

A WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE. MECHANICS. CHEMISTRY AND MANUFACTURES.

1. Eighteenth street crossing.-2. Hansom cab system. - 3. Fireplace in ladies' waiting reom,-4. The station.-5. Baggage department.-6. Grand stairway.-7. Car honse.-8. Main waiting room. THE BROAD STREET PASSENGER STATION OF THE PENNSYLVANIA RAILROAD COMPANY AT PHILADELPHIA,

sirinutiit gmmerian.

H:BTABLIBHED 1845.

MUNN \& CO., Editors and Proprietors. pUBLISHED WEEKLY AT

No. 261 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

THEMS FOR THE SCIENTIPIC AMERICAN.
One copy, one year portage inoluded....
One copy, six months postage included
Clabs.-One extra copy of The Scientific am erican will be supplie sratis for every cuil or ive subscribers at 83. 2 each : adaitional copies came proportionate rate. Postage prepaid.

MUNN \& CO. 281 Broadma
The scientife American Supplement
is a distinct paper from the Scientiric andrican. The supplement with Scientific american. Terms of subectiption for Supplement, 85.00 a year, postage paid, to subscribers. Single coples, 10 cents. Sold by all news dealers throughout the country
 will be sent for one year postage free. on recelpt ot
papers to one address or different addresses as desired. The sufest way to remit is by draft, postal order. or rexistered letter.

Selentife American Export Edition.

The Scikntific A Mkrican Rxport Edition is a larke and splendid peri-
odical. Issued once a month. Each number ocntains about ine hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly isanes of the ScikNTiPic
Amkrican, with its splendid engravings and valuable information: (2.) Commercial, trade, and mannfacturing announcements of leading houses.
Terma for Export Edition, 85.00 a year, sent prepald to any part of the Terms for Export Edition, $\$ 6.00$ a ye yer, sent prepald to any part of the
world. Single coples 50 cents. world. Single coples 50 cents. Mar Marufacturers and others who desire to socure forelgn trade may have larke. and handsomely dis,
nonncements pubilished in this edition at a very moderate cust. The Scirs Tiric AM Kilitan Mxnort Edition hus a lafke guaranteed circu-
Intlon In all commercial places throughout the world. Addrese MUNN Intlon in all commercial places throughout the world. Address MUNN \&
CO., 281 Broadway, corner of Warren street, New York.

NEW YORK, SATCRDAY, MAY 12, 1883.

TABLE OF CONTENTY OF

the scientific aicgrican sopplemient

INO. 384,
For the Week ending May 12, 1883.
Price $\mathbf{1 0}$ cents. For sale by all newsdealers.

1. ENGINRERING.-Locomotive for 8t. Gothard Rallwas.-Several ngures............................

2. ARCHITECTURE.-Dwelling Houses.-Hints on building. By
WILLIAN HENNAN.-Considerations necessary in order to have WILLIAM HENAAN.-Considerations necessary in order to have
thoroughy sweet homes.-Experiment illustrating the necessity of damp coursees.-Howto to make dry walls and roofs.- Methods of heating.- Artiscial llightIng.- Refue
House at Heaton.-Illustration... House at Heaton.-Illustration......
A Mansard Roof Dwelling. -2 Higures
I. ELECTRICITY.-The History of the Electric Telegraph.-Documents relating to the magnetic telegraph.-Apparatus of Comus Lesage. Lemond, Reveront. Saint Cyr, and others.-- Sevperal figures 6125 Electical Transmission and Storage--By Dr. C. Wm. Sirmens.. 6
medicine and hygiene.-Malaria. By Dr. James saligII. Medicine and hygiene.-Malaria. By Dr. James salis-
buity.-VII. Report on the cause of ague.- Studies of ague plants BURY.-VII. Report on the cause of ague.-Studies of ague plants
in their natural and unnatural habitats.- List of objects found in in their natural and unnatural habitats.-List of objects found in
the Croton water.-Synopsis of the familles of ague planta.several itigures.
Several ingar
Ichthyol..
Autopsy Table.......... Agure
The Exxciting Pro
Fiaria Disease..... By J. TAYI.OR. -1 tigur
. Thelnology.-On the Preparation of Geiatine Plates. by e. Howard Farmir.
Pictures on Glase.
Vi. natural history.-Survey of the Black Canon............... 6 III. AGRICULTURE.-The Spectral Masdevalla.-Illuatration.....

THE FORCE OF THE WIND.

The recent cyclones which have swept over some of our Western States forcibly call to mind how meager our knowledge of them is, and also hint the importance of systematically studying their origin, direction, and effect. The force exerted by them, as a factor entering into the calculations of the architect and engineer, should make an intimate acquaintance with the laws governing them imperative. We are fairly familiar with their form and reasonably certain of the causes which create them, but of the other and to us infinitely more important part of the question-the pressurewe are lamentably ignorant. Whether we will ever be able te retard their progress, diminish their power, or successfully divert them from objects which we do not wish endangered,
are elements of the problem that can only be discovered by methodical observation covering a wide territory, a nd taking into consideration the topographical and atmospherical influences tending to their creation and continued existence
There are but two plans for measuring the pressure of high winds: one by the aid of instruments, and the other by calculating the force required to overturn, or demotish, obstacles which have stood in their path. The first plan is only of little practical value, since the best anemometers are either destroyed, or rendered inoperative, before registering the pressures we are most interested in obtaining. The perfect anemometer has yet to be constructed, and it matters not whether it is designed to give the velocity or pressure of the wind, so long as it is accurate and so sensitive and quick respondiug that it will register what we call gusts of wind. It should also unerringly follow all changes of direction in the wind, and, if possible, measure the upward or lifting power when this case arises.
It is a simple matter to estimate the force expended after body has been overturned, but when costly bridges are the objects operated upon, the experiment is anything but economical. This pian will only give us the force necessary to do the work, but the amount in excess of this we can only guess at. To illustiate this: A locomotive was overturned in 1871, the calculated maximum force required to do this being 93 pounds to the square foot; the wind exerted a force greater than this, but how much cannot be found. The fact that a storm passes between two points at a rate that will produce a certain pressure to the square foot is of no assistance, since it is not the average but the maximum pressure we seek after.
That the whole question of wind pressure is shrouded in darkness is shown by the difference in practice among the leading enginecrs of this country, and also among those of other countries, and the allowances made for wind pressure, whether 20,30 , or 50 pounds to the foot, are the results of individual study, not of combined research.

THE COMETS OF 1883.
This has been, thus far, an unsatisfactory year for the advent of comets, although one-third of its course is completed. It is not accoraing to the law of averages, that after the grand comet of 1882 another comet of similar dimensions should speedily follow. The great comets of a century may
be counted on the fingers. Such are those of 1812,1843 , 1858, 1861, 1880, and 1882. It is altogether probable that the like may not be seen again before the close of the presen century, unless the comet of 1812 makes its predicted re turn.
Every year has its cometic bistory, and the portion of 1883 that has already elapsed is not exceptional in this respect. Early in January reports came from Prnama and from offlcers of the steamship City of Savannah of a comet visible southeast of Orion, with its tail pointing toward that constellation. This proved to be the shadowy form of the great comet of 1882 , dimly visible as on swift pinions it winged its way to parts unknown. Observers were deceived by the change in the direction of the tail, which was only apparent, being due to the change in the position of the earth, and in be altitude of the sun.
On the 21st of January the astronomers at the Mexican Observatory of Puebla announced the discovery of a comet
near the planet Jupiter. They were not very well booked up in the positions of the nebulæ, for the newly discovered comet proved to be the well known Crab nebula, situated near the star Zeta in the constellation Taurus. In a small telescope it appears as a nebulous light of oval form, but in Lord Rosse's huge reflector at Parsonstown, Ireland, it takes on the form of a densely crowded cluster, with claw-like branches streaming from the oval boundary, giving it an appearance resembling the animal from which it derives its name. This nebula was so near Jupiter during the winter that planet and nebula were seen in the same field in the finder of the telescope.
The first genuine comet of the year took its place on cometic records on the 23d of February. It is not of much account as to size, but lays claim to distinction from the fact that it was discovered almost simultaneously by two
observers, Professor Brooks, of the Phelps Observatory, and observers, Professor Brooks, of the Phelps Observatory, and Professor Swift, of the Rochester Observatory. Professor Swift discovered the comet at 7 o'clock in the evening, and, as soon as possible, telegraphed the event to several ather astronomers and to Professor Pickering, of Harvard Uni versity, to be cabled to Europe.
On his return to the observatory he found a telegram from Professor Brooks announcing the discovery of the same comet at a quarter before 7 o'clock. The comet when found was in the constellation Pegasus, near Beta Pegasi, and was a bright and beautiful telescopic object. Its faint tail was
half a degree long, and it was moving slowly eastward. Technically it receives the name of Comet $a 1883$, but out of compliment to the two discoverers it is also called the Brooks-Swift comet. On the evening of the 1st of March ite spectrum was examined at Lord Crawford's Observatory, Dun Echt. Scotland, and found to be fairly bright, and to consist of the usual three bands. Its ephemeris is given in the Science Observer to the 23d of May, but as its light is now less than one-twentieth of the light at discovery, and it is traveling rapidly south, its visit to our domain is virtually ended.
Although there is great uncertainty in regard to the number and size of the comets that will suddenly look down upon us from celestial heights during the remainder of the year, there is reason to expect the return of two comets, known as periodical comets or comets of a short period. One of them is D'Arrest's Comet, discovered by Professor D'Arrest on the 27th of June, 1851, having a period of six and a half years. It was last seen in 1877, and is expected to reappear in October of the present year. It was announced on the 4th of April that D'Arrest's comet had been picked up by Dr. Hartwig, of the Strassburg Observatory. The supposed comet proved to be a new nebula.
The other expected comet is known as Tempel's Comet II., and has a period of five and a quarter years. It was discovered on the 3d of July, 1873, and observed again in the autumn of 1878. It will be due in November of the present year.
There is a possibility that the wonderful comet of 1812 may make its reappearance before the year closes. Encke computed for this comet a period of about seventy years. If his computation be correct, it may suddenly flame forth in the heavens at any moment. A more rigorous investigation of the comet's path has recently been completed by MM. Schulhof and Bossert, that gives a period of about seventythree years. They have fixed upon the 3 d of September, 1884, for the next peribelion passage. But comets, with their perturbations, retardations, and accelerations, are the most unreliable members of the system. It is not impossible that in spite of the wise culculations of the mathematicians the comet of 1812 may steal a march upon us before the present year closes, looming unexpectedly from the star depths, weeping the sky with its tail, millions of miles long, illumining the sky with its brilliant nucleus, and rushing toward the sun with an awe-inspiring and inconceivable velocity. If the celestial visitor appear this year or the next, it will not only delight the eye by the brilliant spectacle it will present, but it will score a victory for astronomers, who have tracked the lonely traveler on its viewless path, mastered the laws that rule its erratic course, and successfully predicted its safe return to the clime of the sun.

the decay of building stones.

The practical scientific study of building stones, their comparative merits, and their durability when subjected to peculiar local or atmospheric influences, has yet to be made. The failure of some stones to resist fire, discolorations, and the disintegrating effects of the emanations from manufacuring centers has resulted in their decreased use and the substitution of brick. On the 30th ult., Dr. A. A. Julien, of Columbia College, read the second part of a paper on the Decay of Building Stones. before the New York Academy of Science. His remarks were based on observaions made in this city and adjacent places.
The principle that stones are more lasting when laid on bed is clearly demonstrated in the case of all the building tones. After a structure has been erectedra few years, there is no difficulty in dividing the stones laid on bed from those laid on edge, as the laminations in the latter become disinctly marked; and in some kinds this can be discovered mmediately after completion, as the more porous layers dry irst, thereby giving the stone a striped appearance.
In brownstone a deep decomposition was noted even when laid on bed; when exposed to the heat of the sun, the change is more rapid. The attack of the destroying agents is avored by imperfect jointing, which opens a back entrance. The discoloration in Nova Scotia sandstone might be prevented if the surfaces were vertical and placed out of reacb f dripping. It is too soft for lower portions of buildings, and receives and retains the street dust. Ohio sandstone esists our climate well, and when used in Western cities is discolored but not disintegrated. There are but few limestones in the city, and the decay of Westminster Abbey, London, should warn us of the danger of using fine grained limestone until we are satisfled of its durability in this climate. The decay of marble is first shown by its becoming pitted; those set on edge show the more rapid decay. Granite shows pitting, the hornblende being first attacked. The south and west sides of the Tombs show decar, while the other sides are intact. The sides affected are exposed in he sud's rays.
Dr. Julien came to the following conclusions in regard to the life of stones, defining life as the period during which the stone presented a decent appearance. Coarse brown. stone, best used out of the sun, from five to fifteen years. Laminated fine brownstone, from twenty five to fifty years. Compact fine brownstone, from one to two centuries. Nova Scotia stone will probably last from tifty to one hundred cars. Obio sandstone, the best of the sandstones, one hundred years. Caen stone, from thirty-five to forty years. Coarse dolomite marble, forty years; fine marble, sixty years; pure calcarcous marble, from fifty to one hundred
years. Granite, from seventy-five to two hundred years, ac cording to variety.
Bluestone is as yet untried, but will prove a grod building material. Some of the best building stones in this country have not yet been brought to this city.
Some of the causes that produce decay in stones are,
first, solutions and hydrations of the first, solutions and hydrations of the stone and the heat of the sun.

false worig.

False works may be deflined as those works which are necessary, as aids, in building permanent structures, and a knowledge of the principles underlying their construction is essential to success. The step ladder which enables a man to place a nail in a wall ten feet from the ground is as much a false work as the scaffolding on a building Both are only temporary. and after having lent their assist ance toward accomplishing certain objects, are removed. There are three main considerations that should compel close attention and careful study: being, as the name implies, false works, they should be built upon as economical a plan as possible; the system, or plan, should be simple in all its detals, easy of erection and easy of demolition; and, Anally, they should possess strength sufficient for any load they may be called upon to bear. The conditions are so varying, every change in the plan of the structure demanding an alteration in the false work, that no fixed rules can be laid down. Almost every builder bas methods of his own little secrets of his trade learned by years of experieuce But in scaffolding for large buildings, while the question of safety should never be lost sight of, the timbers ought to be so used as to permit of their being sold after the work slail have been completed. When allowable, they should be kept in marketable lengths and as free from disfiguration as is consistent with the work in hand. Timber of straight grain, clear, and of good kind, is cheaper in the end than that not having these qualities, although the first cost may be more The architect when computing his strains figures upon the strength of the best timber, hut the builder in his scaffolding is sometimes forced to use timber that is imperfect, and it is then that his past practice comes to his aid. The quality of the material changes the whole aspect of the affair, and its successful use, whether good or bad, can only be learned by actual handling.
One of the most important divisions of false works is that in bridge erection, and it is here that peculiarities of education are best illustrated. A long span bridge over a
deep ravine or river requires an elaborate system of false works, and a new factor in the problem now comes forward. In many locations it is necessary to so proportion them that they will resist wind pressure and be stable in a gale.
It is not every engineer who can design a first-class bridge, and then go and erect it in unfavorable situations. Every year the designer and erecter are occupying more widely divergent and independent stations, similar to the architect and builder. As a whole, the science of false works, which are used to-day and destroyed to-morrow, is becoming one of great importance, increasing in the same ratio as the magnitude of the works, and it is becoming a distinct profession, demanding speciulists to master its ever-varying conditions.

THE LOAD OF gEAFTING

Shafting, pulleys, and hangers are necessary intermediates between the motor and the moved. On their integrity de pends the very existence of establishments driven by steam or water power, and the care in calculation and attention in
making and placing them is properly fully as great and exactive as in the build and choice of tools and machinery that make the ultimate product. The shafting must be strong enough to sustain not only the weight of pulleys, but to resist the strain of belts without springing, and also to sustain the weight between supports placed at considerable distances on a main line ten or twelve feet. If the shaft springs in use, the boxes soon wear out and the journals cut, and the fric tion is excessive. If additional bearings are placed, it is at
the expense of additional friction. The elements of size of the expense of additional friction. The elements of size of
shafting and distance between bearings are parts of the problem of a layout of the shafting for an establishment that do not appear to receive as much attention as their importance deserves. The principal object of the millwright is to have his shafting stiff enough to resist all the strain and pul! to which it may be subjected, and have plenty of material and weight over and beyond that limit. But all the weight, necessary and unnecessary, must be kept in motion by the prime mover at as great an expense in proportion to the energy exerted as the producing machinery.
The revelations of the dynamometer and the steam engine indicator are astonishing in their recorded results of tests made with "all machinery on" and "all machinery off." In one establishment, employing steam to the amount of 220 horse power, the disgusted proprietor declared, when the results of an examination were given him, that be "was
paying more for turning shafting and running belts than for producing work." The statemient was somewhat exagger ated, but a very large proportion of the force of the prime mover is expended in the power used in running the interme diates of slafting, pulleys, and belts.
Once this proportion was much greater than now. In the memory of many mechanics, square shafting was universally used, making an addition in weight of nearly one-tbird without corresponding addition of strength ; for the resist-
scarcely greater than that of the round bar of the same diameter.

The general introduction of round, turned bars was a great relief to this load of unnecessary iron; and the tendency of improvement has moved also in the direction of lightening the weight of pulleys, and balancing them. Our cast iron pulleys are much lighter than formerly, and latterly wrought iron pulleys have been introduced, having, in addition to the advantages of being already balanced and being stronger than cast pulleys, that of being very much lighter. Wooden pulleys of very neat construction have been placed on the market, and paper has also been pressed into service (and sape) as pulleys.
Perhaps these improvements in pulleys have reached their climax ; but there may be room for improvement in shafting. It is doubtful if the entire strength of the diameter of a two inch solid shaft is ever required where a shaft of that size is placed. Probably the trial strength of the shaft, in support of weight and resistance to the pull of belts, would not be practically diminished if the shaft was cored by the removal of the central diameter of one inch. This would eave the walls of the shaft half an inch thick, and would educe the weight of a line of one hundred feet from 1,060 lbs. to 795 lbs . If still greater strength was required, the diameter of the shaft might be increased to two and a quarter inches, and be cored one and a quarter inches, leaving half inch walls, and the two and a quarter inch shaft hollow, would then weigh less than the two inch, solid. But is probable that a two inch shaft with a core of one and a quarter inches would serve the purposes of the solid two nch shaft. This would leave walls of three-eighths of an nch and reduce the weight of a line of one hundred feet from $1,060 \mathrm{lb}$. to 645 lb . These estimates are not intended to be exact, but they suggest the possibility of reducing the weight of our running shafting, with the result of a material reduction in expense of running, and a consequent increase of profit in result. Very easily managed tests could be made to ascertain the relative strength of the solid and holow shafts. There is plenty of bydraulic tubing in the market that in its proportions would serve for these tests, obviating the necessity of preparing specimens specially for the purpose.

