a WeEkly Journal of practical information. art. SCIENce. mechanics. Chemistry and manufactures.

Abstract

Vol. KIVNIII.-No. 18.] NEW YORK, MAY 5, 1883.

\section*{THE STEAMER CITY OF FALL RIVER}

The steamboat City of Fall River, shown in our engraving, presents some novel and interesting engineering features which are attracting the attention of engineers and others interested in steamboat traffic. The peculiar features of this boat are her compound beam engines and feathering paddle wheels. The engine is of 2,000 horse power; built by W. \& A. Fletcher, North River Iron Works, this city. In general appearance it is similar to that of the ordinary beam engine, but instead of one cylinder the engine has two, one of which is 44 inches in diameter by 8 feet stroke, taking steam from the boilers at high pressure and exhausting it into a second cylinder 68 inches in diameter with 12 foot stroke. The wheels, though of a pattern common enough in England and elsewhere, ore very unusual here. They are the Morgan feathering wheel, 25 feet 6 inches in diameter outside of the bucket, and are of extraordinary strength. Each wheel has 12 buckets 10 feet long, 5 inches thick, and 40 inches wide. The boilers are two in number, of the " Redfield" tubular pattern, $171 / 8$ feet wide and 15 feet long, each having two shells $71 / 2$ feet diameter, made of Otis steel $1 / 2$ inch thick and double riveted. Each shell contains 110 tubes 33 inches diameter and 12 feet long. Each boiler has connected with it a superheater, with uptake 56 inches diameter, and outer shell 96 inches diameter. Boilers are placed one forward of the engine and one aft. They are very strongly built, and have been tested by a hydrostatic pressure of 150 ounds per square inch. She has a donkey boiler, Worthington duplex steam pump, centrifugal pump with independent engine capable pumping 5,000 gallons of water a minute, Sickle's steam teering gear, and a Providence steam windlass, made by the American Windlass Company, of Providence, R. I. She is a fine, able looking vessel, and has an estimated capa city of 100 car loads of freight. The hull is rather a peculiar one, as the reader will see from the following particulars: It was built by Montgomery \& Howard, of Chelsea, Mass., from specifications and model prepared by Mr. George Peirce, Superintendent of the Old ions: Length on water line, 260 feet; length over all, 273 feet breadith of beam moudded, 41 feet; breadth of beam outside 42.4 feet; breadth of beam over guards, 73 feet; depth of hold amidship, 17 feet; depth at side moulded, 18 feet; epth amidship moulded, $18 \cdot 4$ feet; draught of water, light, feet; depth between decks from top of plankshear to top of feet; depit between decks from top of plankshear to top of upper frame at outside, 11 feet. Keel, white oak, 14×8 inches; stem, white oak, 12×12 inches; apron, white oak, 12 inches; sternpost, deadwood Georgia pine, 12 inches; floors, white oak, double, 16 inches at keel, 8 inches at deck; sided, 8 inches; spanned, 26 inches, center to center. Every space between floors, from stem to stern, extending up bilge o a level of 2 feet above top of keel, is filled with white pine, making the whole bottom of boat solid. Main keelsons are of Georgia pine, each 14×88 inches; sister and side keelsons are of Georgia pine, each 12×28 inches; bilge streaks and ceilings are Georgia pine, one streak 12×18 inches; 5 streaks 8×12 inches; and 5 streaks 5×18 inches, thoroughly edge bolted. Clamps and stringer streaks are yellow pine, 5 streaks of clamps 8×12 inches, and five stringer streaks 6×12 inches, thoroughly edgebolted and keyed with oak and locust keys. Beams of Georgia pine, 6×10 inches, and spanned same as frames, 26 Ceorgia pir tiames, 26 aches, center to center. Hach beam has two hackmatack kneea, siding 7 inches, with double knees at wheel, engine, and boiler beams. Each alternate beam has hanging knee outside of bull under guard. Plankshear of white oak, 5×22 inches; main deck of white pine, $81 / 2 \times 5$ inches, sheathed with spruce $11 / 4$ inches

thick. Planking is white oak; first garboard streaks 6 inches, second garboards 5 inches, and the remainder 4 inches. All fastenings copper and yellow metal, and locust treenails up to 14 feet water line; above that, galvanized iron and locust treenails. Three water-tight bulkheads, one 20 feet aft of stem, and the others forward of forward boiler and aft of aft boiler. Engine frames and keelsons of Georgia pine. Rudder of white oak, 16 inches diameter of stock. Backing and filling securely bolted with $11 / 8$ inch yellow metal bolts, and huug with three sets of 4 -inch braces and pintals of composition fastened with copper bolts. Sponsons extend from aft wheel beam to sternpost, and from forward wheel beam to where guard extends, only 20 inches outside of main bull.
Sponson timbers of yellow pine and backmatack; planking, yellow pine, $21 / 2 x 4$ inches, well fastened, calked, and smoothed. Has two masts and complete set of kingposts and rods. Hull is strapped inside of frame with diagonal iron straps, 4 inches wide and $5 / 8$ inch thick, with belt strap extending all around vessel, 6 inches wide and $3 / 4$ inch thick. Hull, throughout, built of the best material for the purpose, thoroughly fastened and without superior afloat.

A novelty in her construction is the absence of the hogframe. In its place, however, and to obtain the requisite longitudinal vertical rigidity, a Howe truss-bridge framehas been built in her hold. The upper chord of this truss, which is about 200 feet long, fore and aft, supports the deck beams, and the lower chord is bolted to each frame. Additional longitudinal strength is supplied, too, by a network of iron cross-strapping on the inside of her frame. These diagonal straps are of flat iron, $4 \times 5 / 8$, and are connected to an iron belt plate, $6 \times 3 / 4$, which extends clear fore and aft parallel to and behind the clamp streak. This cross-bracing runs downward to and is fastened in the floor timber heads. The interstices between her frames are filled in with white pine, navy fashion, and the joints calked, thus making her floor solid from stem to stern. Her ceiling is calked also, that her compartments, of which she bas four, may be truly water-tight. She has three water-tight bulkheads, the first, or the collision bulkhead, being 20 feet abaft the stem; the next one going aft, just forward of the forward boiler; the next just abaft of the after boiler. Her main deck or freight deck is laid in yellow pine, calked, and sheathed over wtth 13/4 spruce.
When the boat was built no great speed was expected, but the performances on a few of the recent trips are rather surprising. The boat was intended to make the time from dock to dock between New York and Fall River, a distance of 181 miles, in 12 hours, when carrying a maximum load of 600 tons. On the second trip, loaded with more than 700 tons, dead weight, atrd carrying only 75 pounds of steam, she came through in 13 hours against a strong ebb tide. The large amount of freight was the result of a number of foggy days in the week previous, during which freight had accumnlated at Fall River to an unusual extent. When it is considered that previous to her first trip the engines had never been run more than two hours consecutively, and that since she has started the engine has not had to be stopped on account of the engine itself, we think that the builders have reason to be proud.
Up to the present time the bearings have not been warm on any trip yet made. The engine works very quietly, and keeps its rate of 23 to 26 revolutions a minute without trouble. On the night of February 21 she made the run from dock to dock in 10 hours and 28 minutes, with a load of 400 tons. This is an average of $17 \frac{1}{4}$ miles per hour, with 75 pounds steam pressure. On the first trip, with wheels making $241 / 2$ revolutions and having a dip of 5 feet 9 inches, the engine, with 75 pounds of steam, developed 1,775 horse power. The boat was at that time making $15 \cdot 2$ miles per hour between Point Judith and Little Gull Island, the tide ebb. The following are the averages of the boat for sixteen passages: Average time from dock to dock, 11 hours 17 minutes; average consumption of coal per trip, 20_{18}^{2} tons; fastest time, 10 hours 24 minutes; average steam pressure 75 pounds; average load, 415 tons net.
The tide during the time which these averages cover has been even for and against the boat.

Lighting by Battory.

M. Trouve is stated to have considerably improved the bichromate battery in the matter of permanency by supersaturating the liquid. He takes 150 grammes of bichromate of potash powder to a liter of water, and after shaking adds, drop by drop, 450 grammes of sulphuric acid. The liquid warms and the salt dissolves, while no crystals are formed on cooling, nor are chrome alum crystals deposited in the cell. The elements are arranged with two carbnns to each zinc, the latter being so placed that it can be withdrawn from the solution. With twelve elements and the solution above described, it is stated that ten incandescent lamps can be kept at work for five hours, ench lamp giving ten candles. There is thus $\mathbf{1 0 0}$ candle power for five hours.

Ravages of the Spruce Tree Worm.

The ravages of some insects on the spruce trees in northern Maine, says the Bangor Commercial, is becoming a serious matter to owners of timber lands. A gentleman who is well acquainted with the wooded tracts in the vicinity of Rangely says that if the work of devastation goes on five years more as it has for flive years past, it will destroy all the spruce trees in that section. The larva, in which state the insect does the mischief, is a green worm about an inch long.

Srientific gesmeriran.

HETABLIBHED 1845

MUNN \& CO., Editors and Proprietors

 published weekly at
No. 261 BROADWAY, NEW YORK.

O. D. MUNN.

A. в. beach.

THRMS FOR THE SCIENTIPIC AMERICAN. One copy, one year portage Included....
One copy, six months postage Included

8390
160
 sratis for every cuut of five subscribers at 88.20 each: addtitional coptes at same proportionate rate. Pootage prepald.
Remit by postal order. Addrass
mit by postal order. Address
MUNN \& CO.. 261 Broad
N \& Co.. 201 Broadway, corner of Warren street, New Yo
The Sclentific American Supplement
is a alstinct paper from the Scirviric An irican. THE SUPPLEMMENT

 all news dealers throughout the country
cill beined llates. - The Scientipic American and Suppirninit Will be sant for one year postage tree. on reoelpt of ceven dollars. Rot papers to one zddress or different addresses as desired.
The snfeat way to remit ts by draft, postal order or reat The safost way to remit is by draft, postal order, or resistered letter.
Addrees MUNN \& CO.. 201 Broad way, corner of Warren street, New York: Selentific American Export Edition.
 large quarto pages, profusely illustrated, embraing: (1.) Most ol the platen and pages of the four preceding weekly ienues of the Scikniticic AMKRICA, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading hounes.
Terms for Export Edition, 85.00 a year, sent prepaid to any nart of the Terms for Export Edition, 85.00 a year, sent prepald to any nart of the
world. Single coples 50 cents. Es Manufacturers and others who desire to seoure forelgn trade may have larke. and handsomely displayed an nouncements published in this edition at a very moderate cost.
The Sci RNTIFIC AMEIIC AN Exnort Edition has a lerag The Scirntific Ameitican Exnort Edit lon has a large guaranteed circu-
lation In all commercial places throughout the world. Address MUNN o ., 281 Brosalway, corner of Warren street, New York.

NEW YORK, SATURDAY, MAY $5,1883$.

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SOPPLEICENT

INO. 383,

For the Woek ending May 5, 1883.

 Price 10 cents. For sale by all newsidealers.NATURAL HISTORY.-Lion's Head taken by Instantaneone Photography.-Illustration
The Snake Bird ...
Poison of Soorpions..........................
Repugnatortal Pores in the Lysiopetalide.
The Home of the Paille-en-Queue, or Tropic Bird.-................
 On the Physical Conditions under which Coal was Formed. By The PIt NEWBRRRY.
GRICUR By Jown Fows. U. s. Consul.... 61 son. -Cleasfeatione sweet Gum Tree. By Prof. L. C. Joins-son.-Classifcation.-Medicinal properties of the gum.-To obtain
the styrax.--Southern trees the best.-Transportatlon. - Durability -Use by cabinet makers.................
California Bet Ranches.- 1 luatration.
II. ELECTRICITY.-The Electric Distribation of Power. By B. A. MISKI, U. 8. N....

The Δ ction of the Microphone. By A. Stron.-2 igares....
Electric Street Passenger Car.-- Agures............ TECHNOLOGY.
About Stoneware

Application or Sulphocyanide Componnds in Calico Printing..
MEDICINE AND HYGim
-Numerous figures....... Astigmatism and Ophthalmometry
 the blood and in the perspiration. - Pathology of intermittent fever. - rlants found in the urine of aque patients.-Forms of crystaline
matter found in the urine. Remedies for Headrche.

tration.

tration.. 610
an AND MECHANICS.-A Pullman Train from
Calats to Rome....................................... VIII. CREMISTRY.-Helouis' Carbo-Oxhydric Burner.-1 Agure.....
IX. ARCHITECTURE AND DECORATIVE AR': , Woodman's Cot tage, Madrestield. - l lustration.

HOW THE ELEVATED ROADS ARE CARED FOR. To properly care for such a vast structure as the elevated railroads of this city involves great labor and expense judiciously directed. The road may be considered as a continuous series of iron bridges, in which each span rests on iron columns, both the girders and columns varying in design in the several sections. The foundations, columns, the different parts of the girders, the track, and the buildings must be carefully examined, and the number of lives hourly depending upon the thoroughness of the work demands an immediate repair of any defects discovered. Up to March last there were, on the four roads, 8,751 columns, located as follows:

When it is remembered that, on the average, there is a trifle more than one girder to each column, in addition to transverse girders, and that these girders will average more than 45 feet in length, a crude idea may be obtained of the magnitude of the work to be inspected.
The engineering department has control of all the force, and to it all reports are made. The roadmaster's depart. ment is made up of track supervisors, inspectors of girders and rivets, riveters, cleaners, etc. The remaining division is that of building and•repairs. Each man has a certain work on a certain division of the road, which he is expected to attend to, and it is the duty of his superiors not only to receive his reports, but to ascertain for themselves if he capably performs his duties. The track is being constantly patroled, and the rails, spikes, fish plates, and frogs inspected. Distinct from this is the inspection of the girders, particular attention being paid to the panel points and pocket bearings and to the rivets. In case of the discovery of loose rivets, or other defects which cannot be instantly repaired, the lo. cation of the defect is noted and a report made. The columns are all numbered, and a report would be something like this: name of road, north bound track, between columns -- and -, such and such rivets loose. As soon as possible the riveting gang would be sent to this section.
The deflection of a girder caused by the passage of a train is measured by an instrument similar to the level rod used by surveyors. Two rods of wood slide freely by each other, one being furnished with a scale and the other with an index point. One end of this rod rests on the ground, while the other is hooked over the lower chord of the span by means of an iron angle. Any deflection is measured by the scale. A deflection of $1 s^{2} \sigma$ is allowed, but if a span be found which deflects more than this, its strength must be reenforced. This is done by inserting flat panel bars between the upper and lower chords, and in some cases by placing strips along either, or both, of the chords; all are securely riveted.
When, either from a depression of the track or from some other cause, it is found that a foundation has settled, a trestle work is immediately placed beside the column and the track lifted two inches by the aid of jacks. In this position it is allowed to remain for twenty-four hours, in order to test the strength of the false work. At the end of that time the foundation is uncovered and a new one laid if necessary.
When repairing, the rivets are prepared and are driven just after the passage of a train, thereby allowing a few minutes for cooling before being subjected to a strain. All new work, no matter of what description, is covered with a coat of paint, and care is taken to keep the structure as clean and free from rust as possible.
When excavations, or blasting, are being carried on in the vicinity of the road, watchmen are stationed near by in order that the trains may be stopped in case of accident to the road. The foundations and superstructure of the high portions of the road are inspected every morning.

WATOH CRYBTAIS.

As the thick waiches of the last century gave place to thinner ones, and the higb convexed glasses became inconveniont and unbandsome, fiat glasses were made which were but slightly curved near the edges. They were made from rounded pla around the edges. Owing to their high price they were only used on fine watches.

The concave watch glasses of the present day are not hol lowed out on a grindstone, but made by a mothod invented in 1791 by a skillful watch-glass maker in Paris named Pierre Royer. The Geneva manufacturers imitated his method, and succeeded in developing it into an important branch of industry.
Before Royer's process had been perfected and come into general use, various interesting experiments were made in the glassbouse in Goetzenbrack, in 1830. Little phials were blown, each with a slightly curved bottom, and this bottom when cut off formed a concave glass; but as it required a new phial for every watch crystal, this made them ton expensive too.
One improvement followed another until finally they are made in wonderful perfection and with surprising rapidity, which is due principally to the skill of the glass-blower, so that now very thin glasses of enormous size can be made.
The glass-blower takes up several pounds of glass on the wide end of his pipe in that plastic state in which it can be worked like wax, and rounds it off by rolling it on a damp
block of wood and first blowing into it gently. He then blows a little harder and swings it to and fro, which lengthens it out, and with proper tools he gives it a long pearshape. Having acquired the approximate form required, it is rebeated in the furnace, and then blown out to a larger size, a steam blast being employed to finish the blowing. The finisbed ball, which resembles a balloon, is cut from the pipe and placed on a wooden work-bench upside down.
In some glasshouses they have succeeded in blowing bal loons from 12 to 32 inches in diameter with ease. Sometimes they exceed 40 inches, and the walls of such colossal bells do not exceed it or at most $\frac{1}{15}$ of an inch in thickness.
These enormous balls can be designated as truly industrial works of art. About 600 watch glasses can be cut from one such sphere, by a method which we will describe below. As these large balls, owing to their great size, are liable to break, and cannot be handled rapidly, it is customary to
make smaller ones and cut them into two. First a metallic make smaller ones and cut them into two. First a metalic
pattern of a watch glass is made, and either pressed on the sphere or on a strip cut out of it. While this is held in place with one hand, the other draws a little white hot tube around the edge of the pattern. This circle is immediately moistened with cold water, and the sudden contraction that follows the previous expansion causes the piece to crack off, forming a more or less hemispherical crystal.
This process has, however, been superseded by the socalled tournotte, a tool that resembles a carpenter's compass (dividers), one leg being provided with a diamond. L.Veyret, of Lyons, deserves the credit of perfecting and introducing this instrument.
First, ten circles are cut on the large ball with the point of the diamond of this little instrument. As these little scratches do not go through the glass, the next and most separate crystals. This is accomplished by little strokes or tape all around the circle. After one has been taken out, the workman can put his thumb through this opening into the sphere; and then taking the next one between the thumb and fore-finger, he presses gently outward, and thus separates the second, after which the rest are taken out in the same way. (See Scientific American, Feb. 17.)
After they bave been cut out, and before they are ground to the proper form, the glass must be subjected to another operation, the object of which is to improve and shape the rim so that it may fit accurately into the crease around the watch case.
The glasses are put into muffles of refractory clay heated with coke. In the muffles are many little moulds of the finest clay, having the exact shape that the crystals ought to bave, the surface being nearly flat, with the edge slightly raised. [They look a little like a soup plate on a very small scale. -Trans.] The workman lays one glass on each mould, after sprinkling over them finely pulverized lime and clay to prevent the glass from sticking to them, and introduces them quickly into the muffle. When the glass gets soft enough they are drawn out, one at a time, and the glass pressed down against the mould with a wad of paper, so that it takes the exact shape of the mould.
With a skilled workman who can watch several muffles, the process is quite a rapid one. But both the mould and the ball leave little marks on the glass which have to be polthe ball leave littie marks on the glay of thus increasing the cost.
ished
Another method of shaping consists in using convex moulds a little smaller than the glasses. When sufficiently heated, they are placed on a cast-iron plate in front of the muffle and pressed down on the moulds with a wooden lid of conical form. The projecting edge of the glass getting
beated first is softer, so that it alone is pressed down by the lid. This method is more rapid, and only the edges need polishing. This is done on grindstones of hard material, which produce the beveled, slightly projecting edge that holds it in the case. It is finely polished with cork
The last method has been still further simplified by grinding the disks as soon as they are cut out with the diamond. The beveled edge is formed on sandstone wheels, and then
arched or curved form. The ground edges are rounded by the heat, and rendered smooth and brilliant, and at the same
time are harder and firmer, so that they can be set time
[Here follows, in the original, a description of the watch crystal factory of Troi-Fontaines in Lothringen, where 520 gross (74,880) are manufactured daily, each glass passing through thirty-five distinct operations.]
After the watch glasses have acquired the requisite shape by pressing the warm and softened glass on to or into moulds, they are taken to a large ronm fitted with grinding and polishing lathes. The grinding is of three kinds, called Flettage, Pontillage, and Biseautage. The first consists in grinding away the convexed portion so that the outside is nearly all flat, and the glass is thin in the middle, but near the rim retains its original thickness. The second is similar to the first, bat only the center is ground, forming a small circular pot that is slightly concave.
Biseautage is grinding the edge to a proper bevel, so that it will fit into the crease of the case accurately, which is absoutely necessary for holding it securely. This operation is performed on lathes driven by steam, and one man can tend eight or ten of them, as it is only necessary to put them on and take them off
After a tinal polishing with pumice, measuring, sorting and inspecting; they are ready for packing and shipping.

