of the disadvantage of no trade.
The high reputation of the establishment which has been quoted as an illustration may account for the large number of its applications, but the proprietors of small shops have said, lately, in reply to questioning on the subject of apprentices, that they are never at a loss to find candidates for apprenticeships, and are able to make a selection from a number at all times.
The statement that foreign taught mechanics are gradually supplanting American bred mechanics is probably correct only in cases where the nature of the work is foreign and unfamiliar, or is true only in localities where the working population is largely of foreign birth. It is within the memory of many that the production of calico prints in this country was almost exclusively in the hands of foreign taught labor; and more recently that of carpets. But the careful,
unprejudiced, and disinterested observer will find no facte to warrant the fear that the race of American mechanics is in dunger of becoming extinct, either because there are no

## THE BOOIETY OF AMERICAN TAXIDERMISTS.

## The exhibition of the Society of American Taxidermists,

 which was held in this city during the weck ending May 5 was less notable for its general excellence than for the effects which it is likely to have on the taxidermy of the future.An example of what can be done in the right direction was shown by Professor Ward, of Rochester, who had a group of duckbills (Ornithorynchus paradoacus). This is ne of the least known of the mammalia, and yet it was im possible for a child even to look at the group without gain ng a very good general idea of the creature's habits. Tb house was shown; the peculiar manner of curling up the body in sleep was giveu; the act of grubbing under wate or worms was portrayed; and indeed, by taking a half dozen or more of the creatures, their principal characteristics were made clear. And incidentally a glimpes was given of th character of Australian plant life

The most perfect work in the exhibition was beyond loubt the elephant Mungo, belonging to the Smithsonian Institutiou. This was mounted by Mr. Hornaday, and as a specimen of the taxidermist's art is superior to anything yet done, in this country at least. The elephant, which is of the African species, stands about five feet high, and it dnes no seem as if the original flesh and blood Mungo could have been more lifelike.
Mr. Hornaday, who has shown himself an artist as wel as taxidermist, insured a correct beginning by modeling the limbs and other principal bones in wood from the skeleton The wooden frame was wound with tow, and the whole cor ered with chopped tow and potter's clay to a depth of one and a half to two inches. With this plastic substance he was enabled to simulate the numerous humps and hollows so plentifully bestowed on the elephant's body; and, moreover the same substance in hardening made a practically inde structible body.
There was a good exhibit of plaster models by Mr. Kemys, he best of which was a puma in the act of moving stealthily along. The head might have been better done, but the pose of the body was well cauglt. A raccoon, too, was particu arly well executed.
Birds there were in plenty, and among them the long suf ering owl posed in all the natural and unnatural attitude which the fancy of man could suggest. The most artistic of the bird pieces was a wounded heron, by Mr. Webster, of Rochester. The bird, in its death agony, is endeavoring to pluck out the arrow which has pierced it. Another very good specimen was a fight between two hawks, in which by simple but ingenious device one of the birds is made to hover in the air without. any immediately apparent support. This group, by the way, is not a recent work. A frigbtened owl with ruffled feathers; by Mr. Wallace, was among the best of the birds.
There were several good dogs, but the best was a really wonderful work by Mr. Hornaday-a hairless Mexican ter rier. This dog, which was equal in merit to the elephant, was passed over by the judges in consequence of an impres sion that it was a plaster cast. Certainly a tribute to the exellence of the work.
There were a number of very fine plaster casts, notably the head of a domestic calf and a dolphin's head, by Joseph Palmer
Taken as a whole, the exhibition was far superior to any bitherto held, and the evident endeavor shown in the work in rise out of the rut in which taxidermy has been running解 stuffing from the art.

## AN UNWELCOME TRUTH

Under the above title the Journal of Science for April, 1883, contains a brief account of some of the results of $M$. Deherain's investigations in France into the impoverishment of soils under cultivation.
The facts elicited by these examinations prove that "the amount of plant food removed from arable land by the crops s neitber the whole, nor in many cases the greater part of the yearly loss," at least as far as combined nitrogen is concerned. In other words, that the amount of inorganic mate. rial assimilated by the plant from the soil does not represen the actual loss of the same soil under oue year's cultivation. To a small degree this discrepancy had been assumed before, and accounted for by the solubility of some parts of the manures and the volatilization into the uir of other portions.
M. Deherain's experiments were made upon land divided nto plats, some of which were enriched with farmyard manure, others with sulpbate of ammonia or soda saltpeter, and others were left unmanured, and all were planted with maize and potatoes for seven years in succession. The results proved a loss of nitrogen much greater in all cases than could be accounted for by the amounts appropriated by the crops; that the loss of the plats enriched with the soluble salts was the greatest, and that of the plats dressed with farmyard manure least; that the more plentiful the mauuring the greater the loss, and that these losses of nitrogen censed when the land was no longer subject to yearly cultivation, but was converted into an artificial meadow.
The inferences are unmistakable. Solubility of manures ncreases their loss, drainage, and underground soakage,
removing them in proportions directly relative to their amount; also cultivation, involving the opening of the ground and consequent exposure of the oxidizable portions of the manure to access of air, increases the nitrates, which being soluble are carried with every shower. The use of manures with the least proportion of soluble salts, but which may yield this necessary pabulum of the plants by slow change, and alternations of crops, by which overworked tields, that have been too long exposed to the depauperating influences of oxidation and drainage, may recover their original fertility, seem methods that may partially help to averts.

## Putare of Minchinery.

The following hints from the Mechanical World (London) are intended, of course, for the British manufacturer, but they are none the less worthy the attention of our own engineers and machine builders. Notwithstanding the grea perfectiou attained by our manufacturers of wood and metalworking machinery, in which sphere no country excels our own, there is still room for advancement, aud this very success should serve as an incentive to further improvement and still greater energy in introducing our machinery abroad.
If there is one fact more patent than another, it is the there is a wide field and an important future for machinery We find that almost every engineering works throughout the country is fairly busy, that machine shops are springing up in all directions on the Continent, in the United States, and in our colonies, clearly showing that in the opinion of capitalists the machinery business is one which can be extended and will yield profits. Machinery and mecbanical engineers are coming more to the front every day, and our leading representatives of the latter class now rank with the best of civil engineers. Time was when there was a jealousy between the two bodies, the "civils" calling the machinery men " the iron fellows," and the "mechanicals" alluding to the civils as " the bricks and mortar men." It is, however a significant fact that nearly one-half of the members in the Institution of Civil Engineers are now mechanical en gineers.
It is a complaint frequently made that our English repre sentatives of manufacturers do not penetrate sufficiently into the interior of foreign countries to find out their exact wants. The miserable and insufficient manner in which foreign languages are taught in this country no doubt contributes argely to this serious omission. Let our manufacturers and mechanical engineers be a little more enterprising; send out heir promising young men to inspect and report upon mat ers relating to their special trades. There is a kind of con ervatism in old establishments which operates in keeping the young men down to routine duties until they become gray-haired, and until the love of travel is largely gone. We reported, only a few weeks ago, the visit of Mr. Abbott, the ongineer of the Toronto Bridge Works, to this country and to the Continent for acquiring information as to English and Continental practice. We wonder whether such a step can be paralleled by any bridge-making firm in this country Colonel Roden, of Lord Granville's ironworks in Stafford shire, sent out some years ago to Belgium and France one o bis leading practical men to notice any improvements he met with, and from conversations we have had with the gen tleman sent out, the company whom he represented were wel paid for their enlightened policy. Although we boast of being the " manufactory of the world," we must not " rest upon our oars" and shut our eyes to what is going on in other countries. If an experiment is being made, we must watch it ; if it succeeds, take advantage of it; and if it fails, be warned by it. We must stir up the spirit of enterprise. Where we make things by one and two we must make them by hundreds and thousands, adopt special machinery, and discover special markets. Our means of locomotion and transport enable us to reach foreign countries even more ex peditiously than it brings the foreigners here. It is a known fact that yong engineers from France, Germany, and Russia are sent to this country to collect information. Sir John Brown's and Cammell's, of Sheffield, may be instanced as establishments which numbers of these inquirers visit from time to time. These works and a large number of others not less important have become show-places for foreign me chanical engineers, and from which they have derived much uformation, to our disadvantage, and it behooves us to caltrvate a similar spirit of enterprise and observation. If we do this, the successful future to be looked for in connection with the machinery trade of this country will be still more certain Some of our manufacturers are very slow to adopt im provements, and are inclined to allow new inventions to lie dormant, leaving it to some more euterprising firm to make experiments with it. In the States, and even on the Conti nent, there is no such lack of energy. A new thing is readily ried; in fact, we believe it is usually liked all the better if it is new. Our engineers and inachinists, and, indeed, every manufacturing class, adds the World, should therefore be on the alert, and look to their laurels. Too much apathy exists at present. Let us have energy, enterprise, and vigorous action instead.

An excellent authority in medicine recommends a little common sugar as a remedy for a dry, hacking cough, and gives scientific reasons for it. If troubled at night or on first waking in the morning, have a little cup on a stand close by the bed, and take half a teaspoonful; this will be
of benefit when cough sirups fail.

A Thanderstorm in New York.
On the morning of May 10, between 3 and 4 o'clock, 8 understorm of remarkable violence passed over the city f New York and vicinity, doing enormous damage. A large building in 25th Street, occupied as a sasb and blind actory, was struck by the lightning and destroyed by fire. A fine dwelling house just north of the city limits and on he west side of the Hudson River was struck and burned 0 the ground. A large schoolhouse on Staten Island was also struck, and badly damaged. A barn and contents, also a shop at Babylon, L. I., were also struck and destroyed At the works of the National Docks and Ntorage Com pany, on New York Bay just southwest of the city, fearful pany, storage of oil, built of brick but cased with iron outside, and covered with heavy iron tops. The lightning played around the tanks for some time, as if specially attracted to the vi cinity; at length, with a deafening roar, a tremendous bolt ell upon tank number 11; it was instantly followed by an earthquake-like explosion, and a sheet of flame shot up into the air a thousand feet high. The tank burst into thouands of pieces, the burning oil was scattered in all direccions, and almost instantly the remaining tanks, warehouses, buildings, docks, vessels, railway cars, and everything per taining to the establishment, which was of great extent, em bracing several acres, were involved in common ruin. Six persons are known to have lost their lives. The cash value of the property destroyed is estimated at half a milliondollars. Ordinary buildings may unquestionably be protected from ightning by the use of rods that are thorougbly grounded in the earth; but when it comes to the protection of an iron oil tank, we have a very different condition of things. The space within the tank, above the level of the oil, is filled space within the tank, above the level of the oil, is filled
with inflammable gas, that goes off like powder, whenever the smallest spark of electricity appears; then again the air outside and near the tank is more or less charged with the gas. If, therefore, the outside of the tank should be struck by lightning, or if, as is doublless often the case, there should be a stroke of lightning at some distance from the tank by which the electricity runs along on the underground piping to the tank, or if a spark is produced by in duction between pipe and oil in the tank, then an explosion may take place. These points have been beretofore fully discussed in back numbers of the Scientific American, and various useful suggestions presented.

## The Drag Rope for the Brookign Bridge.

The great driving rope which is to pull the cars across the Brooklyn Bridge has arrived at the wharf adjoining the Fulton Ferry from the J. A. Roebling Company's Wire Works, Trenton, N. J.. It is $11 / 2$ inches in diameter, 11,700 feet long, and weighs 19 tons. It is accompanied by a duplj cate rope of the same weight and strength, which is to be held in reserve for use when the first rope wears out. Col William H. Paine, in speaking of it to a reporter of the ELagle, said: •In all my experience, I have never seen a rope o equal it in manufacture; for the wire seems to be perfect and the test which it has been subjected to gives ample assurance of its strength. Before it left the works every wire held at least 1,000 pounds, and was stretched from four to ix per cent more. The tarring observable on the surface is for the purpose of protecting it from the atmosphere, and also to give the interior a kind of lubrication when it comes to be used."

An Electric Underground Rallway in London.
The underground electric railway, whose construction has been authorized by act of Parliament, will commence near he north end of Northumberland Avenue, opposite the Grand Hotel, and pass under that avenue and the Victoria Embankment to a tunnel under the Thames, thence by College Street and Vine Street to Waterloo Station, where it will form a connection with the platforms of the London and Southwestern Railway. A separate approach to the Water loo terminus of the line will, however, be built at York Road. The line will be double, and worked by a stationary engine at Waterloo. The cars will run singly, and start as soon as filled, like omnibus cars. The journey will occupy about $31 / 2$ minutes. A contract for the supply of the electrical plant has been entered into with Mesers. Siemens Brothers and a tender for the construction of the permanent way in eighteen months' time has also been accepted. Part of the work-about 60 feet of arching under the Embankmenthas already been built.

## Consumption of Gas in Berlin.

In the year 1881-82 the four gas works of that city pro duced $3,360,000,000$ cubic feet of gas, of which $14 \frac{1}{4}$ per cent was consumed in public illumination. The loss amounted to 8.2 per cent. Schlesian coal is almost exclusively employed and yields on an average ten thousand cubic feet of gas per ton. Over eleven thousand tons of coal tar were made, which sold for $\$ 99,143$; also 24,300 tons of ammonia water, which sold for $\$ 81,946$. -Schilling's Journal.

The amount of light given out by a gas flame depends pon the temperature to which the particles of solid carbon in the flame are raised, and Dr. Tyndall has shown that of the radiant energy set up in such a flame, only the one twenty-fifth part is luminous; the hot products of combustion carry off at least four times as much energy as is radiated, so that not more than one hundredth part of the heat evolved in combustion is converted into light.

BEINE'S APPARATUS FOR THE MARUEAOTURE OF CARBONATED WATERS.
Among the natural mineral waters, there are some that con tain carbonic acid, and when these are exposed to the air the gas disengages itself, in part, in the form of little bubbles. Since very ancient times, these fluids, called acidulated waters, have been employed either because of their agree able and refreshing taste, or on account of their medicinal properties. To this category belong the following waters Seltzer, Fachingen, Appolinaris, Soulzmatt, Condillac, Kis singen, etc. The carriage and preservation of these water are attended with great inconveniences; for, being often put up in badly corked bottles, they soon lose their gas and become insipid. It is for this reason that endeavors have been made for a long time past to imitate mineral waters in general and acidulated waters in particular. From the beginuing of the sirteenth up to the end of the eighteenth century, attempts to attain such an end have been made by Van Helmont Bergmann, Lane, Prieatley Lavoisier, Watt, and other illustrious scientists. But it was not till the beginning of the present century that chemistry and mechanics were sufficiently advanced to permit of a sufficiently exact analysis of natural mineral waters, and to construct apparatus for manufacturing them artificially.

The first apparatus of this kind was constructed about the year 1790, at Geneva, by Gosse, a pharmacist of French origin. The force pump had then been known for a long time, and had been utilized by Lavoisier; the gasometer had been invented by Watt; Bergmann had invented apparatus for washing gas by water; while the Duke de Choiseul had invented an srrangement for charging liquids with gas. By combining these different apparatus in a proper way, Gosse constructed quite a simple apparatus, which was set up in Paris in 1809.
Among the inventors who should be cited in the first rank for the progress made in the manufacture of carbonated waters is Frederick Adolphus Struve, who, after an assiduous labor of a dozen years, succeeded so well that artificial mineral water factories, as well as drinking stalls, were established in the principal cities of Germany, such as Dresden (1820), Leipzig (1822), Berlin (1823), etc. When the Asiatic cholera ravaged Paris in 1831 and 1832, the use of carbonated waters was generally prescribed by physicians, and the consumption rose to balf a million bottles per year. From that epoch up to 1840, the annual consumption was two million bottles. In 1851, the consumption was estimated at five million bottles. In 1861, the Department of the Seine, containing a hundred factories, used $20,000,000$, and the provinces $35.000,000$ siphons. To-dry, the consumption of carbonated beverages in the whole of France is estimated at $100,000,000$ bottles and siphons, representiug a cost to the consumer of $30,000,000$ francs.
With the extension of the trade the apparatus for the manufacture of the waters have been improved, and now there is scarcely a town of any importance in the civilized world in which there is not a manufactory of these beverages. Other beverages, too, are charged in the same way with carbonic acid, and there are thus obtained carbonated lemonade, ginger beer, etc.
The apparatus employed at present for the wholesale manufacture of carbonated waters differ very much from one another, but may all be reduced to two systems: the continuous system, by me chanical compression, and the intermittent system, by chem ical compression. Besides these, we may cite another method, which was invented a few years ago by Messrs. Ib \& Beins, of Groningen (Neth erlands), and which, under erlands), and Which, unde
the name of the "Beins sys the name of the "Beins sys-
tem," has since been considerably improved by its in ventors.
This system differs in two capital points from all others. First, the carbonic acid is disengaged by the heating of carbonate of soda or vichy salt, which, from the mode in which it is prepared, is al ways very pure. Second, the water or other beverages tha are to be impregnated with carbonic acid are saturated
only in the bottles themselves with this gas, so that they do not come into any contact whatever with metal.
Fig. 1 represents the Beins apparatus. To the left is seen a furnace, A, heated by a Bunsen gas burner, and containing an iron retort filled with powdered bicarbonate of soda. This retort is closed hermetically with a plug which carries a pipe through which the gas issues. The soda is decomposed by the heat into a carbonate, which remains in the retort, and into carbonic acid and aqueous
vapor, which make their exit and traverse a Liebig refrige rator (represented at the lower part of the furnace).
The gas afterward passes into a solid, cylindrical vessel which is shown between the two large cylinders to the right. The water derived from the decomposition of the bicarbonate collects in this, and is drawn off through a cock beneath. The carbonic acid is afterward led into oue of the two large cylinders to the right or left, $B$ and $D$, which may be put in communication by means of a pipe provided with a cock. These cylinders, which are of solid copper, are provided with pressure gauges, and are capable of with-
ig. 2.-FILLING A BOTTLE BY THE BEINS METHOD.
into the neck in order to give passage to the liquid. The carbonated water put up in these flasks must be used as soon as the latter are opened, and it is for this reason that they are made to contain only 300 cubic centimeters.
These ball flasks are fixed by screws to a hollow axis, $\mathbf{E}$ Fig. 1), which is afterward revolved for about ten minutes in order to cause the absorption of the carbonic acid by the water.
The apparatus which we have just described are excellent ones for the profuction of gaseous beverages in a small way, but not for a wholesale production of them. As the consumption of artificial mineral waters is ever on the increase, Messrs. Beins have devoted themselves to the construction of some new machines, whose pro duction shall atigin a maximum with a minimum expenditure of labor

As for the cost of manufacturing, it might be supposed that the preparation of carbonic acid by heating bicarbonate of soda was more costly than by the treatment of chalk by sulphuric acid; but the contrary is the case. In the Beins system, there is obtained, as a secondary product, anhydrous car bonate of soda, which is almost absolutely pure, and which in commerce is called calcined soda. This salt has a great value, and is sold to bleaching works. Manufacturers of carbonate willingly buy it back, in order to saturate it anew with carbonic acid. So the soda may be considered as serving as a material for the carriage of carbonic acid in the solid state. In former systems the secondary products are troublesome and useless. The cost price of a hecto liter of carbonic acid prepared from the bicarbonate reaches 20 centimes only; and the apparatus, with its furnace, retorts, etc., costs 1,600 francs. $-L a$ Nature.

## How Celluloid Billiard Balls are Manue

 metured.The manufacture of billiard balls from celluloid and bonsilate is a peculiar industry, and confined to the city of Albany, N. Y., the only factory in the world, according to the Argus, being located at our State capital. A large proportion of the balls now made are of celluloid, but ouly for the reason that
standing a pressure of 30 atmospheres. When the apparatus is in operation, the gas therein is submitted to a pressure of about 15 atmospheres. In these two cylinders, as in the one in the center, $C$, there is placed recently calcined fine charcoal, which serves for removing from the carbonic acid all traces of any empyreumatic substances that have been produced by the decomposition of minute quantities of organic matters, such as filaments of wood, for example, that have been mised by accident with the bicarbonate. The carbonic acid at higb pressure is led from the two external cylinders, $B$ aud $D$, into the middle cylinder, $C$, by a pipe whose cock may be seen to the front of the figure. Into this cylinder it is made to pass under the pressure with which it is desired to charge the beverage and which generally 5 atmospheres.