DISINFECTION VS. DISINFECTANTS

So much has been said about disinfectants within the last en years that it would be superfuous for us to increase the bulk of literature on that very attractive subject. We have on new kind of disinfectant with unpronounceable name and of surprising efficiency to introduce to our readers, yet a few words of caution against the use of those already known will not be out of season just now.
For many years sanitarians extolled the virtues and re commended the use of all sorts of disinfectants, while a present the tendency is to undervalue and decry the use of nearly every kind of disinfectant. Is there less need of disinfection, or have the old means proved worthless ?
Jet us first consider the object aimed at in their use When, where, and why is disinfection needed ? Take first the air we breathe; pure air, the normal mixture of oxygen and nitrogen with its 0.04 per cent of carbon dioxide and still smaller traces of ammonia. The out-door air of sea and land is healthful and invigorating. Provided its temperature is neither too high nor 100 low , it does not injure our bodies, externally or internally. Those tribes that live in this free open air suffer only from wet and cold, more arely from beat. But even out-door air, in some localities, and at certain seasons, contains other and less wholesome substances. Miasm, whether it be an organized ferment, living germ, or, what is very improbable, some peculiar gaseous substance, is a natural product. It may be found where the foot of man has never trod, nor his hand created the conditions for its generation, as well as in places where the newly upturned soil shows that civilization is pushing her conquests, or where the iron road has damned the aatural streams, and where factories or inundations have flooded extensive tracts of fertile land.
Against this subtle poison, whatever it may be, we have, nfortunately, too little protection. King Carbolic is as powerless against its ravages as was King Canute against the advancing tide. Perfect security is only found in flight; where this is impossible, means should be taken to remove and destroy the cause, which is often quite as difficult, and can only be accomplished by the State or general government. The noble cities of the West, and their cousins on the Rhine, bave suffered untold hardships from recent freshets, and scarcely smaller dangers threaten when the
vernal sun shall fall upon these river-soaked towns and devernal sun shall fall upon these river-soaked towns and de-
velop in the nidus thus prepared those malignant germs of death.
But while our sympathy goes forth to them, let us look at or own back-yards, our sinks, and cesspools, and even our cellars, to see if we have been preparing hot-beds for the propagation of like evils. Whatever accumulation of vegetable or animal matter has been formed during the winter must be removed before the summer's sun falls on it. Do not rest with sprinkling over it some disinfectant, good or poor, but consign it either to the flames or, if in the country,
well.
Next to malaria and the dangers that arise naturally from the spontaneous decomposition of ordinary refuse, is that which may result from improper care and disposition of effete matter, which may poison both air and soil. The
evil effects of sewer-gas are largely due to these products, although, in large towns, the danger of actual infection is superadded
Against all of the above the usual disinfectants are nearly or quite useless. Their supposed value rests upon an en tirely false basis. Among the products of putrefaction and decay there are some gases, mostly sulphur compounds, of repulsive odor. This is a most fortunate circumstance in one respect, as the odor not only serves to make its presenc kuown, but prompts the individual either to flee from it or to employ ventilation for comfort's sake. Too many people think that the only deleterious products are chose that offend the nostrils, hence they are satisfied when they have de stroyed the odor. That this may be accomplished withou much benefit in any other direction will be evident upon a moment's consideration. Carbon disulphide, a poisonou substance, the vapors of which produce headache and ver tigo that may result in death, has, usually, a repulsive odor but it is not difficult to deodorize it without effecting it other properties. Deodorized alcohol is no less a poison than it was before
Then, again, most disinfectants, like carbolic acid, have an odor of their own which masks the other smell instead of destroying it. The essential oils, burnt coffee, scorched rags, etc., act in the same way. Metallic salts absorb and decompose sulphureted hydrogen, and hence are true deodorizers, and to that extent are of some value. The ob jections to their use are as follows: With the exception of iron salts they are poisonous, and accidents are liable to occur. Then they produce a false sense of security, as we are apt to forget that the gases retain their poisonous prop erties long after the odor is gone. From time to time th popular press, and even some semi-scientific papers, recom mend as a disinfectant a solution of lead chloride in an ex cess of sodium chloride. The lead, of course, absorbs the sulphureted hydrogen, and thus acts as a deodorizer, and poisonous one at that. Occasionally some ignoramus, con founding chlorides with hypochlorites, recommends the use of calcium chloride obtained from the action of common sal on quicklime, or lime-water. The chlorine in this com pound, like that in the lead salt, is so firmly bound that it has no value as a disinfectant. The value of dead oil and crude carbolic acid is in part due to its bad smell, which induces people to throw open the windows and admit na ture's disinfectant, atmospheric oxygen.
The third case in which it becomes desirable to disinfect the air itself is in hospitals where contagious and infectious diseases are treated. As these are supposed to be due to minute organisms, or germs, disinfection means destruction This can ouly be effected by contact. A current of ai loaded with the germs of a disease will float unchanged ove the surface of a dish full of chlorides, of iron salts, or even of carbolic acid. Chlorine, bromine, ozone, and sulphur dioxide are more efficient, owing to their power of mingling with the germs as they are wafted over our heads. It is probable that if sufficiently abundant they actually destroy th germs, while at the same time they decompose the sulphu compounds, and thus prove to be true deodorizers, but they are themselves irrespirable in this state of concentration.
The disinfection of houses, rooms, or clothing used by the sick is less difficult. In some cases it is cheaper to burn them; in other cases heat, the most effective of disinfect auts, can be applied, either wet or dry, with good effect. Solutions of poisonous substances, from carbolic acid to cor rosive sublimate, are frequently employed with good effect, but antiseptics in general have very little effect upon bac teria. Fire, on the other hand, consumes bacteria, as wel as other germs, and it is unlikely that any poisonous gas would escape destruction if passed through fire, the oxides of carbon excepted.
Le Bon says that the volatile alkaloids which are formed during the advanced stages of decay are very violent poi sons. He compares them with prussic acid and coniine in in their effects. The dangerous properties of the gases that escape from graves and vaults are due, he thinks, to thes alkuloids, and not to microbes, hence disinfectants of every sort, even if they could be brought in contact with thes gases, would be of no avail.
As disinfectants mostly fail to disinfect, no relianc should be placed on them ; suitable precautions should be taken to render their use unnecessary; impure air should never be breathed, nor should preventable causes be allowed to pollute the air. Decay and decomposition can usually be prevented by the use of antiseptics, if in no other way, fo is much easier to prevent putrefaction from setting in than to check it after it has once begun.

The Proponed Sahara Sea

M. De Lesseps reports favorably on the proposed Sabars Sea scheme. Soundings 73 meters deep have shown the existence of nothing but sand. The African inland sea might easily be made, with the aid of 100 excavators, repre senting the work of 100,000 men. M. De Lesseps has met with the best reception from the Λ rab soldiery and population. On the 3d inst. he arrived at Biskra, having complet ed a survey of the country between Gabes and the Marsh Lakes. He declared that the soil will allow of the excavations necessary to connect the lakes with the Mediterranean, that the works will present no extraordinary difficulty, and that the concessions asked for with regard to the forest and ad joining lands will make the scheme remunerative and wholly independent of State aid, subvention, or guarantee.

Practical ifinte about Glames.

Persons finding their eyes becoming dry and itching on reading, as well as those who find it necessary to place an object neaver than fourteen inches from their face to read, need spectacles.
Persons under forty years of age should not wear glasses until the accommodating power of the eyes has been suspended and the exact state of refraction determined by a competent ophtbalmic surgeon.
The spectacle glasses sold by peddlers and by jewelers generally are hurtful to the eyes of those who read much, as the lenses are made of inferior sheet glass and are not symmetrically ground.
No matter how perfectly the lenses may be made, unless they are mounted in a suitable frame and properly placed before the eye, discomfort will arise from their prolonged use.

There are three systems of grading spectacle lenses: the Englist, the metric, and the Prussian. Those made to supply the demands of the trade in this country are carelessly made and are poor imitations of either the English or the metrica system. The metrical scale has no English equivalent, is not graded by any uniform rule of dividing the inter focal spaces, and is therefore unsuited to the exacting demands of science.
Persons holding objects too near the face endanger the safety of their eyes and incur the risk of becoming near sighted.
The near-sighted eye is an unsound eye, and should be fully corrected with a glass, notwithstanding the fact it may need no aid for reading.
The proper time to begin wearing glasses is just as soon as the eyes tire on being subjected to prolonged use.一Medical Herald.

Putting Polagic Animals to Sleep.
The American Naturalist says Dr. Fol, of Geneva, has toade the important discovery that coelenterates and echi noderms may be rendered insensible and kept so for hours and even days, without injury, by saturating the water with carbonic acid. The containing vessel must, of course, be hermetically closed. The animal at once becomes insensible and motionless, but preserves its natural appearance, and recovers at once when again placed in pure sea water. This method may be used not only for obtaining life-like photographs, bat also, as Dr. Fol suggests, for transporting animals alive. Fishes and mollusks do not survive this treatment, and crustaceans for only a short time.
Dr. Fol tried various narcotics, but found that small doses would not bring the animals to rest, while large doses acted as pnisons. The same proved true of tobacco smoke and aqueous solutions of etber, chloroform, and ethyl bromide. Sulphydric acid and carbonic oxide gave satisfactory results in only a few cases.

YODERN BYSTEMS OF HEATING AND LIGHTING.

The accompanying engraving, taken from one of our London contemporaries, shows a new design for a heating apparatus, which, it says, is becoming successfully introduced in England.
By an arrangement of a series of water pipes within the shell of the stove, the utmost heat is obtained from the smallest consumption of fuel. The fire is entirely exposed to view, as in an ordinary grate.

Photographic Fints and Wrinkies.

Citro-xalate Developer.-The following developer is recommended for dry plates made with bromide of silver as well as chloride emulsions No. 1 consists of 70 parts of potassium citrate, 20 parts of potassium oxalate, in 168 parts of water. No. 2 consists of 30 parts of sulphate of iron in 168 parts of water. For use, mix equal volumes of each solution. The solutions will keep a long time with vaseline oil on the surface.
Alkaline Developer for Gelatine Plates.-The following is said to give a strong and unfogged negative with short exposure. Equal parts of a cold saturated solution of sodic bicarbonate and 1 part of ammonia solution (1 to 4) are mixed. A solution of pyrogallic acid is made in the proportions of 1 to 160 , and a few drops α. the above alkaline solution added.
Another Pyro-developer.-Dissolve 60 grammes of pyrogallic acid and 20 grammes of boric acid in $\mathbf{6 0 0}$ c. c. of water. Another solution is made of 120 grammes of ammonia and 15 grammes of ammonium bromide in 600 c. c. of water. A third solution contains 100 c c. c. of chemically pure glycerine in 800 c . c. of water. When developing a plate, 4.c.c. of the pyro solution is mixed with $4 \mathrm{c} . \mathrm{c}$. of ammoniacal solution, poured into $60 \mathrm{c} . \mathrm{c}$. of the glycerine solution.
Nitro-glycerine in the Iron Developer.-The following is said to be an excelleut developer for wet collodion plates Dissolve 10 grammes of sulphate of iron in 160 c . c. water, and add 10 grammes of glacial acetic acid and 10 grammes of a 1 per cent alcoholic solution of nitro glycerine.

Mroroscopes were invented by Jansen in Holland about 1590, by Fontana in Italy and Drebbel in Holland about 1621.

AUTOMATIC EXTINGUIBHER FOR KEROBENE LAYPP.
The engraving shows a lamp burner provided with means for extinguishing the flame of the lamp in case it should be accidentally upset. The main parts of the burner may be of any approved construction. Extinguishing plates are hinged under the dome near the wick tube, and are provided with arms, which project outwardly, as shown in the engraving, and pass through the diagoual slots made in a plate formed with the stem, which passes down through the flange of the burner, where it is turned to form a hook for the

AUTOMATIC EXTINGUISHER FOR REROSENE LAMPS

tachment thereto of the upper end of the rod, which reaches down to the base of the lamp and rests upon the table or other support of the lamp when the lamp stands upright, and is of such length relative to the height of the lamp, that when the lamp is in upright position it lifts the slotted plate, causing it to open and hold open the extinguishing plates, as slown in the engraving. The rod is prorided with a coiled spring, which, should the lamp be upset, erves to force the rod downward. This will draw downward the slotted plate and close the extinguishing plates over the wick, and thus instantly extinguish the flame. A tud serves also as a means by which the rod may be held from downward movement by one finger of the hand when the lamp is lifted off from the table or otber support.
The device is cheap, and may be applied to all forms of

COMBINED GRATE AND HOT WATER RADIATOR.

Quarter Sawed Yellow Pine.

There is no lumber that will shrink so little and wear so long as quarter sawed. This process of sawing is particularly applicable to yellow pine flooring, as such flooring is generally laid where it is subjected to heavy wear. A bastard sawed board, no matter from what kind of timber it is cut, will wear rough, and sliver, if in constant use for flooring or driveways. It would be impossible to conceive of a harder, more durable floor than yellow pine would make if it were quartered. -The pitch it contains would give it an advantage over oak, ash, or maple in point of durability. A few of the Southern mill men are beginning to understand the merits of such Hooring, and are selecting the few quartered boards that every \log sawed the old fasbioned way invariably has, and putting them in a grade by themselves. It is a bad way of doing, for the balance of the flooring is depreciated in value, and in fact sometimes almost worthless, for no man who is acquainted with its defects would think of making a floor of it.
It might answer for a floor that is to be kept carpeted, but usually such a floor is made of softer and chegper wood. The expense of quarter sawing would be considerably in excess of the usual way of manufacture, but the flooring would be richly worth the difference. Quartered oak in the large markets is worth, on an average, $\$ 10$ dollars per thousand more than clear oak sawed bastard, and there ought to be nearly that difference between the two kinds of yellow pine flooring. A log, if quarter sawed, does not yield as much lumber as if sawed the other way, and sawing it that way is a slower job. Quartered flooring ought to be one of the productions of the Southern mills. Builders should not object paying a third more for it, when they know its beauty and durability are more than doubled as compared with bastard, and every intelligent builder ought to know that such is the fact.-Northwestern Lumberman.

Apparatus for Purifying Air.

An apparatus-Stanley's-is now being brought out in London, for the purposes of cooling, purifying, and disinfecting the air of saloons, cabins, hospitals. The system consists in pumping cold water through pipes which are fixed in the ceilings, running the length and across the saloon or ward in an hospital. In these pipes are fixed rods, outside which it is intended that a thin film of water shall trickle down, which will be regulated by a cap fitted to the upper end of the rod. The water in thus running down the rod will, it is claimed, absorb all the particles of dust, etc., that may be floating in the air, also cool and purify the vitiated atmosphere ; and any of the known purifying chemical agents can be mixed with the water for the purpose of disinfecting, such as Condy's fluid. The water, after running down the rods, will be carried away by an arrangement of pipes under the flooring. To prevent any contact with the water, a guard of brass wire gauze can be fixed.

Weat Indian Phosphate.

The works at Mona Island, West Indies, which were two years ago, are now well advanced, and with a full productive capacity of from 20,000 to 30,000 tons a year.
The guano is already in bigh favor in the United States, where it has been thoroughly tested, and is pronounced one of the best, if not the very best, of such materials imported there.
The phosphate rock, of which now considerable is raised, is in active request in England and on the Continent, especially the latter, where the more bighly concentrated fertilizers are generally used.
The deposits or accumulations occur on the floors of the immense caves penetrating the coast line of the island-a Tertiary coral rock-for ten or twelve miles almost uninterruptedly.
The thickness of the deposits is usually about four or five feet. The rock phosphate, which is really phosphatized coral rock, is found both as a massive stratum or shell underlying the bed guano, and also incrusting the masses of rock found embedded in the guano. The deposits are very interesting from a scientific point of view. The crystallized calcite, aragonite, and gypsite are found as pure as if from a primary forma tion.
Many new combinations of phosphoric acid, giving rise to new series of phosphatic minerals, are quite abundant. The two examined and described by Professor Sheppard, of New Haven, as monite and monitite are bi-basic and hold the highest combination of phosphoric acid known in any natural phosphate. They occur well crystallized. The Mona guano analyzes 52 to 68 per cent bone phosplate on a dry basis, and commercial samples of the rock 87 to 88 per cent the bowl of the lamp, the bowl might be provided with a bone phosphate. Both are singularly free from iron and tube, through which the rod might be passed down to the alumina. Many Indian relics and remains have been found face of the lamp, and thus conceal the rod.
This invention has been patented by Mr. John B. Greenhalgh, of Blackstone, Mass.

Prof. Sorokin of the St. Petersburg Medico-Surgical Academy, says that, judging by certain signs he had noticed in several bodies lately examined, there is a possibility of cholera appearing in Russia during the present year.
alumina. Many Indian relics and remains bave been found in and under the deposits, viz.: implements, pottery, shells,
bones, etc. Some of these most interesting relics are in bones, etc. Some of these most interesting relics are in
my possession. The work is under the personal supervision of Mr. J. G. Miller, of Ottawá, a practical scientist.-Amer. Railroad Journal.

At Midland, Mich., the water works have been completed The pumps have a capacity of $1,500,000$ gallons daily.

Two Serange Playfellows.

The peculiar attachment animals of different species sometimes bave for each other is quite remarkable; singular cases of this kind are being constantly recorded. The following from the Philadelphia Press is among the most singular we have read for some time:
Among the most interesting features of the Zoological Gardens, says the Press, are the peculiar relations existing between the capybara and two pretty kittens. The capybara (Hydrocharrus capybara) is a curious creature. It is the largest of rodents, and in its habits and characteristics very much resembles our muskrat. It lives in the water and burrows in the banks of the South American rivers. It is about as large as a big dog, and is covered with coarse hair. As it lies in the pen in the deer bouse it is continually accompanied by the two kittens. Iu cold weather they snuggle close up to him, and keep as warm as toast by lying almost under heir strange protector. Sometimes he will play with them and poke them about with his nose: thereupon they will mount his back and sit serenely, while he is unable to get them off. Then he will plunge into his water tank, and water hating tabby will spring off to escape he undesired bath.

If the cats leave the pen, "Porgy" (he is so called after "Porgy" O'Brien, the circus man) will follow them to the bars and make a funny squeaking noise, beseeching his companions to come back to keep him company. Sometimes the keepers will bother the kittens. They fly at once to the protecting sides of "Porgy," while he will bare bis long teeth and chatter flercely. In the next cage is a wallaby, and while the cats go in and out, they do not attempt to be at all friendly. They confine their allegiance wholly to the more ugly capybara.

Purification of smoke.

In a paper recently read before the Society of Civil and Mechanical Engineers hy Mr. E. H. G. Brewster, the author describes the result of some experiments made for Sir F. Bramwell, with the object of finding whetber it is possible to arrest the smoke from common coal tires by a process of straining and washing. For this purpose a portable stove was so arranged that the products of combustion in the flue could either be allowed to pass off into the atmosphere in the usual manner, or be directed downward through another pipe uto a wooden box Glled with different crubbing materials drenched hen quired with a fine water spray.
At first the down draught pipe and scrubbing box were empty, and the color and density of the smoke were observed. The spray of water was then turned on, without the slightest apparent effect upon the smoke. The scrubber was then filled with broken coke to the depth of 1 foot $4 \frac{1}{4}$ inches, and the smoke passed througb as before. No appreciable effect was produced, although the box was gradually filled with dry coke until it would not hold any more.

The water spray was then turned on, and an improvement immediately took place, the color of the smoke turning from dirty black to yellowish brown. It was still smoke, how ever; and it was found that 10.3 cubic feet of coke in the wet scrubber, with a plentiful supply of water, would not clean the smoke produced by a quarter of an ounce of coal put upon a clear fire. Trays of matting, broken coke, cot ton wool, and various other straining materials-wet and dry, hot and cold-were then tried in a scrubber 12 feet high and 3 feet square, but with the same result.

ELECTRIC LOCOMOTIVE HEADLIGHT.

So long as the draught was not entirely choked, smok came through in a more or less foul condition, but still moke. The scrubbing was of the most perfect order, but the result of all the experiments was to show that when smoke is once made from bituminous coal nothing can be done to rid it of its more objectionable characteristics.

LAIP FOR LOCOMOTIVE HEADLIGHT.

The principal difficulty in the use of the ordinary arc lamp for the headlights of locomotives has been that the

electric locomotive headlight.

When the machine starts, the piston valve, d, is pulled out by the governor, and first closes the passage against the piston, a; in further pulling out the arc is established by drawing the liquid after it, and thus lowering piston, b. The burning away of the carbons increases the speed of the engine and machine, and a further pulling out of the piston valve takes place until a second opening allows the commuication of the fluids as soon as the arc becomes too long. Theu the carbons approach each other, the machine runs lower, the governor pushes the piston back and closes the pening again.
As the fluid between the two pistons cannot be compressed, and as no vacuum can be formed, the lamp burns well in spite of the heaviest shocks. We are informed many trial trips have been made on the Crown Prince Rudolf Railway, in Austria, with the greatest success. The lamp was fed by a dynamo machine of S . Schuckert, of Nuremberg, driven by a Brotherbood three cylinder engine.
The system was patented by Messrs. Sedlaczek \& Wikulilh.
Further information may le obtained by addressing Messrs Paul Forchheimer \& Com pany, 543 Broadway, New York.