PANTED DIAYORDS.

by н. c. hovir.
The latest fraud in precious stones furnishes a curious confirmation of the law of chromatic contrasts, and an unexpected illustration of Sbakespeare's saying :

To glld refined gold, to paint the lily."

About six months ago the owner of a magnificent gem, which he had supposed to be a Brazilian diamond of the first water, suddenly found it reduced to about one-fifth its value by being accidentally wasbed with soap-suds. This imple process revealed its true character as a yellow African diamond of inferior grade. This trick, which was originally played in Paris, has since been reproduced in this country, and it is rumored that a single Sirm on Chatham Street was thus swindled out of many thousands of dollars without being able to detect the perpetrator of the fraud.
A case of the sort is now in the New Haven courts, being tried by Judge Deming, some of the particulars of which may be of interest, and serve to put persons on their guard against what is really an ingenious deception.
Jacob Nepel, a manufacturing jeweler in that city, had several diamonds, apparently of great value, which he disposed of by an agent to Mr. Edward Engel, a diamond broker of seventeen years' experience. The gems were faultless, but the low price set on them awoke suspicion that they were either stolen or spurious. Several local dealers examined them, using a microscope for the purpose, and pronounced them fine old mine diamonds and worth five or six times their price. Mr. Engel then took them to New York and exbibited them to Messrs. Heller \& Bardell, im porters and dealers in precious stones, who were also de ceived by the appearance of the gems, until the owner mentioned his suspicions. Mr. Heller, remembering to have beard of a new process of painting diamonds, took one of the studs, estimated to be worth from $\$ 1,000$ to $\$ 1,500$, washed it in soap-suds, and found it to be a cheap African diamond worth perhaps $\$ 140$. The rest of the set proved to have been tampered with in a similar nanner. On re turning to New Haven, Mr. Engel sought redress through the courts, and probably will get it.
The explanation is as follows: The common African dianonds are naturally a honey-yellow. On dipping one of them for a few minutes in an aqueous solution of aniline violet, and then letting it dry, it will be found that, while the luster remains unimpaired, the color is changed from yellow to the fine steel-blue usually observable only in the best tones. The two colors, yellow and violet, it will be noticed, are complementaries, and on blending produce the brilliant result described. The aniline is casily removed by the application of soap-suds, the water being tinged, not violet, but green, while the diamond regains its original yellow hue.

IITFUSORIA AND RHIZOPODA.

jober m. Comy sil
Darwin's revelations in regard to the earth-worm, besides showing the prodigious and useful work performed by that seemingly insignificant creature, were also added proof that some of the most unsuspected agencies are occupied in a labor of absolute necessity to the well-being or even preser vation of the globe. Not that it is claimed for the earth worm that its work is preservative, though that may be too it it is certainly the fact that the stupendous labor pe formed by a creature almost universally thought of only in
connection with the angler or the early bird is typical of the silent forces continually at work preserving or making habitable our world.
Not the whales, the elephants, the hippopotami, not the but the atoms. But a trifling knective work of the universe, but the atoms. But a trifling knowledge of geology is
necessary to understand the importance of the limestone strata, and these are in large part the product of the tiny
rhizopods, those almost microscopic shell-fish which in former ages swarmed in countless multitudes in the ocean
ocean's bed to form a bard, thick crust, which should play a large part in the preservation of the world.
Another important factor was the infusoria, classed by Dana among animated creatures, but now known to belong to the vegetable world. Most of these microscopic vegeta oles were soft, but some bad hard, scaly coverings which massing together formed a hard substance which played a fair part in the boilding of the world, and afterward as fint helped generations of man to make that immense stride in civilization from raw to cooked food. The softer infusoria did somewhat toward buildjng, but did more perhaps in writing the book of nature, which scientific men have now learned to read. They found the skeletons of animals and filled in about them, keeping them, so that after the grand upheaval and displacement which sent the oceans to othe beds, man might come and find this illustrated hook and read it.
And this very same work the rhizopods and the infusoria are doing to day. Millions and thousands of millinns are destroyed hourly by the whales, who alifiost subsist on them, and still millions and millions of times as many more are dropping, dropping through fathoms of ocean, seeking the bed to again build a wall against disintegration. They made the limestone and the cbalk and now when the rivers cariy the tiny particles of these formations out to sea to scatter and make them useless, these tiny creatures quietly gather them again and live only to die for the good of the world.
It is not a little curious to note the uses to which man has put his little benefactors. In Egypt they built pyramids with them; in Paris they build those monotonous rows of houses with them; everybody makes lime of them; the sav ages, wheu they did not turn them into deadly weapons, made fire by them; sometimes we call them silicon, and poif-h our silver with them; sometimes we say nothing, aud add weiglit to paper and cotton goods with them; and in California they have put them to a new use, and wash their hands with them.
As soap they are not perbaps an unqualifled success, but they do well to make the bidy of a soap made from fat. Still there is some reason in calling them, as is done, rock 30ap. During a recent upheaval, perhaps tro bundred thousand years ago, a stratum of infusorial earth was broken, and now shows itself on edge along various parts of the Cal ifornia coast.
Somebody, who had probably first sat down upon it, both suddenly and unwillingly, for it is very slippery when wet discovered that it wound make a very fair lather in seawater. Being an old Californian, he knew how to put one and one together. He tasted the substance, and found it was somewhat alkaline in flavor; he knew there was plenty of petroleum in the neighborbood, and it occurred to him a once that the oil and the alkali bad been combined in nature's laboratory. Here was a natural soap 1
It was not so, but never mind; in California it is enough to think a thing true to substantially make it so; and therefore it is that in California one may wash his hands with infusoria.

What is the Une of Snaken?

C. C. Hopey, in his very interesting work on "Snakes," writes of their usefulness as follows:
'Persons who dislike snakes continually ask, ' What is " use of them?' That they are not without a use will, I bope, appear in the course of this work, were it uecessary to preach that all things have their use. But in one habit that offended Lord Bacon, namely, of 'going on their belly,' lies one of their greatest uses, because that, together with their internal formation and external covering, enables them to penetrate where no larger carnivorous animal could venture, into dark and noisome morasses, bog jungles, swamps, amid the tangled vegetation of the tropics, where swarms of the lesser reptiles, on which so many of them feed, would other wise outbalance the harmony of nature, die, and produce pestilence.

Wondrously and exquisitely constructed for their babitat, they are able to exist where the higher animals could not and while they help to clear those inaccessible places of the lesser vermin, they themselves supply food for a number of the smaller mammalia, which, with many carnivorous birds, devour vast numbers of voung snakes. The hedgehog, weasel, ichneumon, rat, peccary, badger, bog, goat, and an weasel, immense number of birds keep snakes within due limits, mmense number of birds keep snakes within due diater perform their part among the grain-devour ing and herbivorous lesser creatures. Thus beautifully is the balance of nature maintained."

The increase of the import duty from ten per cent to thirty per cent on works of art under the new tariff has elicited some humorous as well as serious comments from the press. Prof. Proctor in his "Knowledge" sarcastically suggests it is owing to the fact that American painters and sculptors are thirty per cent worse than those of Europe hat the duty is imposed.

New subscribers to the Scientific American and Scien tific American Supplement, who may desire to have complete volumes, can have the back numbers of either paper sent to them to the commencement of the year. Bound
volumes of the Scientieic American and Scientific American Supplement for 1882, may be had at this office,

Lubrication and Lubricatore.
At one of the recent meetings of the members of the Asso chester, England, Mr. J. Veitch Wilson read a paper on the lubrication of ordinary bearings, and of bearings and faces subject to the action of steam and heat. We make the follow. subject to the action of steam and heat.
ing extracts from the Coliery Guardian:
Mr. Wilson having expressed his regret that the subject had not received the attention it deserved, dealt in an ex haustive manner with the question of lubrication under two aspects-as affecting (1) ordinary bearings under normal at mospheric conditions. and (2) bearings and faces subject to the action of steam and heat. With regard to oils for ordinary bearings, he laid down that their essential properties were that they must not give off inflammable vapor under 350° Fabrenheit; shat they must not act upon the metals with which they came in contact, nor oxidize, which tended to spontaneous combustion and clogged the machinery; they must have body adapted for the work to be done; their boil ing point must be safficieutly high to prevent evaporation and secure durability, and their freezing point must be low enough to insure regularity of feed from the oil cups and convenience in handling.
As the result of numerous experiments, he has become convinced tbat mineral oils were, if used alone, unsatisfac tory lubricants, but bearing in mind the natural and almos ineradicable tendency of nineral oils to develop acid, and of vegetable oils by the absorption of oxygen to gum and clog the bearings and to induce spontaneous combustion, bearing also in mind the fact that mineral oils could now be obtained in every respect as safe as the finest animal oils, and that the admixture of mineral oil with animal or vegetable oil neu tralized the acidity in the one case and the acidity and oxidi zing tendency in the other, he was of opinion that the safest, most efficient, and most economical lubricants fur all manner of bearings were to be produced from a judicious mix ture of animal or vegetable with good mineral oils.
With regard to cylinder lubrication, the peculiar conditions were the liberation of natural acids from vegetable and animal fats and oils by the action of steam and heat, the action of these acids on cylinders, and the evidence that as these acids were constituents of all animal and vegetable fats and oils, they could not be removed by any process of refining. One of the lubricants largely in use was tallow, but there was conclusive evidence that it was the cause of considerable injury to the engine cylinders. From the mass of evidence he had been able to collect upon the subject be was convinced that, if care was exercised in the selection of the oil, and equal care in its preparatiou and application, hydrocarbon oil would be found thoroughly efficient as a cylinder lubricant, absolutely harmless, and much more economica than tallow
The bulk of the cylinder oils now before the public were of American origin : they were usually sold pure, but some times a small percentage of animal or vegetable matter was added in order to increase their lubricating properties, and in his experience this had always been attended with most favorable results. The thickest oil that could be introduced to a cyliuder was the best. Hot air engines might be lubri cated on precisely the same principle as steam cylinders, but gas engines presented a new and special feature, as in their case the lubricant was not only subjected temporarily to the intense beat of the explosion, but also came in direct contact with the fiame and was liable to be decomposed or carbonized thereby.
If, therefore, animal or vegetable fats and oils were objectionable in steam cylinders, they were much more so in the cylinders of gas engines, and in the case of gas engines he should most emphatically protest against the use of any but pure hydrocarbon oils without any admixture. Mr. Wilson gave tabulated results of numerous experiments be had made in support of his conclusions.

Hardening Concreto.

In a paper recently read before the Southend Mechauics' Institute, Mr. Henry Faija described his patented method of quickening the induration of concrete blocks. The concrete is made and rammed into the moulds in the usual manner, after which the moulds are placed in a chamber, which is maintained at a moist heat of about 100° Fahr This greatly increases the crystallization or setting of the cement, and allows the objects to be moved from the moulds in the course of a few hours. The concrete is then placed in a bath of about 110° Fabr., composed of one part of
silicate of soda and twelve parts of water. The solution penetrates to the center of the block, which is thus hardened throughout, instead of merely on the surface, as in the usual process. In three or four days the blocks will have attained the strength of ordinary cement three or four months old.
 foot of water per hour.

STEEL PERMANENT WAY LONDON AND NORTHWESTERE RAILWAY.

We learn from Mr. Webb, to whom we are indebted for the photographs from which the engravings were made, that ten miles of this permanent way are now being put down, and that its cost in England exceeds very little the price of creosoted wooden sleepers with the heavy cast iron chairs and screwed fastenings.

A Fortune saved.

Twenty years agn, says one of our exchanges, a large manufacturing concern in New England, running several mills, and using about fifty steam boilers, began to burn anthracite screenings under their boilers in their mills When they first commenced, the fuel was purchased very low, as it was then a waste and a drug. With the improvements made in combustion, its use has become more general and the price has advinced, so that the difference is now only about two dollars a ton. Now, allowing that this difference is all that has been saved from the start, and estimating a daily consumption of one ton of fuel per boiler, doing a duty of three hundred days a year, we find an economy of between five and six huadred thousand dollars over what it would have been if lump coal had been used. This firm are now changing their boilers to use this fuel by utilizing the waste gases with hot air on top of the fire. As there is estimated to be millions of pounds of screenings wasted at tbe mines every year, it is astonisbing none of the large cotton mills adopt this fuel. There are several mills in Lowell, Lawrence, and Manchester that burn from twelve to twenty-eight thousand tons of lump anthracite coal every year, while actual experience has demonstrated that the screeninge, when properly fired, will make as much steam per ton as the best grades.

The Vielbility of Euled Mines.

At a recent meeting of the Boston Scientific Society, Professor W. A. Rogers read a paper on fine ruling, a considerable portion of which has already been given in this journal. A few interesting points, however, deserve the attention of microscopists. Professor Rogers stated that be had ruled bands of lines in which the lines were so fine and delicate that they could not be seen with a microscope, although their spacing was much within the power of the microscope to resolve. Yet he was assured of the existence of the lines. The evidence in support of this assertion was of three kinds: The pressure of the diamond upon the glass was sufficient to produce a cut; the diamond produced a peculiar singing sound while moving over the surface, which is always indicative that it is working well; and, finally, the lines become visible when flled with fine graphite.
There is a limit beyond which lines cannot be satisfactorily fllled with graphite. It is difficult to fill lines finer than about sotvo or sotro of an inch.
A most surprising result of some of the experiments of Professor Rogers is that the unaided eye can discern not only single lines that cannot be seen with a microscope, but that it can detect errors which the microscope will not show. Thus, he has a bar upon which lines are distinctly visible to the unaided eye, and, although an objective of low power will show them, one of high power will not. But even error or imperfections in ruling which cannot be seen or measured with the microscope may reveal themselves to the eye by a peculiar waviness of the image. He attributes the failure of the objective to show the lines, as mentioned above, to the inability to illuminate the lines with light of the exact angle of incidence required, and the proper angle of illumination he thiuks deserves more careful attention.

Distillation in a Vacuum.

H. Schaller has observed the behavior of thirteen inor ganic and twelve organic bodies when heated in a vacuum their sublimations and distillations, and the nature of the residues. Many of the elements examined, especially sele nium, tellurium, cadmium, zinc, magnesium, arsenic, and antimony, were capable of sublimation, while the very fusi ble metals, bismuth, lead, and tin, distilled with difficulty, the last mentioned scarce ly at a red heat. On the other band, Demarcay found bismuth volatiie at 292°, lead and tin at 360°, which Schuller explains by the presence of volatile impurities. During the whole time of the distilla tion of a metal an escape of gas was observed. But on repeated evaporation this phenomenon was imperceptible, or very slight. Sodium, selenium, tellur ium, cadmium, zinc, ar senic, and antimony evaporate so readily in a vacuum that this method
W. Webb, the Locomotive Engineer of the London and Northwestern Rallway, and which has been thoroughly tested on that road, and seems to have the requisite qualities. The construction is shown so clearly by the engravings that no description is needed. The rails are of the "bull-bead" form, so generally used on English roads, laid in chairs, and secured by wedges as shown. The rails are canted at an angle of 1 in 20, to conform to the cone of the wheels.
may be used for their purification. Among organic bodies many unstable mixtures, such as tallow, wax, and resin, distill so easily in a vacuum that they may thus be separated from impurities.-Annalen dor Physilk.

Basio slags, incidental products of the Bessemer procese, are to be introduced as agents for purifying the sewage of cities by Mr. Neujeuen, of Liege.

May 5, 1883.]

(ritutific ©

IIPROVED ETEAY DIGGTR.

The engraving slows Parker's patent steam digger, in which the digging is performed by a revolving crank shaft carrying an arm, tefminating at its lower extremity in a fork, while the portion of the arm above the crank, corresponding to the handle of a spade, is held and guided by the free end of a link attached to it by a pin, the other end of which is fixed to the framework of the machine. This link, or lever, acts like a man's arm in guiding the spade or ork, while the crank in its descent takes the place of the foot in forcing it into the ground. The digger must move forward during the revolution of the crank shaft through a apace equal to the width of the spit pro posed to be dug; the speed of the travel ing wheels being regulated to suit. Thi machine is much lighter and less compli cated than the majority of digging ma chines.

Two or three of these machines have been put to work recently which, we are informed, only weighed $61 / 2$ tons each, in cluding the light traction engine of 6 to 8 horse power nominal. The working cost of steam digging is less than stean plowing, and the first cost of the digging machinery is, of course, mucb lower than any steam plowing set. It is suggested that this digger can be used for all the purposes for which ordinary traction en gines are nnw used, such as hauling, etc by simply taking off the digging appara tus. This is a great point in its favor.Mechanical World.

The mierophone.

Mr. Stroh, during a discussion at the last meeting of the Society of Telegraph Engineers, described a highly ingenious experiment with the microphone, from which he deduced that "during the time when the carbons are really in what is called microphonic contact, they are not in contact at all, or, at all cvents, that there is a repellent action at the poist of contact." In the experimental apparatus one small rod of carbon was attached at one end to an almost frictionless oscillating rod, having on its opposite side an extremely light concave reflector. The other end of this carbon rod fell across another carbon rod, which was fixed. The displacement of a spot of light reflected by the mirror showed that the upper carbon was repelled through soor part of a millimeter.

Longth of a Nautical mille.

In common parlance, the length of a nautical mile is con sidered as a " minute of latitude," without any consideration of the range of value included within this defluition. A paper upon this subject by Prof. J. E. Hilgard, Superintend-

spheroid, this definition gives a nautical mile $=1,853 \cdot 248$ meters $=6,080 \cdot 27$ feet. This value closely corresponds with the English admiralty knot of $\mathbf{6 , 0 8 0}$ feet.-Rep. U. S. Ooast Survey, 1881, app. 12.-Scionce.