The liquids which it is desired to charge with gas are first | poured into ball flasks, one of which is represented inverted | ceedingly ingenious device |
| :--- | :--- | :--- | proper temperature. the machinery is not as well adapted to the manufacture of bonsilate balls. The time will come, bowever, when al balls will be made of the latter material. The celluloid which is received in large white sheets, is first cut intosmal square pieces about five-eighths of an inch in size. These are placed into moulds, previously heated by steam to the

They are then placed in the hydraulic presses, and with a pressure of from 1,000 to 2,000 pounds to the square inch are roughly moulded, heat at the same time being applied. The various positions of the blocks in the mould give the bal the peculiar mottled appearance when finished. Experiments have been made by grinding the celluloid to a pow der, and using it in that form, but nothing has succeeded so well as the present method. After being taken from the moulds, the balls are turned absolutely spberical by an exThe processes in the manu facture of bonsilate balls are quite different in many re pects.
The material is placed in the moulds in powder, and the balls, after being roughly pressed up, cousiderably larger than the required size are covered with rubber and in foil, to prevent the material from being injured by water, and are then placed under water pressure. By means of his, which is the only ma chine of the kind in existence the balls are placed under a pressure of from 3,000 to 4,000 pounds to the square inch. The water touching the ball at every point, and the pressure being equally trans mitted, the result is a per fectly pressed sphere, of jus the same specific gravity iv one spot as in another. With out this apparatus, the suc cessful manufacture of billi ard balls from bonsilate would have been impossible. A simple but ingenious contrivance is also employed to ascertain when the balls are perfectly poised or balanced. They are the table in Fig 2. The neck of this flask is provided first weighed and are then placed in a flat dish of mercury in the center with a ball, and tapers beneath, so that the lat- This subtle fluid detects the slightest shade of inaccuracy, ter cannot drop into the flask itself. At its upper part the and the balls are put in the lathe and corrected until they neck is thickened so that the ball may fit accurately, and its $\begin{aligned} & \text { are absolutely true. Not only billiard, but pool and baga- }\end{aligned}$ extremity is provided with a rubber ring fixed in an internal telle balls are made groove, which keeps the ball from coming out, and permits it to act as a stopper when the internal pressure of the pre-

The prices at which they are sold are far below those pared beverage drives it upward. When it is desired to four balls for billiards, and from $\$ 26$ to $\$ 50$ per set of six empty the bottle, it is only necessary to push the ball down teen balls for pool.

Enamolig Photo Prints Without Collodion or Gelatine.

## Ex R. orsozd

At a recent meeting of the London and Provincial Photographic Association some prints enameled in a novel manner having been passed round for inspection, and a discussion having arisen thereon, perhaps it would be better to define clearly the process by which those rough specimens were produced.
The method of my procedure is as follows:
Prepare a piece of perfectly smooth flat glass free from scratches, a little larger than prints to be glazed. Thoroughly polish with any well known preparation (such as methylated spirit, nitric acid, and tripoli). Be careful not to leave the least smeariness from the last clotb, which should be perfectly dry. Make a rubber of flannel by wrapping up half an ounce of French chalk (talc) in powder in two folds of new flannel, and tying around with string, like a rough printer's dabber. Keep this always in a box free from dirt and chemicals. Strike the polished glass lightly with this all over, until the chalk is seen covering the surface, then rub it all over firmly with the dabber, until the chalk has apparently all gone but at the edges. Take trimmed prints straight from the last washing bath, or if they have been allowed to dry, soak them in clean water for an hour or two. Having immersed the polished and talcked plate in a dish of water, face up, quickly transfer prints to the dish. and press them lightly, face downward, upon the glass. Take care not to rub the surface of the glass, or allow prints to slide about much over it.
Quickly remove to a squeegee board, such as is used in carbon printing, with a piece of rubber cloth nailed to one end. Lightly squeegee prints under cloth several times, from center to each end. Raise cloth, carefully wipe the back of glass, and examine for air bubbles. If there are none, blot off superfluous water from face, and allow to dry slowly. If there are air bubbles, replace glass in dish of water, allow prints to float off, gently replace, and repeat the process. They are better if not dried too quickly. In an ordinary room, not warmed, they will dry in from one hour to two, and will then drop off. The question of how to mount prints thus treated, and yet retain the delicate gloss which gives even greater transparency to the shadows than the ordinary enameling, is not easy to answer.
It has been suggested to employ Mr. Cowan's method of starching, either before putting on the glass, or as scon as the superfluous water has been removed. In the first case, the print cannot be soaked enough to make it adbere closely to glass without air bells, or the squeegeeing removes the tarch. In either case, the print is not certain to leave the glass when dry, unless the glass is treated with alcoholic solution of soap, and this at the expense of the delicate gloss. Afterward, when placed on a wet card, considerable pressure is required in a rolling press to make surfaces adhere; this again destroys the gloss. The most successful plan hitherto adopted, is to coat back of print with India-rubber solution, and the face of mount with the same. The solution must be free from dust and dirt, and must be evenly laid on. When dry, the print and mount can be carefully pressed together, and subjected to very light rolling in a press. The best result is produced by a polished steel plate and single roller above, with print laid down on plate, and a piece of stout card intervening between roller and back of mount. Pressure only just enough to bring surfaces fairly together should be used.

## The Fiektograph Anticipated.

The gelatine pad now so extensively used for reproducing copies of letters, and for which a United States patent was granted, now appears to be only a revival of the old French method of transferring letters and designs to the surfaces of crockery in the ornamentation of the same. The Glassioare Reporter says:
"An old French method of printing and transferring was


## Fig. \&-GARIN'S REVOLVING sCALE CAR

besides, owing to the revolving arrangement, articles o large dimensions may be carried in such a direction as to prevent them from interfering with surrounding objects.
The car, properly so called, presents no peculiar detail of construction, it being formed of I-irons connected in pairs and carrying journal boxes for the axles to revolve in.
The crosspieces are provided in the center with a trace book, and to one of them is attached a sliding bolt, which, on being slipped into a corresponding socket in the movable platform, holds the latter fast in any position that may be desired.
In the center the car also carries, through the intermedium of irons bolted to its frame, a cast iron bush which receives the pivot around which the turn table moves (Figs.
have their extremities bent, so that the knife edges shall all be on the same horizontal line.
The beam of the scales is pivoted upon a support, 8, formed of an angle iron and two vertical plates that are provided with bearings in contact with a double knife edge set into the beam. Its free extremity carries an index, which oscillates in front of another index, flxed to the frame, $E$, when a catch-tappet no longer sustains the beam. The suspension of the extremity, $e$, of the point of application of the load is effected by means of two links coupled together and provided with knife edge bearings.
The two perspective views show very clearly the arrangement of the principal parts of the mechanism that serves for weighing. The principal sliding weight consists of two hollow copper cylinders, connected with each other, and sliding on the edge of the beam, I. The division to which this weight corresponds is graduated from 200 to 200 kilogrammes, and is marked by grooved lines. The second weight indicates kilogrammes, and slides in a longitudinal slit in the beam. The third weight, which indicates bectogrammes, is placed upon a small bar whose support is screwed to the beam. Lastly, the shorter arm of the beam is prolonged by a rod on which is mounted a counterpoise that balances the mechanism and permits of regulating the scales accurately. The scales thus constructed are capable of weigbing with accuracy beavy loads without the use of any movable weights.-Rebue Industrielle.

## Lightning Condactors.

Something recently stirred up the good people in Edinburgh to inquire into the condition of the lightning conductor supposed to keep guard over the spire of the General Assembly Hall in that city. Accordingly a "steeplejack" was called in and sent to the top of the said spire, some 240 feet above terra firma, with instructions to attach a copper wire to the upper end, and thus enable the conductor to be tested. The latter appears to have been put up some 28 or 29 years ago, and to have consisted of a $3 / 4$ inch copper rod, connected by screwed joints. Upon testing the conductor by sending a current through it via the copper wire, its resistance was found to be as much as 800 ohms, at least, so our contemporary, the Scotoman, states. This was, least, so our contemporary, the Scotsman, states. This was,
of course, sufficient to condemn the rod at once, and acof course, sufficient to condemn the rod at once, and ac-
cordingly arrangements were at once made to fix a new copper wire rope conductor, $5 / 8$ of an iuch in diameter, which, after reaching the ground, was carefully soldered to a water main. When this was completed, the resistance of the metallic circuit, consisting of the test wire and the new lightning conductor, was discovered to be somewhat less than $\frac{8}{10}$ of an ohm; and when the earth connection was included in the circuit, the resistance did not exceed one ohm. It may, therefore, be assumed that the spire is now, for the first time, thoroughly protected against lightaing, while the condition of the new conductor can be learned at any time without undertaking the serious task of ascending to the top of the spire.
The work has been satisfactorily executed by Messrs. Ritchie \& Son, Leith Street, Edinburgh, under the direction of Mr. Robertson, of Her Majesty's Office of Works. We have frequeutly alluded to the urgent necessity for periodical tests

1 and 2). The rollers, which revolve over an iron circle afflixed to the car frame, are held by supports, $R$, afflyed to the I-irons, C. As the position of these rollers does not correspond to an exact division of the circle, the axles, $a$, have an irregular direction and are bent vertically, so that they may be bolted by their extremities to a disk that is traversed by the pivot, $o$.
Finally, above the frame, $C$, is the turn table, $P$, thes two parts being connected by the mechanism of the scales. The loading platform or turn table, $P$, is connected by four angle irons, $S$, with four levers, $L$, joined together in pairs by means of the crosspieces, $B$.
These two systems, one to the right and the other to the


Fig. 8.-REVOLTITG BCALE CAR,
eft, are then united in one common support, H. The levers


Fig. 1.-Haff longtudifal section, and half gection pabsing throdgit the poift of appication of the load.


Hig. 8.-HALF transverse mection.
to cast a sheet of glue, a quarter of an inch thick, diluted, while warm, to such a consistence that when cool it was perfectly flexible and pliable as leather. The impression was first taken from the copper plate upon this sheet of glue, and then transferred to the article requiring decorating. The glue could be applied to the ware two or three times before it became necessary to take a fresh impression from the plate. Black printing, in the Staffordshire potteries, was at one time done by a similar process; the gelatine bats being cast on dish bottoms, and then cut to the size required for the patterns. But this printing from bats has now fallen into disuse."
of the second system, which are rendered mutually interdependent by a piece, J, press by their knife edges upon the lateral branches of the support, $H$, while those of the first are bolted side by side and run to its center, where they rest ceives the stress that corresponds to the entire load, retransmits it, tbrough its prolongation, $l$, to the short arm of the scale beam, I.
The points of suspension of the tahle, P , on the levers, I , are provided with knife edges that rest on steel bearings. The same is the case between the angle irons fixed to the frame, C, and the crosspieces, B, where the levers inclosed
arrive first at the scene of action, and to stimulate this praiseworthy emulation, a prize is awarded to him who succeeds in playing " first water" on the flame.
The association has already done some very good service, and quite a number of fires have been put out before either of the two hand engines of the town have arrived at the scene. If more of our country villages could boast of such protective associations, we should see fewer accounts in the papers of houses and barns destroyed, and the reduction in the insurance rates would very soon pay the cost of all the apparatus and the expenses attending the
organization.

## Nitro-glyeorine.

Unfortunately nitro-glycerine enjoys just now an unenviable notoriety. The word is in all mouths, and nitroglycerine is discussed in every circle. In another place we have said something concerning the effects which it can produce, and the proper method of destroying it. We propose bere to explain what nitro-glycerine is, in such a way that our non-chemical readers may understand what this thing is to which appertain such deadly attributes.
Nitro-glycerine is produced by mixing nitric and sulphuric acids with glycerine at a low temperature. The important agents are the glycerine and the nitric acid. The sulphuric acid appears to do little save attract to itself any water which may be present in the glycerine or the nitric acid. It is well known that sulphuric acid bas a strong afflity for water, and it is this characteristic which renders it useful in this connection.

Nitric acid is prepared by treating nitrate of potash-salt-peter-or nitrate of sods, with sulphuric acid-oil of vitriol. The saltpeter is placed in a kind of still, the sulphuric acid is added; the retort or still is heated cautiously, and the nitric acid rises in the form of vapor, which is condensed and collected for use. It can be purified and concentrated by redistillation with a quantity of sulphuric acid. Nitric acid is one of the most corrosive acids known. In chemical notation its formula is $\mathrm{HNO}_{2}$. That is to say, it is composed of one atom each of hydrogen and vitrogen and three atoms of oxygen. It is known as bydric nitrate and as aquafortis. Its composition was first investigated by Cavendish in 1785. but it seems to have been known to the old alchemists. It possesses the property of producing explosive compounds with great freedom, its energy being due principally to the nitrogen which it contains; and it is worth notice that, as bas been pointed out by Kempshcad, although apparently possessing nothing but negative qualities, it in combination forms part of the most powerful and active substances known, as, for example, nitric acid and ammonia, the extremes of acidity and alkalinity. It is a constituent, too, of strychnine, morphia, and prussic acid, and is a component of all valuable foods.
With the characteristics of glycerine all our readers are, no doubt, familiar. It is found on most toilet tables, and in every family medicine chest; it is used as a lubricant, and a misture of glycerine and water is employed for charging the dash pots or cataracts of certain arc lamps. It is a slightly 8 weet, smooth, clear, sirupy liquid, almost tasteless, and nearly devoid of odor. It will, no doubt, surprise many of our readers to learn that it is an alcohol. It can be obtained from all solid animal and vegetable fats, and from most vils. It is freely produced when an oil is treated with an alkali-saponified-in presence of water. It is made in stearine candie factories, and can also be obtained from old soap lye. It is best produced pure by beating up an oil or fat with about balf its weight of water into an emulsion. This is then pumped through a coil of iron piping heated to the temperature of melting lead, the rate of pumping being such that the mixture of oil and water will occupy about ten minutes in traversing the coil. The luid which comes out from the worm quickly separates into two portions, glycerine lying at the bottom. The supernatant oily liquid being drawn off, the glycerine remains, nearly pure. Its formula is Cot.

Nitro-glycerine is made by adding nitric and sulphuric acids to glycerine. Unfortunately, no skill whatever is required to produce the required explosive, only a knowledge of one or two simple facts; but skill is required to produce nitro-glycerine pure enough to be comparatively safe. For obvious reasons we must decline to say bow it can be rendered pure; and lest our younger and less cautious readers should undertake the manufacture for themselves of a few drops or other small quantity, for the sake of experiment, we decline to give the proportions of acid and glycerine we dechine to give the proportions of acid and glycerine sible to make a non-explosive mixture apparently nitroglycerine, and that, lacking a knowledge of the details of manipulation, the man who wants to make it will be pretty certain to fail-on the whole, a very fortunate circumstance.
Nitro-glycerine is a brownish, smooth, oily liquid, and a deadly poison. It formula is $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$. Its explosive force is due to the unstable nature of the compound. We have in most explosives carbon, bydrogen, and oxygen to begin with; to these have been added-by treatment with nitric acid-a certain portion of nitric peroxide, $\mathrm{NO}_{3}$, that is, one atom of nitrogen and two atoms of oxygen; but these two gases have a very feeble affinity for each other, while, on the contrary, the carbon and the hydrogen have intense affinities for oxygen. On the least provocation, therefore, the oxygen leaves the nitrogen, which, set free, ceases to be a liquid, and becomes a gas, while intense heat is produced, which volatilizes and breaks up the other compounds, and augments enormously the pressure of the escaping gases. Those who are familiar with the experiments of Pictet, on the liquefaction of gas, know how intense is the cold and how enormous the pressure required to liquefy even a small quantity of such a gas as nitrogen, but this liquefaction has been accomplished in the explosive by chemical affinity; and the moment this affinity is destroyed, the chained force is let loose-we know with what result. Now, it will be seen that
nitro-glycerine ought to be a powerful explosive, for in it nitro-glycerine ought to be a powerful explosive, for in it
no less than three molecules of $\mathrm{NO}_{2}$ take the place of three atoms of hydrogen, as will be seen at a glance if we repro-
duce the two formulæ here. Glycerine is $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$; nitro-
glycerine is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{6}$; the carbon remains unaltered; and three atoms of hydrogeu have disappeared. In their stead 9. Nor does nitro glycerine fail to satisfy the expectation that we might form concerning it. It is the most powerful explosive known. As will be gathered from the following figures, there are two classes of explosion-the first is know as detonation, the second as explosion:


Here we see that, taking gunpowder fired in the ordinary way as 1, it will detonate with four and one-third times more force, and detonated nitro-glycerine is 10.13 times more en ergetic than fired gunpowder. As to the actual dynamic power or potential energy possessed by one pound of each of five well known explosives, the following table gives the facts:

Gunpowder.
Nitro-Qlycerine.
Picrate of potash
Chlorine possesses some of the properties of nitrogen as egards the production of explosives, which are, however, so unstable that they are unknown out of the laboratory, as, for example, chloric peroxide, $\mathrm{ClO}_{2}$. It is obtained by act ing on fused chlorate of potash with about two-thirds of its weight of sulphuric acid. It is at ordinary temperatures a gas, but, a slight increase of pressure or a freezing mixture condenses it into a fearfully explosive red liquid. Chlorous anhydride is a yet more dangerous compound. Chloride of nitrogen is produced by passing chlorine through a solution of ammonia. Not more than a few drops at a time have been experimented with, for it detonates if blown on or touched with a feather. It is believed that the celebrated scheme of Lord Dundonald for destroying Sebastopol from a balloon during the Crimean War was based on the notion that it would be possible to produce a couple of gallons of chloride of nitrogen, send it up in a balloon, aud drop it in the heart of Sabastopol, when it would explode with the shock and wreck everything. Apart from the impossibility of doing anything of the kind, we may say that the chloride of nitrogen would have proved very ineffective. It would not do half as much general mischief as the same weight of gunThus, but its local action would bave been very intense. Thus, a drop of it exploded on a table will suffice to shatter
the leaf of the table, but the actual work which it would perform in raising a weight or propelling a shot from a gun would be insigniflcant.
All that concerns the exact mode of operation of explosives ble to invoived to a certain extent in doubt. It is impossiassume more than collect the products of combustion and place, but there is no satisfactory evidence that we can follow the whole chain of evente. It is only known that the mechanical action of all explosives depends on the sudden conversion of an element from a solid or liquid state into that of a gas with au enormous augmentation of bulk. It is by two distinct effects, first the violent repulsion of the air from a given space, which may be regarded as the primary effect; the bighly beated gas quickly couls, a partial vacuum is formed, and the air rushes in from all sides to fill it. This produces the secondary effect, which may be confounded with the first. An admirable exampie of the secondary effect was supplied at the Whitehall Club, when the explosion took place at the Government Offices, the plate glass windows be ing blown outward into the street, not inward into the house -The Engineer.