Loat City Retaken. The Chilians have at present several thousand men advancing
jarring of the engine while in motion affects the regulating from different directions into the Araucanian territory. Up mechanism, so that the light is rendered extremely unstead or extinguished. This defect does not exist in the regulator shown in our engravings, the carbons being held in position by pistons acted on by hydraulic pressure.
The pistons, $a b$, are of different diameters, the smaller one, a, being heaviest and connected with the positive carbon. The relative size of the two pistons is such that when the piston, a, falls of its own gravity, the piston, b, rises balf the distance.
The regulation of the motion of the pistons is effected by enlarging or contracting the opening between the two cylin ders. This is done by opening or closing a piston valve which is controlled by an electromagnetic belix in the cir cuit or by a centrifugal goveruor.
When the electromagnet is made weaker by the weaken past to now they have met with slight opposition, although past events have led the government to anticipate that stubboru opposition would be encountered. Among a number of letters from correspondents accompanying the different expeditions is one descriptive of the newly discovered site of the city of Villarica, a populous and opulent city, which, after a siege of two years and eleven months, fell into the bands of the Araucanians in 1692.
The writer states that he has walked among the ruins, now thickly studded with well grown oaks, and anong them has traced streets which were fully one mile in ength, and which been divided into blocks of 100 yards square, as was customary in most of the cities founded by the Spaniards. The city had been surrounded by a wall, which is yet in a fair state of preservation from three to six feet from the ground-a sufficient defense in former days against any ordinary Indian attack. Tiles were found which have hardened to the consistency of stone, and which are in better condition than when they were the mute witnesses of the destruction of this inland city so many years ago.
In the vicinity there is a very extensive lake, in which an island is situated which is reported to be swarming with the descendants of the domestic animals belong ing to the Spaniards who were here sacrificed by the victorious Araucanians. The de scription given is brief in the extreme, but it will soon be supple mented by fuller and yet more interesting reports of this and other cities which were destroyed at the same time.
All the districts now being explored - and notably that surrounding Villarica-abound in mines, which returned large sums during the Spanish occu-
piston, a, is moved back by the action of a spring, the com munication is established again, and the carbons approach each other. By anotber position of the valve the fluid passes through a larger bole to allow a quicker movement of the pistons sometimes necessary, for instance when new carbons are to be put in.
Instead of using an electromagnet, the regulation of the arc can be secured also direct by the motion of the machine itself. For this purpose the shaft is connected with the piston, a, by means of a centrifugal governor, f, Fig. II. one miles long.
pancy. These mines will again be worked under different auspices, and will lend their assistance in promoting the rapid settlement and development of Araucania, so long oc cupied by the scattered bands claiming dominion over it, but which now promises to become one of the richest pro vinces of Cbili.-Panama Star and Herald.

A trestle bridge across Lake Pontchartrain, on the

the broad btreet passenger station of the penis

 GYLVANIA RALLROAD COMPANY AT PHILADELPHIA. We give several engravings of the New Broad Street Sta tion at Philadelphia, also of the Filbert Street extension, structures recently completed aud put into use by the Penn sylvania Railroad. (See first page.)The Filbert Street extension, which furnishes the ap proaches to the station, is such a solid and broad structure that it is entirely relieved of the unsubstantial characteristics commonly associated with elevated railroads. When it is considered that the breadth is sufficient to afford ample accommodations to nine railvay tracks, and that they rest upou foundations as firm as liberal expenditures and the best engineering skill can make them, it will be seen that all these approaches are invested with an appearance and reality of solidity which is not attached to elevated railways of the ordinary type. The passenger yard, which is bounded on the east by Sixteenth Street, is 2,042 feet in length by 106 feet in width.
Much of the space between Fiftoenth and Sixteenth Streets between Market and Filbert, which on the lower story or first floor is used for freight purposes, is used as a passenger train hnuse in the second story, under conditions that entirely relieve the passenger trains from obstructions caused by freight movements, and amid very beautiful and appropriate architectural surroundings. The portion of the second floor used as a passenger train house has a width of 172 feet, while the portion of the second floor of this structure which is near to Market Street, and has a width of 185 feet, is used for freight purposes. The passenger train bouse is provided with eight tracks and four platforms, one between each pair of tracks, twenty-four feet in width and elevated about fourteen inches above the rails. Tbe building bas an iron pointed arch roof of two spans, 85 fee each, and it is decorated with ornamental iron work.
In front of this structure the new station is located on a lot bounded by Broad, Filbert, Fifteenth, and Market Streets. This building bas a front of 193 feet 5 inches on Broad Street extending southward from Filbert, by 122 feet 10 inches from Broad to Fifteenth. Its Fifteenth Street front is connected by a covered bridge of ornamental cast iron work with the passenger train bouse on the west side of Fifteenth Street, of which this bridge virtually forms a prolongation, the same roof being common to both. The style of the exterior on Broad is Gothic, treated freely to accommodate it to the requirements of a modern building. The first story is of granite, on the Broad and Filbert Street fronts. Above the first story the walls are faced with red pressed brick, with red terra cotta and moulded bricks freely used as adornments in a manner that has a novel and vary pleasing effect. On the angle of the two principal
facades at Market and Filbert Streets a clock tower is carried facades at Market and Filbert Streets a clock tower is carried
up to a height, including the slated roof, of 176 feet. Its location is such that it can be seen to great advantage from distant points.
The station is admirably arranged for the purpose of furnishing accommodations for passengers in the first and second stories, and two additional higher stories are appropriately arranged for offlices of tr a company. The first story contains ticket offices, baggar, t-rooms, stairways leading to the second story, and a waiting lobby to be used in connection with baggage-room and ticket offlices. Another considerable portion of this story is open to the streets, front and rear, for the purpose of providing a convenient passage way for carriages and foot passengers from Broad to Fifteenth Street. The second story contains waiting rooms, a large dining room and restaurant, barber shop, lavatories, and other con veniences for passengers. It is approached by stairs and two
hydraulic elevators, located on the north side of the waiting hydraulic elevators, located on the north side of the waiting
rooms. Communication with the trains is provided by a wide lobby extending the whole length of the Fifteenth Stree front, on which the waiting room doors open on one side and the gates to the train house on the other. The third story contains the kitchen and storerooms for the service of dining room and restaurant, with which they are connected by elevators and a private stairway. The other portion of this story is devoted to offices of the company, and the fourth story is occupied entirely by offices intended for similar uses Access to both these upper stories is provided by a fireproof stairway and elevator, with entrance by a private door on Filbert Street.
The facing of interior walls of stair halls and lobby to ticket offices in lower story, and water closets in principal story, is of enameled brick, built up with the body of the walls and visibly bonded to it at intervals by heading courses of different colors, blue marble being used for caps, corbels, skirt ing, etc. The walls of driveway in lower story and of lobby to trains and exit stairway in main story are similarly faced with pressed brick in red and buff, and decorated with moulded brick. All the jambs and arches of interior open-
ings to principal rooms of main story are built of blue marings to principal rooms of main story are built of blue mar
ble, bonded with the brick work, with moulded labels and carved bosses, polished granite shafts with carved caps, and moulded bases of marble being used to carry arches over moulded bases of marble being used to carry arches ond at head of exit stair. The floors of exit stair hall and lobby to ticket offlce and the footways in lower story are laid with cement, in geometrical patterns of two colors, gray and red.
The train lobby in principal story is similarly floored, the other rooms of this story being paved with marble tiles The railings of entrance staircase and the gates to elevalors are beautiful and original desigus in wrought and cast iron. The completeness of the work is shown in the evident care
and study that has been bestowed on every detail, even the seats in the waiting rooms being well designed in harmony with the style of finish, and not the hackneyed "readymade" affairs usually seen in such places. All this work is executed in hard wood, oak, cherry, and ash, showing their natural colors.
The tiling, brick, and marble work of the fine open fire places look well, and the mantels are in keeping with the rest of the wood finish.
A novel feature lately introduced by the Pennsylvania Railroad Company is the hansom cab service, which enables a passenger to go from the station to his destination at very slight expense. These peculiar vehicles (shown in one of the views) are made by Messrs. Hincks \& Johnson, of Bridgeport, Conn. We understand they are now being inroduced in Washington and other cities.
The designs, details, and specifications were furnished by Messrs. Wilson Brothers \& Co., civil engineers aud architects, their Mr. Joseph M. Wilson being the well-known engineer of bridges and buildings to the company. The execution of the work has been effectively superintended by chief engineer W. H. Brown and his corps of assistants.
For our descriptive matter we are indebted to the Railway World; our engraving is from drawings by our own rtist.

Genuine Violet soap.

Genuine violet soap, which is generally sold in square lumps, marked "Finest perfumed old brown violet soap," enjoys the greatest approval of consumers on account of its greeable odor. It is certainly made in every large manufactory of toilet soaps, but there are great discrepancies as reyards the manner of its manufucture and the composition of he scent.
The writer has for many years used the following process for making a very fine violet soap in the cold way.
The process is as follows:
Finest cocoanat oil.
Fresh tallow
Best Lagos pal
.............................. 48 pounds.
Melt together. To a portion of the fat while still hot add 2 pounds powdered and alcoholized orris root, and $21 / 2$ pounds powdered and alcoholized bergamot rind, equally distributed. The manipulation is best effected by sifting the perfumes into a large mortar, rubbing continually, and adding more fat until a homogeneous and moderately fluid mass has been formed, which is then added to the mass in the pan.
In the same manner $11 / 2$ pounds of liquid storax is dissolved in some pounds of the mixed fat with the aid of heat, and the liquid mass is carefully strained through a cloth into the pan.
The whole mixture of fat is then allowed to cool down to 0° F., and 31 pounds soda lye and 1 pound potash lye, at $6^{\circ} \mathrm{Tw}$., are crutched in the usual manner.
Before putting in the forms the soap is further perfumed with-

The musk is ground fine with a little milk sugar, moistend with the oils, and worked into the soap.
The soup when first cut has not a very fine color, and the smell is far from agreeable. In the course of fourteen days it takes a good brown color, and the odor improves with age.-Chemical Review.

Plate Glams Manufacture.

About thirty miles south of St. Louis, on the main line of the St. Louis, Iron Mountain \& Southern Railway, is Crystal City, the home of plate glass manufacture in the far West. The works of the Crystal Plate Glass Company are located some distance from the station, but a small branch railway ffords ready communication at all times. It is but a few years since it was the popular impression that plate glass could not be produced in this country, and that idea is but partially obliterated at the present time, while the facts are that much of the finest and largest plate glass now being used in the finest buildings of all our large cities is made in this country from native material, and is in every respect equal to that of foreign make. In the manufacture of glass of the very best quality the Crystal Plate Glass Company is equal to any other. The two things which account for this fact are, first, the superior material-in other words, the
Plattin sand-which takes its name from the stream of that aame on the banks of which the sand rock quarries lie; and secondly, the experience and skill of those under whose management the work is prosecuted. The deposit of sand is unquestionably the most extraordinary and valuable that has ever been discovered in the world. Incalculable in its extent, this white sand is here found in a lofty bluff into which tunnels have been driven for a distance of over fifty feet, and from which the invaluable material is obtained in absolute perfection ready for use. It is dazzlingly white and is perfectly translucent. The company owns 200 acres
of this bluff, which averages seventy feet in thickness, and could not be exhausted in hundreds of years. The exceeding purity of the sand has excited the admiration of thousands. An analysis gives excited the admiration of thou-
silica, 99.62 ; iron, 0.09 ; magnesia, 0.07 . Other indispensable materials required in plate glass production are also found here in exhaustless quantity of the highest order of merit. It may be interesting to state that every ingredient that enters into any formula for the production of plate glass is obtainable in this country save soda ash, and that this can and will be made in St. Louis is but a question of time.
The immense works of the company were commenced in 1872 by the American Plate Glass Company, with a capital stock of $\$ 250,000$. In 1874 this was raised to $\$ 500,000$, and in 1880 to $\$ 1,000,000$. The president of the company is E. A. Hitchcock, a position he has held from the formation. The manager is George F. Neale, a gentleman who has been connected with the manufacture of plate glass in Europe and this country ever since his boyhood. Under such experienced management all imperfections have beeu removed, and the company claims with just pride a production it is willing to submit to competition from any quarter. The process of manufacture of plate glass is very interesting, and it is only possible to fully appreciate it by witnessing the operation from the time the sand is taken from the quarries till the glass comes out of the polishing department in all its perfection. There are seven departments througb which the glass goes in the course of manufacture, as follows: 1. The pot room, in which the crucibles and other fire clay articles are prepared. 2. The mising department, in which materials are mixed preparatory to being melted in the pots. 8. The melting department, with a capacity for melting the contents of forty-eight pots daily, and a fourth gas furnace containing twenty pots is in course of construction. 4. The casting process, which might be called the supreme moment, as in the face of the most intense heat this side of Hades not a moment can be safely lost in the transfer of the great masses of fiery fluid from the pots to the casting tables. 5. The grinding depurtment, where the glass is ground down to a dead level surface by being laid, embedded in plaster, on a disk grinder 21 feet in diameter. 6. The smoothing department, where the surface is smoothed by an interesting process after it is ground. 7. The polishing department, where, by the use of large felt covered rubbers, aided by a liquid rouge made from copperas pre pared by the company, the glass is polished. These
processes require a large amount of space. The grinding and polishing departments occupy buildings 742×120 feet and 660 x116 feet, besides which there are numerous other buildings aggregating many hundred feet in double line, containing (including the furnace and annealing halls) the pot house, in which the crucibles and other fire clay articles are prepared, the grinding and mixing houses, two boiler houses, pump house, blacksmith shop, and a number of other necessary buildings, all of the most substantial and enduring character The machinery and engines consist of three melting fur naces (all gas), 70 annealing kilus, 22 circular grinders, 50 smoothers. 36 polishers, and 20 steam engines, together with complete oujits in the very best kinds of machinists' tools and machinery for doing the company's own work, perfect equipments to their own blacksmiths, carpenters, brickmakers, and masons, a milling department for grinding limestone, clay, and plaster of Paris, and numerous minor but necessary buildings for the correct conduct of this mammoth enterprise. The city contains upward of 100 frame houses for the several hundred men, women, and children. The situation is a most charming one for residence as well as valuable for manufacturing purposes, and the buildings in all their strength, powerful machinery, the peaceful village with its refining influences, the raw material in its exceeding wealth and purity, and the manufactured article in all the pride of honest construction, combine to produce a marvelously beautiful picture upon the eyes and minds of all who may be so fortunate as to visit this romantically realistic city. Tbe company has made special provisions for the comfort, health, instruction, and amusement of its operatives. -New York Graphic.

Value of the Sunflower.

Agriculturists claim it is the best egg producing food known for poultry, keeping them in a thriving condition and largely increasing the production of eggs. Every poultry raiser who tries it will tind that this seed is the best food known for glossing the plumage of fowls, and is almost indispensable to those who want to fit their birds for exhibition to the best advantage. The Russian sunflower is easily raised, requires very little care, can be grown in fence corners, or other places difficult to cultivate. Its production of seed is immense, yiclding often at the rate of one hundred busbels to the acre. It sbould be planted in hills four feet apart, any time from the 10th of May to the 1st of July. Three quarts of seed will plant an acre.

A Large Turtle.

Captain Augustus G. Hall and the crew of the schooner Aunie L. Hall vouch for the following: On March 30, while on the Grand Bank, in latitude $40^{\circ} 10^{\prime}$, longitude 33°, they discovered an immense live trunk turtle, which was at first thought to be a vessel bottom up. The schooner passed within twenty-five feet of the monster, and those on board had ample opportunity to estimate its dimensions by a comparison with the length of the schooner. The turtle was at least 40 feet long. 30 feet wide, and 30 feet from the apex of the back to the bottom of the under shell. The flippers were 20 feet long. It was not deemed advisable to attempt its capture.

RECENT DECISIONS RELATING TO PATENTS

upreme Court, District of Colembis.

plblic use and sale
An application for a patent cannot be rejected on the ground that the invention was in public use and on sale fo more than two years before the time of filing the application, when the only proof before the Commissioner consists of mere ex parte affidavits taken without notice and cross examination.
The law confers upon the Commissioner authority to in stitute an inquiry into allegations of public use and sale of the invention, such as would bar the patent. This proceed ing, on which the Commissioner acquires bis information through the testimony of others, is a kind of judicial inquiry and when the testimony is furnished by those in adverse interest, it becomes substantially a contest, and in such case justice requires that the fate of the application be determined by proof which conforms to the fundamental canons of the law of evidence, according to which ex parte aff davits taken without opportunity to cross examine are in no case admissible upon the merits of a cause.

Mystery of minerals.

It is painfully evident even to the most advanced scientists that, in the midst of the multitude of theories, and in the best light that the slowly accumulated wisdom o centuries has thrown upon the question, our real knowl edge of the character and formation of minerals is very limited and uncertain. Wonderful progress has been made during the last half century in regard to some of the constituent elements of the most common metals and the me thod of fitting them for utility, but the great problem of their creation and union with other primary elements is still a hidden mystery. Metallurgists bave discovered some thing of the effects of oxygen, and of hydrogen gas and its intimate and almost inseparable affinity with iron, but the real facts are hidden belind a veil that never has been pene trated.
Iron is generally understood to be a synonym for solidity and enduring permanence, yet science now proves that pure iron is nearly as unstable as water, and exists only as a curi osity in the laboratory. Some chemists claim that hydrogen is itself a metal, and it may be yet shown that many of the so-called pure metals, now supposed to be simple elements, are in reality compounds which science may be able to sepa rate, perbaps almost into endless divisions. Alumina has re cently come into notice, and a wide field, in view of its inex haustible resources, opens up and stretches out beyond our grasp into the future. By its discovery our common clay is to be the mother of a mineral whose usefulness in the future cannot now be measured
It may be found that the great ocsans of air and water are the prolific mines from which the miners of the future will draw their supplies of mineral to satisfy the demand of their day and generation. It is already well proved that the at mosphere, the water of the ocean, the plancts and comets contain a perceptible quantity of mineral matter.
From a general harmony of the manifest workings of Nature, it would not be strange if it should be discovered tha the vast variety of mineral substances now known, and the perhaps greater variety to be revealed, can be traced back to a common primal center, and it will be shown that the infl nite varicties of form and character are but different mani festations, under special circumstances, of the same grea force driven out into moditied expression. Our increasing knowledge of the imponderabie force, electricity, will throw mucb light into the bidden mysteries of the metallic world, and by its sun-like torch we may be enabled to follow with reverent steps, from the dim threshold of our present know edge, the footprints of mineral creation to the cradle of its existence.

The Abundance of Gold.

The future supply of gold, even for coinage parposes, is beginning to be one of more than common interest. An cient history is resplendent with the prodigal display of gold by the barbaric peoples of the Orient. Arabia, Egypt, and Africa, according to this same authority, were prolific in their production of this precious metal. Pliny states that Cyrus returned from his conquest with thirty-four thousand pounds of gold (about $\$ 10,000,000$). Alexander the Great brought $\$ 100,000,000$ in gold from Persia.
But at the present time these great fields, so renowned in history, are barren so far as the production of gold is con cerned, and it is evident that Europe can be no longer de pended upon to perform any appreciable part in furnishing a supply of gold to meet the demands of the future. Even in this country the statistics of production show a constant and marked decline in gold, although the field is largel extended and mining is wore thoroughly prosecuted than ever before.

New subscribers to the Scientific American and Scien tific American Supplement, who may desire to have com plete volumes, can have the back numbers of either pape sent to them to the commencement of the year. Bound volumes of the Scientific American and Scientific American Supplement for 1882, may be had at this offlce or obtained through news agents.

Boiler Explosion in North East, Pa.

To the Edditor of the Scientific American:
We have just returned from the scene of a boiler explosion. Last Saturday, at 9 A.M., the boiler in the steam sawmill of William Merkx, five miles south of this place, blew up with great force. The fireman had noticed water coming out around a rivet, and called the attention of the other men to it. They, five in number, stepped up to see what the rouble was; just as they had all got to the boiler, it parted at the union of the firebox and maiu part. The five men were all within six feet of the boiler, yet strange to say none were killed, and one was only slightly injured. All the est were hurt some; one, a broken leg; one, a broken jaw; one, shoulder out; and the proprietor considerably injured; when found, the rim of the flywheel was lying across Lis body. The boiler was a portuble locomotive firebox, with engine on boiler, Griffth \& Weuge makers, and had beeu n use 18 years. It had about 50 two inch flues, 10 feet long. The mill was a total wreck; the carringe much broken up, the saw broken in many pieces. It is not known the amount of steam at the time of the explosion. The gauge showed 90 pounds, but it was out of repair and not reliable. The safety valve weight was set at 125 , with another weight half as large with it. The safety valve was ground the day before, and might have been stuck; but they think steam was blow ing off at the time.