GAUTTER, LEYONNIER \& CO.'S DOUBLE CYLITDER AIR

 COIPRESEORThe applications of compressed air, which formerly were not very numerous, have been extended to proportions that can only increase with the accomplishment of certain public works that have been projected or are in course of execution in various countries. Everybody knows at present of the use of compressed air in the laying of the foundations of bridges and in other submarine works, and in the ventilation of long tunnels in the course of execution. Metallurgy makes constant use of it for hastening the reactions thy and h^{\prime} hich it is utilized.
ent of the Coast and Geodetic Survey, has just been pub lished. It gives the values of one minute under nine different definitions. The values are based upon the elements of the Clarke spheroid. One minute of latitude at the poles = $1,861 \cdot 655$ meters $=6,107 \cdot 85$ feet; one minute of latitude at the equator $=1,842 \cdot 787$ meters $=6,045 \cdot 95$ feet; one minute on the equator (considering it as a circle) $=1,855 \cdot 845$ meters $=6,087 \cdot 15$ feet.
As adopted by the Coast and Geodetic Survey and by the Hydrographic Office, a nautical mile is one-sixtieth part of the longth of a degree on the great circle of a sphere vohose sur face is equal to the surface of the earth. Using the Clarke delivery valve a The air oucked in, tead of being taken from the outside, comes from a reser voir to which the compressed air goes that has been utilized. This reservoir communicates with the suction valve boxes, d, through the pipe, H, and the coupling pipes, $\mathrm{H}^{\prime}, \boldsymbol{h}$

To the extremity of the pipe, H^{\prime}, there is bolted a blow valve, H^{2}. The two delivery valve boxes, e, of the same cylinder communicate with each otber through the pipe, e^{8}, which is cast on the cylinder, as is the pipe, e^{2}. Upon this latter there is bolted a clock box, G, which communicates, through the coupling, g, and the pipe, g^{\prime}, with a reservoir tha distributes the compressed air to the different apparatus in

The boxes, G, offer nothing peculiar. The valves which they contain are opened or closed by means of screws term nating in the hand wheels, G^{\prime}. In each of the cylinders, C,

there works a piston, P, cast in a single piece, and in the circumference of which there are tive grooves. The two ex treme grooves are 9.6 mm . iu width, receive two rubber rings, and communicate by small conduits with the faces of the piston. The compresied air enters through these conduits, and acts upon the internal circumference of the rings so as to fit them exactly against the interual surface of the cylinder, thus preventing all direct passage of the air from one side of the piston to the other. These rings are formed of two bands of rubber of different quality, uuited with each other witbout any break by a method kept secret by the inventor, Mr. Giffard. The external band is of hard rubber, which resists friction well, while the iuner one is of more elastic rubber, that better distributes the pressure exerted upon it by the compressed air. The diameter of the piston is 300 mm ., and its travel 400 mm . The piston is coupled with the rod, p, by means of a conical bearing and a strong bolt, which, when the piston reaches the end of its travel, enters a bollow in the head of the cylinder.
To the other extremity of the piston rod there is keyed the forked head, T, which is traversed by the steel pin on which the end of the connecting rod works. The head, T, is cast in a piece with a well planed slide which runs on a cast iron guide, \mathbf{T}^{\prime}, bolted to the frame, A. The connecting rods, I, present no peculiarity. They are very carefully constructed, the heads are well rounded, and the wear of the bronze bearings is capable of being taken up by tightening the two keys, i (Fig. 6). These rods, I, are actuated by the crank shaft, J, on whose two extremities are mounted pulleys not shown in the engraving.

detalls of the valves.

Fig. 7 shows a vertical sectinn of the suction valve, and Fig. 8 a borizontal section of the delivery valve. The bronze supports of the suction valves consist of a short cylinder carrying a tube, $a^{\prime \prime}$, which guides the valve, and provided with a triangular flange, D^{\prime}, which is flxed by three bolts upon the corresponding valve box, whose external form is rectangular. The valve rod is pulled back by a spiral spring, d^{2}, which bears against the threaded extremity of the tube, d. The valve thus tends to be kept constantly open The flange, \mathbf{E}^{\prime}, of the delivery valve support is elongated and fixed by two bolts on the corresponding valve box. This valve having to be closed when there is no delivery, its rod carries a nut. j^{\prime}, against which acts a spiral spring, j, whose fixed bearing point consists of a small crosspiece, j^{3}, which connects the two rods, j^{3}.

rebervorr for tie delivery of atr

We have already said that the air forced by the compressor was sent into a special reservoir, that afterward distributed it to the various apparatus for which it was needed. This part is the invention of Mr. Lambert, who devised it cspecially for use in the sugar refining industry. It is shown in Fig. 9. The apparatus consists of a large boiler plate cylinder, M, 1.7 meters high by 750 millimeters in diameter, in which terminates a pipe, p, which leads the air forced toward it by the compressor. The reservoir is provided with a pressure gauge, m, and a safety valve, a A large pipe affords communication with the receptacle, R, whence start a series of pipes, $r, r^{1}, r^{2}, r^{r}, r^{4}, r^{r}$, that connect with the various apparatus.
Between the pipes, $r^{\mathbf{2}}$ and $r^{\mathbf{3}}$, and the receptacle, R , ar arranged the clack boxes.
When the velocity of the motor is regulated so that the pressure in the air reservoir is nearly constant, it is easy to see that the apparatus supplied will be enabled to work with great regularity.-Machines, Outils et Appareile.

How Fiddle strings are Made.

The following facts relative to an industry of which the general public have but little knowledge have been com piled from the Manufacturers' Gazette and New York Sun. The name "catgut," as applied to the animal tiber strings used on musical instruments, is altogether a misnomer. The cat is in no wise repousible for the string, and, much as the fact is to be deplored, the manufacturers of such strings re fuse to utilize cats for the supply of their material. Tha disposes of the last excuse for the existence of the cat.
Aminadab Sleek, amended to accuracy, should speak of "they who scrape the hair of the horse upon the bowels of the lamb"-not the "bowels of the cat." Catgut is of no
use to anybody but the cat; bence no consideration of dam age to valuable raw material need hereafter stay the band that hurls the avenging bootjack at the nocturnal sereuader that hurls the avenging bootjack at the nocturnal sereuader
on the back fence. Violin, guitar, and banjo strings, and, in fact, all sorts that come uuder the general head of "gut," are made from the entrails of lambs and cattle, from the delicate threads used for sewing racket ball covers up to the half inch thick round belts.
After the lamb is seven months old its entrails are no longer fit for making strings for violins; consequently this branch of the manufacture can only be carried on a few months in each year. Whether it can or not is about to become a mat.
ter of indifference as far as the industry in this country is ter of indifference as far as the industry in this country is
concerned. for the only man who now carries it on says that concerned, for the only man who now carries it on says that
he cannot, without tariff protection, compete with the cheap labor of Germany and France, and he is going to give it up. Mr. Blumenthal, a leading importer, who has sought to build up this industry here, went before the roving Tariff Commission to plead for a duty on gut strings for musical instruments, but did not succeed in having it recommended Some fourteen years ago there was a duty of thirty-five pe cent, but for a dozen years there has not been any.

In that time a number of Germans have come over and tried to start the manufacture. They could get their raw material cheaper here than in Europe, but the work admits of no mechanical aid, must be done wholly by skilled hand labor, and the men they could have hired for $\$ 3$ per week in Germany or France they here bad to pay $\$ 15$ or $\$ 16$ a week. That broke them. The importation of this class of strings into the United States amounts to more than $\$ 500,000$ per annum. During the past year the home manufacture mounted only to $\$ 15,000$, and in the gear before to $\$ 12,000$.
Few pecple," said a New York manufacturer to a Sun reporter, "have any idea of the many uses to which gut strings arc now put. They are used to hold up clock weights, for belting, for the laciug on lawn tennis and racket bats, for lacrosse scoops, for weaving fine whip covers, for sewing covers on balls, for jewelers' drills, and for a thousand things, I suppose, that even I do not know of. One down town mauufucturer uses from $\$ 7,000$ to $\$ 8,000$ per annum just for making lawn tennis, racket, and battle door bats. 'Anglers' leaders, or snells?' No, not at all, although most people have an idea that those are made of gut. That material would never do for such a purpose. It would get soft in the water in a few minutes, and the fish would eat it off. In fact, I don't know but what it would be good bait. Most so-called 'gut' leaders are made from silk, and the best from a marine plant.

- All the work of making gut strings is about the same, but greater care has to be exercised in preparing those inlended for musical instruments than others. The process of manufacturing those is comparatively simple, but far from easy. When the entrails, for which a good price has to be paid, are thoroughly cleaned, they are split with a razor. Only one-half is ft for use in violin strings. That is the upper or smooth half. The lower half is falty, rough, and of unequal thickness. The strips are put through rollers turned by hand for eight or nine days, to take all the stretch out of hem. Then they are spun or twisted.
"Five or six strands go to make an E-string, eight or nine an A-string, and twenty are put into a \mathbf{D}-string. Then they go through a bleaching bath of sulphur fumes. After that they are twisted again. Then they are softened in pearlash water, again subjected to the action of the sulphur fumes, wisted again, dried, and finally rubbed down smooth with pumice stone. Altogether, it takes ten or eleven days to make a string. When done they are each seventy-two
inches long-four lengths for a violin-and thirty of them inches long-four lengths for a violin-and thirty of them
coiled separately and tied together make up the 'bundle' of the trade.

We can make just as good violin strings here as the best that come from Saxony or any other part of Germany, and very much better than any that are made in France, but we cannot compete with the best Italian strings in point of quality. Except in the latter, not more than one in three will be absolutely correct and equal in tone throughout; but here is one maker in Italy who, by some secret process of his own, secures and guarantees perfect accuracy throughout for every string he makes. He does not make more than sisty or a hundred bundles a year, but his strings command $\$ 10$ per bundle here-cost that to the importer-while ther Italian strings are worth only $\$ 3$ or $\$ 4$, and others only 81.50 . The Italian makers have one great advantagethat the raw material is thin, fine, free from fat, and evenly smooth all around, so that they can use the whole in-
stead of having to split it, as we mast. That gives to their tead of having to split it, as we mast. That gives to their attain. No gut harp strings are made in this country.
"A good many E-strings now used on violins in this country are made of steel wire. That is the finest string and most liable to break. The wire is, of course, the most urable by far, but it lacks the tone of a gut string. Perhaps the strongest recommendation in favor of wire strings is that they can be furnished for about fifteen cents a
dozen. The frequency with which gut strings are softened dozen. The frequency with which gut strings are softened by perspiration on the fingers and broken during play in the summer time has caused the very general adoption of silk strings for use during the munths of July and August. They have not so good a tone as the gut, but are better for use in hat season.

- Heavy belting string is made from beef entrails, and some of it brings as much as fifty cents per foot. In that
we are not required to be so particular about getting a fine we are not required to be so particular about getting a fine ight color as we are when making musical instrument arks. Musicians cannot be made to understand is the fact. Perhaps most of them may know it, but, all the same, hey bave the common American preference for the prettiest hing, whether it is really the best or not.'

Aid of Miachinery to Labor.

Labor is a natural burden upon bumanity; yet it is the sey which unlocks the sturehouse of wealth, convenience, and luxury. By the use of inveuted and applied machinery nuscular work is greatly relieved, and results cheaply and extensively obtuined. In all this, however, intelligent skill is not supplanted; but rather there is a wider field created for the same, and more and more does. it come in demand as the facilities for production multiply. Man, of course, may exist as our forefathers did, living in a rude'and limited way on the necessaries of life, and even these secured only made and or oppressive toil; but as improvements are rises in the scale of being, and the sphere of life is extended. The easy supply of waut in any direction only be-
gets efforts in others; and as matters thus progress, instead of the demand for useful industry being diminished, there is more and mere inducement to laborers to employ themselves with the exercise of every faculty.
It is a mistaken view, therefore, to imagine that there is the least tendency in the use of machinery to supersede the necessity of workmen, and take from them all opportunity to labor. Their skillful hands, discerning eyes, and intelligent brains are surely destined to find an ever widening field. Of course, the worker must not remain stationary, content to live and die an antiquated fossil, while all the world about him is changing and progressing. What he once did painfully and slowly with the hands alone he must now more abundantly accomplish through the agency of laborsaving devices and tools. Society has need of more production, and will only be satisfled with even more and more. With its prosperity and progress the laborer shares; and today he has more of the comforts and luxuries of life than were enjoyed by kings a hundred years ago. The prejudice against improvement, and the jealousy against capital and associatious in their efforts to manage and direct production into more efflcient and beneficial channels should disappear. As changes occur, old ruts should be promptly abandoned. By adapting himself to circumstances as they are thrust upon him, there is not a man who cannot succeed and fiud a market for his labor far beyond his ability to supply.Dubuque Trade Journal.

Instrument for Removing Foreign Bodien from the Ear.

Dr. Louis B. Couch, of Nyack, N. Y., sends to the Modical Record the description of a little instrument which any jeweler can make, and which, he says, is very useful and efficient in removing foreign bodies from the ear. The description is as follows :
I have been interested in the late discussion going on in your journal with reference to the best methods for the removal of foreign bodies, such as corn, beans, etc., from the auditory canal or nares, and berewith transmit my mite to the general fund of information.
Take a piece of eight-sided brass wire, or round wire with roughened surface, and drill into either end a small hole a quarter of an inch deep. Into one end bronze or solder a small twist drill one thirty-second of an inch in diameter, and into the other a nice sharply cut screw (such screws may be obtained of any jeweler) of about one twenty-ffth of an inch in diameter. When this is done, you are ready for your smart boy with more beans in his head than brains.
Suppose the bean is at the bottom of the auditory canal, enlarged and surrounded by inflamed swollen tissues, a small portion only being visible.

Introduce the speculum, and carefuliy with light pressure drill into the presenting portion of the corn or bean to the depth of about one-quarter of an inch, and clear off all dust; then reverse the instrument and insert the screw, and the bean must come.
1 have by actual test inserted $m y$ sample instrument into a bean, and sustained with it a weight of twenty-five pounds, as shown by scales; a holding power far in excess of that required for the removal of any such bodies.

Physicians will be surprised at the rapidity with which the drill will perforate the hardest of dry beans, and the slight pressure required. Care, however, should be exercised in first entering the drill, that it dues not slip.

Wheat for Twenty-five Years.
The London Times has published the following figures of the imperial averages of prices of wheat from 1858 to 1882 , which are worth preservation, because in a great measure they have governed prices of wheat in the United States:
yearli aferage price of wheat during the labt TWENTY-FIVE YEARS.

 $\begin{array}{rr}8 . & d \\ 44 & 2 \\ 48 & 9 \\ 58 & 8 \\ 55 & 4 \\ 85 & 5 \\ 44 & 9 \\ 40 & 8 \\ 41 & 10 \\ 49 & 11 \\ 64 & 5 \\ 63 & 8 \\ 48 & 9 \\ 46 & 1\end{array}$

Prancisco Sumichrant.

Adrian Luis Jean Francisco Sumich rast, an able naturalist and collector, well known to the scientific world, died on the 26th of September, 1882, after a short illness, and in the 54th year of his age, at Tonala (Chiapas), Mexico.
Prof. Sumichrast, although for thirty years a resident of Mexico, to the study of whose natural history and antiquities be devoted much of his attention, was a Eurnpern by birth, having been born on the 15th of October, 1828, at Ivorve (Canton du Vaud), Switzerland. He was a member of the Societe des Sciences Naturelles du Cantnn du Vaud, of La Bociedad Mexicana de Geografia y Estadistica, of the Societe Zoologique de France, of the Entomological Society of Philadelphia, etc., and a valued and active correspondent of the Smithsonian Institution, of the Cambridge Museum of Comparative Zoology, and of several other noted ecientific institutions.

Curregyoudtuct.

Prenervation or Yeant by

Noticing an article in your issue of April 14 on Dr. LintNoticing an article in your issue of April 14 on Dr. Lint-
uer's experiments with frozen yeast, I would say that for everal years I have caused the winter's supply of yeast for my family to be prepared at the commencement of the cold season, put into a jar, and frozen solidly. When required, the yeast would be thawed, as large a quantity taken out as could be used with good results, and the remainder quickly frozen again. This process of thawing and freezing is continued until all is consumed, save a sufflieut quantity as a nucleus for a fresh supply.

It has always been found to retain its vitality, and the bread made from it as light and wholesome as from fresh yeast.
I can lay no claims to being a scientist, though a weekly reader of your paper; but, interested in everything pertaining to and for the advancement of science, wish to give another practical confirmation of the theory, "that yeast may he preserved, and yet retain its full vitality, by being frozen.
Flint, Mich., April, 1883.

Wall Papors and Docorations.

This is the time of year usual for house cleaning, painting, papering, and for making such other alterations about the house as to render the house more attractive and convenient. In the matter of wall papers the Building and Engi. neering Times, London, contains some hints which win likely prove useful to a large number of our readers.
First, the writer says the sizes of rooms should be considered, for papers with large patterns and wide dadoes are not generally adapted for small rooms, and vice versa, insignificant designs do not suit spacious rooms. In the first instance, a cramped effect is obtained where there should be freedom and expanse, and in the second a feeling of vacuity is produced, and the intention of the design is lost, owing to the vast extent of wall exposed to view. A good deal also depends on the design. Mr. Edis in his recent lecture suid:
" No strongly marked patterns should be accepted-such as birds seemingly in fight, or cherubs, holding festoons, frozen into rest, or bunches of flowers fossilized into unnatural forms, so as to present longways and crossways, or any way they are looked at, clearly marked lines or spots on the general surface, at all times fatiguing to the eye, and tending to discomfort and mental annoyance." In the main, broad, free designs suit nearly all classes of rooms, and plant life offers most opportunities for producing pleasing and elegant figures embodying these qualifications, which pos sess the advantages of a simplicity and purity of form that never wearies or grows tame and conventional. Moreover, with careful treatment, and an observance of natural conformation, florul designs may be rendered far more conss)nant to nature and adapted to harmonize more thoroughly with surroundings than birds or flgure subjects.
Squares or circles at regular distances, or conglomeration of matbematical or architectural figures, are to be avoided, for they invest a room with a solidity and formality that can only be wearisome, and the sameness of pattern, which is rendered doubly apparent by the methodical arrangement of lines, angles, and circles, tends to tire both the eye and brain.

And as to color, drawing rooms are usually furnished with lighter tinted paper than morning rooms. It is not advisable, however, to select a monochromatic paper, for although when first put up it may present a very clean and light appearance, yet the absence of variety, more especially in dull weather, iuvests it, after a time, with a cold and commonplace appearance. A paper should be selected, therefore, that appears to contain to the most advantage pleasing diversity of color without gorgeousness, and easy and natural outlines without formality. Papers with considerable gold in them are suitable for drawing rooms, hecause gold is in itself warm and at the same time light. Cbeap gold papers unfortunately soon lose their gloss and look dull, but generally speaking, gold, if used sparingly and discreetly, forms a rich addition, and combines agreeably with ordinary tints.
The dado is an indispensable addition to a modern room, and slould be of a slightly darker color than the wall paper; this arrangement serves to show the paper to greater advantage than if the whole were of the same tint. The top of the dado is usually finished off with a narrow strip of printed paper, and though this is apparently of minor importance, it will if properly treated form a pleasing bond or connecting link het ween the dado and paper. The frieze is also an important item, and this Mr.-Edis suggests should be " treated in good decorative subjects of figures, birds, or natural flowers," but papers modeled on the latter are, as we have already pointed out, the simplest if not the best suited
for ordinary decorative purposes where agreeable effects are sought without any great expenditure of money or artistic skill. A frieze may also be formed of thick flock paper, stamped leather, or raised plaster work slightly tinted or gilded. This destroys the deadness of the wall and conceals the junction of the paper with the ceiling.
As regards the dining rooms, and other rooms of a similar nature, it is adyisable that the paper selected be of a dark, nature, it is adyisable that the paper selected be of a dark,
warm hue, pot necessarily elaborate but simple and appro-
priate. Here the dado may be finished at top with a smal oak or deal moulding in lieu of the narrow paper band be fore mentioned; this prevents the walls being broken by chairs or other furniture pushed against them.
In choosing colors it should be remembered that gasligh completcly changes the effects of some tints, such as blue, green, and yellow, and the two former also, in a measure absorb light, and thus, unless employed with discretion, ren der a room somewhat darker than other colors.
The so-called esthetic, and what Mr. Edis designate "washed out colors," are no doubt at home in a snug little Queen Anne Bedford Park house, but rarely suit the sur roundings of ordinary life. Respecting bedroom papers, much might be written in condemnation of the hideous and artificial productions that pass by this name, and it is really surprising, considering how essential to health and comfort a light and cheerful sleeping apartment is, bedroom wall papers have not suffered greater improvements in accordance with the requirements of the age. It is fervently to be hoped that the day is not far distant when manufacturers will
turn their attention to this question, and banish the spotty, dauby, ridiculous representations of impossible flowers that now adorn (?) our walls, and give us instead papers that will metaphorically, and in the words of Byron, "till the air around with beauty.
The papering of halls, staircases, and passages are points that require very careful deliberation if we wish to render them something more than what Mr. Edis aptly terms "long vaults walled in with blocks of imitation marble." As a
rule we $d o$ find this varnisbed marble paper selected for rule we do find this varnished marble paper selected for
these places, and the plea for its adoption usually hinges on the supposition that it renders passages " light,", and possesses the pleasing property of being "so clean." Now it does not require much deep thought to arrive at the fact that there are fifty papers at least in existence that will bear varnishing, prove equally "light," and yet be more appropriate to everyday life and everyday surroundings.
The entrance hall should present a comfurtable appear unce, and a dark, rich paper with Indian matting dado is very suitable for covering the walls. Light colored papers are not adapted for this purpose, as they show the smallest
particle of dirt or the faintest trace of a tingermark with alarming distinctness. And apropos of this point, it may not be out of place to suggest that hanging a few etchings, drawings, or paintings on the walls of landings, stairways, and halls will prove a simple and effective way of introducing a little "portable" decoration in places where the eye usually finds merely "an infinite deal of nothingness." Respecting wall coverings for kitchens and similar apart ments, plain, washed walls are undoubtedly cleaner than white tirs, but if the latter are to be employed, a plain, tiugs and paper is perhaps most in keeping wins mas easily washed, and thus rendered always clean and fresh.