## Hardening and Tempering steel.

One of a series of lectures to the Liverymen and Appren lices of the Company of Cutlers of London was Iately de livered by Professor W. Chandler Roberts, F.R.S., "Ou Some Theoretical Considerations connected with Hardening and Tempering Steel."
The Master of the Company, Mr. J. Thorne, presided, and the lecturer observed that the phenomena with which they had to deal, although admittedly as interesting and remarkable as any in the whole range of metallurgy, are but little understood.
If the fact that steel can be hardened had not been known, the whole course of our industrial and even political history would probably have been widely different, and the dagger, which occupies so prominent a place in the armorial bear ings of the City of London, would have represented a survival of implements made, vot of steel, but of copper bard ened with tin.
It has long been known that there are extraordinary differences between the properties of wrought iron, steel, and cast iron, but our knowledge that these differences depend old, for it was not until the year 1781 that Bergman, pro fessor in the University of Upsala, showed that wrought iron, steel, and cast iron when dissolved in certain acids, leave amounts of a graphitic residue, varying from one-
tenth to $21 / 2$ per cent, which are essential to the constitution of these three varieties of metal. Bergman's work led many
early experimenters, notably Clouet in 1796, to attempt to
establish the importance of the part played by carbon, and Clouet converted pure iron into steel by contact at a high emperature with the diamond, which was the purest form of carbon he could command. Prof. Roberts said that this
experiment had been repeated by many other observers with varying success, as in all the earlier work the furnace gases, which had not been excluded, might have converted the iron into steel without the intervention of the diamond. It remained for a distinguished master of the Cutlers' Company, Mr. W. LI. Pepys, to repeat Clouet's fundamental experiment under conditions which rendered the results unequivocal, by employing electricity as a source of heat. This experiment, which had been communicated to the Royal Society in 1815, was performed in the way Pepys had indicated.
It was then shown that in soft, tempered, and bardened steel respectively the carbon has a distinct " mode of existence," as is indicated by the widely different action of solvents on the metal in these three states.
The evidence as to whether carbon in steel is combined in the chemical sense, or is merely dissolved, was then considered at some length, special reference being made to the results obtained by various experimenters, from Berzelius and Karsten to Sir Frederick Abel of the War Department.
Prof. Roberts stated that the researches of Troost and Hautefeuille afforded strong evidence that in "white cast iron " and steel the carbon is merely dissolved, $a$ view which he adopted, as he did not consider it to be at all in opposition to the facts recently established by Sir Frederick Abel. who ard shown that the carbon may be left by the slow action of solvents on soft steel as a carbide of irnn.
The various physical, as distinguished from the chemical, heories that had been propounded from the time of Reaumur 1722) to that of Akerman (1878), to account for the "intimacy of the relation" of carbon and iron in hard as compared with soft steel, were then described at some length, and the remarkable experiments of Reaumur, who cooled steel sluwly in a Torricellian vacuum in order to show that the bsorption of gas did not take place during cooling, were illustrated.
In recent years much importance has been attached to the physical evidenceas to the peculiar constitution of steel, and it has been shown that there is a remarkable relation beween the amount of carbon contained in different varieties of steel and their electrical resistance. Some of the very interesting experiments of Professor Hughes on this point were then exhibited and described, and Professor Roberts concluded by saying that the value of the early work by Bergman and Reaumur had rather been lost sight of in recent. discussions, Bergman's work being specially remarkable, as he attempted, by thermometric measurement, to determine the beat equivalent of the phlogiston he believed ron and steel to contain.
The importance of the degree of carburization of steel rom the point of view of its technical application was illustrated by reference to a series of curves, and it was incidentally mentioned that, in the case of the variety of steel used for the manufacture of coinage dies, the presence of oneenth per cent of carbon more or less than a certain standard quantity makes all the difference in the quality of the metal.

## Cellulold.

The Journal of the British Dental Association quotes from Le Pragres Dentaire a description of the process carried out at a factory near Paris for the production of celluloid.
A roll of paper is slowly unwound. and is at the same time saturated with a mirture of five parts of sulphuric acid and 2 of nitric, which falls upon the paper in a tine spray. This changes the cellulose of the paper into pyroxyline (gun cotton). The excess of acid having been expelled by pressure, the paper is washed with plenty of water until all traces of acid bave been removed; it is then reduced to pulp, and passes on to the bleaching trougb. Most of the water having been got rid of by means of a strainer, the pulp is mixed with from 20 to 40 per cent of its weight of camphor, and the mixture thoroughly triturated under willstones. The necessary coloring matter having been added in the form of powder, a second mixing and grinding follows. The finely divided pulp is then spread out in thin layers on slabs, and from twenty to twenty-five of these layers are placed in a bydraulic press, separated from one another by sheets of thick blotting paper, aud are subjected to a pressure of 150 atmospheres until all traces of moisture have been got rid of. The plates thus obtained are broken up and soaked for twenty-four bours in alcohol. The matter is then passed between rollers heated to between $140^{\circ}$ and $150^{\circ} \mathrm{Fah}$., whence it issues in the form of elastic sheets. Celluloid is made to imitate amber, tortoiseshell. coral, malachite, ebouy, ivory, etc , and besides its employment in dentistry is used to make mouthpieces for pipes and cigar holders, handles for table knives and mbrellas, combs, sbirt fronts and collars, and a number of fancy articles.

New subscribers to the Scientific American and Scientific American Supplement, who may desire to have complete volumes, can have the back numbers of either paper
sent to them to the commencement of the vear. Bound volumes of the Scientific American and Scientific American Supplement for 1882, may be had at this office,

Recent Progress in the ozukerite Induntry in the Elast.

Ozokerite or mineral wax frequently accompanies petroleum, and traces of it are found in many places in Eastern and Western Galicia, and in the Caucasian and American petroleum territory, but it is rarely found in such quantities as to furnish a source of this valuable mineral. It is highly probable that many more workable deposits of ozokerite will be discovered yet, but hitherto the discovery of deposits that yield paying quantities have been so rare that we are greally pleased to be able to announce that the past year did not pass without some success in this direction.
At the baths of Truskawiec, some five miles from Boryslsw, a deposit of this substance was found at a slight depth, of such extent that fifty tons have already been taken out and sold. The wax contains sulphur, and hence the oils produced in making paraffine from it must be used with some special precautions. This discovery of ozokerite in Truskawiec is the more interesting because Leo Strippelmann several years ago, in his well kuown work on the petroleum industry of Galicia, had referred to this place as particularly worthy of examination for the occurrence of ozokerite.
The same mineral is also reported as occurring in the neighborhood of Agram in Croatia, and investigations made there bave proved tie existence of deposits of considerable extent and tolerable thickness. Whether the hopes based thereon will be actually realized, the future must decide. At all events, this notice and the announcements of recent discoveries of ozokerite in Russia, must be received with cau-
tion, for such announcements have frequently been made and no important results followed.

Other places in Eastern Galicia which may be looked upon as sources of ozokerite, besides Truskawiec, are Boryslaw, Dwiniacz, and Starunia, with Boryslaw at the head as hitberto. In all three of these places the wax is found in Miocene clay sbales and clay marls with the intermediate sandstone, and frequently it accompanies rock salt and gypsum. While shafts have been sunk in Boryslaw to the depth of 200 meters (nearly 800 feet), they have not penetrated deeper than 30 or 40 meters ( 100 or 130 feet) in Starunia and Dwiniacz.
In Buryslaw the majority of the shafts are at present in the possession of three large companies, the oldest of which, "The French Mineral Wax and Petroleum Society," has been in existence for years, while the "Lemberger Credit Bank" and the firm of Gortenberg, Liebermann \& Co., have commenced operations within the past year by the pur-
chase of numerous shafts. In the first half of last year the chase of numerous shafts. In the first half of last year the
first named society could point to a large production, but almost completely exhausted their present horizon and are now going deeper, but with a smaller yield. The two other societies had, and still have, to contend with the drainage of their long neglected shafts, and hence their production is not as large as could be desired.
ln Boryslaw-Wolanka the production of mineral wax for the year 1882 was less than the preceding year, but in view of the difficulties to be overcome, it must be considered relatively speaking as farorable, and cannot be much less than that of 1877, which was 8,300 tons.
TLe price fluctuated from January. 1882, when it was $271 / 4$
Austrian florins (about \$14) per 100 kilos, to 25 florins in Austrian florins (about \$14) per 100 kilos, to 25 florins in May, then steadily rose until the bighest point ( $311 / 2$ florins) was reacled in November, and there it remains. It is very questionable if the manufacturers can use it proftably at Ams price, and several establishments have already imported American paraffine to take its place, and with good results.
As it may be expected that the production of ozokerite will increase in the immediate future, we may predict a fall in the price.
Dwiniacz and Sturunia yield about 25 tons per month which at present prices pays well.
Before passing to the method of working it up, we must first consider how it is obtained, as ove of the methods yields a product already partially purified. We refer to the extraction of the wax from the gangue called "lep." By melting it under water the greater part of the ozokerite is removed, but the residue still contains as much as 12 per
cent of wax. These residues collect in enormous quantities, cent of wax. These residues collect in enormous quantities,
and hitherto were only considered as a nuisance, although the wax still in them represented an enormous capital. It is surprising that this capital was allowed to lie idle solong. It cannot be due to the small quantity of wax in it, because at the Brown coal works in Halle it pays to work coal which only yields 10 per cent of tar, or 12 to 15 per cent of tarry resins. The cause may be sought chiefly in the difflculty of working the residues, since the high price of fuel prevents
its being liquated or distilled on the spot, and there is no its being liquated or distilled on the spot, and there is no
suitable apparatus for extracting so dense a substance as clay and shale. According to the Neue Freis Presse, an ozokerite mechanic made an apparatus in 1879 that would make 6,600 to 7,700 pounds of pure wax from ten times tbat quantity of ore daily, yet this apparatus of the unnamed workman has never been in operation.
In the past year J. Merz in Boryslaw-Wolanka, first succeeded in working these residues in his extraction apparatus, which has been patented in most countries. If the extractors now in use have not been constructed on so large a scale and capable of so large a daily yield as the one made in
1879, they have the undeniable advantage that they work, not merely on paper, but in reality.
About noe-third of the ozokerite that comes into the market is worked into paraffine, and two-thirds into ceresine.

The use of mineral wax for making paraffine has increased, especially in Galicia, and here, too, distillation in superheated
steam is cammonly employed. steam is cammonly employed.
A large portion of the paraffine made is consumed there for muking the Sabbath candles used in their religious rites by the Jewish inhabitants. It is not so carefully purified for this purpose as is done elsewhere.
The Galician factories for the most part refine the largest possible quantity ( 50 to 70 per cent) of the waxy distillate directly with fuming sulphuric acid and without pressing it. Of course the resulting paraffine is not free from oil, but is tolerably white in color and useful for the purpose mentioned.
Very little has been made public concerning improvements in making paraffine from ozokerite, and manufac urers keep their experience as secret as possible.
In 1881 E. Van Haecht and J. Schreier obtained a patent for purifying paraffine by blowing out the contaminating oils with superheated steam. It can be used for paraffines containing as an impurity light oils, as is the case in careful distillation, with the first portion of the wax distillate, and so long as the paraffine already present in the wax goes over undecomposed. The crude paraffines resulting from the decomposition of resinous bodies, as for example in the dry distillation of brown coal, or of the resin obtained by distilling ozokerite, cannot be purified by this method, as they contain oils specifically heavier than and often having as high a boiling point as the paraffine itself.
In 1881, H. Ujbely took a patent for refining and hardening paraffine. According to the English specification, the crude paraffine was melted with a mixture of petroleum benzive, and alcohol (methylic, ethylic, or amylic), and after cooling slowly it is expressed. The advantages gained in his way over the common use of benzine (photogen) alone, in our opinion, consists merely in obtaining an oil more free from paraffine, since paraffine is considerably less soluble in alcobol than in benzine. Whether this is sufficient to counerbalance the disadvantages of working with alcohol, we will not attempt to say. We know, however, that in 1873 a paraffine factory added fusel oil to the paraffine for pressing, but after a few months returned to the use of benzine.
The yield of paraffine is essentially increased when superheated steam is employed in the distillation of the ozokerite, and in working a wax suitable for making paraffine it amounts to 60 or 70 per cent. Hence we can no longer adhere to the data hitherto published, which place the limits 36 to 50 per cent.
In making ceresine the chief improvements consist in a proftable utilization of the residues. Two methods are chiefly employed in the factories themselves. The first and simpler consists in heating the ozokerite with fuming and common oil of vitriol to $200^{\circ} \mathrm{C}$. ( $392^{\circ}$ Fab.) until the greater part of the acid is removed either by decomposition or evapration, and then treating it at a suitable temperature with neutralizing and decolorizing agents such as alumina, silicates, bone coal, the refuse of prussiate factories, etc. By the second method the resinous and discoloring constitunts of the wax are also removed with acid, but at a relatively low temperature, thus avoiding so thorough a decomposition.
To bleach ozokerite perfectly on a large scale without the use of acids bas as yet remained an unfulfilled desire, alas a new 1879 a method for accomplishing it was aṇoounced into a discussion of priority, we must remark that George Gwyone in his English patent of 1871 for " treating fatty and hydrocarbon bodies," etc., describes a process for leaching ozokerite which possesses a striking resemblance to that of Ujhely. Gwynne removes the mechanical impurities and then dissolves it in benzine, fllers through bone black, and removes the solvent by blowing in air. This method is identical in principle with Ujhely's. Gwynne did not obtain any practical results, nor has Ujbely, nor Ofenheim, who took a patent on the same thing in 1879. The tatements made then, that a factory was being built with a large apparatus on Ujbely's system, was based on facts; but
it must be added that the building stopped before it was finished, and that the unfinished building has been in that state for two years, while the large apparatus remains in the work hop awaiting payment by the man who ordered it.
Even if the difficulties that beset the working of Ujhely's patent on a large scale were overcome, and the consumption of decoloring agents reduced to a minimum, the profuct obtained would find only a very limited field of sale. Ujhely's "bleached mineral wax" would not be in much demand as an independent illuminant, owing to the large quantity of oxygenated resin in it, most of which is removed by the present method of treating it with sulphuric acid.
Finally, we may be permitted one short remark about a circumstance which has hitherto received too little atten-

Ceresine and paraffine are largely employed, as every one knows, for adulterating breswax, and the methodsin use for the detection of such adulterations are frequently based pon a determination of the specific gravity of the specimen in question. A short time ago a table was published Chemiker Zeilung, vi., page 74) giving the specific gravity of different ininds of wax and their mixtures, but in our opinion it is of very little use because it sets out with false premises in assigning a definite specific gravity to paraffine and ceresine. The specific gravity varies from 0.869 for that which melts at $100^{\circ}$ Fab. to 0943 for that melting at $180^{\circ}$ Fab., as was shown by the author as early as 1878.

The following table shows the melting points of ozokerite
araffine: paraffine:

| Solidifying points. |  | Spec. gravity. |
| :---: | :---: | :---: |
| $56^{\circ} \mathrm{O}$. | $138{ }^{\circ}$ Fah. |  |
| $61^{\circ} \mathrm{C}$. | $148^{\circ}$ | 0 |
| 670 | $158{ }^{\circ}$ | .0-927 |
| $7230^{\circ} \mathrm{C}$ | $160^{\circ}$ | 0.885 |
| $78^{\circ} \mathrm{C}$. | $180^{\circ}$ | 0.889 |
| $88^{\circ} \mathrm{C}$. | $180^{\circ}$ |  |

Since the specific gravity of paraffines that solidify at different temperatures is different, ozokerite and the ceresine made from it must differ in specific gravity. Then we must consider that commercial ceresine frequently receives an addition of paraffine, resin, carnauba wax, etc., by the manufacturers tbemselves.-Chemikor Zeitung.

## Hicroncopie Examination of Printed Cotton Goode.

 by richard meyser."Fast colors" on fabrics are, as everybody knows, produced when a solution of the dye, or the materials from which it is formed, penetrate the fiber in a soluble state and are then rendered insoluble within the fiber. The substance of the fiber itself may take an active part in the formation of the precipitate, or the fiber may serve merely as the vessel in which precipitation takes place, allowing the solution to enter freely, but encircling the precipitate formed therein, and to a certain extent holding it prisoner.
This may take place during the operation of dyeing, or what is very common in calico printing, may be accomplished by printing first and then steaming. In recent times these "steam colors" have been gradually gaining ground, arti ficial alizarive having contributed not à little thereto. But among these there is a different class, the fixing of which depends on a totally different principle: these are called the "albumen colors." These serve the purpose of rendering colors useful which, owing to their insolubility, or their utter indifference to cotton fibers. could not otherwise be employed for calico printing. These dyes are first mixed with a solution of albumen, then printed upon the goods, and afterward steamed. This coagulates the albumen, which sticks the dye fast to the flber. The union is a very intimate one, and if the dye itself is permanent, perfectly fast colors can be obtained in this manner. This method is particularly useful for aniline dyes and certain mineral colors like ultramarine, Guignet's green, etc.
In the examination of printed cottons to ascertain what dyes have been used and bow they were made, the question frequently arises as to whether the dye was formed within the fiber or was used already made and fixed with albumen. Both methods can be employed under different circumstances with one and the same dye. For example, it is a very common method of procedure to impregnate the fiber with a soluble salt of lead, to precipitate this as hydrate, carbonate, or sulphate, and then convert this into a flery orange red basic chromate of lead. In combination with steam colors, however, it is far more convenient to print the "chromeorange" with albumen and then fix it by steaming. How can we tell which of the two methods has been employed?
The first thought would be to test for the presence or absence of albumen. The affinity that albumen has for organic dyestuffs, and which is wanting in cotton fibers, might offer a means of doing so. But when goods dyed with chromate of lead are put in a solution of such a dye, it is found that, whether albumen is present or absent, more or less of the dye is fixed to the spot where the lead is, causing a dirty color, so that no sharp distinction can be made in this way.
A glance through the microscope offers a rare surprise. By macerating some of the tissue with a needle so that we can see the individual fibers of cotton, they will be seen to be uniformly dyed throughout the whole mass and transparent. In many dyes little granules are seen, but the characteristic form of the flbers is unaltered and distinctly recognizable, with the dyestuff deposited uniformly every where woithin it.
With the albumen process it is quite different. The fibers are seen to be totally uncolored. In numerous places there are little single colored slreds of coagulated albumen, adbering to the outside. Little isolated groups of shreds can also be seen here and there in the fleld of view, having been separated from the fiber by maceration.
When chromate of lead has been fixed with albumen, the flakes of albumen and pigment will appear opaque and almost black in transmitted light, but distinctly red by reflected light. Ultramarine attached with albumen forms beautiful transparent light blue flakes, but otherwise has the same character as the chromate.-Borl. Berichte, 1883.

Soparating Citric and Tartaric Actds.
C. Rovera contributes the following to the Giornal Farm. Chim. A solution which contains both acids is neutralized with sodium carbonate, and then boiled to expel the carbonic acid. To this is added enough of the original solution of the 1 wo acids to make it distinctly but faintly acid. Then a solution of calcium chloride is added, and this precipitates all of the tartaric acid. The filtrate from this precipitate contains calcium citrate, which separates if the solution is contain
boiled.

AFTER the dust has been thoroughly beaten out of carpets, and they are tacked down again, they can be brightened very much by scattering corn meal mixed with coarse salt over them, and then sweeping it all off. Mix the salt and meal in equal proportions,

## apparatus for the hamuyacture of gas

 FROY OLLProfessor Henri Hirzel, of the University of Leipzig, constructed in 1868 his first apparatus for the manufacture of gas from oil, this, as well known, being derived from the distillation of the residue of petroleum, of oil of lignite-tar -of schist, etc. The apparatus has been successively im proved, and a type is now being constructed which gives very satisfactory results.