. Hole where boiler stood.-2. Stack.-8. Rim of Aywheel.-4. Engine shaft and spokes of flywheel.-5. Mill.-6. Saw.-7. Engine cylin-der.-8. Top and right side of shell of fire box.-9. Fire box. 10. Left side of shell of ire box.-11. Boiler.- 12 and 18 .
Where the boiler strack. -18 . A stump. -14 . Position of Areman.-15. Shanty not injured.-16. Eccentric.

The engine (a 20 horse power) was running at the time, and the injector had just been started. The firebox shows the soot all burned off the inside of the top, which would indicate low water. The cut shows about the way things lay. The firebox was intact, but the covering or boiler heet all around was gone. The firebox struck over just before stopping. The boiler twisted and was ended around The cylinder and other pieces flew the whole distance without landing. Two or three men at a short distance saw the explosion, and describe it as terrific. The stack (about 20 feet high) rose straight up about 100 feet, and dropped straight down again.
The great mystery is how the men all got out alive. We send you pieces of the boiler iron, which we would cali very poor.
A. I. Loop.

The Great Apartment Hounes of New York.
The mode in which the newest of the great apartment houses in New York are built and carried on is, says the American Architect, a peculiar one. While in other places such structures are erected at the cost either of some individual. who rents his rooms to tenants, or of a mall association of mutual acquaintances, who own the property in common, in the metropolis the whole business of securing land, raising subscriptions, and organizing the company for building is usually transacted by a single person, the promoter, as he is called, who, if he is successful in his efforts, finds compensation for his trouble either in transferring the land secured by him for the building to the association at a price somewhat bigher than that which be hus contracted to pay for it, or in some other way.
As the promoter nceds a well-digested set of plans for the future structure, in order to interest the persons whom he wishes to have as subscribers, some architect is not unfrequently joined with him in the enterprise. Subscriptions are made for definite apartments, as shown on the plans, each subscriber agreeing to pay in cash about one-quarter as much as the same accommodation would cost in a separate house, the price of the apartments being decided beforehand by a careful allotment among them of the total cost of land and building, for which estimates have been already obtained. As soon as about two-thirds of the necessary amount is subscribed an assessment is called, and operations are begun, and at the same time certificates of stock in the association are issued to the subscribers, each one receiving an amount equal to the price of the apartment which he bas agreed to
charge of the property, and each one receives from the trus tees a perpetual lease of his apartment, containing the conditions as to the use of the rooms, or the behavior of thei occupants, which the subscribers see fit to impose on them selves for their own protection. The subscriptions rarely represent the total value of the property, a certain portion being raised by morgage; but one or two floors of the build ing are generally reserved, to be rented by the trustees for the benefit of the association, and the income from this source pays the whole or a part of the mortgage interest. Othe expenses, such as the cost of heating and service, are paid by the occupants, unless it should happen, as it sometimes may, that the rentals are sufficient to cover these also.
It need hardly be said that it is more economical to combine fifty or sixly houses under one roof than to build them in a row along an aveuue, and the great apartment house certainly offer many advantages to their owners in this re spect. As it happens, however, such a mode of living is now fashionable, and the subscribers lave generally been rich people who wish to decorate their new houses to suit thei own fancy. To meet this taste it is usual to contract for the building rather cheaply finished, and without mantels, arranging with the subscribers that changes shall be made to suit them, at a fair price, and it is easy to understand that many persons, who have money to spare, spend enough on such fittings to make the cost of their apartment considerably larger than the subscription. On the whole, however, this works to the profit of the more careful stockholders, whose dwellings gain a reflected distinction from their brilliant neighbors, and if nothing more serious is to be said agains the new system, its popularity will be very little affected On the other hand, the advantages which the best apartment houses offer are very important. Situated as they are upon Fifth and Madison Avenues, and on the Park, they furnish to the householder of modest fortune, but good social con nection, a beautiful and comfortable home in the midst of all that is brightest and most attractive in New York, at a cost no greater than that of a shabby dwelling of the same capacity, but inferior in light, air, and sunshine, in the dirty streets beyond the fashionable quarter, and in that city where the line between lavish opulence and prudent economy is somewhat unpleasantly drawn, the value of good location is not likely to be underestimated.

Cable Car Traction in Philadelphia.

The new cable motor of the Union Passenger Railway Company, on Columbia Avenue, Philadelphia, between Thirty-third Street and East Park, was opened on the 5th of April. The cable, which is of crucible steel, and 9,200 fee in length, was run at the rate of seven miles per hour, by the two " Porter \& Allen" engines of 100 horse power each which have been built to supply the motion. The cable passes through a tunnel or pipe beneath the track, and be passes through a tunnel or pipe beneath the track, and be-
comes attached to the car by the action of a "gripe," which moves along a narrow, continuous opening midway between the rails. Three trains of three cars each were run severa times over the road, a distance of about $13 / 4$ miles, and the workings of the system were thoroughly tested to the satis faction of the visitors. The cars started gradually and smoothly, and were stopped promptly, but not so suddenly as to be unpleasant to the riders. The same speed was maintained on the heavy grade of three feet to the 100 as on the level portion of the road.

Cochineal Color for Eilxirs.

The difflculty of preparing a cochineal color that will keep has suggested the use of glycerine as a preservative. Prof C. L. Diehl's formula, as given in New Remedies, is as fol lows:

Reduce the cochineal to a fine powder, add the carbonate of potash, aud triturate it with two ounces of water. Allow the misture to stand one hour, add the alum and cream of tartar successively, and, when effervescence has ceased, the remaining water, filter, and add the glycerine.

Tenting a Lightning Conductor.

The spire of the General Assembly Hall, Edinburgh, has just been fitted up with a new lightning conductor. Some doubt having been expressed, says the Electrical Revien, as to the efficiency of the old conductor, it was resolved to subject it to a strict test, and for this purpose a copper wire was carried up one side of the spire and attached to the con ductor on the other side. When the connection was effect ed, the electrical resistance is said to have reached the " very alarming amount of 800 ohms." The conductor was jointed together by screw couplings, and this extraordinary resist ance is explained to have been due to the " defective char acter of many of those couplings."

An insect exhibition is to be held in Paris this year from July 1 for just three weeks, under the auspices of the Central Society of Agriculture and Insectology. It will include (1) useful insects; (2) their products, raw, and in the first transformations; (3) apparatus and instruments used in the preparation of these products; (4) injurions insects and the various processes for destroying them; (5) everything relating to insectology.

The peculiar formation of this stone, and its remarkable adaptability to grinding corn meal, has, in a comparatively short time, been thoroughly brought to the attention of the milling world. In Moore County, North Carolina, located about in the center of the State, this conglomerate was discovered by the early settlers, and was known to exist in a well-defined vein for a distance of nearly two miles, and was first worked in several places by them for their own use in grinding corn meal, and was sought for in every section of the State, and hauled in wagons long distances. In many cases where it came into competition with other stones used for grinding corn meal, its superiority was so marked that parties paid large sums of money to secure the "Moore County Grit," to enable them to hold their trade.
About four years ago the entire vein was purchased by the North Carolina Millstone Company, and for the first time since its discovery, improved machinery and appliances were put to work in quarrying and developing this grit. Starting in a small way, the company has gradually built up a large business and developed a little village around their works, solely upon the merits of this stone. Its claims of superiority over other millstones for grinding corn meal are: that it will not glaze, and will grind large quantities of corn without dressing; that it wears differently from other millstones, its tendency being to wear sharp and not smoothly on its face. It grinds meal into round particles, and will on its face. It grinds meal into round particles, and will
raise a bushel of corn when ground into meal 80 to 40 per
and the prospects are that within the next eighteen months it will reach Parkewood, the little village that owes its existence to this grit. At present this village is sixteen miles from any point of railroad communication, and the new road will give it a very considerable impetus, and will enable the company to deliver their products with a diminished outlay.
For further particulars in regard to the "Moore County Grit" mills and millstones, address North Carolina Mill stone Company, Carthage, N. C.

American Timber.*

When the facts are taken into consideration that a reckless denudation of American forests bas been steadily carried on for a great number of years, and that, with advanced civilization, increased population and enormous influx of foreign immigrants have surpassed the prophecies of even the most sanguine among latter day prophets, it is not surprising that this question of timber supply should be of such deep interest to our practical as well as political economists.
As an evidence of the reckless and wasteful system of destruction adopted by the earlier settlers of this country, portions of Pennsylvania known as the Allegheny district were covered with magnificent pine forests, but as there was no immediate demand for the lumber, thousands of acres of those valuable timber lands were downed by the axmen to make way for the farmer. What was the result? Fields of

With such truths as the above to reflect upon, the question of the timber supply of the world naturally becomes a momentous one, and one deserving mature deliberation and udicious legislation. Thousands of trees are anvually cut to be used for purposes that might be dispensed with, notally fences, telegraph poles, and fuel. These can, in most instances, be dispensed with or substitutes employed that would make a great diminution in forest cuttong. Barbed wire or no fences at all, telegraph wires laid under ground, and when possible coal, are modes of economy to be adopted for each, and ones which are practicable in almost every region of the country. As in Europe, preventives to decay must be employed on crossties, and brick, stone, or iron utilized for building purposes where wood is now used.
In addition to these immediate acts of economy of timber, tree planting should be encouraged and carried on, not as an experiment, but a business; and by placing in each State some competent botanist to superintend the replanting and cultivation of new forests, assisted by a corps of trusty, industrious guards to protect them, much of the barren and worthless lands of the continent can be made to produce crops of valuable timber.
To the uneducated in the lumber trade no idea can be formed of the vast amounts of timber that are annually cut on this continent, hence many are inclined to oppose econmy in the treatment of forests, and are difficult to convince as to the rapid inanner in which they are destroyed; though,

"MOORE COUNTY GRIT" PORTABLE CORN MILLS.

cent, insuring light, superior table meal, which is not liable \mid procured at a sacrifice of inestimable millions which the to be heary when made into bread. In many sections of timber would be worth to day. the country this particular feature is of the greatest importance, especially so in the Southern and Southwestern States, where corn bread is the staple article of food. It is claimed that, owing to the peculiar nature of this stone, and its natural sharpness, it does not require as much power as other millstones to grind a given number of bushels of corn, and in point of durability it has shown great superiority over other millstones.
Our illustration is a sectional view of a mill built by the North Carolina Millstone Company, and provided with 8 runs of their upper runner 36 inch portable corn mills, with silent feed, exhaust fan, sifter or bolter, and menl box. The capacity of this 3 -run mill, when grinding fine table meal of superior quality, is 25 bushels per hour, or if used on chop or mixed grain, 50 bushels per hour. The engine run ning these mills is a 25 horse power cut-off engine with boiler. It is claimed that these mills, grinding at the above rate, are run with six feet of wood for ten hours, which is very little fuel for the amount of work performed.
The claim for these mills is not for the large amount of corn that can be forced through them, but for the quality of the meal. It is also claimed that if the quantity is increased to over eight bushels for a 36 inch mill and five bushels for a 30 inch mill, the same high character of meal cannot be produced by any stone of the same diameter.
We are informed that a railroud has been chartered recently, to extend from Fayetteville to High Point, N. C.,

The same story might be told of the eastern Atlantic slope of the Allegheny range. Williamsport, Pa., one of the busiest sawmill towns of that region, is now idle for the want of material, while Haven being the only point along the Lehigh River where the industry pays, with logs becoming scarcer and dearer each year, its fate will be sealed ere long.
Thirty years ago one-half of the white pine supply was furnished by the State of New York, but at the present rate of cutting the timber, it will have disappeared in another decade. The forests of the Northwest were then drawn upon, though much of this considered inexhaustible supply is fast fading away in the face of the woodsmen and their manu facturing allies. Michigan is almost entirely denuded, the standing timber being estimated at not more than a four or five years' supply. Indiana, once famous for its walnut, has little or none of this valuable timber left, and manufacturers in the East who relied upon her for their supplies are now forced into the use of mahogany. The armies of forest destroyers have now been turned toward Canada; the supply of timber is enormous, as they were in fact in the other named sections, but past experience shows that a few years will be sufficient to cause the same story to be repeated.

* The Southern Lumberman is constantly warning its readers against the destruction of the timber lands in the Southern and Middle States, and persistently counsels owners of such lands $t \mathrm{o}$ withhold the ax yf
forests, unless the trees are full grown and ripe for the harvest.
when the subject is investigared and statistics examined, it will be seen that a few years of active operations will denude any portion of the most densely timbered lands. Such figures as $24,000,000$ feet in one place, $50,000,000$ in another, and $1,500,000,000$ in another, and they representing the cut in the neighborbood of one stream, form but a fractional part of the cut all over the country. The value of timbered lands should be greater at present than ever before, and no matter how far they are removed from transportation, they are too valuable to be wantonly destroyed. Just as soon as the most eligible are utilized, necessity will force transportation facilities toward the others, and as a consequence render them valuable. It is very questionable if any lands in the South, upon which there is a full growth of pine, poplar, hickory, elm, gum, or cypress, could be made to produce by clearing them what the standing timber will be worth in the same given number of years. Therefore, let the Southern land owners take warning, and not only economize their timber, but hold on to the land for a few years at least.

The Edison installation at the House of Commons lately started running. The lights are distributed throughout the dining-room and library. Sixteen electroliers, each containing a group of sixteen lamps, are in use, the current being supplied by two $250-$ light " K " dynamos. The lamps can, if necessary, be fed by one of these machines should any accident incapacitate either of them. The dynamos are driven by an Armington \& Sims engine. A cable, 150 feet long, runs from the engine room to the lamps.

GORATIO LYON MEICORIAL LIBRARY, MONSON, LAEs,
The walls are of two shades of Monson granite outside with brick backing, laid hollow, and the building is nearly freproof in its construction, the floors being of iron and brick, and roof framing of iron. The cost was aboul $\$ 25,000$, the money being given by Mrs. Caroline R. Dale daughter of Mr. Lyon, and an endowment of $\$ 20,000$ was given by Mrs. Lyon. W. N. Flynt \& Co., owners of the Monson Granite Quarries, were the builders; Mr. Stephen Earle, Boston, Mass., was the architect. Our engraving is from the American Architect.

Lawne: Their Formation aud Management.*
It is an old but a very true saying, that a smooth, closelyshaved lawn is the simplest and the loveliest element we çan use in the adornment of our grounds. We may procure the choicest flowering plants as well as the most rare ornamental trees and shrubs that our nurserymen and florists can obtain, but unless we have a good lawn all our efforts will be in vain; for depend upon it, a good lawn is as necessary to complete the adornment of our grounds as a good carpet is to complete the furnishing of our rooms. We may take our rooms and furnish them with the rarest works of art and the most expensive furniture we can obtain, but if we leave the rough pine floor uncovered or unstained, they have anything but an attractive and finished appearance. There appears to be something wanting to render them complete and enjoyable. As it is with our rooms, so it is with our grounds. If they contain the most costly plants and the choicest ornamental rees and shrubs we can obtain, while the lawn is neglected and uncared for, what attraction bave they for us? Why, none; the simple fact being that the one thing necessary to render the whole complete and enjoyable is wanting.
If the luwn, then, is so necessary in the adornment of our grounds, it should be properly attended to and cared for. I say properly, for a good lawn is well worth all the time and care an intelligent person can bestow upon it; and it is my opinion that more lawns are ruined from ignorance and neglect alone than from any other canse. If it is our intention to prepare good new lawns, it is absolutely necessary that the work be thorougbly and properly done, for a good lawn will last for many years if the ground bas been properly prepared, the proper grass or grasses selected and sowed, and last, but not least, the whole properly attended to and cared for.

In forming a new lawn, the work should not be too hastily and imperfectly done, as this will prove to be a serious mistake, and one that cannot be rectificd afterward. In the first place, we must see that our grounds have the desired grade, and that they are thorougbly and properly drained and in the condition necessary to produce a good crop of vegetables; if so, they will produce good lawns. The preparation of the ground is best done in the fall, so that it can become well settled by the time we are ready to sow the seed in the spring. Prepare the ground by giving a heavy dressing of well decomposed stable manure, and work it in well by plowing thoroughly. A sub-soil plow should follow the common plow. Then harrow thoroughly, and finish by leveling the whole as neatly as possible. As soon as the weather becomes settled in the spring, apply to each acre from five to six bundred pounds of bone dust; barrow it in thoroughly, and be careful to bave a good surface soil of from eight to ten inches in depth throughout the entire ground, and finish by having the surface as finely pulverized as possible, removing all sticks, stones, etc.
The ground being properly prepared, the next consideration is the sowing of the seed. This should be done as early in the spring as possible. choosing a calm day. The sowing should be carefully done in order to distribute the seed equally over the entire surface, and not in spots, as this looks bad, and is not creditable to the sower. Sow thickly at the rate of from four to five bushels to the acre, and rake the seeds slightly in. Give, if possible, a sprinkling of soot or woodashes, in order to render the seed distasteful to birds, and finish by rolling thoroughly.