Manufaoture of selt at Turkp Ieland.

This island, Grand Turk, and the Caicos are particularly well adapted by nature for this business. This island is about five miles long and two broad. The southeast side is Pringed with a bigh bank, having the appearance of having been formed by the ceaseless action of the waves in the indefinite past. This wall affords protection from a sudden nundation by a tidal wave from that quarter, the point from which come the prevailing winds.
Running through the island the longest way is a sag or valley, in which are located the salinas and salt ponds. The northwest side is skirted with a beach, but not so high as
that on the northeasi side. The land on which sare located that on the northeast side. The land on which are located with stone, conducts the water from the sea to a reservoir which feeds the "pans" when needed, or when the ele ments have converted the sea water into brine strong enough to be used in the pans.
There are two kiuds of saline resources for the conversion of salt water into salt. One kind may be called a "saline" proper, and the other a "salt pond." The latter has a neverailing supply of water, being fed by springs of salt water. A saline proper is a flat, and it may contain a few acres or a great many, and is supplied with water from the ocean by the canal already named, which can be opened or closed at will. The first water let in from the ocean goes into a large reservoir, which holds about half as much as the entire area of the salina. The water remains in this receptacle some weeks, evaporation continually going on by the action of the wind and the sun. When it reaches 60° or more, as $12^{\circ}-$ it is fit to be turned into the division called pans which is done either by hand water-wheels or wind-mills. At 60° all foreign matter held in solution is precipitated.
The "pans" vary in size, but generally are from one eighth to three-fourths of an acre in area ; are laid out so as to allow watercourses between each for the purpose of obtaining a supply of "brine" from the main reservoir. The divisions are separated by walls made with stone and mud. These are about 2 feet high, with a width from 3 to 4 feet. These "pans" are generally " raked down," and the debri rown out once a year. This is called "cleaning pans.
The brine seldom crystallizes iuto pure salt unless there has been a month's absence of rain. It becomes a saturated solution at 96° and commences to crystalize at 110°, as measured by the salometer. To be gathered, the salt has to be broken up by band by an instrument called a "break-up."

It is then raked into rows to be carted into piles or heaps, some of which contain as many as 10,000 busleels. The pans yield from 5,000 to 8,000 bushels per acre during the season. The canal has to be opesed sometimes at low water to prevent an overflow of the pans from the reservoir after a rain.
A salt pond is distinguished from a salina by baving a basin or a spring of salt water in the center, and has its pans on a little higher ground. The basin is also a reservoir whose water is evaporated and becomes brine sooner or later, according to the state of the weather. The methods of manufacture are about the same in the two classes. Care must be taken to have the water as pure as possible.
The crop gathered each year does not vary much from about $2,000,000$ bushels, with perhaps a quarter of the crop left over ; so the annual sales amount to about $1,000,000$ bushels, one-half made on this island, and the balance equally divided between Salt Caye and Cockburn Harbor.
About two-thirds of this go to the United States in coarse salt, and in American bottoms, and the balance to various ports in Nova Scotia in fine salt, or "tish salt," to supply the fishermen. Of late years the salt merchants here have put up mills for grinding the coarse salt made here to a fineness suitable to cure fish with. This fact has enlarged their trade with Nova scotia.
It is very evident that the business as now conducted leaves no margin for profit for the manufacturer. For. frst, the manufacturer has to pay the local government a oyalty of 10 per cent ad valorem, the price being fixed annually by the local government.
Secondly, the season may be unpropitious, thereby in creasing the cost of manufacture.
Thirdly, the waste while waiting a sale and shipment, and the cost of cartage to be shipped, and the cost of putting the same on board the vessel that takes it to market which latter charge amounts to $1 \frac{1}{4}$ ceuts per busbel and comes out of the seller.
The average price per bushel is $\mathbf{6}$ cents for coarse and 8 cents for fish salt ; if anything, a little off of these prices.
I may add, en paseand, that the busidess men complain of the high tax that the American Government has placed on salt, almost or quite one hundred per cent. And since the trade relations of this colony are so close, this high duty on foreign salt does seem excessive, and a real impediment to a more general trade.
The population of Grand Turk Island is put down at bout 2,000 , one-fourth white, and that of the whole cellouy at 4,732, and about the same proportion as to color.

Eloctric Light Rattery.

M. Trouve has recently modifled the bicbromate battery to render it fitter for electric lighting purposes. This celf gives off no fumes, is a single fluid cell of high power, and therefore especially valuable for electric lighting; but it has the great drawback of being inconstant in its action. M. Trouve has obviated this drawback by supersaturating the liquid. He takes 150 grammes of bichromate of potash powder and puts it into a liter of waters then, after shaking it, he adds drop by drop 450 grammes of sulphuric acid. The liquid warms up a little, and the salt dissolves. The liquid thus prepared keeps clear, and does not form crystals in cooling. Moreover. it does not form chrome alum crystals when the cell is in action.
The supersaturation of the exciting liquid is, in M. Trouve's view, the cause of the remarkable constancy, which is perhaps explained by the absence of chrome crystals on the car bons. Each element consists of a zinc plate and two carbons coppered by electroplatiog at their upper part. This coppering cousolidates the carbons and diminishes their resistance at the upper part. The zinc is arranged so as to be easily taken from the cell to be amalgamated. The batteries are arranged in sets of six elements placed in cases of oak wood. The carbons and zincs can be raised or lowered at will by a device like that employed in the Wollaston battery. In this way the power of the cell is regulated. With twelve elements ten incandescence lamps can be kept lit for five hours; but M. Trouve has kept twenty lamps lit for two hours, each giving a light of ten candles. The electromotive force of the cell is two volts with fresh solution, and the intensity of current at the beginning on a short circuit is 118 amperes. The resistance is 0.07 ohm . Four batteries working a Gramme machine bave produced fourteen kilogrammeters Gramme machine bave produced fourteen kilogramme
of work during two hours witbout weakening in power.

A Useful Kind of Solder.

A soft alloy which attaches itself so firmly to the surface of metals, glass, and porcelain that it can be employed to solder articles that will not bear a very higb temperature can be made as follows:
Copper dust obtained by precipitation from a solution of the sulphate by means of zinc is put in a cast iron or porce lain lined mortar and mixed with strong sulphuric acid specific gravity $1 \cdot 85$. From 20 to 30 or 36 parts of the cop per are taken, according to the hardness desired. To the cak formed of acid and copper there is added, under constan stirring, $\mathbf{7 0}$ parts of mercury. When well mixed the'amal gam is carefully rinsed with warm water to remove ail the acid, and then set aside to cool. In ten or twelve hours it is hard enough to scratch tin. If it is to be used now, it must be beated so hot that when worked over and brayed in an iron mortar it becomes as soft as wax. In this ductile form it can be spread out on any surface, to which it adheres with
great tenacity when it gets cold and hard. - Polyt. Notieblatt.

NEW GBINDIIG MAOBIF.

The accompanying engraving shows a small universal grinding machine, designed and invented by C. C. Hill, C.E. Its primary use is to enable users of machine tools to secure absolute uniformity of angle and truth in lathe centers, and to true up chucks of all kinds and sizes. It is also adapted to the accurate grinding of cylindrical or conical surfaces (internal or external), reamers, gauges, milling cutters, taps, etc.
The construction of the machine is fairly shown by the cut, and the operation will be readily understood from the following brief description. For use, the machine is set upon a lathe in place of the tool post, and securely fastened by tightening the bolt, B.
To insure accurate alignment of the center of graduated arc, \mathbf{A}, with the lathe centers, a central piece is placed between the base plate of the machine and the face plate of the lathe at the time of tightening the bolt, B
When the base plate has been properly ad justed and secured, the grinder may be rotated upon its center of arc until its reading (at C) indicates the desired angle, then firmly fixed to the base plate by means of a clamping screw, not seen.
By turning the crank the emery wheel, D , ac quires a high rotative speed (5,000 to 6,000 per mivute, with moderate crank motion) and a slow traversing motion across the work. This tra versing movement may, in a moment, be changed from 0 to 2 inches, or intermediale distances.
The machine is built to rank with the best too work, and is guaranteed accurate. The main shaft is made of tool steel hardened and ground and the bearings are furnished with compression bushings of same material, also hardened and ground. All parts liable to injury from dust or grit are protected by casings.
The machine may be run by band or power The former is preferable in short jobs, as we may often finish a set of centers or a mill in less time than would be consumed in setijing any machine run by power, if it be a portable one.
For sale by dealers in tools and machinery, and by the Union Bag Machine Company, 84, 86, and 88 Frankliu St., Chicago, Ill., sole manufacturers.

Dynamite.

The base of this extremely powerful explosive is nitro glycerine, sometimes known as nitroleum, which is an amber-like fluid, discovered by Sobrero, in 1847. Nitroglycerine itself is made by adding glycerine, in a manner not necessary here to particularize, to a compound formed of one part of nitric acid and two parts of sulphuric acid. This terrible agent is known as glonoin oil, and is a light yellow, oily liquid, of specific gravity ranging from 1.525 to 1.6 . It has a pungent taste, and but one drop placed on the tongue induces intense pain of the spine. Sobrero, when he discovered this fluid, was a student at the famous Pelouze Laboratory, Paris. He did nothing to develop his discovery; but Alfred Nobel, a Swede, leing in want of a new blasting agent, experimented with the new liquid, known to be highly explosive, and, by adding other ingre dients, obtained the now well known dynamite. This, as usually manufactured, is composed of infusorial earth, porcelain earth, cosl dust, silicious asbes, etc., and all this base has to be saturated in a certain proportion with the nitro-glycerine. The process of manufacture is dangerous, and the cost about four times that of gunpowder, while its power is, perhaps, ten times greater. Besides dynamite, other explosive compounds have been made from nitro-glycerine, sucb as dualline, a combination of wood gunpowde soaked with this terrible oil, while lithofracteur consists of fity-two parts of sitro-glycerine, thirty of silex twelve of coal dust, and two of sul phur. Then there are varieties known respectively as colonia powder, lignose sebastine, heracline, and fulminatine.

slxty foure in the Water.

A remarkable instance of sustained muscular effort is given in the Medical Press as having occurred in an Aus trulian mine. The drift from one shaft baving onexpectedly broken into another, a rapid inundation took place men in one part of the workings were unable to ascend the shaft, being caught in a drift where the water soon rose so high that only by clinging to the timbers could they keep their chins above it. One by one during the terrible sixty hours that elapsed before help came did the men drop off xhausted; but five of them succeeded in holding on during the whole of that time, and were brought out alive. The bodies of the other twenty-two were found scattered about on the floor of the drift. Great indeed are the strength and
tenacity inspired by desperation, when they could enable five men to hang on by their bands with their bodies immersed in water for sixly hours.

Old Tin Cane Utilized

That heretofore useless article, old tin cans, has become a factor in trunk making. Newark, N. J., is famous for it truak making industry, and recently some of the manufac turers discovered that old tin cans may be advantageously used, and they are now gathered and sold to trunk maker to bind the edges and bottoms of trunks, and sometimes to cover up defects of woodwork. The process of heating the cans also has its proftable results, for the solder, running into a receptacle, is sold for 12 cents a pound, it alone pay

so that in a few minutes the lower levels were flooded and the metal is kept quite fluid, and there is no danger of mak the water stood thirty feet in the sbaft. Twenty-seven ing bad castings on account of the delay. In these furnaces

HILI'S UNIVERSAL GRINDING MACHINE

PIAT's CRUCIBLE PURNAC

The parts are shown in the positions in which they stand when the last portion of the metal is being run from the crucible. This rests upon a fire clay block, and is wedged in its place between the spout piece, B, and a block that is not visible in the view. The furnace itself is formed of wrought iron plates lined with fire bricks, and is arranged to rotate about a point at the back of the spout, G. The tilting is effected by two segmental racks, $D \mathrm{D}$, one at each side of the furnace, gearing into pinions on a cross shaft operate by a worm and worm wheel through the hand wheel, \mathbf{E}.
In commencing operations the furnace stands vertically with the flue mouth, G, opposite to the opening in the fixe flue, F. Coke is packed in between the crucible and the furnace sides, the metal placed in the pot, A, and the whole covered with the lid shown on the fired flue. When the charge is melted the cover is slid off, and the furnace run forward on the rails to the moulds. It is then gradually tilted until the molten metal runs from the crucible, A, down the spout piece, B, and escapes at C. Should a long interval occur between the flling of one mould and the next

ganized like those of the Spring Garden Institute the day classes being for young people of leisure, the nigh classes for students who are already at work. In all depart ments of the Tecbnical College instruction is given by lectures, class lessons, and laboratory, studio, or workshop practice. The course of day instruction extends over two years, nine months of each year and about thirty-five hours per week. The evening course extends cver three years. In addition to the studies already mentioned, special classes are formed in many of the principal trades.
Another important work of the Institute is the encourage ment of technical education outside of its own schools by the offer of prizes to those who pass examinations in various subjects related to the trades and industries of the country. Thirty-three such trades are represented in the subjects for examination this year, and the prizes amount to from one to five pounds each in money, besides bronze and silver medals. There is no limit of age and no fee for exrmination. Such a system cannot fuil to stimulate young men to study, for a prize won in competition becomes at once a passport to re aunerative employment.
In Nottingham, Manchester, Leicester, Sbefteld, Middles brough, Belfast, and Bradford there are great technical schools in addition to the iudustrial art schools established in every business center by or through the influence of the South Kensington Museum. And this activity in industrial education, this full recognition of the fact that the days of the apprentice have passed away, means to this country that it must take similar measurea for educating skilled mechanics and artisans, or rest content when beaten by England in the markets of the world and even here at home. There is scarcely a trade to day that does not hold intimate relations with the physical sciences, that docs not employ the principles of art in some of its stages It is not necessary that all the work men in it should be scientists and artists, but the more they know of the subjects bearing upon their trades the better fitted they will be to work intelligently and skillfully. England is giving her young men such education, through the enterprise of her manufuc turers and merchants, to enable them to compete with Continental workmen, for whom similar schools have been established by the Government. The United States is doing scarcely anything in this direction either by Government aid or by private subscription. Bos ton, St. Louis, Philadelphia, though each has a school of the kind, have not together expended as much money on these enterprises as the little city of Bradford, England, of scarcely more than one bundred and fifty thousand inhabi-tants.-Philadelphia Ledger.

Dr. Bigelow, of Boston, has won the highest of the Argenteuil prizes $(\$ 1,200)$ for a medical treatise scnt to the Paris Academy of Medicine.

plegh rativg ingecta

The family of borse beetles (Silphides or Silphates) feed upon the flesh of dead animals. They differ so widely in the structure of their bodies that it can only be said in general that the eleven jointed feelers gradually become thicker toward the point or have a knob at the end, and the wings reach almost to the point of the body.
They are very lively in their movements, and their sense of smell seems to be very acute, for guided by this they will fy from a great distance aud make their appearance in a body about the carcass of a bird, fish, dog, or other animal. They often eat decayed vegetable matter if they cannot find a dead body, or seize upon living insects, not sparing their own species.
There are forty-one species of the common burying beetle (Necrophorus vespillo), the most of them living in Europe and North America. When these beetles perceive the body of some dead animal, they fly toward it with a bumming noise like a hornet, and begin to inspect the body to be buried and the ground about it, which is not always adapted for a burial place. If the ground is not suitable, they have been observed tugging and pulling the body along until they had moved it to a place which would answer their purpose. If they find everything in order, they move away at a suitable distance from each other, so as not to interfere with each other's movements, and burrow underneath the body, scratcbing away the earth so as to form a hollow, into which the body sinks.

In a very short time, owing to the rapidity with which they work, the body en tirely disappears, and only a little ridge of earth indicates the place where it lay, and this is soon leveled. In luose soil they sometimes bury the carcass thirty centi meters deep. Gleditsch says that four of these beetles buried in fifty days two moles, fuur frogs, three birds, two grasshoppers, the entrails of a fish, and two pieces of liver.
As an experiment a mole was suspend. ed above the ground by cords, as seen in the engraving; these burying beetles used their utmost endeavors to cut it down and cause it to fall when they were couvinced that they could not proceed to bury it in their ordinary manner. Their object in burying these carcasses is to gain a proper body wherein to deposit their eggs, as the larvo when hatched feed entirely upon decaying animal substances.
After the carcass has been buried, the female disappears in the ground, where she generally remains iuvisible five or six days. The larvæ creep out of the eggs in about fourteen days, and soon attain their full growth, when it burrows' deeper in the ground, and at the chrysalis state becomes first white, afterward yellow, then darker and darker as it develops into the beetle.
The engraving shows a number of the best known forms of horse beetles.-From Brehm's Animal Life.

Water Gan from Coal Gan Rotorte.
It has been suggested by a German pa lentee to render ordinary gas retorts available for producing alternately illuminating and non-illuminating or water gas by the following method:
When the carbonization of the usual charge of coal is completed, and nothing but coke remains in the retort, a jet of steam is introduced, and a mixture of carbonic oxide and hydrogen gas is thereby obtained. This action is continued until about 80 per cent of the coke has disappeared, when the retort is again charged with coal without drawing the remainder of the coke and the production of illuminating gas is resumed. Thus in retorts fitced for the double or alternative process there is no intermission of work, as either lighting or heating gas is continually being evolved.
If the retorts are worked above a dull red heat, which is most convenient for the production of carbonic oxide and hydrogen, a proportion of carbonic acid gas is also formed, which will necessitate the water gas generated in one retort being passed over the coke in another, in order that the carbonic acid may be reduced to carbonic oxide. Water gas being inodorous, it is proposed, with a view to the detec tion of leakage and the prevention of explosions, to charge it with the vapor of isocyanure of phenyl. With this object the gas is to be wasbed in a scrubber with a solution of 10 grammes of this odoriferous compound to 1,000 cubic meter of gas.