We give a view of a plant (less the gasometer, which is not shown) in the accompanying cut, which is equally well adapted for private use and for supplying gas to light an entire city. Of the apparatus under consideration, $\mathbf{A}$, is the furnace of the retort, $B$, and $L$ is the reservoir containing the oil, which passee through the siphon, $a$, before entering the oil, which passee through
the retort, which has previously been raised to a cherry red heat. The supply for this retort is regulated with precision, and so that the quantity of material entering shall always correspond to the intensity of the distillation. Owing to this modus operandi the retort remains constantly empty, and the manufacture may be stopped at any instant by closing the cock on the pipe leading from the reservoir, L. $\mathbf{R}$ and R are pressure gauges for indicating the amount of pressure of the gas in the retort and at the condenser. The products of distillation that are obtained at $B$ rise through the pipe, $D$, which is bent at its upper part, and enter the main, $\mathbf{E}$. Here they traverse a layer of tar, which entirely closes the plunge pipe, D , in order to prevent the gas from returning from the gasometer to the retort. The quantity of tar should always remain the same in the main, E , and, as the gas parts with some through the effect of bubbling through it, the principal pipe, $F$, debnuches at the level of the sur face of the liquid and thus serves to allow of the simulta neous passage of the gas and overflow of tar, which latter then enters the condenser, $G$, filled with coke. The oil vapors circulate in this apparatus and become cooled; the tarry compounds condense therein; and the resulting liquid flows into a receiver located beneath the condenser. On leaving this latter, the gas traverses the purifier, $J$, which frees it from all foreign matter, and finally reaches the tank of the gasometer through a pipe which branches off a the cock, $K$.
One of the interesting parts of the furnace, $A$, is second retort, which is $U$-shaped, and which is called by the inventor a "multiplier." This is fixed in the walls of the furnace, and filled with pieces of coke of aloout the size of a walnul. It is heated to a cherry red heat by the flames from the fireplace of the principal retort. During the process of manufacturing the gas a small stream of water i allowed to flow continuously from the reservoir, M (100 to 120 drops per minute), into the pipe of the siphon, $Q$, which communicates with a brancb of the retort, S . This water is converted into steam which goes from one compartment to the other of the retort, traversing as it does to the incandescent coke, and becomes decomposed into hydrogen and carbonic oxide. It is not, then, steam that passes through the pipe, $b$, to enter the principal retort, $B$, but, ratber, bydrogen gas and carbonic oxide. These latter mix with the oil vapors, and, through the action of the former, a large part of the carbon contained in the products of distillation forms illuminating gas. Thus by the use of the "multiplier," a less quantity of tar is $\mathrm{ob}^{-}$ tained and 7 to 10 per cent of gas is recovered. The gas thus obtained is free from sulphurous and nitrous admixture. It is to its composition that it owes its property of remaining aeriform of heating liters.
space to be filled in, and thus saves the labor of leveling. The water will run back into the river, leaving the material uniformly spread over the surface.
With this apparatus the cost and labor of elevating and distributing dredged and othar materials are reduced to a minimum.

## Progreas of the Tunnal under the mermey.

Rapid progress is now being made with the tunnel of the Mersey Railway, and nearly seven hundred men are em ployed night and day upon it, working in eight hour shifts, from four faces. The tunnel will be $31 / 8$ miles in length The drainage beadings are about 100 yards in advance of the main headings, and will act as reservoirs into which the water from the main tunnel will be drained and run off to both sides of the Mersey where pumps of great power and draught will bring the water to the surface and into the river. The excavations of these drainage headings at the present time extend about 100 yards bejond the main unnel works at each side of the river. The drainage shafts are sunk to a depth of 180 feet, and are below the owest point of the tunnel which is drained into them Each drainage shaft is supplied with two pumping sets, consisting of four pumps, iz., two of 20 inches diameter, and two of 80 nches diameter. These
during excessive cold and under a high pressure. It gives $\quad$ By the admission of water to the scow the material can be an excellent light for railroad cars, and may be employed, given any desired consistency, so that it will flow without like coal gas, in gas motors and for the different applications manipulation to the elevating buckets, from the buckets
and through the dis quires, for a light of an intensity of 10 candles, 30 liters per $\quad$ agitate the material and give it a forward movement, in case hour, while an ordinary gas flame consumes from 112 to 120 the inclination is not sufficient for it to flow freely, and in

It has been found that a single cubic meter of oil gas will supply from 33 to 35 burners per hour with a brilliancy semi-fluid state it distributes itself more evenly over the


GORRINGE'S APPARATUS FOR RLEVATING AND DISTRIBUTING DREDGED MATERIAL.

Roult Reoue Industrielle.

## APPARATUB FOR DIBTRIBUTING DREDGED HATERIAL.

We give an engraving of an improved apparatus for elevating and distributing dredged materials, and for carrying them to any distance for filling low grounds. It is the invention of Ex-Commander Henry H. Gorringe, of this city. A float carries the elevating apparatus and motor for driving it, and supports the distributing apparatus, which may be xtended to any distance. A scow accompanying the float has a valve in the bottom, which may be opened to admit more or less water for mixing with the material to form a semi-fluid mass. The float has one side deeper than the other, to give it greater buoyant force, and to allow of a shallow side which may be moved closely to the shore.
The dredged materials carried by the scow are raised by the buckets on the endless chains, and discharged into the long chute which conveys them to the distributing apparatus on shore. The distributing trough bas in tbe bottom a series of openings provided with slides, which are opened more or lass, according to the rate at which it is desired to discharge the material at a given point. The trough also contains a series of diaphragms, which are drawn through the trough series of diaphragms, which
by means of a chain or rope.
and are like hardened slee
(he pper parts being covered with a purplish, metallic looking coating, radiating from where the line was attacked. The
coating is thoroughly burnt into the glaze. The inside of the cups, nearest to where the electric fluid sprang from th line to the iron pole, is covered with a fine, dark, metallic looking deposit, which is also burnt into the porcelain."

The American Bell Telephone Company has, it is said rected $2,000,000$ miles of overhead wire during the past year.

## THE WOODPECERR.-(Picus.)

A Linnæan genus of birds, now divided into a number of genera, and belonging to the family Picida, of the order of Scansores.
The woodpeckers, whose name indicates their habits, are widely diffused over all quarters of the globe, excepting Australia.

There are several well marked groups of woodpeckers, differing in form, plumage, and habits, which also are of different geographic distribution; some of them entirely and some chiefly confined to particular parts of the world.

Prominent among the species of Europe are the great black woodpecker (Picus or Dryocopus martius). It is about siasteen inches long, black, with a red cap on the head. It is to be found in the pine forests of the Continent, and is rarely seen in the British Islands.
The most plentiful of all the British species is the green woodpecker (Picus or Gecinus viridi s). It is found in the woody parts of Scotland and England, but is rarely found in Ireland. It is common on the Continent of Europe from Scandinavia to the furthest south. It is about thirteen inches long, and is mostly of a dark green color, tinged with yellow; the featbers over the nostrils and around the eye, black; the crown and back of head bright scarlet; a black mustache extending backward and downward from the base of the lower mandible, with a brilliant scarlet patch along the center of it; the edges and tips of wings spotted black and white.
The American species are very numerous, some of which are among the best known birds of the United States and Canada, such as the hairy woodpecker (Picus villosus), which is to be found at all seasons of the year in woods, flelds, orchards, and even in the midst of large cities, and visiting farmyardsin winter to pick up grain, etc., a lively, noisy, and active bird.
Ivory-billed woodpecker (Picus or Campophilus principalis), which inhabits the dense woody sections of the soutbern part of the United States and Mexico. They are called by the Spanish carpentero, for the great quantity of chips which they make. They are valued by the Indians for their ivory-like bill and scarlet crest, which they use as ornaments. While this bird is found in southern locations, it has been seen as far north as Maine.
The red-headed woodpecker (Picus or Melanerpes orythrocephalus) is very common in most parts of North America. It is a very destructive bird, feasts much upon fruit and upon the young heads of Indian corn. In some sections a reward is given for its destruction.

The largest species in the northern parts of America is the black woodpecker, or $\log$ cock (Picus or Dryotomus pileatus), which is about eighteen inches long, the general color greenish-black, with stripes of white from eyes along neck and sides.
The genus Picumnus is the type of a group of Picides called Piculets, very small birds, with bill hard or horny at tips; broad, round wings, and short tail, with broad, rounded feathers, not used for support, departing from the typical cbaracters of the family. They inhabit the warm parts of South America, India, and the Eastern Archipelago.

The great spotted woodpecker ( $P$. major), also called the French pie and wood pie, of which our illustration gives an accurate representation, is not uncommon in some parts of England, but is rare in Scotland. It is found on the Continent from Norway to the Mediterranean. It is about nine inches and a half in length; the color is black, varied with white; the under parts grayish white; the back of the head of the male bright scarlet. Here let it be noticed that the general color of the plumage of the family Picide has a tendency to resemble the bark of trees on which they are seen. One is often surprised, in passing through a wood suddenly, to be startled by a wonderful succession of raps, something like the rattle we see children play with. Suddenly it stops, and upon looking around you at last discover pieces of bark falling but a short distance from you, some of large size. A instant later the eye catches sight of the cause of all our previous fright; in an instant it disappears, leaving us in a new train of thought over the wondrous workings of the productions of the divine Creator.
The lesser spotted woodpecker (P. minor) is widely distributed in Europe and the north of Asia. Its colors are similar to those of the last species described. In size it is about five and three-fourths inches long, and is to be often seen searching for insects in orchard tree branches.
We have now described the principal varieties of this peculiar species of biped, and will proceed to give the natural characteristics.
They subsist chiefly on grubs and insects which they dig out of decayed trees or from discovery under the bark. For this purpose their whole structure is admirably developed; the bill is long, sharp, and powerful, with a bard tip and sides compressed; the tail is usually lengthened and rigid,
although in some it is short and rounded; the vertebre of the neck are greatly developed. The formation of the feet and legs is such that the birds are able to grasp the trees frmly with the feet, while swinging their full force of body against it; the toes being in pairs, two before and two behind, with sharp, strong claws; the whole structure adapting these birds to run and climb with the greatest rapidity on the stems and branches of trees, in which they aid themselves by their tail, lise creepers, in their search for food.
Thus, while natural facility for climbing is perfect, their powers of fight are very moderate. Another most singular point in the woodpeckers is the method by which they are enabled to thrust the tongue deep into the crevices and bring out any insect that may be there. The tongue is constructed with two elastic ligaments which are inserted near the juncture of the upper mandible with the skull; thence they sweep aroand the back of the head, and, passing under the lower mandible, enable the tongue to be thrust far out beyond the bill, its tips being horny and furnished with barbed filaments, while the surface is covered with a glutinous saliva secreted by two large glands, thus cansing those insects to; adhere that would be too small to be impaled.
The common notion that the woodpecker is injurious to rees is erroneous, as they do more good by preventing th ravages of insects than harm by their pecking.
They strike out chips of wood by their strong bill, and in
consure neath the bark out of the reach of other agencies. His is a work of destruction and death-the dislodgment and consuming of myriads of borers, etc.-not harm to the tree, but beneflcial, as attested in innumerable instances. In this despised, persecuted bird we have a true friend and effective co-worker, very materially assisting us in gathering an ample return of perfect fruit for the labor and care expended to this end in orchard, vineyard, or garden. Ignorance and prejudice have no place amid the general intelligence and humane principles of to-day, and should not be tolerated. Let no one, then, wantouly destroy either eggs or parent bird, but carefully foster and protect them, even using his influence to secure the punishment of all thus rendering themselves amenable to law and the just condemnation of every intelligent person.

Formation of Armenides by Premure.
Spring has continued his experiments on the formation of chemical compounds by simple pressure, and now gives the results obtained with arsenic. When zinc filings and pulverized arsenic, mixed in the proportions required by the formula $\mathrm{Zn}_{3} \mathrm{As}_{2}$, are submitted to a pressure of 6,500 atmospheres, a homogeneous metallic-like block is obtained, crystalline under the microscope and brittle under the hammer. It dissolves completely in sulphuric acid, evolving mer. It dissolves completely in sulphuric acia, evolving A similar mixture of lead and arsenic gives a homogeneous block of a metallic luster, hard and brittle, and which does not clog the file. The arsenide of tin corresponding to the formula $\mathrm{Sn}_{8} \mathrm{As}_{4}$, thus obtained, is a white mecallic mass, brittle with foliated structure, fusible at a higher temperature than tin, and difficultly soluble in hydrochloric acid with evolution of $\mathrm{H}_{3}$ As. The cadmium arsenide required three pressings, and gave a brittle metallic mass. No compound of as high a composition in arsenic, $\mathrm{Cd}_{3} \mathrm{As}_{2}$, could be formed by fusion. Copper combines with arsenic under pressure only with difficulty. After eight pressings a homogeneous metallic mass resulted, brittle and grauular, grayishwhite in color. Silver acts sinilarly, giving a bluish-gray homogeneous metallic mass. Arsenic itself, when submitted to 6,500 atmospheres, acquired a metallic luster and a specific gravity of 4.01.-Ber. Berl. Chom. Ges.

## The Perils of the studio.

A contemporary directs attention to certain dangers which attend the art of painting, or, rather, which may attend the practice of that beautiful art, if habits of carelessness and uncleanliness are formed, especially in the case of young females who take to painting either as a pastime or a professiou. The censor cited warns his readers, first, against putting the brush in the mouth to make a fine point, and, second, against leaving the handles of the brushes dirty, so that when several are held together in the hand the paint may be absorbed and poison the system. He enjoins the entire avoidance of brush pointing with the mouth, and the perfect cleaning of brushes before they are put away. In support of his argument our contemporary refers to certain instances of injury which which have recently occurred. It is needless to say that perils of the class named actually exist. If an onlooker will take the trouble to count the number of times an amateur artist or beginner puts the brush in the moutb during one-quarter of an bour, the result will make it clear that a considerable amount of lead or other poisonous material may be taken into the system by this process. As to the alleged absorption
his way enlarge holes in decayed parts of trees for roosting places, usually selecting a place hidden by branches or foli age, leaving in the thus made opening a few chips for a flooring to the nest; the remainder are carried away to a distace for apparent safety, that the breeding place of their young will be less liable to discovery.
Of the woodpecker many anecdotes are told, relative to its persistent pecking and natural restlessness while in captivity. Among them we may mention that Alexander Wilson, the American ornithologist, had an ivory-billed woodpecker in his possession which pecked lath and plaster in its efforts to get away, and utterly ruined a mahogany table to which it was fastened.

## The Hairy Woodpeaker.

A beneficent Providence has richly endowed the family of woodpeckers with qualities of rare excellence and worth. Especially is this true, says the Amorican Naturalist, of the bairy. The principal count in the indictment against him, that he bores the bark of fruit and other trees in order to feed upon the sap and inner bark, will not stand, being ut terly false. An extended examination of the contents of the stomach of this bird invariably fails to disclose an appreciable amount of either, but in their stead a buge mass of insects and larve. The perforations which he makes are merely for the purpose of securing his quarry from their en


THE WOODPECKRR. through the skin of the hand, we do not remember to have through the skin of the hand, we do antist arising from this seeu an instance of wrist-drop in an artist arising from this
cause, but it is quite conceivable that such cases may occur. It will therefore be well to bear the warning given in mind, and to avoid practices which may, under certain conditions, prove mischievous. There is another small matter which should be mentioned in this connection. It is a mistake to keep the left hand burdened and cramped by a heary palette and a bundle of brushes with the rest-stick in oil painting. The hand gets cramped and painful. It is possible that in some cases a paralytic disability not unlike writer's cramp may be induced by this mismanagement. The practice might, though not perhaps easily or conveniently, be avoided.-Lancet.

## Now Invialble Ink.

C. Widemann communicates a $n \in W$ method of making an nvisible ink to Die Natur. To make the writing or the drawing appear which has been made upon paper with the nk, it is sufficient to dip it into water. On drying, the races disappear again, and reappear by each succeeding mmersion. The ink is made by intimately mixing linseed oil, 1 part; water of ammonia, 20 parts; water, 100 parts. The mixture must be agitated each time before the pen is dipped into it, as a little of the oil mny separate and float on op, which would leave an oily stain upon the paper.

## RECENT INVENTIONs.

## Improved Invalid Chair.

The engraving shows an improved attachment for chairs, which will convert an ordinary cbair into an invalid chair which can easily be moved about. Journal boses are at tached to the bottom of a chair near the front, and at the fached to the bottom of a chair near the front, and at the
sides wheels are provided, with fixed axle sections, which are passed through the journal boxes and into the opposite ends of a tubular journal brex held transversely under the chair seat, at the end of a longitudinal bar attached in bracket frame secured to he buttom of the chair seat at the rear. The front end of this bar is slotted longitudinally, and a thumb screw passes through the slot into a projection of the tubular journal box. By this construction the bar and the pro jection of the tubular bear ing are adjustably secured together, thereby permitting the large wheels and caster wheel to be coupled closer together or farther apart to suit different sizes of chairs. Collars provided with binding screws are loosely mounted on the axle sections. The axle sections are passed through the journal boxes and into the ends of the middle journal box, and are held in place by the collars, one of which is placed against each side of the outer journal box. The shaft of the caster wheel can be so adjusted that the chair can be inclined backward more or less, as may be desired. The wheels can easily be attached to and removed from any chair of any width. This invention has been patented by Mr. M. J. Koenig, of Jersey Shore. Pa.

## Fuse Cutter and Capper.

This is a new device for cutting fuses and securing explosive caps on the ends of the same. The pliers have three transverse grooves in the idner surfaces of each jaw, the middle ones being made tapering. The outer groove of one jaw contains a cutting disk, which is secured transversely in the groove, and which, nihen the jaws are closed, passes into a groove in the opposite jaw. This disk is used to cut a fuse, which is placed in the groove of the opposite jaw. The end of the fuse cut off in this manner is placed between the jaws of the pliers and within the tapering gronves, and is pressed between the said jaws, thereby tapering the end of the fuse. An explosive cap is then placed on the end of the fuse, and the fuse and the cap are placed between the jaws and in the inner grooves, and the inuer end of the
 cap is pressed on the end of the fuse. The fuse and the cap are held between the jaws of the pliers in the gronves, and then annular grooves are formed in the inner end of the cap to hold the cap on the fuse, and part of the metal of the cap is forced into the fuse by means of a metal strip provided with a tapering slot. The projecting end of the cap is passed through the slot and moved toward the narrow end of it until the edges of the slot press firmly against the metal of the cap. The plate when turned gradually forces the metal of the cap inward, forming an annular groove. Two such grooves may be made in the cap if desirable. The cap is thus held firmly on the fuse, and a perfectly air and water tight joint is formed, and the explosive mass in the cap cannot be injured by water. This invention has been patented by Mr, Frank
P. Picking, Denver, Colo, P O. Box P. Picking, Jenver, Colo., P. O. Box 2404.

## Improved Center Board.

We give an engraving of an improved center board for vessels recently patented by Mr. William O. Christensen, of Marshfield, Coos Bay, Oregon. The object of this invention is to provide a center board having a greater area of resist ance than those of ordinary construction, and baving means for operat ing it with great facility This center board con sists in two boards lo cated on opposite sides of the keel, and connect ed by rods which pass up through openings in the bottom of the vessel with machinery on the deck, by
 which they may be easily operated. The application of this improvement does not necessitate cutting away the timbers, nor any other material change in the vessel. The board being entirely below the vessel, valuable cargo ronm is saved. Fig. 1 shows the vessel with center board at tached. and Fig. 2 is a transverse section of the keel, keelson, and center board, showing the operating rods and the well that incloses them.

The engraving shows an improved device for securing a id on a pot, barrel, or other receptacle. The pot is pro vided at its upper edge with a bead, and on the lid there is a sliding bolt, having at one end a hook adapted to catch on the bead on the edge of the pot, and the opposite or inner end of the said bolt is turned upward to form a handle piece, which is below or adjoining to the usual handle provided on lids. A spiral spring is attached to the inner end of the bolt and to a clip fastened on the lid. Opposite that part of the lid from which the book projects
 he lid is provided with two honk clips adapted to catch on the annular bead. The spring draws on the inner end of the hook bolt, so that the hook will be pressed against the bead on the edge of the pot and hold the cover fast. When the handle of the lid is grasped, the sliding bolt is easily operated by the thumb or one of the fingers. This invention has been patented by Mr. Peter D. Conneely, of Hursebeads, N. Y.