What varieties of grass to sow in order to obtain a satisfactory result is really a serious question. I have no hesita tion in saying: Sow June or blue grass, Poa pratensis, ouly no mixture, no white clover, nothing but pure, clean Jun grass. In advocating the sowing of June grass, pure and simple, I am aware that I am treading on dangerous ground for I know that many of you will differ with me. I admi that the June grass will not form a lawn quite as soon as the various mixtures known as lawn grass, but a lawn of the June grass, when obtained, will be found to be well worth waiting for. June grass will thrive in almost any soil and situation, with full exposure to the sun or in partial shades, and in seasons of drought, when everything is suffering from want of moisture, the June grass will retain its verdure to the last. However, some will insist upon having a mixture; and it is said a very good one can be made by adding two pounds of sweet vernal grass, Anthoxanthum odoratum, and one pound of white clover, Trifolium repens, to four bushel of June grass. This is a mixture highly prized by some, but I cannot see of what benefit the clover is, for it is my opinion that it would destroy the young grass, and eventu ally die out itself. About the middle of June our lawn will be looking pretty green; but among the young grass a great many weeds will be noticed, and the temptation to remove them will be very strong; but do not do it, for, depend upon it, any attempt at their removal at this time will do more hurt than good. About the first of July our lawn will be ready to he mowed; but we must not cut too low, and the clippings should be permitted to remain in order to protect the young and tender roots. After mowing, roll thoroughly
the tender roots; a rake should never be used on the lawn after it is cleaned in the spring. If it becomes necessary to use a rake to remove the clippings, on account of their un sightly appearance, it is absolutely certain that the mowing was not dove at the proper time. In mowing, avoid cutting too close, for, depend upon it, close mowings and a frequent use of the rake will soon destroy the finest lawn. Close mowing encourages the growth of very many troublesome, ooxious little weeds, as well as that great pest of lawns, crab grass-Panicum sanguinale. It should be remembered, however, that no lawn can be maintained in good condition unless it is frequently and thoroughly rolled. Moles are sometimes very annoying; the only remedy for these pests consists in the proper use of a good trap. Λ few words as regards sodding: at the best it is slow and expensive work, and, unless for places of very small extent, I would not ad vise the use of sods. In forming new lawns it is sometimes absolutely necessary to lay sod along the margins of walks, and also on steep banks, as heavy rains might wash away the soil before the seed has had time to vegetate; any clear sod can be used for this purpose, care being taken to firm it well with the back of the spade.
In seasons of severe drought some resort to watering; but unless one has an abundant supply of water and the necessary facilities for doing the work thoroughly, it is better not to make the attempt, for anything short of a thorough watering will do more burt than good. I think that if the ground is properly prepared, the mowing properly attended to, and the clippings permitted to remain, in order to protect the
y oung and tender roots, little or no injury from drought need be apprebended. I am often asked, What is the best manure for lawns? I do not think that there is anything better than good stable manure applied just after the ground becomes frozen in the fall, and removed as soon as the weather becomes settled in the spring. Some, however, decidedly object to stable manure, on account of its untidy appearance, and so bone dust can be substituted. Its effect, bowever, will not be noticed so soon. In forming new and restoring old lawns, an abundant supply of good stable manure is indispensable. Guano and commercial fertilizers are much esteemed by some, and more or less is said in their favor; but, as far as my experience has extended I have found them to be very variable in their reults. In wet seasons they are very satisfactory; but in seasons of drougnt the result is quite the reverse.
Again, some object to the use of stable manure or the reason that it contains the seeds of many oxious weeds, and in this way they would inroduce them into their lawns. Now, I would not apprehend any danger
and after this mow weekly, if necessary, until the grass cease growth. In the autumn the annual weeds will have disap peared, and the perennials can be cut out with a stout knife. If often happens that it is very inconvenient to prepare new lawns, and in such cases we must try to restore the old In order to do this properly we must commence in the autumn. First, fill up all inequalities by carefully lifting the sod, flling in, and replacing it; at the same time remove all perennial weeds, and then give a good dressing of stable manure. As soon as the weather becomes settled in the spring, the manure should be removed, then rake thoroughly, using a good iron rake, and be particular to remove all dead grass, moss, etc. When this is done, give a good dressing of bone dust, and sow grass seed as for a new lawn. Roll thoroughly, and, as soon as the grass is long enough; mow mow weekly throughout the season, excepting in seasons of severe drought. It seems almost superfluous to remark that mowing should always be done with a lawn mower in prefer ence to the scythe. The work is thas more quickly accom plished, to say notbing of its neater and more attractive ap pearance when finished.
After the lawn has become established, it should be properly cared for; every spring it should be carefully examined, and all perennial weeds removed, a good dressing of bone dust or ashes given, and the whole thoroughly raked and rolled. Mowing should also be attended to from the time the grass commences to grow in the spring until growth ceases in the autumn. Once a week is none too often to mow,
from this source, if the lawn has been properly attended to and seeds sowed the very instant vacancies are noticed; and I have often noticed that wherever any vacancies exist they soon become filled witn weeds, no matter what fertilizers have been applied; and it is a most essential point in the management of lawns to encourage the growth of the good grass as much as possible, and thus prevent noxious weeds from taking possession.
The arrangement and proper disposition of ornamental trees and shrubs on the lawn is also very important, and deserves the highest considerations. In this paper it is impossible to treat of this as fully as its importance demands, for local circumstances and personal requirements would render almost worthless any suggestions that I might offer. My only object in alluding to the subject here is the desire to caution all against planting trees and shrubs too thickly, and thus destroy the very object we bave in view when planting them. A room crowded full of furniture has not a very inviting or attractive appearance; neither has a lawn when thickly covered with trees and shruhs. Grass will not grow in such situations, and in consequence the whole will not present a very attractive appearance. A few well grown handsome specimens, properly arranged and cared for, with a smootbly mowed lawn, will give more satisfaction and pleasure to all who see it, as well as to the favored pro prietor.

RECERT INVERTIORS.
 split Palley.

This split pulley is formed mainly of wood, and is made in separate sections or balves to provide for putting it on or taking it off the shaft laterally. This pulley is divided into sections in a serpentiue or irregular course. Thus constructed, the pulley sections will come together with a perfect fit after each separation of them, and will not wear and work loose wheu united The serpentine cut by which the pulley is divided into sep. arate sectious is not arbi trary and may be greatly varied. The iuvention provides for other divisions of the pulley, whereby the serpentine cut does not extend through the whole thickness of the pulley, but is diverted.
breaking the joint between the pulley sections. This invention has been patented by Mr. Gustavus B. Sanborn, of Bristul, N. H.

Improvement in oll Lampa.

This inveution consists of an attachment to oil lamps, and particularly to the tubular lantern, to prevent the escape of the oil from the lamp, which in the case of this kind of lanern gets into the turret and the tubes on top, making bad mells, and is dangerous; and another difficulty with such lanterns and other lamps is the flickering of the flame, due o the insufficient supply of air to the oil reservoir as the oil burns away, which this invention is calculated to prevent. In the device shown in the engraving, an oil catcher and the lamp collar are formed in one piece, with the part the burner screws in soldered in it. This forms an annular space into which the oil is received from the burner, and
 through which the air enters the body of the lamp to replace the oil burned. The collar is returned upon itself and leaves an annular space of about st 2 inch, to permit the oil to follow down and return to the lamp through the circular row of holes in the oil catcher. By means of this device the oil is prevented from creeping over the outside of the burner or lamp, and the lamp is rendered safe as the air is not heated before entering the lamp, as is usual in lamps of the ordinary form. This useful invention has been patented by Mr. Bamuel.Maxim, of Wayne, Kennelec County, Me.

improved Hand Truck.

The engraving shows a hand truck which bas a broad bearing surface at the lower or front end, so that the articles to be transported by it will not be injured by the nose at the front or lower end of the truck. A plate is pivoted at o near its middle to the upper edge of the nose of the truck by means of a pintle passed through holes in the eud stand ards of the nose, and through eyes on the under side of the plate or plat form, so that the plate or platform can swing on the upper edge of the guard. A rod passes through series of eyes in the unde surface of the plate a the
 inner edge, and is pro vided at the ends with longitudinally slotted arms, through which thumb screws pass into screw threaded apertures in the inner surfaces of the side pieces of the truck. The plate can be inclined more or less to the truck, and can be locked in the desired position by means of the thumb screws. This invention has been patented by Mr. Alexander Sloan, of Pittson, Pa.

Improved Fence Post and Telegraph Pole.
The engraving shows an improvement in fence posts and telegraph poles, recently patented by Mr. Frank Brown, of Chagrin Falls, \mathbf{O}. The post is made of plate iron bent so as to form three flanges, the middle flange being double and arranged at right angles with the two others, which lie in the same plane, and are punched for receiving nails or screws for hold ing boards. When the post is used for a wire fence, the central doubl rib is notched to receive the wire which is held in place by a plug The lower end of the post is notched to receive an anchor plate having a triangular hole, through which the post is slipped. The plate is afterward turned and locked in the notches. The same post without the boles or notcbes, is use for a telegraph pole. Fig. 1 show the device applied to telegraph poles; Fig. 2 shows the auge for setting the posts; Fig. 3 is a post with anchor plate at tached; Fig. 4 shows the post with fence wires; and Fig. 5 shows the posts with boards attached. This post is light strong, durable, and readily manufactured.

Improved Corset.

An improved corset for curing curvature and weakness of he spine is shown in the annexed engraving. To each side of the corset a crutch made of hard rubber, or of steel covered with cloth, is secured at the upper edge of the corset by means of a flap, which is passed over the bow of th crutch, and is then passed down on each side of the spring and secured to the corset. The crutch is composed of a stee or hard rubber bow, to the ends of which is attached one end of a pad formed of a tubular fabric stuffed with some sof material. A bip pad is attached to the inner surface of the corset at the hip at each side. Steel springs, which are secured to the crutches, project downward and overlap steel springs secured to and projecting upward from the hip pads. The steel springs are provided with guide loops for holding them together and guid ing them. The steel springs may be locked in the desired position in relation to each other by the thumb screw. The crutches are adjusted. and the corset is worn until the spine bas be come strengthened, and then the crutches are gradually lowered by shortening the springs by adjusting the thum screw, the fabric of the corset be folded more or less, accord ing as the springs are shortened more or less. We are in formed that this device is recommended by physicians as valuable appliance for the purpose for which it is designed. Further particulars may be obtained by addressing the in ventor, Mrs. Villa Hay ward, Box 710, Augusta, Me

Improved Tray.

An improved tray on which articles can be carried very conveniently without danger of their sliding off, and without requiring the use of both hands while carrying the tray is shown in the engraving. An oval or circular tray is pro vided with wings, to which handles or bails are hinged, and the latter are curved in such a manner that when they are folded down they rest
on the rim of the tray
The hinges of the bails or handles are provided with stops to prevent winging them upward outward too far be yond the vertical posi tion. While carrying the tray, the highes points of the handles
or bails are to be swung in contact, so that the tray can be carried and held by one hand, leaving the other free to open doors, etc. The rim prevents the dishes and other articles on the tray from sliding off in case the tray is accidentally inclined. The tray can be used in dining-rooms, sick-rooms, etc. When the handles or bails are swung down, they cross each other. The rim of the tray is about one inch high. In place of making the tray oval, it can be made circular; but the oval shape is considered preferable. This invention has been patented by Sara L. Vreeland, of Hackensack, N. J.

Dark Blue Marking Ink.

Christian Knab, in Munchberg, Bavaria, makes a blue preparation good for marking trunks and boxes, because readily combines with wood, cloth, etc., and resists the action of the weather. His process is given in the Deutsche Industrie Zeitung as follows: 100 pounds of a 30 per cent quid extract of logwood are put in a suitable kettle, with 3 quarts of alcohol, to which 2 pounds of hydrochloric acid has already been added.
The mixture is kept at 68° Fahr., and well stirred until thoroughly mixed. Next he dissolves 10 pounds of (yellow) chromate of potassium in 30 pounds of boiling water, and adds to it 20 pounds of hydrochloric acid, stirring well, and when it has cooled to 86° Fahr., stirs it very slowly into the mixture already in the kettle. The whole is then warmed to about 185° Fahr. The mass, which then becomes an extrast, is stirred a short time longer, and to it is added 30 pounds of dextrine mixed with 20 pounds of fine white earth (terra alba), and well stirred through. The mass, when taken from the kettle, is put into a mill where it is thoroughly worked together. It is, lastly, put into tin boxes and left standing a long time to dry out.

The oldent Tree in the World.
The oldest tree in the world, so far as any one knows, is, says Knowledge, the Bo tree, of the sacred city of Amarapoora, in Burmah. It was planted 288 B.C., and is therefore now 2,170 years old. Sir James Emerson Tennent gives reasons for believing that the tree is really of this wonderful age, and refers to historic documents in which it is mentioned at different dates, as 182 A.D.. 223 A.D., and so on to the present day. "To it," says Sir James, "kings have even dedicated their dominions, in testimony of a belief that it is a branch of the identical fig tree under which Buddha reclined at Urumelaya when he underwent his pilgrims, but it is too sacred to touch with a knife, and therefore they are only gathered when they fall. The King oak in Windsor Forest, England, is 1,000 years old.

Curiositiem of the Dead-Letter Onfec.

One of the rooms of the Post-Office Department building, Washington, has recently been transformed into a museum or the exhibition of curiosities that have accumulated in he Dead-Letter Office. The articles exhibited number several thousands, and embrace everything imaginable, from a postage stamp of the Confederate States to snakes and horned toads. A correspondent of the Eroning Post has been rummaging around in this department, and he finds that among the relics is a record of all the valuable letters received during the early days of the postal service in the colonies of North Americs. This record is in the handwriting of Benjamin Franklin, and shows that during a period of eleven years only 305 letters containing valuables were sent to the Dead-Letter Office. The records of the Department to-day exblbit at a glance the enormous difference be tween the postal service of the present and of the early days of the country's history.
The number of letters received at the Dead-Letter Office during the last year wrs $4,207,496$, or more than 18,600 each working day. Of this vast numlier, nearly 20,000 contained money to the aggregate value of upward of $\$ 44,000 ; 25,000$ contained checks, drafts, money orders, and other papers to the total value of about $\$ 2,000,000$; while 52,000 had inclo sures of postage stamps. This vast amount of mail matter was sent to the Dead-Letter Office because three-fourths of the addresses could not be found; one-eighth were addressed to guests in hotels who bad departed without leaving addresses; nearly 300,000 were insufficiently prepaid, and as many more were either erroneously or improperly addressed. Eleven housand bore no superscription whatever.
Wherever practicable, letters are forwarded to the partie addressed, if they can be reached in any manner. If they contain valuables, and the sender is known, they are returned; otherwise the valuables are sold and the proceeds deposited in the United States Treasury. If letter-writers would exercise an ordinary amount of care, the majority of the work of the Dead-Letter Division would be dispensed with and all the trouble and annoyance of losses by mail would be avoided. But the business of this branch of the Post-Office Department increases from year to year.

Prehistoric Cemetery.

Two miles from Mandan, on the bluffs near the junction of the Harl and Missouri Rivers, says the local newspaper, the Pioneer, is an old cemetery of fully 100 acres in extent flled with bones of a giant race. This vast city of the dead lies just east of the Fort Lincoln road. The ground has the appearance of having been filled with trenches piled ful of dead bodies, both man and heast, and covercd with several feet of earth. In many places mounds from 8 to 10 feet high, and some of them 100 feet or more in length, have been thrown up and are filled with bones, broken pottery vases of various bright colored flint, and agates. The pot tery is of a dark material, beautifully decorated, delicate in finish, and as light as wood, showing the work of a people skilled in the arts and possessed of a high state of civilization. This has evidently been a grand battlefield, where thousands of men and horses bave fallen. Nothing like a sys tematic or intelligent exploration bas been made, as only ittle holes two or three feet in depth have been dug in some of the mounds, but many parts of the anatomy of man and beast, and beautiful specimens of bruken pottery and othe curiusities, have been found in these feeble efforts at excavation. Five miles above Mandan, on the opposite side of the Missouri, is another vast cemetery, as yet unexplored. We asked an aged Indian what his people knew of these ancient graveyards. He answered: "Me know nothing about them They were here before the red man."

Incombuatible Paper.

Mr. G. Meyer, at a recent meeting of the Societe $\mathrm{d}^{\prime} \mathrm{En}$ coluragement, exbibited a new paste combination designed for the manufacture of incombustible cardboard or paper or all sorts and shades. The inventor did not wish to make known at the time the chemical composition of this paste, and also of a new ink exbibited with it, as the patents that he had applied for in Germany and America had not yet been obtained. He made known the fact, nevertheless, tha asbestos was the principal thing employed in the manufac ture of his incombustible paper.
He presented specimens of writing, printing, engraving. etc., made with his inks of different colors, and also showed a water-color drawing that had bren submitted to the fiery ordeal of the potter's furnace. The painting had preserved all its brilliancy and the paper all its flexibility. By request the inventor for a few minutes exposed to a gas flame a sheet of his paper upon which he had written with ink of his composition. Neither the ink nor the paper was changed. In order to demonstrate by a most conclusive test how great a heat the paper and ink were capable of withstanding. Mr. Meyer then placed a lithograph, 15 by 16 centimeters, be tween two layers of glass in a state of fusion. On removal the paper was found to have completely resisted the action of the heat, and the engraving to have preserved all its sharpness.

Removal of Freckles.
The careful application of a small piece of the ointmeat of the oleate of copper at night upon retiring will usually remove the freckles. The oleate copper ointment siould be prepared by dissolving one drachm of the salt of oleate of copper in sufficient oleo-palmitic acid to make a soft oint ment.-Shoemaker.

engineering inventions.

Mr. Edward S. Plimpton, of Denison, Ia., has palented an improved mechanism for converting the reciprocating motion of windmill pitman rods into dead center trouble so ofteu experienced in operating windmille.
A device for facilitating the handling of Freeight in the subject of a patent by Mr. Prapcis \mathbf{B}. narrow gange endless raliroed, and endless propelling chain built in the frelght platiorm, and of a system o by any from the muin track to any desired siding. The truck are moved along the track by the endless chain an of the enautemastically stop at one poind
A combined railroad tie and chair is the subject of an Invention for which Messrs. William $\mathbf{~}$
Gibbe and
George W. Soonk, of Hopewell, obtained letters patent. The invention coneitisi in a tie provided with a cop dange with inclined croses Ananges having angular grooves. and a lug to receive the chati block to sopport the rail, and downwardly-inclined side parts to interlock with the grooved croses fangee ceive the siki es and locking screws, and lags to prever the locking tom turning.
An improved steam actuated valve, the ob act of which is to provent the main valve from striking operation, so that the pump valves shall seat themselvee withoat jar, has been patented by Meesra. L. S. Allison, stuffing box in the head of the malin cylinder extende lide rod, the inner end of which projects into the cy linder a sumfient distance to be struck by the piston when the aster reaches near the ond of its stroke, eo of a lever. Lhus actuating the valve stom over th
A very simple but effective apparatus fo bending rais and bars has been patented by Mr. Ladisav vojack, of hat, when applied to the object to bo bent the twa rollers will bear againet one side of the bar, while the intermediate roller will bear againast the opposite side of the bar. Δ screw regulates an adjustable bearing of the middle roller, which when It is turned decreasest the iistance between the planes of the middle roller and the two end roilerh, and this bends the article to the
desired degree. Provision is made for canaing the rolling apparatus to rravel slong the rall, and sasiso to pre ent it from becoming distorted during the operation. An improved high and low pressure steam angine for use in locomotives and for other parposeen where it is necosesary to obtain power quickly, and
where great variation of power is needed, as in the caee of trains of different lenyths, has been patented by Messrs. Henry and William Monk, of Quebec, Canadi The cylinders and steam chest of this engine sre so
 riction to a minimum while the connecting rods are so arranged as to couple both plstons to one crank, to avoid ead cred es To pressure cylinder, so that the engine may be made to tart np with full power, as is imposaible with the pres ont high and low preseare enfine.
A car starter which is designed to store up the force which is required to stop a car in order to ase Theodor Soetbeer, of New York city. The car is mounted upon square axies which are provided with pinions of saitable size. The pinions gear with a lonpitndinal rack, which is connected with the braking
mechanism in such a way that when the brake is set, he rack will gear with the upver kide of the s elle pinion wheel. This pinion is attached to the arle, thus oreing the rack backward and depressing a spring connected with the end of the rack. When the brake released for setting the car in motion, the spring wil also be liberated, thas forcing the rack forward, and this engaring with the under
An improved railroad switch, which may be operater antomatically or by hand, bas been patentod
by Mr. Simson Nichols, of Lisioion, Me. The ralls of the by Mr. sim son Nichois of tibion, Me. The rails of the
main line and the side line are etationary, bat the mwitch rails are movable and rest in chairs. A loong triangular frame is provided, the shorter side of which is connected with the switch rails, while the end or right rail of the side line and the corresponding left rail of the main line, and this rame is pivoted in the
middee, so that the acte angle or the short side will be middle, so that the acte angle or the short side will be
always raised from the ground or sleeper. A Aapge is attached to this frame, at the end between the pivot and the acate angle, in such a way that if a train pasees of the locomotive will pass over this fange and depress 14 whereupon the other end of the frame will be raised,
elevating thereby the rails of the switch, which will then elevating thereby the rails of the switch, which will then
med side bar of the frame, which is higher than the track.
flange mentioned, when the switch rails will of thll in in
place tine thairs provided for them. The switch may
also be set by hand.
mechanical inventions.
Mr. John B. Beale, of Rush Center, Kan. has recently patented a method of cutting'and preparing
broomcorn, whereby it is claimed that cousiderable labor is saved in the harvesting and handling.
Mr. James Preston, of New York city, is
the patentee of an improved pump frame, the invention
one bar the pump may be turned on ita arit.
spoutt will project in any destrod direction.
A novel shoe tying machine has been paCentod by MMessrs. A. W. Weeks, of Worcester. and L Fing shoes together in manufacturing iestablishmenter No that the two shoes of one palr will be held together,
An improvement on tipping trucks for ransp patented by Mr. Henry Grafion, of London, England. The truck is made to discharge iso contents either at the side or end as may be desiren. Arrangement is made Por tipping the car at greater or less
and holding it in viace atter illting.
Λ_{n} improved trap for sewer pipes, etc., has been patented by Mr. Herman Pietach, of Flatbush, an inlet pipe having an elbow at its lower end and a gaie haring hinged to tt a double jointed hinged plate, hereby all foul gases will be prevented from passing beyond the trap ap the pipe.
An improved washing machine bas been patentod by Mr. J. O. Hard wick, of Colorado City, Colo. The tab is apright in form, and is provided with a pair
wnabboards which face each other in the tub. The of wasbboards which face aach other in the tab. The
clothes to be washed are forced up arid down between he two rubbing boards, and are thereby thoroughly
eabbed.
A new device for supplying steam to the crlinders of steam engines, destigned especially for opeben patented by Mr. Rvan T. Davies, of Manistee, yich. The cylinder of the engine has a rack plston rod which acte directly apon 2 plinion wheel, from which
an he power is transferred to two miter wheels, which An in
An improvement in ice cream freezers has aut been patented by Mr. Ferdinand. Rppel, of San Franascoel continingn conisis of a borizonual revolving outer whesch is so geared that it may be revolved in either
ver and rrection reveraely $\mathrm{L} O$, tarned,
tents.
and