The French Admiralty are now having thirty-one ves sels constructed in the Government dockyards and fifteen in private yards. Fourteen of them are ironclads, and are estimated to cost $\$ 25,000,000$. The two principal ships, the Admiral Baudin and the Formidable, are to cost $8,200,000$ each.

flesh eating insects.

philosophical standpoint, was fraught with much practical inconvenience. Still, when a high degree of incandescence is imparted to the carbon in the modern lamp, an atmosphere of its vapor is formed in the interior of the bulb, which condenses on the glass, forming a dark lustrous surface, and thereby obstructing the light in the same manner as when a filament of platinum was employed. Thus the behavior of the carbon and platinum in such cases clearly shows that the most dense and refractory substances in nature vaporize at bigh temperatures while still retaining their solid form. Electric lamps were shown by Mr. Wilde, exhibiting the condensed platinum and carbon on the interior surfaces of the glass bulbs.

Uniform Rallway Time.

A uniform system of standard time was proposed by Mr W. F. Allen, the Secretary of the General Railroad Time Convention, in a report recently made at the St. Louis meeting, which met with such general approval that it was recommended for adoption by a unanimous vote. With the unanimous approval of those present at the time of the convention, the proposal acquires such a standing, says the Railroad Gazettc, that no one is likely to ignore it, and the examination of it now will be made as of a practical matter, likely to result in positive action. Mr. Allen proposes to establish a railroad time for every fifteen degrees of longitude, beginning with the 75th east of Greenwich. In this way.the different railroad times will be just one hour apart, and in few places will the local time vary more than thirty minutes from the railroad time, which is not so great a variation that it will not be possible to use the railroad time instead of local time. The time of the 75th meridian is but fou minutes slower than New York time, and is one minute faster than Philadelphia time.
Without varying more than thirty minutes from local time, all the local railroad to the eastern boundary of Maine could be run by this time, and all as far west us Detroit, Columbus, O., and Bristol, Tenn. It is not proposed that the time should change precisely at the halfway point be weeen the 75th and the 90th meridians, but in all cases at the nearest railroad or division terminus.
Thus Buffalo might be made the point -would be the point-between "easter time " and " central" or " Mississippi Val ley time," for the roads terminating there, though it is some distance to the east of the central district, as this would make it possible to have but one time on the Lake Sbore, the Nickel Plate, and the New York, Pennsylvania, and Ohio. This "central time" would be that of the 90 th meridian, which is one minute faster than St. Louis time, nine minutes slower than Chicago time, and three minutes faster than Vicksburg time; and of course jus one hour slower than "eastern time." By it would be run all railroads and divisions of railroads, roughly speaking, from Detroit to Omaha, Kansas City, and the Red River of the North, and in Texas as far west, say, as Fort Worth and San Autonio. "Mouutain time," that of the 1051 l meridian, which is exactly Denver time would rule thence west to the Colorado River and Ogden, west of which to the Pacific coast the standard would be " Pacific time," that of the 120 th meridian which is ten minutes faster than San Fran cisco time.
Mr. Allen has studied the adaptation of these several times to the railroad system as it exists, and has made a map showing
monia annually cousumed in this country for the ammoniasoda process alone, according to Mr. Robert R. Tatlock, is now nearly 3,000 tons, and the quantity is certain to increase, the present value being about $£ 56,000$ a year. If all the blast furnaces now working in Scotland were to economize their ammonia, the product would, at the present rate of working, amount to more than 25,000 tons per annum

The Volatilization or solide.

In a communication to the Manchester Literary and Philosophical Society, Mr. Heary Wilde deals briefly with the behavior of solids at higb temperatures, in relation to the property possessed by these solids of giving off vapor of heir own substance. In convection with incandescent electric lamps this phenomenon is made susceptible of easy study Platinum threads were at first used for these lamps; but was soon found that an atmosphere of platinum vapor was formed in the interior of the bulb, which, after the lanp had been in action a considerable number of hours, condensed on the surface of the glass, and formed a bright reflecting surface like a mirror. The substitution of a filament of carbon for the platinum in lamps of this order overcame the objection to a great extent; for the vaporization and condensation
of the incandescent material, however interesting from
exactly the lines which would be run by each time. His plan would substitute four time standards for about fifty now used, and no place would have more than two, and these would be exactly an bour apart, and a large part of the confusion-substantially all of it-now existing would be avoided even at these places.

The Pulse of Animals.

In horses the pulse at rest beats forty times, in an ox from fifty to fifty-five, and in sheep and pigs about seventy to eighty beats per minute. It may be felt wherever a large artery crosses a bone, for instance. It is generally examined in the horse on the cord which crosses over the bone of the lower jaw in front of its curved position, or in the bony ridge above the eye; and in cattle over the middle of the first rib, and in sheep by placing the hand on the left side, where the beating of the heart may be felt. Any material variation of the pulse from the figures given above may be considered a sign of disease. If rapid, hard, and full, it is an indication of high fever or inflammation; if rapid, small, and weak, low fever, loss of blood, or weakness. If slow, the probabilities point to brain disease, and if irregular, to heart troubles. This is one of the principal and sure tests of the health of an animal.

regert inveitions.
 Improved Watcl Pooke

The engraving repfesents an improved pocket intended to be applied to the ordinary watch pocket to keep the watch clean and protect the case from unnecessary wear, at the same time holding the watch firmly in the pocket, saving money on repairs. The pocket is made of chamois skin or other suitable material, and is furnished with'a wire spring of semicircular or semielliptical shape, having its ends pointed so as to fasten the pocket in the pocket of the garment. The spring stretches the pocket flatwise, closing the mouth so as to make the sides pinch and hold the watch. The same device is applied to eyeglass pockets, also to scissors pockets. Further particulars may be obtained by referring to our advertising columns, or addressing the Automatic Pocket Company, No. 517 Market Street, Philadelphia, Pa.

Improved Wagon Jaek.

We give an engraving of an improved wagon jack recently patented by Mr. Thomas Milles, Jr., of Springborough, 0 . The inclined bar is provided in its upper edge with a series of offsets or notcles arranged like steps, and is pivoted at its lower end between two short standards, which also carry a small wheel. The upper end of the inclined bar rests upon the rounded end of a hand lever. This lever is pivoted to one or two bars baving their lower ends pivoted to one eud of a hase bar secured to
the base block. The jack is passed under the axle of the vebicle until the axle rests upon one of the offsets or steps of the bar. Then the free end of the hand lever is depressed, raising the upper end of the notched bar, which will raise the axle so as to permit removing the wheel from the axle supported by it. By means of this improved jack a heavy wagon can be raised easily. The jack can be moved about on the wheel by raising the end carrying the lever.

Improved Nut Lock.

This invention consists of a nut of two parts, one having This invention consiats of a nut of two parts, one having
a cavity in the face or top eccentric to the bolt bole and a stud projecting from one corner of the face, together with another part, forming a check nut by having a boss eccentric to the bolt hole, and also having a projection or ruised part on its face, which shall on its face, which sban
engage with the stud on engage with the stud on
the nut first named when the parts are in the noninterlocking position, and can be both together screw-
ed on to the bolt. Then, by turning one part of the nut while the other part is not turned, the eccentric boss of the one binds in the eccentric cavity of the other uut, thereby locking the nuts on the bolt securely. This invention has been patented by Mr. John Ford, of Portneuf, Quebec, Canada.

Rallroad Gardening.

Last year a majority of the stations along the main line and branches of the Philadelphia and Reading Railroad were put in thorough repair, and were furtber improved by handsomely laid out glass plats brightened with beds of flowers. This year the company, it is said, intend to further beautify This year the company, it is said, intend to further beautify
the surroundings of their stations by increasing the acreage the surroundings of their stations by increasing the acreage
of flower beds and planting them with choice specimens. The plan will be heartily approved by travelers and by residents in places along the line. Too often the railroad station is the most bare, dreary, and unattractive place in the town.
The New York, Lake Erie, and Western Company is also making arrangements to beautify a number of its wayside stations by surrounding them with small grass plats, in which flowering shrubs and plants will be set out.
Tbe Peunsylvania Railroad, on which this plan of improving the appearance of stations was first adopted, is extending the work each year.

Artesian Wells in Colorado.

Three artesian wells have been sunk in the corporate limits of Pueblo, the last one more than a year ago. All hare over 1,000 feet deep, and one over 1,300 . Each discharges a regular and considerable flow of mineral water, the water from two of them being highly charged with valuable bygienic properties. They are respectively the Clark well, the Worrall well, and the well of the Colorado Coad and Iron Company.

IVory, Historical, and Uneful in the Arts.
We who are accustomed to see ivory in common use about us afe apt to forget how important a part it has plased
in the early history of mankind. Our cave dwelling and in the early history of mankind. Our cave dwelling and
mound building ancestors soon discovered the great advantage of making use of the tusk of the elephant, the walrus, or the boar in the place of bone in the manufacture of their war and hunting implements, and strange as it may seem, the little acquaintance we have with these early people is from making a study of the rude weapons which they have left buried in their humble homes and graves. One of the most conspicuous tests that we have in determining man's antiquity is an ivory horn which was found in a cave in France a few years since, and which has carefully engraved upon it an accurate representation of the mammoth, that flerce adversary of the mastodon, and the bairy rhinoceros, all so long since extinct. This picture stands forth conspicuous, not only for its value as proving man's long habitation on the earth, but as a witness to the first dawning of art.
Coming to the historic age, ample evidences exist of the remarkable skill to which artists in carving bad attained. Two daggers (now in the British Museum) handsomely inlaid, and ornamented with gold, are attributed to the age of "Moses." In the same collection are several chairs of the 16th century B.C., inlaid with ivory, also two boxes (repre16th century B.C., inlaid with ivory, also two
senting water fowl) of the 11th century B.C.
We read that the throue of Solomon (1,000 B.C.) was of vory, overlaid with the purest gold, and King Abab's house was made of ivory. The prophetical books give accounts of horns, benches, and beds of ivory, while scepters, thrones, and other insignia of royalty among the Hebrews are spoken of as being made of the same material. Mr. Layard, in his archæological researches at Nineveh, found in that ancien city fragments of articles fashioned in ivory, the most interesting of which was an ivory tablet, representing seated fig ures of Egyptians, with a cartouche bearing hieroglyphics parts of this tablet were inlaid with a blue vitreous substance and the whole ground of the tablet was originally gilded, remuants of the gold leaf still adhering to it.
The Greeks also learned the art in ancient times. Phidias and his successors mention composite statues of ivory and gold, which practice was continued down to the Christian era. Pausanias describes a number of these statues, particularly the colossal ones of Athene, at Athens; and Jupi ter, at Olympia-the former nearly forty and the latter aftyeight feet liigh, and conspicuous as being one of the seven wonders of the world. These statues were the largest and most precious ever executed in those costly materials. Anivory of still more and the secret by which they could flatten and join ivory, so as to make it cover large surfaces, though modern experimenters have never beeu able to do it.
In more modern times the "Elephant's Tower," Futtehpoor Sikra, is a most celebrated structure. This was a favorite residence of Akbar, the most illustrious Asiatic ruler of modern times ($1556-1605$), and was uinety feet high, and studded with elephants' tusks from top to bottom. It is conjectured to have been erected over the remains of a favorite tlephant.
The consumption of ivory at the present day is something enormous. In Sheffield, England, alone 45,000 elephants' tusks are said to be employed in manufacture annually, and allowing for the occasional finding of shed tusks and those of elephauts found dead, it is estimated that 20,000 are slaughtered yearly to supply this demand.
A veneer of ivory was exhibited at the World's Fair in London, 1851, 41 feet long and 14 inches wide. It was sawed from a block in a continuous ribbon, the block rotating and its axis gradually approaching the plane of motion of the saw.
Artificial ivory is made from a combination of caoutchouc, sulphur, and some white ingredients, such as gypsum, sulphate of baryta, oxide of zinc, or pipe clay. Numerous patents bave been.granted in the United States for its manufacture, but it is inferior in every respect to the genuine article.

Whale9s Skeleton for the Smitheonian.
Gen. Babcock, Lighthouse Engineer of the Baltimore Md., district, eays the Baltimore Sun, has returned to Baltimore on his steamer, the Jessamine, bringing with him the skeleton of a sperm whale, found on the coast of Florida, vear Jupiter Inlet. It was secured for Professor Baird, of the Smithsonian Institution. The place where the whale went ashore is the same place where, two years ago, the cosst was covered with dead fish for miles. Recently sixteen dead whales were found alung the same coast. One of them was said to be at least seventy feet long. The cause of so many dead fish going ashore at that point has puzzled the scientists. Professor Buird, hearing of the whales, authorized Gen. Babcock to expend $\$ 100$ to get a skeleton for the Institution. The whales were of a new species of sperm, and the skeleton secured is said to be perfect.

A Monster Codish.

A codfish, weighing 100 pounds, was captured near Portland, Me., a few days since, by a boat fisherman with a hand liue or trawl. The fish was 5 feet 5 inches long, and the length of its head, from tip of nose to extremity of gill flap, measured $171 / 2$ inches. The girth of head was 32 inches. This is said to be the largest cod captured for a long time.

On Sunday, April 22d, a terrific cyclone passed over be Slates of Mississippi, Alabama, Georgia, and extending into South Carolina, killing eighty-three persons, wounding about three hundred, and destroying an immense amount of property. The village of French Camp, a town of three hundred inbabitants, was totally destroyed. Houses, public buildings, and churches were demolished, feuces were leveled, and trees uprooted.
In Barnwell County, South Carolina, a path three-fourths of a mile wide was cut through Dalkehatchie Swamp as clean as if the timber bad been felled for a railroad.
The first place reached by the cyclone was Georgetown, Miss., a small village on the Pearl River. Muny of the residents of that place and vicinity were assembled in the Methodist church, the quarterly circuit being in session. The cyclone struck the clurch, pushing in one of the side walls, which fell upon the congregatiou. One person was killed; another, the minister, was serieusly and prolabily falally injured. Two or three others were injured, but the main portion of the large congregation marvelously escaped without injury. Many of the persons killed were blown long distances, and some have not yet been found. The scenes following the disaster were pitiful in the extreme.
The course af the cyclone was from the sonthwest to the northeast. It is said to have divided at Morton, one arm continuing on the original course, the other taking a more asterly direction, passing through Alabama and Georgia, extending into South Carolina. The length of the path of the storm and its exact course have not been reported, but it seems to have swept the greater portion of the length of the State of Mississippi, and to have crossed two other States, reaching into the third, touching here and there.

Chilla, their Causem and Consequencee

Catarrhs should receive careful consideration, instead of the neglect which they generally meet with until they bave fastened on the part affected so much as to excite the altention, and perbaps alarm, of the sufferer. . Here, however we propose to say a few words about the causes of chills. A person in good bealth, with fair play, easily resists cold. But when the health flags a little, and liberties are taken with he stomach or the nervous system, a chill is easily takeu, and according to the weak spot of the individual, assumes he form of a cold, or pneumonia, or, it may be, jaundice. Of all causes of "cold," probably fatigue is one of the most efficient. A jaded man coming home at night from a long day's work, a growing youth losing two hours' sleep over evening parties two or three times a week, or a young lady heavily "doing the reason," young children at this festive season overfed and with a short allowance of sleep, are common instances of the victims of "cold." Luxury is favorable to chill taking; very hot rooms, soft chairs, feather beds, reate a sensitiveness that leads to catarrhs. It is not, after create a sensitiveness that leads to catarrins. It is not, after
all, the "cold," that is so much to be feared as the antecedent conditions that give the attack a chance of doing harm. Some of the worst "colds" happen to those who do not leave their house or even their bed, and those who are most invulnerable are often those who are most exposed to changes of temperature, and who by good sleep, cold bathing, and regular babits preserve the tone of their nervous ystem and circulation. Probably many chills are contracted at night or at the fag end of the day, when tired people get the equilibrium of their circulation disturbed by either overheated sitting rooms or underbeated bedrooms and beds. This is especially the case with elderly penple. In suchcases the mischief is not always doue instantaneously, or in a single night. It often takes place insidiously, extending over days or even weeks. It thus appears that "laking cold" is not by any means a simple result of a lower temperature, but depends largely on personal conditions and abits, affecting especiallyothe nervous and muscular energy of the body.-Lancet.

Utilization of Diseased Potatoes.

A
I know from practical experience that M. Bourlier and M. Herve are quite correct as to the value of diseased potatoes as an article of food for cattle, pigs, etc., but the most important item to be observed they omit in their directions, which I revise as follows:
Boil the diseased tubers fast till done; drain, and let them become perfectly dry by spreading them out on sieves-a gravel screen is the best. The tuber, when cooked, is free from poison; the water in which it is boiled is a very strong poison, and will scour, if not kill, any animal that partakes of it. When dry, ram tight into any kind of dry cask (with salt), and keep in a cool place till wanted. One copperful au be dried and packed while the next is cooking, so that a large quantity can be cooked in one day. Every farmer should know this, as it would save him suffering any loss, however bad his crop might be. Geo. Wm. Pascall.

Exhibite for the Ohicago Rallway Exponition.
Seventeen cases of exhibits, including the locomotive Rocket (the first railway engine built by George Stephenson), have been sbipped from London, for display at the Railway Exposition which will open in Uhicago on May 24. In addition to the main exposition building, the management has constructed temporary buildings on the lake front, which, taken together, make a structure five blocks in length.

EMEIMERBING INVETTIOME.

An automatic car brake operated by the momentum of the truin, has been patented by Mr.
Benj. F. Smith, of Alabaster, Mich. The automatic brake is applied as auxiliary to the usual brake, and may be used with the latter, or independently of it.
An improved car coupling consisting of clevis shaped links for connectiag the cars is the sub ject of a patent granted to Mr. Edward S. Carter, of
Keoknk, Iowa. The drawbars are provided with the Keoknk, Iowa. The drawbars are provided with the
usual link socket, and taken allogether the coupling simplicity and durabllity.
Mr William H. Diehl, of Hyde Park, Pa., of a barenteepr a novel car coupling which is composed of a bar pivoted to the under side of the car truck in or laterally. The coupling bar is provided at its oater end with a device for holding and gaiding the link into
the drawhead, and a rod operated by a crank uits the link. This coapling can be applied to any drawhead in

Messrs. Abraliam O. Frick and William H. Snyder, of Waynesborough, Pa., have added an import
ant improvement to the list of inventions relating to ant improvement to the list of inventions relating to ner of monnting the boiler upon the running gears, and ie designed malnly to relieve the boiler plates of the etrain at the rivets which connect the boller to the spring boxes. The tnvention further consists in paseing be-
neath the rear end of the boiler one or more stirrup rods, which support the weight of the rear end of the
A balanced slide valve of improved con struction has been patented by Mr. ER. T. Conrad, of
Cadillac, Mich. The invention consists in connecuing Cadilac, Mich. The invention consits, a plate which will move with the valve plate. These plates are so arranged that they will accurately fit both the top and
bottom of the steam cheat. The plate being of the eame area as the valve recelvos equal pressure of the aame thas prevents rapld wear of the valve seat and enable power.
A very convenient attachment for stock cars han been patented by Mr. M. H. Gilbert, of Smith-
ville. \mathbf{O}. This consists in plvoting the feeding tronghe ville. O . Tibs consists in plvoting the feeding troughs
to the aprights of the car and attaching bars to them in such a way that by operating the lever at their ax tremities the tronghs may be turued Into or oat of posiltion for use. The trough on the doorway of the car in
pivoted to a frame, and may be removed altogether from the door if thie door is to be opened. Tanks are mouni ed at the ends of the car, from which water may be
drawn from one to the other, and may be diecharged by noszles into all the troughs. The parts of the wate pipes on the opposite sides of
ed by telescopic coupling pipes.