The possession of what may be characterized as work shop virtues is a valuable qualification to all employed on engineering or mechanical work, and naturally the absence of this qualification is a serious detriment. A few words, therefore, may serve as hints to apprentices and others desirous of acquiring these virtues, for, after all, they are greatly matters of habit, and can be acquired. Observation, punctuality, method, readiness, and knowledge of princioles are the most prominent workshop virtues.
Observation is the first lesson the apprentice learns. When fresh from school he is introduced into a new world (the workshop), and sees about him a number of men and of cools, and of the names of the latter, or their nses, be knows practically nothing. Machines, wheels, and shafts, some in motion and others at rest, stare him in the face until he is somewhat bewildered, and he is apt to exclaim, like the ' heathen Chinee," who was viewing a marine engine for the first time, " Too muchee wheelee, make man thinkee too muchee." After a day or two this feeling of bewilderment fades away-use becomes second nature to him. Now is the time to improve himself and awaken his faculties, if he has the will. Let him observe the various machines and processes, try to understand why one machine runs at one speed and another at a different one, and why one process is dependent upon another-in fact, make use of his powers of observation, try th remember what be sees, and consider whether he can suggest an improvement. If he can make notes at home of an evening, so much the better; be will find the habit exceedingly useful. By observation, errors may be detected in work about to be executed before the blunder is actually committed, thereby saving both time and money.
All improvements in machinery arise primarily from observation. It is the foundation, and is the basis of all the known facts in physical science. The facts are first observed, then recorded, and afterward deductions made from them. The observing man is continually acquiring information, storing up its observations, which at a later day are sure to be useful, both to himself and his fellows. The observation of James Watt led to the great improvements in the steam engine. The observation of Humphrey Potter led o the invention of the band gear for pumping engines.
In the workshop there are still remaining rules of thumb, relics of the past, which are 'upheld by the lover of precedent, who can only give one reason for his actions, viz., that the work has always been done in that way. The young apprentice will not, as a rule, get much help from his ellow workmen when he tries to suggest any improvement on old fashioned practices, and, we regret to say, from but few employers. One notable exception may, however, be mentioned: that of Messrs. Denny Brothers, shipbuilders, Dumbarton, who have instituted a system of awards to their workmen for any invention or improvement introduced or suggested by them, and by means of which work can be rendered either superior in quality or more economical in render

In spite of the difficulties that the young engineer will encounter he must not give in, but continue to observe, and store up his observations for future use, under the name of "experience." We next pass on to the second workshop virtue, "punctuality." In some measure all workmen are obliged to be punctual in their going to and leaving work. The bell rings or the whistle blows at fixed hours, and the workmen must be governed by these signals; but, over and above these flxed times, the habit of punctuality is a valuable one. Some factories are famous for being faithful in the fulfillment of their promises as regards time of delivery; they will work night and day to complete an order by the specifed time. Others, again, are noted for their utter disregard of time; they are old fashioned, and happy-go-lucky. If the work gets done, " well and good; " and if not—" well, it cannot be helped."
In this connection an anecdote in the career of Sir Jobn Brown (Sheffield), who has always been known as honest, thorough, and punctual, is worth repeating. In the early part of his career he happened to be in Edinburgh when the Edinburgh, Perth, and Dundee Railway was abnut to be
opened, and chanced to call on Mr. Grainger, the engineer of the line. Everything was in readiness except a few sets of springs, which the contractor was unable to supply; and as it seemed impossible to get the articles required in so short a time, it looked as though "the ship was going to be apoiled for the want of a pennyworth of tar." $\mathbf{M r}$. Grainger mentioned the matter to his visitor, and in sheer desperation asked him if he could supply the springe by Thursday. This was on the Saturday, and Mr. Brown re plied that, considering the imperfect carrying communication, he feared the time was too short. "Well," rejoined Mr . Grainger, "we must have them."
John Brown considered a moment, and then said, "You shall have them." He started forthwith to Berwick, took the traiu and coach for Newcastle, and thence to Sheffleld, which he reached at eleven o'clock P.M. on Sunday. Here he went straight to his foreman, and told him to have the men there the first thing in the morning, and gave positive orders that the springs were to be ready on Monday night. The goods were packed at the appointed time, and tbe maker hurried off with them to Manchester. Here he had arranged to have a wagon ready to convey the springs to the station from which the mail for the North started. He was in time for the train, but when he presented his consignment a new difficulty met him in the refusal of the officials to load such goods in the mail. Mr. Brown went straigbtway to the manager, told him his case, and got a horse hox put on to convey the springs. After a devious journey, and notwith out many threatening contretemps and anxious moments, the traveler reached Glasgow, via Ardrossan, at five o'clock on the Wednesday afternoon, to the amazement and gratifica tion of Mr. Grainger, who not only compensated the enter prising manufacturer for his outlay and pains, but also in troduced his feat to the notice of most of the railway direc tors present at the opening ceremony, and the gallant effor threw into John Brown's works for a considerable time the bulk of the Scotch trade in railway material. It cannot be too much impressed upon all in the worksbop that time is money, and punctuality is economy of time.
Method, or system, is the next workshop virtue we shal touch upon. This is not given to all men to possess. Some men bave no system; they are always in a muddle. At times they get hopelessly blocked, and others have to put them straight. Method implies foresight and a logical mind. A man must think of his work, and arrange it be forehand to the best advantage. A works manager without method is useless. He will have his smithwork done before his patterns are begun, one set of men will be waiting for another set, his work will always be behindhand, and the cost of production greater than that at a works where there is a good system.
Readiness is perhaps not so apparent a virtue as the others we have mentioned, but every foreman or manager knows how pleasant it is to deal with a workman ready at taking a new idea, or willing to try a new method of doing work. These are the men who distinguish themselves, and obtain better positions than those who cannot move out of their rut of habit. So, also, a firm becomes noted for adapting itself and its resources to new trades or methods of doing work, while a firm which will not try an experiment will be pushed out in the cold in the struggle for existence. Knowledge of the principles involved in workshop practice is the last of the workshop virtues we shall refer to. The man who knows the reason for what he does is a better man than he who only does a thing because he is told to do it a certain way. Every mechanic should understand, for example, why his drill should run faster for a small hole than for a large one, why one speed of tool is suitable for one metal and not for another.
If he is a smith, he should know why steel is worked at a lower heat than iron; what conduces to a sound weld, and why a piece of steel broken haphazard off a bar cannot be drawn to a sharp point without certain precautions. There are principles underlying every trade which it is to the interest of the artisan to study, to ponder over, ay, and even oo discover, for it is well known that there are principles yet undiscovered which the cultivator of the various workshop virtues may be lucky enough to fathom, with honor to himself and benefit to mankind at large.

## sirengthening a Foundation

An interesting way of strengthening a weak foundation was recently tried on a new building that suddenly commenced to settle. The excavation for the walls had been carried down until a mixture of coarse sand and gravel was found, which was deemed suitable. During a heavy rain water found entrance to the cellar, when the sinking resulted. The building was braced, the cellar, drained, and then the inside wall of the foundation was uncovered down to a little below the bottom. A $\Lambda^{\text {-sha ped piece of masonry having a }}$ height of about twice the width of the base was then bialt, he bond between it and the wall being carefully looked to. After this had been finished upon the inside, it was repeated upon the outside. The base of each of these pieces was equal in width to that of the wall, so that the operation practically trebled the bearing surface of the foundation. It may be well to add that the water will not again be permitted to enter that cellar, as every passage way has been securely closed.

Thref factories in the United States consume nearly two million eggs a year in making the peculiar kind of paper used by photographers known as albumen paper.

[^0]
## engineebing inventions.

 Mr. Abraham Ayres, of New York city has obiained a patent on improvements in railiroadswitclies of the kind that are operated by the welght of switches of the kind that are opperated by the welght of
the car norsees. The depresesing levers nonder a platTorm to change the switch rail mecbanism is simple tn
Ite construction and operation, and promisee to be
in Valanble a

Mr. Jobn Taylor, of Halifax, Nova Scotia Can., has patented an apparatus for paritying foul am. moniacal liquors which is mainly desifned to be ased puriccation of crade gas by means of the aimmonia contained in it. Cold or heated atmospheric air 1 forced
throngh the foul gas liquor for the parpoes of expeling the sulphureted hydrugen.
Mr. J. M. Higbe, of Manson, Iowa, has patented an antomatic variable cat-ori valve gear of very stmple conatruction. The valve rod io 80 connected to
the crank shatt as as io hhirt oward and from the center. to lengthen and shorten the travel of the valve, thereby varing the cut-oft. Verry fimple mechaniom is em ployed by Mr. Higbe for controliting
engine and economizing the steam.
An improved tool for cutting slots in the sangges of railrod rails, intended especially for ase in
repairing the track, has been patented $b y$ P. Renfroee of Prentise, Ga. The end of the rall 10 be slotied is placed apon an anvil, and the panch with one of ite cutters resting apon the ghange of the rall io
atrack with a nerea cul in the nannge of the rail is the resalit.
Mr. J. M De Witt, of Greeley. Colo., has pa ordinary car brake. The usual ratchet wheel and pawl is empoyed. A lever is pivoted upon the same pin ait
the pawi. and a semi-lli itical sporing to secured to this the pawl. and a semi-clifiptical spring to secured to this
lever in such a way that by operating the lever the spring will act tupon ite pawl to canse to engage or die engage the ratchet wheel of the brake
A device for
A device for depositing torpedoes in snow banks to clear the cracks for railroad tralns has been
patented by Mr. Cteorke A. Gunther, of Brooklyn, Patented by Mr. Cleorke A. Gunther, of Brooklyn,
N. Y. The inventon consiets
and pole or orber analoor car, which pole is forced finto bank of snow sn carries a torpedo or other explosive cartridge in
bank and holds it in there until it is exploded.
A patent bas recently been granted to Mr Sames W. Cole, of Huntington, Mases., for an tm-
proved car coapling. This consints of a drawhead hav
 rods, and provided with a coupling pin secured to one
of the blocks. The drawtead is provided with gulde and gaards to direct the link into the space betwen the
coupling blocks. The upper block carrying the pin coupling blocks. The upper bock carrying the pin
projection is raised for nincoupling by means of a casin
paesting to the to of the car or to bar extending to the paselng to the
aides of the car.
A very simple automatic car coupling has been patented by Mr. E. C. Kyl, of Jeflerson Citt, Mon-
tana Ter. AT-headed cooviling hook is ptroced in a ana 1 Ter. Abal
etoued druwbar, which is attached to the car body, and
 in contact with thees jaws, they will be opened lateral-
if and receive and hold the male coapling head. The Iy and receive and hold the male coupling heed. The room between the jaws either from
or or $a$ chain extending to the roof.
An improvement designed to facilitate the anloading of dat dumping cars, such as are emploged Mor transporting gravel, conl, etc., bath been patented by Center, N. Y. A movable frame npon which the load dinary car frame. The movable trame is shisted to the
dide of the car by means of a stationary gear wheel which side of the car by means of a stationary gear wheel which
ls journaled to the car frame and eopgages with a rackbar atuached to the movable frame. This rrame is pro.
rided with stope to limit tis lateral morement Vided with stops to ilimititr lateral movement and pre-
vent its completely overturaing when tilled in dis-
Messrs W. H. Snyder and A. O. Frick. of
Waynesborough, Pa., have patented d derice for appliengines to have the two main wheels driven independentily so that in toroing a curve the inner wheel wivl
be stationary while the outer wheel is ronding the be stationary while the outer wheel is roanding the
curve. This is accomplished by means of a compensaling gear of proper constructiou. Sometimes it happens
however that toe wheel will get in a mad hole or upeven. however, that one wheel wil zet in a mud holie or uneven.
reess in the gronnd, at which time the wheel so placed By the device patented by Meeares. Bnyder and Frick, howerer. the loose wheel may, when required, be rigthly
locked io the axke, sothat in much caee the power of the engine cannot be diverted to uve wieel, but both are rotated together, and the wheel on the hard ground it
made effective for drawing oat the engline.

## hechanical inventions.

A silk throwing machine to be used in
 N. . This is accomplished by this Improved machine in
one continouous operation, and greaily facilitates and ceonomizes the labor of silk spinning.
Letters patent bave recently been issued to
Mr. O. R. Mehafey, nf Richborg. N. Y. for coupling Mr. O. R. Mehafey, of Richbnrg. N. Y., for coupling
for pamp rods, the object of which in to provide an improved coupling for the sucker rods of pumpe, by
means of which coapling the rod sections can be means of which coupling the ro,
conpled and uncoupled very rapidy.
A crank motion attachment which may be vdapted to any common tice cream freezers ordinarily
worked by haod bas been patented by Mr. D. s. Cos. Nreys, of Troy, Aha. It can be fasuened to any table or bench, and by extractitig the sbant through a h hele or in
the table connection is readily made between the freez tog remed and the crank mechaniem.

Mr. W. C. Bush, of Brooklyn, N. Y., has recenily pavented an improved dree escape adader, which, and etiff in the otber, and which is provided zt tis lower on the ground nod forme aupport for the ladder:
An improved crib for children has been tented by Ida R. Opdyke, of Plainneld, N. J. The crit provided with a movable side which silides vertically ar grooves in the eild posts of the bed. Belancing
wolighte are provided, which paese over pulleys in the poste mentioned. The side is secured in ita raiced poosiA self.closing faucet has peeno
A self.closing faucet has been patented by Mr. T. H. Walker, of Kanasas City. Mo., which coneletet In no eantung a valve in the apper part of the chamber
below the nozzie of the facceet hat the Aow of water will Ce regulatod by the depreasion of the epting which $n$ ains the ralve home, so that the fow is etopped by the action of the spring apon the ralve, and by the apward Mr. E. H. Leland, of East Templeton Mass., has patented a novel turning lathe which con-
ands of an and hat clucthes the feed not with the fed ecrew in anco matic lathes for turning chair stocks; and in an autohe object being to for setting the Hertiog contrivance, ibe object being to save the atuendant the labor of lift Au indicator, for hotels, to show whether the Mr. Benjiamin S. Hering of Cambrideen patented by Mr. Benjamin S . Herting, of Cambridqe, O. This im
provement consists of a series of sildes, each operated by'a button and each provided on its outer end with the ancer of a room, a slide belog moved backmard to onceal the number of 2 room when taken, and moved
orward to expoce the nmmber ot the room when empt A novel device for advertising consisting in the use of a windmill of peculiar constraction,
the sabject of a patent granted to Mr. Thumas the sabject of a patent granted to Mr. Thumas B
Peacock, of Topeka, Kan. The inventor provides a Gylinder on which the advertisement is displayed, and Salabie gearing he operatees groteoeque agares and for attracting the attention of the paesing probic, a Mr. R. L. Pruyn, of Baton Rouge, La La., anatet or car apon rails, which are supported by brack ets from the wall of a bailling, and in providing the and lowered as deaired, and aloo shifted along the rails ander the row of windows in the building. The hoist-
ing rope or chain is provided with a trake ing rope or chain is provided with a brake mech
or regalating the speed of descent of the basket.
Messrs. E. Phillips and S. A. Kealy, of Lew bolung reels for flour mills. The bolting inel is 1
 The boltipg cloth extendo from one wherel to the other,
and so eccurred so t provent the cloch from Nipping ont of the groove of the wheel when put a prension Braces are also provided for preventing asaging. The
reel frame is constracted entrely of meta, is very light reel frame is
and darable.

Mr. Ludwig Mautner, Ritter von Markhof
 ing malt have the great disadvantage of not furnishtn. a homogeneons material. The parpose of the present Invention is to prodice a perfectiy aniform prodict, by
the very simple machinery emploved. The drying and the verr simple machinery employed. The drying and
poasting can be regulated at all stages of this appoato
A patent for a very powerful balling press, moonted on a track and wheels, so as to be readily moved from one place to another, has recently been is-
suod to Mr.E.J. Bennett, of Bainbridge, N.T. The power is commnnicated to the machine by attaching a teem to follower, which is provided with segmental racks, agatnet the material to be baled. This press is very light, quite powerful, and
oot of order.
A feed regulator for hemp drawing and spin Ing machines has been pastented by Mr. J. R. Hoover or kilzabeth, N. J. This is so constructed that whei pina becomes large it will come in contact with the conlever rod lis moved backward, whereby a brake is ap. plied to a pulley connected with the endless chain
This checks the coovements of the endiess chaln, an In coneequence the feed of the sliver to the condenser.
Thus the whole process of feeding is controlled auto matically. W. Tarr, of New York city, has pa and more durable than any derick of the same weigh and size heretofore made. The lower end of the derrict com is pivoted into a frame, which may be raised th
any clevation desired by means of chaing, which over a pulley at the upper end of the derrick post, the chains being made in such a way as to be eel-locking hach position that the weight brought to bear elther upon the extreme end of the
boom or lower down, where the estrain will be less great.
A device which is designed to cause th antomatic signnaling of an approaching train at inter-
vals along the track and at sultable dietances from crosesings and stations has been patented by Mr. W. R Wood. of Bowling Green, KY. The inventor places
wivoted "shoe " at one side of the ash box, adjacent to one of thedirvers of the engine, and connecta it with an
aikrm or tignal bell in the engine cation the she being adapted to engage with a cam fastened to the track tle caised by the cam and the signal bell in the enzine ca will be rung.
An ingenious machine for heeling hoots and ehoes is the subject of a patent pranted to Mr. J. Sper-
ry, of Phlladelphia, Ya. The process consista in mount-
$\operatorname{lng}$ a number of boots or shoes upon forms on a hort-
zontal revolving table, so that each may be bront nucceasively underneath ad drop hammer. When in ope
ind ation, the hammer descends and drives the Anithing plece of leather is then placed on the headd of
the nallis, which stlll project somewhat, and when th the nalls, which stlll project somewhat, and when the
hammer descends a second time the nails will be driven hammer descends a second time the nails
entirely home and the operation fnished.
A machine for sizing and shrinking woo and fur felt hats has been patented by Mr. W. F. Mar-an, of Dannemora, N. . Y. The improvement consigts in arranfing several convex rollers npon a movable frame,
which by meanse of a lever may be adjusted in relailo Which by means of a lever mas be adjusted in relation
with two large concave rollers which are placed above the emaller rollers. A emall convex roller is locatod between the two harger rollers. In operation the hate are passed between the several rollers, and a reciprocating movement is given to the lower set of rollers by the lever attachment mentioned. In this machine the prohe work is acomplehed done by hand.
A very ingenious machine for removing The stiff bristles from seal and other aklins, and aleo for the hair, has breen palented by Mr. Theophill Resmue of New York city. The invention provitea device stretching the fur on a plate preparatory to clipping of the pristeses, and for holding the hair down for this parpose by meane of a current of alr which is produced by
a suitable hlower. Ooner devices are provided for mov ing the catter knives toward the upper edge of the plate over which the skin is strecthod, and for presesing conbe against the skin astur the hair has been laid
down by the current of ar, all thee betug the same driving shaft
Mr. B. D. Engle, of Hazleton, Pa., has recontly patented some improvements apon an engraving daschine for which the same Inventor originally obtaintructed that It may be adjusted to any desired Inclina tion le athached to a bracket which silides in the standace to be engraved. The cutuling tool is suspended
jed joct to be entraved. The cutting tool is suspended
abore the plate to be engraved and connected with a tracer below in noch a manner as to follow every moton of the tracer, so that when the insirument is move y hand over the liles of the tope, which is clamped
pootition on the tuble an a
produce

\section*{| plate. |
| :---: |
| Mr |}

r. William E. Wild, of Candalara, Nev. has patented an improved machine for boring, drilling.
nd faclng metals, which consites
in a hollow tool Fing obaft rotating and oliding apon a guide rod, and gearing. The gear wheel attached to the bollow too
to carriug shaft is provided with nangen to engage the nu wid the hollow shatt. To the lower and of the hallow, shast is atucchod a plate carrying
the tool holder, and so arranged that the tool holder and he tool holder, and so arranged that the tool holder and coi wil be fed forward by the revolution of the hollow
shaft. The hollow tool carrying ahatt alldee apon a sadd. atached at $i$ is lower end to the work table to guide
rod and sapport the hollow shaft. Mr. Wild is alao the pa-
 In a machine with a spider made with radial slota in its arms to recelve the fastening bolts, and provided with radial arms to receive and sapport the drive shaft and
the feell screw, so that the machine can be readlly secur feer screw, so tast the machine can be readily se-
cured to the cyllinder and the operating parts of the mahine connected and held in place. To the legs of che upvertical alots, so that the machine can de readily adjusted higher or lower, as the position of the cylinder may require. The same inventor has likewise patent-
ed an improved machino for cleaning, separating, and grading grain. Several 1 seveses are arranged in the apper
pert of the frame on an inclina, each lower sieve being of port of the frame on an inclina, each lower sieve being of
greater length than the ileve above. An alr chamber io provided for blowing awas the chatf while the grain is each sieve to receive impurities which will not paes through the sieve, and discharge them into a receiver. The arain that pasoes through the loweat sieve falls rrain into a vertical frame which is provided with series of inclined ribs, leaving a greater proximity to to the end of each pair of ribs are euttable spouis for puiding the grain, after it has been thus graded, into separate receivers. The frames carrying the sleves and the oscillated by a pitman connected with an eccentric, apon the power shaft of the machine. This seems to be a very simple and complete device for effecting the
successful separation and grading of grain. Mr. Wild succeessful separation and grading of grain. Mr. Wild
has further patented a grain cleaner, grader, and sepahas further patented a grain cleaner, grader, and sepa-
rator, of entirely different form, consisting of two osciating shoes mounted apon a frame, having a threeconnected with the driving power for the purpose of hrough the hopper in the upper part of the frame falls through a sieve, the chafr being removed by the blowng machine, and then parses on to a serles or frames provided with parallel bars, and so constracted that the cerv, the amiler berne passing throut 10 be a in a eimilur manner lower down. The grain may be ased throagh any numb

## AGRICULTURAL INVENTIONS.

A very simple cutter for severing the bands bound grain has been patented by Mr. W. B. Bowers, of Falls Citr, Neb. The cutter is fustened to
the fingers of the hand with straps, so that in feeding the grain to a thrashing machine, one handiling will suffice for cutting the bands and paseing the bundle to the machine. This device is very sim
found useful in the bandling of grain.