An improved method of unloading hay and grain in barns and depositing the material at any place in the loft is the sabject of a patent granted to
Mesars. Wray Michell and Oscar C , Mitchell, of Rapids, N. Y. The process consists in elevating the rack on which the hay is brought from the ield t the arn. by means of a windiass, when the rack is slid over tracks
tants.
A device for holding tools during the grind wileses has beon pazeried by wi. w. T. Lander the stone by a clamping mechandsm, which is mounted the stone by a clamping mechanism, which is mounted
apon the bench in such a way that the tool may be shifted tomard and from the stone and secured in any Desition as doalrod. By thinge toren he tool will be ground more accurately than if held by

Mr. John Gartner, of Dallas, Texas, has patented an improvement in propelling veseels by sapplementing the ordinary serrew propeller with others locatod in depressions on either nide of the ship. The
inventor connects propelers on the opposite sides of a inventor connecta propelers on the opposite sides of a
veseel with one another and with a atern propeller, so Veseel with one another and with a stern propeller, so
that they will all act at the same time upon different parts of the veseel in propelling her forward, and thus it is clalimed that an increase of speed is attained with lese

Mr. John Vanston, of Durango, Colo., is he patentee of an improved sawing machlne which nh the saw or saws upon
 hto boards without the necesesty of changing its posi is hang above the log every cut of the sam. The sam smaller diameter and of thinner gange, which save of great waste of timber.
A combined die plate and tap wrench for
 of New Bedford, Mass. This device consists in a die phae made wirh alotis in its sides to recelve sliding
guards. The gaards engage with end grooves in the dies, which, as they are moved forward and backward by the screw handle, engage with and release the diee by means of siationary pins attached to the die plate.
An angular recess is formed in a portion of the die for Ang and holding a tap withont removing the die,
A compact folding chair, adapted for trans porting and storage, has been patentod by Mr. W. J.
Decker, of New York city. The invention conselo attaching to the sides of the seat frames at the rear cor ners thereol metal alides of sach a size and form as to al and alip ap the bars which sapport the back of the
chair. Metai blocks are attached to the ther aldo chair. Metal blocks are altached to the inner silde of
the bars to limit the downward movement to the and support the scal when in nase. The chair may be radily folded and unfolded for use, and a number mas A very
rescued from the upper windows of a borning bailding or by which means Aremen may ascend and take ap
hoee or other appliances for sabding the tire paratus is operated by steam or compreseed air, tron boiler on the truck.
A station indic
A station indicator to enable passengers on steam or horse railrouds to see for themselves the
street or station they have reached, has been putented by Mr. Ben McCrary, of Hot Springs, Ark. A board provided within the car, apon which is inscribed to sounds to call the passenger's attention to the fact that a station is being approached, while a pointer direct the traveler's eye to the name of the place on the board Which is aboat to be reached. The mechanism may be operated by the condactor or antomatically from the
An improvement in feathering paddle wheel has recentiy been patented by Mr. Joseph Lane, of Dan and provided with two concentric rime. The paddles are nisting of osecillating arms, and a locking device con extend from the habs, and these are connectod in such a manner that they lock the oscillatory arms before the paddiles enter the water and while in the water, untit the reach the draught point, when the arms are liberated and the paddies assaume the proper angle for learing the water dgewise. Daring hier apward movement, the dither adid by downward, when the locks are again projectod.

AGRICOLTURAL INVENTIONS.

A simply constructed implement for cotton atalk cutting has been patented by Mr. J. M. Stone, of dranght bar in such a manner that it will lie neary the on the ground, for severing the stalk with a hand shea
Mr. E. T. Gregg, of Marshall, Mich., is the patentee of an improved caltivator, deslgned for use in
garden farming to remove weeds and pulverize the surgarden Yarming to remove weeds and pulverize the sur-
face of the ground already sown with seeds. This hand cultivator is monntod like a wheel barrow, and is provided with a pulverizer farnished with a number of shor surface of the ground.
Improvements in the construction of har Iows and harrow teeth have been patented by Mr. Kitista in emploging fat bars for the harrow teeth, and wisting them below where the bars connect with the eeams, hali the teeth belog twisted to the right and air to the left, so that the harrow wiu not be crowde atheor the beth are emploged.

hiscellaneods inventions.

Messrs. Frank K. Herr, and Samuel K. Herr, of Westminster, Md.., have patented an improve ent he boder he elliptical springs on which the body reate
Mr. Frank P. Monfort, of Oskaloosa, Ia., the patenter of an improved lock for eeccuring the operation, and when the seat is made fast, the lock olds the seat ilmily in place
Mr. Charles P. Jackson, of Chicago, Ill., is
 etherms that the ice will be longer preserved than
other refrigerators. The arrangement of this box very convenient, and the receptacle for the ice may be a real
A simple and inexpensive method of manuactaring cutlery has been patented by Mr. Hadar Hall corming hollow metallic handles on procees consists in compressing the handle sections into a corcerks by

Mr Albert Hall of Cypress Hill,
Mr. Albert Hall, of Cypress Hill, N. Y., annner of fastening buttons to garments. By the atas been forced through the material, a permanent fastning is assured
A convenient case for holding toilet implements has been patented by Messrs. J. O. Jasmagy Brooklyn, N. Y., and D. H. Foot, of New York city his case is so consracted as to hold firmly in place either an
require.
A rabbet plane has been invented by Mr Oliver Hegglund, of Oakland, Neb., for which he bas with a recessed block, to which the handle is pivoted in anch a manner that it may operate the plane at differont angles for varions kinds of work.
Mr. J. W. Hill, of Jersey Shore, Pa., has patented a novel method of attaching the tugs of a har-
ness to the hame connections, so that the draught will be brought to bear, not upon the points of the tuge where the rivets pass through it and th
A miner's candlestick is the subject of a patent granted to Mr. J. C. Martin, of Tuscarora, Nev.
This consists in a candlestick, a knife blade, a prorg,
and one or two other implements of nse to miners com-

Messrs. A. B. Baughart and C. H. Treat,

An improvement in fire escapes of the tele- dhe edges of the veneers forming the frames will be ex
Mr. Jacob Hesch, of Titusville, Pa., has
Mased to view apon al for edge tres and improved apparatus for boiling acids and
boiled in glass retorts. The object of the invention is to hen the fall bench of retorts is not in nee. A conveuient bill file for the use of mer Whants and others has been patented by Mr. P. J. one portion is provided with a spring which prevent the bills from getuing disengaged from the hook withont pressure against the spring, when the bill required may e withdrawn without disturbing the other bills.
A novel bridle bit for fractious horses bas
 prings, to operate as one bit when the horse is in a geinte mood, but which separates and operates as a ouble bit to open the moath and gag the horse in case

A composition for preventing the fouling of ships' bottoms and for the preserving of wood, iron,
etc., from deterioration has been patented by Mr. N. B. Dennys, ound consists of a mixture of sulphide of copper, oxide

Mr.Davit F. Hull, of Hagerstown, Md., has atented an axle for vehicles, and which is also adapted agricalural machines of varions kidads. A spindle is former become worn it can be withdrawn and tirned around to bring a new part of the spindle on to the wearing part of the axle box, thus prolonging its use-

A novel device, which serves the double arpose of grasping and cutting cords for grain bindern, his simple device consists of a spring actuated slide rating the cord, and of a jaw which slides in a cord and holding it armly after it has been cat, so that the end thereof may not be lost.
A very simple and inexpensive transplanter for tobacco and other plants has been patented by Mr.
B. S. Neblett, of Whitle's Mills, Va. This conaists in attaching a cone-thaped pin for making a suitable hole and of which to the side of a curved crosspiece, one the root of the plant after it has been inserted in the hole formed by the pin.
Mr. Willard E. Barcus, of Vineland, N. J. ject of which is to obriate me the difficulties of mean the ob molasses consequent upon its sluggishness, and to ob viate the difficulty of properly clearing the measure of thentire vided with a discharging Pollower, controlled by a spring and an int
is accomplished.
Messrs. G. T. Wondlief and G. R. Dunn, of Calver, Tex, have reeeived lowers pawent for a boo to facilitate keeping stock with sccuracy. Thero is indicating plate which is attached to the boren ethen and drawers, showing what goods they contain. This indicator is not limited in use to the boot and ehoe trade, but may be
cantlle business.

An improved guard for carving forks has been patented by Mr. T. C. Carley, of Brooklyn, N. Y in auard, which may be of,any desired form. is pivoted position desired by a locking device, consisting in plece of steel slocted lengthwise to form two epring which slot is provided with a suitable enlargement carving.
A circular switch for galvanic batteries, in of an especially for remedial parposes. is the sabjee of an invention of which Mr. Henry Lowe, of Brooklyn by a circle of insulated plate, aud is connected with on of these plates by an adjustable plag and with another by conducdug wrec and a swictiarm, the object being oconnect the plates with the celis of a batcery by con ducting wiree, so that
A novel method of constructing and fitting cogether stove pipe sections is the subject of a paten The improvement consists in mating the pimes, Mich with longitudinal grooves, and so formed as to lap on over the other. Saddle-like clampe are fitted over th overlapping portions of each stove pipe length. By Mr. vincent's invention the diameter of the pipe may be
varied as desired. The ends of the pipe eections are provided with screw threads, by which they are screwe one within another, making a fast joint
A ben's nest, so devised that hens may lay their eggs, incabate, and hatch their young without be J. Q. Sook, of Olivet, Kan. The coop is provided Mr . . door hinged at the botom to aips ap with nside the coop and between the door and the down treadle board li arranged on pivots, and connected with the door fi each a way that the weight of the hen on
tho 'reau'e will gwing the door open when the hen

Mr. Boswald Berry, of Gosforth, Newcas

ausimess and a ersonal.

The Oharge for Insertion under this head is one Dollar

 a line for each insertion : about tiint words to a line.Adou tioments mut be received at pubicection offce
 be obtalned free or charre at the Young Women,
than Assoclation, 7 East isth Street, New York.
G.-Write W. B. he is true.

Ejector Condenser for Steam Engines or Vacuum Pans, La hes 14 in. awing, with and without back gears and
corem. J. BIrkenhead. Mansteld, Mast.

 The Best. - The Daeber Watch Case.
If an invention has not been patented in the United States for more than one year, it may, stlll be patented in
Canada. Coat for canadian patent, so. Vartous other oresgn pateotes may also be obtained. For inctractions Agenos, 281 Broad way, Nerा York.
American Fruut Drier. Free Pamphlet. Sce ad., p. 284. Am. Twist Drill Co.,Meredith, N. H. H., make Pat. Chuck Curtis Pressure Regulator and Steam Trap. See p. 238 . Brass \& Copper in sheets, wire \& blanks. See ad.p. 284 . The Chester Steel castings Co., ofllee 407 Library St.,
 Castings over ail others. Cirouiar and prioe list free.
The Improved Hydralic Jacke. Panches, and Tube Expanders. R. Dudkeon. 2 Jerin t.. New York. Machine Dlamonds, J. Dickingoon, 64 Nassaan St., N.Y. Tlyht and Slack Barrel Machinery a specialty. John
Greenwood $\&$ Co., Rocheotert. N. Y. see illus. adv. p. 2 . Gear Wheels for Models (list free); Experimental onk, wh. D. Warrus Leather, Nickel Anodes, Turkey Emery, Pa-
mitce Stone and Composition. Greene, Tweed $\&$ Co., N.Y. Latbes, Planers, Drills, with modern improvements. 000 De Sphercal Elear Bu 20.000 Duc Spherical Elevator Buckets, sizes $83 / 5$ to 17
Inchees constantis on hand. Telegraphio orders
 First Class Engine Lathes, 20 inch swing, 8 foot bed, Straight Line Engine Co., Syrachse, N. Y. See p. 2885 The Celebrated Wooton Desk. See adv., page 286 . Lightning Screw Plates, Labor saving Tools, p. 288. Wanted.-Patents or the right to manufaccure the
articles on royalty. Give full particulars. Cuts, draw-

Farley's Directories of the Metal Workers, Hardwaro Trade, and Minees of the United Statees. Price 88.00
each. Fariey, Paul \& Baker, 530 Market Street. Phila. Correspondence sollicted from partues desirlng brase
or brunce castings. Speedal f facllitites for larke and heary

C. B. Rogers $\&$ Co.. Norwich, Conn... Wood Working lachinery of every kind. See adv., paake 270 . Common Sense Dry Kill. Adapted todrying of all mas.
lerial where kiln, etc.. drying houses are used. See p.20. The Sweetland Chack. See illas. adv., p. 270. Knives for Woodworkling Machinery. Bookb binders, and

 New Hst Machinists' Tools now ready. Address E. West, Lookport, N. Y.
Improved Skinner Portable Engines. Erie, Pa. Drop Forgings. Billings \& Spencer Co. See adv., p. 258. Guild Garrison's sleam Pump Works, Brooklyn,
v. \mathbf{Y} Steam Pumpling Machlinery of every doecripN. Y. Steam Pumping,
tion. Send for oatalogue.

Botier Scale.- Parties having Ane specimens for sale
r loan. acdress Jas. F. Hotchkiss, \&s John Street, N. Y.
 Unton, N. T. Citr. Fivery focillity yor exhibitlon or machin--the advantages great. Send for partioulars.
Contracts taken to manuf. small goods in ineet or
coant brask. steel, or iron. Estimates given on recelpt of model. H. C. G. Godrich. 68 to 72 gidaen Place, Chitcato. Nickel Plating.- Sole manufact arcers cast nickel an-
odes, pore nickel salts. polishng compositions. etc. Com-
 Lists $29,30 \& 31$, describing 4,000 new and $2 d$-linand Ma -
 "Abbe" Bolt Forxing Machines and "Palmer" Power
Hammers a speciaty. Forsaith $\&$ Co., Manchester.N.ت. Railmay and Machine Shop Equipment.
Send for Monthly Machinery List Send for Monthly Machinery List
ont the Goorke Pase Machinery, Company, to the Georke Place Machinery Company,
121 Chambers and 103 Reade Streets, New York. ${ }^{25 \prime \prime}$ Lathes of the
"How to Keep Bollers Clean," Book sent free by Engines, 10 to 50 horse power, complete, with govern-
 Morris (Drawer 1271 , Baldwinsvile. N. Y.
Wanted. -Patented articles or machinery to make
and Introduce. Guynor \& FItzeracald, New Haven. Conn. Water purifted for all purposes, from household supPlies to those of larkest citles, by the Lmproved 1 ilters
manuractured by the Newark FIltering Co., 177 Com-

Latest. Improved DD.amond Drills. Send for circalar
to M. C. Bullock Mg. Co.. 80 to 88 Market St... Chicaago, III.
For Power \& Economy, Alcot''s Tarbine, M. Holly, N. J.
 Split Polleys at low prices, and of same strength and
appenrance as whole Pulleys. Yooom \boldsymbol{E} Son's shafting
 Machinery Yor Light Manufacturing, on hand and
ballt to order. E. E. Garrin $\&$ Con 120 Conter St.. N. \mathbf{Y}. Preseses Dles. Ferracute Mach. Co., Bridgeton, N.J. Blake's Patent Belt Strds. Beas \& strongest fastening
Cor Leather $\&$ Robber Belts. Greene. Tweed $\&$ Co., N. \mathbf{X}. Sapplement Catalogue,-Persons in parsait of iffortilic subject, can bave catalozne of contents of the sci-

NEW BOOKS AND PUBLICATIONS

The Plasterbr's Mandal. By K. Cameron.
New York: William T. Comstock, 1883. New York: William T. Comstock, 1883 Thus itule pocker mannal contains accarate descrip scription of the appearance and action of the varion immes and cements; instructions for manking mortar
and for doing all tinds of platering; clistern bullding登d for doing all contract; usefoll tables and recipes; and im form of contract; asefara tablees and recipes; and
portant cantlons, sumpestions, ete. The work is
co pionaly cilustrated, and the intention of the anthor to give as much practical information as poesalble in the

The Forests of England, and the Man By John Croumbie Brown, LLL.D. Edin burgh: Oliver \& Boyd, 1883.
This little volume is pablished as a emall contribr uon to the iteratare of Britain on sabjects pertaining O forestry, and very interestingly treats of the mode In which forests and woodiands were managed in Eng deal of very interesting historical matter in this book well calculated to attract the attention of other clasece of readers than those who make the stady of fores a specialty.
Thid biennial Report of the Stat Board of Agriculutue for the Year 1881-82. Topeka, K
lishing House, 1883 .
The report of the Kanasas State Board of Agriculture sabmittod to the pablic in this ovolume, is the outgrowth of a policy adopted shortly after the orzanization of
the board, that is, that of presenting in as succinct and as attractive a form as possible the resoources and capabilites of Kanseas. The history of the phenomena growth and developpenent of Kanases daring the past
decade is well kown to the reading pablic, and the State Board of Agriculture, which iesues theese valuable reports, can
plishment.
The History of Mexico. By Huber
pishenent
Howe Bancroft. $\begin{aligned} & \text { Vol. I. } \\ & \text { A. L. Bancroft \& Co., } 1883 \text {. }\end{aligned}$.
This work forms the ninth volume of the anthor's wititing on Mextcan bistory, the frat of the Ave griea
periods of which have already been exhanetively treated in the ifth volume of his Natios Racas. The story of the conquest of Mexico, which is begno in the present volume, and which will extend through an-
other, has already been treated in a masterly manner by many writers, bat none of these, perhaps was so well prorded as Mr. Bancroft with the necessary resources Yor nuderiaking sach a work, and none has been able
to free himeelf from race, religions, or poilitical preon free himeedr from race rest and to treat the subject, like our author, in
jndic es, and perfecty Impartial manner. The conquest of Mexico, opening to the world as it did the richest, mont popalones, and most civilized country on the northern contlnent, forms one of the grandest episodee in early
American annalk, and a well written history of it such ns we have in the volume before us, forms, on that account, peculiarly attractive reading

Books for the Young; a Gutde for

Parents and Children. Compiled by C. M. Hewins. New York: F. Leypoldt. ist of all the mest ait table worke in th d and contains a ecience, literature, and art for such a purpose. The Idea is a most excellent one, and seems to have been had practical experience, not only in trying to gaide had prea
the rea.
the
The Absayer's Mandal; an Abridaed Treatise on the Doctmabtic Exami-
 Bruno Kerl. Cranslated by
Bh.D.
Pedited by William H. H. Whabl,
Philadelphia: Henry
Carey Baird \& Co., 1888.
The object of this manual is to give directions for ex ecuting docimastic tests of natural and ariincial pro
ducts by metheds taken ducta by methods taken mostly from practice, and which are of interest not only to metallurgist, but aiso
to other technologlts. Althoogh presented in very to other technologists. Althong presented in very
condensed form, every method of importance will be found to have rereived notice in thls volume, and ite practical value eetimated at its proper worth. The ntility of the ranslation has been increased by the introduction of the English equivalents of the Franch metric weights and
hichard Wagner and his Poetical Wore
From " RIENZI" To "Parsifal"" By
Judith Gautier. Boston: A. Williams From
Judit
Co.
"This book," says the author, "is, in reality, only having broken throngh the occalt precinct of the new art, bave the incomparable joy of admiring without reserve all that is worthy of admiration." Readers who are musically inclined will find in these pages detailed
analyses of poems which hary not been transinted into