TECHANICAL INVENTIONS

Messrs. Jacob and Henry Friedlander, of Memphis, Tenn., are the patentees of a convenient 'im-
plemeut for grocers' use coneisting of a scoop, to the plement for crocers' use condisting of a scoop, to the
handie of which is attached a weighing appliance, bo and scales.
Δ combined table and carriage for potters and others is the subject of a patent granted to $\mathbf{M r}$
Michael W . Jordan, of Bellaire, O . This carriage conMichasel W, Jordan, of Bellaire, o. This carrige con
sists of two trucks connected together by crossbars, and provided with one or more oecillatory tables supported in
bearings, and so arranged as to ensble the material to be shipped from the opper to the lower phatform.
An inplement for dentists' use, denominat ed a dental engine hand plece, has recently been pa is intended to enabie the working procesa to be cartio on to greater advantage by the adjastment of the el bows of the implement, eo that force may be transmitted and applied to any po
son being opersted upon.

A novel mode of converting reciprocating Into rolary molion han been patented by Mr. George J.
Altham, of Swansea, Mass. The inventor provides a shaft having opposite cranks, conneoted by a diagonal arm with a connecting rod, which terminates in a fork journaled on the ende of a niagonal sharh, whereby re-
ciprocating motion applied on the connecting rod will ciprocating motion applied on the

A machine for shaving barrel hoops has been patented by Mr. John Prince, of West Randolph, for grasping the hoop, and is operated automatically. The knives for shaving the hoop are also opened and closed automatically. The machine, in fact, is antomatic in all its operation, and it is claimed that it will
produce hoops of even thickness throaghout, and that produce hoops of even thickness throag
no short bends will be left in the hoops.
An improved land roller, claimed to posject of a patent granted to Mr. Abraham J. Stevens, of being placed in advance of the other two. Thase cyline ders are connected with one another in such a way, and are secured in such a manner upon hangers, that the rear rollers adapt themselves to the uneven surface of
the land being rolled. Provision is likewise made for drawing the
A wood boring machine, the object of which is to provide a machine for boring by a single
operation a number of holes at different angles to each other, such as are required in chair legs, etc., has been patented by Mr. John M. Nash, of Hudson, Wia. Two
sets of boring bits are sapported normally at right angles to each other, and are provided with means for the bits of each set to or from each other, as the case 3
A furnace for heating tubes to facilitate the braitng or welding of them has been patented by Mr.
R. H. Brown, of Omaha, Neb. The farnace le os con-
structed that the pipe is passed through openings in the
side, but does sot come in contact with the fuel, insur-
ing a better connection than when the welding is done ing a better connection than when the welding is done
in the fre. When this has been accomplished and the equired heat is obtained, the pipe is drawn upon a mandrel, and between two swages, one permanent and
the other movable, when the work is completed by ows from a hammer on the movable swage.
An improved machine for coating pills with celatine or similar material has been palented by Mr.
Charless C . Wells, of Saratoga Springs, N. Y. A rotating cylinder is provided with a series of needles designed to hold the pills, the coattugs of which are dried by rotating the cylinder. The improvement further consists in providing an inclined platform with a series of grooves,
and furnis hed at one edge with a notchod surip for diand furnis hed at one edge with a notchod scrip for di-
recting the needles into the prils, and with a similar recting the needles into the pills, and with a singlar
ootched strip at the opposite edge for stripping the potched strip at whe
A stean ice cutting machine has been paTwo anchor sleighs are placed some distance apart on the dield of ice, and between these are arranged frames for carrying the cutters. Adjustable legs are aleo provided for lifting the catters from the toe when not in use. The cutter frames are mored by ropes passing
uround windlaeses fastened on one of the sleighe, and rom thence pass around horizontal palleys which are astened to the other anchored sleegh, and so in
An improved elevator and carrier for unloading hay or grain, and depositing it at a remote which it was brought from the field, is the sabject of a patant granted to Mr. George W. Brower, of Crawfordeville, Ind. The invention provides a beam or track on which the fork for onloading the hay or grain from the wagon is suspended. When the fork bas been thrust nio the hay, the latier is rilised by the hoisting rope to
clear the wagon, and then conducted to the desired ying beam, where it is discharrued.
An improvement in machines for wiring corks on botiles is the subject of an invention by Mr. G. C. Coon, of Jersey City, N. J., for which he has obtained a patent. The machine possesses an adjnatable
clamp for holding the bottle by the neck during the proclamp for holding the bottle by the neck during the pro-
cess of wring, and of suitable jaws adapted to be cloeed apon tha wires and revolved for twisting the wire by neans of a revolving sbaft. Means for opening and Fhatting these jaws automatically are provided. Taken
in all its parts, the machine is capable of accomplishing a great deal in the cork wiring line, and this is a business which has increasted till it has attained ecormons proportions in this country.
A novel centrifugal machine for drying han been partented by Mr. Michael Wanner, of St. Louis,
hict Mo. The invention consists of a centrifugal machine formed of a tab containing a perforatod rotary veseel provided at its bottom with a pinion engaging with a cog wheel, connectod will an and by a rocking handie lever, whereby by rocking the handie lever the vessel in the tub will be brake for stopping the motion of the veasel, and also in a alotted cover for permitting a quantity of air to be drawn into the vepsel.

agricultural inventiona.

A patent has been granted to Mr. Henry A. Hyle, of Redwood, N. Y., for a device which is design and promote their efliciency. The invention consists principally in improved appliances for giviug motion to
A corn planter for planting on a large cale is the subject of a patent by Mr. James Reseegien, of Cleoputra, Mo. This machine is of a rectangular
orm, provided with a driver's eeat, and with seed hopform, provided with a driver's seat, and with seed hop,
pers on each side of the frame. In each of which is a
porm otary dropper connected by lever bars with the axle The vehicle is provided likewise with check row mark in which the corn is to be dropped.
A novel attachment for plows called a stirer is an invention for which Mr. VT. C. Hawkins, of Lima, S. C., has obtained a patent. It consists in attaching a stirrer or rake to the plowbeam for the
parpose of more completci' exposing the weeds arned up by the plow, and thus more rapidly it may be ased to rake np the grass and weeds on a row when the operation of plowing is progressing.
An improved barrow has been patented by gular frames Lewis, of Del Rio, Texas. Two recianvided with drag hook teeth to tear ap roots, clods, etc.. and clear away obstructions before the rotating teeth,
whlch are mounted immediately behind the drag book beeth, but so located as to work between them, are brought into use. Levers are connected with the frame
of the hook teeth with the object of vibrating them, and thus clear the teeth of any clogyiug matter that may

An improvemen

An improvement in seeders has been pa nvention, which is an Improvement apon the Gorhan seeder, and designed $t o$ facilitate the sowing of seeds
of different sizes and different quantities, consists in a eed discharging wheel provided with arms upon which are mounted caps so constructed that their capacity may be altered by means of a binding screw which se The cup is provided with an index and scale, by which
Mr. A. L. Reese, of Chase, Kan., has reor which he obtained a patent April 4, 1888. This drill conslats of two corresponding frames connected toto be bolted together. This arch is provided with a number of holes, so that the maln parts of the drill may
be beld nearer togetber or further apart, as circum
stances may require. When the drill is to be ased on ordinary ground, the arch connection will be anbolted add the axies of the two frames brought close together When the drill is to be used for drilling between row main parts of the drill will siraddle the row, the corn paseing unidjured under the arch.

HISCELLANEOUS INVENTIONS.

A device designed to regulate the outflow from an oll can has been patented by Mr. John C.
Thickens, of Hinedale, Mass. Valves are so arranged in the tube of the vessel that the oil will escape by An improvemen An improvement in gig harness saddeles, so constructed as to render the pad readily removable frum
the sadde, and replaced by another pad without defec ing the leather of the saddle, is the subject of a patent granted to Mr. Joseph Bevard, of Wooster, \mathbf{O}
Δ device for facilitating the attachment of the perches of bird cages to their supports has been
patented by Mr. Juseph Bagot, of Brooklyn, N. Y. The Invention aliso consists in a parasite trap consietting in a cap-shaped recess at the end of the perch, into which
the parasites will collect, when they may be readily de stroyed
An

An improved brush, adapted especially for velvet, silks, ecc., has been patented by Mr. Lacinius
Havasy, of New York city. This brush is provided on Havasy, of New York city. This brush is provided on
one side with short bristles like fur, and on the other remoring the dust, the soft fur aide serving to emooth the fabric.
A convenient wall match safe has been pa
tented by Mr. Augustus T . Gillender, of Now York ciry, which can be suspended againet the wall of a room and the other for the anoconsumed portion. A hole provided in the match holder, in which is exposed the
A finger ring, so
A finger ring, so constructed that it may be adjusted to any size of Anger, has been patented
by Mr. Heinrich Henricb, of New York city. The ring has the side pieces of its head grooved on the in
ner side, and a separable ehank is provided with slot on the en
A thill carrier, which is so constructed that the usual trouble of running the ends of the thills into thills is obviated, is the subject of a patent granted to Mr. Francis \mathbf{A}. Hake, of Cuero, Texas. The new thil hicle in the moet perfect manner.
Mr. Tbeodor Kilureman, of New Orleans, La., has patanted a now mothod of making brushen for
cotion gins. Instead of securing the brisues to their around the handle, the bristles are cementer direculy to the bandle. In this way the bristlees are attached quite as securely as in the former mothod, and thas
of equal quality is produced at much leas cost.

An improvement in awnings, designed to prevent the accumulation of water upon it after a raln
or thaw, has been patented by Mr. Whiliam Freeland, of Brooklyn, N. Y. Troaghs are arranged on the unde aide of the awning at certain distances to carry away the water, the water passing into these troughs through
holes in the awning proper, which holes are located a holes in the awning proper, which holes are located
suitable distances apart and directly over troughs.

A reflecting mirror to be applied to th sight of Are arms used in shooting galleries which are
lighted by gas or other artificial means bas been pa lighted by gas or other artificial means has been pa
tented by Mr. Richard Cannon, of Washington, Pa The improvement consists in attuching a concal the light apon the rear alght of the gun to enable accurate aring.
A novel device for stopping runaway horses Vienne batented by Mr. Carl E. Von Schwarz, of ing a curtain or blinder to the bridle that it may ba dropped over the horse's eyes should he become unman
ageable, thus cutting off the light and reducing bim to ageable, thus cutting off the light and reducing him to
eabmission. When the animal is once more under con eabmission. When the animal is once more under con-
trol, the curtain may be raised again withoul eubjecting the driver to alight from his vehicle.
Letters pateut have been granted to Mr John Wade, of Oregon, III., for an improved barre
head. The inventlon consists in a derice for holding the slats of a barrel head together by a strip which passes transversely across the slats and through which ecrews are passed into the barrel head, whereby the
parts are Armly held together. This tranverse strip in provided with a sailable haidie for lifting the head from the barrel when desired.
An improvement in wagon axles has been patented ty Mr. Andrew Kimble, of Moundsville, W
Va. This consists of eecaring the boister, hoond, axle, and trans bar together by a bolt. The ends of the truss bar are turned over the axle in such a way tha thus keeping the axle from springing or breaking, and preven

An improvement in secondary batteries, he object of which is to store up a greater amouuc or plates of equal dimension, has been patented by Mr
James Pitkin, of Clerkenwell, Middlesex, England These Pitkin, of Clerkenwell, Middiesex, England
Theries consist in electrodes formed of thi spiral shaviges or curnings of lead, crampled and pack ed in an open frame
with a porous fabric.
A novel improvement in spring shade roll son, N.J. The roller of the shade is monnted upo brackets by a Axed spindle at one end aud by a loose
spindlo at the other in such a manner that when the spindlo at the other in such a manner that when the
roller is revolved by raising or lowering the shade, the connecting spring will be put under tension, so as to
roll ap the shade whan the shade is released. The to
vention relates to improvements in the construction of he loose spirdle.
An improved method of fastening the pockets of poot and billiard tables to the pocket blocks hae been patented by Mr. George J. Bock, of Zanesville, O.
Instead of attachlng the pocket by tacking it to the Instead of attaching the pocket by tacking it to the
block, according to the former method, which is apt to cut the meshes of the $n \in t$, a metal strip is provided which is curved in shape like the form of the block. and is provided with notches over which the meelies of the
net are passed. This strip is thereupon screwed to the pocket block, furnishing a simple and secure fastening. An improvement in the holding ring and frame for embrcidering machines that employ a plura-
lity of needles has beem patented by Mr. Benj. F. Robnson, of New York city. A series of rings or other is fastened into a frame, thas avolding the old practice of sewing the pleces of canvas to be embroidered to gether, which rendered accessibility to all parts of the Pabric vary difficult. With the newly patented arrangeΔ siphon faucet for use especially in dis pensing kerowene and other ilue commodities has bee patented by Mr. N. A. Ellis, of Boonesborough, Iowa Δ pipe pasees over the top of the barrel, from which the air is removed by a pomp prepared for the parpose,
and when the air has been exhausted the liquid begins fiow throagh the pump, the stop cock which connect e pump with the faacet pipe being turned off. The
turning on the stop cock of the main faucet, the quid will flow out in a continnous stream
A new method of coloring photographs has ween patented by Mr. Josse W. Hyman, of Englewood, raphs in a solution of naphtha, paraffine, mastic drope ther, and vinegar, and applying to the back, in oil paint, the desired thade and tone, and also applying mixture of glue and glycerine to the back, and press-
ing the back to canvas until cohesion takes ag the back to canvas until conefion takes place.
whereby the whole picture will be fexible and have the appearance of having been pairted on the canvas. Δ satcbel, so c δ ntrived that it may be used ither as such or as a maff, has been patented by Mr. Lucinius Havasy, of New, York citty. The sacchel is provided with a longitudinal pocket with openings at
the ends into which a muff may be iuserted. The muff ls of fur or any suitable material, and is made of such a ize as to be readily inserted or witharawn from the ocket. The special advantage of Mr. Havasy's inventhe is that in summer the muff may be wilhdrawn from handle and lock, may be used as an ordinary sarchel. A novel departure in the construction of die, of Hamilton, Nev, for which he has obtelned 2 patent. The invention consists in a building with a
hollow shell, and perforated iron posts and beams, wich shell is to be fllled with watar from a reservoir above in case of Are. By an ingenions arrangemient the water is condacted throngh thelr hinges into the bollow blindm, After the Are the water may be drawn of into
a tank, and pumped back into the reservoir again. This

A kitchen safe has been patented by Mr X. Oberle, of SL. Joseph, Mo. This is constructed vided wiling lop. apon which is mounc anged underneath thes sliding kneading urougt are are slid oul, compartments for holding four, sugar, etc. are uncovered and are rendered accessible to the honse-
wife or cook. Beneath these compartments are arranged Wife or cook. Beneath these compartments are arranged
mall drawers for holding salt, spices, and like articles. This safe occupies but very little space, and is an orrendering meat tender An lin for render br Perry, Jr., of Nyack, N. Y. The meat tenderer, as the inventor calls hin invention, has a toothed roller and a mooth roller confned in the same frame. The rough olled over it the fibers are punctured, making it quite tender. The smooth roller follows behind the other rollroller, and restoring the meat to its original appear-

An improved gate has been patented by Mr. Dennis M. Bridges, of Woodstock, Ill. The gate is artandards connected by a top beam. To this beam is attached a pulley over which pasyes a rope, which like wise passes over pulleys fastened $t o$ both ends of a ends. By pulling the weight the gate is elevated, and when it has been paseed the gate may be closed by
rising the weight on the other side. The gate may be made very light, as it is guided on each side instead of being hang like a swinging gate.
An improvement in a telephone transmitter has been patented by Mr. Robert D. Woodworth, of
Orange, N. J., whici consists in attaching a spring to the fixed part of the jointed conductor, for condacting the current to the pendulous electrode. By this ar-
rangement the oscillations of the pendulous electrode will be accelerated, and the current transmitted without transming tivers become defective after some use, and be transmitters become defective after some use, and te
attributes this imperfection to the oxidation of the
hlnge of the pendulous electrode, a dimeculty his device

Mr. Charles L. Work, of Mount Vernon, O., He patentee of an improvement in book holders which
beloggs to the class used for supporting large booka ike Webeter's Unabridged Dictiouary, or any other work required for frequent reference. An ornamental tardard has fasrened to is top a huiged platiorm simiet at sufficient discunce apart to receive as large a book as required. These leaves are hinged to the centerplece, edgewise between for the book. The book is place edgewise between these leaves, which, when raised, are
held up and in place by a epring. For libraries, edito-
rial rooms, and oftices,

3usiuess and 2 ersmal.

The Oharye for Insertion under this heoad is ons Dollar

 a line for each insertion: about tight vords to a line.advertiesments must be received al publication ofice

Wanted.-Pateats or the right to manufacture the articles on royality. Give fuul particulars. Cuts, dram-
ings and specilications mill be returned, if not in our uine. on reguest of parles sending same. Lock Box 8 .
wees Troy, N. \bar{X}.

Yatentees may fud customers for theí inventions by
addressing C. Babson, Jr., 24 Congreas St.. Booton, Mase. Whilins Micawber longed for something to tarn up,

Farley's Directories of the Metal Workers, Hardware
Trade, and Mines of the Unted states. Prtice 28.00
 Soapstone Packling, Empire Gum Core, and anl kind
of Endine Packlig. Groene, Tweed $\&$ Co., Now York. Correspondence solicited from partles desirlng brase
or bronne castings. Speocial faclitites for larke and heary or bronse castings. Specal tacillites f
work. Lock Boz 85 , Weet Troy. N. \mathbf{Y}.
Wanted.-The address of manufacturers of new nos
elties in brasse. Address J. W. Covel, Rookkind, Matioe. Five foot planers, with modern improvements. Goo.
s. Lincon a co., Bartiora, Conn.

Cotton Beiting, Rubber Belting, Leather Belting, Linen
Hose, Rubber Hose. Greene, Tweed $\&$ Co., Nea York Hose, Rubber Hose. Greene. Tweed \& Co... Ner York.
To Balloonists, -Correspondence To Balioonists.-Correspondence Bollicited with
practical aeronaut. Address w. Huatson, 172 Montrom-

Fire Brick. Tile, and Clay Retorts, all shapes. Borgne Drop Forgings of Iron or Steel. See adv., page 290 . steam Hammers,. Improved Hydraulic Jacks, and Tube Millstone Dresing Diamonds. Simple, effective, and
aurable. J. Dotatinonon en Nacean street 50,000 Kmerson's Hand Book of Saws. New Edition.
Froee. Adaress Emerson, smith \& Coo., Beaver Falls, Pa, Ragie Anvils, 10 cents per poond. Fully warranted. Goald \& Eberbardt's Machinists' Tools. See adr.,p. 286 . For Heary Panches, etc., see
ment of nlles $\&$ Jones, on page 20.
Barrel, Key, Hogshead, Stave Mach'y. See adr. p. 870 . Sewing Machines and Gan Machinery' in Variety.
The Pratt \& Whitney Co., Harttora, Conn. C. B. Rogers \& Co.. Norwich, Conn... Wood
Machinery of every kind. Soe adr... peae 220 . For best low price Planer and Matcoer. and latest
Improved Sash. Door, and Blind Maohinery, Bend tor
catalogue to Rowley \& Hermacoe, Willumamport, Pa. The Porter-Allen High Speed Steam Engine. South.
work Foundry $\&$ Mach. CO.. 40 Washington Δ ve.,Phul. Pa. Common Sense Dry Kiln. Adapted to drying of all Ima-
terial where kiln, etc... drylig bootees are ussed. See .20 . terial where kilin, etc.. drying boases sere ussed. Soe
The Sweetland Chuck. See illus. adv., p. 270 . Knives for Wood worklng Machinery. Bookbinders, and
Paper Mills. Taylor, Stlies \& Co., Riegelevylle, N. J.
 New list Machinists' Tools now ready. Address E Improved Skiner
Improved Skinner Portable Englines. Erie, Pa. Ouild \& Gartison's Steam Pump Works, Brooklyn, N. . . Steam Pumpling Machlinery of everry deeerip.
tion. Sena for catalogue. For Pat. Safety Rlevators, Holsting Rngines. Friction
Clutch Puileys, Cat-orit Coaplling. see Fribbie's ad. . 2π. For Mill Mach' $\&$ Mill Farnishing, see illus. adv. p. 236 . see New American File Co.'s Advertisement, p. 238. Mineral Lands Prospected, Areesian Wells Bored, by
Pa. Dlamond Drill Co. Box 42 . Pottsrillo. Pa. See p. 237. Steam Pumps. See adv. Smith, Vaile \& Co., p. 238.