A simple and rapid working reaper and har vester is the sabject of a recent patent is isued to Mr.
Benj. Hebron, of Caseopolis. Mich. This machine is so arranged as to control and direct the graip ar both edge of the ewath wbile beink cut, so that it will fall apo sheaf. It may also readily be adjusted to suit the heigh and varied condtion of the grain.
An improved flexible harrow adapted espe cially for nee on rough ground has been patented by
Mr. J. D. Privett, of Offord. Als. Several hara hold ing the teeth of the harrow, are joinod one to another by allink, secured to the bars by eye bolts. which render the harrow fexibie, हo that it will conform to the uneven
 iving the grain to better advantuge.
A sod cutter mounted on a sulky frame for breaking up prairie or other graes lands has been pa
teuted by Mr. F. A. Blanchard, of Cotile, La. A eeries of revolving cutters are suspended from s frame which in atached to the axle of the snlky, and which cut the
 lever is located within reach of the driver, by means of
which the cutter may be raised when obstacles are en
contered.
seed sower of wheel barrow construction Por sowing all kind of of mall seed, and provided with a
cord dietributer incapabale of being clogzed with dry of Homer, Mich. Among other by Mr. Mason Gmo, this machine is that the seed is corried and distribute so low down that it whill not bo blown away by the e ind
as is freanenty the case where eeeders mounted on

Mr. S. D. B.Kise, of Kingwood, N. J., is the patentee of a new cultivator which is so constracted as Thepriate the depth aild alno to change che posilion of plant as desired. The axle of the cultivator is arched and the guiding handiles extend from and are made faat to which the plows are astened, and to strengxthen ine machine and keep it more under the control of the operato.
An improved machine for preparing the soll for crope of varions kinds has been patented by sists in to pits of Mansiteld. Pa. This machine con croesbar with a roller placed behind each pari of scrapers, for the parpose of smoothing the work done by the latter. 'The machine is constructed in this form with derice is provided for regulating or rows at a time. scrapers shall work, and also jointed arms are hinge on each side of the machine carrying markers at thei ends for marking a row on either side for the guidance Mr. George N. Todd,
. Todu, of Fort Smith, Ark. to.. The cotion is stripped from the plants by two series of cylindircal brashees, which are journaled one
above the other horizontally the frame. The plants pess rendlly between these two sets of brushes, which are located quife fer apert tot front end and converge toward one another at the rear so as to thoroughly pick the cotton from the plaut. The he machine, the whole operation except the propelling

## MIBCELLANEOUS INVENTIONS.

A self-feeding fire grate has been patented by Mr. Samuel Russell, of Apperton Villa, Stainees, Mid the fuel is fed automatically inw the grate as whe

A' convenient case for holding bills, letters has been patented by Mr. H. J. Hofmman. of Nell Ilsilile Wis. The case is constructed with an end piece to
which a cover is hinged, so that, when turned upward. It reats ou the end plece of the casee. holding the papera In a couvenient pusition for ingpection.
A device for holding the free end of a rib bon on the roll on which it is wound has beer patented
by Mr. J. Mellette, of Winamac, Ind. This consisus in a J - shaped wite spring, the ends of the prongs tion of the wire passes over the ribbon and prevenis its becoming anwound from the wooden roll.
A simple and effective mode of fastening the end gute of farm wagons has been patented by Mr Andrew Graham, or Clarion, Iowa. The inventor prothe tallboard near its center. One end of the crossbar or rod is hooked into the body of the wagon, and the
other end engages with a lever which is provided with other end engapes with a lever which is provided with
a trip device for relleving the rod, which enables the and board to be readilly removed.
An ingenious and amusing toy milch cow has been patented by Mesers. W. H. Mante and Robt.
Blim, of Mt. Vernon, ill. There Is a tank for holding the milk inside of the cow extending into the ndder as tached to which are esringe.pomp teats that give firth the milk when manipulated in the ordinary way. A
mod running through the cow to her jaw 18 atiaclied to the pump In such a manner that wheu the milking ope ration if in progress it moves the jaw, giving the ap-
A wire fence in which the tension of the wire to throughont the same. Whetber the ground be
level or otherwise, is the subject of a patent granted to level or otherwise, is the eibject or a patent \&ranted to
Mr. W. C. Gholeon, of La Grange. Ga. The posis which support the wire are provided at their lower ends wiuh while the corner posta are provided, in addition, with braces. The wire are beld to the post by roller brack-
eta, thas permiting the wires to etretch a long distance over the rollerr, whereby the tenifon will be greater and the reisting power of the write increased. These wires
are prevented from spreading apart by croes wise or shonid this not prove sufficlent, wooden stays are sub-

## 3usiutss aud erersonal.

The Charge for Insertion under this head is One Dollar a line for each insertion : about eight woords to a lin Adver tisements must be received at publication offic

Valuable Patent for Sale.-J. B. Beale's patent metho Valuable Patent for Sale.-J. B. Beale's patent method
of cutting and preparing broom-oorn can be purchased
for $\$ 40,000$. See advertisement.
Carbon Plates.-Bowe, 48 R. R. Ave. ;Jersey City, N. J. Foreman Blackemith, Drops, Punches. See adv. p. 269. Fire Brick, Tile, and Clay Retorts, all shapes. Borgn O'Brien, M' ${ }^{\prime}$ rs, 23d St., above Race, Phila.. Pa steam Hammers, Improved Hydraulic Jacks, and Tu Dlamond Engineer, J. Dickınson, 64 Nassau St., N. 50,000 Emerson's Hand Book of Saws. New Edition. Ragle Anvils, 10 cents per pound. Fully warranted. For Pat. Safety Elevators, Hoisting Engines. Friction Gould \& Eberhardt's Machinlsts' Tools. See adv.,p. $\mathbf{3 0 2}$. Cotton Belting, Rubber Belting, Leather Belting, Linen For Heary Punches, etc., see illastrated advertise For thery Panches, en Jones, on page 800 .
Barrel, Key, Hugshead, Stave Mach'y. See adv. p. 802 . For Mill Macb'y \& Mill Furnishlug, see illus. adv. p. 300. See New American File Co.'s Advertistment, p. 808. Mineral Lands Prospected, Arcesian Wells Bored, by Fine Taps and Dies in Cases for Jewelers, Dentists, Wodwork'g Mach's, Rollstone Mach. Co. Adr, p 800 . For best low price Planer and Matcner. and latest mproved Sash, Door. and Blini Machinery, Send for
catalogue to Rowley \& IIermance, Williamsport, Pa. The Porter-Allen High Speed Steam Eugine. SonthSteam Pumps. See adv. Suith, Vaile \& Co., p. 300. Stenographers, type-writers, clerks, and copyists may Stenographers, type-writers, clerks, and copys
be obtained free of charge at the Youn3 Women's Christian Association, 7 East 15th Street. New York.
Ejector Condenser for Steam Engines or Vacuum Pans, Lathes 14 in . swing, with and without back gears and crew. J. Birkenheed, Mansfield, Mass.
Five foot planers, with modern improvements. Geo.
Lincoln \& Co., Phoonix Iron Works, Hartford, Conn. The Best.-The Dueber Watch Case
If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent, 840 . Vartous other orelgn patents may also be obtained. For instractione address Mann of Co., scientir.
Curtis Pressure Regulator ahd Steam Trap. See p.236. The Celebrated Wooton Desk. See adv., page 288. Lightning Screw Plates, Labor-saring Tools, p. 288. Wanted.-Patents or the right to manufacture the
articles on royalty. Give full particulars. Cuts, draw articles on royalty. Give full partloulars. Cute, draw-
ings and apecincoations will be returned. if not in our
line, on request of partles sending same. Lock Box 85 , line, on request on
West Troy, N. $\mathbf{Y}$.
Farley's Directories of the Metal Workers, Hardwar Trade. and Mines or the United States. Price $\approx 8.00$
each. Farley, Paul \& Baker, 580 Market Street, Phile. Correspondence solicited from parties desiring brass or brunse castings. Special facilitiles
work. Lock Box 35 , West Troy. N. $\mathbf{Y}$
C. B. Rogers \& Co., Norwich, Conn.. Wood Working
Muchinery of every kind. See adv. The Sweetland Chuck. See illus. adr., p. 220. Knives for Woodworking Machinery. Book binders, and Kaper Mull. Taylor, Stlles \& Co., Riegelsv!lle, N. J. Improved Skinner Portable Englnes. Erie, Pa. Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y. Steam Pamping Machinery of every descripN. Y. Send for catalogue.

Boller Scale.- Parties having Ane specimens for sale
or loan. address Jas. F. Hotchidss, 84 John Street, N . Y Permanent Exposition.-Inventors' Institute, Coope Union, N.Y.Clty. Every faclity for exhlitition of machin ery, merchandise, and inventions. The expense
-the advantages great. Send for particulars.
Contracts taken to manuf. small goods in sheet or cant brass. stelel, or iron. Estimates glven on recelpt on
model. H. C. Goodrich, 68 to 72 Ogden Place, Chicago.
Nickel Plating.-Sole manufaclurers cast nickel an-
udes, pure nickel salts, polishing compositions, etc. Complete outat for plating, etc. HBanson \& Van Winkle Newark, N. J., and 82 and 98 Liberty St.. New York.
Lists 29,30 \& 81 , describing 4,000 new and 2 d -liand Ma chines, ready for distribution. State fust what machIne
wanted. Forsalth $\&$ Co., Manchester, N. H., $\&$ N. Y. cty "Abbe" Bolt Forging Machines and "Palmer" Powe
Hammers a speciaity. Forsalth \& Co., Manchester.N.H Railway and Machine Shop Equipment. Send for Monthly Machinery List to the George Plage Machinery Company,
${ }_{25 \prime \prime}^{\prime \prime}$ Lathes of the best design. G. A. Ohl \& Co
"How to Keep Bollers Clean." Book se
James F. Hotehkiss, 44 John St., New York.
Engines, 10 to 50 horse power, complete, with govern-
or. $\$ 250$ to 8550 . Satisfaction guaranteed. More that or. $\$ 150$ to 8550 . Satisfaction guaranteed. More than
seven hundred in use. For circular address Heald is seven handred in use. For circular ad
Morris (Drawer 127), Baldwinsille, N. $\mathbf{y}$.
Wanted,-Patented articles or machinery to make
and Introduce. Gaynor \& Fitzgerala, Now Haven. Conn.
Water parified for all purposes, from household sup-
plies to those of larxest otlles, by the improved alters
manufactured by the Newark Filtering Co., 177 Com-
manufactured by the Newark Flltering Co., 177 Com-
merce St.. Newark, N. J.
Latest Improved Diamond Drills. Send for circuiar
O M. C. Bullock Mfg. Co., 80 to 88 Market St., Chicago. LI.
or Power \& Economy, Alcott's Tarhine, Mt.Holly, N. J. Ice Making Machines and Machines for Cooling

Split Pulleys at low prices, and of same strength and
appenranoe as Whole Pulleys. Yocom \& Son's Shafting Works. Drinker St., l'hlladelphia. I'a
Machinery for Light Manufacturing, on hand and Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Supplement Catalogue.-Persons in parsuit of infor mation on uny speolal engineering. mechanical, or scienHAf sublect. can have cataic The SUPPI, KMENT contalins lengthy articles embracing the whole range of engineering, mechanios, and physi-
cal science. Address Munn \& Co . Pablishers, New York. Soupstone Packing, Empire Gum Core, and all kind of Engine Pacilig. Greene, Tweed \& Co., New York.

## raver (Qunins

HINTS TO CORRESPUNDENTS.
No atrention will be paid to commanications unles accomp.
writer.
Names and addre
given to inquirers.
We renew our request that coreopondenta, ia referring
io former answers or articles, will be kind enough to name the date of the paper and the page, or the number of the question.
Correspondents whose inquirles do not appear afte a reasonable time should repeat them. If not then pub lished, they may conct.
Editor declines them.
Persons desiring
Persons desiring special information which is purely should remit from $\$ 1$ to $\$ 5$, according to the subject as we cannol be expected to spend time and 1 obtain such information withoat remuneration Any numbers of the Scientific Amiritican Supplik MENT referred to in these col
office. Price 10 cenis each.
Correspondents sending
for examination, should be careful to distinctly mark label their specimens so as to avoid error in their identification:
(1) J. F. T. writes: Having noticed in 8 recent issue of your valuable paper that a preminm had
been offered by a British society for the cheapest and been offered by a British society for the cheapest and
most durable plant and tree label, please allow me most durable plant and tree label, please alluw me
to state, though not wishing to compete for the prize, to state, though not wishing to compere for the prize,
that a sheet of common sheet zinc, writlen on with a lead pencil, has preserved the letters quite legibly when exposed to the weather for five years. If cut Binghuy spirally round a small tree limb, no injory will result but it will expand as the tree grows, and remain goo for many years. If the name is gone over anew with pencil every two years, sach a label is aimost perpetua and cheap enongh to sult an
(2) D. U. B. asks for a receipt for a pain for brick walls 9 inches thick, that will prevent damp ness. A. A good metallic paint mixed in pare lin
seed oll will protect 2 wall from dampness as well any paint can do it.
(3) J. H. C. asks for a simple process for making yeast for fermenting beers. A. Brewer's yeas is prepared as follows: 72 pounds unkined malt and containing 7 gallons of water of $170^{\circ}$ Fah.; and to this $51 / 2$ gallons water of $200^{\circ}$ are added. The tub is the covered tightly and left quiet. After some time it is cooled rapidly. This ls accomplished by setting in
cans filled with cold water. When the temperature of he mash has reached $70^{\circ}$, the tub is covered again and alowed to stand for some twelve hours longer, when 13 yallons fresh beer yeast are to be stirred in. Altar ate layer formed by the husks of the malt and dip $81 / \mathrm{g}$ gallons of the liquor beneath, then stir the whole up and dip $13 / 4$ gallons from it (hasks and liquor). This is the mother leaven from which veast can he generated all the year round by using it in the way described instead of
the ordinary beer leaven. To the remainder in the tub the ordinary beer leaven. To the remainder in the tub
add 5 gallons wort of $90^{\circ}$, and make use of it within two add 5 gallons wort of $90^{\circ}$, and make use of it within two
hours. The mother yeast also mast be. used the same day for fermenting anotherportion.
(4) E. B. M. asks for a receipt for a good gom for use on tohacco tags and labels. A. Use a paste
made of good rye fiour and glue to which linseed oil, made of good rye fiour and glue to which hinseed on,
varnish, and turpentine have been added in the proporan ounce of each to the pound.
(5) G. O. H. writes: Under the captivating name of "Oriental Barometer," there is sold an artif-
cial Aower, stained with some chemical substance which changes its color wilh the varying hygrometric state of the alr; tarning pink or red with mach moisture, and blue when it is dry. It is a rather pretty toy. What
chemical is used? A. Solution of cobalt chloride is chem
used.
(6) J. K. asks: In rolling any round substance over a level surface, what power caases said
round enbstance to stop? A. The resistance to a rolling ball comes from the friction of the air apon its sur face, the resistance or compression of the air against the front, and the compression of the point of contact
with the plane over which it is rolling, which in fact is no point, but a nearly flat surface, which is smaller as
(7) G. B. B. asks: 1. Can you give me receipt for staining maple gray: It is easy to get gray eneers, but I want to stain the solld wood gray.
Try the following: Expose a quantity of old iron, or Try the following: Expose a quantity of old iron, or,
muriatic acid, dilated in four times its quantity of water,
till they are very thickly covered with rust; then to every 6 pounds add 1 gallon of water in which has been dissolved 9 ounces potassium carbonate; lay the wood In the copper, and cover it with this liquid; let it
boll for two or three hours till well soaked, then to boll for two or three hours till well soaked, then to
every gallon of liquor add a quarter of a pound of green every galion of liquor add a quarter of a pound of areen
copperas (iron sulphate) and keep the whole at a mode rate temperature till the dye has sufficiently penetrated. 2. Can yon tell me what is "linseed oil varnish," re commended in a recent number of your paper for ap-
plying to hard wood floors? $\mathbf{A}$. To make linseed ol piying to hard wood floors? A. To make linseed
varnish: Boil lingeed oil 60 parts, with litharge 2 parts and white vitriol 1 part, each finely
water is evaporated. Then set by.
(8) J. J. W. writes: I am trying to make kaleidoscope, have the glass strips incased, and the colored bits of glass in place, and get the reffection,
but there is too mach of it. I get the center figure, bat this is reflected, and shows on the inside. I want to know how to get one well defined, clear cat figare in the center. I have used glass 10 and 12 inches long, $11 / 3$ $13 /$, and 2 inches wide, all with same result. A. For
kaleidoscopes, use plain thin polished plate, 6 inches or 7 inches long, object end 1 inch to $13 /$ inches wide. Blact the backs with asphaltam varnish. Use two mirrors
only. Makefthe angle exacul to suit the figure requiredonly. Makefthe angle eractly to suit the figure required-
6 sides $80^{\circ}, 8$ sides $45^{\circ}$. Adjust the angle by sight to 6 sides $60^{\circ}, 8$ sides $45^{\circ}$. Adjast the angle by sight to
perfect the thare. Make the hole in the eye end very side and define the outside of the image as circuiar or angular by the rim of the cell. If you use a third mir ror, you will maltiply the number of images.
(9) F. L. M. asks for a receipt for cleaning and repolishing brass band instruments. A. For band If cared for every day, a little whiting or reftied chall apon a piece of chamois is all that is necessary. If they
are neglected and become oxidized, a solution of oxalic are neglected and become oxidizid, a solution of oxalic
acid and water will clear the oxide by rubbing the spot with a cloth moistened with the acid
(10) J. F. asks: How much coal is con sumed in one of our largest steamshipe. (during twent four hours) going from New York to
(11) E. C. S. writes: I am very anxious to know if white sand can be melted when not mixed with other substances. If so, what heal is necessary A. White sand, or silica, will melt at the welding hea of a forge. It is ased y ingought fron. It cannot me melted in a cracible ing wrought iron. It cannot be meited in a crucible like molasses at any heat that can be attained in ordinary fires. The slaga from furnaces ran freely becaase
of their mixture with lime, iron, and other earths from he ores and added flaxes. A crucible made of pure ire clay, such as is nsed in glass houses, would stand he heat required to meit pare silica, bat you would and difmedty in raising suminien in to a mase
(12) J. W. B. asks for a recipe for staining cherry in imitation of old mahogany. A. Digest loghours or more. When ready to use, heat the solution hen dip the wood uncil suitable color is obtained.
(13) E. J. A. asks how to make and use in mall iron castings, cores of an eighth of an inch thickness. A. Your query is not explicit enough to admit
of anything but a general answer. It depends upon the ize of the cores that are an eighth of an inch thick, and also the baik of iron that !s to surround the cores. The malleable iron and braes founders find no difficulty in making small thin cores by stiffening new moulding sand with a very small quantity of four paste or glue
water. Dry the cores in an oven not hot enough to water. Dry the cores in an oven not hot enongh
burn the paste or glue. Some use stale beer instead of he paste or glue. If the core is long and slender, from breaking.
(14) W. R. asks how charcoal is used for casting fine brass and alloys. How is it prepared and to brass casting and similar work? A. Among brasa oondere charcoal is nsed to dost the mouldis for the purpose of making the metal run smooth, pound the charcoal in a mortar to fine dust and put into a little bag of cotion cloth. Shake over the monid and blow the surplus off. For a complete work on brass mould-
ing and casting get "Lark in's Practical Brass and Iron Founder's Gulde.'
(15) D. B. asks: 1. Are hollow brick walls brick building-4 stories-1st floor earth; 2d story, ma chine shop, say 15 tons; 8 d story, stove shop, say
tons; 4 th story, light goods, say 6 tons. A. The tons; 4th story, light goods, say 6 tons. A. The
tremor of factories is more severe upon hollow walls than upon solid walls, unless more than the quantity of material in a solid wall is put into a hollow wall. It is the weight of material in the walls that connteract stance for factories should be thoronghly bonded at stance ior Pactories shoul is the proper diameter and
smail intervals. 2. What is port the above weight? A. This cannot be answere without more data.
(16) J. J. writes: I am engaged in sheep raising, and in marking them with paint or tar the wool is injured. Could you suggest any substance that
woald mark and remain for a year, and then be re moved withont injury to the wool? $\mathbf{A}$. The following