English, and these analyses will allow those who do
not underatand German to follow the representations of the great master' work
Libraries and Schools. $\begin{aligned} & \text { Papers selected } \\ & \text { Let }\end{aligned}$ by Samuel S. Green. New York: F. This ittile volame is well calculated to interest book bayers, readers, and teachers. It consists of a selection of papers on a toplc which is becoming a prominent
question in edacation. The book contains papers by Charles Francis Adams, Jr., and the compiler on the mation of the pablic library to the poblic schools and by R.C. Metcalf and W. E. Foster on the results of experiments made in different places by teachers, in
bringing about a une of libraries that has proved of reat valne to schoo
Moderi Pergpective; a Treatibe upon the Pringtples and Practice of Plan and Crlindrioal Persprctive. By
William R. Wave. Boston: James R. Osgood \& Co., 1883
This volume contains, in revised form, a series of rears aqo to the columns of the 1 merican 1 rchitcoct and Buudding Nevos. The anthor disconsees his eabjeci in a different manner from that in which it is usually presented, much greater prominence being assigned to
the phenomena of parallol planees than nusual, and use being made of the laws thns established to determine e perspective of lines of intersection and of ahadows ttenilon. Throughout his work, Mr. Wave avolde formal method of demonstration, and nees a somemhat conversational style, and endearors to make the saboct intelligible without employing the apparatus of ,
manual of Chemtoal Analybis as ApPlied to the Examination of Medici-
inal Chemicals. By Frederick HoffNAL CHEMTCALs. By Frederick HoIf-
mann, A.M., Ph.D. and Frederick B.
Power, Ph.D. Philadelphia: Henry C. Power, Ph.D. Philadelphia: Henry C.
Lea's Son \& Co., 1883 .
This work, now in its third edition, was projected by a special guide for ready reference in the application of chemical analysis to the examination of the medicinal chemicals of commerce. In the present edition, which has been thoroughly revised and to a large exont rewritten, in order to make it comply with the recently issaed editions of the American and German pharmacopceias, the general and o ginal plan of the each article complete in text and illastrutions eo as to avoid, as far as possible, references to other articles. The German, French, and Spanish names have been added, as have also a large number of new illustration of apparatus and forms of crystals.
CUTTING Tools worked by Hand and MA
CHINE. By Robert H Smith, M.I.M.E chusk. By Robert H Smith, M.I.M.E.
London, Paris, and New York: Cassell, London, Paris,
Petter \& Galpin.
This does not pretend to be a descriptive treatise o tools, bat is intended as an educational work, and an from its present entirely empirical to a more scientin position. It is intended, in fact, to guide the mechani cal stadent into a correct, scientific way of thinking about tools, so that he may be able, aided by practice to judge intelligently whether a tool is good or bad, to riticise its details, and evencually to design new tool scientifically. The work is clearly written, well illus every student in mechanica.
Eighte annolal
Report of
Indianapolis:
Buford.
This pamphlet contains the reports of the varions wiers and professors of the University for the col lege year ending Jane 80, 1582 . It shows the instioxcelient educational work
Hessup Whitehead. Oyster Cook. By
Chicago, 1862 . This volume forms No. 2 of the author's "Oven a Range Series" of cook books, and gives all the best
methods of cooking oysters and flish for hotel and restaurant services, together with recipes for the apiate eances, etc.
By George C. Pitzer, M.D. St. Lovis By Ge
1883.
The object of this work is to furnish medical student Wraced in the subjects of electricity principal facts em peatics, and to present the matter so plaiuly that novice may, with aid of this book, begin the treatment disease by electrical means. The work is clear) ply a want that has long been felt by country pract
tioners.
hucydides translated into Englise bis, and Index. By B. Jowett, M. A Edited, with preface to the American
edition, by A. P. Peabody, D.D. Boston: D. Lotbrop \& Co.
The text used as the basis of the present translation The old Greek historian is that of Poppo's edition, last in 1856. Professor Jowett remarks in the intro duction that "if Greek literature is not to pass away it seems to be necessary that in every age some one who has drank deeply from the original fountain shoulc renew the love of it in the world, and once more present that old life with its gieat Ideas and great actions,
its creations in politics and in art, llke the distant its creations in politics and in art, like the distan remembrance of youth, before the delighted eyes of
mankind." The American editor Indorses this view mankind." The American editor Indorses this view
very warmly, and pays a deserved tribate to the transformed is acknowledged by all Hellenists. This is magnificent edition. From a typographical point of view, the work is a model of book making; the type is beautifally clear cat and distinct, and the paper and binding all excellent. An exh
greatly to the value of the work.

HMdest Muriss

HINTS TO CORRESPUNDENTS.
No attention will be paid to communications unlese
accompanied with the full nare and address of the writer.
Names and addresses of correspondents will not be given to inquirers.
We renew our request that correspondents, in referrin
to former answers or articles to former answers or articles, will be kind enough to
name the date of the paper and the page, or the number of the question.
Correspondents whose inquirles do not appear after a reasonable time should repeat them. If not then pab-
ished, thes may conclude that, for good reasons, the lished, they may conclude that, for good reasons, the Persons desiring
Persons desiring special information which is parely P a personal character, and not of general incerest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expectod to spend time and labor to btain such information withoot remuneratio
Any numbers of the Scientific americas Supple ant referred to in these ch
office. Price 10 cents each.
Correspondents sendiDg samples of minerals, etc. or examination, shoald be careful to distinctly mark o label their specimens so as to avoid error in their identi -
(1) C. W. H.-If calf kid begins, to look reddish and rusty, give it a slight application of oil,
which will protably restore the colors, but if not, pot Which will protably restore the colors, but if not, put
on blacking. When the blacking has dried, brush it on blacking. When the blacking has dried, brash it
off, and go over it again very lighlly with oil, when It will be as good 28 new. Patent leather will not only oilling. For par, bat the laster will also be improved by that has become brown, apply the same. When only's ittle red, an application of oil or tallow will often restore the color. When it is very brown, black it thoroughly, and oil it afterward, giving it a nice dressing
(8) J. W.-When flour is mixed with yeast or moistened, with water and placed in a warm rogeno,s constituents, casein, glation, fbrin, etc. This change extends later to the sagar. gom, and starch. In this way vinous fermentation is indaced, yielding to rise); at a later acta (the latter cansink ine bread giving rise to lactic acid. Such in brief is the chemical action that takes place, generally called fermertation.

(8) G. F. T. writes: Please tell me in the sciemtific Δ yerions what size boller it would take to ran a one-twentieth horse power, cylinder one and a half inch bore, 2 inches struke, balance wheel 8 inches in diameter aud weighs 10 lb ., and single acting.
What shall I make the boller of A. You will need boat 1 foot of heating surface for your one-twentieth horse power. A small coil of 1 inch iron pipe 8 or 4
turns about 6 inches diameter, inside of a stove or small frnace mates a very cood working boiler. Place the coll above the fire, feed at the bottom. You may also connect the top and bottom ontilde of the stuve with a small pipe and water gange; ma
about half the height of the coil.
(4) C. V. N. asks: 1. What lubricant is here, not liquid, that is not affected by a solution of
anm or soda and that does not attack brass when laced on cotton packing in contact with it for a length of time, and that does not set if not used? A. Graphite. . Is cosmoline changed by long exposure to the air or water? Hast been used as ande to the air or water. It
(5) C. C. F. asks how to temper steel plow points so as to last the longest without sharpening and
with but little expense. I have tried receipts to temper with but little expense. Thave tried recelpts to remper What we need here is something that will make steel as near the hardness of a diamond as possible, as this soil wears points as fast as if held on a grindstone. A. If the steel is good, you will need nothing better than good ciear water with perhaps a little salt in it. Harden at ar low a heat as the steel will bear, and do not draw your plow points in the same manner. The great roable with plow points is in the poor quality of the hardening; which every blacksmith knows how to do, and harden at a low heat without drawing the temper
(6) M. G.-Flint glass is made of silex or lear white sand, soda, and oxide of lead in varions procrown glass the lead is left out. Eyepiece lenses are generally made of crown or plate glass.
(7) E. F. N. writes: I wish some informaCay for October 28,1882 ou state that chloride of lime or of sodium, added to the water, will shorten the time required for boiling, but you do not state what amnunt is used nor how abject of canning which I can purchase! We canned omatoes for market (in a small way), but we perforated he tops before boiling. They kept well. A. The addition of salt or calcium chioride raises the boiling
point and so shortens the time required for boiling. The time cannot be exaclly stated, as it is dependent upon the amount added. Try adding a poond of salt
o a gallon of water. There io no book on the sabject.
(8) A. G. G. asks: What are the ingredi nts of "Spencer" acid, used in varions processen of consists of 1 ounce pore granulated silver dissolved in pure nitric acid and one ounce mercury nitrate dissolved
in some hot water; ailate to desired strength.
（9）G．M．asks：Can you give me the par－
ticulars as to the manufacture of sugar from milk？
A．Milk sugar is prepared by heating milk with an
acid or renner，separating the card，fittering through
animal charcoal，if necessary，and eraporauing to point
of crystallization．It occurs in commerce as elongated
crystalline masees．For further particulars consult
Spons＇Encyclopedia（page 1903）．

cominnications received．

On Latent Heat．By E．A．
On the Correlation of Force．By D．H．D．
INDEX OF INVENTIONS
For which Letter：Patent of the United
April 24， 1883 ，
AND BACH BEARING THAT DATE．
［See note at end of ust about coplee of theso patente］
Amalgamating pans，shoe and die for，Jobnson \＆ Osborn．．．．．．．．．．．．．．．．．．．．．．．．
Axtomatic عate，E．Little．．．．
Axle box．car．W．S．G．Raker xle，carriake，c．s．Harper Bag．See Travelling bag．
Begrasse furnace，J．Hill．
Bagasse washing ond maccharine extrecting ma Bar．See Grate bar． asket，clothes，C．Fergason．．． Batting，machine for rolling cotton，W．Hinchliffe
Bed．folding．D．J．Powers．．．．．．．．．．．． ed spring，
edeteed，folding．E．C．Bardwell． Bedstead，invalld，R．T．White edstead，sofa，C．V．Stumpi ell ringer，steam，e．Lawson Bird perch，F．L．Greeory．．．．．．．．．．
Blacking case，boot，F．J．Tripgs
Block．See Sawmill head biock．
Board．See renter board．Fieotric circuit switch
board．Electrical switch board．
board．Eilectrical switch boarch
Boller cleaner，J．F．Hotchkisa
Bolting regulator，J．R．Fhiske．
ook backs，device for cutting notches in，D．．．．．．．
ooks，apparatus for pasting sheets in binding Carlton $\&$ Smyth
Boring and tenoning machine．W．W．R．．．．．．．．．．．．．．．
Butt：e packing box，J．C．Sohoenthaler．．．．．．．．．．．．
Bottles，etc．，packing box for，J．J．Boxard．．．．．．．．
Box．See Axle box．Bottie pecking box．Journal box．
Brace．See Vehicle spring brace．
Bracket．See Portable bracket．
Brake．See Car brake．Rallway brak．
Brake rod conpiling， B ．
Brick and tile machlne．G．Van Winkle．
Brick machine．I．Cullen．．．．．．．．．．．．．．．．．．．．．．．．．
Brick，machine for pulverising diay for mating，
W．Andrus
Bristle setting apparatus，J．J．C．Smith．．
Broom and duat pan holder，S．P．Porter
Brash blocks，machine for boring，W．s．Mckiu－
ney．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Buckle，harness，A．Cadwell
Burtal casket．J．II．Walker．
camera．See Photugraphic camera．
ane juice evaporator phat farmera．
anning machine，vegetabie and fruit．T． \mathbf{P}
capeule machline．C．F．Purdie．．．．．．．．．．．．．．．．．．．．．．．．．． Car brake，J．F．Mallinokrodt（r）
Car coupling．J．E．Dlakerson
Car coupling，M．Jacobs
Car coapling．L．P．Whitling．．．．．．．．．．．．

Carpet sweeper．B．R．Stevens
carriage curtain loop．F．A．Netder
Carriage jack，E．Myrick．
Carriage top，L．Schmetser．．．．．
Carrier．See Sewing machine shattle carrier．
Trace carrier．
Cartridge．E．．Monfort．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Case．See Blacking case．Map and chart case． Packing case．Spool case．
cash box system，automatic．
Cash box system，
Cell，cases，Crum ．．．．．．．．．．．．．．．．．．
Caking，F．B．Stocking
ellulotd collars，cums．etc．，manufacture of，i．S
nter b

Chann，orramental，F．Becker．．
Chalns，device for securing binding，J．Smith．
Charcoal furnace，J．Burt
Cherry stoner，J．G．Baker ．．．．．．．
Ider mill，Hull \＆Smoke．．．

lasp and button，combined，G．T．Kilner Clasp for pocketbooks，etc．，G．Crouch
cleaner．See Boller cleaner．
clock striking mechanism，o．O．Lðvaen
Cock，stop and waste．J．F．Lampln
Cookle screen，J．B．Cornwall．
Coke fornaoe and apparatus connected there
Collar．horse，J．N．Bic

or apparatus or cohesive rondernear，steam．C．A．DYxon．．．．．，C．S．3mith 276，487

288,550
278,960

276,986
2780.54
276,228
${ }^{276,172}$
78.488
76,188
76288
28,312
7812
78,220
276,434
286,210
76,174
278,210
276,174 278,220
276,41
Hook. See Screw hook. Suspender book
Horse power, W. H. Worth
Horse power. W. H. Worth
Horse whipping device, G. L. Clark
Horsehoe, D. Carey.............
House. See Ioe freearing bouse.

mour....
Indicator. Bee Telephone call indicator
Injector, E. Wohlera....
Invalld chalr, M. J. Koen
Jack soe Carriage jack. Lifting jack. Wago
Jack.
oint. See Universal joint.
Journal box. Sargood \& Hemmer......
Journal, compensating, \mathbf{a}. B. Rominger
Ledder, folding step, G. Belsner.
amp, soldering, ©. W. Hoeh
Lantern, L. G. Hunt1gntor
Latch, door, J. A. Baldwin
Iatch, door, \&. W. Biliungsiey
Latob, locking, G. H. Van Winkle.
Lead or crayon holder, R. W. Uhlig
Lemon squeeser, Kelly \& Wimmer.
Li for pots. eto.. P. B. Conneely...
Lla for pots. eto. P. B. Conne
ifting jack, W. M. Kichholts
Litting jack, W. M. Rigein....

look. Permatation lock.
Loom, hand, w. Sochllng....
Lumber, treating. E. J. Story.
Lumber, treating, . J. J. Story........................
Maneoto and dyamo electric machine, A.
Gravier...............................
Magneto electric generator, Pect \& Chapman...
Mallet, s. G. Howe..
Map and chart case. H. E. Moon..................
Cedical compound, J. C. Blackman.
Metal, upsetting, W. \& G. H. Sellers
Metallargical plant. R. Forsthth..................
Mill. Soe Cider mill. Roller mill. Rolligg mill.
Motion, meohanism for converting, T. Wilson.
Motor. 8ee Hydraullo motor.
Motor for Mght machinery, B. A. Wilton
Mucliage wafer, J. I. Donahue...
Mustache protector, J. H. Betts.
Nall. See wire nall.
Newspaper stand and rack, R.
Nippers. police, J. J. TTwer...
Nut, capped scrow. Searis..
Nnt lock, w. M. Foclea.......

Ore concentrator, dry, J. Hubert....
Ore separator, Hershey $\& ~ H i t c h c o c k ~$
Oxidising furnace. W. E. Harris....

2

Eraporating strups and visco
paratus for，F．B．Niohols
paratus for，F．B．Niohols ．．．．．．．．．．．．．
Evaportor．See Cane juice evaporator．
Kitension table，J．Cl
Farm ．
Fazte，C．Hart ．．

Feed water beater, J. H. E1..........................
Feed water heater and smokestack, coubbined, \mathbf{J}
Armstrong .
Feed water puri

Arwatrong ．．．．．．．．．．．．．．．．． Feed water parieer．J．T．Mead．． Foed water rexulator，J．s．Clarke

Fence，barbed wlre，C．A．Mann．．．．．．．．．．．．．．．．．．．．．．．．．
Fence wire，machive for maling barbed，F．H
Trest．．．．．．．．．．．．．．
FIter，
F．K．Haynes．．
Fllter and cooler，comblned water，E．．．．．．．．．．．．．．．．．．．．．．．．．． Frre eccapp，W．Rees．
Fre escape，ingulsher，ant．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Mowers，kauge for forming founde tichop
Mowers，，kauge for forming foundations for arti－
nctai，J．Lambert．．．．．．．．．．．．．．．．．．．．．．．．
Fork．See Brick
Frame．Soe Printing frame．Sewing machine
quilling frame．Window frame． quilling frame．Wlindow
Frult drier，E．M．Turner．．．
Frutt pitter，C．A．Curran．．．．．．．．．．．．．．．．．．．．．．．．．．．．276．20
Fume arrester for ohimney fues，M．Frevidenbers
278，388 Farnace．See Bagasse furnace．Charcoal farnnce．
Coke furnaoe．Ehinine furnace．Oxidiling Furnace．
Fuse catter and capper，F．P．Plckikng．．．．．．．．．．．．．
Garment fastener，C．G．Dobbs．．．．．．．．．．．．．．．．．
Ges by electrictty．push button and drcuit fo Gas by electricity，push
Lighting．T． H ．Rhodes
Gas generating apparatus，N．M．Langdon
Gate．See Antomatic gate．Farm gate．
Gate．See Antomatic gato
Gate，D．\＆D．C．Baker．．．．
Gear cutter，Brooks \＆Scully．．．．．．．．．．．．．．．．．．．．．．．
Generator．See Eliectrical generator．Magneto Gib，I．C．Sham．．．．．．．．．

B．Atterbury Glove，H．Urick

Glove， \mathbf{H} ．Urwick．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Glucose or
 Governor，H．Tabor．．．．．．．．．．．．．．．．．．．．．．．．．． Grain binder，J．F．Appleby
Graln binder，N．sT．Remy ．． Graln binder，N．S．Remy
Graln drill，Bude \＆Swope Grate bar，alr feeding．
Gun，mavazine，P．Boak
Gan，marazine，P．Boch．．．．．．．．．．．．．．．．．．．．．．．．．．
Guns，toading gate for magasine，W．Trabue．．
Hair from and into rope mation Hair from and into rope，macbl
and spinning．J．Spauiding． Hair head－dress or ware，
Hammock．J．Fctitner．．．
Hand protector，J．Doyle
 Harrow tooth fastenink，
Harvester．L．Millier．．．．
Harvester，corn and cane．Judd \＆Rawalt．
Harvester graln binder，W．M．Piatt
Harvester，grain bindling，L．Muller．．
Harvester，grain binding，L．Mule
Harvester pitman，K．Anunsen．．．
Harvester reel，K．A nunsen．．．．．．．．．．．
Harvester wheel．Miller \＆Elinwood
Hat coolling apparatus for blooking machines，H C．Haulenbeck．．．．．．．．．
Hay elerator．J．W．Stone．
Headilght slenal Heater．See Feed water beater．
Hinge，T．L．Rivers．．．．．．．．．．
Hinge，gate，L．M．Draper
Holder．See Lead or crayon holder．Pen holder．
Sash holder．Stereotype plate hild
Package for butter, el.,
Packing oase. T. Cockroft
Pracking device, ateam,
Paoking glase Rauge tubees, derice for, w. i.