 The Best.-The Deuber Watch Case
Permanent Expoeition.-Inventors' Instatate, Cooper
Union, N. Y. Citr. Ervery facllity for exhhbtito of machin
 ery, merchandise, and inventions. The expense

- the adrantages great. Send for particoulars. Contracts taken to mannf. small goods in sheet or
 Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts. pollshlag compositions. etc. Com-
plete outat Jor plating, oto. Hanson $\&$ Van Winkle.

 "Abbe" Bolt Forging Machines and "Palmer" Power Magtc lanterns, stereopticons, cond. lenses, etc.. on
hand and made to order, C. Beeseler, 218 Centre St., N. \mathbf{Y}.

Railway and Machine Shop Rquipmen
Send for Monthly Machlinery List
the Georke Place Machlnery Company, Past Lathes of the best design. G. A. oh \& Co. "
"How to Keep Boilers Clean." Book sent free by
James F. Hotehkstse, 8 , John St. New York. Engines, 10 to 50 horse power, complete,

Wanted.-Patented articles or machinery to make
and introduce. Gaynor $\&$ Fitzerald, New Haven. Conn. Water paritied for all purposes, from hoosehold sup-
plies to those of lareest citles, by the improved filters

 For Power \& Economy, Alcot's Turbine, Mu.Holly, N. J. Ice Making Machinee and Machinees for Cooling
Brewerres, etc. Plotet Artinotul

Sillt Palleys at low pricees, and of same strenth an
appearanceas Whole Palleys. Focom $\&$ son's shatin
Machinery for Light Manufacturing, on hand and built to order. E. E. Garrin $\&$ Co., 180 Center St., N. X. Presees \& Dies. Ferracte Mach. Co., Brldgeton, N.J. Sapplement Catalogue.-Persons in parsait of infor
 ENTIFIC AMKRICAN BUPPLKMKNT sent to them free
The SUPPIEMINT ite whole range of englinering, mechunios, and physh-
cal solince. Δ dareess Munn $\&$ Co.. Publibhera, New York.

nEW B00Ks AND PUBLICATIOMs.

The St. Louts Photographer. Publisbed
monthly at St. Louis, Mo., by Mrs. J. monthly at st.
It aims to set forth in an interesting manner, with Western Preshness and rigor, ahe photographic nows of
the day. Esch number is adorned with a fne specimen of the photographic art. Taken altogether it is one o the best journals deroted to photography pablished. Modern Dwellingas.
Among the more recont contribations to architectural literature which have come to our notice we find notractive intle work by Mr. H. Hndson Holly, of ings in Town and Country." The author has attempted to show how it is neceesary, in bringing over stylos of archltocture from across the Atlantic, to naturalize
them and adapt them to our American wantis and cil them and adapt them to our American wants and climate. He speaks of the inconsistency of our following
step by btep the rules relating to the various stylyes of step by step the rules relating to the various stylyes of were evolved by alow degrees at a period and ander circumstances so different from our own that what then might have been regarded as a trait of perfection or a natter of nocesaity becomes in our day an incongraily neans a critical one, and after the anthor pleads for independence on the part of the Δ merican architect, he enters tno the practical part of the work, which com-
prises a series of papers giving most useful hints regard prises a series of papers giving most useful hints regard-
ing how to set about building a honee. He arrt menng how to set aboat builling a hoose. He firt menons the beauty and economy of country life, and then and when chis has been settled, how the plans should be drawn up. So be proceede, discusaing clearly and concisely the utilitarian in architecture. The book is illusrated with about a handred dealfna, giving the elevaons and the ground plans of country houses, with the astimated cost of each. The last half of the work eroted to the extensive and all important enbject of internal decoration, and numerons catt are given of the
different features of houneolold furisbishing, To persons
contempleting bill contemplating bailding a new villa or cottage, or remodellilg an
very unefal.

HINTS TO CORRESPONDENTS.
No attention win be pala wommunicaions unles writer.

Names and addre

We renew our request that correspondents, in referring oformer answers or ariclices, will be kind enoogh to ane the date of
Correspondents whose inquiries do not appear after a reasonable tme slould repeat them. If not then put Llshed, they may conc
Edtor declines them.
Persons desiring special information which is parely
of a persional character, and not of general inverest we cannol be expected to spend time and labor obtain such information withont remuneration.
Any numbers of the scisstinc Amisrioan soppis. MENTr referred to tn these columns may. be had at th
offce. Price 10 cents each. Pifce. Price 10 cents each.
Correspondents sendip.
Correspondents sending samples of minerala, etc. abel treir specinenan so as to avold error in their idegt fication.
(1) J. R. D. asks: 1. How short will it do io have the pltman in a vertical saw milly It has a two
oo stroke, and the saw sash runs on toin inch iron rods A. Three to foust times the stroke. If ehorter, It creates velocity of the circume serences. of an emary wheet the

 pends apon the size; large articles like bed posts, or
pieces 4 inches diameter, 400 to 500 revolutions per minute. Small work 1 or 2 t inches in diameter may run
ip to one or two thousand per minate, according to the up to one or two tho
nature of the work.
(2) F. B. S.-For liquid bluing eitber he following is recommended: 1. Diseolve indigo sul-
hate in cold water and ilter. 2. Diseolve good cotto lie (aniline blue 6 ounces) in cold water. 8. Disesolv Pruseian blue with oneeighth part of oxallc acid th
water. 4 . Dissolve Tlemann's solable blue in water water. 4. Dissolve Tlemann
with 2 per cent of oxalic acid.
(3) D. D. L. writes: 1. I bought for sew ing machines a.sperm olit; it gums. What shall I add to $\begin{array}{ll}\text { sperm oill in open air with lead clippungal. } & \text { 2. What }\end{array}$
the best remedy known for corns? A. The following to suggested: Take a quarter of a cup of strong vinegar
crumb finely into it some bread. Let stand half an hour or untill it softens into a good poultice. Then apply on retiring at nigbt. In the morning the sorenees will be Kill, best tine corn can be picked out. 8. What work oring extracts, simple and good? That you may bett nnderstand what I mant, I am manafactaring and sell-
ing
fisvoring extracts, perfomes, and other nseful remetng 解 ling extracts, perfames, and other nseful reme
dies, etc., and I want to get a work from which I can ob dies, etc.,. and I want to get a work rom which I can ob-
tain formulas for theee articles through which I may be tain formulas for these articles hrough which mas be
enabled to manafacture a good article at as amall a cost
 thant, "A Comprohensive Treatise ou Perfamery, with Thorongh Practical Instructions and Carefol Formulas,
 ${ }_{80}^{8,00}$.
(4) J. M.-Your brass tubes no doubt tave brazed seams. In this kind of tube the spelter
 worthlesesnese.
(5) E. C. H.-You cannot use an efflcient steam jet for ventlatitig the kitchen in comnection with the range Aue. The jet will desiroy the draught of the
tue. A tight fron Aue would make an efficient ventilator with a steam jet which mast be a multiple one for quanity draggt. If you turn the jet into any othes brick fne, you will create pressure along the fine, which
is porous and will allow the odors to permeate the brick work and enter the adjacent rooms. If you can bring into nese for venillating the hood, wth the foll opening, It will be the moot feasible plan.
(8) R. L. M.-A glazier can cut the end from your glass dome. It will not make the electric bettior to have both ends allike. Kake a light frame for teastening to the inilde of the glase cylinders and stict it with shoemaker's wax, which is the safest cement All other parts can be pat together with shellac in the form of a varrish or by melting, as convenient. Make the collectlog points of brass wire eharpened or of com-
mon pieces, make the recelver of pine, cyllindrical with mon pieces, make che recelver of pine, cyllindrical with
ronnded ends and covered with tin foll fastoned with shellac varnish. The points can be pushed into the voo. The glase insulating standarra can also be lee
into the wooden recelver with shellicc and albo into wooden foot. All other parts may be of wood.
(7) W. H. R. writes: My church has brick walls eighteen inches thick, hoor aboat two fee plastered and freecoed on Inside tboth walle end collug The dampness has difflaped the treeco celltog and sides very much. Could this be totoped by pefiting exterior of building? If so, what kind of patint should be used: The celiling ls fat; woold the acoustic pro perties be changed, elther for better or worse, if the
ceiling were arched? Would the walls, which are well ceilling were arched? Would the walls, which are well
gettled, bear changing the root and making it very eetted, bear changing the roor and making it very
steep. thus doling away with a celling, having the inCerior timbers dreseed and varnished like the interlor of moderu charches? A. The oatside of the brick walle does not come through the walle, but is due to condenseton apon the plaster reanulting from changeses in the weather, excessive raln, and want of heat and con-
tinued ventiation. We suggest as a remedy that the spece under the church floor be thoronghly venuliated by catting hare holes through che walls so that the pre Val windows every dry day, and in wot fogky weather not be injurea by changing the roof, they might wo im proved. The walls are strong enongh to bear the load but mant not be depended apon to oapport a aproad in a a framed arch. The roof must be trassed oo as to be self-
enataining. It would be well to consalt an architect or eustaining. It would be well to consanit an arch
a bailder that understands high root trasiling.
(8) W. A. S. writes: I have an Eclipse steam rock dril. ranning sbout 1 to strokes per minate, of steam cyllinder of drill is 5 tiches by 244 inches. Size of steam pipe, 1 inch. The boiler is an appight one situated on a aill, and although I have elghteen feet of
stack the boiler doess not generate steam last enough. stack the boiler doess not generate steam inst enough.
Can you tell me what the tronble lat Can you tell $m e$ can you tell me what te tronble ha can you tell me
the best was to temper ateels for the above drill; also the proper color, the rock beligg very hard? In the ran the ateam throngh three handred feet of 1 jnch pipe withont the steam condensing to any kreat extent, and at the seme ume run the above drill? \mathbf{A}. It is possible that your 7 horse apright boiler is overrated, as the
drill at 80 poands prosare indicates aboot $11 /$ horse power; but considering that it has considerable friction rom large pifton rod, and posesibly two stumng boxes, power to drive it and make up for leakages. What is commouly called a 7 horse bolier will not be equivalent orfacse power. The naked of thell rediates a arreat deal of heat. the steam pipes, especially it long, condense steam
very rapldy. An apright boller tor such a drill should Very rapldily. An apright bolier or such a drill should
have 100 squase feet of fire surface besides the portion of the tabes above water line. The steam pipe shoold 100 feet. If 200 feet distant, $13 / 4$ inch should be need For hasd rock the drills shoold be as hard as they can be made withont breaking. Harden the drills at as low a heat as poesible in clear water at shop temperature. Try them without drawing the temper; it they do not
tand without breaking, draw the temper very slightly ray to a straw color. If joo manago the bardening and harpening righty, you need not draw temper. Select
(9) J. W. B. - Steel bars bent into a triansular shape are in common nse in Rarope, and have aloo suare or round steel and suspend it in the center with
way between the center and end to get the tone. If it suits you, have it bent into a triangle having the three
sides equal. Suppend it with a cord at one of the oides equal. Surpend it with a cord at one of the
anglees, and it is ready for use. a wooden mallet pro. aces the beat tone.
(10) J. G. R. writes: I have some clloride of gold and also some nitrate of silver, both in lignid perfectly neutran state without cbang ing them from a Also, can y nut directe. Can you direct me how wa do carbonate of copper in a manll was? I have plenty of carbonate of copper. Can It be made of that? \mathbf{A}. The salits most be brought into solation, then test with hit-
mas paper, they should be acld or neotral; If scid, add mas paper; they should be accid or nentral; if accid, add
ammonlum hydrate untll neutral, then eraporate to dryammonium hys drate antil neutra, then evaporate to dryFresenius' " Quallitilive Analy yils." When sodinm carbooate ls added in excess lo a solution of cupric salphate, the precipitate is at first pale blue and flocculent, but y warming it becomee sandy, and assumes a green int; in this state it contalns $\mathrm{CaCO}_{3}, \mathrm{CaH}_{2} \mathrm{O}_{\mathbf{2}}+\mathrm{Aq}$,
which is probably the salt you speak of.
(11) W. S. H. asks how such concave artiser of thin metal as ladie bowls can be polished up
bright, presuming that all scale, etc., has been preroasly removed. Is there any kind of polishing trois nade to hold ayainst such articles to polish them while hey would be revolved in a lathe? A. Sole leather wheels are used for polishing or smoothing concave pumice stone if the articles are rongh. Walrus hide is now much oeed because it is very thlck (about one inchis hese wheels may be had of tool dealers in this city You can turn them into shape; first gine them to a wooden mandrel or chuck. Revolve the polisher and hold the bowl in the hand so that it will cross the grain
in polishing; Anish with a rouge or chalk buff of felt or cotton.
(12) F. W. J.-Case harden wrought iron work by heating the piece in an iron case or trough
cover with charcoal made from leather scrap, hoofs, orns, or bones, pulverized finely and mixed with about 10 per cent by weight of prussiate of potash. Cover the article with the mixture and all up the
trough with sand to keep out the air. Heat to full red (13) J. M. M. writes:Please give me through Notes and Queries, size, focal length, and distance for telescope with 5 inch object glass (planoconvex), is) troch focas. Also, will snch an eyeplece do for an obact glass of 4 or 6 inches, conver or plano-convex, of 48
nocus? A. A field glass plano-conver 2 inches ocus and an eye lens plano-convex x inch focus, placed $1 /$ Inches apart, face to face, plane sides toward theeye, 1 wive yona 1 X Inch field glass, $1 /$ inch eye glase 1 inch apart. which will be as much or more than your object 100 , will stand, unless it is achromatic. It mnkes no differoce in the application of eyepleces whether the focal ength of the object glass is long or short, except in
(14) S. A. R. asks: Will a cast iron idle Wheel run successfully on a cast iron shaft? A. Cast
ron upon cast fron and wrought iron upon cast iron run well at low speeds where the pressure apon the journal is not great. Speeds above 100 or with pressure require anti-friction bearings. Mach depends upon
special conditions, of which speed and pressare are special conditions, of which epeed and pressare are
(15) F. M. C.-All nets should be dried as oon after using as posadble. A cross belt should run perfectly, if your palleys aro properiy crowned upon the face. A silight change you should be able to mate of the counter shat which you shou
set you right.
(16) D. G. writes: I run a saw mill bere having six bollers, tabular, 48 inch shell, fired with carry 85 pounds steam. At 6 P.M. the fomace a filled up with sawdust, draught doors banked with the pounds to 50 pounds draughts; steam will stand from 20 pomped fall about through the night. Boilers ane dranghts are opened to get up steam to start engines at 6 A.M. When steam rises to 30 to 40 poonds, the sur face pipes are opened, blowing off from bollers that may
have too much water. Bollers are fed from front separat feed from each. It. Bocesionally happens that theparate duat below one of the boilers has not borned to any ex tent, so that there is no evaporation of water in that boiler. When the surface pipe is opened from that boiler, for the purpose of letting off the sarpina water, there sometimes takes place in that boiler tremendous rolling and thumping, as if the water was compressed and thrown from one end of the
boller to the other, cansing the whole fronts and boilers to shake. I cannot anderstand the cane of it. A. You do not atate whether there is any pres Should judge from your general statement that the ham mering boiler was not making steam, and had the pres sare of the other bollers apon it through the steam con nections, in which case the water wonld be solid, i. e. dree from elastic vesicies of steam. When the surface tions, the opening will become depressed and enter the blow off pipe by fits and create a hammering If your blow plpe is at one end of the boiler, the noise and jarring may becaused by corrents sat up in the boiler. If you put another blow pipe at the other end
of the boiler, and open both partialy ait the same time of the boiler, and open both partially at the same time,
(17) A. H. McC.-When acetic acid is made converted inctive distillation of wood, the crude acld it calcium carbonate; this in its turn is converted into acetate of sodinm, etc. See "Acelate of Lime, its Manutacture and Anaiysis," by stillwell \& Gladding: "Encycloperis of Chemistry" pablished by Lipplncotit
2. The Deatochlordde of copper is the capric chloride or copper perchloride of to-day. 8. Information pertalncyclopedias and works on photography.
(18) E. B. D.-You will find rules for calcalauting the power of springs in Rankine's "Rules and Tables," page 804. The foliowing formulan are also used: For maximum loard
$M=\frac{d^{2} \times 12,000}{2}$
$d=$ diameter of round wre; ${ }^{r} r=$ mean radius of coil. For the weight to defiect the spring one Inch, d ${ }^{6} \times 180.000$
$\mathrm{n}=$ number of coik. There is still another rale given in
Clark's "Manual for Mechanical Engineers." We doabt if any is reliable, to the result matit vary greally (1) quality of the stool.
(19) H. J. T.-The advantage of the pop safety valve is that it opens quickiy and freely, and remains nutil the prosesre falis t the IImit of pressure, and closes qaickly. The range of preserure between open ing and chery valve.
safer
(20) M. J. G.-Matches are first dipped in sulphor, then in a
lowing is a type:

(21) E. M.-For size of belts calculate by the following formula
$\mathrm{W}=$ width of belt in inches; $\mathbf{8 0 0}=$, per minute. With narrow or ahort belts nee 860 for divisor. This is a common, practical rule, bat is not and size of the palleys all affect the resalt.
(22) J. B.-Ganot's " Pbysics," says: "If rater contalns salts or other forelgn bodies, its freesing Fah.) to $-8^{\circ} \mathrm{C}$. $\left(8^{\circ} \cdot 6^{\circ} \mathrm{Fuh}.\right)$; the ice which forms is quite pare, and a saturated eolation remains.
(23) J. 'C. H.-Nearly all range boilers in use in the United States have no vent for the stoam that may be generated by overheating. The general prectice is to have the water-back so smail that ordi pressure usually carried, which is from 15 to 50 pounds water supply pressure. Any overheating sonds the water back into the supply plpe, and the violent circulalon through the waterback in healing pipes sets ap hammering. The remedy is to open the hot water the supply is taken from a tank in the house a vent pipe inserted into the top of the boller and carried up and bent over the top of the tank. Drawing off the water rom the boiler when the supply is shat off, with a strong ire in the range, is dangerous to the safety of the water-back. It might not burst, bat woald be liable cosack or be barnt in the joints. There is no weld Weldieses stoel tabes are made in England. Seamlese homogeneous copper and brase tubes of iron pipe ases, and also for boller faee, are made in this coun(24) W. N. H.-For ink for marking bales
 Boil the borax and shellac in the water unilil they are diseolved, add the gum arabic, and withdraw from the fre. When the solution han become cold, com-
plete $\%$ ounces with water and add Venetian red plete 95 ounces with water and add Venetian red
enough to bring it to a suitable consititency and color. This ink must be preserved in siase of earthen vessel.
(2) J. R. R. writes: Seeing some time ago a queation auking how to mend a cracked bell, which
though I am afraid it will be too late for the inquirer may be useful to other persons, I send the following which was given at a meeting of the Institution of Civil Engineers: The crack is arst soldered with tin, and the bell is heated to a dull red or nearly so for a litue ume. The tua han the property, when hoatod above it melting point to nearly a red heat, of rapidly diseolving copper, and being thereby formed in the crack of nearly the same kind of composition as the bell itself, an as britileand as sonorons as the other portions of the bell.
(26) J. W. C. asks: 1. Does it injure bi carbonate of soda (ased in a ifre extingulsher) to be ex carbonate are exposed to the air, they absorb molsture but a solution of the salt will not be affected by the air 9. Would like a simple test to know whether the soda is pure or not. A. It can be tested for sodium chloride by dissolving it and treating with it a drop of silver nitrate; a white precipitate will indicate the presence of this iogredient.
(27) A. W. E.-For nickel plating process from 5 to 10 per cent of chloride of sinc, as pare as pos sible, add enough sulphate of nickel to produce a strong green color, and bring to bolling in a porcelaln vessel
The piece to be pilited, which must be perfectly bright and free from grease, is introduced so that it tonche the vessel as little as possible. Ebnilition is continued from 80 to $\mathbf{0 0}$ minutes, water being added from time to time to replace that evaporatod. During ebullition nickel is procipitated in the form of a white end hours withaut coatting. As soon as the object the thickneese of thit It is wrehed in waier containing a litte chalt plate pension, and then carefally dried. This coaing may bo
ocoured with chalk, and is very adherent. The chloride of zinc and also the sulphate of nickel used must be precipitation the procipitable by iron. If aurige the nickel should be added. The liquor spent may be used again by exposing it to the air untir the contained iron is precipitated, filtering, and adding the zinc and nickel
salte as above. Cobalt also may be deposited in the same manner.
(28) E. C. M. asks: What is meant by a feathering paddle wheel? A. Wheels in which the
buckets or floata are revolved through a certain angle bucketa or floata are revolved through a certain angle,
so as to entor and leave the wator vertically or nearly
(29) J. J. R.-For coloring brass dissolve 20 cents' worth of silver and about 1 .ounce of copper in 8 ponnds nitric acid. Heat the objects slighty, then dip
into the solation, and again heal until the article is black. Let the objects cool on an iron platter or anvil Then remove surplus coating with a brush dipped in leat and will improve with age For a clear varnish for bronzes try the foliowing: Digest 1 part of braised gum copal with 1 part oil of rosemary in 3 parts of abso late alcohol. This gives a clear varnish, and should be applied hot.
(30) J. W. asks̀: 1. Can you give me sood recipe for maling cocoanat hair oil?

A. Cocoannt oll....	t.
Castor oll.......	
Alcohol.... ...	
slippery elm bark	oz.
Water...	
Oll of bergamot	"
" lemon.	
pimen	

The cocoanut oil is mired with the castor 1 drachm. alcohol mired slowis with them ata aslight heat. The elm bark in coarse powder is dissolved in the wate and strained, and mired by agitation with ithe reti unctare of gambore. 2. Also, what can be used in the place of stove blacking, that will so color the iro that it will not born off and become rusty, and that will not rub off as ordinary stove blacking does? A. W know of nothing more satiofactory than graphito stove
(31) R.B. G.-The Kellner eye piece is of the Hayghens form, with an achromatic oye glass, the Reid giass being doublo conver. THe scelahili is of the aneral are nearly the same as in the Hayghens and Ramsden ayepieces. The compodition for polishing object glacee

is made of clour, clean resin, with enough turpentine to make it tough, or no that you can indent it with you
anger nall without chipping. The turpentine and resin are melted togother is a clean veseel; then stir in on tenth the quantity of ine whent flour; str well until the four is thoroughly mired. Then try it by dipping a clonn atick into the mase and cooling a small lump that sticks to the stick in water of the same temper tare 23 the room you propose to work in. If the test it is right. If too hard, put in a little more torpentine. it is right. If too hard, pat in a littue m.
When right, warm your lap and spread.

Minerals, etc.-Specimens have been re ceived from the following correspondents, and xamined, with the results stated:
E. M.-The sample is eandstone containing a large quantity of iron peroxide, or limonite. It is of no apecial value.-A. C. H.-The sample nent is rathe
small for satisfactory identification. It is a siviver ore owever, and boksithe a cllluride. An ascas woal Oot 8.00 .

COMCOMTATIONS RECEIVED.

On the Storage of Rlectricity. By H. G
On सiectric Heat Regulators. By C. P.
On the Occaltation of Saturn. By L. W.
[official.]
INDEX OF INVENTIONS
por whion
Letters Patent of the United Statee wer Granted in the Weel Ending

April 17, 1883,
AND EACH BEARING THAT DATE [Those marked (r) are reissued palonts.]
Δ printed copy of the speoincation and drawing of any
andent in the annexed list. also of any patent issued Ince 1888 , will be furnished from this ofice for 25 cents. In ordering please state the number and date of the
patent desired and remit to Munn $\&$ co., 2 ol BroadWasy corner of Warren Street, New Yort eity. We
aiso farnish coples of patents granted prior to 1856; out at increased cost, as the specincations, not bein rinted, must be copled by hand.

Air compresaing machinery, T. Sturgeon.......
Alr for refrigerating and ventllating purpo
cooling and distributing compressed, voling
Animal trap. II. C. Chadwell 775,

Apple mill, J. F. Pattorson rtist's box, W. H. Brownell
Augers, metal die for maiting. D. W. W. Harris
Augers, wringer plate for twieting, G. G. Holle

Barrel covar, M. . . J. James.....
Bath room, J. C. McLaughin
\qquad

``` Becondary bain
```

Battery. See Galvanic battery. Secon
tery. Seondary or storaeg battery.

hinnesoen, metal last and jeck for, s . Ma
Bottle, ink, A. W. W. Brinkerhoff.
Box. Soe Artist's box. Locomotive moke boin
T'obacoo box.
Rox fastener, W. W. Randell.
Brace. See Door brace.
Bracelet, G. A. Sploer.............................
Brake. See Elevator and dumb watier brake
Locomotive and tendar
Brake beam. M. T. Klog.
Brick. compoition for Are, G. A. Hommann, Jr. Bride, J. J. Moctue
Brush. apholstery, J. A. I............
Buakhl apholstery, J. A. Illingw
Bush for vertical shafts, Stelnumets \& Gelistnger
Can. Soe Oifl, etc... can. Sheet meta............
and, poump. and meanure, combined, B. F. Mye
Canning press, L. Hamiln
Capsule machine, Habel \&
Capsule machlne, Habel \& Taylo
Capsule machIne, \boldsymbol{H}. H. Taylor
Oar, J. P. C. F. Foster
Car brake. C. A. Millener
Car coupling, R. Bigney.
Car couplling, Dale \& Barnes
Car coupling, A. Fischer....
Car coapling, Goettel $\&$ Slast
ear coupling
ar conpling, , Goetter
Oar coupling. I. I. Keely....
ara coapling, G. F. Mediles
Car coupling, G. E. MedieJ...
Car coupling. F. A. Ray......
Car
Car coupling. A. Story........
Car coupling, G. W. Witting
Car conplung, G. W. Whittington
Car door hanger, silding,
Car, Pree sleepling. H. M. Ner........

Carriage running gear. Earle \& strail

Case. See Packing case.
Case.....................................
Costings, manupacture of tiel G. W. Frandis..
Centriar remedy, w. Wohltmann
Center board, H. C. Goodrich.............................
Chair. H. B. Hale
Chandelier, extension, J. T. Bruen

Chimney cap, J. H. Watt...
CIgar holder, J. B. Holmer
Clamp. See Lamp shade clamp.
Coanner. See Window cleaner.
Cloth, method of and machine for shriniting, dry-
Ing, and Anishing, \mathbf{W}. Hebdon.................
loth, and inishing, w. Hebdon................
Coke oven, B. Cochrane..........
Collar ped. horse, W. J. Cochran
Consolidating loose and bulky materinil into solid
blooke mand
blocks, machine for, W. H. Smith.
Cork, artincial. Grunzvelg \& Hartman

Corset. M. P. Bray.....
Corett, C. H. Whllams.
Cotton elevator and distributer, A. D. Thomama...
Conpling. See Car coupling. Shaft coupling.

thill coopling. crate for fowls, T . F .

Crate for fowls, T. F. Woodside......................
Crate for fowls, folding, T. F. Woodside.........
 Cutter head, A. V. Cross......
Die. Soe Stamping die.
Dining table and lunch cese, portable rallway, J.
M. Caso.........
Dranfecting water closeeta........................
Dletilled spirits from grain, method of and appe-
ratus for manufacturlina. T. A.\& W. T. Jebb Door brace or stay, P. J.
Drier. See Feed drier.
Drilling machine, hand, J. Cherney
Dyeing compound, A. M. Melnoke..................
Flieotric light. Incandescent, T. L. Clinkman..
Electrio machine, dynamo, w. Morava
kiectrio motora, speed regulator and reveraing d
mevator. See Hay elevator.
EMevator. W. H. RIdgway.
mlevator, B. Sewall....
Elevator avd dumb waiter brake, M. J. Lawlor
Elevator avd dumb walter brake, M. J. Lawlor
Engine. Bee Rotary engine. 8teering enkine.
Fan, D. S. Cooke
Freed drer F. R. Roant.
Freed drier, E. Ront
Freed watar purifier

.. $\boldsymbol{m}_{n 0}$

 275,910
276.095
276.073
20.8 Fiber and for other parpoees, machine
ing. J. Kennedy.................................... r
Hbers of jute and cotton plants, method of and
apparatus for extracting. T. J. Bpear.......... 275.963
nue handle G. W. Hull
Fire engines. ©oupling for untiting streams from.

force of, E. F. H. Ronsegan
Furnace. See Boller furnace.
Gauge. See Surface gange.
Galvantc battery. W. A. Alexander 285,799

Glass press anc mouid, A. P. Brook...............
Glass, production of enameled or metulired, J.
Fetr... 288,01
Glasses, mirrors, etc., machine for grinding ellipti-
cal. G. Sch wars...
Glassware, manutaoture of open-ended, C. Chal- 275,99
Glove and other fastener, w...................................755,89
Glove fastener, G. ‥ Adams................................ 275

Guard. See Window guard.
Hair pin peckage, E. P. Har...
,
Handie. See File hande.
Handle attachment, H. P. Hood 275.914
Hande for corrying bandes, eto., W. G. Grimm.. 255,902
Handle for carrying bundles, eto., W. G. Grimm.. 260,
Hanger. Bee Car door hanger.
Harness, J. Weirick.............. 278,105
Harmess and box loop press, T. w. Morse 275,848
Harrow, B. Carper

Harrester, Baker \& Pridmore........................
Harrester chain rake. J. H. Dickey........
Hat bodies, and sticking and scaliding napped
Het bodies, and stlckink and scalaling napped
hats, machine for sizing, G. F. Larkin......... 275.92
Hate, machine for beating up napped, W. F.
Hata, machine for beating up napped, W. F.
Martin.................................
275.925

 Holoting machine, B. F. Porter et al................
Holder. Soe Cigar holder. Crayon holder. Jar
holder. Mirror holder. Relin holder. Sesh

Horse quarter boot. 8. Taylor 275, 2771
Hose exhibtor, O. W. Conner.................. 275,87

Hydrallc or other elevator. G. N. Reiff............ 275,8
Ioe, eto., machine for lovering. 0 . Runclett...... 275,88

Iron. See Vehiole..........

Troning machine, J. Powern
Jar holder. N. Morse.........
Journal bearing. . P. Fenn
Journal bearing. G. P. Fenner
Kntting machine. W. EntF....
Lace fastener,
Kace fastener, H. H. Porter .:
Lamp burner, J. B. Greenhal
Lemp burner, J. B. Greenhalgh.............
Lateh for tarning lasts, B. B. Bemis
Info-preserver, D. A. Wo
Liftilg jack, L. D. Jones
Lifting jack for raising rallway tracks, J.....................278.140
Snapp 276,08
Look. Bee Nut lock. Padiook. Permutation lock. Switch lock.
Lock, N. J. Cote
Look, N. J. Cote.. 276,0
Locomotivand tender brake. C. W. Laupher.... 275,8
Locomotive tenders while in motion, method of
and derice for coallig, M. H. Lants... 278,061
Locomotive, tramway, J. J. Qulck, Jr.......... 278,976
Loom shuttle, F. J. Freese.................. 276.01
Lubbricator, H. Allton... 276,9
Lubricator, w. P. Phillipe................
Measure, dresemaker's. D. C. Hamilton
Mil. See Apple mill. Roller mill. Roling mill.
Water mpll.
millstones, eto., adjusting and supporting. G. Mul
bank.. 275,9
Motlon, device for converting, A. Gould.......... 238,028
Motlon, stbotitute for crank, E. Boarke.......... 255.988
Neckiti fastener, W. A. Bates 275,888
Necktie fastener, W. A. Bates
Necktles to coluars, device for attaching, G.

On, etc.. can. D. W. Norris....................... 276.0
Oil. catc.. can. pump attachment for. M................
Ollcloth, etc., utlliting waste. J. . Greene...

Oil from cods'
Kendrick \& Jers. apid 275,888

Packing case for holding bananas during trang-
portation, w. H. Goss...............................02
Packing
Packin, piston, W. W. St. John. 275,9
Pack. See collar pea.
Pad.
Padlock. Yoe \& Eirby, Jr............... 275.9

Paper moistening machine J. H. Stonemets......
Paste eubatanoes into conical form, machine fo
Paste anbutanoes into conical form, machine fo
bringing, G. W. Tnomas....................
bringing, G. W. Thomas.
Pen fountaln attachment. T
\& L. A. Hawkes.

sfery te
 01 820 11

 188

ZUCCATO'S PAPYROQRAPH.

 Kires

MORPHINE ano WHISKEY QEMLDLORIDE OF OOLD
KEBLIF E. K. KEMELIGY. M. D., Erarzeon C. \& A. Railroad. Dwishto In. MANHOOD!

KNOW THYSELF, mention A Book for Every Man Young, Middle-Aged, and Old.

The "Handy" Jack Knife.
ROOT'S NEW IRON BLOWEA.

IRON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturer 8. S. TOWNSENDNNERSVILLE, IND.
 SEND FOR PRICED CATA

FOR SALE OR RENT. tories in the Werst, with ave cane or or the finest manufac
of toon soor square fee
space equipped with gas, hydrant water

The Sugar Refineries at Demerara I

WESTON DYNAMO-ELECTRIC MACHINE

Llectroplating and electroptping, refer to all the prrnetpal Stove Manutatatureras. Nickee are also manufacturers of Pure Nickel A nodes. Nickel Salts, Polishing Compositions of all kinde, and every varlety of supplies for Nickel, Silver, and Gold Plating; also, Bronze and Brass Solutions. Com

HANSON VANWINKLE \& Co.

ROOFINC.

For steep or flat roofs. Applied by ordinary workmen
at one-tirir the costotin. Circuars and asmpestree.
Agents Wanted. T. NEW. 82 John street, New York.
WHITALL,TATUM \& Co. NEW YORK. PHILADELPHIA.
CHEMICAL GLASSWARE. CATALOGUES SENT UPON APPLICATION STRAIGHT LINE ENGINE CO. SYRACUSE.N.Y.
STRICTLY FIRS CLASS AUOMATIG ENGINE OF
FROM TEN TO SIXTY HORSE POWER.

KEUFFEL \& ESSER, Prongind Buin Pupbios Pdapis Papors for Bive Process (Unprepared).
Our Prapers will keep for a long time. Always fresh

NAVAL Metwatratiles. Wort

RUPIURE

 25 lmported destikn Chroho Cards for 188s, nhme on

Pyrometers,

THETHEOUEBERWATCH CASE
The " MONITOR."
A NEW IIFTINGAND NON

H.W.JOHIS assensme

ASBESTOS ROPE PACKING,
ASBESTOP WING

H. W. IOHNS M'F'G CO., 87 Maiden Lane, New York,

WITHERBY, RUGG \& RIOHADSON, Manutacturers
of Patent
Wood Working Machinery of every descrip

NUT TAPPING
DURREEL'S PATENT.

 able tol Mane an indis
HOWARD BROST,

Steam Fitters' \& Plumbers' Supplies, John s. URQUHART, suceessor to

ROCK DRILIS \& AIR COMPRESSORS Establd EACLE ANVILS. 1843 Solld CAST STEEL Face and Horn. Are Fully War-
 Celebrated Wooton Rotary Desk

 $\frac{\text { THE WOOTON DESK MANUFACTURING CO., N }}{\text { Establisike } 184 .}$ Vance Block, Indianapolis, Ind., U. S. A.

 CORTIS REGULATOR CO.

THE MEDART PATENT WROUGHT RIM PULLEY, MCMURRAY \& STOUGHTON, HARTFORD, CONN.

 WESTCOTT'S Chucks WARRANTED SUPERIOR TO ANY IN
nn capacity, strength, durabinty, and convenience.
Oneiida Steam Engine and Foundry Companty,

KORTING UNIVERSAL

 .

 HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY.
W. B. FRANKLIN.V. Pres't. J. M. Ahben, Pres't. J. B. PIERCE, Sec'y.

SPEAKING TELEPHONES.
THE AMERICAN BELL TELEPHONE COMPANY,
W. H. Forbes, W. R. DRIVER, THEO. N.VAIL,
W. H. Forbes, W. R. Driver, Thro. N. Vaik, Alexander Grabam Rell's patent of March 7. 1886 ,
owned by this company, covers every form of apparatus Tncluding Microphones or Carbon Tele phones, In whith
the voice of the speaker causes electrico undulations
corresponding to the words spoken, and which articula

 agents of the company
Als telepponenes obtanned except from this company or
its authorized liensees. are infringements, and the
makers. sellers. and useri will be proceeded against. its authorized hicensees, are in iringemen
makers, sellers, and useri will be proceeded
Informaton furnished upon application.
Adoress

.

This Tool will be appreciated by every machinist. It
is aceurately made, ot the Best Steel and is of the most WILEY \& RUSSELL M'F'G CO.,
Makers Lightning Screw Plates, Bolt Makers Lightning Screw Plates, Bo
Cutters, Fine Taps and Dies, etc.

The Most Popular Scientifie Paper in the World. Only 83.20 a Yenr, including postage. Weelsly.
This widely circulated and splendidy mustrated paper is published weekly. Every number contains six-
teen pages of useful information, and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, New Inventions, Novelties in Mechanies, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the scientipio
American a popular resume of the best scientife in American a popular resume of the best scientific in-
formation of the day; and it is the alm of the publishers Yormation of the day; andit is the alm of ine pablishers
to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind. possible abstrnse terms. To every inteliligent mind.
this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in reading. It is promotive of knowledge and progress in
every community where it circulates. Terms of Subscription.-One copy of the SCIEN-
TIFIC AMEHICAN will be sent for one vear-52 numberspostage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars nud twenty or Canada, on receipt of three dollars nud twenty
cents by the publishers; six months, $\$ 1.60$; three

One copy of the Scientific Ambrican and one copy of the Scientific American Supplement will be sent for one year, postage prepaid, to any subseriber in the
United States or Canada, on recelpt of seven dollars by the publishers. The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

MIUINIV \& CO.,
261 Broadway, New York.
PRINTING INKE,

ROCK BREAKERS AND ORE CRUSHERS