## Bherax <br> Borax Water

Gum arubic.
Bois the borax and shellac in water till they are disBolved, and witndraw from the fire. When the Bolution has become cold. complete 25 ounces with water, and add consistency. When it is to be used with a stencil. it
must be made thicker than when it is applied with
brush. The above gives a black ink, for red ink sab-
stitute Venetian red for lampblack; for blue, ultramastitute Venetian red for lampblack; for blue, ultrama-
rine; and for green, a mirture of nitramarine and rine; and for
(17) T. G. C. asks for a cheap wash that wonld prevent the wet penetrating into brick walls. The bricks are very porons and paint is too expensive.
The houses are always damp after rain. A. Try a thin The houses are always damp after rain. A. Try a thin
wash of Portland or Rosendale cement, with priference for the former. It is to be applied in the same way as ,
(18) A. W. M. asks for a paint or varnish siltable for•ktchen walls, that will wash or can be cieaned in some easy manner. Wials not hard matalise ground in linseed oil.
(19) H. W. B. asks: 1 . If a coil is wrapped around one end of a piece of iron and a cnrrent of electricity passed through it, do not both ends of the iron become magnetic at once; and if we intended using this magnet as a sonrce of power, would we not oblain ron bar instead of only one? A. You wonld secure a great increase of power by the use of both poles. 2 Does the fact of a secondary crrrent being taken for use in any way, waste the primary, i. e., sappuse we have two batteries of equal power and the current from both of which is ran through coils of the same length ouher from which we obtain a secondary carrent) is the primary carrent in any way weakened, or do we obtain the fall force of the primary plus the force of the secondary? $\Delta$. The primary current is weakened by The presence of the secondary wire.
(20) O. C. W asks: How are red, blue, and black

Wlyceri
Dissolve the gum in water, mix it with the glycerine and then triturate it thoroughly in a mortar with the indigo until a thoroughly homogeneous mixture is obtained. For black ink use nigrosin in less quantity
and add dextrine to stiffen the mixture. 2. What will and add dextrine to stiffen the mixture. 2. What wix A. Use soap. 8. What temperature should the rubbe be heated! A. That depends altogether upon the composition of the rubber mass. 4. What kind of oll shoul be uned to oil the typer 4 . The use of oll is not advisa
(21) A. H. asks: How can thick, tough Manila paper be made thoroughly waterproof in the sheet, and yet remain pliable? A. Melt in 10 pints ho gam arabic. In another 80 pints hot water melt ounces of eoap and 4 ponnde alum. Mix both liquid together in one pot. This constitates componnd No. 1 In another pot heat a half a gallon benzol and 1 gallon paraffine, and melt in it 24 ounces resin; let il boil notil
it attains a moderate degree of consistency. To theee materlals, resin, oll, and copal or mastic varnish may in some cases, be added. This is composition No. 2 FIrst dip the article to be waterproofed into the com position No. 1, in a heated state, and then dry ft. Nex apply No. 2 in a cooled state with a brash or in an other convenient manner. Care should be taken
avoid igniting the benzol, as it is highly infammable
(22) E. L. C. writes: 1. In steaming lage beer (Pasteurizing) I find a large number of the bottle break on being immersed in the warm water at $500^{\circ} \mathrm{F}$. Is there any means I can adopt to prevent the leakage? A. In order to preserve the botties, we would suggea that they be universal in cold water and the same
gradually heated until the boiling point is reached, and gradually heated antil the boiling point is reached, an
then slowly cooled. This if repeated bas the effect of annealing the glass. a. Also, if you would please state the usual process of Pasteurization, and the tompera tures used at first and lasi? A. Heat to about $160^{\circ}$ in two periods, say frst to $80^{\circ}$ and then to $160^{\circ}$. The bot ties in which the beer is heated should be very carefall chosen, free from flaws; and as nearly as possible of un Yorm thickness. After the desired temperature ha been attained, it should be very gradually cooled, one of with the steam or hot air pipes used for heating, which
when with the steam or hot air pipes used for heating, which
must be avoided. A wooden framework on the bottom of the trough in which the botlles stand will best secur the resalt. In cooling it will be an advantage if the
(23) E F F. asks for the process of the nanufacture of the gelatine sheets such as are used for coloring the flame of the calchum light. A. Dissolv cold mar be consistent. Pour it hot on a plate of gla (previously warmed with steam and sightly grease fitted in a metallic frame whose edges are jast as hig as the wafer shoould be thick. Lay on the surface second glass plate, also hot and greased, so as to touc every point of the gelatine while resting on the edgee
of the frame. By its pressure the thin cake is rendered uniform. When the glass plates have cooled, the gela tine will be solid and may be removed. It can then be cut into disks by punches, etc. It can of course be co ored by adding suitable coloring material, aniline color for instance.
(24) H. D. H.-If you have a single picce o harden, such as a watch spindle bearing or escape mente, or pieces that a gas jet will heat, you can mix intte soap and lampblack (soft soap if you can get it),
Bind the piece with a turn of binding wire (very fine) to hold by; put a littie of the soap and lampblack apon the piece to protect it from the alr. Heat in a gas jet and plange to good advantage. Springe laid upon a little flame to good advantage. Springs laid upon a little formity of heating, may be beated by an alcohol fame. Lay a thin plece of charcoal on the top of the epring to ven heat. Drop the spring into the watar faty
all parts will anter the water at the eame for
（25）F．T．H．writes：I am making sal－am－ （25）F．T．H．Writes：I am making sal－am－
moniac batteries and have a quantut of ground coal arre to make carbon plates．1．With what shall I mix the carbon？A．Ordinary．gas carbon is generally noed and sawed to saitable sizes，or elise preses together in an
inon mould a mixure of coal dast and powdered blta－ tron monld a mixture of coal dast and powdered bitn－ thus obtalned，which by being soalked in sugar－sirnp． or molaneese and calclined again acquires great compact
neese and high conducting power． 2 ．$h$ hat material is neess and high condacting power．2．What material is
best for the moild？$A$ ．Iron moild．8．Must the mix－ are be carbonized at an intense or at a moderate heat A．Red heat．4．If there is any danger of the carbon sticking to the moald，please let me know how to pre－
vent its doing so．A．They are not apt to stick． B ． Please give me a good recipe for the composition which printers rollers are made．A．Use glue and molasses in proportions varying from 8 poonds of glue
（26）H．M．P．－Your object glass of 31 nches focus will probably need not more than 2 eye－ pieces which should be of the Hayghenlan form，con－ usting of a plano－conver lens for a feld glass，and also plano－conver lens of a lesser diamoter and focal
length for the eye lens．For the beat form the ocal lengit of field lens should be three times the focal length of the eye lens．They should be placed at one－ half the distance of the sum of their focal lengths apart． Yoa can purchase the eyepiecess already made up at any
optical establishment and in Boston al Studder＇s， 181 Deronshire Surreet；ask for microscope eyepieces．An $\triangle$ eyepiece will give yon a power of 12．A B eyeplece 30．If you wish to try higher power．a D will equal 80 ， and still further an E will give a power of about 90 ， which will probably be higher than your object glass will stand，unlese it be an extra fine one in defintion． （27）Scribe．－The finest common black ink prepared according to the old receipis in connection with gum－thus：

## Blue nutgalls，powdered．． <br> Mncilage of gum arabic． <br> Water．．．．．．．． <br> 7 pounds． 1 poand． q．. <br> a few drops．

 ng with a small quantity of the water，and the liquid extract allowed to eettle and cool，it is then mired with of cold water，and the misture acitated with gom water． The quantity of gum used is asually aboot one－birird the weight of the galls employed；the quantity of water bont one gallon to the poand of galls．The ink is ren－ dered darker when trat written with by the addition or small quantity of sal ammoniac，one ounce or so to the gallon．Logwood extract is also sometimes em－ ployed for a similar parpose．For full color，body，andduidity we generally prefer one of the aniline prepara－ Anidty we generally prefer one of the aniline prepara－
tions．In these aniline black in the basis of the color． In preparing the ink the darkest shade of solable ni－ crosine is usaally chosen．It is Arst made into a thick paste，by grinding or triturating it in a mortar with a mall quantity of hot water．This paste is then mired with a suitable quantity of warm water（not too much） and strained through a ailk bag，when it is ready for
use．It has，when reduced with considerable：water，a use．It has，when reduced with considerable，water，a
blaish color；this may be corrected by very sllghtly acidi－ ying it with sulphuric acta and alding a small quai dity of ordinary gal
（28）A．A．L．－To make a fllter with a wine barrel，procure a piece of ine brass wire cloth of a
 partition acrose the barrel Support this wire cloth
with a coarser wire cloth under it and also a light
frame of oak，to reep the wire cloth from eagging． Fill in upon the wire cloth about 8 inches in depth of
clear，sharp sand，then 2 inches of charcoal broken
anely，but no dust．Then on the charcoal 4 inches
of clear，sharp sand．Fill p the barrel with water，and draw from the bottom． （29）W．S．－Watch hands are punched． The die block is divided lengthwise of the hand and held together by a collar and set acrews．Te punch enters Arst，so that the cut does not all take place at
once．The inner perforations are made with a separate
（30）G．A．F．－You cannot heat a building $15 x 15 x 20$ feet high from a ritchen boller at 50 feet dis－
tance．The curculation will be sluggioh or wanting atogether．The plan has been tried for plant rooms at the side of dwellings，smaller than your bailding， honee furnace or a stove in a manll chamber
（31）J．C．W．writes：I have a small quan－ ity of gold which contains a large percentage of cop per．Cold from the copper？A．Treat the alloy with nitric acid；this agent will diseolve out the copper；or else dissolve the entire mass in aqua regia，and precipitate the gold with ferrous sulphate．
（32）C．C．C．asks in regard to the process ongraving on metals，by the ase of acide，with the parts which are not be acted upon protected by war：
1．What metal will work most quickly，that is hard nough，or that can afterward be made hard enough or printing parposes？ $\mathbf{A}$ ．Zinc，in roled plates． 2. pharic scid．8．How mong quickiy：A．Dilute sul－ to a depth of one－dixteenth of an inch？A．Abont half an hour．4．What substance may be used tinstead of wary A．Asphaltum varnish．
（88）W．8．writes：Plesse give me recipe

Ing to be used for steam or water．A．We know o
nothing better than clean kidney tallow，tried out with steam or over a ire．Dip the hemp or dax packing in
the tallow while warm，and draw it through the hand to cear it of excess of tallow
（34）C．H．－Artificial honey consists of sirup or glucose flavored slighty by phosphiten and sometimes a little pure honey is added．In
Callfornia one part of honey is mired with one purt of glacoese．For the comb varions mixtures of waxes ar need．
（35）F．S．asks：What is true magnetic Iron？Is it valuable？Does it indicate the presence of
precions metals？A．Magnetic inon is loadstone or magnetite．It is the moat valuable iron ore that is mined．Its valne depends apon the percentages
（86）D．S．－The simplest way is to stretch atring so as to tonch the style of the san dial at it dige and in line with the north $\begin{aligned} & \text { tar；fix the style par } \\ & \text { and }\end{aligned}$ hlumb with the string with its base level，then drop serve when the ehe string beyond tre style，then ob plumb line；mark the ehadow of the etvle apon the base of the dial．See article in Notse and Queries September 80，1882，No．8，＂How to Construct a Sun
（37）R．P．V．asks：1．How are letters and agures pat on satin or silk with bronse without print ng them？A．Lettors apon satin or silk are printed， ments have been diecole then bronsed．2．What ele hiom，norwegium，thallium，davjium，berylium，nep tonium，ilmenium，and several others．8．Why is it that Haswell＇s＂Melting Points of Metals，＂differs from other works？A．＂Haswell＇s Meiting Points of
Metals，＂is gathered from varions anthors and menters．They seldom agree，from the dimiculty in managing high temperature tests，and uncertainty the value in expanaion in pyrometers．
（38）E．C．L．－Castor oil， 5 parts，thinned oll for bicyclee or any other fine machinery．Good sweet，cold pressed lard oll mired with petroleum the same proportion as above is also excellent．
Minerals，etc．－Specimens have been re－ ceived from the following correspondents，and examined，with the results stated：
L．W．－The sample is a rock containing nodules of Iron pyrites，probably carrying arsenic，and called min oralogically arsenopyrito．－F．C．Y．－The sample sen is quartz rock without any apparent signs of gold or sil－
vasay would show how much，if any，of the ver．An assay would show h．
precions metals it contained．

## COITIUNICATIONS RECEIVED． On Flying Machines．By G．B． On New Use for Gas Mains．By G．A． 8. On Crystal Rock．By W．C．B．

## INDEX OF INVENTIONS

For which Letters Patent of the United statee were Granted

May 1，1883，
AND EACH BEARING THAT DATE
［See note at end of lut about coples of these patents．］



Chamfering machine．T．Tobin．．．．．．．．．．．．．．．．．．．．．
Chinoune，preparation of oxyhydro－methyl，
hopper．See Cotton ohopper．
Churn，H．Kean．．
Churn power．J．M．Furlong．
clasp．See Cornet olasp．
Clothesplns，mechine for maling wire，A．B．Fran
Clover huilers，realeaning attuchment for，M． M ．
Clutch mechan ism，D．B．Hartle
Cock，Rauge．J．Lee．．．．．．．．．．．．
Cock，steam，W．．Middieton
ratus for making，J．C．Grant．
Comb．See Currycomb．
for，C．Killigore plactic matarials，maohine
Collar，horse，s．Gisesnger．
Cops，apparatus for rewinding yarn from broken
or damaged，R．L．Ca
 cotton chopper，J．H．Brown．
Coupling．Soe Oar coupling．Thill coupling
cont Corer handle，reesel，J．Chenmorit．．．．．．．．．．． Critb，ohair，and commode，combined， Cultivator．．．．．．．．．．．．．．
Caltivator，M．L．Uter ．．．．．．．．．．
Caltivator，whel，
W．E．Butler
Caltirator，wheel，W．E．Butler
Curryoomb，A．Hermundson．．．
Carrycomb，J．D．\＆W．C．Law
Catter．See Cligar tip cotter．
Cutter head
Cutter head for borlig meorines，W．Bramwell．
Damper regulator for ateam bollers，V．H．Ha

| D |
| :--- |
| D |
| D |
|  |
|  |

Dental bracket，F．Slater．
Dental drill，‥ T．Starr．．
Detector．See Time deteotor．
Digging machine，T．C．Darby

Door opener，M．L．Powell
Draught equaliser，W．Lew
Draught equaliser，W．
Drill．Bee Dental drill．
Eaves trough hanger，J．P．Ab
Eghelf，H．M．Lindenthal．．．
Electric call，Currier \＆Rloe．．．
 Mleotrle way，Bentley \＆Knight．
Ilectrio way Knlght \＆Bentlet．
Electrio Way，Knight \＆Bentley．
Electrical conductor，TI．B．Reed
Eleotrical purposes，covering wire for，J．J．J．C．．．．
Smith
Smith．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Electrical parpoes．machine tor coverig wis
for，J．J．©．Smith．．．．．．．．．．．．．．．．．．．．．．．．．．．．
mectronse rullers tor imitatig leather．ote
manafacturing，N．L．Cochen ．．．．．．．．．．．

Ele rator．See Graln elevator．Mall elevator．
Emerator．L，Daso．．．．．．．．．．．．．．．．．．．．78，
Enerator platiorme，safety apparatus for．V．W Mason．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Engie．See Gas enkine．Stean engine．
Explosive compounds．manufacture of，
Lxplosive compounds．
Lanfrey．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Fare register and alarm，W．J．Richardson Fratening
Meaker
Fence，J．

 Fibers，etc．，machine for obtainink，
Fie cutting machine，w．MoClellan．
F1ter，J．Howes．．．．．．．．．．．．．．．．B．．．．．
P1rearms，combined stock and case for，J．Jett． Fire escape，W．F．Clerk
Fire escape，A．C．Hitohcock．．．．．．．．．．．．．．．．．．．．．．．．．．
Fire escape，G．Hofmann，Jr．，\＆A．D．Homman Fire escape，G．Kelly．
Frre escap，Lindsey \＆Raleigh
Fre ecape，A．P．Sturterant．
Fre escape，． F ．B．Walbridge．
Mre mask．C．McIntosh
Fish meal，manufacturing．Nitohols \＆Thomson
Flower stand，F．J．Bonett et
Folding box，8．J．Everett．．．
Frame．See Plcture frame．
Friesing machine，F．c．Miller．．．．．．．．．．．．．．．．．．．
Fruit jar cover fastener，w．Cochrane．．．．．．．
Furnace．See Boiler furrace．Boilier or oth
farnace．Ore desulphurising furnace．
urnaoe grate，J．A．Price
Game carrier $A$ ．Whrte．．．．
Gas engine．C．W．Baldwin
J．H．Collins，Jr．，\＆Granger．
Geare，J．H．Caldwell．．．．．lubricator，H．
Gearing lubricator, $\boldsymbol{H}$. winter........................ .198

 12 8 3 5 | 143 |
| :--- |
| 14 |
| 10 |

$\square$ Gemerator．See Steam renerator．
Glans，olinaware etc．，decorating，H．Schuize－
Berge ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Glasware，etching，i．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
 Glassware，ornamenting．H．Schulze－Berge．．．．．．．．276，88
Glove fastening，W．S．Richardson．．．．．．．．．．．．．．．276．74 Glove fastening，W．B．Rchardson．．．．．．．．．．．．．．．．． 27 Glue，colorink，G．J．Lesser．．．．．．．．．．．．．．．．
Glue size，manufacture of，G．J．Lesser．． 276,609
278,008
$\qquad$ Grading machine，H．T．Hays．．．．．．．．．．．．．．．．．．．．
Grain elevator．conveyer．and cleaver，comblined pneumatic．M．Randolph．
Grain scourer，Hanson \＆Lea Grain shovel，M．W．
Grapple，R．L．Betts． Grate，G．B．Mershon ．．．．．．．．．．．．
Grinding mill，G．W．Doolitlle．．．
Gun wiper，extension，J．s．Birch Gun wiper，extension，J．s．Birah Hame fastener．J．R．FYnly
Handle．See Cover handi
Harness pee press，F．M．White ．．．．．．．．．．．．．．．．．．．．．276．96
Harrester，D．R．Brown．．．．．．．．．．．．．．．
Harrester，D．K．Brown．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．276．78
Marvester，J．P．Mann．．．．．．．．．．．．．．．．．278，
Harvester and truck，Comblned．J．F．Btoward．．．．278．64
Harveuter cutter bar，J．E．Lewis．．．．．．．．．．．．．．．．．27688
．278，744
Gump．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 276.581
Harvesting machine，cotton，W．Li．Biack．．．．．．． $78.61{ }^{2}$


 Hay pross，J．Wader．
 Headilight，1000motive．A．Harris．．．．．．．．．．．．．．．．． 276.811
Heating apparatus，eleot rical，Lleberman \＆Bobb． 776.840 Heel lifta，machine for nalling．Q．A．Townes．．．．．276，648
Hinge for aliding and rolling gates，J．s．Wood．．．276，49
Hinge，spring，．B．Clark．．．．．．．．．．．．．．．．．．．．298，2788 Holder．See Car label holder，Pencil or orayon
holder．Prllow sham holder．Roln holder． holder．Plll
Trace holder．
 Hub，vehicle，I．P．Newman．．．．．．．．．．．．．．．．．．．．．．
Indicator．see School indicator．
Indigo，manufacture of metamethyl，C．Rudolph． 27 Indigo，manufacture of metamethyl，C．Rudolph．276，880
Indigo，materikl for the manufacture offmeta－
methyl，C．Rudolph．．．．．．．．．．．．．．．．．．．．．．． 278.880 methyl，C．Rudolph
Inhaler．C．Eillbert．．．．
injector，L．Schatte．．．

 insulating conduotors and a new compound sult－
able to be used for this and other purpoes able to be nsed for this and other parposes，
W．Smith．．．．．．．．．．．．．．．．．．．．．．．．．．． 278,016
viator for telegraph wires，J．s．Lewis．．．．．．．． 27888 Iron See Wagon reat Iron．
Jack．See LIfting jack．Wagon jack．



 Lifting jack，J．O．Joyce ．．．．．．．．．．．．．．．．．．．．．．．．．．．
Light．See Healight．Voltaic aro ligh．
Lock．See Blogcle lock．Door lock．Nut lock．

| －${ }^{\text {dields }}$ |
| :---: |
| Locomotive cab window．J．Shields．．．．．．．．．．．．．． 272 |
| Loonmotive，tramway．W．Wilkins |
|  |
| Loom temple．J．H．Crowley ．．．．．．．．．．．．．．．．．．．．． 2 |

Lubricatirg axies，composition for，H．W．Bed－
dan．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．71 Mat．See Floor mat．Oil press mat．
Measure，nuld，M．Wolf．．．．．．．．．．．．．．．．．．．．．．286，062
 Medicctnal compound，k．B．Lawrence ．．．．．．．．．．．．276．8s
Metal rods，reheating and reducing，H．H．An－ drem．．．．．．．．．．．．．．．
Mik can，D．C．Cripe．278.743
2767580
776.500 ilt
Mirtng four，etc．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 276.006
Moulds and fore for，P．Thorpe ．．．．．． 276,446 Moulds and cores，compound for coating dry
sand，J．．FItchard．．．．．．．．．．．．．．．．．．．．． 276.038 monthis propector．G．Campesi．．．．．．．．．．．．．．．． 276,770
Motion，appratus for transmitting differential rotary，G．F．Clemons．．．．．．．．．．．．．．．．．．．．．．．．．．．． 278
Motive power，hand，W．H．s．Burguyn．．．．．．．．．． 276
Musical instruments，transposing key board for
 Numbering machine，antumatic，C．L．W
 Oll cake trimming machine，J．T．Harbine ．．．．．．． 276,811
Oilcloth，manufacture of，A．F．Buchanan．．．．．．． 266.785 ou from resinous wood，mechod of and apparatus
tor the manufacture of．L．Pradon．．．．．．．．． 2 Oll press mat，Mann \＆Sohumache Opera chair，W．H．H．Knight．．

Optometer，A．A．Trowbrige ．． | Ore desulphurizing farnace，A．T．Schuessier． |
| :--- | :--- | Ore separator．dry．P．W．Reard

Organ，reed．W．E．Letgnton．． Pad．See Insect exterminating pad．
Paddle wheel．feathering．D．J．Blasier．．．．．．．．．．．278，06
Patine


\subsection*{278.879} | 868699 |
| :---: |
| 786,084 | … 276,0888

278，616

| per bag machne, C. F. Annan .................. 288744 st | Steam generator, J. W. Van Dyke................... 276,735 Stocking blanks, cutting, M. Landenberger, Jr.... 276,852 | durextisaments |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| pocketbook, C. De Quillfelat............ 27.961 st | store, J. A. Houston |  |  |
|  |  |  |  |
| (to be used in the manuracture of. Wrigles \&t |  | Engravings mamy hear |  |
|  | stu | as Thursday morring t |  |
|  |  |  |  |
| nuth | Suspender | EL \& ESSER | factories ef-Ancfuoing Sawing, |
| Petroleum, apparatus for vaporizing and burning <br> D. M. Graham $\qquad$ | Tan vat, G. Ruemelin. <br> Te4 or coffee pot, $\mathbf{K}$. Krippendorf. $\qquad$ 276 | New York. |  |
|  | Telephone call, indiyidual, J. A. Lakdn ........... 26,0 |  |  |
| T |  |  |  |
|  | Telephone transmitter; eleetric, J. H. Robertson |  |  |
| 57 | Thil coup hng, J. Groh................. gave..... | $\begin{aligned} & \text { uto tex } \\ & \text { eme } \end{aligned}$ | W.h.Doure.Pry.ant D.t.gyon, sece. |
| des, manufueture of cofled metalli, A. D. |  |  |  |
| T |  | Proposals for ticket punches. |  |
|  |  | 退 |  |
| T |  |  |  |
| ${ }^{10,380} \times 1$ |  |  |  |
| \%76,79 | Tool. combination, Erdman \& Phillips ............ 26.7893 | $\begin{aligned} & \mathrm{re} \\ & \mathrm{ce}, \end{aligned}$ |  |
| 266,42 |  |  |  |
| T |  |  |  |
|  |  |  |  |
|  | Trains and signaling, automatically stopping. | on appllation by letter. to the e Super Money Order System. Post Office Depar |  |
| .. 2776.67 | aratus for stoppling. w. | ton, D. C."" to whom bidders should ad proposals, marked on the envelope, | E. \& F. N. SPON, 44 MURRAY SI', NEW YORK. |
| e, apparatus for thaw- |  |  |  |
| ing glint, Murray $\&$ Gilbs ...............76,862, 276,863 |  |  |  |
| wer. See Ch |  |  |  |
| Hay press. Printios press. Tobaeco press. | T |  |  |
| nttine endless paper, machine for, E. A badio.. 276,547 |  |  |  |
| Crow | Val |  |  |
| Inting press folder, C. Kahler .................. 266,922 |  | - 1 Pumping Engine | \% |
| ${ }_{276.618}^{27.79}$ | Vehicle drop perch. J. Herbrand. |  |  |
|  |  |  |  |
|  |  |  |  |
| .561 | Vehicle tops, hood for, $\mathbf{C}$. T. Stireve................ 27 | 为 |  |
|  |  |  |  |
|  |  | Cl CAMMEYER d SAYER, |  |
| ${ }_{276}^{276,657}$ |  |  |  |
| 276 |  |  |  |
|  |  |  | S |
| ${ }_{276,878}^{27690}$ |  |  |  |
|  | w |  | F |
| Railway rall joint, T. A. Eno................266,392 |  |  |  |
|  | Warping machine R I Carr . Mack. ................... 226,553 |  |  |
|  |  |  |  |
|  | ${ }_{\text {W }}$ |  |  |
|  | Win | ${ }^{\text {end }}$ |  |
|  |  |  |  |
| ay | w |  |  |
| s |  | paper, in stifif moroceco eovers, with cardinal edges. | PATENT FOR SALE,-Pressure Regulator for Gas, |
|  | Windmill and derrick, 1. W. Lamb................. 276,831 Window; incidence, $\mathbf{F}$. Bredehorst.......... 276,61 |  |  |
| Refrigerator, marine, S. W. Johnson............. 276,544 |  |  | GEO. W. GLBEERT, 170 Broadway. New York, Room 3. |
| Repister. See Fare register. Regulator. See Damper regulator. | Wi |  |  |
| Rein holder. Baldivin \& Migasi.................... 276,655 | Swan..................................... 270, | I |  |
| ng. Seo Key ring, |  |  |  |
| Her. | DESIGN |  |  |
|  | Card grindini machine, B. s. Roy.................. 13.888 |  | FIRE - AND- VERMINi- |
| fing 1 | Carpet. H. Horan.......................13,880 to 13.13 | PENCE |  |
| ing. or claritying, D. MacEachran.............. 276848 |  |  |  |
|  |  |  | U. S. MINERAL WOOL CO., 22 Courtlaa |
| 276,887 | Neckitie fastener, P. M, Melick. ............... ${ }^{18}$ |  |  |
| setting, swaging, and sharpening machine, $J$. C. Stevens. | to 13 | IENTIFIC AMOERICAN SUPPLEMENT, NO. $\mathbf{3 6 0}$. | Ht Douglas Galton before the Congress of the |
|  |  |  |  |
|  | E |  |  |
| 266,819 | Aceordions, F. O. Weiduch,........................ 10,234 |  |  |
|  |  | The Brayton Petroleum Engine Co. |  |
| eens, maching for threading the points of lia, |  | 50 Federal St., |  |
|  | Cure for the oplum bubit, Erwin, Gayden \& |  |  |
| lock | Fencing, barbed wire, Thorn Wire Hedge Com- |  |  |
| Separator. see ore separator. | pany........................................ 10, |  |  |
|  | Fertilizers, Patapsco Guano Company - .i.anio, $10,30,11$ |  |  |
| 276.812 |  |  |  |
| machine, Wuterich \& Sheffield... ......... 276,65s | Orse powers, M. Harder . |  |  |
|  |  |  |  |
| 276 | Nets and lace goods, A. G. Jennings \& Sons., 10,239, 10 |  |  |
| Fing machine trimming attachment, G. M. Mor- <br> ris | Jennings \& Sons. $\qquad$ 10,241 |  |  |
| Shaft easing, W. F. Hutchinson, ................ 2876.589 |  |  |  |
| ars for deseaming cloth and for other pur- <br> poses, F. Basch $\qquad$ | Oil. refined petroleum, Chester Oll Company ....... 1 Paints and oils, Mound Clty Paint and Color Com- |  |  |
| ,et metal shearing machine, G. H. Perkins..... 270 | pany .a..................................10.243 |  |  |
|  |  |  |  |
|  | Silk goods, dress, Shaen \& Fithian................. 10.247 Steam boile seale solvents, H. J. Mark........ 10.21 |  |  |
|  | , |  |  |
| Sicmal. See Car sigmal. Rail way signal. | venting therustation in, Han |  |  |
|  |  |  |  |
| ${ }^{276.933}$ | Steam engines, Straight Line Engine Company.... 10.28 |  |  |
| ${ }_{276,716}^{27,664}$ | Thrashers and separators, M. Harder................. 10,226 | $\bigcirc \otimes \cdots \cdots$ | Munn \& Co. also attend to the preparation of Caveats, |
|  |  |  |  |
| hook, J. Gilbons.................. .......... 276,968 | Whiskr, F. E. Kelly.......... ................... 10,24 |  |  |
| manufacture of bicarbonate of, E. Carey | Whisky, Meyer Brothers \& Co.....................10,245 |  |  |
|  |  |  | aphlet sent free of charge, on application, con- |
| Splike extractor, A. P. Prout............... ....... 276.877 | sny patent in the foregoing list. also or any patent |  |  |
| spring, See Bed spring. Vehicle spring. |  |  |  |
|  | 9 of the patent desired, and remit to Munn \& $\mathrm{C}_{0}$, |  | signments, Rejected Cases, Hints on the sale of Pa |
| 10.321 | 21 Broadway, New York. We also furnish copies of patents |  |  |
| Hall. .........................276,882 |  |  | appis of Foreis |
| er stand. Ralway switch stand. 2 |  |  | hod of securin the world. |
| $8 \text { to }$ |  |  | MUNN \& CO., Solicitors or Patents, |
|  | 7 going list. at a cost of $\$ 0$ each. For full instructons |  |  |
|  |  |  |  |


Mechanical Engineering Electrical Engineering Civil Engineering and Architecture ENTRANCE EXAMINATIONS BEGIN AT 9
A.M. JUNE 18 and SEPT. 18, $18 S 3$.

For the UNTVERSTY REGISTRR, containing full state-
ments reardig requirements for admission course or
study,
 Riobivinc

Por STREP and FLAT ROOFS of all kinds; can be applied by ordinary workmen at one
THIRD the cost of TIN.
and our
Send for a sample and our circclar which pives full directions how
to apply your own roof; also how to repair leaky roots of all kinds. W. Address, STEWART,
74 Cortlandt St., New York 50 All New Enameled Gold and Floral Chromo Cards
 STEL STAPS

 Habits easily cured with my DOUBLE
REMLORIDE OF GOLD
REMEDIES. 5,000 cures. Bonks FRER. REMEDIES. 5,000 cures. Bonks FREE.
EESLIE E. KEELE Y. M. D.,
Dargeon C. \& A. Railroad.
AGENTS


## MANHOOD!



## KNOW THYSELF.

A Book for Every mian
Young, Middle-Aged, and old.



 And





## LEWIS' COMBINATION FORCE PUMP.

 The Lewis Patent Spray Attachment. DONT CAIL TO READ THIS SPLEENDID OFEER. stuil send ample Pump, expreas pald, tony express



ROCK BREAKERS AND ORE CRUSHERS.



## ICE MAKING MACHINES,

And Machines for Cooling Breweries, Pork Packing Estab lishments, Cold Storage Warehouses, Hospitals, etc. PICTET ARTIFICIAL ICE CO. (Limited) P. O. Box 3083.

142 Greenwich St., New York City, N. Y
 DUCOS CONTINENTAL WORKS, BROOKLYN, N. Y.



NEW YORK BELTING AND PACKING COMP'Y.
 Emina



HENDERSON'S SPECIAL REFRACTORY COMPOUNDS.




## \section*{CHASE'S IMPROVED} MIQUID GIUTE, For Cementing Wool, Glamy Jowolry, Grockery. Fripitur


 HOLWAY, WRIGHT \& RICH, Sole Agents, 135 RosToNy,


PEACH CIDER.

 L. P. COBLENTE, P CARLETON'S TREASCRY OF ENOWIEDGE
 RUPTURE Hod Tito

$\$ 66$ a moek inyour own town




ROOT'S NEW IRON BLOWEA,


IRON REVOLVERS, PERFECTLY BALANCED, Has Fower Parts than any other Blower.
F. H. \&F. M. ROOTS, Manufacturers,
 OA. BEGB SEND FOR PRICED CATA



## ARTESIAN WEL

 THE SEIBERT CYLINDER OIL CUP CO.


THE SEIBERT CYLINDER OIL CUP CO.,
 Valuable Manufacturing Property

AT AUCTION
If not sold privately, the undersigned will, on Sth of June, 1883 , sell at auction, at Bngg's Hotel,
Utica, N. Y. at 2 P.M. the property formerly be longing to the Paris Furuace Company, located at
This property consists of two separate mills or shops, one with steam, and each with good water Altached to the works are shops, offices, residence, and twenty-four acres of land. They are on the line of the D., L. \& W. R. R.,
ten miles from Utica. Were formerly used for the mariufacture of hoes, forks, seythes, etc., but light. Coal and labor sccured purposest raxes. The owners will let the property go at a great
sacrifice, and to any one desirous of engaging in manufacturing no better location can be found. If not sold as an entirety, the manufacturing
establishments will be offered separately. establishments will be offered separately.
Terms, one-third cash; balance on bond and Tortgage, at 5 per cent., if desired.
Fur particulars and description, address
H. C. SHOLES, Att'y at Law Clayville, N. Y.


TINTTMETEAS.
 10 Barclay St., N. Y. City.


FOR SALE OR RENT. To manufacturers: I have one of the finest manufac-
tories in the West with a capacity of toporo square feet
of floor space. equipped with gas, hydrant water. 100




Wanted, a First-Class Superintendent Western Foundry and Machine Shop,
 petent to take cchare of the entire mand who is com
partment, steuds employment guaranteed. Must dive


## Sduertisments.

 Inside Page, ench insertion ... $\mathbf{7 5}$ cents n lineBack Paze, each insertion $-\mathbf{8 1 . 0 0}$ a line. Back Paue, ench insent eight words to a lina.) Engrapings may headid avorardisements.at the same rate per line, by measurement, as the hetter press. Adver.



HENRY CAREY BAIRD \& CO.,
Industrial Publishers, Booksellers, and Importers,
810 Walnut St., Philadelphin.
Our stock comprises the Hiterature of every branch
of selence appludro the arts. Catalogues rree to any
address in the world.
Books on Steam and the Steam Engine. just published
A Cataloguu of Books on Steam and the Steam Engine,





A GRAND CHANCE MAKE MONET: Write to J. B. BEA LE, of Rush Centre, Kinnsas,



The " MONITOR."


## 


 EJECTORS

 end for eatalogue. 92 \& 94 Liberty St., New York

## H.W.JOHIS ascessus

## ASBESTOS ROPE PACKING, ASBESTOS WICK PACKING, ASBESTOS FIAT PAGKING,

 ASBESTOS SHEATHINGS,ASBESTOS BUIL.DING FELT
made of strictly pure Asbestos
H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York,
sole Manufacturers of H.W. Jobns' Genulne



LITTLE WONDER.





[^1]

79 KILBY SI BOSTON MASS
ONE THOUSAND TONS
METALLIC SHINGLES

ANGLO-AMERICAN ROOFING CO.
And 221 Dudifey RTREA, Wolverhampton, Eng.



 NUT TAPPING
DURRELL'S PATENT.
 Capacity of 7 g Splaleses, 8,000 per Acknowledged do be an indispense
able tool Mantractured by
Mas. Howard Bredos.,
 HARRIS-CORLINS ENGINE
EVAPORATING FRUIT


## SPEAKING TELEPHONES.












For Family, Sewing Machnes. Dental. Jewelers',
 In writing for catalogue, give street and number.




Best Boiler and Pipe Covering Made!




Pyrometers. For showing heat of




 Lathes, Planers, Drills, Shapers, ete.

##  <br> FRICTION CLUTCH.

A. \& F. BROWN, 43 Park Place, New York

## 

stabl'd EACLE ANVILS. 1843.

## KORTING UNIVERSAL

## double tube. INJECTOR

Hel (aminee for BOILER FEEDING.
Operated by one hande.
WLL LIFT HOT WATER
HTO
NO ADJUSTMENT FOR VARYING STEAM PRESSURE. HFT WATER 25 FEET. SEND FOR DEECRIPTTNE CIIC
OFFICES AND W AREROOMS:
 HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
W. b. franklin,V. Pres't. J. M. ALLLEN, Pres't. J. B. PIERCE, Sec'y

## PAYNE'S AUTOMATIC ENGINES. <br> 

VOLNEY W. MASON \& CO., FRICTION PULLEYS, CLUTCHES, and ELEVATORS, rovidence, r. I


Steel Castings



## (G) Coxnknork

FOR 1883.
The Most Popular Scientific Paper in the World. Only 83.20 a Year, including postage. Weekly. 52 Numbers a Year.
This widely circulated and splendidy Mlustrated
paper is published weekly. Every number contains sixpaper is pubished weeklis. Every number contains sir-
teen pages of useful information, and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the scinstific
American a popular resume of the best scientific information of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in Terms of Subscription.-One copy of the SciesTIFIC American will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States cenada, on receipt of three dollars and twenty
cents by the publishers; six months, \$1.60; three
months, \$1.00. One copy of the Scientifio Ambrican and one copy for Sciestipio Amerioan Supplement will be sent for one year, postage preaiden
United States or Canada, on receipt of seven dollars by The publishers.
The safest way to remit is by Postal Order, Draft, or xxpress. Money carefully placed inside of envelopes,
seeurely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

261 Broadway, New York.

## PRINTING INKS.




[^0]:    - The Mechanical Forld, Londou,

[^1]:    
    