Darkin.....................
Paper linling machine, J. C. Baver
Paper pulp, apparatus applicable to the manufac
ture of, J. W. Dixon

Dxon.......................................
Paper sepapating and folding apparatus, w.
wilson ot al.
Pen holder, D. Hepp......
Pen holder. J. G. Hester
Pen holder. J. G. Hester........................
Pen, st flographic fountaln, Kerner a Downes..
Pencl fastener, J. F. Webstar......
ermutation lock, sarlis \& Holinand
Hotographic camern, W.
Hils with gelatine, machine for coating, w.
Franolscus
Planter, seed, J. F. Gehrite ..
Planter, seed. C. Lee.......
Planter, \&eed, C. Mitchell....
Pliers, cuttig.
P. H. Jencks.
Pliers, cutting. J. H. Jencks.
Plow, sulty, J. Rickey.......
Pole and chain, binding. H. M.
Pole and chaln, binding. H. M. Carls
Portable bracket, L . Baumeister....
Pot. See Coriee pot.
Powders, machine for preparing papers for phys
Power. Bee Cotton gin power. Horse power.
Preserving food, composition for, J. Howard..
Prese. See Printing
Printing fabrics, macheses. for, Kerr \& Howard..
rinting frame, sun, J. 8. Hambaug
Printing press, G. Williamson
Printiag press. G. L. Adams
Printing press, device for stralghtening sheet
dellivered from the fly of a, T. H. Bowes
Programme card for dances, Mendum \& S wett...
Programme card Ior dances, Mendum \&Swett..
Protector. See Chimney protector. Hand pro
teotor. Mustache protector.
Pulley, band, w. H. Dodge......
anlley, band, W. H. Dodge
Palley, loose, G. H. Albee.
puller. See Stump puller.
Ing wood, N. Kaiser....................
Pulverising apparatus, A. E. Grimths .
Pump valve, J. Flower.............................
Pyroxyline compounds, treating. W. McCalne
Qullting machine, L. Bchiltz.
Rall tie, E. B. Hangerford ...
Rallway brake, S. G Colquhoun
Rallway rall, J. F. Hanlon
Rallway rall and tie elevator and lifting jack, 7
C. Naramore...................
Railway signal. Long \& Tarney.....................
Railways, curve, fror, etc., for street, T. L. John

Ring. See Martingale ring.
Rollee mill. . . J. Gllbert...............................
Holler mill. D. W. Marmoa................
Rolling hoops, gheers, or hollow cyilindera, ma

\＄5
念
\vdots
\vdots
\vdots
78，122

镸坒荡

278,484
278．837 delivered from the fly of a，T．H．Bowes ．．．．
Prokramme card for dances，Mendum $\&$ Swett．，
Protector．See Chimney protector．Hand pro teotor．Mustache protecto
Palley，band，w．H．Dodge．．．． Palley，loose，G．H．Albee．
achinery for assort
Pulverixing apparatus，A．E．Griminths
Pump，doublo－eting force，J．B．Griswold．．．． Pyroxyline compounds，treating．．．．．．．．．．．．．．．．．．．．
Quilting machine，L．schiltz．．．．．．．．．．．．．．．．．．．．．．．
Rall tle，E．B．Hungerford ．．
Rallway，cable，A．B．Hallidie
Rallway rall and tie elevator and lifting jack， 7
Railway signal，Long \＆To．for ．．．．．．．．．．．．．．．．．．．．
Rallways，curve，frop，etc．，for street，T．L．John Rattle，chilid＇．．．．．．．．．．．．．sson．．
 chine for，J．Reese．
Rolling mill，W ．Hatt
Rolling mill，W．Hart ．．．．．．．．．．．．．．．．．．．．．．．．．．．
Rolllng rall way ralls derice for，A．J．Acaater．．
Rotary engine，C．F．Cory ．

Rotary engine，W．J．Fraxier．．
Rowing apparatus， Smith \＆C

Rotary engine，W．J．Fraxder． Rowing apparatus，Smith \＆Cusaday gand drier，J．G．McPherson． Sash holder，N．N．Horton． Sash welght．R．Vosburgh． Sash，window，B．Hurtubes． Saw guide，band，B．McCbesney． Sawmill head block，G．H．Zschech Sawing machine，W．F．Hill． Sawing machine，band，J．W．Smith．．．． Scafold，portable hanging．J．H．Hanavan Scale，counter，A．A．Honghton． Scraper，wheeled，L．A．Sweatt． Screen．See Cockle screen． Screw hook，J．C．Ernst． Screw machine．metal，J．W．Lyon． Secondary batters，C．F．Brcsh．， Secondary battery element，C．F．Brush Secondary or atorage battery，E．T．\＆E．E．Starr． 276，500， Seed，process of and apparatus for treatiog cot－ ton，T．Taylor ．． Separating and collecting the component aub－ stances in animal and vegetable matter，J．A．

stances in animal and teot the component s．．．．．．．．．．．．．．．．．．．．．
Separator．See Ore separator
Sewer gas trap，A．Blatchly ．．
Sewing machine，т．s．Huntington．．．．．．
Sewing machine，T．A．Macaulay（r）．．．
Seving machine

Sewing machine feed，A．Lobdell．．．．．．．．．．．．．．．．．．
Sewing machine quilting frame，J．E．Beaty．．．．
Sewing machine shuttle，o．L．Smith．．．．．．．．．． Sewing machine shattie，O．L．Smith．．．．
Sewlng machine shuttle carrier，W．Shaw Sewing machine shuttle carrier，W．Sbaw．．．．．．．．．．
Sewing machine treadie，s．C．Tatum，Jr．．．．．．．
Sewing machines，cloth cover for，A．H．Oiliver．．

Shingle machine，P．R．Houpe．．．
Shirts，making．C．A．Gllbert．．．．
$\begin{array}{r}276,412 \\ .276,582 \\ \hline\end{array}$
Shirts，making，C．A．Gilbert．．．．．．．．．．．．．．．．．．．．．．．．．． $2 \pi 8,5$
Shovel straps．machine for punching，Jope \＆
Johnston．．．
Johnston．．．
Signal．See Headilght signal．Rall
Snow slow
Snow plow．G．A．G．
Soap，C．J．Kverett．．．．．．．．．．．．．．．．．．
Soap plottling machlne，A．Atiss．
276.395
.276 .276
2780

Soap plottling machine，J．Atkiss．．．．．．．．．．．．．．．．．．．．．．266，326
Sole or heel burnishing muchine，H．Bond．．．．．．．．266．345
Sower，fertlizer，harrow，and roller，comblined

Spring．Sea Bed Bpring
Spring．See Bed spring．
Stamp mill cam．R．B．Butler et al

steel，manufacture of，H．M．Nichols．．
Stereotype plate holder，E．Weel．．．．．
Stove，gas，E．Stern．．．
Stove，ofl，J．MoConnell．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．276，187
Strap．See Trunk strap．
Stump puller w．Tue
Stump puller，W．A．Tucker．．．．．．．．．．．．．．．．．．．．．．．．．． 276.500
Suspender，C．D．Cheosman．．．．．．．．．．．．．．．．．．．276，351
Suspender hook，B．M．Heineman．．．．．．．．．．．．26，24
8wivel coupling，J．．．We Warner．．．．．．．．．．．．．．．．．．．．．．．．．．．276，24
Table．See Ertension table．

Tag，bottle，N．K．Stanly．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．276，2
Tag，shlpplng，W．F．Edwards．．．．．．．．．．．．．ir8，ie8，278，1
Telegraph line，underground，Rittenhouse \＆
Locke．． 276,
register for，F．F．KInsman．．．．．．．．．．．．．．．．．．．．．．． 278.18
Telephone call indicator．J．M．Proroost ．．．．．．．．．276，46
Thill．vehicle，D．P．Sharp．．．．．．．．．．．．．．．．．．．278，19
Thrashing machine and separator．．．．．．．．．．．．．．．．．．276，190
Rath．．． 276,401
Thrashing machhne feeders，supply apparatus for，
J．P cobb．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．278，225

Universal joint，P．Lord．．．．．．．．．．．．．．．
Vehitcle spring brace，s．R．B．Bergen．．
Vehtcle，two－wheled．C．H．Stralg
Venhicle，two－wheeled．C．H．Stralght．．．．
Vehicle，two－wheeled．Trerwiler \＆Bas
Vehicle，two－whetled．Trerwier a
Wano．dumplng，D．J．Russell．．．．．
Washing machine，J．Bally．
Watch cases，pleture holding cap for，H．Hirsh．．．．．．．．．．．．．．．．．．．． Water casoset，pretures．holding cap for， \mathbf{H} ．Hirsh．．． 28 Water elevator，W．M．Scott．．．．．．．．．．．．．．．．．．．．．．．．．．276，4，
Water ¥heel，M．．M artin ．．．．．．．．．．．．．．．．276，
Water wheel，J．M．Powell ．．．．．．．．．．．
Water wheel，J．M．Powell ．．．．．．．．．．．．．．．．．．．．．．．．．276，5s8
Wheat hulling and cleaning machine，s．K．Todd． 276,200
Wheel．See Car wheel．Harvester wheel．Trao－

Wire nall，W．D．Slonn．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 276,991
Wire rope and cables，manufacturing，
Wiswell ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 276,815
Wire rope，machine for making，F．A．Wiswell．．． 76,318
Wire rope，machine for makling，F．A．Wiswell．．．．
Wire rope，machine for the manufactare of，F．A．
Wiswell
Wiswell．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 276
Wire rope，manufacturing，F．A．Wiswell．．．．．．．．． 276
Wooden plates，machine for cuttIng，8．H．Smith．276
Wool，apparatus for axtracting grease from，A．
H．Butel ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．39
Wool combing machine，W．Wardman
Wool combing machine，w．Wardman ．．．．．．．．．．．．．．276，39，278
DESIGNS．

J. O. TODD ENGINEER AND MACHINIST.

The New Baxter Patent Portable Steam Engine.

2	Horse Power, 245.
3	Horse Power,
290.	$4 / 2$ Horse Power,
Horse Power,	2750.

J. C. TODD, Paterson, N. J., Or No. 17 Barclay St., New York.

ROLLSTONE VARIETY LATHE,

and tatat juat ghat yon want tand
ELECTRIC LIGHTING BY BATTERIES.

 ain hewdeniefers. VIRIBLE DROP,
 , ILkararited to bor

BAAENNG
\rightarrow FIRE -AND-VERMIN:PROOF
Sample and Circular Free by mail
U. S. MINERAL WOOL CO., 22 Courtlandt St, N. Y.

[^0]
SPECIAL NOTICE.

A POCKET MANUAL FOR ENGINEERS

 Inded (potage prof efill

 LLLUSTATATED CATALOGUE ON APPLICATION.
 NUT TAPPINC DURRELL'S PAATENT.
 cknowledged to be an indispe
abbitoo MMantatatured by
HOWAR
STEAM PUMPS

returns from steam heeiting pipas
ratus without the see of tanks
tran

 STEMWINDING Pormutation Lok

THE AMERICAN BELL TELEPHONE COMPANY,
W. H. Forige,
W. . D. DRIVER,
THRo. N. VAII,
W. H. Foorges, W. R. DRiverr THEO. N. VAIL,

WATCHMAKERS.
Before buying lathes see the "Whitoomb", made
AMERICAN WATCB TOOL CO.."Waltham, Mass.

SOLTHWARK FGUNDRY \& MACHINE COMPANY Engineers \& Machinists, Porter-Allen Antomatie Cat-0ff Steam Engine.

RUBBER BACK SQUARE PACKING.

[^1]

PERIN BAND SAW BLADES,

THE RIDER HOT AIR compression Pumping Engine,

Wanted, a First-Class Superintendent

Western Foundry and Machine Shop,

©HAS

NEW TELEPHONEI

Hemphedidetad

Valuable Manufacturing Property AT AUCTION.

If not sold privately, the undersigned will, on Utica, N. Y.. at 2 P.M., the property formerly be-
longing to the Paris Furnace Company, located at This property consists of two separate mills or shops, one with steam, and each with good water
power, full line of shafting, etc. power, full line of shafting, etc.
Attached to the works are shops, offices, residence, and twenty-four acres of land.
They are on the line of the D., L. \& R. R., ten miles from Utica. Were formerly used for
the manufacture of hoes, forks, scythes, etc., but can be readily adapted to any purpose. Taxation light. Coal and labor secured at lowest rates.
The owuers will let the property go at a great
sacrifice, and to any one desirous of engaging in sacrince, and to any one desirous of enge fong in
manufacturing no better location can be found. If not sold as an entirety, the manufacturing
establishments will be offered separately. establishments will be offered separately.
Terms, one-third cash; balance on bond and Terms, one-third cash; if besiance on bo
mortgage, at 5 per cent.,
For particulars and description, address
H. C. SHOLES, Att'y at Law Clayville, N. Y

MLEABLE AND FINE GRAY IRON ALLSO STEEL

PATENTS.
MESSRS. MUNN \& CO., in connection with the pubamine Improvements, and to act as Solicitors of Patents

In this line of business they have had thirty-eight Uars' experience, and now have unequaled facilities for
the preparation of Patent Drawings, Specifcations, and the prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs.
Munn \& Co. also attend to the prepration Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books, Labels, Reissues, Assignments,
and Reports on Infringements of Patents. All business and Reports on Infringements of Patents. All business
intrusted to them is done with special care and promptness, on very reasonable terms.
A pamphlet sent free of charge, on application, con-
taining full information about Patents and how to pro cure them; directions concerning Labels, Copyrights, sesigns, Patents, Appeals, Reissues, Infringements, As-
signments, Rejected Cases, Hints on the Saie of Pa-
tents, etc. We also send. free of charge, a Synopsis of Foreign
Patent Laws, showing the cost and method of securing patent Laws, showing the cost and method of securing
patents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents,
BRANCH OFFICE - Corner of F and 7 th Streets, Washington, D. C.
$\mathbf{8 5 , 0 0 0}$ Accident Insurauce. \$25 Weekly
 Vrite or call for Circular and Application EUROPEAN PERMITS WITHOUT EXTRA CHARGE JAS. R. PITCHER, Ses't. 320 \& 322 BROADWAY, NEW YORK

THE MAT NUMBER
THE MANHATTAN CONTAINS:
Froatispiece. The Pliny sicene in Hamlet,
After the famous pannting by DANIEL MACLISE
 The Lady of the Patio.

Metamorphosis. Carhaix. Where are the Springs of Long Ago ?
 A sonnet by fiohard Henry Stoddard. The Descendants of Louis Phillippe.
With 12 portrats from ph
Margaret and lucille. by Edna dean Proctor. The Modern Novel. A Poem. By Edgar fawcert Round the Table. By G. H. Sheiburne Hull The Noble Red Man in Brazil. Salman Recent Literature. Town Talk.
 $\mathbf{8 3}$ a year in advance, postage free; 25 Cents a
number. Published at WASTE NOT MONEY
ON I.NFERIOR SHOES
ANDDONOTPAY EXTRAVAGANT PRICES
MOST DURABLEMADE,FINEST CAIF SKIN,
FASHIONABLE,PERFECT FITTING.
ONGE TESTED ALWAYS WORN.
MADEIN BROCKTON,MASS.
EVERY PAIR WARRANTED. Ask your dealer for the James Means, *3 Shoe. If he
cannot supply you, it it inevertheless within your reach.
even though you live in the most distant corner of the country. If you send your address on postal to James

MECHA NICS WA NTED.- A foreman for a general MANHOOD! C KNOW THYSELF,

A Book for Every Man!
Young, Middle-Aged, and old. The untold miseries that result from indiscretion in
earry lifemay bealleviated and cured. Those who doubt
this lissertion should purchase and read the new medical
 Rervain Mil. It is not only a complete and perfect trea
tise on Manhoo. Exhaste Vitaily, Nervous and
Physical Debility, Premature Dectine in Man. Errors of

 pages, bound in beautiful embossed covers, funl gilt
embeelished with the very finest steel engravings, guar
anteed to be a finer work in every sense-meehanical

Mur Hedrich Move=逐

BLAKE'S CHALLENGE" ROCK BREAKER.

 $\$ 72$ Werk , wa day athomeantly made Golly MORPHINE ano WHISKEY

COHLORIDE OF GOLDE

 REMEDIES.LESLIE E. K00 © ures. Bonks FREE,

AGENTS = wisise ivi

 THE DINGEE \& CONARD CO'S

ROSES

A AEENTS AND AVED TO IVRIODVCE

25 Importad design Chromo Crid for 1 1ve, name on

ROOT'S NEW IRON BLOWER.

IRON REVOLVERS, PERFECTLY BALANCEL, Has Fewer Parts than any other Blower.
P. H. \& F. M. ROOTS, Manufacturers,

 NGEW YORE.

WARRANTED Walke's Flexible Fountain Pen; Pat. Bee. iiamond-pointed gold. pen , ,hard rubber heold ier.
Absolately non-corrosive, certain in fow and action. Over so,000 on in use Not one rejected or or thrionm
aside. We also make cheap fountain and dipping peng
 We warrant our pens and will pefund price paid us for
any pen not entirey satisfactory after ten day, trial.
For descriptive price-list and terms to agents, addreeg THE WALKE PEN M'F'G CO. HAMILTON, OHIO.

PEACH CIDER.

 Manufacture End Territory for As FLie. Address Right

NAGMWHins

 AGENTS Wanted for handomomelluatratof standron
 WATCH CASES

 RUPTURE

THE ROCK WOOD PHOTOGRAPHIC DRY PLATE,

COLUMBBIA Besy running staunchCL and du-
Thable roadster is the favorite with

 HENRY CAREY BAIRD \& CO., Industrial Publishers, Booksellers, and Importers, S10 Walnut St., Philadelphin. Our stock comprises the literature of every branch
of sie.ence applied to the arts. Catalogues free to any
address in the world.

To ipres patranry
Asbestos Lined Removable Covering,

 Sudden Changes of
Steam Pressure.
AIso Patent
EJECTORS Witer Eliextaros, For Conveeng
Water and Linquid.
Patent Ollers, Lu-

COMBINED

 Punch and Shears ambertville Iron Works, LAMBERTVILLE, N.J.
ROOFINC.

BORING \& TURNNG MILLS Osmess

WANTED. A MECHANICAL MANAGER for a manafactory in Chticago, employing between 30
and 400 hands, and comprising attechine shop, black
smith shop, an iron foundry, a a attern shop, a millwright
 thoroughy accustomed ste
of the eatis of economileal shop engina worment, and h h
must be a wide-awake man. One with some knowledg

HW.JOHISS

ASBESTOS ROPE PACKING,
ASBESTOS WICK PAGINGE ASBESTOS SHEATHINGG,
ASBESTOS GASKETS, SBESTOS GASKETS,
ASBESTOS BUILDING FELT. H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York,
sole Manufacturers of H. W. Johns' Genuine ABESTOS HIOUID, PAINTS, ROOF
PAINTS, ROOFING, STEAM, PIPE
AND' BOILER COVERINGS,

BAKER'S

 Chocolates preparation of platin choocolate, tho bor thent from which the excess of oil has been
 recommended by touristh-Baker's dren.- German Sioet Choolate, a
mostexcellent article for families. Sold by Grocers everywhere.
W. BAKER \& CO. BAKRERER Haser
KORTING UNIVERSSAL Double TUBE. INJECTOR
\qquad - BPAS I POBITIVE ACTION GUARANTEED UNDER NO ADJUSTMENT FOR VARYING AL CONAIIIONS PRESSURE. OFFICES AND WAREROOMS:

 HARTFORD

STEAM BOILER

 Inspection \& Insurance COMPANY. W. B. franilin.V. Pres't, J. M. ALLLEN, Pres't. J. B. PIERCE, Sec'y.
MIRE ROPE

Address JOHN A. ROEBLING'S SONS, Manufactur
ers, Trenton, N.J. or 17 Liberty treet, Now Yorketur
Wheels and Rope for conveying power long distances.
 Rider's New and Improved compression Hotair Puming Eingine New and Improved Designs.
NTERCHANGEABLE PLAN , manemin DELAMATER IRON WORKS,

No. 16 Cortlandt St., New York, N. Y.
 Higunin Improved Nast Bunanees are not atathe

FOR 1883.

The Most Popular Scientific Paper in the World. Only 83.20 a Year, including posta
This widely circulated and splendidy tllustrated paper is published weekly. Every number contains six-
teen pages of useful information, and a large number of original engravings of new inventions and discoveries representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, New Inventions, Novelties in Mechanies, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, Arehltecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the Bcientific American a popular resume of the best scientific into present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive reading. It is promotive of knowledge ad progress
every community where it circulates. Terms of Subscription.- One copy of the ScIE tific American will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three months, 81.00 .
One copy of the Scientific Amerioan and one copy for one year, postage prepald, to any subscriber went United States or Canada, on receipt of seven dollars by
The safest way to remit is by Postal Order, Draft, Express. Money carefully placed inside of envelopes. securely sealed, and correctly addressed, seldom goe and make all orders, drafts, etc., payable to

MIUINAT \& CO.,
261 Broadway, New York. SKILLED WORKMEN PREFER.THEM TO HAND CUT. SOLD AT WHOLESALE IN EVERY STATE OF THE UNION.
SATISFACTION GUARANTEED OR MONEY REFUNDED.

PRINTING INKS.

[^0]: HARRIS-CORLISS ENGINE

[^1]:

